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ABSTRACT

Active electro-optical systems benefit from stronger signal returns than their passive

counterparts by providing scalable illumination power in otherwise limited ambient

light. From an imaging standpoint this means higher signal-to-noise ratios for track-

ing purposes, leading to higher probabilities of detection, classification, recognition

and identification of potentially distant objects. By creating an artificial beacon,

active illumination also enables wavefront sensing where there is no natural beacon

available to act as a reference source. In either application, however, actively illu-

minating an object of opportunity gives rise to a unique form of multiplicative noise

known as speckle. A speckle pattern exhibits spatial variations in both amplitude

and phase that result from diffuse scattering off an optically rough surface. Image

quality suffers greatly from the presence of fully developed speckle, as the noise in

such an image is on the order of the signal level itself. In the case of wavefront sens-

ing, speckle contaminates measurements such that phase aberrations from the object

become indistinguishable from those in the atmosphere. Mitigating speckle gener-

ally involves increasing the number of degrees of freedom in a speckle field, whether

by manipulating coherence or polarization or system dynamics. The latter option

allows access to a rich trade space for studying speckle mitigation on a wave-optics

simulation basis. With that in mind, this work begins by exploring how different

modes of object motion translate to varying degrees of speckle decorrelation in both

the pupil and image planes of an optical system. Next, it derives scaling laws that

describe the positional uncertainty associated with speckle to quantify active track-

ing performance. Adapting these scaling laws to the geometry of a Shack–Hartmann

wavefront sensor then gives an indication of its open-loop performance limitations,

while applying decorrelation theory extends the analysis to cover partially corre-

lated frame-to-frame speckle. Finally, closing the loop on an adaptive-optics control
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system gauges the ability to compensate for atmospheric turbulence with both mit-

igated and unmitigated speckle noise. An additional chapter offers a system-level

treatment of radiometric noise performance that includes both speckle and scintil-

lation, and each of these theoretical contributions is validated through high-fidelity

wave-optics simulations with strong agreement.
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CHAPTER 1

Introduction

Electro-optical (EO) systems are conventionally defined as those operating in the

0.4–3 µm wavelength regime, which covers the visible, near infrared (NIR) and

shortwave infrared (SWIR) bands where radiation tends to be more reflective than

emissive. By contrast, forward-looking infrared (FLIR) and imaging infrared (I2R)

systems conventionally refer to operation in the midwave infrared (MWIR) and

longwave infrared (LWIR) bands where the radiation is mostly emissive [1]. In low-

light environments where natural illumination is insufficient to provide an acceptable

signal-to-noise ratio (SNR), active imaging with a controlled light source becomes

favorable to passive imaging under natural light. Furthermore, wavefront sensing

with natural light sources is generally realizable only in astronomical applications

where a natural guide star can serve as a reference for ground-to-space geometries.

In terrestrial settings, and especially over horizontal rather than slant paths, we

rely on focused laser light to provide such information. Because development and

scaling of modern active sources is mostly concerned with the visible through SWIR

bands, our interests are in EO rather than FLIR/I2R systems. A major drawback

in all active EO systems, however, is that the use of coherent light creates opportu-

nities for interference effects such as speckle—arising from scattering off a reflective

and optically rough surface—and scintillation—arising from propagation through a

turbulent medium such as the atmosphere. These irradiance fluctuations manifest

as multiplicative noise that undermines imaging, tracking and wavefront sensing

performance alike. Considering these predicaments, this dissertation is dedicated to

characterizing and mitigating speckle effects in active EO systems.

The two-part paper comprising Chs. 2 and 3 demonstrates the use of wave-optics

simulations to model the effects of dynamic speckle. In Part I, we formulate closed-

form expressions for the analytical irradiance correlation coefficient in the pupil
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plane of an optical system. These expressions are for square, circular, and Gaussian

scattering spots and four different modes of extended-object motion, including in-

plane and out-of-plane translation and rotation. In Part II, we formulate closed-form

expressions for the analytical irradiance correlation coefficient in the image plane of

an optical system. These expressions are for square, circular, and Gaussian limiting

apertures and four different modes of extended-object motion, including in-plane

and out-of-plane translation and rotation. Using a phase-screen approach, we then

simulate the equivalent scattering from an optically rough extended object, where

we assume that the surface heights are uniformly distributed and delta correlated

from grid point to grid point. For comparison to the analytical irradiance correlation

coefficient, we also calculate the numerical irradiance correlation coefficient from the

dynamic speckle after propagation from the simulated object plane to the simulated

pupil and image planes. Overall, the analytical and numerical results definitely

demonstrate that, relative to theory, the dynamic speckle in the simulated pupil

plane is properly correlated from one frame to the next. Such validated wave-optics

simulations provide the framework needed to model more sophisticated setups and

obtain accurate results for system-level studies.

It is well known to system engineers that speckle imposes a limitation on active-

tracking performance, but scaling laws that quantify this limitation do not currently

exist in the peer-reviewed literature. Additionally, existing models lack validation

through either simulation or experimentation. With these points in mind, Ch. 4

formulates closed-form expressions that accurately predict the noise-equivalent angle

due to speckle. The analysis separately treats both well-resolved and unresolved

cases for circular and square apertures. When compared with the numerical results

from wave-optics simulations, the analytical results show excellent agreement to a

track-error limitation of (1/3)λ/D, where λ/D is the aperture diffraction angle. As

a result, this paper creates validated scaling laws for system engineers that need to

account for active-tracking performance.

Shack–Hartmann wavefront sensors are well-established tools for characterizing

phase aberrations present in an optical field. The performance of such devices is op-
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timized when provided a cooperative point-source beacon at range. If the beacon is

instead a noncooperative extended source, the speckle that arises from rough-surface

scattering introduces errors into the measurements. In distributed-volume turbu-

lence over horizontal paths, beacon anisoplanatism acts as another source of error

due to path averaging. Both types of error grow in severity with growing beacon

size. Operating in the weak-turbulence regime where Shack–Hartmann wavefront

sensors offer robust performance and using in-plane translation of the beacon to ac-

complish speckle diversity, we show in Ch. 5 that speckle averaging helps to reduce

isoplanatic measurement error but is rendered ineffective for highly anisoplanatic

beacons. Understanding these system limitations is critical for performing effective

wavefront sensing in horizontal propagation scenarios with noncooperative beacons.

Phase compensation via adaptive optics (AO) is a well-established means of over-

coming atmospheric aberrations, but the closed-loop performance of an AO system

becomes compromised with the use of an extended beacon. In Ch. 6 we model

extended beacons of various sizes using plane-wave illumination of square objects,

allowing for partial correlation of frame-to-frame speckle along with the possibility

of beacon anisoplanatism as objects grow in size. We then model horizontal-path

propagation with Kolmogorov turbulence and frozen flow through wave-optics sim-

ulations. Finally, we model a closed-loop phase-compensation system comprised of

a Shack–Hartmann wavefront sensor in the Fried geometry, a least-squares phase re-

constructor, a continuous-face-sheet deformable mirror, and a leaky-integrator con-

trol law. We characterize the severity of speckle and anisoplanatism using the object

Fresnel number and object angular extent relative to isoplanatic angle, respectively,

and gauge closed-loop performance by the normalized power in the bucket and peak

Strehl ratio. Overall results show that while speckle averaging can be an effective

strategy for mitigating noise associated with extended beacons, beacon anisopla-

natism steadily diminishes and eventually overwhelms any performance gains with

a sufficiently large beacon over a horizontal path.

In Ch. 7 we provide an in-depth analysis of noise considerations in coherent

imaging, accounting for speckle and scintillation in addition to “conventional” im-
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age noise. Specifically, we formulate closed-form expressions for total effective noise

in the presence of speckle only, scintillation only (for weak-to-moderate turbulence

conditions), and speckle combined with scintillation. We find analytically that pho-

ton shot noise is uncorrelated with both speckle and scintillation, despite their shared

dependence on the mean signal. Furthermore, unmitigated coherent noise tends to

dominate performance limitations due to a squared mean-signal dependence. Strong

coupling occurs between speckle and scintillation when both are present, and we

characterize this behavior by fitting a scale factor capable of generating variances

in closed form. We verify each of these claims through a series of wave-optics sim-

ulations, and we see strong agreement in general between numerical results and

theoretical predictions. Our findings allow us to confidently gauge signal-to-noise

ratio (SNR) expectations when active illumination produces coherent noise.

The appendices at the end of this dissertation provide supplemental informa-

tion related to the primary subject matter. Appendix A explores the potential for

measuring size, distance, and tilt orientation of a simplified object from its returned

speckle patterns in the pupil and image planes of a generalized imaging system. Our

results show that such measurements are possible to within a 10% error bound. This

work was prompted by reviewer comments inquiring about the potential for apply-

ing Chs. 2 and 3 to metrology. Appendix B demonstrates an alternative method of

alleviating of speckle effects by iteratively reconstructing a single image using com-

pressive sensing. At suboptimal sample rates, reconstructions decorrelate to allow

for speckle averaging. Results indicate a potential reduction in speckle contrast by

up to 30%. Appendix C presents closed-form expressions for low-order-aberration-

removed, aperture-averaged anisoplanatic error across horizontal paths. These solu-

tions are not only computationally inexpensive but easily invertible to numerically

calculate extended isoplanatic angles in a given propagation scenario. Appendix D

proposes statistical metrics to quickly evaluate speckle’s influence on atmospheric

wavefront sensing. Integrating over multiple pupil-plane speckle realizations, we

find that the skewness in irradiance is ideally ∼1. Appendix E characterizes proper

sampling of laser speckle in wave-optics simulations, with an emphasis on active im-
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agers and wavefront sensors in outdoor environments. We expose tradeoffs between

sampling conditions in multiple planes of interest, namely the object, pupil and im-

age planes of an optical system. The goal of our analysis is to develop an optimized

numerical tradespace that models the underlying physics of speckle and turbulence

with high fidelity. We pay particular attention to the problem of sufficiently sam-

pling an object without subjecting it to anisoplanatism. As a way of overcoming

such challenges, we propose and test an optimization routine that defines accept-

able simulation parameters based on user-defined physical parameters. Successful

implementation of this approach streamlines the design process for applications that

involve active tracking and coherent imaging through turbulence.
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CHAPTER 2

Wave-Optics Simulation of Dynamic Speckle: I. In a Pupil Plane†

2.1 Background

Speckle plays a pivotal role in directed-energy applications. One cannot actively

illuminate a distant object without also introducing speckle. Thus, directed-energy

applications like long-range imaging [3, 4, 5, 6, 7], tracking [8, 9], wavefront sensing

[10, 11], phase compensation [12, 13], and synthetic-aperture ladar [14, 15] depend

on the presence of speckle to achieve their desired outcomes. Whenever possible,

however, these applications also look to mitigate the effects of speckle in order to

achieve the best possible performance.

Optically rough extended objects (i.e., where the surface roughness is on the

order of the wavelength of light) diffusely scatter an incident laser beam to produce

a speckled irradiance pattern. The associated speckles, in practice, appear as bright

regions of constructive interference. Here, the average size of the speckles is roughly

equal to a coherence cell from the scattering spot [16]. These speckles unfortunately

act as a noise term that limit performance in the aforementioned directed-energy

applications. What is more, different modes of extended-object motion serve to

perpetuate this noise term on a frame-by-frame basis, due to the effects of dynamic

speckle.

Speckle mitigation, in turn, has been an active area of research since the emer-

gence of the laser itself [17]. For example, researchers often perform speckle averag-

ing to mitigate the effects of dynamic speckle. To quantify the benefits of speckle

†This material was published previously as [2] in Applied Optics with coauthors M. F. Spencer,
N. R. Van Zandt, and R. G. Driggers (https://doi.org/10.1364/AO.427963) © 2021 Optica
Publishing Group. Users may use, reuse, and build upon the article, or use the article for text or
data mining, so long as such uses are for non-commercial purposes and appropriate attribution is
maintained. All other rights are reserved.

https://doi.org/10.1364/AO.427963
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averaging, one can make use of the signal-to-noise ratio (SNR). In practice, the SNR

is inversely proportional to the contrast ratio, C, such that

C =
σI

Ī
, (2.1)

where σI is the standard deviation of the speckled irradiance pattern and Ī is

the mean [17]. A fully developed speckled irradiance pattern (resulting from

fully polarized/coherent light) follows a negative-exponential probability density

function (PDF). In turn, C goes to unity [18]. Accumulating K patterns, as a

result, decreases C to 1/
√
K as the PDF becomes more Gaussian like in accordance

with the central-limit theorem. This last statement is only true if the individual

speckled irradiance patterns are uncorrelated on a frame-by-frame basis [19]. From

a systems-engineering perspective, it is therefore of great interest to accurately

define when speckle decorrelation occurs, especially in the presence of dynamic

speckle.

Given a fully developed speckle pattern, the real and imaginary parts of the

underlying complex-optical field conform to a complex-circular Gaussian joint PDF

[20]. Because of this inherent randomness, there are no deterministic solutions

for the size of the speckles and thus for the speckle decorrelation. A general

approach to this problem is to derive a correlation function that accounts for the

lowest-order statistics of the complex-optical field at two different points in space

[21]. Normalizing this function to its peak value yields an analytical irradiance

correlation coefficient equal to one for overlapping points and equal to zero for

separation by the width of the average size of the speckles. Displacing the speckled

irradiance patterns by this distance decorrelates them in time, given some relation-

ship between motion of the extended object and that of the dynamic speckle. Then

at a known rate of change in extended-object position, the speckle decorrelation is

predictable as a function of time. Through the years, a number of researchers have

taken this approach, while many others have studied closely-related phenomena

that one can easily recast in this manner.
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Rigden and Gordon [22], Oliver [23] and Langmuir [24] were among the first

scientists to report on dynamic speckle. Allen and Jones [25] offered an explanation

of their results based on the diffraction of radio waves. Isenor [26] and Sporton

[27] followed up by emphasizing the optical-system geometry and its impact on

speckle dynamics in the image plane. Anisimov et al. [28] later derived space-time

correlation statistics for the first time, and correlation experiments have been

underway ever since [29, 30, 31, 32, 33, 34].

With this rich history in mind, this two-part paper demonstrates the use

wave-optic simulations to model the effects of dynamic speckle. In Part I, we

formulate closed-form expressions for the analytical irradiance correlation coefficient

in the pupil plane of an optical system. Part II then switches gears and formulates

closed-form expressions for the analytical irradiance correlation coefficient in the

image plane of an optical system. It is worthwhile to consider the pupil plane

separately from the image plane, as the structure of speckle turns out to operate

independently in each plane under most conditions of interest. As such, this

paper focuses solely on the theory and simulation of speckle decorrelation in the

pupil plane of an optical system. Because image formation is not yet of concern,

the pupil plane (discussed throughout this paper) is equivalent to a plane of

observation at some distance from the extended object in a free-space system. In

Part II, this distance represents free-space propagation from the object plane to

the entrance-pupil plane. A second free-space propagation then focuses the light

from the exit-pupil plane to the image plane.

Broadly speaking, Part I aims to fulfill two main goals. The first goal is

is to establish closed-form expressions for the analytical irradiance correlation

coefficient (associated with dynamic speckle in a pupil plane) for (1) the cases of

square, circular, and Gaussian scattering spots and (2) four different modes of

extended-object motion: in-plane and out-of-plane translation, as well as in-plane

and out-of-plane rotation. While meeting this goal does not demand any new

theory per se, it does fill several gaps in the dynamic-speckle literature that would

otherwise require some inference while compiling all of the closed-form expressions
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in a unified notation. It also frames many of these closed-form expressions for

the first time as straightforward functions of extended-object motion. The second

main goal is to develop a simulation framework within which to study speckle

decorrelation in terms of the the numerical irradiance correlation coefficient and

thereafter compare the numerical results from simulation to the analytical results

from theory.

In service of these goals, the following sections formulate the aforemen-

tioned closed-form expressions for the analytical irradiance correlation coefficient

(cf. Sec. 2.2), the wave-optics simulations used to compute the numerical irradiance

correlation coefficient (cf. Sec. 2.3), and the results that compare the analytical

and numerical findings (cf. Sec. 2.4). Before moving on to the next section, it is

important to note that we wrote Part I so that it complements Part II. In turn,

both papers contain overlapping material. So as not to be redundant, this choice

enables two things: (1) both papers read independently from each other (i.e., the

reader does not have to read Part II in order to understand the results in Part I and

vice versa), and (2) the reader can pull up Part II alongside Part I and compare and

contrast the results without too much difficulty. As a result, this two-part paper

demonstrates the use of wave-optics simulations to model the effects of dynamic

speckle.

2.2 Analytical Irradiance Correlation Coefficient

In this section, we formulate closed-form expressions for the analytical irradiance cor-

relation coefficient, µI (p1;p2). Strictly speaking, these formulations treat µI (p1;p2)

as a measure of correlation between two points in a static-speckled irradiance pat-

tern. In this way, µI (p1;p2) offers a sense of the average size of the speckles by

solving for the spatial separation between two distinct points in space, p1 and p2, at

which speckle decorrelation occurs. The closed-form expressions formulated in this

section are just as effective, however, at defining where speckle decorrelation occurs
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for dynamic-speckled irradiance patterns [32, 35, 36]. In practice, we can relate such

patterns to the dynamics induced by extended-object motion; thus, µI (p1;p2) is a

useful construct for dynamic speckle, in addition to static speckle, hence the reason

we use it in the analysis that follows.

Although speckle is by nature a self-interference effect with respect to the

complex-optical field, it manifests as an irradiance measurement (in units of power

per unit area) using modern-day optical detectors. Consequently, dynamic speckle

involves a correlation function between two speckled irradiance patterns, I1 (p) and

I2 (p). The relevant correlation function is

RI (p1;p2) = ⟨I1 (p1) I2 (p2)⟩

= ⟨U1 (p1)U
∗
1 (p1)U2 (p2)U

∗
2 (p2)⟩ ,

(2.2)

where ⟨◦⟩ denotes an ensemble average, while p1 and p2 are again two distinct points

in space. Supposing that the rough-surface scattering from the optically rough

extended object lends enough independent phase contributions that the central-

limit theorem applies, we model the complex-optical fields U (p1) and U (p2) as

complex-circular Gaussian random variables [37]. In turn,

RI (p1;p2) = ⟨I1 (p1)⟩ ⟨I2 (p2)⟩+ |⟨U1 (p1)⟩ ⟨U∗
2 (p2)⟩|2

= ⟨I1 (p1)⟩ ⟨I2 (p2)⟩+ |JU (p1;p2)|2 ,
(2.3)

where JU (p1;p2) is the mutual intensity between U1 (p1) and U2 (p2). The complex

spatial coherence factor,

µU (p1;p2) =
JU (p1;p2)√

JU (p1;p1) JU (p2;p2)
, (2.4)

is a normalization of mutual intensity having the property 0 ≤ µU ≤ 1. Substituting

Eq. (2.4) into Eq. (2.3),

RI (p1;p2) = ⟨I1 (p1)⟩ ⟨I2 (p2)⟩
[
1 + |µU (p1;p2)|2

]
. (2.5)
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Equation (2.5) contains both DC and AC components, but it is the fluctuating AC

term that carries meaningful information about the speckle decorrelation. Thus,

µI (p1;p2) = |µU (p1;p2)|2 (2.6)

is a fitting correlation coefficient with respect to irradiance that governs RI . Also

known as the Yamaguchi correlation factor [38], µI (p1;p2) is effectively a ratio of

crosscorrelation to autocorrelation with reference to Eqs. (2.4) and (2.5).

2.2.1 Propagation From the Object Plane to the Pupil Plane

At this stage in the analysis, it is useful to introduce the rough-surface-scattering

geometry proposed in this paper. Figure 2.1 illustrates this geometry as a free-space

system with the α–β and ξ–η sets of axes placed within the object and pupil planes,

respectively. The respective radial coordinates are Ω =
√
α + β and ϱ =

√
ξ + η. A

distance Z along the z axis initially separates the object and pupil planes.

We position an optically rough extended object of width W in the object plane,

while an observation screen with infinite field of view (for the time being) resides

in the pupil plane. Each component starts off centered at the origin of its local

coordinate system. Distances ∆Ω and ∆z are measures of in-plane and out-of-plane

translation, respectively. The z axis and optical axis are collinear with the axis of

in-plane rotation (∆ϑ), while out-of-plane rotation (∆φ) occurs about some axis in

the α–β plane. As the object moves under fully coherent illumination, the diffusely

scattered speckled irradiance pattern changes and eventually decorrelates from its

initial state. Moving forward we assume that both illumination and observation

occur on axis (for ease of modeling). We also assume that deviations from theory

(i.e., the closed-form expressions formulated in this section) are only appreciable for

large angles of incidence and observation.

With Eqs. (2.4) and (2.6) in mind, recall that we can relate the analytical irra-

diance correlation coefficient, µI (p1;p2), to the mutual intensity, JU (p1;p2). What
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Figure 2.1: Free-space propagation from an optically rough extended object in the
object plane to an observation screen in the pupil plane.

is more, we can use scalar diffraction theory to propagate JU (p1;p2) from plane to

plane to determine µI (p1;p2) in the appropriate plane. For this purpose, if U (α, β)

is the source field (i.e., the complex-optical field in the object plane), then the first

Rayleigh–Sommerfeld diffraction integral predicts that

U (ξ, η) =
Z

jλ

∫∫
Σ

U (α, β)
exp (jkℓ)

ℓ2
ds (2.7)

in the pupil plane. Here, λ is the optical wavelength, k = 2π/λ is the angular

wavenumber,

ℓ =

√
(ξ − α)2 + (η − β)2 + Z2 (2.8)

is the Euclidean distance between points (α, β) and (ξ, η), and ds is a differential

surface element of source area Σ. This solution assumes that we satisfy the optical

condition λ ≪ ℓ. In practice, Eq. (2.7) has the form of a superposition integral in



2.2. ANALYTICAL IRRADIANCE CORRELATION COEFFICIENT 30

terms of source field U (α, β) and free-space impulse response

h (ξ, η;α, β) =
Z exp (jkℓ)

jλℓ2
. (2.9)

Equation (2.9) notably depends only on the differences between points (α, β) and

(ξ, η), and this shift invariance constitutes an isoplanatic system so that Eq. (2.7)

becomes a convolution between the source field and the impulse response [39].

To determine the mutual intensity, JU (p1;p2), in the pupil plane, we first define

a generic point Ω = (α, β) within the object plane. In the vicinity of the pupil

plane, p1 and p2 are points located at (ξ1, η1, Z) and (ξ1 + ∆ξ, η1 + ∆η, Z + ∆z),

respectively. Then Eq. (2.7) yields

JU (p1;p2) = ⟨U (p1)U
∗ (p2)⟩

=

∫∫
Σ2

∫∫
Σ1

⟨U (Ω1)U
∗ (Ω2)⟩h (p1;Ω1)h

∗ (p2;Ω2) d
2Ω1 d

2Ω2

=

∫∫
Σ2

∫∫
Σ1

J (Ω1;Ω2)h (p1;Ω1)h
∗ (p2;Ω2) d

2Ω1 d
2Ω2,

(2.10)

so all that is left to define is the source mutual intensity J (Ω1;Ω2) (i.e., the mutual

intensity in the object plane).

According to Goodman [40], the scattered field immediately following an opti-

cally rough surface is delta correlated to a first approximation (above the scale of a

wavelength). The resulting expression is

JU (Ω1;Ω2) = κU (Ω1)U
∗ (Ω2) δ (Ω1 −Ω2) , (2.11)

where κ is some global loss factor. By the sifting property of the Dirac delta function,

δ (◦), Eqs. (2.10) and (2.11) combine as

JU (p1;p2) = κ

∫∫
Σ

|U (Ω)|2 h (p1;Ω)h∗ (p2;Ω) d2Ω (2.12)
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after setting Ω1 = Ω for simplicity.

Making the paraxial approximation (with respect to amplitude) that ℓ21 ≈ ℓ22 ≈
Z2, the end result of Eqs. (2.4), (2.6), and (2.12) is

µI (p1;p2) =

∣∣∣∣∣
∫∫

Σ
|U (Ω)|2 exp [jk (ℓ2 − ℓ1)] d

2Ω∫∫
Σ
|U (Ω)|2 d2Ω

∣∣∣∣∣
2

. (2.13)

Equation (2.13) reveals that the analytical irradiance correlation coefficient,

µI (p1;p2), is a function of the source irradiance, |U (Ω)|2, as well as the observation
points p1 and p2. Much of the foundational work on speckle decorrelation applies

a binomial approximation to a power-series expansion of the phasor argument of

Eq. (2.13) prior to integrating. This final paraxial approximation (with respect to

phase) ultimately gives rise to a scaled Fresnel diffraction integral, since replacing

the impulse responses with the well-known Fresnel propagation kernel effectively

makes Eq. (2.13) a normalized Fresnel transform of |U (Ω)|2 in two dimensions.

2.2.2 Four Different Modes of Extended-Object Motion

In what follows, we formulate closed-form expressions for the four different modes

of extended-object motion proposed in this paper, including in-plane and out-of-

plane translation and rotation. For this purpose, we need to first define a set of

unit-amplitude source fields, U (Ω) = U (α, β). Assuming plane-wave illumination,

these so-called scattering spots take the following functional forms [41]:

U (α, β) = rect

(
α

W
,
β

W

)
= rect

( α

W

)
rect

(
β

W

)
, (2.14)

where

rect (w) =


1

1/2

0

|w| < 1/2

|w| = 1/2

|w| > 1/2

; (2.15)

U (α, β) = cyl

(√
α2 + β2

W

)
, (2.16)
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where

cyl (ρ) =


1

1/2

0

0 ≤ ρ < 1/2

ρ = 1/2

ρ > 1/2

; (2.17)

and

U (α, β) = Gaus

(√
α2 + β2

√
πW/2

)
, (2.18)

where

Gaus (ρ) = exp
(
−πρ2

)
. (2.19)

Here, Eqs. (2.14) and (2.15) give rise to a square scattering spot of width W ,

Eqs. (2.16) and (2.17) give rise to a circular scattering spot of diameter W , and

Eqs. (2.18) and (2.19) gives rise to a Gaussian scattering spot of 1/e-amplitude di-

ameter W .

Moving forward, we also need to define the following special functions:

sinc (w) =
sin (πw)

πw
, (2.20)

somb (ρ) = 2
J1 (πρ)

πρ
, (2.21)

and

Fres (w) =
S2 (w) + C2 (w)

w2
. (2.22)

Here, J1 (◦) is a first-order Bessel function of the first kind (not to be confused

with mutual intensity), while S (◦) and C (◦) are, respectively, the Fresnel sine and

cosine integrals [39]. These special functions readily show up in the closed-form

expressions that follow for in-plane and out-of-plane translation and rotation of

the object. Furthermore, these special functions [cf. Eqs. (2.18)-(2.22)] readily

provide cutoff/rolloff conditions. Such conditions define what we mean by speckle

decorrelation and offer a sense of the average size of the speckles.
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In-Plane Translation

Assuming in-plane translation of the object (cf. Fig. 2.1), Table 2.1 provides closed-

form expressions for the analytical irradiance correlation coefficient, µI (∆Ω), for

all three scattering spots (i.e., square, circular, and Gaussian) with corresponding

cutoff/rolloff conditions, ∆Ωc/r. Here, ∆Ω is the in-plane translation distance. It

is important to note that both the square and circular scattering spots give rise to

distinct cutoff conditions (i.e., the special functions go to zero at ∆Ωc), whereas the

Gaussian scattering spot gives rise to a rolloff condition (i.e., the special function

never reaches zero but has a 1/e2 magnitude at ∆Ωr).

To formulate the closed-form expressions given in Table 2.1, ∆z is set to zero in

Table 2.1: Closed-form expressions for in-plane translation.

scattering spot irradiance correlation coefficient cutoff/rolloff condition

square µI (∆Ω) = sinc2
(
W∆Ω

λZ

)
∆Ωc =

λZ

W

circular µI (∆Ω) = somb2
(
W∆Ω

λZ

)
∆Ωc =

1.22λZ

W

Gaussian µI (∆Ω) = Gaus

(√
πW∆Ω

2λZ

)
∆Ωr =

√
8λZ

πW

Eq. (2.13) for in-plane translation, such that point p2 is at (ξ1 + ∆ξ, η1 + ∆η,

Z). The radial distance between points of observation in the pupil plane is

∆ϱ =
√

∆ξ2 +∆η2, which corresponds directly to an in-plane object translation

of ∆Ω =
√
∆α2 +∆β2. Thus, by substituting ∆ϱ with ∆Ω after integration, the

analytical irradiance correlation coefficient, µI (∆Ω), becomes a function of the in-

plane translation distance, ∆Ω. In so doing, we neglect the effects of boiling as we

introduce new scatterers into the scattering spot. This assumption is valid as long

as the scattering spot is larger than the speckles it produces in the pupil plane.

For a square or circular scattering spot of width or diameter W , the cutoff con-

dition, ∆Ωc, corresponds to the average lateral size of the speckles. If dealing with



2.2. ANALYTICAL IRRADIANCE CORRELATION COEFFICIENT 34

an oblong rectangular spot, things become separable in the horizontal and vertical

directions (using different values for W ). These findings agree with published results

[42, 43].

For a Gaussian scattering spot of 1/e-amplitude diameter W , the rolloff condi-

tion, ∆Ωr, is consistent with Goodman’s theory [16]. The resulting equation is only

valid over small translation distances [44], as are all other Gaussian functions pre-

sented in this paper. Such analytical curves decrease monotonically out to infinity,

when in practice there are oscillatory outer lobes (as with previous expressions),

due to periodic overlap of speckles with large translation distances [45]. Moreover,

these analytical curves decay asymptotically, which means there is no zero crossing

at which to naturally define the average lateral size of the speckles. Instead, the

1/e2 point serves as a correlation rolloff condition rather than a cutoff condition.

What matters for comparison with discrete irradiance datasets from wave-optics

simulations (or experiments) is that there is consistency with theory at least up to

this rolloff condition.

Out-of-Plane Translation

Assuming out-of-plane translation of the object (cf. Fig. 2.1), Table 2.2 provides

closed-form expressions for the analytical irradiance correlation coefficient, µI (∆z),

for all three scattering spots (i.e., square, circular, and Gaussian) with corre-

sponding cutoff/rolloff conditions, ∆zc/r. Here, ∆z is the out-of-plane translation

distance. It is important to note that both the square and circular scattering

spots give rise to distinct cutoff conditions (i.e., the special functions go to zero

or a minimum at ∆zc), whereas the Gaussian scattering spot gives rise to a rolloff

condition (i.e., the special function has a 1/e2 magnitude at ∆zr).

To formulate the closed-form expressions given in Table 2.2, ∆Ω is set to zero

in Eq. (2.13) for out-of-plane translation, confining point p2 to (ξ1, η1, Z + ∆z).

Unlike with in-plane translation (cf. Sec. 2.2.2), the results now vary with radial

vantage point ϱ =
√
ξ + η in the pupil plane. Thus, the closed-form expressions

given in Table 2.2 are valid only for on-axis speckles.
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Table 2.2: Closed-form expressions for out-of-plane translation.

scattering spot irradiance correlation coefficient cutoff/rolloff condition

square µI (∆z) = Fres2

(
W

Z

√
∆z

2λ

)
∆zc = 7.31λ

(
Z

W

)2

circular µI (∆z) = sinc2

[
∆z

8λ

(
W

Z

)2
]

∆zc = 8λ

(
Z

W

)2

Gaussian µI (∆z) =

{
1 +

[
πW 2∆z

8λZ (Z +∆z)

]2}−1

∆zr =
Z

0.155W 2/ (λZ)− 1

Analogous to the relationship between in-plane translation and the average

lateral size of the speckles, the cutoff/rolloff conditions given in Table 2.2 estimate

the average longitudinal size of the on-axis speckles. These speckles all point away

from the centroid of illumination, meaning they align with the z axis at ϱ = 0

and rotate away from it for ϱ > 0. They also elongate with increasing distance

from the illumination axis, yet they have the same axial projection on average.

This behavior implies that they are shortest along the axial dimension with an

off-axis length of ∆zc =
√

ξ2 + η2 + Z2 [42]. A detail worth mentioning is that Li

& Chiang numerically derive scaling factors for an exact calculation of the average

longitudinal size of the off-axis speckles [46]. Another detail worth mentioning is

that Eq. (2.22) does not cross zero but rather decreases to a minimum value of

6.65× 10−3 before increasing again.

In-Plane Rotation

Assuming in-plane rotation of the object (cf. Fig. 2.1), Table 2.3 provides closed-

form expressions for the analytical irradiance correlation coefficient, µI (∆ϑ), for

all three scattering spots (i.e., square, circular, and Gaussian) with corresponding

cutoff/rolloff conditions, ∆ϑc/r. Here, ∆ϑ is the in-plane rotation angle. It is



2.2. ANALYTICAL IRRADIANCE CORRELATION COEFFICIENT 36

important to note that both the square and circular scattering spots give rise to

distinct cutoff conditions (i.e., the special functions go to zero at ∆ϑc), whereas the

Gaussian scattering spot gives rise to a rolloff condition (i.e., the special function

has a 1/e2 amplitude at ∆ϑr).

In essence, in-plane rotation is an extension of in-plane translation (cf.

Table 2.3: Closed-form expressions for in-plane rotation.

scattering spot irradiance correlation coefficient cutoff/rolloff condition

square µI (∆ϑ) = sinc2
(
W∆ϑϱ

λZ

)
∆ϑc =

λZ

Wϱ

circular µI (∆ϑ) = somb2
(
W∆ϑϱ

λZ

)
∆ϑc =

1.22λZ

Wϱ

Gaussian µI (∆ϑ) = Gaus

(√
πW∆ϑϱ

2λZ

)
∆ϑr =

√
8λZ

πWϱ

Sec. 2.2.2), given a circular path around the rotational axis. Accordingly, we

can substitute arc length ∆ϑϱ for linear distance ∆Ω. Doing so produces the

relationships given in Table 2.3.

Similar to out-of-plane translation (cf. Sec. 2.2.2), the expressions in this case

vary with radial vantage point ϱ =
√
ξ + η. Unlike for out-of-plane translation,

however, the closed-form expressions given in Table 2.3 readily account for off-axis

speckles with the inclusion of variable ϱ. Churnside’s work confirms these results

after appropriate simplifications [47], as does further analysis by Yura et al. [48].

Saleh makes the point that in-plane rotation at sufficiently large angles warrants

the inclusion of a sinusoidal argument factor to account for periodic replication of

the signal in time [29]. A detail worth mentioning is that the on-axis correlation is

unity with a cutoff/rolloff condition of infinity, since ϱ = 0. This result is physically

accurate, since the speckle at the very center of rotation remains stationary,

independent of in-plane rotation ∆ϑ.
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Out-of-Plane Rotation

Assuming out-of-plane rotation of the object (cf. Fig. 2.1), Table 2.4 provides

closed-form expressions for the analytical irradiance correlation coefficient, µI (∆φ),

for all three scattering spots (i.e., square, circular, and Gaussian) with correspond-

ing cutoff/rolloff conditions, ∆φc/r. Here, ∆φ is the out-of-plane rotation angle. It

is important to note that both the square and circular scattering spots give rise to

distinct cutoff conditions (i.e., the special functions go to zero at ∆φc), whereas the

Gaussian scattering spot gives rise to a rolloff condition (i.e., the special function

has a 1/e2 magnitude at ∆φr).

In essence, out-of-plane rotation also mimics the behavior of in-plane translation

Table 2.4: Closed-form expressions for out-of-plane rotation.

scattering spot irradiance correlation coefficient cutoff/rolloff condition

square µI (∆φ) = sinc2
(
2W∆φ

λ

)
∆φc =

λ

2W

circular µI (∆φ) = somb2
(
2W∆φ

λ

)
∆φc =

0.61λ

W

Gaussian µI (∆φ) = Gaus

(√
πW∆φ

λ

)
∆φr =

√
2λ

πW

(cf. Sec. 2.2.2), given small-angle rotations. Accordingly, we can substitute linear

distance 2Z∆φ for linear distance ∆Ω. Doing so produces the relationships given

in Table 2.4.

For near-normal angles of incidence and observation, the speckled irradiance

patterns arise from the same set of rough-surface scatters [49]. As such, a linear

tilt across the object’s surface imposes a linear shift in the far field. This last point

relates to the shift theorem of the Fourier transform [41]. Thus, under the small-

angle approximation, the appropriate substitution comes about through geometric

considerations as the object surface normal subtends an angle of ∆φ ≈ ∆ϱ/Z.

Recalling that ∆ϱ and ∆Ω are functionally equivalent for in-plane translation
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and free-space propagation, the result is that Z∆φ replaces ∆Ω in a transmission

geometry. The reflection geometry then requires that 2Z∆φ replaces ∆Ω, as an

angle doubling occurs due to the double pass through the depth of the tilted

object. With this last point in mind, the rough-surface scattering geometry under

consideration leads to the closed-form expressions given in Table 2.4. The same

results follow from Goodman’s use of scattering vectors to characterize the speckle

decorrelation at normal incidence and observation [16].

2.2.3 Analytical Exploration

Figure 2.2 plots the closed-form expressions formulated in Tables 2.1–2.4. In par-

ticular, Fig. 2.2(a) plots the case of in-plane translation (cf. Table 2.1), Fig. 2.2(b)

plots the case of out-of-plane translation (cf. Table 2.2), Fig. 2.2(c) plots the case

of in-plane rotation (cf. Table 2.3), and Fig. 2.2(d) plots the case of out-of-plane

rotation (cf. Table 2.4). All plots include the respective cutoff conditions for square

and circular scattering spots and the rolloff conditions for Gaussian scattering spots.

2.3 Numerical Irradiance Correlation Coefficient

All of the closed-form expressions formulated in Sec. 2.2 make use of continuous

speckled irradiance patterns, I1 (p) and I2 (p). In this section, we make use of dis-

crete irradiance datasets, I1 and I2, from wave-optics simulations (or experiments).

With this last point in mind, the numerical irradiance correlation coefficient, µ̂I ,

takes the following form:

µ̂I =
⟨I1I2⟩ − ⟨I1⟩ ⟨I2⟩√〈

(I1 − ⟨I1⟩)2
〉 〈

(I2 − ⟨I2⟩)2
〉 , (2.23)

where ⟨◦⟩ denotes an arithmetic mean. Equation (2.23) turns out to be equivalent

to calculating the Pearson’s correlation coefficient for a sample [50], which applies



2.3. NUMERICAL IRRADIANCE CORRELATION COEFFICIENT 39

(a) (b)

(c) (d)

Figure 2.2: Analytical exploration of the trade space in terms of the four different
modes of extended-object motion.
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to Gaussian random processes. Thus, similar to its analytical counterpart, µ̂I is a

useful construct for dynamic speckle and we use it in the analysis that follows.

With Eq. (2.23) in mind, the wave-optics simulations setup in this section make

use of the following procedure.

1. Create an optically rough extended object using a phase-screen approach.

2. Propagate from the object plane to the pupil plane.

3. Crop the irradiance dataset I1 and save for reference.

4. Modify the optically rough extended object with the appropriate mode of

extended-object motion.

5. Repeat as necessary, saving the frame-to-frame irradiance dataset I2.

6. Calculate the numerical irradiance correlation coefficients as a function of

extended-object motion.

To illustrate steps 1–3, Fig. 2.3 displays example irradiance and phase datasets.

These wave-optics simulations make use of the WaveProp Toolbox for MATLAB

[51].

object plane pupil plane cropped pupil

Figure 2.3: Example irradiance and phase datasets from the wave-optics simulations
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Figure 2.4: Illustration of the free-space system simulated in the wave-optics simu-
lations. Here, we use an optically rough three-bar object (for illustrative purposes).

2.3.1 Simulating Propagation From the Object Plane to the Pupil Plane

Analogous to Fig. 2.1, Fig. 2.4 depicts the free-space system simulated in the wave-

optics simulations. These wave-optics simulations used an N × N grid resolution

with N = 512. This choice provided an acceptable balance between physical ac-

curacy and computational efficiency [52]. The wave-optics simulations also made

use of a free-space wavelength of λ0 = 1 µm and a limiting-aperture (circular-only)

diameter of D = 30 cm, which are typical values for long-range propagation studies.

For simplicity, the wave-optics simulations used unity scaling between the sim-

ulated object and pupil planes. They also used 200 grid points across the aperture

diameter, while padding the circular pupil with zeros to exceed the recommended

factor of 2.4 [53]. As such, the grid spacing, δ, was 1.5 mm, and the grid side length,

S, was 76.8 cm. Critical sampling [54] (a.k.a. Fresnel scaling [51]) then stipulated

that

N =
S2

λZ
. (2.24)

Satisfying critical sampling typically gives wave-optics results that are free of alias-

ing. However, the high spatial frequencies contained in diffuse speckle made the

wave-optics simulations especially prone to aliasing even with Eq. (2.24) satisfied.

Tailored methods such as pupil-plane filtering [55] aim to combat this problem by



2.3. NUMERICAL IRRADIANCE CORRELATION COEFFICIENT 42

eliminating the high spatial frequencies that would cause aliasing. Nonetheless, em-

pirical evidence suggests that first doubling the grid resolution, then propagating

the field (via the impulse-response method [54]) and cropping back down has greater

resistance to aliasing [51]. Taking this approach, we set Z = 2.30 km.

Recalling that the scattering-spot width/diameter W varies inversely with

speckle size, it cannot be so large as to cause insufficient sampling of the speckle

in the simulated pupil plane. As a result, we set W = 30.7 cm, so that the object

Fresnel number, Nobj = DW/ (λZ), was 40. This choice populated the pupil plane

with roughly 40 speckles across D (cf. Fig. 2.3), yielding five grid points per speckle

for an average pupil-plane error of <1% [9, 10]. Table 2.5 summarizes all of the

parameters of interest in the wave-optics simulations.

Table 2.5: Parameters of interest in the wave-optics simulations.

parameter value(s)

grid resolution, N ×N [px] 512× 512
grid spacing, δ [mm] 1.50general
grid side length, S [cm] 76.8

illumination wavelength, λ [µm] 1.00
propagation distance, Z [km] 2.30system
limiting-aperture diameter, D [cm] 30.0

object Fresnel number, Nobj 40
object

scattering-spot width/diameter, W [cm] 30.7

2.3.2 Simulating Four Different Modes of Extended-Object Motion

To simulate an optically rough extended object, we used a phase-screen approach

[16, 9, 10]. In so doing, we assumed that the surface heights were uniformly

distributed and delta correlated from grid point to grid point. At each grid

point within the scattering spot, we then took a random draw from a uniform

phase distribution on the interval [−π, π) and examined four different modes of

extended-object motion.



2.3. NUMERICAL IRRADIANCE CORRELATION COEFFICIENT 43

Simulating In-Plane Translation

Simulating in-plane translation required that we move the phase screen laterally

across the scattering spot. Since the phase-screen approach used in this paper

assumed that the surface heights were uniformly distributed and delta correlated

from grid point to grid point, we set the minimum in-plane translation distance to

a single grid point of motion between each captured frame. Implementing in-plane

translation in this way involved a circular shift of the phase screen in one direction.

Since the object width, W , was considerably smaller than the grid side length S,

the resultant scattering spot had zero magnitude (or near-zero magnitude in the

case of a Gaussian scattering spot) near the edges of the grid. Thus, the phase

wraparound resulting from a small circular shift did not affect the phase screen’s

frame-to-frame randomness.

Simulating Out-of-Plane Translation

Out-of-plane translation was perhaps the most laborious mode of extended-object

motion to simulate properly, as it required a different propagation distance between

the simulated object and pupil planes for each successive value of ∆z. This

outcome meant that we inevitably violated critical sampling [cf. Eq. (2.24)] as we

moved the simulated object plane closer to the simulated pupil plane. Varying

this propagation distance also changed the lateral speckle size, meaning we had to

recrop and upsample each speckle pattern (for comparison with the original) as the

object moved closer to the pupil plane. Nonetheless, we empirically determined

that the wave-optics simulations were robust against the effects of aliasing and

resampling for all values of ∆z.

As discussed in the Appendix, the simulated out-of-plane translation exhibited

a radial dependence. Thus, masking the irradiance datasets restricted the viewing

region to a certain radius in order to calculate the numerical irradiance correlation

coefficient [cf. Eq. (2.23)]. These masks were of the same thickness as the size of
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the speckles, where speckle size was defined by the cuttoff/rolloff conditions given

in Table 2.2.

Simulating In-Plane Rotation

To simulate in-plane rotation, we applied a rotation matrix at the specified

angle ∆ϑ. We also applied nearest-neighbor interpolation. In turn, we observed

reasonable rotation in the resulting dynamic speckle (as expected) without a

noticeable loss of fidelity.

Similar to out-of-plane translation, the simulated in-plane rotation also exhibited

a radial dependence, as discussed in the Appendix. In turn, masking the irradiance

datasets restricted the viewing region to a certain radius in order to calculate the

numerical irradiance correlation coefficient [cf. Eq. (2.23)]. In accordance with the

cuttoff/rolloff conditions given in Table 2.3, these masks were of the same thickness

as the average size of the speckles.

Simulating Out-of-Plane Rotation

Simulation of out-of-plane rotation involved multiplying the simulated object plane

by the following complex reflectance function:

R (α, β) = exp [j2k (∆φβα +∆φαβ)] . (2.25)

Here, we decomposed the tilt angle into rotations about the α and β axes.

This decomposition accounted for the change in optical path length, given the

small-angle approximation.
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2.3.3 Numerical Exploration

In the next section, we compare the results obtained for the numerical irradiance

correlation coefficient to those obtained for the analytical irradiance correlation coef-

ficient. To do so, we need to performMonte Carlo averaging on the numerical results.

To explore this numerical trade space, we use root-mean-square error (RMSE), such

that

RMSE =

√√√√ 1

n

n∑
i=1

[µ̂I (i)− µI (i)]
2. (2.26)

Here, i is an iterator over the number of Monte-Carlo trials n, µ̂I is the numerical

irradiance correlation coefficient from simulation, and µI is the analytical correla-

tion coefficient from theory.

Figure 2.5 plots Eq. (2.26) to find that the average RMSE becomes asymptot-

ically stable in the neighborhood of 40 Monte Carlo trials. Choosing this number

keeps the error below ∼1%. Note that the average RMSE results displayed in

Fig. 2.5 are fairly representative for all four modes of extended-object motion. Also

note that we averaged over 100 realizations at each datapoint for curve-smoothing

purposes.

Figure 2.5: Numerical exploration in terms of the average RMSE versus the number
of Monte-Carlo trials.
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2.4 Analytical and Numerical Results

Figures 2.6–2.9 provide the analytical and numerical results for this paper. Overall,

the analytical results from theory are in agreement with the numerical results from

simulation. With this agreement in mind, we discuss the four different modes of

extended-object motion in the following list.

1. Figure 2.6 shows the analytical and numerical results for in-plane translation

(also see Visualization 1). Here, the sampling is relatively coarse due to the

fact we set the minimum in-plane translation distance to a single grid point

of motion between each captured frame. Future efforts could look at using

interpolation to increase this sampling. However, doing so could violate the

assumptions used throughout this paper; in particular, that the optically rough

surface is delta correlated to a first approximation.

2. Figure 2.7 shows the the analytical and numerical results for out-of-plane

translation (also see Visualization 2). Here, we show results for several values

of ϱ but relative to some scattering-spot width W . To calculate numerical

results for off-axis observation, where ϱ ̸= 0, we made use of an annular mask,

which we illustrate in Fig. 2.10 in the Appendix. By normalizing the numer-

ical results using the approach presented in Ref. [43], we derived nonlinear

scale factors [56] to modify the closed-form expressions presented in Table 2.2.

In particular, we normalized the off-axis radial position to the scattering-spot

width W , since the scale factors themselves are a normalization of the longi-

tudinal correlation lengths. These scale factors allowed for comparison with

the analytical results for off-axis observation, where ϱ ̸= 0.

3. Figure 2.8 shows the analytical and numerical results for in-plane rotation

(also see Visualization 3). Here, we show results for several values of ϱ relative

to some position P . Similar to out-of-plane translation, we made use of the

annular mask, which we illustrate in Fig. 2.10 in the Appendix, to calculate

numerical results for off-axis observation, where ϱ ̸= 0. Recalling that the
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closed-form expressions in Table 2.3 are already set up to handle off-axis ob-

servation, one does not need scale factors in this particular case. Moreover,

we observe the off-axis speckle at relative rather than absolute radial positions

because the correlation falloff is linear with radial position.

4. Figure 2.9 shows the analytical and numerical results for out-of-plane rotation

(also see Visualization 4). These results mirror those contained in Fig. 2.6 for

in-plane translation, but the use of Eq. (2.25) at arbitrary out-of-plane rota-

tion angles allowed for better sampling. This similarity comes about because

translation of speckle dominates the pupil-plane decorrelation in both cases.

The data points in Figs. 2.6–2.9 also indicate ±1 standard deviation about the

Monte Carlo average (i.e., the average with respect to 40 Monte-Carlo trials). A

general observation is that these standard deviations seem to grow with increasing

extended-object motion, which is not surprising. Even so, the error bars maintain

an upper bound of ∼3%; thus, the Monte-Carlo averaging did not dramatically

affect the mean result for any one trial. Before moving on to the next section,

it is important to note that Visualizations 1–4 help in comprehending the results

presented in this section. These visualizations show results for a square scattering

spot and circular limiting aperture. This particular setup is common between Parts

I and II of this two-part paper. Thus, we include both pupil and image planes in

these visualizations, so that the results presented here complement those contained

in Part II and vice versa.

Note: Annular Masks

Both the simulated out-of-plane translation and the simulated in-plane rotation

exhibited a radial dependence. Thus, masking the irradiance datasets restricted

the viewing region to a certain radius in order to calculate the numerical irradiance

correlation coefficient [cf. Eq. (2.23)]. On-axis observation simply required a circular

mask, but off-axis observation required an annular mask as shown in Fig. 2.10(a).
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(a) (b)

(c)

Figure 2.6: Analytical and numerical results for in-plane translation, given (a)
square, (b) circular, and (c) Gaussian scattering spots.
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(a) (b)

(c)

Figure 2.7: Analytical and numerical results for out-of-plane translation, given (a)
square, (b) circular, and (c) Gaussian scattering spots.
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(a) (b)

(c)

Figure 2.8: Analytical and numerical results for in-plane rotation, given (a) square,
(b) circular, and (c) Gaussian scattering spots.
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(a) (b)

(c)

Figure 2.9: Analytical and numerical results for out-of-plane rotation, given (a)
square, (b) circular, and (c) Gaussian scattering spots.
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In this work, the mask had the same thickness as the average size of the speckles,

as portrayed in Fig. 2.10(b). In general, the annular mask had inner and outer radii

ϱ1 and ϱ2 with an average radius

ϱave =

∫ 2π

0

∫ ϱ2
ϱ1

ϱ2 dϱ dθ∫ 2π

0

∫ ϱ2
ϱ1

ϱ dϱ dθ

=
2

3

(
ϱ2 +

ϱ21
ϱ1 + ϱ2

)
.

(2.27)

Thus, for an annular mask of thickness t centered at radial position ϱ0, we can

rewrite Eq. (2.27) such that

ϱave = ϱ0 +
t2

12ϱ0
, (2.28)

where

ϱ0 =
1

6

(
3ϱave +

√
9ϱ2ave − 3t2

)
. (2.29)

In the above analysis, we set t such that it equaled the cuttoff/rolloff conditions given

in Tables 2.2 and 2.3 for the simulated out-of-plane translation and the simulated

in-plane rotation, respectively.

(a) (b)

Figure 2.10: An example annular mask for radial isolation of the irradiance datasets
(a) without speckle and (b) with speckle.
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CHAPTER 3

Wave-Optics Simulation of Dynamic Speckle: II. In an Image Plane†

3.1 Background

Speckle plays a pivotal role in directed-energy applications. One cannot actively

illuminate a distant object without also introducing speckle. Thus, directed-energy

applications like long-range imaging [3, 4, 5, 6, 7], tracking [8, 9], wavefront sensing

[10, 11], phase compensation [12, 13], and synthetic-aperture ladar [14, 15] depend

on the presence of speckle to achieve their desired outcomes. Whenever possible,

however, these applications also look to mitigate the effects of speckle in order to

achieve the best possible performance.

Optically rough extended objects (i.e., where the surface roughness is on the

order of the wavelength of light) diffusely scatter an incident laser beam to produce

a speckled irradiance pattern. The associated speckles, in practice, appear as bright

regions of constructive interference. Here, the average size of the speckles is roughly

equal to a coherence cell from the scattering spot [16]. These speckles unfortunately

act as a noise term that limit performance in the aforementioned directed-energy

applications. What is more, different modes of extended-object motion serve to

perpetuate this noise term on a frame-by-frame basis, due to the effects of dynamic

speckle.

Speckle mitigation, in turn, has been an active area of research since the emer-

gence of the laser itself [17]. For example, researchers often perform speckle averag-

ing to mitigate the effects of dynamic speckle. To quantify the benefits of speckle

†This material was published previously as [57] in Applied Optics with coauthors M. F. Spencer,
N. R. Van Zandt, and R. G. Driggers (https://doi.org/10.1364/AO.427964) © 2021 Optica
Publishing Group. Users may use, reuse, and build upon the article, or use the article for text or
data mining, so long as such uses are for non-commercial purposes and appropriate attribution is
maintained. All other rights are reserved.

https://doi.org/10.1364/AO.427964
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averaging, one can make use of the signal-to-noise ratio (SNR). In practice, the SNR

is inversely proportional to the contrast ratio, C, such that

C =
σI

Ī
, (3.1)

where σI is the standard deviation of the speckled irradiance pattern and Ī is

the mean [17]. A fully developed speckled irradiance pattern (resulting from

fully polarized/coherent light) follows a negative-exponential probability density

function (PDF). In turn, C goes to unity [18]. Accumulating K patterns, as a

result, decreases C to 1/
√
K as the PDF becomes more Gaussian like in accordance

with the central-limit theorem. This last statement is only true if the individual

speckled irradiance patterns are uncorrelated on a frame-by-frame basis [19]. From

a systems-engineering perspective, it is therefore of great interest to accurately

define when speckle decorrelation occurs, especially in the presence of dynamic

speckle.

Given a fully developed speckle pattern, the real and imaginary parts of the

underlying complex-optical field conform to a complex-circular Gaussian joint PDF

[20]. Because of this inherent randomness, there are no deterministic solutions

for the size of the speckles and thus for the speckle decorrelation. A general

approach to this problem is to derive a correlation function that accounts for the

lowest-order statistics of the complex-optical field at two different points in space

[21]. Normalizing this function to its peak value yields an analytical irradiance

correlation coefficient equal to one for overlapping points and equal to zero for

separation by the width of the average size of the speckles. Displacing the speckled

irradiance patterns by this distance decorrelates them in time, given some relation-

ship between motion of the extended object and that of the dynamic speckle. Then

at a known rate of change in extended-object position, the speckle decorrelation is

predictable as a function of time. Through the years, a number of researchers have

taken this approach, while many others have studied closely-related phenomena

that one can easily recast in this manner.
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Rigden and Gordon [22], Oliver [23] and Langmuir [24] were among the first

scientists to report on dynamic speckle. Allen and Jones [25] offered an explanation

of their results based on the diffraction of radio waves. Isenor [26] and Sporton

[27] followed up by emphasizing the optical-system geometry and its impact on

speckle dynamics in the image plane. Anisimov et al. [28] later derived space-time

correlation statistics for the first time, and correlation experiments have been

underway ever since [29, 30, 31, 32, 33, 34].

With this rich history in mind, this two-part paper demonstrates the use

wave-optic simulations to model the effects of dynamic speckle. In Part II, we

formulate closed-form expressions for the analytical irradiance correlation coefficient

in the image plane of an optical system. Part I starts by formulating closed-form

expressions for the analytical irradiance correlation coefficient in the pupil plane

of an optical system. It is worthwhile to consider the image plane separately from

the pupil plane, as the structure of speckle turns out to operate independently in

each plane under most conditions of interest. In turn, this paper focuses solely

on the theory and simulation of speckle decorrelation in the image plane of an

optical system. Because image formation is of concern, the pupil plane (discussed

throughout Part I) is equivalent to a plane of observation at some distance from the

extended object in a free-space system. Here, this distance represents free-space

propagation from the object plane to the entrance-pupil plane. A second free-space

propagation then focuses the light from the exit-pupil plane to the image plane.

Broadly speaking, Part II aims to fulfill two main goals. The first goal is

is to establish closed-form expressions for the analytical irradiance correlation

coefficient (associated with dynamic speckle in an image plane) for (1) the cases of

square, circular, and Gaussian limiting apertures and (2) four different modes of

extended-object motion: in-plane and out-of-plane translation, as well as in-plane

and out-of-plane rotation. While meeting this goal does not demand any new

theory per se, it does fill several gaps in the dynamic-speckle literature that would

otherwise require some inference while compiling all of the closed-form expressions

in a unified notation. It also frames many of these closed-form expressions for
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the first time as straightforward functions of extended-object motion. The second

main goal is to develop a simulation framework within which to study speckle

decorrelation in terms of the the numerical irradiance correlation coefficient and

thereafter compare the numerical results from simulation to the analytical results

from theory.

In service of these goals, the following sections formulate the aforemen-

tioned closed-form expressions for the analytical irradiance correlation coefficient

(cf. Sec. 3.2), the wave-optics simulations used to compute the numerical irradiance

correlation coefficient (cf. Sec. 3.3), and the results that compare the analytical

and numerical findings (cf. Sec. 3.4). Before moving on to the next section, it is

important to note that we wrote Part II so that it complements Part I. In turn,

both papers contain overlapping material. So as not to be redundant, this choice

enables two things: (1) both papers read independently from each other (i.e., the

reader does not have to read Part I in order to understand the results in Part II and

vice versa), and (2) the reader can pull up Part I alongside Part II and compare and

contrast the results without too much difficulty. As a result, this two-part paper

demonstrates the use of wave-optics simulations to model the effects of dynamic

speckle.

3.2 Analytical Irradiance Correlation Coefficient

In this section, we formulate closed-form expressions for the analytical irradiance cor-

relation coefficient, µI (p1;p2). Strictly speaking, these formulations treat µI (p1;p2)

as a measure of correlation between two points in a static-speckled irradiance pat-

tern. In this way, µI (p1;p2) offers a sense of the average size of the speckles by

solving for the spatial separation between two distinct points in space, p1 and p2, at

which speckle decorrelation occurs. The closed-form expressions formulated in this

section are just as effective, however, at defining where speckle decorrelation occurs

for dynamic-speckled irradiance patterns [32, 35, 36]. In practice, we can relate such
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patterns to the dynamics induced by extended-object motion; thus, µI (p1;p2) is a

useful construct for dynamic speckle, in addition to static speckle, hence the reason

we use it in the analysis that follows.

Although speckle is by nature a self-interference effect with respect to the

complex-optical field, it manifests as an irradiance measurement (in units of power

per unit area) using modern-day optical detectors. Consequently, dynamic speckle

involves a correlation function between two speckled irradiance patterns, I1 (p) and

I2 (p). The relevant correlation function is

RI (p1;p2) = ⟨I1 (p1) I2 (p2)⟩

= ⟨U1 (p1)U
∗
1 (p1)U2 (p2)U

∗
2 (p2)⟩ ,

(3.2)

where ⟨◦⟩ denotes an ensemble average, while p1 and p2 are again two distinct points

in space. Supposing that the rough-surface scattering from the optically rough

extended object lends enough independent phase contributions that the central-

limit theorem applies, we model the complex-optical fields U (p1) and U (p2) as

complex-circular Gaussian random variables [37]. In turn,

RI (p1;p2) = ⟨I1 (p1)⟩ ⟨I2 (p2)⟩+ |⟨U1 (p1)⟩ ⟨U∗
2 (p2)⟩|2

= ⟨I1 (p1)⟩ ⟨I2 (p2)⟩+ |JU (p1;p2)|2 ,
(3.3)

where JU (p1;p2) is the mutual intensity between U1 (p1) and U2 (p2). The complex

spatial coherence factor,

µU (p1;p2) =
JU (p1;p2)√

JU (p1;p1) JU (p2;p2)
, (3.4)

is a normalization of mutual intensity having the property 0 ≤ µU ≤ 1. Substituting

Eq. (3.4) into Eq. (3.3),

RI (p1;p2) = ⟨I1 (p1)⟩ ⟨I2 (p2)⟩
[
1 + |µU (p1;p2)|2

]
. (3.5)
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Equation (3.5) contains both DC and AC components, but it is the fluctuating AC

term that carries meaningful information about the speckle decorrelation. Thus,

µI (p1;p2) = |µU (p1;p2)|2 (3.6)

is a fitting correlation coefficient with respect to irradiance that governs RI . Also

known as the Yamaguchi correlation factor [38], µI (p1;p2) is effectively a ratio of

crosscorrelation to autocorrelation with reference to Eqs. (3.4) and (3.5).

3.2.1 Propagation From the Object Plane to the Image Plane

At this stage in the analysis, it is useful to introduce the rough-surface-scattering

geometry proposed in this paper. Figure 3.1 illustrates this geometry as a single-

lens system with the α–β, ξ–η, and x–y sets of axes placed within the object, pupil,

and image planes, respectively. The respective radial coordinates are Ω =
√
α + β,

ϱ =
√
ξ + η, and r =

√
x+ y. A distance Z1 along the z axis initially separates

the object and entrance-pupil planes, whereas Z2 is a fixed distance between the

exit-pupil and image planes. Note that Z1 is simply called Z in Part I. Also note

that with the placement of a single lens between the object and image planes, the

entrance and exit pupils are coplanar with the lens (which also serves as the aperture

stop).

We position an optically rough extended object of widthW in the object plane, a

limiting aperture of width D in the pupil plane, and an observation screen with infi-

nite field of view (for the time being) in the image plane. Each component starts off

centered at the origin of its local coordinate system. Distances ∆Ω and ∆z are mea-

sures of in-plane and out-of-plane translation, respectively. The z axis and optical

axis are collinear with the axis of in-plane rotation (∆ϑ), while out-of-plane rotation

(∆φ) occurs about some axis in the α–β plane. As the object moves under fully

coherent illumination, the diffusely scattered speckled irradiance pattern changes

and eventually decorrelates from its initial state. These changes are generally differ-
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Figure 3.1: Free-space propagation from an optically rough extended object in the
object plane to a limiting aperture in the pupil plane followed by another free-space
propagation to an observation screen in the image plane.

ent in the pupil and image planes as the speckles propagate through the single-lens

system. Moving forward we assume that both illumination and observation occur

on axis (for ease of modeling). We also assume that deviations from theory (i.e.,

the closed-form expressions formulated in this section) are only appreciable for large

angles of incidence and observation.

With Eqs. (3.4) and (3.6) in mind, recall that we can relate the analytical irra-

diance correlation coefficient, µI (p1;p2), to the mutual intensity, JU (p1;p2). What

is more, we can use scalar diffraction theory to propagate JU (p1;p2) from plane to

plane to determine µI (p1;p2) in the appropriate plane. For this purpose, if U (α, β)

is the source field (i.e., the complex-optical field in the object plane), then the first

Rayleigh–Sommerfeld diffraction integral predicts that

U (ξ, η) =
Z1

jλ

∫∫
Σ

U (α, β)
exp (jkℓ)

ℓ2
ds (3.7)
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in the pupil plane. Here, λ is the optical wavelength, k = 2π/λ is the angular

wavenumber,

ℓ =

√
(ξ − α)2 + (η − β)2 + Z2

1 (3.8)

is the Euclidean distance between points (α, β) and (ξ, η), and ds is a differential

surface element of source area Σ. This solution assumes that we satisfy the optical

condition λ ≪ ℓ. In practice, Eq. (3.7) has the form of a superposition integral in

terms of source field U (α, β) and free-space impulse response

h (ξ, η;α, β) =
Z1 exp (jkℓ)

jλℓ2
. (3.9)

Equation (3.9) notably depends only on the differences between points (α, β) and

(ξ, η), and this shift invariance constitutes an isoplanatic system so that Eq. (3.7)

becomes a convolution between the source field and the impulse response [39].

To determine the mutual intensity, JU (p1;p2), in the pupil plane, we first define

a generic point Ω = (α, β) within the object plane. In the vicinity of the pupil

plane, p1 and p2 are points located at (ξ1, η1, Z1) and (ξ1 +∆ξ, η1 +∆η, Z1 +∆z),

respectively. Then Eq. (3.7) yields

JU (p1;p2) = ⟨U (p1)U
∗ (p2)⟩

=

∫∫
Σ2

∫∫
Σ1

⟨U (Ω1)U
∗ (Ω2)⟩h (p1;Ω1)h

∗ (p2;Ω2) d
2Ω1 d

2Ω2

=

∫∫
Σ2

∫∫
Σ1

J (Ω1;Ω2)h (p1;Ω1)h
∗ (p2;Ω2) d

2Ω1 d
2Ω2,

(3.10)

so all that is left to define is the source mutual intensity J (Ω1;Ω2) (i.e., the mutual

intensity in the object plane).

According to Goodman [40], the scattered field immediately following an opti-

cally rough surface is delta correlated to a first approximation (above the scale of a

wavelength). The resulting expression is

JU (Ω1;Ω2) = κU (Ω1)U
∗ (Ω2) δ (Ω1 −Ω2) , (3.11)
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where κ is some global loss factor. By the sifting property of the Dirac delta function,

δ (◦), Eqs. (3.10) and (3.11) combine as

JU (p1;p2) = κ

∫∫
Σ

|U (Ω)|2 h (p1;Ω)h∗ (p2;Ω) d2Ω (3.12)

after setting Ω1 = Ω for simplicity.

Making the paraxial approximation (with respect to amplitude) that ℓ21 ≈ ℓ22 ≈
Z2

1 , the end result of Eqs. (3.4), (3.6), and (3.12) is

µI (p1;p2) =

∣∣∣∣∣
∫∫

Σ
|U (Ω)|2 exp [jk (ℓ2 − ℓ1)] d

2Ω∫∫
Σ
|U (Ω)|2 d2Ω

∣∣∣∣∣
2

. (3.13)

Equation (3.14) reveals that the analytical irradiance correlation coefficient,

µI (p1;p2), is a function of the source irradiance, |U (Ω)|2, as well as the obser-

vation points p1 and p2.

Mathematically speaking, Eq. (3.13) accounts for speckle decorreclation in the

pupil plane of the single-lens system described in Fig. 3.1. To account for speckle

decorrelation in the image plane, we again use Eq. (3.13), but we first replace the

source field U (Ω) = U (α, β), which gives rise to a scattering spot of width W ,

with a pupil function P (ϱ) = P (ξ, η), which gives rise to a limiting aperture of

width D. We also replace the object distance (Z1) with the image distance (Z2). In

turn, p1 and p2 are points located at (x1, y1, Z2) and (x1 +∆x, y1 +∆y, Z2 +∆z),

respectively, such that in the vicinity of the image plane,

µI (p1;p2) =

∣∣∣∣∣
∫∫

Σ
|P (ϱ)|2 exp [jk (℘2 − ℘1)] d

2ϱ∫∫
Σ
|P (ϱ)|2 d2ϱ

∣∣∣∣∣
2

, (3.14)

where

℘ =

√
(x− ξ)2 + (y − η)2 + Z2

2 . (3.15)

These replacements amount to treating the pupil plane as a new delta-correlated

source [40], which Zernike first proposed as a means of applying coherence theory
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to microscopy problems [58].

In effect, speckle decorrelation in the image plane is then independent of the

scattering spot from which the pupil-plane speckles originate. Making this approx-

imation requires that the scattering spot spans many coherence areas in the pupil

plane and resolution cells in the object plane [16]. It also requires that lens aberra-

tions do not drastically affect the structure of speckled irradiance pattern.

Much of the foundational work on speckle decorrelation applies a binomial ap-

proximation to a power-series expansion of the phasor argument of Eq. (3.14) prior

to integrating. This final paraxial approximation (with respect to phase) ultimately

gives rise to a scaled Fresnel diffraction integral, since replacing the impulse re-

sponse with the well-known Fresnel propagation kernel effectively makes Eq. (3.14)

a normalized Fresnel transform of |P (ϱ)|2 in two dimensions.

3.2.2 Four Different Modes of Extended-Object Motion

In what follows, we formulate closed-form expressions for the four different modes

of extended-object motion proposed in this paper, including in-plane and out-of-

plane translation and rotation. For this purpose, we need to first define a set of

unit-amplitude pupil functions, P (ϱ) = P (ξ, η). These functions take the following

functional forms [41]:

P (ξ, η) = rect

(
ξ

D
,
η

D

)
= rect

(
ξ

D

)
rect

( η

D

)
, (3.16)

where

rect (w) =


1

1/2

0

|w| < 1/2

|w| = 1/2

|w| > 1/2

; (3.17)

P (ξ, η) = cyl

(√
ξ2 + η2

D

)
, (3.18)
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where

cyl (ρ) =


1

1/2

0

0 ≤ ρ < 1/2

ρ = 1/2

ρ > 1/2

; (3.19)

and

P (ξ, η) = Gaus

(√
ξ2 + η2√
πD/2

)
, (3.20)

where

Gaus (ρ) = exp
(
−πρ2

)
. (3.21)

Here, Eqs. (3.16) and (3.17) give rise to a square limiting aperture of width D,

Eqs. (3.18) and (3.19) give rise to a circular limiting aperture of diameter D, and

Eqs. (3.20) and (3.21) gives rise to a Gaussian limiting aperture of 1/e-amplitude

diameter D.

Moving forward, we also need to define the following special functions:

sinc (w) =
sin (πw)

πw
, (3.22)

somb (ρ) = 2
J1 (πρ)

πρ
, (3.23)

Fres (w) =
S2 (w) + C2 (w)

w2
, (3.24)

tri (w) =

1− |w|
0

|w| < 1

|w| ≥ 1
, (3.25)

and

chat (ρ) =


2
π

[
arccos (ρ)− ρ

√
1− ρ2

]
0

ρ < 1

ρ ≥ 1
. (3.26)

Here, J1 (◦) is a first-order Bessel function of the first kind (not to be confused

with mutual intensity), while S (◦) and C (◦) are, respectively, the Fresnel sine and

cosine integrals [39]. These special functions readily show up in the closed-form

expressions that follow for in-plane and out-of-plane translation and rotation of
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the object. Furthermore, these special functions [cf. Eqs. (3.20)-(3.26)] readily

provide cutoff/rolloff conditions. Such conditions define what we mean by speckle

decorrelation in the image plane and offer a sense of the average size of the

image-plane speckles.

In-Plane Translation

Assuming in-plane translation of the object (cf. Fig. 3.1), Table 3.1 provides closed-

form expressions for the analytical irradiance correlation coefficient, µI (∆Ω), for

all three limiting apertures (i.e., square, circular, and Gaussian) with corresponding

cutoff/rolloff conditions, ∆Ωc/r. Here, ∆Ω is the in-plane translation distance. It is

important to note that both the square and circular limiting apertures give rise to

distinct cutoff conditions (i.e., the special functions go to zero at ∆Ωc), whereas the

Gaussian limiting aperture gives rise to a rolloff condition (i.e., the special function

never reaches zero but has a 1/e2 magnitude at ∆Ωr).

To formulate the closed-form expressions given in Table 3.1, we set ∆z to zero

Table 3.1: Closed-form expressions for in-plane translation.

aperture shape irradiance correlation coefficient cutoff/rolloff condition

square µI (∆Ω) = sinc2
(
D∆Ω

λZ1

)
∆Ωc =

λZ1

D

circle µI (∆Ω) = somb2
(
D∆Ω

λZ1

)
∆Ωc =

1.22λZ1

D

Gaussian µI (∆Ω) = Gaus

(√
πD∆Ω

2λZ1

)
∆Ωr =

√
8λZ1

πD

in Eq. (3.14), such that point p2 is at (x1 +∆x, y1 +∆y, Z2). The radial distance

between points of observation in the image plane is then ∆r =
√
∆x2 +∆y2, which

corresponds directly to an in-plane object translation of ∆Ω =
√

∆α2 +∆β2 after

accounting for magnification. Thus, by substituting ∆r with ∆Ω and Z2 with Z1
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after integration, the analytical irradiance correlation coefficient, µI (∆Ω), becomes

a function of the in-plane translation distance, ∆Ω, and object distance, Z1. In so

doing, we neglect the effects of boiling as we introduce new speckles into the limiting

aperture. This assumption is valid as long as the limiting aperture is larger than

the speckles it produces in the image plane.

To make these aforementioned substitutions, one can relate speckle decorrelation

in the image plane to a concept known as memory loss, which Cloud describes as the

physical movement of a speckled irradiance pattern beyond its original boundaries

in any direction [59]. Put another way, the single-lens system described in Fig. 3.1

becomes anisoplanatic with varying shifts. Such shifts give rise to speckle decorre-

lation in the image plane.

As shown in Part I, only the wavelength, propagation distance, and scattering-

spot width can alter the average size of the pupil-plane speckles, and this size de-

termines what we mean by speckle decorrelation in the pupil plane. Image-plane

speckles, on the other hand, are roughly the size of a resolution element (a.k.a. “re-

sel”) in the image plane [60]. The average size of the image-plane speckles, again,

determines what we mean by speckle decorrelation in the image plane. However, to

relate any extended-object motion in the image plane to that in the object plane,

we must project the image of the object into object space. For this reason, a shift

by a resel on the object (i.e., the conjugate of a resel in the image) is what causes

total decorrelation with in-plane translation [61].

With a square limiting aperture, for example, the width of a resel (and therefore

the average size of the speckles in the image plane [60]) is

simg =
λZ2

Dxp

= λFw.

(3.27)

Here, Dxp is the exit-pupil diameter, Fw = F (1 + |M | /Mp) is the working focal

ratio, F = fe/Dep is the uncorrected focal ratio, fe is the effective focal length, Dep

is the entrance-pupil diameter, M is the transverse magnification, and Mp is the
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pupillary magnification [62, 63, 64]. The resel size on the object is then

sobj =
λZ1

Dep

= λFw/ |M | .
(3.28)

In writing Eqs. (3.27) and (3.28), note that we have assumed the use of an aberration-

free, focused imaging system. Also note that with a single-lens system (cf. Fig. 3.1),

fe = f and Dxp = Dep = D. However, one can replace Z1/D with Fw/ |M | to
evaluate speckle decorrelation in a generalized imaging system.

For a square or circular limiting aperture of width or diameter D, the cutoff

condition, ∆Ωc, corresponds to the average lateral resel on the object. If dealing

with an oblong rectangular aperture, things become separable in the horizontal and

vertical directions (using different values for D). These findings agree with pub-

lished results [42, 43].

For a Gaussian limiting aperture of 1/e-amplitude diameter D, the rolloff con-

dition, ∆Ωr, is consistent with Goodman’s theory [16]. The resulting equation is

only valid over small translation distances [44], as are all other Gaussian functions

presented in this paper. Such analytical curves decrease monotonically out to infin-

ity, when in practice there are oscillatory outer lobes (as with previous expressions),

due to periodic overlap of speckles with large translation distances [45]. Moreover,

these analytical curves decay asymptotically, which means there is no zero crossing

at which to naturally define the average lateral size of the speckles. Instead, the

1/e2 point serves as a correlation rolloff condition rather than a cutoff condition.

What matters for comparison with discrete irradiance datasets from wave-optics

simulations (or experiments) is that there is consistency with theory at least up to

this rolloff condition. Here, we consider soft Gaussian apertures, noting that such

apertures use apodization filters to allay the strong diffraction effects associated

with hard edges [65].
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Out-of-Plane Translation

Assuming out-of-plane translation of the object (cf. Fig. 3.1), Table 3.2 provides

closed-form expressions for the analytical irradiance correlation coefficient, µI (∆z),

for all three limiting apertures (i.e., square, circular, and Gaussian) with corre-

sponding cutoff/rolloff conditions, ∆zc/r. Here, ∆z is the out-of-plane translation

distance. It is important to note that both the square and circular limiting

apertures give rise to distinct cutoff conditions (i.e., the special functions go to

zero or a minimum at ∆zc), whereas the Gaussian limiting aperture gives rise to a

rolloff condition (i.e., the special function has a 1/e2 magnitude at ∆zr).

To formulate the closed-form expressions given in Table 3.2, ∆ϱ is set to zero

Table 3.2: Closed-form expressions for out-of-plane translation.

aperture shape irradiance correlation coefficient cutoff/rolloff condition

square µI (∆z) = Fres2

(
D

Z1

√
∆z

2λ

)
∆zc = 7.31λ

(
Z1

D

)2

circle µI (∆z) = sinc2

[
∆z

8λ

(
D

Z1

)2
]

∆zc = 8λ

(
Z1

D

)2

Gaussian µI (∆z) =

{
1 +

[
πD2∆z

8λZ1 (Z1 +∆z)

]2}−1

∆zr =
Z1

0.155D2/ (λZ1)− 1

in Eq. (3.14) for out-of-plane translation, confining point p2 to (x1, y1, Z2 + ∆z).

Thus, for a single-lens system and out-of-plane translation, one can substitute

Z2 with Z1 after integration, and the analytical irradiance correlation coefficient,

µI (∆z), becomes a function of the object distance, Z1.

Analogous to the relationship between in-plane translation and the average

lateral resel on the object, the cutoff/rolloff conditions given in Table 3.2 estimate

the average longitudinal resel on the object. In turn, the average size of the

longitudinal image-plane speckles is proportional to λ (Z2/Dxp)
2, or more generally

λF 2
w. A detail worth mentioning is that although off-axis observation can change
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the behavior of the speckle decorrelation in the pupil plane, as shown in Part I, it

has very little influence on the behavior of the speckle decorrelation in the image

plane [66]. Another detail worth mentioning is that Eq. (3.24) does not cross zero

but rather decreases to a minimum value of 6.65× 10−3 before increasing again.

In-Plane Rotation

Assuming in-plane rotation of the object (cf. Fig. 3.1), Table 3.3 provides closed-

form expressions for the analytical irradiance correlation coefficient, µI (∆ϑ), for all

three limiting apertures (i.e., square, circular, and Gaussian) with corresponding

cutoff/rolloff conditions, ∆ϑc/r. Here, ∆ϑ is the in-plane rotation angle. It is

important to note that both the square and circular limiting apertures give rise to

distinct cutoff conditions (i.e., the special functions go to zero at ∆ϑc), whereas the

Gaussian limiting aperture gives rise to a rolloff condition (i.e., the special function

has a 1/e2 amplitude at ∆ϑr).

In essence, in-plane rotation is an extension of in-plane translation (cf.

Table 3.3: Closed-form expressions for in-plane rotation.

aperture shape irradiance correlation coefficient cutoff/rolloff condition

square µI (∆ϑ) = sinc2
(
D∆ϑr

λZ1

)
∆ϑc =

λZ1

Dr

circle µI (∆ϑ) = somb2
(
D∆ϑr

λZ1

)
∆ϑc =

1.22λZ1

Dr

Gaussian µI (∆ϑ) = Gaus

(√
πD∆ϑϱ

2λZ1

)
∆ϑr =

√
8λZ1

πDr

Sec. 3.2.2), given a circular path around the rotational axis. Accordingly, we

can substitute arc length ∆ϑr for linear distance, ∆Ω. Doing so produces the

relationships given in Table 3.3.

Similar to the pupil-plane expressions (cf. Part I), the closed-form expressions
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in this case vary with radial vantage point r =
√
x+ y. Churnside’s work confirms

these expressions after appropriate simplifications [47], as does further analysis

by Yura et al. [48]. Saleh makes the point that in-plane rotation at sufficiently

large angles warrants the inclusion of a sinusoidal argument factor to account for

periodic replication of the signal in time [29]. A detail worth mentioning is that the

on-axis correlation is unity with a cutoff/rolloff condition of infinity, since r = 0.

This result is physically accurate, since the speckle at the very center of rotation

remains stationary, independent of in-plane rotation ∆ϑ.

Out-of-Plane Rotation

Assuming out-of-plane rotation of the object (cf. Fig. 3.1), Table 3.4 provides closed-

form expressions for the analytical irradiance correlation coefficient, µI (∆φ), for all

three limiting apertures (i.e., square, circular, and Gaussian) with corresponding

cutoff/rolloff conditions, ∆φc/r. Here, ∆φ is the out-of-plane rotation angle. It is

important to note that both the square and circular limiting apertures give rise to

distinct cutoff conditions (i.e., the special functions go to zero at ∆φc), whereas the

Gaussian limiting aperture gives rise to a rolloff condition (i.e., the special function

has a 1/e2 magnitude at ∆φr).

In essence, out-of-plane rotation is a unique case of extended-object motion.

Table 3.4: Closed-form expressions for out-of-plane rotation.

aperture shape irradiance correlation coefficient cutoff/rolloff condition

square µI (∆φ) = tri2
(
2Z1∆φ

D

)
∆φc =

D

2Z1

circle µI (∆φ) = chat2
(
2Z1∆φ

D

)
∆φc =

D

2Z1

Gaussian µI (∆φ) = Gaus

(
4Z1∆φ√

πD

)
∆φr =

D√
8Z1
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Here, the same set of scatterers occupies the scattering spot within the object plane

over a small range of angles. For this reason, the object never moves by a resel in

any direction and therefore no speckle decorrelation occurs by memory loss. Cloud’s

other criterion for speckle decorrelation [59], which says that the phase difference

across a resel attains a value of 2π, comes into play now. For example, in terms of

object-plane tilt, one can apply a phase change of ϕ = k∆φΩ across the optically

rough surface in a transmission geometry. The reflection geometry instead requires

ϕ = 2k∆φΩ. As such, one can set the radial difference ∆Ω equal to the resel width

λZ1/D and solve for ∆ϕ = 2π. The out-of-plane rotation angle ∆φ then prompts a

cutoff of D/ (2Z1), which proves to be consistent with theory [67, 68].

Marron and Morris studied this problem in the case of rotating objects, deriving

a spatio-temporal correlation function with an envelope that follows the analytical

irradiance correlation coefficient as a function of rotation angle [67]. The derivation

involves propagating mutual intensity through to the image plane, making similar

arguments to those preceding Eq. (3.14). Rather than convolve with the free-space

impulse response, however, the convolution is between object-plane mutual intensity

and the coherent point spread function (PSF) of the imaging system. A rectangular

aperture generates the normalized PSF

h (x, y;α, β) = sinc

[
D

λ

(
x

Z2

− α

Z1

)
,
D

λ

(
y

Z2

− β

Z1

)]
, (3.29)

whereas

h (r; Ω) = somb

[
D

λ

(
r

Z2

− Ω

Z1

)]
(3.30)

corresponds to a circular aperture, and

h (r; Ω) = exp

{
−
[
πD

2λ

(
r

Z2

− Ω

Z1

)]2/
2

}
(3.31)

to a Gaussian aperture. In turn, convolution with either Eq. (3.29), (3.30) or (3.31)

yields the appropriate result for whichever limiting aperture is under consideration.

Table 3.4 lists these results, where the first two entries are squared-triangular and
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circular-triangular functions, respectively [69].

The closed-form expressions in Table 3.4 are in line with familiar forms of

the modulation transfer function (MTF) for equivalent incoherent systems [70].

Taking the squared magnitude of the coherent PSF is an equivalent operation to

autocorrelating the pupil function, which determines the MTF of an incoherent

system. The second column of Table 3.4 represents an angular cutoff beyond which

speckle fully decorrelates, though this is not the same cutoff that describes the

coherent spatial-frequency modulation limit [71]. Total decorrelation takes place

once the speckles in the pupil plane translate by the aperture width and a new,

independent realization takes its place. As a side note, the cutoff in a coherent

transmission geometry is twice that of a reflection geometry due to the single pass

in optical path length.

3.2.3 Analytical Exploration

Figure 3.2 plots the closed-form expressions formulated in Tables 3.1–3.4. In par-

ticular, Fig. 3.2(a) plots the case of in-plane translation (cf. Table 3.1), Fig. 3.2(b)

plots the case of out-of-plane translation (cf. Table 3.2), Fig. 3.2(c) plots the case

of in-plane rotation (cf. Table 3.3), and Fig. 3.2(d) plots the case of out-of-plane

rotation (cf. Table 3.4). All plots include the respective cutoff conditions for square

and circular limiting apertures and the rolloff conditions for Gaussian limiting aper-

tures.

3.3 Numerical Irradiance Correlation Coefficient

All of the closed-form expressions formulated in Sec. 3.2 make use of continuous

speckled irradiance patterns, I1 (p) and I2 (p). In this section, we make use of dis-

crete irradiance datasets, I1 and I2, from wave-optics simulations (or experiments).

With this last point in mind, the numerical irradiance correlation coefficient, µ̂I ,
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(a) (b)

(c) (d)

Figure 3.2: Analytical exploration of the trade space in terms of the four different
modes of extended-object motion.
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takes the following form:

µ̂I =
⟨I1I2⟩ − ⟨I1⟩ ⟨I2⟩√〈

(I1 − ⟨I1⟩)2
〉 〈

(I2 − ⟨I2⟩)2
〉 , (3.32)

where ⟨◦⟩ denotes an arithmetic mean. Equation (3.32) turns out to be equivalent

to calculating the Pearson’s correlation coefficient for a sample [50], which applies

to Gaussian random processes. Thus, similar to its analytical counterpart, µ̂I is a

useful construct for dynamic speckle and we use it in the analysis that follows.

With Eq. (3.32) in mind, the wave-optics simulations setup in this section make

use of the following procedure.

1. Create an optically rough extended object using a phase-screen approach.

2. Propagate from the object plane to the image plane.

3. Crop the irradiance dataset I1 and save for reference.

4. Modify the optically rough extended object with the appropriate mode of

extended-object motion.

5. Repeat as necessary, saving the frame-to-frame irradiance dataset I2.

6. Calculate the numerical irradiance correlation coefficients as a function of

extended-object motion.

To illustrate steps 1–3, Fig. 3.3 displays example irradiance and phase datasets.

These wave-optics simulations make use of the WaveProp Toolbox for MATLAB

[51].

3.3.1 Simulating Propagation From the Object Plane to the Image Plane

Analogous to Fig. 3.1, Fig. 3.4 depicts the imaging system simulated in the wave-

optics simulations. These wave-optics simulations used an N × N grid resolution

with N = 512. This choice provided an acceptable balance between physical accu-

racy and computational efficiency [52]. The wave-optics simulations also made use
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object plane pupil plane image plane cropped image

Figure 3.3: Example irradiance and phase datasets from the wave-optics simulations

of a free-space wavelength of λ0 = 1 µm and a limiting-aperture width/diameter of

D = 30 cm, which are typical values for long-range propagation studies.

For simplicity, the wave-optics simulations used unity scaling between the sim-

ulated object and pupil planes. They also used 200 grid points across the aperture

diameter, while padding the circular pupil with zeros to exceed the recommended

factor of 2.4 [53]. As such, the grid spacing, δ, was 1.5 mm, and the grid side length,

S, was 76.8 cm. Critical sampling [54] (a.k.a. Fresnel scaling [51]) then stipulated

that

N =
S2

λZ
. (3.33)

Satisfying critical sampling typically gives wave-optics results that are free of alias-

ing. However, the high spatial frequencies contained in diffuse speckle made the

wave-optics simulations especially prone to aliasing even with Eq. (3.33) satisfied.

Tailored methods such as pupil-plane filtering [55] aim to combat this problem by

eliminating the high spatial frequencies that would cause aliasing. Nonetheless, em-

pirical evidence suggests that first doubling the grid resolution, then propagating

the field (via the impulse-response method [54]) and cropping back down has greater

resistance to aliasing [51]. Taking this approach, we set Z = 2.30 km.

Recalling that the scattering-spot (square-only) width W varies inversely with
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Figure 3.4: Illustration of the imaging system simulated in the wave-optics simula-
tions. Here, we use an optically rough three-bar object (for illustrative purposes).

speckle size, it cannot be so large as to cause insufficient sampling of the speckle

in the simulated pupil plane. As a result, we set W = 30.7 cm, so that the object

Fresnel number, Nobj = DW/ (λZ), was 40. This choice populated the pupil plane

with roughly 40 speckles across D (cf. Fig. 3.3), yielding five grid points per speckle

for an average pupil-plane error of <1% [9, 10]. In the pupil plane, we used two

thin-lens transmittance functions to collimate the light after propagation from the

object plane to the entrance pupil and focus the light upon propagation from the

exit pupil to the image plane (cf. Fig. 3.4). Unity scaling, in turn, dictated that

Z1 = Z2 = Z, which gave rise to unit-magnification imaging in the wave-optics sim-

ulations. Table 3.5 summarizes all of the parameters of interest in the wave-optics

simulations.

3.3.2 Simulating Four Different Modes of Extended-Object Motion

To simulate an optically rough extended object, we used a phase-screen approach

[16, 9, 10]. In so doing, we assumed that the surface heights were uniformly

distributed and delta correlated from grid point to grid point. At each grid

point within the scattering spot, we then took a random draw from a uniform

phase distribution on the interval [−π, π) and examined four different modes of
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Table 3.5: Parameters of interest in the wave-optics simulations.

parameter value(s)

grid resolution, N ×N [px] 512× 512
grid spacing, δ [mm] 1.50general
grid side length, S [cm] 76.8

illumination wavelength, λ [µm] 1.00
propagation distance, Z [km] 2.30system
limiting-aperture width/diameter, D [cm] 30.0

object Fresnel number, Nobj 40
object

scattering-spot width, W [cm] 30.7

extended-object motion.

Simulating In-Plane Translation

Simulating in-plane translation required that we move the phase screen laterally

across the scattering spot. Since the phase-screen approach used in this paper

assumed that the surface heights were uniformly distributed and delta correlated

from grid point to grid point, we set the minimum in-plane translation distance to

a single grid point of motion between each captured frame. Implementing in-plane

translation in this way involved a circular shift of the phase screen in one direction.

Since the object width, W , was considerably smaller than the grid side length S,

the resultant scattering spot had zero magnitude (or near-zero magnitude in the

case of a Gaussian scattering spot) near the edges of the grid. Thus, the phase

wraparound resulting from a small circular shift did not affect the phase screen’s

frame-to-frame randomness.

Simulating Out-of-Plane Translation

Out-of-plane translation was perhaps the most laborious mode of extended-object

motion to simulate properly, as it required a different propagation distance between

the simulated object and pupil planes for each successive value of ∆z. This
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outcome meant that we inevitably violated critical sampling [cf. Eq. (3.33)] as we

moved the simulated object plane closer to the simulated pupil plane. Varying

this propagation distance also changed the image size and added some defocus,

meaning we had to recrop and downsample each speckled image (for comparison

with the original) as the object moved closer to the pupil plane. Nonetheless, we

empirically determined that the wave-optics simulations were robust against the

effects of aliasing and resampling for all values of ∆z.

Simulating In-Plane Rotation

To simulate in-plane rotation, we applied a rotation matrix at the specified

angle ∆ϑ. We also applied nearest-neighbor interpolation. In turn, we observed

reasonable rotation in the resulting dynamic speckle (as expected) without a

noticeable loss of fidelity.

The simulated in-plane rotation exhibited a radial dependence, as discussed

in the Appendix. In turn, masking the irradiance datasets restricted the viewing

region to a certain radius in order to calculate the numerical irradiance correlation

coefficient [cf. Eq. (3.32)]. These masks were of the same thickness as the size of

the speckles, where speckle size was defined by the cuttoff/rolloff conditions given

in Table 3.3.

Simulating Out-of-Plane Rotation

Simulation of out-of-plane rotation involved multiplying the simulated object plane

by the following complex reflectance function:

R (α, β) = exp [j2k (∆φβα +∆φαβ)] . (3.34)

Here, we decomposed the tilt angle into rotations about the α and β axes.

This decomposition accounted for the change in optical path length, given the
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small-angle approximation.

3.3.3 Numerical Exploration

In the next section, we compare the results obtained for the numerical irradiance

correlation coefficient to those obtained for the analytical irradiance correlation coef-

ficient. To do so, we need to performMonte Carlo averaging on the numerical results.

To explore this numerical trade space, we use root-mean-square error (RMSE), such

that

RMSE =

√√√√ 1

n

n∑
i=1

[µ̂I (i)− µI (i)]
2. (3.35)

Here, i is an iterator over the number of Monte-Carlo trials n, µ̂I is the numerical

irradiance correlation coefficient from simulation, and µI is the analytical correla-

tion coefficient from theory.

Figure 3.5 plots Eq. (3.35) to find that the average RMSE becomes asymptot-

ically stable in the neighborhood of 40 Monte Carlo trials. Choosing this number

keeps the error below ∼1%. Note that the average RMSE results displayed in

Fig. 3.5 are fairly representative for all four modes of extended-object motion. Also

note that we averaged over 100 realizations at each datapoint for curve-smoothing

purposes.

3.4 Analytical and Numerical Results

Figures 3.6–3.9 provide the analytical and numerical results for this paper. Overall,

the analytical results from theory are in agreement with the numerical results from

simulation. With this agreement in mind, we discuss the four different modes of

extended-object motion in the following list.

1. Figure 3.6 shows the analytical and numerical results for in-plane translation

(also see Visualization 1). Here, the data-point sampling follows from the
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Figure 3.5: Numerical exploration in terms of the average RMSE versus the number
of Monte-Carlo trials.

fact that we set the minimum in-plane translation distance to a single grid

point of motion between each captured frame. Future efforts could look at

using interpolation to increase this sampling. However, doing so could violate

the assumptions used throughout this paper; in particular, that the optically

rough surface is delta correlated to a first approximation.

2. Figure 3.7 shows the the analytical and numerical results for out-of-plane

translation (also see Visualization 2). Recalling that speckle decorrelation

of this kind does not change significantly with off-axis observation in the im-

age plane, we analyzed the entire speckled irradiance datasets without any

masking. This approach provided good agreement between analytical and nu-

merical results, but one could use annular masks, which we illustrate in the

Appendix, and derive nonlinear scale factors using Ref. [43] to modify the

closed-form expressions presented in Table 3.2 for even greater accuracy.

3. Figure 3.8 shows the analytical and numerical results for in-plane rotation

(also see Visualization 3). Here, we show results for several values of r relative

to some position R. To calculate numerical results for off-axis observation, we

made use of an annular mask, which we illustrate in Fig. 3.10 in the Appendix.
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The closed-form expressions in Table 3.3 are set up to handle off-axis observa-

tion, where r ̸= 0. Moreover, we observe the off-axis speckle at relative rather

than absolute radial positions because the speckle decorrelation is linear with

radial position.

4. Figure 3.9 shows the analytical and numerical results for out-of-plane rotation

(also see Visualization 4). These results have unique functional forms because

the decorrelation occurs by dephasing rather than by memory loss. Out-of-

plane rotation is the only case where the speckles from either a square or a

circular aperture fully decorrelate at the same cutoff condition.

The data points in Figs. 3.6–3.9 also indicate ±1 standard deviation about the

Monte Carlo average (i.e., the average with respect to 40 Monte-Carlo trials). A

general observation is that these standard deviations seem to grow with increasing

extended-object motion, which is not surprising. Even so, the error bars maintain

an upper bound of ∼3%; thus, the Monte-Carlo averaging did not dramatically

affect the mean result for any one trial. Before moving on to the next section,

it is important to note that Visualizations 1–4 help in comprehending the results

presented in this section. These visualizations show results for a square scattering

spot and circular limiting aperture. This particular setup is common between Parts

I and II of this two-part paper. Thus, we include both pupil and image planes in

these visualizations, so that the results presented here complement those contained

in Part I and vice versa.

Note: Annular Masks

The simulated in-plane rotation exhibited a radial dependence. Thus, masking

the irradiance datasets restricted the viewing region to a certain radius in order

to calculate the numerical irradiance correlation coefficient [cf. Eq. (3.32)]. On-

axis observation simply required a circular mask, but off-axis observation required

an annular mask as shown in Fig. 3.10(a). In this work, the mask had the same
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(a) (b)

(c)

Figure 3.6: Analytical and numerical results for in-plane translation, given (a)
square, (b) circular, and (c) Gaussian limiting apertures.
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(a) (b)

(c)

Figure 3.7: Analytical and numerical results for out-of-plane translation, given (a)
square, (b) circular, and (c) Gaussian limiting apertures.
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(a) (b)

(c)

Figure 3.8: Analytical and numerical results for in-plane rotation, given (a) square,
(b) circular, and (c) Gaussian limiting apertures.
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(a) (b)

(c)

Figure 3.9: Analytical and numerical results for out-of-plane rotation, given (a)
square, (b) circular, and (c) Gaussian limiting apertures.
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thickness as the average size of the speckles, as portrayed in Fig. 3.10(b). In general,

the annular mask had inner and outer radii r1 and r2 with an average radius

rave =

∫ 2π

0

∫ r2
r1

r2 dr dθ∫ 2π

0

∫ r2
r1

r dr dθ

=
2

3

(
r2 +

r21
r1 + r2

)
.

(3.36)

Thus, for an annular mask of thickness t centered at radial position r0, we can

rewrite Eq. (3.36) such that

rave = r0 +
t2

12r0
, (3.37)

where

r0 =
1

6

(
3rave +

√
9r2ave − 3t2

)
. (3.38)

In the above analysis, we set t such that it equaled the cuttoff/rolloff conditions

given in Tables 3.2 and 3.3 for the simulated in-plane rotation.

(a) (b)

Figure 3.10: An example annular mask for radial isolation of the irradiance datasets
(a) without speckle and (b) with speckle.
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CHAPTER 4

Active-Tracking Scaling Laws Using the Noise-Equivalent Angle Due to Speckle†

4.1 Background

Finding the centroid of an image-plane irradiance pattern is necessary in many

cases of object tracking and wavefront sensing. In an idealized noiseless detection

scheme, this calculation represents the true geometric center of a resolved object

or unresolved spot (assuming uniform illumination and object reflectivity). The

presence of any source of noise, however, introduces uncertainty in this measurement

that is typically quantified as a noise-equivalent angle (NEA). The general definition

of NEA is an offset in angular position that produces unit signal-to-noise ratio

(SNR), such that an actual offset by this angle would be indistinguishable from

noise. With that in mind, another term for NEA is one-axis, one-sigma track error

(denoted mathematically as σθ).

In the absence of coherent illumination, Tyler and Fried’s foundational work

on passive NEA offers a gauge for positional uncertainty of emissive or reflective

objects under incoherent illumination [73]. Their treatment assumes the photon

and/or sensor noise is what limits performance, giving rise to an NEA that grows

without bound for increasingly large well-resolved objects. Though they were study-

ing quad-cell detectors rather than centroid trackers, their results turn out to provide

reasonable estimates of the NEA in either scenario [74, 75].

Active electro-optical systems must further contend with the effects of scintil-

lation and speckle associated with coherent-light propagation. Scintillation refers

†This material was published previously as [72] in the Journal of the Optical Society of America
A (JOSA A) with coauthors M. F. Spencer, M. K. Beason, and R. G. Driggers (https://doi.
org/10.1364/JOSAA.482777) © Optica Publishing Group. Users may use, reuse, and build upon
the article, or use the article for text or data mining, so long as such uses are for non-commercial
purposes and appropriate attribution is maintained. All other rights are reserved.

https://doi.org/10.1364/JOSAA.482777
https://doi.org/10.1364/JOSAA.482777
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to a spatially varying irradiance return arising from distributed-volume phase aber-

rations. The nonuniformity leads to centroid-tilt, gradient-tilt anisoplanatism, in-

ducing a jitter term that negatively impacts Strehl ratios. Holmes has quantified

this track error as a function of log-amplitude variance, among other system-level

parameters [76]. Speckle is an unrelated nonuniformity that arises from scattering

off an extended, optically rough, and coherently illuminated object. As its effect

on received irradiance is statistically independent from that of scintillation, it gives

rise to a separate jitter term that is the focus of this paper; namely, the NEA due

to speckle.

Fried previously studied the NEA due to speckle in an unpublished technical

report [77], which has led over time to an engineering rule of thumb that tracking

precision cannot exceed (1/2)λ/D in the presence of fully developed speckle. A

common mistake, however, is to treat this metric as a one-axis track error when

in fact it describes two-axis track error. Shellan later carried out similar analysis

for a Shack–Hartmann wavefront sensor, which is essentially a collection of centroid

trackers distributed over a lenslet array of square subapertures [78]. Fried and

Shellan both relied on the assumption that laser power is sufficiently scalable for

other noise sources to become negligible, and we make that same working assumption

here. We also follow suit in defining NEA as a function of the object Fresnel number

[79, 80, 81, 82], which is a normalization of the object angular extent that gives rise

to two distinct imaging conditions: well-resolved and unresolved objects. Only the

former condition is considered in the Fried and Shellan reports.

Since neither document is published in the peer-reviewed literature, we set out to

provide a rederivation of the NEA due to speckle complete with validation through

wave-optics simulations. Along the way, we make several other notable improve-

ments: (1) the results are greatly simplified by leveraging the irradiance correlation

coefficient which we have previously reported for dynamic speckle [2, 57]; (2) no

radiometry is required to arrive at a mathematically complete result; (3) additional

theory is needed to properly account for unresolved objects; and (4) the Strehl ratio

due to Gaussian jitter derived by Merritt et al. links the NEA due to speckle to an
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intuitive scaling law [83, 74]. We find in the well-resolved regime that our results

agree with Baribeau’s asymptotic analysis [84]. We also take a related approach

to Allan et al. in the unresolved regime [85] but make modified statistical argu-

ments that further simplify our expressions. Before validating our theory through

wave-optics simulations, we fit saturation curves to the numerical integration of our

analytical results and report closed-form expressions for NEA that depend only on

the object Fresnel number when speckle is fully developed.

Our end goal in deriving and validating these expressions is to provide scaling

laws that predict a track-error limitation due to fully developed speckle. These scal-

ing laws represent both circular- and square-aperture imaging geometries, as com-

monly found in object-tracking and wavefront-sensing systems, respectively. They

are also valid over a full range of object Fresnel numbers, starting from the un-

resolved into the well-resolved limit. With these goals in mind, Section 4.2 first

analyzes NEA in the well-resolved and unresolved limits, then bridges the gap by

fitting a single curve to both asymptotic limits. The resultant closed-form expres-

sions lead to the proposed scaling laws in each geometric scenario. Section 4.3 then

introduces a wave-optics simulation framework for validation of our proposed scaling

laws, and Section 4.4 discusses the agreement between theory and Monte Carlo sim-

ulation trials. Appendices A and B contain step-by-step derivations of the analytical

overlap integrals introduced in Section 4.2.1.

4.2 Theoretical Analysis

The subsections that follow are concerned with active tracking of both circular

and square object–aperture pairings, with the objects being either well resolved or

unresolved from a diffraction standpoint. In each case the ultimate goal is to develop

an expression for NEA (σθ) along one dimension. As we will see, however, even a

single-axis centroid depends upon two-dimensional geometry of both the object and

aperture. The analysis thus begins in two dimensions and downconverts in later

steps, with the two solutions known to differ by a factor of
√
2 [51].



4.2. THEORETICAL ANALYSIS 89

Going forward, a handful of simplifying assumptions help to guide the analysis

toward closed-form solutions [cf. Fig. 4.1]: first, a black-box optical system is fully

described by its entrance- and exit-pupil sizes and positions relative to the object

and image planes; second, the optical system is in focus such that imaging condition

1/Z1 + 1/Z2 = 1/f is satisfied; third, all analysis takes place in the image plane

with transverse magnification ratio M = Z2/Z1 exactly relating object and image

sizes; fourth, the paraxial approximation holds true, such that angular measure-

ments are related to lateral displacements via θ = r/Z2; fifth, active illumination

is purely monochromatic and linearly polarized (in addition to being uniform over

the entire object just before reflection and backscattering from its rough surface);

and sixth, well-resolved objects subtend multiple diffraction angles while unresolved

objects subtend less than one diffraction angle at range (i.e., the imaging system is

diffraction limited rather than detector-sampling limited).

Before moving on, we define the following special functions for reference through-

out our analysis [41]:

cyl (ρ) =


1, 0 ≤ ρ < 1/2

1/2, ρ = 1/2

0, ρ > 1/2;

(4.1)

somb (ρ) = 2
J1 (πρ)

πρ
; (4.2)

rect (w) =


1, |w| < 1/2

1/2, |w| = 1/2

0, |w| > 1/2;

(4.3)

and

sinc (w) =
sin (πw)

πw
. (4.4)
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We also point out to the reader that, although analytical curves are referenced

throughout this section, they do not appear as plots until Sec. 4.4 where we present

our wave-optics simulation results concurrently.

4.2.1 Well-Resolved Objects

An optically rough object that is well resolved by an imaging system presents many

independent phase contributions to its entrance pupil, giving rise to irradiance fades

called speckles upon propagation to the image plane. A centroid tracker integrates

over this entire irradiance pattern, so the image-plane speckle statistics determine

uncertainty in the measurement. With reference to Fig. 4.1, the analytical vector

expression for an ordinary image-plane intensity centroid (i.e., the first moment of

the image) is [86]

rc =

∫∫
r I (r) d2r∫∫
I (r) d2r

, (4.5)

whereas

rc =

∫∫
r I (r) d2r〈∫∫
I (r) d2r

〉
=

∫∫
r I (r) d2r

Φ̄

(4.6)

describes the equivalent simplified centroid tracker. In Eqs. (4.5) and (4.6), I (r)

is the pointwise value of irradiance at vector position r in the image plane. Note

that Eq. (4.6) simply replaces the denominator of Eq. (4.5) with its ensemble average

(i.e., the total expected image power Φ̄). This approximation spares us the statistical

challenge of taking a random expectation ratio, and Fried argues for its validity on

the basis that the numerator and denominator of Eq. (4.5) are mutually statistically

independent in the case of an extended, optically rough, and coherently illuminated

surface [77].

Our immediate goal is to compute a variance (i.e., the second central moment)
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Figure 4.1: Black-box imaging geometry with a rough-surface object in the object
plane forming a speckled image in the image plane.

of the random intensity centroid position, which in general is

σ2
c = E[||rc − E[rc]||2]

= E[||rc||2]− ||E [rc]||2
(4.7)

with E [◦] and ||◦|| denoting an expected value and vector magnitude, respectively.

Given that a speckle-driven centroid is unbiased in any one direction, the second

term of Eq. (4.7) goes to zero and the first becomes equivalent to variance. Tak-

ing the squared magnitude of Eq. (4.6) amounts to integration over two (generally

distinct) position vectors in the image plane; namely, r1 and r2:

σ2
c =

〈
1

Φ̄2

∞∫∫
−∞

∞∫∫
−∞

(r1 · r2) I (r1) I (r2) d2r2 d2r1

〉
. (4.8)

As the two irradiance factors are the only randomly varying quantities in Eq. (4.8),

the orders of integration and averaging are interchangeable [40], such that
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σ2
c =

1

Φ̄2

∞∫∫
−∞

∞∫∫
−∞

(r1 · r2) ⟨I (r1) I (r2)⟩ d2r2 d2r1. (4.9)

We recognize the quantity enclosed in angle brackets as the statistical autocorrela-

tion function

RI (r1; r2) = ⟨I (r1) I (r2)⟩

= ⟨U (r1)U
∗ (r1)U (r2)U

∗ (r2)⟩ ,
(4.10)

U (◦) being a complex optical field component and U ∗ (◦) its complex conjugate.

Assuming the rough-surface scattering process generates enough independent phase

contributions that the central-limit theorem is satisfied, U (r1) and U (r2) obey

circular complex Gaussian statistics and

RI (r1; r2) = ⟨I (r1)⟩ ⟨I (r2)⟩+ |⟨U (r1)⟩ ⟨U ∗ (r2)⟩|2

= ⟨I (r1)⟩ ⟨I (r2)⟩ [1 + µI (r2 − r1)]
(4.11)

by the complex Gaussian moment theorem [16]. Here, µI (◦) ∝ |F {P(ϱ)}|2 is the

image-plane irradiance correlation coefficient, where F {◦} represents a 2D Fourier

transform and P(ϱ) a generalized pupil function. Substituting Eq. (4.11) into

Eq. (4.9),

σ2
c =

1

Φ̄2

∞∫∫
−∞

∞∫∫
−∞

(r1 · r2) ⟨I (r1)⟩ ⟨I (r2)⟩ [1 + µI (r2 − r1)] d
2r1 d

2r2. (4.12)

For any uniform irradiance pattern that is both finite in extent and symmetric about

the optical axis, the first term in Eq. (4.12) integrates to zero and thus
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σ2
c =

1

Φ̄2

∞∫∫
−∞

∞∫∫
−∞

(r1 · r2) ⟨I (r1)⟩ ⟨I (r2)⟩µI (r2 − r1) d
2r1 d

2r2. (4.13)

This result makes the additional assumption of a linear shift-invariant (LSI) system

such that the correlation coefficient depends only on scalar differences between vector

magnitudes [39].

To proceed, a flat circular object of diameter W and mean irradiance Ī gives

⟨I (r)⟩ = Ī cyl
( r

MW

)
(4.14)

in the image plane withM = Z2/Z1 being the transverse magnification ratio between

object–pupil and pupil–image distances Z1 and Z2, respectively. The image-plane

irradiance correlation coefficient corresponding to a circular aperture is [57]

µI (r2 − r1) = somb2

[
D

λZ2

(r2 − r1)

]
, (4.15)

where D is the aperture diameter and λ the wavelength of illumination. Leaving the

full derivation to a Appendix A for the sake of brevity, we substitute Eq. (4.15) into

Eq. (4.47) and simplify its prefactor by taking average power Φ̄ to be the product

of average irradiance Ī and image area

Aimg = π

(
M

W

2

)2

. (4.16)

Making this substitution, along with M = Z2/Z1, θ = r/Z2 and

Nobj =
W/Z1

λ/D
, (4.17)

the final normalized result for a circular object–aperture pairing is
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σθ

λ/D
=

Nobj√
π


1∫

0

v
[
cos−1 (v) + v

√
1− v2

(
2v2 − 3

)]
somb2 (Nobjv) dv


1/2

. (4.18)

Here, we have also divided the result by 2 for one-axis variance and taken its square

root for standard deviation. In Eq. (4.17), λ/D is the full-width-at-half-maximum

(FWHM) aperture diffraction angle and Nobj is the object Fresnel number, which

not only normalizes the object angular extent but also counts the estimated number

of speckles across one dimension of the aperture. Moreover, Nobj > 1 indicates

that the object is well resolved with multiple resolution cells spanning the object

at range. Equation (4.18) has an asymptotic limit of 1/π ≈ 0.318 as Nobj tends to

infinity.

Pairing a square object of width W with a square aperture of width D gives

⟨I (r)⟩ = Ī rect
( x

MW

)
rect

( y

MW

)
, (4.19)

as well as [57]

µI (r2 − r1) = sinc2
[

D

λZ2

(r2 − r1)

]
(4.20)

and

Aimg = (MW )2 . (4.21)

Referring the reader to Appendix B and making the appropriate substitutions into

Eq. (4.60), we find that our final normalized result for a square object–aperture

pairing is

σθ

λ/D
=

Nobj√
3

[∫ 1

0

(
1− 3vx + 2v2x

)
sinc2 (Nobjvx) dvx

∫ 1

0

(1− vy) sinc
2 (Nobjvy) dvy

]1/2
(4.22)
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with a saturation value of
√
3/6 ≈ 0.289. This time we have simply taken the square

root for standard deviation without first dividing by 2, since the full derivation in

Appendix B works in one dimension from the outset.

Equations (4.18) and (4.22) result from integration only over the windowed image

irradiance, which assumes a full field of view (FOV) equal to the object angular

extent. In turn, any presence of background noise or clutter would naturally increase

uncertainty in the measurement. The dashed curves of Fig. 4.4 plot these results

(i.e., the well-resolved NEA due to speckle for both circle and square objects) over a

range of object Fresnel numbers. We note that the asymptotic well-resolved limits

of these curves (where Nobj ≫ 1) remain constant with object Fresnel number due

to aperture-limited speckle sizes [57], while their linear predictions are unphysical in

the unresolved limits (for which Nobj ≪ 1) because as an object decreases in angular

subtense its image cannot shrink infinitesimally as a consequence of diffraction. This

understanding calls for separate treatment of unresolved objects in the analysis that

follows.

4.2.2 Unresolved Objects

When an extended, optically rough, and coherently illuminated object is not re-

solved by the imaging system, it becomes an effective point source producing a

single diffraction spot in the image plane. Phase is nonetheless random in the pupil

plane, however, which means the centroid position still fluctuates to some degree.

Equation (4.17) predicts that speckle width exceeds aperture diameter in the unre-

solved regime, so the pupil effectively sees a constant phase slope in one direction [87]

and the image-plane diffraction spot shifts accordingly. The path forward, then, is

to describe this behavior by studying the phase statistics of a fully developed speckle

field.

The localized 1D phase slope (ϕ′ = dϕ/dx) of a fully developed speckle field

follows the probability-density function (PDF) [16]
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p (ϕ′) =
1

2

{
g[

1 + (gϕ′)2
]3/2

}
(4.23)

for an adequately symmetric (e.g. square, circular) object, with corresponding

cumulative-distribution function (CDF)

P (ϕ′) =
1

2

{
1 +

gϕ′[
1 + (gϕ′)2

]1/2
}
. (4.24)

In the above, g is a scalar value that depends on the object geometry. Equa-

tion (4.23) is defined in theory over an infinitely wide domain, but setting bounds

of integration from −∞ to ∞ produces the unphysical result that variance is also

infinite. Instead truncating its support to a more realistic interval gives rise to a

variance calculation of

σ2
ϕ′ =

∫ ϕ′
max

−ϕ′
max

(
ϕ′ − ϕ′

)2
p (ϕ′) dϕ′

P (ϕ′
max)− P (−ϕ′

max)
(4.25)

with ϕ′
max being the maximum phase-slope magnitude of interest. Here, we note that

the phase slope of a speckle field is unbiased and thus ϕ′ = 0. In deciding where to

truncate the phase slopes, we consider the behavior of Eq. (4.25) as ϕ′
max is varied.

Plotting its numerator and denominator separately reveals that a vast majority of

phase slopes are concentrated toward small values of ϕ′
max. For instance if we draw

inspiration from the empirical rule in statistics that says virtually all possible val-

ues (∼99.7%) of a normally distributed random variable lie within three standard

deviations of its mean, we see that the denominator curve has virtually flattened by

this point. Likewise it is clear that the numerator curve has flattened significantly

here, and little more is contributed to the phase-slope standard deviation by includ-

ing values of ϕ′
max beyond the point of ∼99.7% total probability. Keeping in mind

that infinitely large phase slopes (and tilt angles by extension) lose any physical

meaning, truncating the distribution at this point is a sound decision given these

observations. We therefore solve Eq. (4.24) for a maximum phase slope such that
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Figure 4.2: Semi-log plot of phase-slope PDF defined in Eq. (4.23); blue shading
indicates 99.7% of the area under this curve yielding a realistic range of phase slopes.

P (ϕ′
max) − P (−ϕ′

max) = 0.997. Figure 4.2 illustrates the integration of Eq. (4.23)

over this interval on a semi-log plot. As we will see, this heuristic approach is well

supported in wave-optics simulation results.

Assuming a circular object [16], g = 2λZ1/ (πW ) and ϕ′
max = 21.3W/ (λZ1).

Noting that division by wavenumber k = 2π/λ converts a phase slope to a tilt angle

under the paraxial approximation, this is equivalent to integrating over roughly 7×
the object angular extent. Eq. (4.25) then evaluates to σ2

ϕ′ = 5.70 [W/ (λZ1)]
2. From

here we simply take the square root for standard deviation and divide by k for an

angular uncertainty of

σθ

λ/D
= 0.380Nobj (4.26)

in terms of the aperture diffraction angle and object Fresnel number.

Assuming a square object [16], g =
√
3λZ1/ (πW ) and ϕ′

max = 24.6W/ (λZ1) or

roughly 8× the object extent in angular space. In turn, σ2
ϕ′ = 7.61 [W/ (λZ1)]

2 and
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σθ

λ/D
= 0.439Nobj (4.27)

by the same approach. Comparing Eqs. (4.26) and (4.27) to Eqs. (4.18) and (4.22),

we see that the NEA is greater for square geometry in the unresolved limit but

greater for circular geometry in the well-resolved limit.

The dotted curves of Fig. 4.4 plot these results (i.e., the unresolved NEA due

to speckle for both circle and square objects) over the same range of object Fresnel

numbers as in Section 4.2.1. Here, we observe a linear dependence on object Fresnel

number in the unresolved limit (where Nobj ≫ 1), while a constant slope is now

unphysical in the well-resolved limit (for which Nobj ≫ 1) because an image does in

fact grow larger with increasing object size and pointwise measurements of phase in

the aperture no longer apply.

4.2.3 Scaling Laws

In an effort to develop scaling laws for active tracking that include the NEA due to

speckle, we bridge the linear lower limits defined in Section 4.2.2 with the constant

upper limits defined in Section 4.2.1 through curve fitting. Synthesizing the lower

limit of Eq. (4.26) with the upper limit of Eq. (4.18) in TableCurve 2D yields a

saturation-curve fit of

σθ

λ/D
=

(
3.21 +

2.56

Nobj

)−1

(4.28)

for a circular object and aperture, while doing the same with Eqs. (4.27) and (4.22)

yields

σθ

λ/D
=

(
3.54 +

2.11

Nobj

)−1

(4.29)

for a square object and aperture. The R2 value of each fit approaches 1 to within

five decimal places, and both fits are also plotted in Fig. 4.4 using dash-dotted lines.

As Eqs. (4.28) and (4.29) represent standard noise terms, they decrease with the
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square root of the number of independent speckle frames averaged together prior to

centroid measurement [88].

Of further interest is quantifying how the NEA due to speckle will ultimately

impact system performance. Defining the Strehl ratio according to Merritt’s formu-

lation for Gaussian jitter as [83, 74]

⟨Sj⟩ =

[
1 +

π2

2

(
σθ

λ/D

)2
]−1

(4.30)

gives us insight into the reduction in on-axis, image-plane intensity due to fully

developed speckle. With a reduced NEA in the case of speckle averaging, the jitter

Strehl ratio increases and track performance improves in response. We explore this

improvement by plotting Eq. (4.30) with and without speckle averaging in Fig. 4.5.

4.3 Numerical Simulation

To produce numerical results that accurately represent active-centroid tracking with

coherent illumination, we take the standard wave-optics approach of propagating

from plane to plane via the Fresnel diffraction integral as a solution to the Helmholtz

wave equation. After selecting a realistic illumination wavelength λ, propagation

distance Z1 = Z2 = Z (for unit magnification) and aperture diameter D, we vary

the object width W by controlling the object Fresnel number [cf. Eq. (4.17)]. The

next step is to define either a square or circular shape of this width in the object

plane with constant amplitude and δ-correlated random phase distributed uniformly

over [−π, π). Propagating this field a distance Z1 to the pupil plane, applying a thin

lens of focal length f = Z1 to collimate the entrance-pupil field, applying a second

thin lens of focal length f = Z2 to focus the exit-pupil field, propagating by a second

distance Z2 to the image plane, and taking the field’s squared magnitude produces

the image-plane irradiance for analysis (cf. Fig. 4.1). Although our simulations

represent a two-lens imaging system for the sake of simplicity [89], we remind the

reader that any black-box system with known pupil positions relative to the object

and image planes would give equally valid results. After windowing out a region
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Figure 4.3: Example windowed image for numerical centroid estimation; results
from uniform coherent illumination of a circular object such that crosshairs would
be perfectly centered on the image if not for the presence of speckle noise.

of interest that is consistent with the image size, we calculate an x-axis centroid

estimate as

x̂c =

∑
m,n xmnImn∑

m,n Imn

. (4.31)

An example speckled and windowed image is shown in Fig. 4.3 with red crosshairs

marking the estimated centroid position. A Monte Carlo average of this estimate

over 100 independent speckle realizations for each object Fresnel number increases

robustness of the estimates, and finally dividing the average results by λZ2/D allows

for comparison to the appropriate scaling law [cf. Eq. (4.29) or (4.28)]. These

results are plotted as circles in Fig. 4.4, noting that the general approach remains

valid over the full range of object sizes. Because a minimum of ∼10 phase samples

are required across the object width to generate proper speckle statistics, sampling

requirements become much more constrained in the unresolved limit where object

sizes grow smaller against a aperture size and propagation distance [90]. With that

said, Table 4.1 highlights the critical inputs to an example simulation in the well-

resolved limit with unity scaling between each pair of planes.
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Table 4.1: Sample wave-optics simulation parameters used to validate scaling laws
in the well-resolved limit.

parameter value

grid resolution, N ×N [px] 1024× 1024
grid spacing, δ [µm] 879general
grid side length, S [cm] 90

illumination wavelength, λ [µm] 1
object–pupil distance, Z1 [m] 791
pupil–image distance, Z2 [m] 791
effective focal length, f [m] 791

system

aperture, diameter, D [cm] 30

4.4 Results and Discussion

Figure 4.4 plots all circular and square integral expressions, curve fits and simulation

data for NEA over a wide range of object Fresnel numbers assuming fully developed

speckle. It is clear that the curve fits in general provide decent estimates of their

rigorous analytical counterparts, and the numerical results provide validation with

strong agreement. Furthermore, rigorous analysis cannot account for the transition

region from unresolved to well-resolved objects where curve fitting offers the only

viable closed-form solutions. Lower object Fresnel numbers tend to show greater

variation in the data, which stands to reason since the centroid of a well-resolved

object that projects many phase slopes across the aperture represents more of an

ensemble average than does a single phase contribution from an unresolved object.

Monte Carlo averaging of more than 100 datasets would help to reduce this noise,

but overall trends in the data provide meaningful insight nonetheless.

Recalling that our circular and square scaling laws saturate at ∼0.318 and

∼0.289, respectively, we propose a new rule of thumb that says tracking preci-

sion of well-resolved objects cannot exceed (1/3)λ/D. We make the argument that

a one-axis definition is more intuitive when considering the idea of a NEA. If one

considers instead a two-axis definition, the estimate more closely approaches the fa-

miliar (1/2)λ/D metric:
√
2/π ≈ 0.450 and 1/

√
6 ≈ 0.408, respectively for circular

and square geometries. We also point out that any discrepancy in the transition



4.4. RESULTS AND DISCUSSION 102

(a) (b)

Figure 4.4: Normalized NEA as a function of object Fresnel number for uniform (a)
circular [cf. Eqs. (4.18), (4.26) & (4.28)] and (b) square [cf. Eqs. (4.22), (4.27) &
(4.29)] object–aperture pairings under coherent illumination.

region from unresolved to well-resolved objects is a conservative overestimate of the

NEA, though this discrepancy appears somewhat exaggerated on the log–log scale

of Fig. 4.4.

As a matter of interest, comparing the scaling laws presented here to the pas-

sive SNR-limited results of Ref. [73] reveals essentially opposite trends. Our active

NEA due to speckle increases linearly with object Fresnel number in the unresolved

limit. As the object Fresnel number Nobj increases, the phase ramps grow steeper

over decreasing speckle sizes, until multiple speckles appear across the aperture with

Nobj > 1 and the effect of ensemble averaging over image-plane speckles of constant

size (as set by the exit pupil) saturates the NEA to a constant value. Conversely,

in the passive case an incoherent point-spread function fixes the NEA at a constant

value in the unresolved regime. Such is the case until the object becomes well re-

solved for Nobj > 1 and the NEA increases linearly with object Fresnel number while

the image grows without bound (as allowed by the FOV) without total destructive

interference to limit the centroid calculation area. This comparison highlights an

inherent tradeoff between active and passive tracking, subject to available SNR from

natural illumination.
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(a) (b)

Figure 4.5: Comparison of Strehl ratios as a function of object Fresnel number for
uniform (a) circular [cf. Eqs. (4.28) & (4.30)] and (b) square [cf. Eqs. (4.29) &
(4.30)] object–aperture pairings.

In order to quantify the on-axis intensity reduction associated with speckle-

induced jitter, Eq. (4.30) together with Eqs. (4.28) and (4.29) leads to the plots

of Strehl ratio in Fig. 4.5. These plots also illustrate the benefit of reducing NEA

through speckle averaging, with Eqs. (4.29) and (4.28) divided by the square root

of Navg = 2 and 4 before substitution into Eq. (4.30). In addition to the (1/3)λ/D

tracking limit for well-resolved objects, a key result of this paper from Fig. 4.5 is

that the one-axis jitter Strehl ratio falls below the Maréchal criterion for nominally

diffraction-limited imaging (⟨S⟩ ≳ 80%) in the well-resolved limit (without speckle

averaging). In particular, ⟨Sj⟩ = 2/3 and ∼0.709 for circular and square geometries,

respectively. A two-axis definition would decrease these numbers respectively to 1/2

and ∼0.549, potentially overestimating the severity of unmitigated speckle and its

impact on performance in an active tracking system.

Note A: Full Derivation for Well-Resolved Objects with Circular Geom-

etry

Starting from Eq. (4.13), we define sum and difference vectors as
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p =
r1 + r2

2
(4.32)

and

q = r2 − r1, (4.33)

respectively for a Jacobian determinant of 1. This choice implies that
r1 = p− q/2

r2 = p+ q/2

r1 · r2 = p2 − q2/4,

(4.34)

and in turn

σ2
c =

1

Φ̄2

∞∫∫
−∞

µI (q)

∞∫∫
−∞

(
p2 − q2

4

)〈
I
(
p− q

2

)〉〈
I
(
p+

q

2

)〉
d2p d2q. (4.35)

Notice that the use of sum and difference vectors here provides us with an iterated

integral that we can treat with respect to one vector quantity at a time. A circular

object of diameter W now gives us⟨I (p− q/2)⟩ = Ī cyl [(p− q/2) / (MW )]

⟨I (p+ q/2)⟩ = Ī cyl [(p+ q/2) / (MW )]
(4.36)

in the image plane. Making another change of variables,u = p/ (MW )

v = q/ (MW )
⇒ p2 − q2/4 = (MW )2

(
u2 − v2

4

)
(4.37)

and
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∣∣∣∣∣∣∣∣
∂p
∂u

∂p
∂v

∂q
∂u

∂q
∂v

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
(MW )2 0

0 (MW )2

∣∣∣∣∣∣∣∣
= (MW )4 .

(4.38)

Equation (4.35) then becomes

σ2
c =

Ī2 (MW )6

Φ̄2

∞∫∫
−∞

µI (v)

∞∫∫
−∞

(
u2 − v2

4

)
cyl
(
u− v

2

)
cyl
(
u+

v

2

)
d2u d2v.

(4.39)

Decomposing u into Cartesian a and b coordinates while choosing to align ua with v

allows us to assign a single component of magnitude v to vector v. In other words,

u = ⟨ua, ub⟩ and v = ⟨v, 0⟩. Then according to Eq. (4.1)

∣∣∣∣u− 1

2
v

∣∣∣∣ =
√(

ua −
v

2

)2
+ u2

b

≤ 1

2
⇒ |ub| ≤

√
1

4
−
(
ua −

v

2

)2
,

(4.40)

which requires that

v − 1

2
≤ ua ≤

v + 1

2
. (4.41)

Similarly,

∣∣∣∣u+
1

2
v

∣∣∣∣ =
√(

ua +
v

2

)2
+ u2

b

≤ 1

2
⇒ |ub| ≤

√
1

4
−
(
ua +

v

2

)2 (4.42)
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requires

−1 + v

2
≤ ua ≤

1− v

2
. (4.43)

Figure 4.6 shows that our overlap integral calls for bounds on ub in Eq. (4.40)

from the lower bound of Eq. (4.41) to ua = 0, as well as those on ub in Eq. (4.42) from

ua = 0 to the upper bound of Eq. (4.43). Thus, the interior integral of Eq. (4.39)

becomes

∞∫∫
−∞

(
u2 − v2

4

)
cyl
(
u− v

2

)
cyl
(
u+

v

2

)
d2u

=

∫ 0

(v−1)/2

∫ √1/4−(ua−v/2)2

−
√

1/4−(ua−v/2)2

(
u2
a + u2

b −
v2

4

)
dub dua

+

∫ (1−v)/2

0

∫ √1/4−(ua+v/2)2

−
√

1/4−(ua+v/2)2

(
u2
a + u2

b −
v2

4

)
dub dua,

(4.44)

which evaluates to

1

16

[
cos−1 (v) + v

√
1− v2

(
2v2 − 3

)]
. (4.45)

Plugging back into Eq. (4.39),

σ2
c =

Ī2 (MW )6

16Φ̄2

∫∫
Σ

[
cos−1 (v) + v

√
1− v2

(
2v2 − 3

)]
µI (v) d

2v. (4.46)

Converting to polar coordinates, integrating azimuthally and setting appropriate

radial bounds on v [cf. Eq. (4.37)],

σ2
c =

πĪ2 (MW )6

8Φ̄2

1∫
0

v
[
cos−1 (v) + v

√
1− v2

(
2v2 − 3

)]
µI (v) dv. (4.47)



4.4. RESULTS AND DISCUSSION 107

Figure 4.6: Visualization of overlap-integral computation for a circular rough-surface
object; limits are shown for 0 < v < 1.

Bearing in mind that a circular aperture gives us

µI (q) = somb2

(
D

λZ2

q

)
(4.48)

and that v = q/ (MW ), the abbreviated analysis of Sec. 4.2.1 picks up from this

point with Eq. (4.16).

Note B: Full Derivation for Well-Resolved Objects with Square Geometry

For the square case, we convert from polar to Cartesian coordinates using the rela-

tionships x = r cos (θ) and y = r sin (θ). By invoking separability, this conversion

allows us to work in only one dimension and arrive at
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σ2
c =

1

Φ̄2

∞∫∫
−∞

x1x2 ⟨I (x1)⟩ ⟨I (x2)⟩µI (x2 − x1) dx2 dx1

×
∞∫∫
−∞

⟨I (y1)⟩ ⟨I (y2)⟩µI (y2 − y1) dy2 dy1

(4.49)

in place of Eq. (4.13). Introducing the same sum and difference vectors as in Ap-

pendix A gives us the following substitutions:

x1 = px − qx/2

y1 = py − qy/2

x2 = px + qx/2

y2 = py + qy/2

x1x2 = p2x − q2x/4

, (4.50)

Then we have

σ2
c =

1

Φ̄2

∞∫
−∞

µI (qx)

∞∫
−∞

(
p2x −

q2x
4

)〈
I
(
px −

qx
2

)〉〈
I
(
px +

qx
2

)〉
dpx dqx

×
∞∫

−∞

µI (qy)

∞∫
−∞

〈
I
(
py −

qy
2

)〉〈
I
(
py +

qy
2

)〉
dpy dqy

(4.51)

With a square object of width W we now have⟨I (p− q/2)⟩ = Ī rect [(p− q/2) / (MW )]

⟨I (p+ q/2)⟩ = Ī rect [(p+ q/2) / (MW )]
(4.52)

in the image plane. Making the same second change of variables as in Appendix A,

Eq. (4.51) becomes
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σ2
c =

Ī2 (MW )6

Φ̄2

∞∫
−∞

µI (vx)

∞∫
−∞

(
u2
x −

v2x
4

)
rect

(
ux −

vx
2

)
rect

(
ux +

vx
2

)
dux dvx

×
∞∫

−∞

µI (vy)

∞∫
−∞

rect
(
uy −

vy
2

)
rect

(
uy +

vy
2

)
duy dvy.

(4.53)

Establishing limits of integration,

∣∣∣ux −
vx
2

∣∣∣ ≤ 1

2
⇒ vx − 1

2
≤ ux ≤

vx + 1

2
, (4.54)

∣∣∣ux +
vx
2

∣∣∣ ≤ 1

2
⇒ −1 + vx

2
≤ ux ≤

1− vx
2

, (4.55)

∣∣∣uy −
vy
2

∣∣∣ ≤ 1

2
⇒ vy − 1

2
≤ uy ≤

vy + 1

2
, (4.56)

and

∣∣∣uy +
vy
2

∣∣∣ ≤ 1

2
⇒ −1 + vy

2
≤ uy ≤

1− vy
2

. (4.57)

Given that both vx and vy can range from −1 to 1, Fig. 4.7 provides a visual for

this set of integral bounds when 0 < {vx, vy} < 1. In turn, Eq. (4.53) becomes

σ2
c =

Ī2 (MW )6

Φ̄2

[∫ 0

−1

µI (vx)

∫ (vx+1)/2

−(1+vx)/2

(
u2
x −

v2x
4

)
dux dvx

+

∫ 1

0

µI (vx)

∫ (1−vx)/2

(vx−1)/2

(
u2
x −

v2x
4

)
dux dvx

]

×

[∫ 0

−1

µI (vy)

∫ (vy+1)/2

−(1+vy)/2

duy dvy +

∫ 1

0

µI (vy)

∫ (1−vy)/2

(vy−1)/2

duy dvy

]
,

(4.58)
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and solving its interior integrals gives us

σ2
c =

Ī2 (MW )6

Φ̄2

[∫ 0

−1

1

12

(
1 + 3vx − 2v2x

)
µI (vx) dvx

+

∫ 1

0

1

12

(
1− 3vx + 2v2x

)
µI (vx) dvx

]

×

[∫ 0

−1

(1 + vy)µI (vy) dvy +

∫ 1

0

(1− vy)µI (vy) dvy

] (4.59)

or

σ2
c =

Ī2 (MW )6

3Φ̄2

∫ 1

0

(
1− 3vx + 2v2x

)
µI (vx) dvx

∫ 1

0

(1− vy)µI (vy) dvy (4.60)

by symmetry. Now recalling that a square aperture gives us

µI (q) = sinc2
(

D

λZ2

q

)
(4.61)

and again v = q/ (MW ), Eq. (4.21) picks up from this point in Sec. 4.2.1.
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Figure 4.7: Visualization of overlap-integral computation for a square rough-surface
object; limits are shown for 0 < {vx, vy} < 1.
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CHAPTER 5

Open-Loop Wavefront Sensing in the Presence of Speckle and Weak Scintillation

Over Horizontal Paths†

5.1 Background

In many applications of free-space optics (FSO), it is necessary to accurately char-

acterize the phase aberrations due to atmospheric turbulence. Knowledge of a wave-

front in the pupil plane enables phase compensation by either physical or compu-

tational means, ultimately improving image quality or beam propagation. A con-

ventional wavefront sensor requires some sort of beacon to provide a reference wave

for measurement and reconstruction. When available, natural guide stars serve as

idealized point-source beacons that sample the atmosphere from space to ground

with high fidelity. Often the only option along a horizontal path, however, is to

create an artificial beacon that may or may not be cooperative in nature.

An end-to-end FSO communications link has the luxury of including a cooper-

ative beacon on the receiver side for wavefront sensing and precompensation at the

transmitter. Long-range imaging, on the other hand, typically calls for projection

of a noncooperative beacon from the receiver to the object plane. The beacon in

this scenario is subject to both diffractive and refractive beam spreading, atmo-

spheric beam wander, and irradiance fades (i.e., scintillation) resulting from uplink

turbulence. Together these effects give rise to a nonuniform, extended source that

randomly varies its centroid position in the object plane. As other works have pre-

viously explored centroiding limitations due to beam wander [91] and scintillation

[76] in horizontal geometries, we restrict our discussion here to the impact of beam

spreading on wavefront-sensor performance. Moreover, we limit the scope of this

†This material is currently undergoing submission in draft form to Optics Communications with
coauthors M. F. Spencer and R. G. Driggers.
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work to a Shack–Hartmann wavefront sensor (SHWFS) for its robust operation with

high dynamic range.

One significant problem associated with extended-source beacons is that all natu-

rally reflective objects possess optically rough surfaces. Wavelength-scale roughness

produces an interference pattern called speckle upon propagation back to the re-

ceiver plane, along with phase delays that become irretrievably coupled with the

turbulence-induced aberrations of interest. These two phenomena generate addi-

tional irradiance fluctuation and centroid motion, respectively, in the point-spread

functions (PSFs) of an SHWFS image plane. Larger beacons in general correspond

to smaller pupil-plane speckles, and therefore greater severity of measurement cor-

ruption. Allan et al. have studied this problem extensively by quantifying speckle

noise in a ground-to-space configuration [85], but the equivalent horizontal-path

arrangement remains relatively unexplored.

Another negative consequence of extended-source beacons, unique to the case

of distributed-volume turbulence across horizontal paths, is beacon anisoplanatism.

This phenomenon is an extension of angular anisoplanatism, whereby the offset in

angular position between the beacon and object of interest (or the beacon and pro-

jected aimpoint) leads to two different paths through turbulence from the receiver’s

perspective. Rather than a single offset, an extended beacon subtends many such

paths as it comprises a collection of spherical wavelets per the Huygens–Fresnel prin-

ciple. In effect, each of these paths samples a slightly different cone of atmospheric

turbulence and undergoes different field distortions that introduce shift-varying

PSFs. These distorted fields add incoherently in a process called path averaging

to produce the image-plane intensity centroids and subsequent pupil-plane phase

reconstruction [92]. Even in the absence of speckle, inverting the path-averaged

phase function from an optically smooth extended beacon would compare unfavor-

ably to an ideal point source.

In wavefront sensing with artificial beacons, it is standard practice to buy back

performance by averaging out speckle however possible; i.e., leveraging speckle diver-

sity through system dynamics [85], spatial decoherence [93], temporal decoherence
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[81], depolarization [94] or some combination thereof [16]. Figure 5.1 illustrates

the benefits of achieving speckle diversity through any of these mechanisms, with

the speckle-averaged wavefront in turbulence converging to the wavefront aberra-

tions from turbulence alone. Unfortunately, beacon anisoplanatism leaves a system

vulnerable to path averaging that compounds with other forms of averaging and

diminishes system stability overall. In what follows, we explore this tradeoff by first

explaining the theory of wavefront error and irradiance skewness as SHWFS defect

functions, then quantifying these functions both in vacuum and in weak scintilla-

tion through a wave-optics simulation campaign, before finally discussing results

and offering conclusions based on our findings.
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Figure 5.1: Example overview of combined phase aberrations due to rough-surface
scattering and weak scintillation, both (top row) without and (bottom row) with
intraframe speckle averaging.

5.2 Background and Theory

Despite a growing interest in alternative sensing modalities (e.g., pyramid and curva-

ture wavefront sensors), the SHWFS has maintained its reputation for technological
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readiness that helps us ground our results and establish a baseline understanding of

performance limits. We assume in our model that each subaperture is a square of

roughly Fried’s coherence diameter (r0) in width, and the extended beacon is square

in shape as well. The subapertures are defined by a lenslet array in the x–y plane.

Our approach to speckle mitigation in this paper is impose motion on the beacon

object such that speckle decorrelates from one frame to the next. For reasons we

will explain in Sec. 5.3, we choose to implement speckle decorrelation specifically

by translating the rough surface underlying the beacon light a distance ∆Ω in the

object plane. We make the assumption throughout this paper that all speckle real-

izations are of equal average irradiance I0, and that speckle is fully developed on a

frame-by-frame basis such that σI = I0.

5.2.1 Wavefront Error

In a recent journal publication, we analytically derived closed-form scaling laws that

predict centroid-tracking performance in the limit of speckle noise [72]. Quantifying

single-aperture track error by a noise-equivalent angle (NEA), we found that solu-

tions depend only on object size. It is common to express the latter quantity as an

object Fresnel number, which for a multi-subaperture SHWFS is

nobj =
W/Z1

λ/d
. (5.1)

Here, W is the transverse object width, Z1 is the longitudinal distance from object

to pupil plane, λ is the wavelength of light, and d is the width of a subaperture.

The numerator and denominator of Eq. (5.1) represent the object angular extent and

full-width-at-half-max (FWHM) subaperture diffraction angle, respectively. Rear-

ranging variables,

nobj =
d

λZ1/W
(5.2)

also counts the approximate number of speckles across the width of a subaperture

(since its denominator is on the order of pupil-plane speckle width [95]). We gener-
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ally refer to nobj as a subaperture–object Fresnel number as a way of differentiating

it from the usual full-aperture metric. Normalizing to the subaperture diffraction

angle, we found in our analysis that NEA is approximately

σθ

λ/d
=

(
3.54 +

2.11

nobj

)−1

(5.3)

in the case of a square beacon and square subapertures. Equation (5.3) saturates

at a value of ∼0.289.
Our main goal in this paper is to quantify standard deviations in wavefront slope

from subaperture to subaperture, measured in optical path difference (OPD) and

normalized to wavelength (σwf/λ). The slope or gradient of phase function ϕ in the

x direction is

g =
∂ϕ

∂x

= kθ,

(5.4)

where k = 2π/λ is the angular wavenumber,

θ =
∆z

d
(5.5)

is the angle of wavefront tilt and ∆z is the OPD between opposite edges of a sub-

aperture. Noting that Eqs. (5.1)–(5.5) assume the paraxial approximation holds

true,

θ

λ/d
=

∆z

λ
, (5.6)

which gives the needed equivalence with Eq. (5.3):

σwf

λ
=

(
3.54 +

2.11

nobj

)−1

. (5.7)

In vacuum propagation to the far field, phase function ϕ describes a perfectly flat
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wavefront. Thus any nonzero σwf is due to speckle and indicates deviation from

ground truth. In turbulence, however, the ground truth consists of atmospheric

aberrations with speckle acting as bias in the estimator. We therefore refer to σwf

as root-mean-square (RMS) wavefront error in the case of speckle only, and as RMS

wavefront aberration when both speckle and turbulence are present.

5.2.2 Speckle Contrast

Equation (5.7) provides an estimate for normalized σwf when speckle is fully devel-

oped. If averaging together M fully uncorrelated speckle realizations, we can expect

σwf to scale inversely with the square root of M [85]. What we still lack is a method

of estimating σwf when speckle only partially decorrelates between frames. Speckle

contrast,

C =
σI/Ī√
M

, (5.8)

takes on a value between 0 and 1 where σI and Ī are the standard deviation and

mean irradiance, respectively [16]. Because of this built-in normalization and the

fact that C scales in the way as σwf , we can use it as a scale factor to modify our

expected wavefront error/aberration as

σ′
wf = Cσwf . (5.9)

Taking a similar approach to Egge et al. [96] in the context of speckle reduction

for laser projection displays, we derive our own equation for modified speckle con-

trast the applies to successive speckle realizations presented to the pupil plane with

mutual partial correlation. Considering how the total irradiance detected at a point

in space is

ΣI =
M∑

m=1

Im, (5.10)

where Im is the mth of M total speckle patterns in a sum, the speckle contrast of
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our final sum is then

C =
σΣI

ΣI
. (5.11)

The Bienaymé formula tells us that irradiance variance is [97]

var (ΣI) =
M∑

m=1

var (Im) + 2
∑
m<n

cov (Im, In)

=
M∑

m=1

var (Im) + 2
∑
m<n

cor (Im, In)
√
var (Im) var (In)

= I20

[
M + 2

∑
m<n

µI (Im, In)

] (5.12)

where µI (Im, In) is the irradiance correlation coefficient between a pair of consecu-

tive subframes, while

ΣI =
M∑

m=1

Im

= MI0

(5.13)

follows from linearity of expectation [98]. Note that Eq. (5.12) makes use of the

framewise fully developed assumption that σI = I0. Then according to Eq. (5.11),

C =

[
M + 2

∑
m<n µI (Im, In)

]1/2
M

. (5.14)

Simplifying further,

∑
m<n

µI (Im, In) = (M − 1)µI (∆Ω0) + (M − 2)µI (2∆Ω0)

+ · · ·+ µI [(M − 1)∆Ω0] ,

(5.15)
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such that

C =

[
M + 2

∑M−1
m=1 (M −m)µI (m∆Ω0)

]1/2
M

. (5.16)

Since equations for µI (◦) are highly nonlinear with potentially many sidelobes, we

cannot generalize beyond the series notation of Eq. (5.16); solving algorithmically

is rather straightforward as shown in Alg. 1.

Algorithm 1 Calculation of speckle contrast for a sum of M partially correlated
frames.

Require: M ∈ N,∆Ω0 ≥ 0 ▷ frame count, translation distance
Ensure: 0 ≤ C ≤ 1 ▷ speckle contrast
procedure SpeckleContrast(M,∆Ω0)

B ← 0
for m = 1 to M − 1 do

B ← B + (M −m)µI (m∆Ω0)
end for
C ←

√
M + 2B ÷M

return C
end procedure

Since we are assuming a square beacon, our formula for the pupil-plane irradiance

coefficient is

µI (∆Ω) = sinc2
(
W∆Ω

λZ1

)
tri2

(
∆Ω

W

)
(5.17)

where

sinc (w) =
sin (πw)

πw
(5.18)

and

tri (w) =

1− |w|
0

|w| < 1

|w| ≥ 1
. (5.19)

The first and second factors in Eq. (5.17) are attributed to translation and boil of the



5.2. BACKGROUND AND THEORY 120

speckle pattern, respectively [95, 99]. We determine our initial translation distances

∆Ω0 by numerically solving Eq. (5.17) for 25%, 50%, 75% and 100% decorrelation of

speckle between frames. Then by substituting Eq. (5.17) into Eq. (5.16) and using

the result with Eqs. (5.7) in Eq. (5.9), we produce the plots in Fig. 5.2 and theoreti-

cally predict from them modified RMS wavefront error with intraframe averaging of

partially correlated speckle. As one would expect, mitigation is most efficient when

frame-to-frame decorrelation is at its maximum. We note, however, that there is

more nuance to Fig. 5.2d than a simple reduction by
√
M , the reason being only

consecutive frames are 100% decorrelated from one another while certain subsequent

frames occupy the sidelobes. This detail sets our simulations of 100% decorrelation

apart from the common assumption of mutually uncorrelated frames. Even so, we

can very loosely approximate the error reduction by a factor of
√
(1− µI)M .

5.2.3 Kolmogorov Turbulence

Because we are interested in propagation of speckle fields both through vacuum

and through turbulence, we briefly review the theory of physical quantities that

parameterize our atmospheric conditions. Arguably the most critical of these for

our purposes is the Rytov number, which for a spherical wave is [100]

Rsw = 0.563k7/6

∫ Z1

0

C2
n (z)

[
z

(
1− z

Z1

)]5/6
dz

horiz.−−−→ 0.124k7/6C2
nZ

11/6
1

(5.20)

where the second line corresponds to a horizontal path assuming constant refractive-

index structure parameter C2
n. As for the other variables in Eq. (5.20), k = 2π/λ

is the angular wavenumber and z is an arbitrary point along the path of length Z1.

Throughout this study we restrict our attention to weak scintillation conditions with

Rsw ≲ 0.25, as scintillation begins to saturate at higher Rytov numbers and branch

points in the phase function due to total-destructive interference eventually sabotage

our ability to perform phase compensation effectively [101, 102, 103, 104, 105]. In



5.2. BACKGROUND AND THEORY 121

(a) (b)

(c) (d)

Figure 5.2: Theoretical expectation of RMS wavefront error calculated from
Eq. (5.9) for various subaperture–object Fresnel numbers and levels of intraframe
averaging with (a) µI = 75%, (b) µI = 50%, (c) µI = 25%, and (d) µI = 0%.

this regime, Rsw also provides an estimation for log-amplitude variance (σ2
χ) in the

pupil plane [106]—the recent analysis of Beck et al. is particularly insightful [107].

The Fried parameter (r0) is the diameter of a circle in the pupil plane over which

phase variance due to turbulence is no greater than ∼1 rad2. Its value for a spherical

wave is [108, 109]
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r0,sw =

[
0.423k2

∫ Z1

0

C2
n (z)

(
z

Z1

)5/3

dz

]−3/5

horiz.−−−→
(
0.159k2C2

nZ1

)−3/5
,

(5.21)

with turbulence-limited atmospheric seeing limited to a blur angle of λ/r0 rather

than the diffraction limit of λ/D. The ratioD/r0 therefore serves as another gauge of

turbulence strength, with smaller values indicating weaker turbulence. Subaperture

width d should be on the order of r0 such that localized phase is predominantly

wavefront tilt, with turbulence-induced wavefront aberration directly related to the

ratio d/r0 [110]. Applying Shaw and Tomlinson’s treatment on analytic propagation

variances, we can quantify the object-plane centroid motion associated with this

aberration as [111, 112]

σ2
c = 0.652C2

n

∫ Z1

0

(Z1 − z)2
∫ ∞

0

κ−2/3 somb2

[
d

(
1− z

Z1

)
κ

]
dκ dz

= 0.577
C2

nZ
3
1

d1/3

(5.22)

in uniform turbulence with

somb (ρ) = 2
J1 (πρ)

πρ
. (5.23)

Rearranging Eq. (5.21) to make the substitution

C2
n = 0.160

λ2

Z1r
5/3
0

, (5.24)

taking the square root for standard deviation, multiplying by transverse magnifi-

cation M = Z2/Z1 and dividing by FHWM PSF width λZ2/d [113], we find the

normalized centroid jitter to be
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σθ

λ/d
= 0.303

(
d

r0

)5/6

. (5.25)

Although the above derivation assumes circularly symmetric aperture stops,

Eq. (5.25) provides us with a rough estimate of normalized RMS wavefront aberra-

tion for a point source in turbulence.

In dealing with extended beacons we must also consider the isoplanatic angle

(θ0), an angular extent over which path differences from beacon to pupil induce

at most ∼1 rad2 of mean-squared wavefront error. This angle is independent of

wavefront shape, with a value of [114]

θ0 =

[
2.91k2

∫ Z1

0

C2
n (z) z

5/3dz

]−3/5

horiz.−−−→
(
1.09k2C2

nZ
8/3
1

)−3/5

.

(5.26)

Multiplying Eq. (5.26) by path length Z1 defines the isoplanatic patch of widthW0 ≈
0.314r0 in the object plane given uniform turbulence. In the open-loop domain,

we are concerned only with these spatial (and not temporal) characteristics of the

atmosphere.

5.2.4 Irradiance Skewness

The presence of speckle contaminating slope measurements means we cannot recon-

struct the proper wavefront information for phase compensation. We often rely on

point-source performance as a benchmark to study speckle mitigation in modeling

and simulation, but in field experiments the effects of speckle and turbulence are

not easily decoupled. We do have the option, however, of analyzing pupil-plane

irradiance statistics in real time to explore the useful limits of speckle averaging

[115].

A fully developed speckle pattern follows the well-known negative exponential

probability density function (PDF) [16]
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pI (I) =
1

Ī
exp

(
−I

Ī

)
, (5.27)

while a common model for irradiance fluctuations due to weak scintillation is the

lognormal PDF [116]

pI (I) =
1

I
√

2π ln (1 + σ2
I )

exp

− ln2
(
I
√

1 + σ2
I

/
Ī
)

2 ln (1 + σ2
I )

 . (5.28)

Here, σ2
I is the scintillation index; i.e., the variance in irradiance normalized by

squared mean irradiance. An advantage of comparing an observed irradiance pattern

to Eqs. (5.27) and (5.28) is that the peak value of each PDF is forced on and

off the zero-irradiance point, respectively. When unmitigated speckle is present,

exponential probability tends to dominate the statistics regardless of turbulence

strength. Mitigation through speckle averaging makes the lognormal model a better

fit. This behavior is illustrated in Fig. 5.3, where we have simulated propagation

through weak scintillation and generated multiple frames of speckle within a single

atmospheric coherence time.

(a) (b)

Figure 5.3: Irradiance histograms with lognormal and exponential fits after propa-
gation through weak scintillation of (a) one speckle subframe and (b) eight subframes
averaged together. Note a decrease in skewness from (a) to (b).
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Under the working assumption that we have sufficiently characterized the atmo-

sphere to ensure weak-turbulence conditions, we can quickly relate the comparison

between Eqs. (5.27) and (5.28) to a single moment of the irradiance distribution;

namely, the third standardized moment or skewness :

γI =

(
E
[
I − Ī

])3(
σ2
I Ī

2
)3/2 (5.29)

The exponential PDF has an associated skewness of 2, while the skewness associated

with the lognormal PDF is [116]

γI =
{
exp

[
ln
(
1 + σ2

I

)]
+ 2
}√

exp [ln (1 + σ2
I )]− 1

≈ {exp [ln (1 + 4Rsw)] + 2}
√
exp [ln (1 + 4Rsw)]− 1

(5.30)

where σ2
I is the scintillation index and is approximately equal to 4Rsw in weak

scintillation [106].

Accumulating multiple speckle realizations after propagation through different

strengths of simulated turbulence, we calculate Eq (5.29) over each irradiance pat-

tern received and plot the results in Fig. 5.4. We see that skewness settles on a

value that increases with turbulence strength in the limit of many averaged speckle

frames, but it serves as a useful metric for speckle averaging nonetheless. For this

reason, we include skewness calculations in our simulation tradespace as a secondary

measure to RMS wavefront error/aberration.

5.2.5 Dynamic Range

Through some basic geometric relationships, one finds that

nlod =
d2

λf
(5.31)

provides a measure of dynamic range in a SHWFS. Short for “number of lambdas

over d,” nlod counts the maximum waves of tilt across each subaperture without
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Figure 5.4: Skewness calculated from wave-optics simulation data according to
Eq. (5.29) for various levels of intraframe averaging and turbulence strengths (in-
cluding vacuum).

causing drift into neighboring subapertures. The image of an extended beacon

having width W in the far field has width

W ′ =
f

Z1

W (5.32)

in the image plane. W ′ must be less than d to prevent drift due to image size, and

it is straightforward to show that nobj cannot exceed nlod if this condition is to be

met.

5.3 Modeling and Simulation

In this section, we review the simulation setup and methods used in this paper.

5.3.1 Simulation Setup

To begin defining our simulation tradespace, we assume arbitrary but realistic values

for beacon wavelength and aperture diameter of 1 µm and 30 cm, respectively.

We further assume D/r0 = 10 and d/r0 = 1 for simplicity; greater values of d/r0

would overly constrain sampling requirements and make it difficult to study extended

beacons under isoplanatic conditions. Enforcing the conditions that Rsw < 0.25
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per Eq. (5.20) and the isoplanatic patch size exceeds a subaperture–object Fresnel

number of at least 1, we arrive at a propagation distance of Z1 = 283 m, a spherical-

wave Rytov number of Rsw = 0.064, and an isoplanatic angle of θ0 = 33.3 µrad.

In addition to nobj = 1, we study a range of beacon sizes on either side of the

isoplanatic cutoff with subaperture–object Fresnel numbers from 1/8 to 8. We set

nlod = 8 in order to accept the largest of these beacon sizes.

With our physical parameter space fully defined, we can begin working with

numerical constraints. We define our simulation grid to be of size 2048×2048, as we

find this to be the upper limit on fidelity given available high-performance computing

resources and O (n2) time complexity. Satisfying Nyquist sampling [52], critical

sampling [54], and speckle sampling [117] constraints while allowing for nonunity

scaling between planes, our sample spacing in the object, pupil and image planes is

259, 534 and 103 µm, respectively. Table 5.1 outlines the full set of physical and

numerical parameters in our simulations.

5.3.2 Simulation Methods

We now turn our attention implementing speckle decorrelation between succes-

sive frames. In general, in-plane translation and out-of-plane translation are most

straightforward in that decorrelation is uniform across the pupil in both cases [95].

If we were to choose the latter, pupil-plane phase would repeat itself whenever the

coarse phase tilt simulated across the object is a multiple of λ/(2δobj) = 0.111◦ ac-

cording to Table 5.1. As Fig. 5.5a shows, it would therefore take only 5 frames for

phase to repeat itself for the smallest object size in the case of full decorrelation.

Instead simulating in-plane translation would allow us to translate indefinitely

while drawing continuous random phase without repetition. However, translating

in the spatial domain is either limited by pixelwise shifts (making small translations

difficult/impossible) or subject to interpolation between phase samples (possibly

yielding unphysical results). A way forward, then, is to apply the shift theorem of
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Table 5.1: Physical and numerical parameters used in wave-optics simulations of
open-loop wavefront sensing.

parameter value(s)

optical wavelength, λ [µm] 1
propagation distance, Z1 [m] 283
aperture diameter, D [cm] 30
subaperture width, d [cm] 3
subaperture–object Fresnel number, nobj [1/8, 8]
lenslet Fresnel number, nlod 8
lenslet focal length, f = Z2 [m] 113

refractive-index structure constant, C2
n [m−2/3] 1.96× 10−13

spherical-wave Rytov number, Rsw 0.0658
spherical-wave Fried parameter, r0 [cm] 3
isoplanatic angle, θ0 [µrad] 33.3

physical

piston-removed isoplanatic angle, θ1 [µrad] 40.9

grid points per side, N ×N 2048× 2048
object-plane grid spacing, δobj [µm] 259
pupil-plane grid spacing, δpup [µm] 534
image-plane grid spacing, δimg [µm] 103
object-plane side length, Sobj [mm] 529
pupil-plane side length, Spup [m] 1.09

numerical

image-plane side length, Simg [mm] 211

the Fourier transform as follows:

U ′ (α, β) = F−1 {F {U (α, β)} exp [j2π (να∆Ωα + νβ∆Ωβ)]} . (5.33)

Sample spacing in the Fourier domain is 1/(Sobj), so repetition doesn’t occur until

the translation distance is a multiple of Sobj = 529 mm. Figure 5.5b shows that,

even in the worst case where ∆Ω = 16.5 mm, we can generate 32 successive frames

of speckle decorrelation without repetition by this method.

In the results that follow, we used the WavePlex Toolbox for MATLAB from

Prime Plexus1 to simulate rough-surface scattering, propagation through vacuum or

turbulence, wavefront sensing with a SHWFS model in the Fried geometry, and least-

squares phase reconstruction. After exposing our SHWFS to the desired number of

1T. J. Brennan is the sole author of the WavePlex Toolbox for MATLAB® with correspondence
to the following address: Prime Plexus, 650 N Rose Drive #439, Placentia, CA 92870, USA.
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(a) (b)

Figure 5.5: Object motion required to achieve various levels of subframe decorrela-
tion based on the parameterization specified in Table 5.1 when the mode of object
motion is (a) out-of-plane rotation and (b) in-plane translation.

speckle frames (modified by in-plane translation as described above), we read out

the accumulated irradiance to reset the focal plane and reconstructed pupil-plane

phase. Taking vector g to contain all reconstructed phase gradients in the x direction

stacked atop those in the y direction, we calculated RMS wavefront error/aberration

from simulation data as

σwf =

√∑2Nsub

n=1 |gn − g|2

2Nsub − 1
(5.34)

where Nsub is the total number of subapertures in the array. We calculated skew-

ness directly from pupil-plane irradiance according to Eq. (5.29). Each result that

we report represents the Monte Carlo average of 40 simulation trials, with error

bars indicating standard deviation about the mean. We ran all simulations in par-

allel across multiple supercomputing clusters consisting of IBM System x, Lenovo

NeXtScale and Penguin Computing Altus compute nodes.
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5.4 Results and Discussion

Figure 5.6 displays all vacuum results in terms of RMS wavefront error, with curves

representing different amounts of intraframe averaging and subfigures corresponding

to different amounts of subframe correlation. The general shapes of these curves fol-

low those of Fig. 5.2, although the physics of speckle decorrelation are not perfectly

captured according to theory. Still, we see the expected behavior that RMS wave-

front error drops off with increased speckle averaging and does so most efficiently

with decreased correlation between subframes. In each subfigure, we observe for

unmitigated speckle (i.e., M = 1) that RMS wavefront error matches Eq. (5.7). We

also notice that RMS wavefront error takes on a nonzero value when the beacon is

infinitesimally small, suggesting a general mismatch between true phase gradients

in the pupil plane and those produced through SHWFS measurement and least-

squares reconstruction. As our SHWFS design is unoptimized and based on the

study of specific use cases, we remind the reader that such measurement errors are

not unexpected [118, 119].

Figure 5.7 contains all vacuum results in terms of skewness, showing some fairly

straightforward trends. With unmititaged speckle, skewness climbs to 2 as the

aperture–object Fresnel number approaches 10. Although a skewness of 2 is charac-

teristic of the exponential PDF representing fully developed speckle, an adequately

large sample size is required for the statistics to reflect this distribution. This obser-

vation underscores the importance of monitoring pupil-plane irradiance over the full

aperture rather than individual subapertures for meaningful skewness data. Just as

with RMS wavefront error, we note that skewness decreases roughly in proportion

to
√

(1− µI)M .

In Fig. 5.8, we reproduce the results of Fig. 5.6 following propagation through

weak scintillation rather than vacuum. We see here that our baseline RMS wave-

front aberration does indeed follow the prediction of Eq. (5.25) in the point-source

case where nobj → 0. At higher subaperture–object Fresnel numbers in isoplanatic

conditions, jitter adds nearly in quadrature. Take, for instance, the dark red line
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(a) (b)

(c) (d)

Figure 5.6: RMS wavefront error from subaperture to subaperture after propagating
beacons of various sizes through vacuum and averaging together various numbers of
subframes at (a) 25%, (b) 50%, (c) 75% and (d) 100% decorrelation.

in any of Figs. 5.8a–5.8d for M = 1 and compare at nobj = 1 with Eqs. (5.7) and

(5.25):
√
0.1772 + 0.3032 ≈ 0.351. As we know from the peer-reviewed literature,

turbulence cannot compound the phase perturbations already present in fully devel-

oped speckle, but it does introduce compounding amplitude fluctuations that give

rise to this uptick in centroid jitter [120]. Looking to larger subaperture–object Fres-

nel numbers, we now see the effects of beacon anisoplanatism begin to take hold.

Whereas wavefront error follows intuition by growing with beacon size in vacuum, it
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(a) (b)

(c) (d)

Figure 5.7: Irradiance skewness over the full aperture after propagating beacons of
various sizes through vacuum and averaging together various numbers of subframes
at (a) 25%, (b) 50%, (c) 75% and (d) 100% decorrelation.

steadily drops in distributed-volume turbulence as the beacon outgrows the isopla-

natic patch size by a greater margin. The cause of this behavior is a phenomenon

known as path averaging, which describes the aberrations from multiple return paths

through the atmosphere summing together and averaging out wavefront aberrations

at the receiver [121]. This reduction in overall wavefront aberration is deceptive of

course, as it would seem to imply reduced turbulence but actually represents poorer

characterization of the ground truth.
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(a) (b)

(c) (d)

Figure 5.8: RMS wavefront aberration from subaperture to subaperture after prop-
agating beacons of various sizes through weak scintillation and averaging together
various numbers of subframes at (a) 25%, (b) 50%, (c) 75% and (d) 100% decor-
relation. Vertical dashed and dash-dotted reference lines delineate fully aberrated
and piston-removed isoplanatic patch size, respectively.

We see similar trends in Fig. 5.9 as in Fig. 5.8, but we remind the reader that

skewness has the advantage of real-time monitoring with comparison between figures

while RMS wavefront aberration is only available after readout and reconstruction.

Equation (5.30) predicts a point-source skewness of ∼1.67, which we closely approx-

imate here as Nobj → 0. We also see a similar reduction across all subaperture–

object Fresnel numbers to what we saw in Fig. 5.7, even though reductions in both
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wavefront error and skewness are trivial when path averaging occurs due to beacon

anisoplanatism and may actually hurt performance in such instances.

(a) (b)

(c) (d)

Figure 5.9: Irradiance skewness over the full aperture after propagating beacons
of various sizes through weak scintillation and averaging together various numbers
of subframes at (a) 25%, (b) 50%, (c) 75% and (d) 100% decorrelation. Vertical
dashed and dash-dotted reference lines delineate fully aberrated and piston-removed
isoplanatic patch sizes, respectively.

To summarize, the key lessons learned from these results are as follows:

1. Larger objects correspond to greater speckle severity and therefore increased

RMS wavefront error/aberration and irradiance skewness.
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2. Speckle averaging universally reduces both RMS wavefront error/aberration

and irradiance skewness and does so with greatest efficiency with minimal

subframe correlation of speckle.

3. Real-time monitoring of irradiance skewness over the total aperture can pro-

vide a gauge for unknown intraframe speckle averaging over time.

4. The reduction in both RMS wavefront aberration and irradiance skewness due

to path averaging in distributed-volume turbulence outweighs speckle severity.

5. Leveraging speckle averaging in the presence of beacon anisoplanatism is fruit-

less and perhaps even harmful to performance.

Note: Fully Uncorrelated Speckle

(a) (b)

Figure 5.10: RMS wavefront error/aberration from subaperture to subaperture after
propagating beacons of various sizes through (a) vacuum and (b) weak scintillation
and averaging together various numbers of subframes with fully mutually uncorre-
lated speckle realizations; compare with Figs. 5.6d and 5.8d, respectively. Vertical
dashed and dash-dotted reference lines delineate fully aberrated and piston-removed
isoplanatic patch size, respectively.
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(a) (b)

Figure 5.11: Irradiance skewness over the full aperture after propagating beacons
of various sizes through weak scintillation and averaging together various numbers
of subframes with fully mutually uncorrelated speckle realizations; compare with
Figs. 5.7d and 5.9d, respectively. Vertical dashed and dash-dotted reference lines
delineate fully aberrated and piston-removed isoplanatic patch size, respectively.
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CHAPTER 6

Closed-Loop Adaptive Optics in the Presence of Speckle and Weak Scintillation

Over Horizontal Paths†

6.1 Background

Speckle is an interference phenomenon arising from coherent illumination that re-

flects off of an optically rough surface. As it propagates to a pupil plane, the

backscattered illumination self-interferes to form bright and patches individually

known as “speckles.” Assuming quasimonochromatic illumination, linear polar-

ization, and surface-height variations that exceed half the optical wavelength, the

speckle pattern is “fully developed” with contrast going to unity. In long-range

imaging applications, speckle acts as multiplicative noise with deleterious effects on

image quality.

Though not an imaging system in the traditional sense, a Shack-Hartmann wave-

front sensor (SHWFS) uses individual lenslets to divide the receiver aperture into

subapertures that sample the incoming wavefront and focus the samples onto a de-

tector array. The relative centroid positions of these focused spots correspond to

local tilts (a.k.a. phase gradients) present in each subaperture. Accordingly, we

can use the centroid measurements to reconstruct a pupil-plane phase function that

estimates path-integrated phase aberrations resulting from atmospheric turbulence.

A predistorting optic, such as a continuous-face-sheet deformable mirror (DM), can

then invert this pupil-plane phase function on an outgoing beam so that it focuses

to a nearly diffraction-limited spot at the object plane. Repeating this process in a

null-seeking control loop (that employs, for example, a leaky-integrator control law)

makes up the nominal phase-compensation system diagrammed in Fig. 6.1 [74].

†This material is currently undergoing submission in draft form to Optics Communications with
coauthors M. F. Spencer and R. G. Driggers.
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Figure 6.1: Block diagram of a nominal phase-compensation system operating in a
null-seeking control loop using a leaky-integrator control law. Here, the matrices
K, G and H represent, respectively, the leaky-integrator controller, a continuous-
face-sheet DM, and an SHWFS in the Fried geometry; the vectors R, E, U , D
and Y refer to, respectively, the reference input, the error signal, the control signal,
the input disturbance (i.e., aberrated beacon) and the phase-compensated output.
Note that the SHWFS and DM sense and correct for the phase aberrations induced
by atmospheric turbulence using the compensation offered by the integrator in this
multiple-input, multiple-output control loop (hence the use of matrices).

With Fig. 6.1 in mind, the closed-loop performance of an AO system becomes

compromised with the use of an extended beacon. Such a beacon manifests as

scattering of coherent illumination from an optically rough surface. The resultant

speckle adds noise to the pupil-plane phase function, as shown in the upper row of

heatmaps in Fig. 6.2. For ideal closed-loop performance (i.e., maximize power in the

bucket), the AO system must sense and correct for atmosphere-induced phase aber-

rations (resulting in scintillation) separately from target-induced phase aberrations

(resulting in speckle). However, what the SHWFS actually reconstructs is a sum

of path-integrated contributions from both phase-aberration sources. Subaperture

to subaperture, the presence of speckle also means that the SHWFS collects and

resolves nonuniform irradiance in the pupil and image planes, respectively. Since

the centroid represents an irradiance-weighted center of mass, these irradiance fades

skew the wavefront measurement further. Thus, we must mitigate the effects of

speckle—both the target-induced phase aberrations and the target-induced irradi-
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ance fades—to obtain good closed-loop performance.
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Figure 6.2: Example overview of combined phase aberrations due to rough-surface
scattering and weak turbulence, both (top row) without and (bottom row) with
intraframe speckle averaging.

One way to mitigate the effects of speckle is to perform speckle averaging. In so

doing, it is common to assume that frame-to-frame speckle decorrelates at a faster

rate than the scintillation. This assumption can be a sound one 1 given dynamically

vibrating targets, but at high frame rates it is possible that speckle only partially

decorrelates between observations. Although more frames are required with partially

correlated than with fully uncorrelated speckle to achieve the same effect, sufficient

energy accumulation in either case effectively averages out unwanted speckle noise

as shown in the lower row of heatmaps in Fig. 6.2.

Despite the benefits of speckle averaging, there are limitations to keep in mind

regarding its effectiveness. For one, fast framing is required of the focal plane array

1There are straightforward cases where frame-to-frame speckle averaging could be uncorrelated
with highly dynamic targets and correlated with highly static targets. In general, more research
needs to be done to know for sure whether the uncorrelated assumption is true or not for a certain
set of targets at tactical ranges. For the trade-space analysis contained in this paper, we simply
assume uncorrelated speckle throughout.
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(FPA) for the most effective speckle averaging—a limitation we will explore in more

detail in the analysis that follows. Another limitation stems from the presence of

beacon anisoplanatism.

As shown in Fig. 6.3, anisoplanatism results from an extended beacon coupled

with distributed-volume phase aberrations. In essence, this coupling causes multiple

point-spread functions (PSFs) to appear within the phase-compensation system’s

field of view (FOV) due to returns from different points on the object sampling

different portions of the atmosphere. A phase-compensation system, especially one

incorporating an SHWFS in the Fried geometry and a least-squares phase recon-

structor, relies on the use of a point-source beacon for optimal performance with shift

invariance. As such, we will also explore anisoplanatic limitations in the analysis

that follows.
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Figure 6.3: Illustration of anisoplanatism giving rise to distinct PSFs over the image
of an extended object.

With the above limitations in mind, we model extended beacons of various sizes

using plane-wave illumination of square targets 2. We assume varying degrees of

speckle correlation from one frame to the next, up to and including total decorre-

lation. We also assume that there is potential for beacon anisoplanatism when the

beacon size exceeds that of the isoplanatic patch. We then model horizontal-path

propagation with Kolmogorov turbulence and frozen flow through wave-optics sim-

2In so doing, we neglect the effects of uplink scintillation. Such effects are beyond the scope of
the present analysis. Future studies should quantify the impacts of uplink scintillation using both
compensated and uncompensated illumination to create the extended beacon.
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ulations. Finally, we model a closed-loop phase-compensation system comprised of

a Shack–Hartmann wavefront sensor in the Fried geometry, a least-squares phase

reconstructor, a continuous-face-sheet deformable mirror, and a leaky-integrator

control law.

In our approach, we characterize the severity of the speckle and anisoplanatism

using the object Fresnel number and object angular extent relative to the isoplanatic

angle, respectively. It is important to note that the degree of speckle correlation

between frames plays a significant role in our ability to perform speckle averaging

[122]; thus, truly uncorrelated speckle comprises a “best-case scenario” in the sense

that it draws independent and identically distributed (i.i.d.) speckle data from one

frame to the next. In addition to this limiting case, we explore the cases of 25%,

50%, 75% and 100% speckle decorrelation between frames by simulating dynamic

speckle with high fidelity.

Dynamic speckle averaging represents just one possible solution to the speckle-

mitigation problem, of which several others exist [123]. Such methods generally

impose some condition of partial coherence or polarization. For example, we could

reduce the spatial coherence of our illumination using dynamic diffusers [16], mul-

timode waveguides [124], DMs [125], or tiled apertures [126]. Similarly, we could

reduce the temporal coherence of our illumination via spectral-linewidth broadening

[79, 80, 127, 82]. The coherence and polarization trade space is rich with potential

ideas [128, 129, 130, 81]. Dynamic speckle averaging offers a unique advantage over

other mitigation strategies in that no changes are required to the existing footprint

of phase-compensation systems (cf. Fig. 6.1). With that said, our discussion here

is not limited strictly to dynamic speckle averaging. In fact, one can generalize the

concept of uncorrelated speckle frames as “degrees of freedom” afforded through

any of the aforementioned techniques (or combination thereof). At the very least,

dynamic speckle averaging provides a baseline method for developing more refined

speckle-mitigation strategies.

In what follows, we first explain the setup used for our wave-optics simulations by

parameterizing the Kolmogorov turbulence and frozen flow used in our horizontal-
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propagation path. We further explore this trade space by examining the impact of

various beacon sizes on the speckle observed in the pupil plane. Next, we present our

results from both a time-domain and steady-state perspective. Both perspectives

allow us to discuss the significance of our results while establishing specifications for

a nominal phase-compensation system that incorporates speckle averaging. In clos-

ing, we compare our recommendations to commercial-off-the-shelf (COTS) product

availability.

Before moving on to the next section, it is worth mentioning that the results

presented in this paper demonstrate speckle averaging as an effective strategy for

reducing measurement error associated with extended beacons. Even so, these per-

formance gains steadily diminish as beacon anisoplanatism grows in its influence.

This outcome serves as novel contribution to the phase-compensation research com-

munity, as a thorough trade-space exploration over horizontal paths is not currently

found within the peer-reviewed literature.

6.2 Background and Theory

To set the stage for the analysis that follows, it is our intention to model extended

beacons of various sizes. We do so via plane-wave illumination of square targets,

so that the scattered-beacon illumination experiences both object- and atmosphere-

induced phase aberrations as it propagates from the object plane to the pupil plane.

These phase aberrations give rise to both speckle and scintillation, respectively, in

the received irradiance.

Provided the received irradiance, we close the loop on a nominal phase-

compensation system comprised of an SHWFS in the Fried geometry, a least-squares

phase reconstructor, a continuous-face-sheet DM, and a leaky integrator control law.

Subsequently, we compensate a focused flat-top beam and propagate it from the

pupil plane to the object plane along the same horizontal propagation path with

Kolmogorov turbulence and frozen flow. In the object plane, we score closed-loop

performance as a function of the strength of uncorrelated speckle and anisopla-
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natism. We also investigate the framerates needed to achieve good closed-loop

performance (i.e., maximize the power in the bucket).

With these concepts in mind, we review in this section the theoretical inputs

needed for our wave-optics simulations as discussed in Sec. 6.1.

6.2.1 Kolmogorov Turbulence

To characterize the strength of Kolmogorov turbulence, we first define the refractive-

index structure parameter C2
n at an altitude h according to the Hufnagel–Valley

(H–V) 5/7 model as [131, 132, 133]

C2
n (h) = 3.59× 10−23h10exp (−h)

+ 2.70× 10−16exp (−2h/3)

+ 1.70× 10−14exp (−10h) .

(6.1)

with h in kilometers. Since a constant h defines horizontal propagation, C2
n has no

dependence on the point z along such a path.

The Fried parameter (r0) defines a circular area in the pupil plane over which the

RMS phase error is approximately 1 rad [134]. Because we are comparing closed-

loop performance from an extended beacon to that from a point-source beacon, we

assume spherical-wave propagation throughout the following analysis. Accordingly,

we take the spherical-wave expression for r0 as [109]

r0,sw =

[
0.423k2

∫ Z1

0

C2
n (z)

(
z

Z1

)5/3

dz

]−3/5

horiz.−−−→
(
0.159k2C2

nZ1

)−3/5
,

(6.2)

where k = 2π/λ is the angular wavenumber, λ is the wavelength of light, z is an

arbitrary point along the propagation path, and Z1 is the propagation distance from

the object plane to the pupil plane (i.e., 0 ≤ z ≤ Z1).
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In order to begin prescribing numerical values to our nominal phase-

compensation system, we first take the overall pupil-plane aperture diameter D

to be 30 cm (typical of modern-day beam-control systems [135]). We then assume

D/r0 = 10 for moderate seeing conditions without centroid anisoplanatism becom-

ing a significant issue [136]. Subaperture width d should be no larger than r0 [110],

but taking d to be no smaller than r0 maximizes flexibility in exploring larger ob-

jects under isoplanatic conditions. We can now rearrange Eq. (6.2) to back out our

constant-valued refractive-index structure parameter C2
n in terms of r0 as

C2
n =

0.160λ2

Z1r
5/3
0

. (6.3)

Knowing C2
n also allows us to calculate the Rytov number, which for a spherical

wave takes the form [100]

Rsw = 0.563k7/6

∫ Z1

0

C2
n (z)

[
z

(
1− z

Z1

)]5/6
dz

horiz.−−−→ 0.124k7/6C2
nZ

11/6
1 .

(6.4)

In weak turbulence (i.e., when Rsw ≲ 0.25), the Rytov number estimates the log-

amplitude variance (σ2
χ) observed in the pupil plane. In other words, R provides a

gauge for the amount of scintillation due to weak Kolmogorov turbulence. This is the

regime in which we choose to operate, as scintillation begins to saturate with higher

Rytov numbers and branch points in the phase function due to total-destructive in-

terference eventually sabotage our ability to perform phase compensation effectively

[101, 102, 103, 104].

The isoplanatic angle also plays a role in our analysis as the beacon grows in

size. For all intents and purposes, θ0 describes an angular path difference that

causes a residual RMS wavefront error of approximately 1 rad (much like r0 for the

pupil-plane coherence area). We calculate θ0 as [114]
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θ0 =

[
2.91k2

∫ Z1

0

C2
n (z) z

5/3dz

]−3/5

horiz.−−−→
(
1.09k2C2

nZ
8/3
1

)−3/5

.

(6.5)

Under the paraxial approximation, we can then multiply this angle by the propaga-

tion distance to find the total length across our isoplanatic patch in linear space as

W0 = θ0Z1 [137].

We now turn our attention to the temporal dynamics of Kolmolgorov turbulence,

specifically as it relates to sampling requirements. Assuming Taylor’s frozen-flow

hypothesis, the Greenwood frequency represents the 3-dB bandwidth at which a

continuous AO system produces 1 rad of residual RMS wavefront error. We calculate

the Greenwood frequency as [138]

fG = 2.31λ−6/5

[∫ Z1

0

C2
n (z) v

5/3
w (z) dz

]3/5
horiz−−−→

(
0.102k2C2

nv
5/3
w Z1

)3/5
,

(6.6)

assuming not only C2
n but also transverse wind speed vw remains constant along a

horizontal propagation path.

6.2.2 Digital Controls

Modern control systems favor digital computers for controller implementation as

they tend to be more robust, adaptable, compact, and cost effective than their

analog counterparts [139]. A rule of thumb in digital control theory is that sampling

at a minimum of 30× the system bandwidth (i.e., the Greenwood frequency in our

case) yields adequate closed-loop performance [140]. Because a sample rate (fs) of

10–20× the Greenwood frequency is also frequently cited [141], we expand the trade

space to cover three distinct cases: fs = 10fG, fs = 20fG and fs = 40fG.
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The reader should note that the three distinct cases mentioned above represent

base sample rates without taking any speckle averaging into consideration. With

speckle averaging, these cases instead correspond to the “effective” sample rate (feff)

and we count the number of averaged subframes as M . As an example, an effective

sample rate of feff = 40fG with subframe averaging of M = 2 would require the

actual sampling frequency fs = Mfeff = 80fG. With this example in mind, we now

determine the total number of samples (Ns) required to close the loop in simulation.

We assume that the servomechanism of our control loop is a basic leaky inte-

grator with rest initial conditions. Looking back to Fig. 6.1, the difference equation

governing control block K is thus [142]

u [nT ] = au [(n− 1)T ] + be [nT ] , (6.7)

where u is the control signal, n is a control variable for iteration, T is the sam-

pling period, a < 1 is the servo leakage coefficient, b > 0 is the forward-loop gain

coefficient, and e is the error signal that feeds into the controller. Aside from its

straightforward implementation as a control law, this leaky integrator provides both

the smoothing qualities of a low-pass filter and the stabilization benefits of leakage

[74]. The Z-transform of Eq. (6.7) gives a closed-loop transfer function of

K (z) =
U (z)

E (z)

=
bz

z − a

(6.8)

Assuming a flattened DM, the sensitivity (a.k.a. disturbance-rejection) function is
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S (z) =
Y (z)

D (z)

=
1

1 +K (z)

=
z − a

(1 + b) z − a

(6.9)

with a single closed-loop pole at

z =
a

1 + b
. (6.10)

The 2% settling time is then

Ts =
ln (0.02)T

ln [a/ (1 + b)]
. (6.11)

To understand steady-state performance trends while minimizing simulation run-

times, we thus simulate

Ns =

⌈
2 ln (0.02)

ln [a/ (1 + b)]

⌉
(6.12)

time steps on each run for twice the 2% settling time. For reference, Fig. 6.4 shows

discrete-time Bode plots of Eq. (6.8) with the substitution z = ej2πfT . Sampling

at 10, 20 and 40 times the Greenwood frequency yields 3-dB temporal bandwidths

(fbw) of 118, 236 and 472 Hz, respectively.

6.2.3 Beacon Characteristics

We now consider the size of our extended beacon and its effect on observed speckle

in the pupil plane. For this purpose, we estimate the average linear distance across

a single speckle corresponding to a beacon of width W as λZ1/W [143]. We then

introduce the subaperture–object Fresnel number as
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Figure 6.4: Bode magnitude plots of closed-loop sensitivity functions corresponding
to servos implementing leaky-integrator control at various sample rates, relative to
the Greenwood frequency.

nobj =
d

λZ1/W
(6.13)

Equation (6.13) provides us with a gauge for the average number of speckles across

the width of each SHWFS subaperture [79, 80]. We can also rearrange variables to

show that

nobj =
W/Z1

λ/d
(6.14)

counts the number of diffraction-limited resolution spots across the width of the

object. Together, Eqs. (6.13) and (6.14) indicate that larger subaperture–object

Fresnel numbers correspond to greater speckle severity from beacons that are more

resolved.

For practical reasons in simulation, we impose different degrees of speckle decor-

relation by in-plane translation of the phase underlying the beacon illumination in

the object plane. Specifically, we do this by solving for in-plane translation distance
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in the expression for an irradiance correlation coefficient. Assuming the beacon is a

square plate, the irradiance correlation coefficient is [95]

µI (∆Ω) = sinc2
(
W∆Ω

λZ1

)
tri2

(
∆Ω

W

)
(6.15)

where

sinc (w) =
sin (πw)

πw
(6.16)

and

tri (w) =

1− |w|
0

|w| < 1

|w| ≥ 1
. (6.17)

For the purpose of studying partial through total decorrelation of speckle between

subframes, we set Eq. (6.15) equal to 75%, 50%, 25% and 0% so that we can nu-

merically solve for ∆Ω0.

6.2.4 Performance Metrics

We now consider two different performance metrics that help us to assess closed-loop

performance: normalized power in the bucket (nPIB) and peak Strehl ratio (Spk).

For the former, we define a diffraction-limited bucket diameter as

B = 2.44
λZ1

D
(6.18)

where D is the full aperture diameter. This quantity describes the central lobe of an

Airy disk in the far field, resulting from diffraction-limited propagation of a focused

flat-top beam at range z = Z1. A “bucket” of this diameter encircles 83.8% of the

initial beam power leaving the pupil plane under diffraction-limited conditions [144].

The nPIB is then a normalization of phase-compensated, turbulence-limited power

by the diffraction-limited power measured in this bucket [74]:
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nPIB =

∫ 2π

0

∫ B/2

0
Etl (Ω, θ) Ω dΩ dθ∫ 2π

0

∫ B/2

0
Edl (Ω, θ) Ω dΩ dθ

. (6.19)

Here, Etl and Edl are the turbulence- and diffraction-limited irradiance values, re-

spectively.

Because the position of our diffraction-limited bucket is fixed in the object plane,

nPIB is sensitive to residual tilt in the outgoing beam. For this reason, we also

consider the peak Strehl ratio in our data analysis:

Spk =
max (Etl)

max (Edl)
. (6.20)

To provide a baseline for comparison of simulation results against theory, we can

use the extended Maréchal approximation to calculate an expected Strehl ratio as

[145]

⟨S⟩ = exp
(
−σ2

tot

)
. (6.21)

Here, σ2
tot is the total variance associated with wavefront error which goes as [141].

σ2
tot = σ2

fit + σ2
tmp + σ2

iso (6.22)

assuming we can safely neglect sensor noise. The first term of Eq. (6.22) is spatial

fitting error, which we have from Noll as [146]

σ2
fit = 0.294 (D/r0)

5/3N
−
√
3/2

act . (6.23)

with Nact being the number of active actuators behind the deformable mirror. The

second term of Eq. (6.22) describes temporal lag, which we calculate from the Green-

wood frequency as [138]

σ2
tmp = (fG/fbw)

5/3 . (6.24)

The third term of Eq. (6.22) refers to isoplanatic error, which Fried first derived as
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[114]

σ2
iso = (θ/θ0)

5/3 . (6.25)

It is important to keep in mind that the quadrature sum in Eq. (6.22) assumes

mutual independence of all noise sources involved. If surface-based aberrations were

truly uncorrelated from atmospheric aberrations, we could in theory add a fourth

term describing speckle noise as [72]:

σ2
spck =

[
2πC

(
3.54 +

2.11

nobj

)−1
]2

. (6.26)

However, we already know that noise from speckle and scintillation couples in ways

that we do not fully understand [120]. Because of this, we will rely on Eq. (6.22)

to predict point-source performance only and investigate further degradation from

extended beacons through wave-optics simulations.

6.3 Modeling and Simulation

In setting up our wave-optics simulations, we used the split-step beam propagation

method to simulate propagation of complex optical fields along horizontal paths

through the atmosphere. To model the distributed-volume phase aberrations, we

used 40 independent realizations of six equally spaced Kolmogorov phase screens

with frozen flow. Thus, in the results that follow we report the associated Monte

Carlo averages.

To create extended beacons of various sizes, we simulated on-axis, plane-wave

illumination of square objects. For this purpose, we defined our target length W by

the subaperture–object Fresnel number from Eq. (6.13). We then tested six different

values of nobj in increasing powers of two. As a visual aid, Fig. 6.5 highlights the

inverse relationship between object size and the total number of received speckles.

The object sizes that correspond to these values are roughly equidistant from our

fixed isoplanatic patch size W0 on either side of the inequality. As we will see in
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the results that follow, the interplay between W and W0 gives us a gauge for when

anisoplanatism becomes a performance-limiting factor.

(a) (b)

(c) (d)

Figure 6.5: Exploration of the subaperture–object Fresnel number (nobj). In gen-
eral, nobj provides us with a gauge for the average number of speckles across the
width of our receiving aperture. As the object size increases from (a) to (c), we see
that nobj increases and the total number of received speckles increases from (b) to
(d).

As shown in Figs. 6.5a and 6.5c, we assumed that the rough-surface statistics

were delta-correlated over the extent of our square objects. To satisfy this assump-

tion, we defined the phase at each object mesh point as a uniformly distributed

random draw on the interval [−π, π). For each simulated time step, we then solved

Eq. (6.15) for the incremental translation distance ∆Ω0 of underlying phase that

decorrelated pupil-plane speckle by 25%, 50%, 75% or 100%. Alternatively, we

reseeded the random phase drawn in the object plane for fully uncorrelated frame-

to-frame speckle.

To prevent numerical artifacts such as aliasing due to the periodic nature of

discrete Fourier transforms involved in propagation, we defined our sampling pa-
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rameters such that Nyquist sampling [52], critical sampling [54], and speckle sam-

pling [117] constraints were all satisfied. We used the WavePlex Toolbox for MAT-

LAB from Prime Plexus3 to simulate rough-surface scattering, propagation through

turbulence, wavefront sensing with an SHWFS model in the Fried geometry, least-

squares phase reconstruction, and phase compensation using a continuous-face-sheet

deformable mirror.

Given the vast number of simulation inputs available within our modeling

tradespace, an exhaustive matrix test of all possible combinations is neither practi-

cal nor would it be digestible to the reader. For this reason, we provided different

perspectives by defining two different parameterizations of the general simulation

routines described. The first prioritizes study of partial speckle decorrelation ac-

cording to Eq. (6.15) under isoplanatic conditions. One of the main implications of

this approach is that sampling resolution in the pupil plane is sacrificed (d/r0 = 1)

in exchange for beacon isoplanatism, which means limited peak performance even

in the case of a point-source beacon due to fitting error. The second parameteriza-

tion therefore emphasizes better peak performance by improving spatial resolution

(d/r0 = 0.5) at the expense of beacon isoplanatism, restricting the beacon sizes that

we can expect to allow for speckle averaging under isoplanatic conditions. The nu-

merical values associated with these parameterizations are summarized in Tables 6.1

and 6.1, respectively.

6.4 Results and Discussion

In this section, we first present a selection of closed-loop results for both steady-state

and time-domain performance with partially correlated frame-to-frame speckle. We

then present a selection of closed-loop results for both steady-state and time-domain

performance with relaxed isoplanatic constraints and uncorrelated frame-to-frame

speckle. In all cases, point-source results in both closed and open loop (OL) are

also provided for reference. Provided these results, we also discuss the impacts of

3T. J. Brennan is the sole author of the WavePlex Toolbox for MATLAB® with correspondence
to the following address: Prime Plexus, 650 N Rose Drive #439, Placentia, CA 92870, USA.
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Table 6.1: Physical and numerical parameters used in wave-optics simulations of
closed-loop wavefront sensing with partially correlated frame-to-frame speckle.

parameter value(s)

optical wavelength, λ [µm] 1
propagation distance, Z1 [m] 283
aperture diameter, D [cm] 30
subaperture width, d [cm] 3
subaperture–object Fresnel number, nobj {1/8, 1/4, 1/2, 1, 2, 4, 8}
lenslet Fresnel number, nlod 8
lenslet focal length, f = Z2 [m] 113
total actuator count, Nact 101

refractive-index structure constant, C2
n [m−2/3] 1.96× 10−13

spherical-wave Rytov number, Rsw 0.0658
spherical-wave Fried parameter, r0 [cm] 3
isoplanatic angle, θ0 [µrad] 33.3
piston-removed isoplanatic angle, θ1 [µrad] 40.9
piston/tip/tilt-removed isoplanatic angle, θ3 [µrad] 43.9
Greenwood frequency, fG [Hz] 129
effective sample rate, feff [kHz] {1.29, 2.57, 5.14}
servo leakage coefficient, a 0.99

physical

servo gain coefficient, b 0.40

grid points per side, N ×N 2048× 2048
object-plane grid spacing, δobj [µm] 259
pupil-plane grid spacing, δpup [µm] 534
image-plane grid spacing, δimg [µm] 103
object-plane side length, Sobj [mm] 529
pupil-plane side length, Spup [m] 1.09

numerical

image-plane side length, Simg [mm] 211

anisoplanatism and sampling rates.

6.4.1 Partially Correlated Speckle

Figure 6.6 displays selected nPIB results in the time domain with feff = 40fG and

partially correlated speckle. Specifically, Fig. 6.6a shows the case of no speckle

averaging, whereas Figs. 6.6b–6.6e each correspond to 32 subframes averaged per

frame with 25%, 50%, 75% and 100% decorrelation between consecutive subframes,

respectively. In general, larger extended beacons give rise to poorer closed-loop

performance in terms of final nPIB value. Speckle averaging mitigates this perfor-
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Table 6.2: Physical and numerical parameters used in wave-optics simulations of
closed-loop wavefront sensing with uncorrelated frame-to-frame speckle.

parameter value(s)

optical wavelength, λ [µm] 1
propagation distance, Z1 [km] 1
aperture diameter, D [cm] 30
subaperture width, d [cm] 1.5
subaperture–object Fresnel number, nobj {1/20, 1/10, 1/5, 2/5, 4/5, 8/5}
lenslet Fresnel number, nlod 4.4
lenslet focal length, f = Z2 [m] 51.1
total actuator count, Nact 357

refractive-index structure constant, C2
n [m−2/3] 5.53× 10−14

spherical-wave Rytov number, Rsw 0.189
spherical-wave Fried parameter, r0 [cm] 3
isoplanatic angle, θ0 [µrad] 9.42
piston-removed isoplanatic angle, θ1 [µrad] 11.6
piston/tip/tilt-removed isoplanatic angle, θ3 [µrad] 12.4
Greenwood frequency, fG [Hz] 129
effective sample rate, feff [kHz] {1.29, 2.57, 5.14}
servo leakage coefficient, a 0.99

physical

servo gain coefficient, b 0.40

grid points per side, N ×N 512× 512
object-plane grid spacing, δobj [mm] 1.40
pupil-plane grid spacing, δpup [mm] 1.40
image-plane grid spacing, δimg [µm] 71.4
object-plane side length, Sobj [cm] 71.6
pupil-plane side length, Spup [cm] 71.6

numerical

image-plane side length, Simg [mm] 36.6

mance degradation to some extent, with the smallest extended beacons and degrees

of correlation enabling the greatest performance buyback. The diminishing returns

of speckle averaging are readily apparent as the extended beacon size outgrows

the isoplanatic patch size in the neighborhood of n≈1, especially when comparing

Fig. 6.6b to Fig. 6.6e. In these best-case scenarios, extended beacons closely ap-

proach point-source performance.

Figure 6.7 displays selected Spk results in the time domain with feff = 40fG

and partially correlated speckle. Specifically, Fig. 6.7a shows the case of no speckle

averaging, whereas Figs. 6.7b–6.7e each correspond to 32 subframes averaged per
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frame with 25%, 50%, 75% and 100% decorrelation between consecutive subframes,

respectively. The trends are similar to those observed in Fig. 6.6, but the lack of

dependence on peak-power position in the object plane has the effect of smoothing

out the curves and making trends somewhat clearer.

Figure 6.8 displays selected nPIB results in steady state with feff = 40fG as a

function of partially correlated speckle averaging. Specifically, Figs. 6.8a–6.8d cor-

respond to 25%, 50%, 75% and 100% decorrelation between consecutive subframes,

respectively. We again see here that smaller beacons, especially those with less

correlated speckle averaging, begin to approximate point-source performance. How-

ever, the temporal noise present in Fig. 6.6 produces instability in the trends that

would be alleviated through further time and/or ensemble averaging.

Figure 6.9 displays selected Spk results in steady state with feff = 40fG as a

function of partially correlated speckle averaging. Specifically, Figs. 6.9a–6.9d cor-

respond to 25%, 50%, 75% and 100% decorrelation between consecutive subframes,

respectively. Again we see similar trends in the data to Fig. 6.8 with increased

smoothness on account of positional independence.

6.4.2 Fully Uncorrelated Speckle

Two lessons Figure 6.10 displays selected nPIB results in the time domain with

feff = 40fG and fully uncorrelated speckle. Specifically, Figs. 6.10a–6.10f correspond

to averaging 1, 2, 4, 8, 16 and 32 mutually uncorrelated subframes within a single

frame. Rather than simulating only the number of time steps necessary to double

the 2% settling time, these cases simulate twice the time it takes for transverse wind

to clear the aperture twice under Taylor’s frozen-flow hypothesis. We see now that

the improved fitting parameters from Table 6.2 have afforded better approximation

of point-source performance with smaller beacons as compared with Fig. 6.6.

Figure 6.11 displays selected nPIB results in steady state with feff from 10fG to

40fG as a function of fully uncorrelated speckle averaging. Specifically, Figs. 6.11a–

6.11f correspond to subaperture–object Fresnel numbers of 1/20, 1/10, 1/5, 2/5, 4/5

and 8/5, respectively. As predicted, we see better smoothing here than in Fig. 6.8
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as a result of the increase in simulated runtimes allowing for more time averaging

beyond settling times. For succinctness, we therefore omit peak Strehl ratio from

this part of the discussion. Note that in Fig. 6.11a speckle averaging actually reduces

the steady-state nPIB with insufficient temporal sampling at 10fG; this is because

of outdated atmospheric data compounding in the the temporal equivalent of path

averaging.

With the above data and observations in mind, overall lessons learned in these

studies are as follows:

1. The presence of speckle noise harms closed-loop performance, with the worst

cases corresponding to larger extended beacons.

2. Speckle averaging buys back performance under isoplanatic conditions, with

the best cases corresponding to minimal speckle correlation between averaged

subframes.

3. Path averaging due to anisoplanatism precludes any performance gains

through speckle averaging once the extended beacon size exceeds the isopla-

natic patch size.

4. Point-source performance dictates potential for performance buyback through

speckle averaging, in our cases ranging from ∼9% relative performance boost

(∼5% absolute) with d/r0 = 1 to ∼17% relative performance boost (∼10%
absolute) with d/r0 = 0.5.

5. Inadequate temporal sampling not only impacts closed-loop performance in

the absence of speckle, but can actually cause speckle averaging to impair

performance even further with speckle averaging versus without.
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(a) (b)

(c) (d)

(e)

Figure 6.6: Time-domain nPIB results with feff = 40fG and (a) no speckle averag-
ing, as well as 32-subframe averaging at (b) 25% decorrelation, (c) 50% decorrelation,
(d) 75% decorrelation and (e) 100% decorrelation of speckle between consecutive
subframes.
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(a) (b)

(c) (d)

(e)

Figure 6.7: Time-domain Spk results with feff = 40fG and (a) no speckle averaging,
as well as 32-subframe averaging at (b) 25% decorrelation, (c) 50% decorrelation,
(d) 75% decorrelation and (e) 100% decorrelation of speckle between consecutive
subframes.
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(a) (b)

(c) (d)

Figure 6.8: Steady-state nPIB results with feff = 40fG and various degrees of
subframe averaging at (a) 25% decorrelation, (b) 50% decorrelation, (c) 75% decor-
relation and (d) 100% decorrelation of speckle between consecutive subframes.
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(a) (b)

(c) (d)

Figure 6.9: Steady-state Spk results with feff = 40fG and various degrees of sub-
frame averaging at (a) 25% decorrelation, (b) 50% decorrelation, (c) 75% decorre-
lation and (d) 100% decorrelation of speckle between consecutive subframes.
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(f)

Figure 6.10: Time-domain nPIB results with feff = 40fG and (a) no speckle aver-
aging, (b) 2-subframe averaging, (c) 4-subframe averaging, (d) 8-subframe averag-
ing, (e) 16-subframe averaging and (f) 32-subframe averaging for fully uncorrelated
speckle between consecutive subframes.
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Figure 6.11: Steady-state nPIB results comparing feff = 40fG, 20fG and 10fG
for various degrees of speckle averaging with fully uncorrelated speckle between
consecutive subframes at (a) nobj = 1/20, (b) nobj = 1/10, (c) nobj = 1/5, (d)
nobj = 2/5, (e) nobj = 4/5 and (f) nobj = 8/5.
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CHAPTER 7

System-Level Noise Performance of Coherent Imaging Systems†

7.1 Background

In designing electro-optical and infrared (EO/IR) systems, resolution and sensi-

tivity play the most impactful roles in determining overall performance [1]. The

point-spread function (PSF) and optical transfer function (OTF) of an incoherent

imaging system fully describe its resolution in the spatial and frequency domains,

respectively [147]. Analogously, the amplitude-spread function (ASF) and ampli-

tude transfer function (ATF) provide complete descriptions of a coherent imaging

system’s resolution [39]. The metric of interest for sensitivity is often a signal-to-

noise ratio (SNR) or contrast-to-noise ratio (CNR), depending on the imaging task

at hand. Accurate estimates of all relevant signals and noise sources are necessary

to make such calculations, and considerable effort has gone into radiometric analysis

and scaling-law modeling with this very goal.

As a prominent example of imager modeling, the U.S. Army Night Vision and

Electronic Sensors Directorate (NVESD) maintains the Night Vision Integrated Per-

formance Model (NV-IPM) to evaluate resolution and sensitivity among many other

outputs. Though initially conceived with only passive imaging in mind, the model

has grown over time to include pulsed and continuous-wave active sources as well.

In spite of these developments, there is no noise component to account for interfer-

ence of coherent light as it scatters from an optically rough surface or propagates

through a distributed-volume turbulent medium; we refer to these effects as speckle

and scintillation, respectively.

It is possible to safely neglect scintillation in a physical model by assuming steep

†This material is currently undergoing peer review for publication in Optics Express with coau-
thors J. H. Follansbee, M. F. Spencer, and R. G. Driggers.
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slant-path geometries or simply very low turbulence over horizontal paths. The ab-

sence of speckle effects is particularly problematic, however, as the usual simplifying

assumption of a Lambertian surface in radiometric calculations necessarily implies

diffuse backreflections. As we will see, speckle noise is often so pronounced that it

becomes the limiting factor in coherent imaging performance.

There does not currently appear to be a comprehensive, system-level treatment

of imaging sensitivity that covers both conventional and coherent noise anywhere

else in the peer-reviewed literature. Riker et al. proposed a simple expression for

speckle SNR that varies directly with normalized object size [148, 149] based on

technical reports analyzing three-bar targets [150, 151]. In their examples, the total

SNR is then an inverse quadrature sum of the speckle and radiometric SNRs. In a

similar vein, Andrews et al. suggested an effective SNR that goes inversely as the

radiometric SNR scaled by the scintillation index [152].

In our approach, we posit that an expression for effective SNR in its traditional

form of a mean over a quadrature sum should be realizable on the basis of two obser-

vations: (1) that truly uncorrelated noise terms (whether additive or multiplicative)

always add up in quadrature, and (2) that dependence on a common variable doesn’t

necessarily imply correlation. With that said, the next section presents analytical

expressions for both conventional and coherent noise before exploring possibilities for

mutual coupling between them. The sections beyond that introduce a wave-optics

simulation methodology for the purpose of verifying theory, compare the theory

against numerical results, and make recommendations as to proper treatment of

system-level noise in coherent imaging.

7.2 Noise Theory

In what follows, we first offer a brief review of conventional noise sources in digital

imagery. Namely, these noise sources include photon shot noise, dark shot noise,

and read noise. After introducing each and explaining their quadrature addition,

we move on to discussing the coherent noise sources that are central to the theme
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of this paper: speckle and scintillation. We tabulate straightforward analytical

expressions, reinterpreted from a literature review, that can predict respective noise

values due to speckle or scintillation alone. We then pose the question of whether

such coherent noise is subject to quadrature addition with conventional sources, and

under which conditions if so. As is customary in this sort of analysis, we take all

noise calculations to be in an image plane on a per-pixel basis.

7.2.1 Conventional Noise Sources

The quantum properties of light give rise to natural photon fluctuations about the

average signal reaching a detector. Being a discrete process, this fluctuating behavior

obeys Poisson statistics where the variance is equal to the mean arrival rate. Shot

noise associated with photodetection is therefore related to the mean spectral signal

⟨Q (λ)⟩ in units of photons [γ] by

σps (λ) =
√
⟨Q (λ)⟩

=
√
η (λ) ⟨Eq (λ)⟩ τAp,

(7.1)

where σps is a standard deviation in photoelectrons [e−] at wavelength λ [m], η is

the detector quantum efficiency [e−/γ], ⟨Eq(λ)⟩ is the mean actinometric irradiance

[γ/s/m2], τ is the camera integration time [s], and Ap is the detector pixel area

[m2]. We also note that ⟨Eq (λ)⟩ = ⟨Ee (λ)⟩ ÷ (hc/λ), where ⟨Ee (λ)⟩ is the mean

energetic irradiance [W/m2], h the Planck constant [J · s] and c the speed of light

[m/s]. Often it is convenient to estimate total photon noise (and thus the signal

itself) by evaluating Eq. (7.1) under the assumption of quasimonochromatic light at

central wavelength λ̄, eliminating any spectral dependence such that

σps =
√

η̄
〈
Ēq

〉
τAp

=
√〈

Q̄
〉
.

(7.2)
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In the above,

η̄ =
1

λhi − λlo

∫ λhi

λlo

η (λ) dλ (7.3)

and

〈
Ēq

〉
=

∫ λhi

λlo

⟨Ee (λ)⟩
hc/λ

dλ (7.4)

are the average quantum efficiency and band-integrated irradiance with λlo and λhi

being the passband cut-on and cut-off wavelengths, respectively. This assumption is

especially valid for active imaging systems, which tend to operate over finite spectral

bands for coherence purposes (and filter down accordingly to preserve sensitivity).

As an aside, coherent noise arising from interference depends on the mean incoming

signal level as well. We will therefore revisit the subject of photon shot noise when

we move on to discuss coupling in Sec. 7.2.3.

Moving on to the charge domain, photoelectrons intermix with thermal elec-

trons originating from sensor electronics as they heat up during exposure. This

time-dependent charge buildup in the pixel well occurs independently of any signal

accumulation, comprising a pedestal of dark current with its own associated shot

noise. The discrete nature of electron counting induces statistical variations that

also follow a Poisson distribution, by which

σds =
√
idτ . (7.5)

Here, σds is a standard deviation in electrons [e−] while id is the time-average dark

current [e−/px/s], which manufacturers of focal plane arrays (FPAs) usually specify.

Unlike the previous instances of time-dependent shot noise, each detector readout

event produces a fixed level of read noise denoted as σrd [e−]. FPA datasheets

generally specify this RMS value as well to account for several physical processes

inherent in the readout integrated circuit (ROIC) electronics, including pixel (i.e.,

Johnson) noise, reset (i.e., kTC) noise, and flicker (i.e., 1/f) noise. Read noise is
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typically Gaussian distributed with zero mean. We choose to stop here and work in

the charge domain as we are not considering any post-readout sources of noise in the

signal chain. Ultimately the ROIC converts all charges to digital numbers (DNs)

set by the camera gain factor K [e−/DN], constituting a digital signal; working in

either domain would thus give equivalent SNRs as unitless ratios.

Taken together, the total effective noise up to this point is

σeff =
√
σ2
ps + σ2

ds + σ2
rd

=
√〈

Q̄
〉
+ idτ + σ2

rd.
(7.6)

It is worth pointing out here that Gaussian noise is additive in nature, whereas Pois-

son noise is nonstationary and hence neither additive nor multiplicative. Nonethe-

less, taking a quadrature sum of uncorrelated noise levels as in Eq. (7.6) is a widely

accepted practice verified through empirical observations [153]. It stands to reason,

then, that multiplicative noise such as speckle or scintillation might reasonably add

in quadrature too (indicating no correlation with conventional noise). With that in

mind, we proceed by deriving similar noise variances characteristic of speckle and

scintillation.

7.2.2 Coherent Noise Sources

Our goal in this section is to establish analytical expressions for coherent noise in the

charge domain. We define coherent noise broadly as interference due to propagation

of coherent light in both a spatial and temporal sense. Our interests include noise

due to speckle (σsp) and scintillation (σsc), as well as the total coherent noise (σch)

due to their combined effect. Assuming no coupling between this coherent noise and

the aforementioned conventional noise, we would then propose

σ′
eff =

√
σ2
ps + σ2

ds + σ2
rd + σ2

ch (7.7)

for use in the denominator of an SNR calculation to predict noise performance of
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coherent imagery.

Noise Due to Speckle

Speckle is a result of rough-surface scattering, which scrambles the phase of other-

wise coherent light such as emission from a laser, followed by propagation to some

observation plane where interference patches form. To assess the severity of image-

plane speckle noise, we turn to known expressions for partially developed speckle

contrast C. In general C is a ratio of standard deviation to mean irradiance of a

speckle field, such that

σsp = C
〈
Q̄
〉

(7.8)

relates speckle contrast and mean signal level to absolute speckle noise. Irradiance

follows negative-exponential statistics in a fully developed speckle pattern, meaning

signal fluctuations are equal in magnitude to the mean signal itself (i.e., C goes to

unity). When we mitigate speckle by any of several mechanisms, however, C is less

than one and the pattern is only partially developed. Our immediate goal, then,

is to attain a generalized expression for C that applies to various active imaging

scenarios.

Solving for C in Van Zandt’s validated analysis of modified speckle contrast [154]

leads to the result

C =

(
1 + P2

2

)1/2

1 +

√√√√√
∣∣∣∣∣∣
√

1 +
8 [πσh∆λ cos (φ)]2

λ̄4
− 1

∣∣∣∣∣∣
2

+

∣∣∣∣3.5λ̄Z1 tan (φ)

Dlc

∣∣∣∣2


−1/2

≈
(
1 + P2

2

)1/2

1 +

√√√√∣∣∣∣∣4 [πσh∆λ cos (φ)]2

λ̄4

∣∣∣∣∣
2

+

∣∣∣∣3.5λ̄Z1 tan (φ)

Dlc

∣∣∣∣2


−1/2

,

(7.9)
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where P is the backscattered degree of polarization (i.e., a ratio of polarized to

unpolarized intensity), σh is the surface-height standard deviation, ∆λ is the source’s

1/e spectral linewidth about a central wavelength λ̄, φ is the object’s out-of-plane

rotation (i.e., tilt) angle, Z1 is the longitudinal distance between object and entrance-

pupil planes, D is the entrance-pupil diameter, and lc is the light source’s coherence

length. The leading factor in Eq. (7.9) represents contrast due to polarization, while

the first and second terms within the radical sign account for interaction of finite

linewidths with surface roughness and surface tilt, respectively. Note that second

line of Eq. (7.9) makes use of the binomial approximation for a somewhat simplified

result.

In the case of unresolved sampling-limited imagery, we must further consider the

effects of pixel averaging on speckle contrast. Assuming the equivalent diffraction-

limited image would be well resolved, the coherence area associated with image-plane

speckle is [16]

Ac =
λ̄Z2

As

. (7.10)

Here, Z2 is the longitudinal distance between exit-pupil and image planes, while

As is the area of the exit pupil itself. Given a pixel integration area Ap, Speckle

contrast reduces by a factor of
√
Ap/Ac when Ac < Ap, with this factor being no

less than 1 as there is always a minimum of one speckle per pixel [17].

In the interest of maximizing applicability, we can recast all mechanisms of

contrast reduction in terms of individual factors used to calculate speckle noise

as

σsp =

 NPX

1 +
√

B2
rgh +B2

tlt

1/2 〈
Q̄
〉

(7.11)

where X = 1 for well-resolved imagery. With the exception of N , we break these

factors down in Table 7.1 where pixel averaging is now cast in such a way thatX ≤ 1.

For our purposes, N is the number of uncorrelated speckle frames averaged within
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Table 7.1: Speckle-reduction factors used in calculations of absolute coherent noise.

quantity symbol expression

band-averaging roughness factor Brgh [2πσh∆λ cos(φ)/λ̄2]2

band-averaging tilt factor Btlt 3.5λ̄Z1 tan(φ)/(Dlc)

polarization-averaging factor P (1 + P2)/2

pixel-averaging factor
(unresolved)

X
[2λ̄Z2/(pDXP)]

2/π (circular aperture)

[λ̄Z2/(pDXP)]
2 (square aperture)

a single camera integration time; we refer the reader to [2, 57] for a framework to

calculate N from known system dynamics. It is clear at this point that narrowband

(i.e., temporally coherent) and linearly polarized illumination with ∆λ → 0, lc →
∞ and P → 1 indicates unit contrast. At the other extreme, broadband (i.e.,

temporally incoherent) and unpolarized illumination with ∆λ → ∞, lc → 0 and

P → 0 becomes virtually speckle free. Shorter wavelengths also imply less speckle

noise overall, which is consistent with λ̄ → 0 marking the geometrical-optics limit

where there is no interference and, in turn, no speckle.

Noise Due to Scintillation

Scintillation occurs when the turbulent atmosphere introduces phase and/or am-

plitude aberrations along the path of a traveling wavefront, resulting in irradiance

fades that degrade SNRs. Added propagation distance past these aberrations con-

verts phase to amplitude and vice versa, so scintillation is most severe in the case

of long-range imaging across a distributed volume of turbulence (as in a horizontal

path). It is common to gauge the “strength” of scintillation by the Rytov number

(R) or Rytov variance (σ2
R = 4R), which in weak-to-moderate conditions (corre-

sponding to σ2
R ≲ 1) approximate the log-amplitude variance (σ2

χ) and log-irradiance

variance (σ2
ln I = 4σ2

χ), respectively [152]. Also assuming weak scintillation, the log-

irradiance—and therefore Rytov—variance approximates the normalized irradiance
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variance a.k.a. scintillation index (σ2
I = σ2

Q̄
/⟨Q̄⟩2 = exp(4σ2

χ)− 1 ≈ exp (4R)− 1 ≈
4R). Thus if we estimate the scintillation index from Rytov number, we can predict

absolute scintillation noise to be

σsc =
√
σ2
I

〈
Q̄
〉
. (7.12)

Again in the case of sampling-limited unresolved imagery, we must consider the

effects of aperture averaging on optical scintillation. To a first order, we can quantify

this image-plane scintillation index as the pupil-plane expression modified by an

aperture-averaging factor A ≤ 1. Andrews has provided interpolation formulae for

such effects [155] as functions of the Fresnel number

NF =
(D/2)2

λ̄Z1

, (7.13)

since scintillated correlation widths are on the order of the first Fresnel zone ra-

dius
√
λZ1 and NF counts the number of Fresnel zones contained within the en-

trance pupil. Scintillation index reduces further through the use of polychromatic

light, which Fante [156] and Baykal [157] have both shown to produce a bandwidth-

averaging factor that applies to either spherical- or plane-wave illumination. Ko-

rotkova [158] more recently demonstrated how scintillation scales with polarization

in the same way as speckle [cf. Eq. (7.9)].

In effect, scintillation decreases by all the same mechanisms as speckle except

surface roughness which does not apply to turbulent media. Restricting our atten-

tion to the regime of weak-to-moderate turbulence (i.e., before scintillation begins

to saturate), we proceed to recast all physical processes that affect the scintillation

index such that

σsc = 2 (RABNP )1/2
〈
Q̄
〉

(7.14)

where A = 1 for well-resolved imagery and N is again the number of averaged frames

over a long exposure. Table 7.2 lists each of these factors; we state plane-wave ex-
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Table 7.2: Scintillation-reduction factors in calculations of absolute coherent noise.

quantity symbol expression

Rytov number R
0.124C2

nk
7/6Z

11/6
1 (spherical wave)

0.307C2
nk

7/6Z
11/6
1 (plane wave)

aperture-averaging factor
(unresolved)

A
(1 + 1.54N

5/6
F )−7/5 (spherical wave)

(1 + 6.67NF)
−7/6 (plane wave)

bandwidth-averaging factor B 1− 0.445(∆λ/λ̄)5/6

polarization-averaging factor P (1 + P2)/2

pressions for completeness but prefer the spherical-wave versions in practice, as they

agree well with our simulation results and infinite plane-wave analysis is known to

poorly approximate horizontal-path imaging anyhow [159]. The above relationships

suggest that longer wavelengths, shorter propagation paths, larger aperture sizes

(when unresolved), broader bandwidths and greater depolarization all contribute to

reduced scintillation. Its wavelength dependence is not strictly monotonic, however,

due to λ̄ appearing multiple places in the expression. We note that this analysis

only covers scintillation on the downlink path, neglecting the effects of uplink scin-

tillation. Andrews et al. derive more complete expressions for scintillation index

concerning two-way propagation from either a monostatic or bistatic system [152].

7.2.3 Coupled Noise Effects

With noise parameters defined in the isolated cases of either speckle or scintillation,

we now turn our attention to whether their shared dependence on mean signal

level gives rise to correlation with photon noise. Recalling that photoevents are

in general Poisson distributed, the conditional probability mass function (PMF)

describing photon noise is [40]

P
(
K|Q̄

)
=

Q̄K

K!
exp

(
−Q̄
)

(7.15)
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where K represents the photoevent count and Q̄ is the classical energy accumulated

at each point in the image. We are ultimately interested in an unconditional variance

of photoelectron arrival, which the law of total variance dictates is [160]

var [K] = E
[
var
[
K|Q̄

]]
+ var

[
E
[
K|Q̄

]]
. (7.16)

Here, E [◦] denotes an expected value and var [◦] a variance. From Eq. (7.15),

E
[
K|Q̄

]
=

∞∑
K=0

K
Q̄K

K!
exp

(
−Q̄
)

= Q̄

(7.17)

and

var
[
K|Q̄

]
=

∞∑
K=0

K2 Q̄
K

K!
exp

(
−Q̄
)
− E2

[
K|Q̄

]
= Q̄,

(7.18)

confirming the known property of a Poisson distribution that its sole parameter (in

this case Q̄) determines both its mean and variance.

In vacuum, speckle statistics generally obey the gamma probability density func-

tion (PDF) [16]

P
(
Q̄
)
=

βα

Γ (α)
Q̄α−1 exp

(
−βQ̄

)
(7.19)

in canonical form with parameters α = 1/C2 and β = 1/(C2⟨Q̄⟩). Equations (7.17)
and (7.18) imply
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E
[
var
[
K|Q̄

]]
=

βα

Γ (α)

∫ ∞

0

Q̄α exp
(
−βQ̄

)
dQ̄

=
α

β

(7.20)

and

var
[
E
[
K|Q̄

]]
=

βα

Γ (α)

∫ ∞

0

Q̄α+1 exp
(
−βQ̄

)
dQ̄− E2

[
var
[
K|Q̄

]]
=

α

β2
,

(7.21)

such that

σps =

√
α

β
+

α

β2

=

√〈
Q̄
〉
+ C2

〈
Q̄
〉2 (7.22)

for a Poisson-gamma distribution. Note that Eq. (7.19) reduces to the negative-

exponential PDF commonly associated with fully developed speckle when C = 1,

while Eq. (7.22) converges to the incoherent result of Eq. (7.2) as C → 0. Since

noise resulting from the presence of both photon noise and speckle noise is clearly

a quadrature sum, we can conclude that there is no correlation between the two

despite their common dependence on ⟨Q̄⟩. It is worth noting that speckle noise

will tend to dominate over photon noise due to its stronger proportionality with

⟨Q̄⟩, meaning substantial mitigation of speckle is required to reach the photon-noise

limit.

In the absence of speckle but the presence of weak-to-moderate scintillation, the

Rytov approximation gives rise to the lognormal PDF [116]
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P
(
Q̄
)
=

1

Q̄σ
√
2π

exp

(
−
ln
(
Q̄
)
− µ

2σ2

)
(7.23)

in canonical form with parameters µ = ln(⟨Q̄⟩/
√
1 + σ2

I ) and σ =
√
ln (1 + σ2

I ). In

this case, Eqs. (7.17) and (7.18) tell us

E
[
var
[
K|Q̄

]]
=

1

σ
√
2π

∫ ∞

0

exp

(
−
ln
(
Q̄
)
− µ

2σ2

)
dQ̄

= exp

(
µ+

σ2

2

) (7.24)

and

var
[
E
[
K|Q̄

]]
=

1

σ
√
2π

∫ ∞

0

Q̄ exp

(
−
ln
(
Q̄
)
− µ

2σ2

)
dQ̄− E2

[
var
[
K|Q̄

]]
= exp

(
2µ+ σ2

) [
exp

(
σ2
)
− 1
]
,

(7.25)

such that

σps =

√
exp

(
µ+

σ2

2

)
+ exp (2µ+ σ2) [exp (σ2)− 1]

=

√〈
Q̄
〉
+ σ2

I

〈
Q̄
〉2 (7.26)

for a Poisson-lognormal distribution. Once again, we find no correlation between

photon noise and scintillation noise although they share a dependence on ⟨Q̄⟩. We

also note the same proportionality with scintillation as we saw with speckle before,

indicating scintillation noise will also tend to dominate over photon noise.

We now must ask the question of what happens when both speckle and scintilla-

tion are present in an active imaging scenario, as is often the case in horizontal-path

geometries. Gudimetla and Holmes proposed the two-parameter K (a.k.a. gamma-
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gamma) distribution as a general model to parameterize irradiance statistics by

degrees of freedom with respect to both speckle and scintillation [161]. However,

they demonstrated both analytically and experimentally that normalized variance

does not increase monotonically with turbulence strength in the presence of speckle

[120, 162, 163]. Rather, it remains at a constant unity for very low scintillation

strengths where speckle phase dominates, rises above 1 as atmospheric log-amplitude

perturbations grow stronger until peaking around 1.25 for σ2
χ ≈ 0.1, and finally

decays back down to unity as scintillation saturates and atmospheric phase per-

turbations take over [164]. These trends are relatively indifferent to specific beam

parameters and propagation geometries [165], and they are consistent with what

we’ve seen in our own simulations and experimental trials.

Since we cannot simply add in quadrature the theoretical expressions of

Secs. 7.2.2 and 7.2.2, we seek an alternative closed-form expression for the com-

bined effects of speckle and scintillation that we encounter in active imaging. The

covariance calculations of Refs. [120, 162, 163] remain in integral form, however,

requiring involved numerical calculations to produce meaningful results. We can

instead use the relatively constant shape of their normalized irradiance curves to

our advantage by fitting a four-parameter lognormal function of the form

ς (R) = c1 exp

{
− ln (2)

ln2 (c4)
ln2

[
1 +

(R− c2) (c
2
4 − 1)

c3c4

]}
(7.27)

with c1 = 0.125, c2 = 0.1, c3 = 0.3 and c4 = 3.3 using TableCurve 2D. Figure 7.1

shows a semilog plot of this function, which we treat as a scale factor in calculating

the coupled variance for coherent noise according to the K distribution model as

σch =
√

[1 + C2] [1 + ς (R)]− 1
〈
Q̄
〉
. (7.28)

Here, ς (R) has replaced (4R)2 in the expression for scintillation noise variance as

compared with Eq. (7.14). The argument of the radical sign in Eq. (7.28) works out

to be a sum of individual variances with the product of variances, which is identical

to the form of combined variances that Bufton et al. derived in a related problem
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Figure 7.1: Scale factor describing additional coherent noise due to scintillation
when speckle noise is already present [cf. Eq. (7.27)].

involving ground-to-space laser ranging of a retroreflector array [166]. All told, our

conditional expression for system-level coherent noise is now

σ′
eff =

√
σ2
ps + σ2

ds + σ2
rd + σ2

ch

=



√〈
Q̄
〉
+ idτ + σ2

rd + C2
〈
Q̄
〉2

(speckle only)√〈
Q̄
〉
+ idτ + σ2

rd + σ2
I

〈
Q̄
〉2

(scintillation only)√〈
Q̄
〉
+ idτ + σ2

rd + {[1 + C2] [1 + ς (R)]− 1}
〈
Q̄
〉2

(speckle and scintillation)

(7.29)

with reference to Tables 7.1 and 7.2. We reiterate at this stage that coherent noise

(which is directly proportional to the signal) will always outweigh the conventional

shot noise (which is proportional to its square root) unless sufficiently mitigated by

naturally occurring or deliberately engineered means.

7.3 Modeling and Simulation

With the goal of verifying the theory of Sec. 7.2, we take a wave-optics simulation

approach with Monte Carlo averaging to handle the stochastic nature of speckle and
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Figure 7.2: Amplitude mask of four-bar target for use in numerical simulations.

scintillation. To that end, we first define the amplitude of our object as a binary

four-bar target on an N × N grid with each bar one-seventh as wide as it is tall.

Figure 7.2 shows a visual of this definition, which also serves as the geometrical-

optics prediction of its own image at unit magnification. With the initial amplitude

of U0 = 1
√
W/m at each nonzero pixel, we update it to

U = U0

√
Φe∑N

x=1

∑N
y=1 U

2
0 (x, y) δ

2
(7.30)

where Φe is the optical source power [W/m2] and δ our simulation grid spacing [m].

Going forward, we will say for simplicity δ matches our simulated pixel pitch p.

To simulate the effects of diffraction through a coherent optical system, we define

the circular pupil in Fig. 7.3a and take its 2D discrete Fourier transform (DFT)

to find the ASF in Fig. 7.3b. Convolving the geometrical image in Fig. 7.2 with

this ASF yields the diffraction-limited image in Fig. 7.3c, which we take as our

“noiseless” (with respect to conventional noise) and “pristine” (i.e., speckle- and

scintillation-free) image to compare against various noise degradations.

From here, we take the squared modulus of our image-plane field for radiant

power [W/m2], multiply by integration time for radiant fluence [J/m2], multiply by

pixel area for radiant energy [J] and divide by photon energy for units of photons

[γ]. We then proceed to simulate conventional noise in our diffraction-limited image.

To apply photon shot noise, we generate random numbers from a pixelwise Pois-

son distribution with its rate parameter set to the pre-noise photon count at each
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(a) (b) (c)

Figure 7.3: Amplitudes of (a) circular pupil and (b) complex-valued ASF; (c) pristine
coherent image of four-bar target (not drawn to scale).

(a) (b) (c)

Figure 7.4: Four-bar target image after adding simulated (a) photon shot noise, (b)
dark shot noise and (c) read noise.

pixel. Figure 7.4a shows the result of applying this noise. Multiplying by quantum

efficiency (η) converts this image to the charge domain, where we add a pedestal

and apply a second layer of Poisson-distributed random numbers to represent dark

shot noise with idτ setting the mean and overall rate parameter. Figure 7.4b shows

the result of this step. Lastly, we add read noise in the form of random numbers

drawn from a zero-mean Gaussian distribution with a standard deviation of σrd,

before nullifying any negative values to zero to mimic the measurement uncertainty

of a realistic analog-to-digital converter (ADC). Figure 7.4c shows our final pristine

image with conventional noise degradations.

To simulate speckle, we define not only a flat amplitude over our four-bar target

but also a uniformly distributed random phase between −π and π. This approach

rests on the assumption of δ-correlated phase on the scale at which we’re simulating
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(a) (b) (c)

Figure 7.5: (a) Underlying phase function of rough-surface target; resulting speckle
patterns in the (b) pupil and (c) image planes (not drawn to scale).

the object plane (i.e., δ ≫ wc where wc is the surface-height correlation width).

With the amplitude in Fig. 7.2 and phase in Fig. 7.5a defining the complex phasor

of our object-plane field, we propagate to the pupil plane via the Fresnel diffraction

integral and crop the resulting speckle field down to the pupil size as in Fig. 7.5b.

We then collimate this field (invoking far-field conditions) and propagate by one

focal length of a thin lens to the image plane as in Fig. 7.5c.

The remaining steps between Fig. 7.5c and the speckled, conventionally noisy

image in Fig. 7.6a are identical to those starting from the pristine, diffraction-limited

image in Fig. 7.3c. As for simulating scintillation, we revert to a flat object phase

function and carry out split-step propagation through six Kolmogorov phase screens

of equal strength and spacing between the object and pupil planes. We decompose

the pupil-plane wavefront into Zernike modes in order to remove atmospheric tip and

tilt so that the image stays roughly centered at its vacuum position [52], then prop-

agate a second time through vacuum to arrive at the scintillated and conventionally

noisy image in Fig. 7.6b. Here we make note of some distortion due to anisopla-

natism, but Monte Carlo averaging largely alleviates any error this would introduce

in our calculations. Figure 7.6c follows from the same procedure as Fig. 7.6b but

begins by reinstating the δ-correlated phase of Fig. 7.5a, simulating all relevant

noise sources in unison. Finally, we can reuse the amplitude definition of Fig. 7.2

as a binary mask with any of the images in Figs. 7.4c or 7.6a–7.6c for the purpose

of calculating and comparing standard deviations to test for mutual independence.
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(a) (b) (c)

Figure 7.6: Final image of four-bar target including all conventional noise terms in
addition to (a) speckle, (b) scintillation and (c) combined speckle and scintillation.

Before doing so, we subtract our noiseless and pristine image in Fig. 7.3c from each

to remove the influence of pure diffraction from such calculations.

7.4 Results and Discussion

As an example use case, we reference the datasheet of an Allied Vision Goldeye CL-

033 TEC1 for noise specifications [167]. The dark current of this particular model

is 110 ke−/px/s, while its read noise is 390 e− RMS. It has a quantum efficiency of

78.5% at a wavelength of 1550 nm. We set our source power to 1 mW so that various

contributions to the effective noise are all on the same order of magnitude. Because

it gives us a single knob to turn without affecting other parameters, we choose to

vary our read noise from 0 to 400 e− in 5-e− increments while holding all other

noise sources constant. We set our object size such that the object Fresnel number

Nobj = D/(λZ1/W ) = 16 where W is the object width; in other words, our imaging

system fully resolves the object [79]. We also enforce the weak-turbulence condition

that D/r0 = 3, where r0 is the Fried coherence width, leading to a spherical-wave

Rytov number R = 0.06.

The results of these tests are plotted in Fig. 7.7, which shows strong agreement

between the theory that Eqs. (7.11) and (7.14) predict and the effective noise that

we calculate from simulation data. Similarly, Fig. 7.8 shows promising results that

suggest the scaling in Eqs. (7.27) and (7.28) provides an accurate depiction of the
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(a) (b)

Figure 7.7: Comparison of theoretical and numerical effective noise as a function
of variable read noise with other conventional noise and either (a) speckle or (b)
scintillation fixed; vertical lines show fixed values for reference.

coupling that takes place between speckle and scintillation when both effects are

present. The green line shows our working theory based on the work of Holmes et

al. that provides good estimates. By contrast, the red lines represent alternative

approaches that provide much poorer estimates: the sum of individual variances and

their products from pure speckle and pure scintillation, a simple quadrature addition

of the two, pure speckle only and pure scintillation only. Although not proper

descriptions of the problem, the scintillation-only and speckle-only predictions do

converge as the read noise surpasses the mean number of photoelectrons contained

within the signal.

In addition to the radiometric calculations we present here, there is significant

interest among the community in how speckle and scintillation affect SNR when the

“signal” is an object’s angular position rather than an optical energy. We typically

quantify this track error as a noise-equivalent angle (NEA; in other words, an object

angular displacement at which SNR = 1). Tyler and Fried derived an expression

for NEA as a function of SNR0, which is the radiometric SNR referring only to

conventional noise (i.e., without speckle or scintillation included) [73]. Likewise,

we showed in a recently published paper that the normalized NEA due to speckle
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Figure 7.8: Comparison of theoretical and numerical effective noise as a function of
variable read noise with other conventional and coherent (speckle and scintillation
combined) noise fixed; vertical lines show fixed values for reference.

depends only on object Fresnel number [72]. Although not yet approximated in

closed form, Holmes published an analytical approach to finding the NEA due to

scintillation as a function of beam parameters and propagation geometry; in this

case it is the discrepancy between C- and G-tilt that manifests as track error [76].

Assuming Gaussian-distributed noise, we can expect these three error quantities to

decrease in the same way as Eqs. (7.11) and (7.14) with reduced speckle contrast and

root scintillation index, respectively [85]. Calling them NEA0, NEAsp and NEAsc,

respectively, it is therefore reasonable to assume that

σ′
θ

λ/D
=



√
NEA2

0 +NEA2
sp (speckle only)√

NEA2
0 +NEA2

sc (scintillation only)√
NEA2

0 +
{[

1 + NEA2
sp

]
[1 + ς (R)]− 1

}
(speckle and scintillation)

(7.31)

based on the findings of this paper.
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CHAPTER 8

Conclusion

Chapters 2 and 3 of this dissertation demonstrated the use of wave-optic simulations

to model the effects of dynamic speckle. In Ch. 2, we formulated closed-form ex-

pressions for the analytical irradiance correlation coefficient in the pupil plane of an

optical system. These expressions were for square, circular, and Gaussian scattering

spots and four different modes of extended-object motion, including in-plane and

out-of-plane translation and rotation. In Ch. 3, we formulated closed-form expres-

sions for the analytical irradiance correlation coefficient in the image plane of an

optical system. These expressions were for square, circular, and Gaussian limiting

apertures and four different modes of extended-object motion, including in-plane

and out-of-plane translation and rotation. Using a phase-screen approach, we then

simulated the equivalent scattering from an optically rough extended object, where

we assumed that the surface heights were uniformly distributed and delta correlated

from grid point to grid point. For comparison to the analytical irradiance correlation

coefficient, we also calculated the numerical irradiance correlation coefficient from

the dynamic speckle after simulated propagation from the object plane to a pupil

plane and an image plane. Overall, the analytical and numerical results definitely

demonstrated that, relative to theory, the dynamic speckle in the simulated pupil

plane is properly correlated from one frame to the next. Such validated wave-optics

simulations provide the framework needed to model more sophisticated setups and

obtain accurate results for system-level studies.

When rough-surface scattering from a coherently illuminated object introduces

speckle, it randomly shifts the centroid of its image. As such, we formulated closed-

form expressions in Ch. 4 that accurately predict the NEA due to speckle. In an

effort to make our results broadly applicable, we separately treated the cases of well-

resolved and unresolved objects for both circular and square apertures. Overall, the
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analytical results showed excellent agreement when compared with the numerical

results from wave-optics simulations. Both sets of results also showed a track-error

limitation of (1/3)λ/D, where λ/D is the diffraction-limited half angle. Because

the Strehl ratio due to Gaussian jitter links the NEA to an intuitive scaling law,

system engineers can now use these validated, closed-form expressions to account

for active-tracking performance in a straightforward way.

Shack–Hartmann wavefront sensors are well-established tools for characterizing

phase aberrations present in an optical field. The performance of such devices is op-

timized when provided a cooperative point-source beacon at range. If the beacon is

instead a noncooperative extended source, the speckle that arises from rough-surface

scattering introduces errors into the measurements. In distributed-volume turbu-

lence over horizontal paths, beacon anisoplanatism acts as another source of error

due to path averaging. Both types of error grow in severity with growing beacon

size. Operating in the weak-turbulence regime where Shack–Hartmann wavefront

sensors offer robust performance and using in-plane translation of the beacon to

accomplish speckle diversity, we showed in Ch. 5 that speckle averaging helps to

reduce isoplanatic measurement error but is rendered ineffective for highly aniso-

planatic beacons. Understanding these system limitations is critical for performing

effective wavefront sensing in horizontal propagation scenarios with noncooperative

beacons.

In Ch. 6, we investigated the use of an extended beacon with a nominal phase-

compensation system. An extended beacon, in general, manifests due to the scat-

tering of coherent illumination off of an optically rough surface and results in two

phenomena: (1) speckle, which adds noise to the phase measurement, and (2) aniso-

planatism, which causes multiple point-spread functions to arise within the field of

view of the phase-compensation system. Together, these phenomena remain rela-

tively unexplored in the open literature, as phase-compensation research typically

relies on the use of a point-source beacon for optimal performance. A point-source

beacon, in practice, does not give rise to speckle or anisoplanatism and is unrealistic

for tactical applications. As such, we created extended beacons of various sizes using
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the plane-wave illumination of square objects. We then assumed that the resultant

speckle was uncorrelated from one frame to the next and that there was the poten-

tial for anisoplanatism. These assumptions allowed us to explore the trade space

using straightforward wave-optics simulations. Provided these wave-optics simula-

tions, we modeled a horizontal-propagation path with Kolmogorov turbulence and

frozen flow. Our approach characterized the severity of the uncorrelated speckle

and anisoplanatism using the object Fresnel number and the size of the object rel-

ative to the size of the isoplanatic patch, respectively. In addition, our approach

employed two speckle-averaging methods to investigate the framerates needed to

achieve good closed-loop performance (i.e., maximize the power in the bucket at the

object). Overall, the closed-loop results showed that speckle averaging is an effective

strategy for mitigating the noise induced by uncorrelated speckle. However, as the

extended beacon grows in size, anisoplanatism seems to become the limiting factor

with respect to performance and negates the benefits of speckle averaging.

Chapter 7 provided an in-depth analysis of noise considerations in coherent imag-

ing, accounting for speckle and scintillation in addition to “conventional” image

noise. Specifically, we formulated closed-form expressions for total effective noise in

the presence of speckle only, scintillation only (with weak-to-moderate conditions),

and speckle combined with scintillation. We found analytically that photon shot

noise is uncorrelated with speckle and scintillation, despite their shared dependence

on the mean signal. Furthermore, unmitigated coherent noise tends to dominate

performance limitations due to a squared mean-signal dependence. Strong coupling

occurs between speckle and scintillation when both are present, and we character-

ized this behavior by fitting a scale factor capable of generating variances in closed

form. We verified each of these claims through a series of wave-optics simulations,

and we saw strong agreement in general between numerical results and theoretical

predictions. Our findings allow us to confidently gauge signal-to-noise ratio (SNR)

expectations when active illumination produces coherent noise.

Broad conclusions and contributions to the active EO community drawn from

Chs. 2–7 are as follows:
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1. We can now accurately predict speckle decorrelation (as quantified by the

irradiance correlation coefficient) in the pupil and image planes of a gen-

eralized optical system based on object motion, as well as invert the problem

to induce object motion for a controlled degree of speckle decorrelation.

2. We can now accurately predict centroiding error (as quantified by the noise-

equivalent angle) due to speckle based on normalized object size in tracking

applications.

3. We can now accurately predict open-loop wavefront sensing performance in the

presence of speckle (as quantified by RMS wavefront error and irradiance

skewness), as well as understand limitations due to anisoplanatism.

4. We can now understand performance trades of closed-loop adaptive optics in

the presence of speckle (as quantified by normalized power in the bucket

and peak Strehl ratio), including anisoplanatic limitations.

5. We can now include coherent noise terms in signal-to-noise ratio (SNR) cal-

culations; namely, speckle noise and scintillation noise.

Looking ahead to future work on this topic, the near-, medium- and long-term

goals are as follows:

• Finalize and publish simulation-based and experimental data on speckle mit-

igation in active tracking through manipulation of spatial coherence (near

term).

• Process and publish field data on open-loop wavefront sensing in the presence

of speckle and weak scintillation (medium term).

• Develop and publish slope-discrepancy theory backed by results from wave-

optics simulations and field experiments (medium term).

• Work with Army Space and Missile Defense Command (SMDC) collaborators

to validate tracking and wavefront sensing performance in the presence of

speckle through laboratory testing (long term).



189

• Work with incoming graduate student(s) on quantifying effects of centroid

anisoplanatism and speckle–scintillation coupling in active tracking, wavefront

sensing and adaptive optics (long term).

• Work with Naval Surface Warfare Center (NSWC) collaborators to describe

and test angular/beacon/diffractive anisoplanatism as it pertains to finite-

aperture systems (long term).
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APPENDIX A

Target Pose Estimation from Dual-Plane Speckle Return†

A.1 Background

Active imaging is imperative to long-range identification of reflective, non-

cooperative targets in low-light conditions. In particular, pose information describ-

ing target size, range to target, and tilt orientation is often of interest. Various lidar

schemes can provide such inputs, but they tend to be technologically sophisticated,

reliant on time-of-flight data for ranging, and prone to corruption from speckle in

the case of coherent detection [169].

To simplify matters, we propose an alternative setup consisting of an optical

system that exploits and simultaneously monitors the speckle return in two different

planes. The technique assumes a reflective, optically rough, extended target under

coherent illumination. For illustrative purposes the diagram in Fig. A.1 shows a

laser source illuminating such a rough surface, which diffusely reflects the incident

light to produce far-field speckle in the pupil plane. This pupil-plane field is then

split between two optical paths, one of which relays the pupil to a lensless beam

profiler. The other path introduces a lens to transform the pupil, focusing down to

the image plane of a conventional camera. Through straightforward analysis of this

image along with the structure of speckle in each plane, we can derive a series of

relationships that reveal a rich dataset concerning the target object.

†This material was presented previously as [168] (https://doi.org/10.1109/RAPID54472.
2022.9911586) © 2022 IEEE. Reprinted, with permission, from D. Burrell and R. Driggers,
”Target Pose Estimation from Dual-Plane Speckle Return,” 2022 IEEE Research and Applications
of Photonics in Defense Conference (RAPID), October 2022.

https://doi.org/10.1109/RAPID54472.2022.9911586
https://doi.org/10.1109/RAPID54472.2022.9911586
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Figure A.1: Illustrative schematic of active target illumination with dual-plane mon-
itoring of speckle return.
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A.2 Theory

When a fully resolved, speckled image forms at focus in an imaging system, average

lateral speckle size goes as [59]

wimg = bλFw

= bλF

(
1 +
|M |
Mp

)
.

(A.1)

Here, b is a scale factor related to the aperture shape, λ is the wavelength of illumi-

nation, Fw refers to the working focal ratio, F = feff/DEP is the uncorrected focal

ratio, feff is the effective focal length, DEP is the entrance-pupil diameter, M is the

lateral magnification, and Mp is the pupillary magnification. Rearranging Eq. (A.1)

and recognizing that |M | = Wimg/Wobj—where Wobj and Wimg are respective overall

target widths in the object and image planes—we have

Wobj =
λFWimg

Mp (wimg/b− λF )
. (A.2)

In the pupil plane, on the other hand, average lateral speckle size following free-

space propagation is [59]

max (wpup) =
aλZ

Wobj

(A.3)

where a is another scale factor corresponding to the target shape and Z is the path

length separating target and pupil. We consider only the maximum width in this

case since projected speckle shrinks in the direction of any induced tilt. With only

one unknown variable remaining in Eq. (A.3), we solve for

Z =
FWimg max (wpup)

aMp (wimg/b− λF )
. (A.4)

When tilt is applied to the target at some arbitrary out-of-plane angle φ,
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min (wpup) = max (wpup) cos (φ) (A.5)

such that

φ = arccos

[
min (wpup)

max (wpup)

]
(A.6)

and

ϑ = ∠min (wpup) . (A.7)

In the above, ϑ is the rotation angle of the in-plane axis about which the target tilts

out of plane.

A.3 Methods

Looking back at Eqs. (A.1)–(A.7), the known system parameters are b, λ, F andMp.

Image width Wimg is directly measurable from the number of pixels spanning the

focused image, and we can quantitatively estimate a from the shape of the resolved

image. For instance, a is ∼1.22 for a circular target and 1 for a square (and likewise

with b for a given aperture shape).

Average speckle sizes wpup and wimg follow from a 2D autocorrelation of the

appropriate irradiance pattern [16]. Simulated speckle irradiance in the pupil and

image planes is displayed in Fig. A.2 with corresponding autocorrelation functions

for visual reference. We determine min (wpup) and max (wpup) by taking cross sec-

tions of the pupil-plane autocorrelation at azimuthal angles from 0◦ to 180◦, fitting

the expected function according to our image-plane observation (e.g. a sombrero

function if circular or a sinc if the target appears square as in Fig. A.2), then de-

termining null-crossing widths from the resulting fits. In the image plane we can

simply take wimg to be the mean correlation width over all azimuthal angles, as an

aperture is assumed parallel to the image plane in a practical system.

To generate blind speckle data for analysis, we randomize target sizes, propa-
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(a) (b)

(c) (d)

Figure A.2: Simulated irradiance maps of the (a) speckle-filled aperture in the pupil
plane and (b) speckled image in the image plane; corresponding autocorrelation
maps in the (c) pupil and (d) image planes.
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gation distances and tilts on a simulation basis and propagate from plane to plane

using standard wave-optics codes. We then perform the necessary discrete, aperture-

removed autocorrelation in both planes and calculate our estimates of size, range,

tilt and rotation axis via Eqs. (A.2), (A.4), (A.6) and (A.7), respectively.

A.4 Results and Discussion

In numerical Monte Carlo trials utilizing simulation data for blind tests, all calcu-

lations are in agreement with the theory of Sec. A.2 at a maximum percent error of

10%. In general we find that calculations involving min (wpup) or max (wpup) set this

upper limit due to the sensitivity of isolating autocorrelation at individual angles,

whereas the azimuthally averaged wimg is a far more robust value.
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APPENDIX B

Laser Speckle Mitigation Through Substandard Compressive Sensing†

B.1 Background

Laser speckle is a persistent issue affecting quality of coherent imaging as well as

performance of active target tracking and wavefront sensing. Optical techniques

exist for averaging out speckle that decorrelates over time, but they can be taxing

from a hardware standpoint and unreliable in the presence of stationary objects

[171]. Digital filters targeting speckle are often effective but struggle with the task

of edge preservation [172]. Here we examine a computational approach that averages

together multiple image reconstructions after compressively sensing at suboptimal

sample rates.

Leportier & Park in 2016 [173] proposed a novel speckle-reduction filter inspired

by compressive sensing (CS), which is the field of mathematics devoted to recon-

structing a given signal from fewer measurements m than the number n of signal

components. An underlying assumption is that some sparse representation exists

such that the signal or its transform to a suitable domain consists of far more zeros

than nonzeros. This condition generally holds true for the discrete cosine transform

(DCT) of natural images.

If we intentionally set m ≪ n and randomize the composition of measurement

matrices, speckle content diversifies from one reconstruction to the next and av-

erages to an overall lesser effect. This effectively reduces strain on data-collection

resources while helping to preserve fidelity of edges. We demonstrate these advan-

†This material was presented previously as [170] in Computational Optical Sensing and Imaging
(COSI) 2020 with coauthors B. Berry, M. Spencer, and R. Driggers (https://doi.org/10.1364/
COSI.2020.JW4D.5) © 2020 Optica Publishing Group. One print or electronic copy may be made
for personal use only. Systematic reproduction and distribution, duplication of any material in
this paper for a fee or for commercial purposes, or modifications of the content of this paper are
prohibited.

https://doi.org/10.1364/COSI.2020.JW4D.5
https://doi.org/10.1364/COSI.2020.JW4D.5
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tages numerically by testing various CS configurations and gauging our success via

several different performance metrics.

B.2 Methods

The familiar quantity that we take as a baseline is speckle contrast, defined as

K =
σI

⟨I⟩
. (B.1)

Here, σI is the standard deviation of irradiance over the area of interest and ⟨I⟩ is the
arithmetic mean over the same irradiance distribution. When K = 1, the speckle

is “fully developed” in the sense that irradiance fluctuates on the same order of

magnitude as its average value.

Our next calculation is what we call visibility factor, based on the concept of

fringe visibility in interferometry and calculated as

V =
⟨I1⟩ − ⟨I0⟩
⟨I1⟩+ ⟨I0⟩

. (B.2)

⟨I1⟩ and ⟨I0⟩ for our purposes are simply average irradiances in the “on” and “off”

state (or the image-plane conjugate of reflective and nonreflective object features),

respectively.

The final metric that we assess is reconstruction error given by

e =

∥∥∥Î − I
∥∥∥
2

∥I∥2
, (B.3)

where ∥◦∥p denotes the ℓp norm and Î is our best estimate of ground-truth irradiance

I. Within the context of our problem, we consider the estimate to be a running

average of reconstructed speckled images and the ground truth to be a diffraction-

limited image of the equivalent mirrored object.

Formalizing the CS framework, our goal is to solve the basis pursuit problem
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x̂ = arg min
x
∥x∥1 subject to y = ΦΨx, (B.4)

where x and x̂ respectively are the 1-D vectorization of our speckled image and its

estimate, y is our measurement, Φ is a projection matrix of our choosing and Ψ is

the sparsifying basis set. Provided sufficient sparsity along with minimal coherence

between Φ and Ψ, Eq. (B.4) is a convex optimization problem that we can solve via

linear programming for efficient image reconstruction.

B.3 Results and Discussion

The most significant outcome of reconstruction is a strong dependence on m, shown

in Fig. B.1 for a weighted binary Φ with a row weight of 50 and a DCT-II Ψ matrix.

Noting that Eqs. (B.1) & (B.3) represent defect functions whereas Eq. (B.2) is a

figure of merit, low speckle contrast and reconstruction error with a high visibility

factor comprise the ideal recovery scenario. Figures B.1a & B.1b expose the short-

coming of evaluation by either K or V as the two variables appear to be directly

related. Figure B.1c suggests that e accounts for this loss of visibility by rating the

crude least-squares reconstruction lower than in Fig. B.1a.

In these simulation trials, we have shown that there are clear benefits to per-

forming CS averaging of speckled imagery in terms of reconstruction error. The

challenge lies in striking proper balance between speckle contrast and visibility for

optimal reconstruction; initial results imply that m/n ≈ 10% is satisfactory. Look-

ing to the comparison in Fig. B.2, CS can greatly assist in deciphering images that

contain speckle. We can use this strategy to better image static objects or to relax

sampling constraints in dynamic systems.
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(a) (b)

(c)

Figure B.1: Monte Carlo performance metrics versus average count (Navg) and num-
ber of measurements (m).
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(a) (b) (c)

Figure B.2: Irradiance maps of (a) diffraction-limited, (b) speckle-limited and (c)
CS-averaged image.
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APPENDIX C

Efficiently Calculating Extended Isoplanatic Angles Over Horizontal Paths†

C.1 Background

Angular anisoplanatism has a deleterious effect on image quality in astronomy and

directed-energy applications [175]. The isoplanatic angle (θ0) describes an offset be-

tween two point sources that results in no more than 1 rad2 of mean-squared error

(MSE) between their pupil-plane wavefronts after propagating through distributed-

volume turbulence. However, this error metric accounts for even the lowest-order

wavefront aberrations; namely piston, which is of no consequence to system per-

formance in most cases [176], and tip/tilt, which is often addressed in a separate

track loop and is altogether absent from artificial beacon measurements [175]. We

therefore seek extended isoplanatic angles with these aberrations removed.

C.2 Analysis

From Stone et al. [176] we have an integral expression for piston/tip/tilt-removed

anisoplanatic MSE as

σ2
iso = 0.821k2D5/3

∫ Z

0
C2
n (z)

∫ ∞

0
u−8/3

[
1− J0

(
2θzu

D

)]
×

{
1− 4

[
J1 (u)

u

]2
− 16

[
J2 (u)

u

]2}
du dz.

(C.1)

†This material was presented previously as [174] in Propagation Through and Characterization
of Atmospheric and Oceanic Phenomena (pcAOP) 2022 with coauthors M. Kemnetz, J. Beck, and
M. Beason (https://doi.org/10.1364/PCAOP.2022.PW4F.6) © 2022 Optica Publishing Group.
One print or electronic copy may be made for personal use only. Systematic reproduction and
distribution, duplication of any material in this paper for a fee or for commercial purposes, or
modifications of the content of this paper are prohibited.

https://doi.org/10.1364/PCAOP.2022.PW4F.6
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Here, D is the aperture-averaging receiver diameter, k = 2π/λ is the angular

wavenumber, λ is the wavelength of radiation, Z is the total propagation distance,

C2
n (z) is the refractive-index structure parameter at distance z from the source, θ is

an angular offset between incoming beams and Jn (◦) is an nth-order Bessel function

of the first kind. Note that the 1st- and 2nd-order Bessel terms in Eq. (C.1) are

filter functions corresponding to piston and tip/tilt, respectively.

Setting Eq. (C.1) equal to 1 and solving for θ does not generally converge to an

isoplanatic angle, in which case we must rely on time-consuming graphical methods.

Assuming horizontal propagation, however, allows us to treat C2
n as a constant for

integration purposes. Then by conditioning and evaluating the proper integral in

Eq. (C.1) we can represent piston-removed anisoplanatic error in quasi-closed form

as

σ2
iso =

C2
nD

5/3Z

λ2
×

{∣∣∣∣Zθ

D

∣∣∣∣14/3 4F3

(
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2
,
1

2
,
3

2
,
17

6
;
10

3
,
10

3
,
23

6
;

∣∣∣∣Zθ

D

∣∣∣∣2
)
K1

+

∣∣∣∣Zθ

D

∣∣∣∣5/3K2

+

[
4F3

(
−17

6
,−11

6
,−5

6
,
1

2
;−4

3
, 1,

3

2
;

∣∣∣∣Zθ

D

∣∣∣∣2
)
− 1

]
K3

}
,

(C.2)

where constants Kn are defined in Table C.1, Γ (◦) is the complete gamma function

and pFq (a1, . . . , ap; b1, . . . , bq; ◦) is the generalized hypergeometric function.

Table C.1: Definitions of constants appearing in calculation of piston-removed aniso-
planatic error.

K1 K2 K3

729π3/2Γ(11/6)
833Γ(1/3)

π7/2

Γ(2/3)Γ(11/6)
1,280 3√2π5/2Γ(−5/6)

6,171Γ2(11/6)

Further removing tip and tilt leads instead to the solution



C.3. RESULTS AND DISCUSSION 203

σ2
iso =

C2
nD

5/3Z
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}
(C.3)

with constants Kn now defined in Table C.2. Note that K6 = K2 but is redefined

here for legibility.

Table C.2: Definitions of constants appearing in calculation of piston/tip/tilt-
removed anisoplanatic error.

K4 K5 K6 K7 K8 K9

40 3√2π2Γ(−7/3)
51Γ(1/3)Γ(10/3)

160 3√2π2Γ(−7/3)
51Γ(1/3)Γ(10/3)

π7/2

Γ(2/3)Γ(11/6)
3,520 3√2π7/2

1,377Γ3(17/6)
70,400 3√2π7/2

31,671Γ3(17/6)
3,520 3√2π7/2

10,557Γ3(17/6)

C.3 Results and Discussion

Using MATLAB’s numerical solver, we can quickly predict extended isoplanatic angles

from Eqs. (C.2) and (C.3) over a range of aperture diameters as in Fig. C.1a. To remain

consistent with accepted notation we let subscript j index the number of lowest-order aber-

rations removed, i.e. j = 0, 1 and 3 for full aberration, piston removal and piston/tip/tilt

removal, respectively. The spherical-wave formula for θ0 is obtainable from standard

references on atmospheric optics. We produce the results in Fig. C.1b by propagating a

simulated on-axis point source through six evenly spaced layers of Kolmogorov turbulence,

shifting a second point source off axis by distance θ0Z and propagating through the same
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turbulence volume, then taking the mean-squared difference between their unwrapped

phase functions (⟨|∆ϕ|2⟩) in the pupil plane and subtracting off successive Zernike poly-

nomials. We see in the right-hand column that ∆ϕ grows flatter with each subtraction for

a fixed θ. As expected, ⟨|∆ϕ|2⟩ ≲ 1 rad2 when θ = θj in each of the three cases.

(a) (b)

Figure C.1: (a) Fully aberrated, piston-removed & piston/tip/tilt-removed isopla-
natic angles versus aperture diameter (λ = 1 µm, Z = 1.15 km, C2

n = 2.05× 10−14

m−2/3); (b) qualitative wave-optics simulation results (D = 30 cm).

In our trials, numerical integration of Eq. (C.1) at a single offset angle consumed

an average ∼192.6 ms of CPU processing time. Evaluating Eq. (C.2) or (C.3) on an

equivalent system now takes only ∼13.2 ms on average, while solving either equation for

the isoplanatic angle requires just ∼114.7 ms. In other words, the inverse problem is less

resource intensive with our approach than the forward solution was previously.
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APPENDIX D

Fast Statistical Testing of Scintillated, Speckled Irradiance†

D.1 Motivation and Background

When we perform adaptive optics without a cooperative point-source beacon, the spatial

extent of artificial beacon light typically causes speckle through backscattered rough-

surface reflections. The presence of speckle contaminates our slope measurements such

that we reconstruct improper wavefront information for phase compensation. Introducing

geometric and/or spectral diversity shows promise as a mitigation technique, but we often

rely on point-source performance as a benchmark to quantify the improvement in modeling

and simulation. In field experiments, however, we have the option of analyzing pupil-plane

irradiance statistics in real time to explore the useful limits of speckle averaging.

We are assuming operation in weak turbulence where scintillation does not yet saturate

due to atmospheric aberrations. It is common to model the irradiance fluctuations in this

regime by a lognormal probability density function (PDF) [116], which has the associated

cumulative distribution function (CDF)

PI (I ≤ It) =
1

2

1 + erf

 ln
(
It

√
1 + σ2

I

/
Ī
)

√
2 ln

(
1 + σ2

I

)

 . (D.1)

Here, It is a set threshold irradiance level, σ2
I is the scintillation index (i.e. variance

in irradiance normalized by squared mean irradiance), and Ī signifies a spatial ensemble

average over all irradiance values.

Fully-developed speckle arises from diffuse reflection of coherent light off a large num-

ber of randomly-distributed surface scatterers [16]. Such an irradiance pattern follows the

†This material was presented previously as [177] in Propagation Through and Characterization
of Atmospheric and Oceanic Phenomena (pcAOP) 2021 with coauthor M. Beason (https://doi.
org/10.1364/PCAOP.2021.PW4F.5) © 2021 Optica Publishing Group. One print or electronic
copy may be made for personal use only. Systematic reproduction and distribution, duplication of
any material in this paper for a fee or for commercial purposes, or modifications of the content of
this paper are prohibited.

https://doi.org/10.1364/PCAOP.2021.PW4F.5
https://doi.org/10.1364/PCAOP.2021.PW4F.5
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well-known exponential probability density with corresponding CDF

PI (I ≤ It) = 1− exp

(
−It

Ī

)
. (D.2)

When unmitigated speckle is present in the received field, probability of this form tends

to dominate the observed statistics regardless of turbulence strength.

D.2 Test Methods

Under the working assumption that we have separately characterized the atmosphere to

ensure weak-turbulence conditions, we can apply goodness-of-fit (GOF) testing principles

to determine whether Eq. (D.1) or (D.2) provides a better fit to the available irradiance

data. The latter result in this case indicates a wavefront dominated by speckle and thus

a need for further averaging. The chi-square test statistic for a histogram of N total

irradiance samples grouped into k bins is [178]

χ2 =

k∑
i=1

(Oi − Ei)
2

Ei
, (D.3)

where Oi is the observed frequency, Ei = N
[
PI

(
I ≤ B+

i

)
− PI

(
I ≤ B−

i

)]
is the expected

frequency, and B+
i and B−

i respectively are upper and lower boundaries of the bin at

index i. Once we identify the lowest value of χ2 between Eqs. (D.1) and (D.2), it is more

computationally efficient to relate this result back to a single moment of the irradiance

distribution; namely, the third standardized moment or skewness:

γ =

(
E
[
I − Ī

])3(
σ2
I Ī

2
)3/2 (D.4)

D.3 Results and Discussion

By simulating propagation through weak turbulence and sampling within one atmospheric

coherence time, we generate Monte-Carlo numerical results and assess the pupil-plane irra-

diance that accumulates. Figure D.1 shows qualitatively that the exponential PDF yields

a closer fit given a single frame of speckle, while the lognormal PDF matches more closely

after sufficient speckle averaging. Although other models such as the gamma-gamma
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distribution are likely to improve curve fitting, the utility of lognormal and exponential

functions is that their respective peaks are forced off and on the zero-irradiance point.

(a) (b)

Figure D.1: Irradiance histogram with lognormal and exponential fits after propa-
gation through weak turbulence with (a) one frame of speckle and (b) eight frames
averaged together. Note a decrease in skewness from (a) to (b).

In Fig. D.2a, we observe the root-mean-square error (RMSE) tapering off with greater

numbers of averages and stabilizing once lognormal statistics begin to better represent the

irradiance accumulation (i.e. for Navg ≥ 8). Comparing to Fig. D.2b, we see that this same

point corresponds to a skewness of approximately 1. The takeaway is that continuously

monitoring the pupil plane for unit skewness optimizes performance by imposing minimal

RMSE without setting camera integration times to be longer than necessary. Ultimately

this approach enables fast frame rates while averaging out speckle to the fullest extent, as

skewness continues to drop below 1 for additional averages while RMSE remains relatively

constant.
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(a) (b)

Figure D.2: (a) Residuals between actual phase and wavefront reconstruction; (b)
skewness in irradiance as a function of uncorrelated averages. Dashed vertical lines
indicate the transition from exponential to lognormal GOF outcomes.
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APPENDIX E

Wave-Optics Sampling Constraints in the Presence of Speckle and Anisoplanatism†

E.1 Background

Wave-optics simulations of adaptive optics (AO) systems traditionally assume point-source

beacons for the purpose of wavefront sensing. If instead using extended-object beacons,

it is tempting to attribute the additional error to speckle and/or centroid-tracking lim-

itations for resolved objects. In turbulence, however, extended objects are also subject

to angular anisoplanatism in that different object points traverse different cones of the

atmosphere. Since both speckle and anisoplanatism arise naturally from the use of ex-

tended objects as beacons, it can be difficult (and in some cases impossible) to decouple

their effects in simulation. This is especially true when enforcing a condition of unity

scaling between planes, in which case fine sampling of both a rough-surface object and its

resulting speckle pattern tends to automatically violate isoplanatic conditions. Because

of these sampling difficulties, we set out to explicitly bound the problem for maximum

computational efficiency without extreme mismatches in scaling from plane to plane of an

imaging simulation.

With this goal in mind, Sec. E.2 details an analytic procedure for writing out systems

of equations from which a symbolic solver such as Mathematica can readily determine

simulation parameters. These parameters are both physical and numerical in nature, with

the latter depending heavily upon the former with regard to workflow. Section E.3 presents

wave-optics simulation results using the WaveProp Toolbox for MATLAB. These results

justify a minimum number of samples across the extended object as well as the speckle

that it produces. We apply the results to prior calculations and use them to tabulate one

possible parameterization as an example.

†This material was presented previously as [179] in Unconventional Imaging and Adaptive Op-
tics 2021. Used with permission of SPIE, from “Wave-optics sampling constraints in the pres-
ence of speckle and anisoplanatism,” D. Burrell, J. Beck, M. Beason, and B. Berry, vol. 11836,
2021 (https://doi.org/10.1117/12.2595469); permission conveyed through Copyright Clear-
ance Center, Inc.

https://doi.org/10.1117/12.2595469
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E.2 Procedure

This section is divided into two parts. The first outlines physical constraints for a wave-

optics simulation involving both speckle and anisoplanatism, then shows how to calculate

a maximum target size and propagation distance under the supplied conditions. With a

propagation geometry fully defined, the second part goes on to identify numerical con-

straints and solves to create a sampling grid for digital propagation from one plane to the

next.

E.2.1 Physical Constraints

Throughout the analysis that follows, we assume for simplicity an ideal horizontal turbu-

lence scenario in which atmospheric conditions are constant along the entire propagation

path. We take this approach in part to consider only straightforward algebraic expres-

sions for the relevant atmospheric parameters, noting that path-integral expressions for

varying turbulence strength are widely available in the open literature. Our goal is not

to present a rigorous study of the atmospherics, but rather to explain a general setup

procedure that one might follow for a scenario of any given complexity. However, we also

note that a horizontal-path propagation geometry exhibits distributed-volume aberrations

that give us the most significant anisoplanatic cases of interest. Going forward, we take

our extended object to be a square, flat plate of width W and the pupil function to be a

circular, thin lens of diameter D.

Often the first parameter that comes to mind in setting up an atmospheric simulation

is related to the strength of turbulence. Fried’s coherence diameter, r0, defines a circle

within the receiving aperture (often a telescope’s objective lens) over which RMS wavefront

distortion is limited to ∼1 rad. Its value reduces to [86]

r0 =
(
0.159C2

nk
2Z1

)−3/5
(E.1)

for a spherical wave in constant turbulence, where C2
n is the refractive-index structure

constant gauging local turbulence strength, k = 2π/λ is the angular wavenumber, λ is the

wavelength of light and Z1 is the total path length from object to pupil. Since a circle

of diameter r0 effectively constitutes a coherence cell in the pupil plane, D/r0 provides a

metric for the resolution limit of astronomical seeing. As a general rule, D/r0 ≤ 1 suggests
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diffraction-limited operation while D/r0 > 1 corresponds to turbulence-limited operation.

In practice, seeing first becomes an issue when D/r0 ≳ 0.5 (i.e. in weak turbulence) [180]

and renders AO correction ineffective when D/r0 ≳ 40 (i.e. in strong turbulence) [181].

When D/r0 ≳ 10 (i.e. in moderate-to-strong turbulence), centroid anisoplanatism takes

effect and leads to errors in tilt estimates for tracking or wavefront reconstruction [136].

For these reasons, it is often useful to establish D/r0 at the outset of building a simulation

and proceed with setup from there.

Another key parameter concerning the atmosphere is Rytov number, as it is directly

proportional to turbulence strength and identifies a saturation regime in which scintillation

overwhelms the capabilities of conventional phase-compensation schemes. Generally a

Rytov number on the interval ∼[0.05, 0.25] is of interest to beam-control studies, as this

loosely defines weak turbulence in which branch points begin to appear but scintillation

does not yet saturate [182]. The Rytov number gives a close approximation of empirical

log-amplitude variance calculations within these limits [106]. To directly calculate Rytov

number, we first rearrange Eq. (E.1) for the index structure constant in terms of r0 as

C2
n =

0.160λ2

Z1r
5/3
0

. (E.2)

The spherical-wave Rytov number is then [183]

R = 0.124C2
nk

7/6Z
11/6
1

= 0.169r
−5/3
0 (λZ1)

5/6 .
(E.3)

Recall that, in our wave-optics simulations, we are interested in studying the use of

noncooperative and reflective extended objects as beacons for an AO system. This type

of beacon introduces two primary degradations to the performance of such a system. The

first is speckle, which results from diffuse reflection by a random distribution of surface

scatterers that are collectively rough compared to the wavelength of coherent light. Speckle

severity in the pupil plane is typically quantified by the object Fresnel number,

Nobj =
DW

λZ1
. (E.4)
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Nobj ≤ 1 indicates an aperture that is relatively free of speckle, with more speckles ap-

pearing as Nobj grows larger. In the interest of studying speckle effects, it is therefore a

necessary condition that Nobj > 1. Assuming a diffraction-limited system, this also implies

that the object would be well resolved by the full aperture in an imaging geometry.

The second effect that degrades performance for our purposes is anisoplanatism, which

arises from an angular offset between the aperture and different points on the object

such that backreflected light samples multiple return paths through the atmosphere. The

isoplanatic angle is an offset resulting in an RMS wavefront error of ∼1 rad, and an

approximation of this angle over a horizontal path is [184]

θ0 =
(
1.09C2

nk
2Z

8/3
1

)−3/5

= 0.314
r0
Z1

.
(E.5)

Here, we have once again made use of Eq. (E.2) as a substitution for C2
n. The so-called

isoplanatic patch at the range of the object is then W0 = θ0Z1 = 0.314r0. As such, a

necessary condition to study speckle in the absence of anisoplanatism is W ≤W0 with W

being the object width.

Finally for a given wavelength λ and aperture diameter D, as well as a desired tur-

bulence strength D/r0 and maximum object Fresnel number max(N iso
obj) under isoplanatic

conditions, the appropriate set of physical constraints is


min (R) ≤ 0.169r

−5/3
0 (λZ1)

5/6 ≤ max (R)

λZ1/D < W ≤ 0.314r0

DW/ (λZ1) = max
(
N iso

obj

) . (E.6)

Using Mathematica to solve this overdetermined system of equations yields a range of

acceptable values for object width W , along with a propagation range Z1 that varies as

a function of W . The upper bound on W determines the largest possible object before

introducing anisoplanatism. Calculating a fixed Z from this W then serves two purposes:

it maximizes the Rytov number on the specified interval, and it forces a lower object

Fresnel number for all other values of W .
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E.2.2 Numerical Constraints

In this work we are considering a simulated imaging system comprised of object, pupil and

image planes that are sampled at spacings of δobj, δpup and δimg, respectively. Distances

Z1 and Z2 separate the three planes in the order given. Following Schmidt’s treatment on

Fresnel diffraction [52], Nyquist sampling stipulates that

Wδpup/δobj +D

2Z1
≤ λ

2δobj
, (E.7)

while

D ≤ Wδpup + λZ1

δobj
(E.8)

is required for the illumination area to overfill the aperture. Furthermore,

N ≥ Wmax

2δobj
+

D

2δpup
+

λZ1

2δobjδpup
(E.9)

ensures that any aliasing that occurs due to wraparound does not encroach into the ob-

serving aperture. Imposing what Voelz refers to as the critical sampling condition [54],δpup = λZ1/ (Nδobj)

δimg = λZ2/ (Nδpup)
, (E.10)

utilizes the full spatial extent and effective bandwidth of our setup.

In order to reproduce the expected physical behavior of speckle on a computational

basis, it is imperative that we properly sample the rough surface itself as well as its

resultant speckle field within some region of interest. It is generally a valid assumption

that a simulation grid of practical size will sample a rough surface much more coarsely

than its correlation width in surface heights. Therefore, we treat the rough surface as

delta correlated from point to point and randomly draw the phase at each point from a

uniform distribution between −π and π upon reflection.

When a fully coherent and polarized wave impinges on such a surface, a fully devel-

oped speckle pattern will form if there are sufficiently many independent contributions

to the observed intensity that the central limit theorem applies. When it does, the opti-

cal field behaves as a circular complex Gaussian random process with amplitude, phase,



E.2. PROCEDURE 214

and irradiance components that follow Rayleigh, uniform, and exponential distributions,

respectively. Figure E.1 illustrates the simulated statistics of fully developed speckle sep-

arated into these three components.

(a) (b)

(c)

Figure E.1: Normalized histograms of (a) amplitude, (b) phase and (c) irradiance
data representing the Monte Carlo average of 100 independently simulated speckle
fields.

A common measure for “strength” of speckle noise is its contrast ratio, calculated as

C =
σI
Ī

(E.11)
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where σI and Ī are respectively its standard deviation and mean irradiance. Since standard

deviation is equal to the mean in an exponential distribution, a simple test for fully

developed speckle is to check that C ≈ 1 according to Eq. (E.11). Checking this condition

for different numbers of independent scattering contributions requires setting the object

size to be

W = Nobj
smpδobj, (E.12)

where Nobj
smp is the number of samples spanning the object in one dimension. As such, the

approach we take here is to simply increase Nobj
smp for a square object until C goes to unity.

For that number of samples, object-plane sampling must be such that

min (Nobj)
λZ1

D
≥ min

(
Nobj

smp

)
δobj (E.13)

where min (Nobj) is the minimum desired object Fresnel number in simulation.

Conventional wisdom suggests at least meeting the Nyquist criterion when sampling

speckle, i.e. ensuring 2 or more pixels per speckle in the plane of observation. Empirical

evidence finds that even an undersampled speckle pattern arising from a sufficient number

of random scatterers retains unit contrast over the total number of pixels. In other words,

undersampling fully developed speckle upon propagation does not see the same contrast

reduction as spatially averaging a well sampled speckle pattern. To test whether Nyquist

sampling is sufficient, then, we induce speckle decorrelation by simulating object tilt and

calculate root-mean-square error (RMSE) between known analytical expressions for the

irradiance correlation coefficient and the equivalent results in simulation.

A square object of width

W =
λZ1

Npup
smpδpup

(E.14)

produces Npup
smp pixels across the width of an average speckle in the pupil plane, while a

circular exit pupil of diameter

D =
1.22λZ2

N img
smpδimg

(E.15)
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produces N img
smp pixels across the width of an average speckle in the image plane. Due to

the inverse relationship between scattering-spot or aperture size and speckle size, sampling

in the pupil and image planes should allow for

λZ1

Wmaxδpup
≥ min

(
Npup

smp

)
(E.16)

and

1.22λZ2

Dδimg
≥ min

(
N img

smp

)
(E.17)

after identifying min(Npup
smp) and min(N img

smp), respectively. We note that, as a direct conse-

quence of satisfying the critical sampling condition, N img
smp cannot exceed 1.22 without the

object going out of bounds with respect to the simulation grid. For this same reason Npup
smp

and Nobj
smp cannot exceed 1 and N , respectively. As a final sampling constraint, we enforce

the condition that there are at least min(N r0
smp) = 10 samples across Fried’s coherence

diameter to accurately simulate the seeing resolution limit [185].

Taken together, Eqs. (E.7)–(E.10) and (E.16)–(E.17) culminate in

min (Nobj)λZ1/D ≥ min
(
Nobj

smp

)
δobj

(Dδobj − λZ1) /Wmin ≤ δpup ≤ (λZ1 −Dδobj) /Wmax

N ≥Wmax/ (2δobj) +D/ (2δpup) + λZ1/ (2δobjδpup)

δobjδpup = λZ1/N

λZ1/ (Wmaxδpup) ≥ min (Npup
smp)

δpupδimg = λZ2/N

1.22λZ2/ (Dδimg) ≥ min
(
N img

smp

)
r0/δpup ≥ min

(
N r0

smp

)

. (E.18)

Solving this system in Mathematica gives a range of solutions for δobj, a solution for δpup

that goes inversely as δobj, a range of solutions for δimg with an upper limit inversely

related to δpup, and a solution for Z2 that depends directly on both δpup and δimg. Taking

the largest allowed solution for δobj and plugging in for δpup minimizes scaling between the

object and pupil planes. Similarly, the largest allowed solution for δimg minimizes scaling
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Figure E.2: Speckle contrast as a function of samples across the object.

while relating the image- and object-plane scales as closely as possible.

E.3 Results and Discussion

Figure E.2 shows the average result of 100 Monte Carlo trials calculating speckle contrast

in the pupil plane as a function of the number of samples over one dimension of a simulated

rough object. Contrast reaches a value of ∼97% with 10 or more samples across, and it

stabilizes at ∼99% for 16 or more samples. We find in general that min(Nobj
smp) = 10

samples (yielding ∼97% contrast accordingly) is sufficient for accurate simulation results

with regard to other error metrics such as RMSE. For this reason, we fix the object to be

at least 10 pixels wide in each subsequent test.

Figure E.3 shows the average result of 100 Monte Carlo trials calculating RMSE in the

pupil plane as a function of the number of samples across one dimension of a generated

speckle. RMSE drops below 1% with min (Npup
smp) = 3 samples across an average speckle

and remains more or less stable thereafter. Figure E.4, on the other hand, shows the same

calculations for speckle in the image plane. Here, we have fixed the target width such

that Npup
smp = 3 in order to isolate image-plane sampling dependencies. RMSE drops more

gradually in this case and instead reaches a minimum of ∼1.5% with min
(
N img

smp

)
= 5.

Purely tilting the object plane gives rise to speckle decorrelation by pure displacement

and pure boil in the pupil and image planes, respectively. Thus a generalization of these

results is that boiling is more sensitive to sampling effects than displacement. With these

minimum values known, Table E.1 lists all inputs and outputs as calculated from Eqs. (E.6)
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Figure E.3: Root-mean-square error between numerical and analytical irradiance
correlation coefficient as a function of samples per pupil-plane speckle.

Figure E.4: Root-mean-square error between numerical and analytical irradiance
correlation coefficient as a function of samples per image-plane speckle.

and (E.18).

The most important takeaway from this investigation is that the tradespace is quite

constrained when looking to simulate extended objects that cause speckle without aniso-

planatism. On the side of physical constraints, the only available options for increasing

Rytov number are to increase D/r0 (which may complicate wavefront sensing for phase

compensation) or decrease max(N iso
obj) (which is counterproductive to our goal of studying

speckle in the absence of anisoplanatism). For instance, a Rytov number at or above 0.2

would require either a maximum isoplanatic Nobj of only 2 or a D/r0 value of at least 16

in this particular case. As for numerical constraints, we note that non-unity scaling (i.e.

δobj ̸= δpup ̸= δimg) is necessary for the sake of sufficiently sampling both the object itself

and the speckle that it generates. From Table E.1, the scaling factor between pupil and
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Table E.1: Summary of simulation inputs and physical/numerical derived quantities.

parameter value

wavelength, λ [µm] 1
aperture diameter, D [cm] 30
Fried coherence diameter, r0 [cm] 3
minimum Rytov number, min(R) 0.1
maximum Rytov number, max(R) 0.25
minimum object Fresnel number, min(Nobj) 0.5
maximum isoplanatic object Fresnel number, max(N iso

obj) 4

minimum samples per Fried coherence diameter, min(N r0
pup) 10

inputs

grid points per side, N [#] 2048

minimum object width, Wmin [mm] 1.18
maximum object width, Wmax [mm] 9.42
object–pupil propagation distance, Z1 [m] 707
pupil–image propagation distance, Z2 [m] 707

physical

spherical-wave Rytov number, R 0.137

object-plane grid spacing, δobj [mm] 0.118
pupil-plane grid spacing, δpup [mm] 2.93
image-plane grid spacing, δimg [mm] 0.118
minimum samples per pupil-plane speckle, min(Npup

smp) 25.6
numerical

samples per image-plane speckle, N img
smp 24.4
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object planes is δpup/δobj ≈ 25 before scaling back down by δimg/δpup ≈ 1/25. The only

remedy to approach unity scaling is to increase the number of grid points per side, keeping

in mind the discrete Fourier transform algorithm is of O
(
n2
)
complexity. Doubling N

along one dimension means quadrupling the total number of grid points and ultimately

taking 16× longer to perform the operation. A potential workaround that would relax

both the physical and numerical constraints is to numerically derive a piston-removed iso-

planatic angle that is less restrictive, since we are dealing with finite apertures and beam

control is insensitive to overall phase for most practical purposes [176]. In short, a larger

isoplanatic angle yields a greater maximum object size, which then allows for a longer

propagation distance to achieve the same maximum isoplanatic object Fresnel number,

ultimately enabling both higher Rytov numbers and reduced scaling between planes [cf.

Eq. (E.18)].
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[35] M. Françon, “Information processing using speckle patterns,” in Laser Speckle
and Related Phenomena, J. Dainty, Ed. Berlin/Heidelberg, DE: Springer-
Verlag, 1975, ch. 5, pp. 203–253.



224
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