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ABSTRACT 

Future telescopes will need larger primary mirrors. A way to reduce cost, manufacturing difficulties 

and transportability is to segment the primary mirror. The next thing to consider is the geometry of the 

segments. The James Webb Space Telescope produced Hexagonal shaped segments. This configuration 

has benefits, however there are some imaging limitations introduced by the high frequency components 

due to the edges of the segments. The edges of the segments behave like a 2-D diffraction grating. The 

sharp edges and points of the hexagonal segment create the higher order frequencies that contribute to the 

spikes in the point-spread-function that prohibit view of other interesting objects like exoplanet research 

[6,8]. A Pinwheel segmented aperture enables the view of these objects by dispersing the energy in the 

spikes [8,10]. The structure that supports the segments will inevitably have misalignment errors 

attributed. This paper will partially analyze the inevitable misalignment errors of Piston, and Tip/Tilt. It is 

the goal of this paper to determine which segmented mirror is less sensitive to misalignment errors. 

1. INTRODUCTION 

Segmented mirror technology enables production of large telescope designs, which allows a deeper 

and further study of the universe. This paper will attempt to determine which segmented mirror, 

Hexagonal or Pinwheel, is less sensitive to segment misalignment evaluated by analyzing the degraded 

point-spread-functions (PSF). It is assumed the Pinwheel Aperture will be less sensitive. This assumption 

is based off the behavior of the curved segments that fan out the energy from diffraction features [8,10]. 

The flow of this paper will begin with a literature review and motivation for this study. The next topic will 

derive some of the diffraction equations used to calculate the PSF, which is the main output from the 

simulation. The simulation is done in HCIPy, which is covered in detail below. HCIPy is used to create 

the two aperture types, with the intention to make the segments and overall aperture topology as similar as 

possible. HCIPy is used to apply the segment misalignment. A verification is done to ensure the PSF’s 

simulations are behaving as expected. HCIPy outputs raw PSF images, that are imported into Matlab. 
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Matlab is used to extract and analyze each PSF. The merit of quality used here is the Encircled Energy 

Radius (EER) and the Strehl Ratio. The remainder of the paper is used to analyze and produce a direct 

comparison using a Monte Carlo of 10 data runs. The final goal of this paper is to prove the Pinwheel 

Segmented Aperture is less sensitive to segment Misalignment errors when directly compared to the 

Hexagonal Segmented Aperture. 

2. LITERATURE REVIEW 

2.1. History of the Telescope 

Before the modern-day city lights polluted the night sky, interested parties would gaze upon the 

heaven’s bright and beautiful stars possessed only with the tool of the naked eye. Once the ability to 

magnify distant objects was realized, presumably by Dutch spectacle makers, the technology grew 

popularity in navigational and military applications. In 1609, Galileo Gallie was among the first to 

advance the field of astronomy by pointing his simple two lens, refractive telescope at the sky [3]. The 

first telescopes were riddled with spherical and chromatic aberrations [1]. It is easier to manufacture a 

spherically shaped lens, which focuses rays as a function of the lens diameter. The larger diameter of the 

spherical lens, the more spherical aberration will be present, with exception of an aplanatic element. The 

simple spectacle lenses used in the first telescopes were made from a single index of refraction, which 

disperses the wavelengths causing chromatic aberrations. It was eventually realized by looking at the 

human eye, which contains multiple different materials, and thus indices of refraction could be the 

solution for solving the chromatic aberrations [1]. Most telescopes of the time were not reflective, mirrors 

were a difficult resource and most would have to construct their own. The first reported telescope 

containing a mirror was from Niccolo Zucchi in his 1616. The first reflecting telescopes using mirrors 

controlled the chromatic imaging issues by using alloyed metal, however the spherical aberrations were 

not practically solved until 1636 by Marin Mersenne, who made use of a parabolic mirror. Shortly after 

James Gregory built upon Mersenne and used geometry to derive an experiment where the shape of the 
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primary mirror was concave parabolic accompanied by a secondary concave ellipsoidal mirror that 

directed the light back through a hole in the primary mirror, similar to the Ricthey-Chretien [1]. At the 

eye-piece the image was chromatically and spherically corrected.  

2.2. Motivation for Large Telescopes 

Eventually, telescope imaging no longer needed a human viewer. Additionally, the need for clearer 

skies to view the cosmos led to the motivation for space telescopes. As sights began to extend further 

from our home the need for large space telescopes became evident to answer more exciting questions 

about the universe and its beginning.  Currently, physical laws prohibit scientific expeditions to distant 

galaxies due to the accelerating expansion of the universe. If humans did leave Earth, it is likely they 

would never reach outside the Milky Way. Therefore, telescopes are instrumental for viewing the far 

reaches of the universe, answering fundamental questions about the universe, its origins, and questions 

about extraterrestrial life. In order to maximize the ability to distinguish two distant objects, known as the 

Rayleigh Criterion of resolution, the primary mirror needs to be large. The minimum resolvable 

separation is proportional to wavelength divided by the entrance pupil diameter, 
𝜆

𝐷
 , as the Diameter of the 

entrance pupil grows the resolvable separation decreases and two spatially close distant objects are 

resolvable [2]. However, angular resolution is not the only reason larger primary mirrors are desirable in 

future telescope designs. Most objects of interest to astronomers are extremely dim. This can be solved by 

integrating the sensor over long periods of time, or maximizing the light collecting onto the detectors. 

Before Adaptive Optics, terrestrial telescopes were noise limited. To increase the signal to noise ratio, 

which goes like 
1

𝐷2 , where 𝐷 is the diameter of the entrance pupil, a larger mirror was necessary. Now, 

using Adaptive Optics techniques the terrestrial telescope systems are diffraction-limited [3].  
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2.3. Space Telescopes and Segmentation 

The Hubble Space Telescope launched by NASA in 1990 has been the single most productive data 

collecting instrument ever deployed. Over 15,000 scientific papers published in 20 years [1]. Terrestrial 

based telescopes located even in the best atmospheric conditions are still limited to the particles in the 

atmosphere that absorb bands of electro-magnetic energy, leaving holes in the wavelength spectrum that 

are collectable. The Hubble Space Telescope was initially designed to contain a 3-meter primary mirror in 

a Ricthey-Chretien optical train. However, congress cut funding and forced the design to be decreased to 

a 2.4-meter hyperbolic primary mirror, which still allowed for a monolithic mirror to be manufactured and 

launched [1]. In 1989, Nasa began planning the Next Generation Space Telescope (NGST), known now to 

be the James Webb Space Telescope (JWST). A study in 1996 determined a primary mirror of 8-meters 

was necessary to meet the program requirements for the NGST [4]. The launch compartment is only 4.5-

meters. Not only is an 8-meter monolithic mirror incredibly expensive and complicated to manufacture, 

the only way to fit an 8-meter mirror into a 4.5-meter vehicle is to segment it, fold it. Future astronomical 

telescopes will have segmented primary mirrors [6]. After many years of technology development and 

opto-mechanical nightmares, the JWST was launched with 18 Hexagonal shaped segments that form a 

6.5-meter primary collecting aperture.  However, JWST is not the first reported use of segmented primary 

mirror being used in a telescope design. There are reports of Archimedes in 212 BC using segmented 

optics in an array of mirrors to focus the suns light onto attacking Roman ships [3]. More recently, in 

1932 Horn d’Arturo of Italy used 61 Hexagonal segments to form a 1.5-meter mirror [3]. More recently, 

there are telescope designs that propose primary mirrors containing around 3300 segments. Studies of 

manufacturing and transportation issues of large primary mirrors have concluded that hexagonally shaped 

segments are the optimal design [6]. 
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2.4. Segmentation Diffraction Effects 

Although segmented primary mirrors allow telescopes to scale with size, even the best actively 

aligned segments will degrade image quality compared to a design with less segmented optics. Even the 

slightest misalignment of the segments, which is inevitable, cause the primary mirrors to act like a giant 

2-D blazed grating, which produce diffraction effects that appear as regular periodic interference patterns 

on the sensor [6]. These effects may be small compared to the bright object, however, there are cases in 

which these diffraction effects cloud out dim objects that are of interest. Consider the research for Earth-

like planets, which are 10−9 less bright than their orbiting star [6]. Mechanical limitations of the segments 

support structure inevitably produce Piston and Tip-Tilt errors. An analytical description of the PSF for 

segmented apertures with misalignment errors is complicated, however has been done [6]. The PSF of an 

ideal segmented mirror is represented as the convolution of two terms. The first factor is the grid-

function, which is the Fourier Transform of the segmentation geometry grid that is seen as a periodic 

function of sharp peaks, each of which is the Fourier transform of the full telescope diameter [9]. The 

second is the PSF of an individual segment [6]. The presence of Piston errors does not change the 

individual segment PSF, however these errors do modify the grid-function [6]. Each segment produces its 

own PSF which is stacked spatially concentric with respect to the center energy spot, but out of phase, 

which degrades high-order frequencies, and expands the low-order frequencies. The presence of Tip-Tilt 

errors acts like a randomly blazed 2-D diffraction grating. Each segment tilt shifts the PSF and they are no 

longer stacked spatially concentric, which degrades all frequencies in the PSF [6]. In other words, a 

segmented primary mirror can be treated as many individual telescopes corresponding to each segment. 

The PSF represents a combination of incoherent Intensities from the individual segments, and a coherent 

term that represents the interference between the individual segments. The PSF observed is combination 

of N spots, N representing the number of segmented components, reflected by each segment at different 

angles. As N grows the interference term contributes increasingly to the overall PSF [9]. Other areas of 

interest for image quality from segmentation fabrication error are gap-size and edge deformation, all of 
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which can be studied analytically for further communicating technical specifications during 

manufacturing [6]. 

2.5. Introduction of Hexagonal and Pinwheel Shaped Segments 

Studies around improving telescope designs for detection of exoplanets are of interest [8, 9,11]. If the 

telescope aperture is segmented to produce a discontinuous concave surface, then the gaps will produce 

diffraction effects across the image. If the gaps are periodic as for many hexagonal geometries, then the 

diffraction effects produce periodic diffraction effects [11]. In the Hubble Space Telescope, the secondary 

mirror spiders, structures that support the secondary mirror, introduce diffraction flares, or spikes to the 

PSF, degrading the spectral data needed for exo-planet research [8]. We have all marveled at the images 

taken by the Hubble, but it is evident each image of a star contains these four spikes, which does not 

represent a true image of the object. Werenskiold (1941) was among the first astronomers to suggest the 

implementation of curved secondary mirror spiders to mitigates these diffraction flares [8].  In a 1984 

paper, Richter demonstrated the mitigation effect of using curved secondary mirror spiders using pin-hole 

diffraction masks illuminated by an incandescent lamp located 13.7 m from the camera [10]. Richter 

argued that if the entrance pupil was obscured by a precise arc of a circle and each obscuration added to 

an integer number of circles the diffraction flares, or spikes would be uniformly fanned out into a 

“searchlight” or “bow tie” effect [8]. There would still be diffraction from the obscurations on the 

aperture, however there would be no azimuthal periodic spikes to the PSF [8]. For a monolithic circular 

primary mirror the diffraction-limited image is an Airy Disc pattern. Hexagonally shaped segmented 

primaries will focus the diffracted energy into line features that are perpendicular to the segment edges, 

which produces a diffraction-limited image that carries additional bright spikes or flares compared to the 

Airy Disc [3]. The JWST uses a primary hexagonal segment, and associated PSF contains six of these 

spikes. The successful alignment of the JWST does not go unnoticed, and its primary mission is to study 

galaxy formation at the beginning of the universe and the spikes have little impact on this goal. Other 

studies that involve exo-planet detection and classification are sensitive to these types of diffraction 
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effects. Therefore, a primary mirror using Pinwheel segmentation, which builds upon secondary mirror 

spiders, is shown to minimize diffraction flares or spikes [7]. The PSF for a Pinwheel segmented primary 

mirror is a quasi-Airy Disc. 

3. BACKGROUND THEORY 

3.1. PSF Calculation Theory 

In general, optical systems usually have limiting apertures, called stops, in which light cannot pass 

through. More correctly described is that the light interacts with the edges, and the geometric shadow of 

the aperture is no longer a true shadow, but possess interference effects from the light bending around the 

corners of the aperture [12]. Diffraction theory is the study of these effects that are not predicted in ray 

tracing models. There are two approaches to describe diffraction, which are related by Weyl’s integral 

[12].  The first approach is Huygens point-spread-function interpretation where in the aperture the light 

entering is described as an infinite number of secondary point sources which interfere at the detector. 

Diffraction, the effects of waves bending around corners, limits the image quality of a sensor. Because of 

diffraction a point source object being imaged will not be another point source object. Diffraction causes 

the point to be spread out into a blur spot called the point spread function (PSF) [14]. The diameter of the 

PSF, assuming the blur spot is circular, is proportional to wavelength divided by the diameter of the stop. 

Which infers diffraction is worse, bigger blur spot, for longer wavelength or small aperture [14]. 

Depending on the distance to the detector, approximations can be made to describe the associated PSFs 

shape, Huygens, spherical, parabolic, or planar, for each point source. The second makes use of the 

Fourier Transform of the electric field at the aperture multiplied by a transfer function. The result is the 

Fourier Transform of the electric field at the detector. The transfer function treats diffraction as a linear 

operation, which propagates the wavefront from aperture to detector [12].  From Green Second Formula, 

which flows from the Divergence Theorem: 
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 ∭(𝐺∇2𝑈 − 𝑈∇2𝐺)𝑑3𝑥 =  ∬ (𝐺
𝜕𝑈

𝜕𝑛
− 𝑈

𝜕𝐺

𝜕𝑛
) 𝑑2𝑥 (3.1.1) 

The equation above relates G and U, which are two continuous scalar functions of position closed within 

a volume to a surface surrounding the volume [13]. A solution of interest to the Green’s Second Formula 

is the Scalar Helmholtz equation, set equal to zero assumes no U sources inside the volume: 

 (∇2 + 𝑘2)𝑈 = 0 (3.1.2) 

 (∇2 + 𝑘2)𝐺 = 𝛿(|𝑟 − 𝑟𝑜⃗⃗⃗ ⃗|) (3.1.3)  

In addition, a clever solution for G, in order to constrain Greens Second Formula further, is to substitute G 

into the Helmholtz equation for U and allow it to equal delta functions that describe point sources inside 

the volume, in other words G is Greens function, or an impulse response. Here, 𝑘 = 2𝜋𝑛/𝜆, where 𝑛 is 

the index of refraction, and 𝜆 is the wavelength. The Helmholtz equation solved for ∇2𝑈 and ∇2𝐺 are 

substituted into the left-hand side of Greens Second Formula where the G terms are eliminated leaving a 

simple sifting property reducing the left-hand side to −𝑈(𝑟𝑜⃗⃗⃗ ⃗). On the right-hand side, a solution for G is 

an expanding spherical wave centered on the object. Writing this out becomes the Integral Theorem of 

Helmholtz and Kirchhoff [12]. A clever solution enforcing G=0 ultimately derives the Rayleigh-

Sommerfeld Diffraction Formula, which is the fundamental element for scalar diffraction theory: 

 𝑈𝑜(𝒓𝑜) =  ∫
(−

𝑖

𝜆
+

1

2𝜋𝑟𝑜𝑠
)𝛾𝑧 exp(𝑖𝑘𝑟𝑜𝑠)

𝑟𝑜𝑠

𝑈𝑠(𝒓𝑠)𝑑𝒓𝑠 (3.1.4) 

In the equation above 𝑈𝑜(𝒓𝑜) describes the Electric Field at the detector or observation point, 𝑈𝑠(𝒓𝑠) 

represents the Electric Field of the source in the aperture, 𝛾𝑧 is the obliquity factor described as the z-

distance from the aperture to the detector divided by 𝑟𝑜𝑠
, which represents the magnitude of the positive 

vector from the aperture to the observation point [12].   
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 The Rayleigh-Sommerfeld diffraction formula can be written as 𝑈𝑠(𝒓𝑠), times the Huygens 

wavelet assuming the Dirichlet boundary conditions, ℎ𝑧
𝐻(𝒓𝑜; 𝒓𝑠), which is the z-derivative of a spherical 

wave in the aperture and evaluated at the detector [12]. 

 𝑈𝑜(𝒓𝑜) = ∫ 𝑈𝑠(𝒓𝑠)ℎ𝑧
𝐻(𝒓𝑜; 𝒓𝑠)𝑑𝒓𝑠  (3.1.5) 

 ℎ𝑧
𝐻(𝒓𝑜; 𝒓𝑠) =

(−
𝑖

𝜆
+

1

2𝜋𝑟𝑜𝑠
)𝛾𝑧 exp(𝑖𝑘𝑟𝑜𝑠+∅)

𝑟𝑜𝑠

 (3.1.6)  

Huygens wavelet is not exactly a spherical wave due to the obliquity factor and phase term, ∅. The 

Huygens’s wavelet is the most accurate description of an optical system described with scalar diffraction 

theory.  

 For distances that are much larger than the wavelengths, it is common to approximate based on 

the distances that the shape of the incoming wavefronts viewed at the FOV of the detector will have 

simpler shapes to describe mathematically. Using the Huygens’s wavelet we can make approximations to 

reduce to the Fresnel wavelet. First, when the distance between the aperture and the detector is much 

larger than the wavelength, 𝑟𝑜𝑠
≫ 𝜆 the 

1

2𝜋𝑟𝑜𝑠

→ 0. Second, the obliquity factor is now expanded along 

with the position term 𝑟𝑜𝑠
=  √(𝑥𝑜 − 𝑥𝑠)2 + (𝑦𝑜 − 𝑦𝑠)2 + 𝑧𝑜

2. The first two terms of the Taylor Series 

expansion for √1 + 𝑏 ≈ 1 +
𝑏

2
−

𝑏2

8
, are used to approximate 𝑟𝑜𝑠

 in the exponential. The squared position 

term in the denominator is substituted for 
1

𝑟𝑜𝑠
2  ≈

1

𝑧𝑜
2. Finally, the Fresnel wavelet then takes the form: 

 ℎ𝑧
𝐹𝑟𝑒𝑠𝑛𝑒𝑙(𝒓𝑜; 𝒓𝑠) = −

𝑖𝑒𝑥𝑝(𝑖𝑘𝑧0)

𝜆𝑧0
exp (

𝑖𝑘

2𝑧𝑜
[(𝑥𝑜 − 𝑥𝑠)2 + (𝑦𝑜 − 𝑦𝑠)2]) (3.1.7) 

When the phase argument of the exponential 
𝜋

𝜆𝑧𝑜
[(𝑥𝑜 − 𝑥𝑠)2 + (𝑦𝑜 − 𝑥𝑠)2] set equal to a constant 

describes parabolic wavefronts [12]. The Fresnel diffraction integral is now: 

 𝑈𝑜(𝒓𝑜) =  −
𝑖𝑒𝑥𝑝(𝑖𝑘𝑧𝑜)

𝜆𝑧𝑜
∫ 𝑈𝑠(𝒓𝑠) exp (

𝑖𝑘

2𝑧𝑜
[(𝑥𝑜 − 𝑥𝑠)2 + (𝑦𝑜 − 𝑦𝑠)2]) 𝑑𝒓𝑠 (3.1.8) 
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 When the detector is pushed further into the far-field another approximation can be used on the 

Fresnel wavelet to further reduce the complexity of the incoming wavefronts shape after diffraction from 

the aperture. The approximations lead to the Fraunhofer wavelet. First, the phase term in the exponential 

of the Fresnel wavelet is expanded. When 𝑧𝑜 ≫
𝑘

2
(𝑥𝑠

2 + 𝑦𝑠
2), the of the expanded phase term in the 

Fresnel wavelet is approximated to unity. The Fraunhofer wavelet takes the form: 

 ℎ𝑧
𝐹𝑟𝑎𝑢𝑛ℎ𝑜𝑓𝑒𝑟(𝒓𝑜; 𝒓𝑠) = −

𝑖𝑒𝑥𝑝(𝑖𝑘𝑧0)

𝜆𝑧0
exp (

−𝑖𝑘

𝑧𝑜
[𝑥𝑜𝑥𝑠 + 𝑦𝑜𝑦𝑠]) (3.1.9) 

The shape of the incoming wavefronts from each secondary source points within the aperture is planar 

[12]. This is seen by setting the phase argument of the exponential −
𝑘

𝑧𝑜
[𝑥𝑜𝑥𝑠 + 𝑦𝑜𝑦𝑠] to be constant. 

Essentially each wavelet, depending on the distance from the aperture to the detector, is integrated with 

respect to the aperture plane and provides the full description of the Electric field at the detector. The 

Fraunhofer Integral becomes: 

 𝑈𝑜(𝒓𝑜) =  −
𝑖𝑒𝑥𝑝(𝑖𝑘𝑧𝑜)

𝜆𝑧𝑜
∫ 𝑈𝑠(𝒓𝑠) exp (

𝑖𝑘

2𝑧𝑜
[(𝑥𝑜 − 𝑥𝑠)2 + (𝑦𝑜 − 𝑦𝑠)2]) 𝑑𝒓𝑠 (3.1.10) 

Analytically integrating the wavelets above can be difficult and rigorous. Using Fourier methods can 

alleviate these calculations. When the field after the aperture, 𝑈𝑠
+(𝑥𝑠, 𝑦𝑠) is substituted into the Fresnel 

diffraction integral and the Fresnel wavelet is expanded it becomes: 

 𝑈𝑜(𝒓𝑜) =  −
𝑖𝑒𝑥𝑝(𝑖𝑘𝑧𝑜)

𝜆𝑧𝑜
exp [

𝑖𝑘

2𝑧𝑜
(𝑥𝑜

2 + 𝑦𝑜
2)] 𝑭𝜉𝑭𝜂 {𝑈𝑠

+(𝑥𝑠, 𝑦𝑠) exp [
𝑗𝑘

2𝑧𝑜
(𝑥𝑠

2 + 𝑦𝑠
2)]}   (3.1.11) 

 𝑈𝑠
+(𝑥𝑠, 𝑦𝑠) = 𝑈𝑠

−(𝑥𝑠, 𝑦𝑠)𝑃(𝑥𝑠, 𝑦𝑠) (3.1.12) 

The field after the aperture contains the field before the aperture, 𝑈𝑠
−(𝑥𝑠, 𝑦𝑠) multiplied by the aperture 

function, 𝑃(𝑥𝑠, 𝑦𝑠). Fourier methods employed on the Fraunhofer diffraction integral becomes: 

 𝑈𝑜(𝒓𝑜) =  −
𝑖𝑒𝑥𝑝(𝑖𝑘𝑧𝑜)

𝜆𝑧𝑜
exp [

𝑖𝑘

2𝑧𝑜
(𝑥𝑜

2 + 𝑦𝑜
2)] 𝑭𝜉𝑭𝜂{𝑈𝑠

+(𝑥𝑠, 𝑦𝑠)}   (3.1.13) 
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The image quality for segmented primary mirror telescopes can be determined by the quality of the point 

spread function (PSF) [15]. When the object is far like a star the incoming wavefront the aperture can be 

considered to be a plane wave. Thus, for coherent imaging the impulse response field or PSF to a 

telescope system can be written as the Fourier transform of the aperture function: 

 PSF = 𝑭𝜉𝑭𝜂{𝑃(𝑥𝑠, 𝑦𝑠)}    (3.1.14) 

Table 1 provides a summary of the equations derived above [12].  

PSF Equation (convolutional form) When used Wavefront 

Huygens  

(−
𝑖
𝜆

+
1

2𝜋𝑟𝑜𝑠

) 𝛾𝑧 exp(𝑖𝑘𝑟𝑜𝑠
+ ∅)

𝑟𝑜𝑠

 

 

 

Valid for all values of 

𝑧𝑜 

Spherical  

Fresnel  

−
𝑖𝑒𝑥𝑝(𝑖𝑘𝑧0)

𝜆𝑧0
exp (

𝑖𝑘

2𝑧𝑜

[(𝑥𝑜 − 𝑥𝑠)2

+ (𝑦𝑜 − 𝑦𝑠)2]) 

 

 

When  

𝑧𝑜

≫ √
𝜋

4

3
 𝜆 (

𝐷𝑎𝑝

2
𝜆

)

4/3

 

Parabolic 

Fraunhofer  

−
𝑖𝑒𝑥𝑝(𝑖𝑘𝑧0)

𝜆𝑧0
exp (

−𝑖𝑘

𝑧𝑜

[𝑥𝑜𝑥𝑠 + 𝑦𝑜𝑦𝑠]) 

 

 

When  

 

𝑧𝑜 ≫
𝜋

𝜆
(

𝐷𝑎𝑝

2
)

2

 

Planar 

Table 1. PSF summary. 

3.2. Software Package: HCIPy 

High Contrast Imaging for Python (HCIPy) is an open-source software package for simulating 

physical optics propagation, developed by teams of astronomers at Leiden University [7]. The software 

package is open to modifications from software developers and scientists around the world. It propagates 

the complex electro-magnetic wavefront through the defined optical system using Fresnel or Fraunhofer 

diffraction integrals from scalar diffraction theory [7]. HCIPy is written in the Python language, a high-

level programming language that is in use by many astronomical projects. HCIPy is commonly used for 

high-contrast imaging simulations including wavefront analysis and coronagraphic systems [16]. This 
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package minimizes user errors by the use of classes, which the user rarely interacts with directly. This 

architecture controls much of the mathematical details and sampling requirements in the background. 

Instead, the user interacts with functions mostly to focus strictly on the system details rather than the 

details [16]. The components in HCIPy are written independently allowing for a modular architecture of 

the optical elements involved. 

  HCIPy allows for custom optical elements to be created and propagate the wavefront. 

Alternatively, the user can implement pre-created aperture functions for the same use. A Grid class is 

used to determine sampling of an N-dimensional space, which consists of the Coords class, which 

provides the coordinate positions in either polar or cartesian for a telescope pupil to reside. The function 

make_pupil_grid() implements the Grid and Coords classes to create a regularly spaced cartesian grid 

that is symmetric about the origin. A Field object is considered a discretized version of a physical field, 

such as temperature, potential, electric field, or intensity. The Field contains a Grid and an array of 

values. A Field can be operated on by a Fast Fourier Transform (FFT), which is a discretized Fourier 

Transform algorithm, to return another Field that has a Grid with corresponding frequency units. HCIPy 

is responsible for keeping track of the sampling in the background throughout the code, which makes it 

difficult to introduce human errors to sampling. The function make_focal_grid() creates a separate 

cartesian grid and takes parameters that allow control of the number of pixels per diffraction of the PSF. 

 The Hexagon Segmented Mirror uses a Field generator, which is a mathematical description of 

some geometry, to create the telescope pupil in the shape of hexagonal segments. Another function is use 

to allow each of the segments individually deformed using Piston, Tip, and Tilt as its inputs. The 

parameters can be modified to create the geometry needed. A Wavefront object is then created to 

represent the incoming waves Electric field. The Wavefront is passed from the telescope pupil grid to the 

focal grid by using the Propagator function via FFT using either Fresnel or Fraunhofer approximations. 

 The Pinwheel Segmented Mirror is constructed in a more manual way. Each segment is built in a 

polar coordinate system individually. The segments are then manually placed into the telescope pupil grid 
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at their precise location. A separate SurfaceApodizer is used to simulate misalignment of each of the 

segments. Each Apodizer is only disturbed over the segment being called. All the Apodizers are then 

added together, which creates a 2-dimensional custom Apodizer. The incoming wavefront is then retarded 

or advanced in phase depending on the segment’s misalignment. The same propagator function used 

above is then used to pass the wavefront from the pupil to the focal grid. 

 Verification was done to ensure these two models were equivalent. The center segment of each 

telescope pupil was isolated while all other segments were set to zero. The segment was given exactly 1 

wave of tilt. The axis of tilt is exactly the center of the segment. The angle of tilt was set to 𝜋 radians so 

that the edge tilting toward the focal plane was +𝜋 radians and the edge tilting away from the focal plane 

was −𝜋 radians. Each angle represents, 
𝜆

2
 nano-meters of tilt. The total tilt in nano-meters, adding both 

sides, is therefore 1 wave. The full aperture diameter is set to, 𝐷 for each telescope. Each telescope has 5 

segments that span 𝐷. The distance to the focal plane is the focal length, 𝐹. Using similar triangles:  

 𝑃𝑆𝐹𝑠ℎ𝑖𝑓𝑡 =
2𝜆

𝐷𝑠𝑒𝑔𝑚𝑒𝑛𝑡
∗ 𝐹 (3.2.1) 

The factor of 2 comes from Snell’s law for reflection, and the focal length is 90 meters. The diameter of 

the segment is a fifth of the full telescope diameter, therefore the PSF shift for 1 wave of tilt is 10
𝜆

𝐷
. This 

was done for each telescope pupil, Hexagon and Pinwheel. See Figure 1 below. 
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Figure 1. HCIPy verification of simulation. Display of HCIPy code implementation for 

verification of equitable comparison. It is expected with the input of 1 wave of Tilt the PSF 

would shift 10 units of 𝝀/𝑫.  
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4. SEGMENTATION TOPOLOGY 

4.1. Hexagonal Segmentation 

The Hexagonal Segmented Mirror is comprised of 18 segments with the center segment not included. 

The geometry of the mirror is comparable to the JWST. The full diameter of the aperture in the y-axis is 

6.5 meters. The full diameter of the aperture in the x-axis is ~ 6.004 meters. A single segment flat to flat is 

defined as the full diameter divided by 5. The length of one side of a single segment is ~0.751 meters. The 

area of a single segment is calculated to be 1.95 meters-squared. The center obscuration is exactly the 

shape of single segment. The aperture is arranged from the center gap outward in a honeycomb pattern. 

The total area of the Hexagonal Segmented Mirror is 34.92 meters-squared. Every gap between each 

segment is 10 mm. See Figure 2 displaying the Hexagonal Segmented Mirror. 

Figure 2. Display of the Hexagonal Segmented Mirror Telescope Pupil. 
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4.2. Pinwheel Segmentation 

The Pinwheel Aperture builds upon the theory of implementing a curved secondary spider to fanout 

the diffraction spikes caused by the straight edge obscurations in the pupil, and the modeling of the 10-

meter Pinwheel Pupil, which uses circular shaped spokes to form the edges of each segment that stretch 

the radius of the aperture and are azimuthally divided [10, 11]. If the number of spokes across the aperture 

add to an integer multiple of semicircles, the PSF will achieve the desired effect [7]. To explain the 

Topology for the Pinwheel construction the derivation from Derby for an 18-segment pupil will be 

referenced, however the Pupil used in this report was modified to have nearly equal segments to be 

directly comparable with the hexagonal segments [7]. The diameter of Pinwheel aperture is 6.5 meters. 

There are 18 total segments not including the center circular segment gap. The circular segment gap is 

0.8725 meters in diameter. The center circular obscuration is located at x=0, y=0. Converting to a polar 

grid will be useful for describing the segment’s relative locations, where all radius’ will be with respect to 

the center circular gap. The Pinwheel aperture can be divided into 2 rings not including the central 

circular gap that the segments lie on. The first ring is the inner ring that is closest to the central circular 

gap and the second ring is the outer most ring. The first ring of segments inner radius is 0.8825 meters. 

The first ring of segments outer radius is 2.05875 meters. The second ring of segments inner radius is 

2.06875 meters. The second ring of segments outer radius is 3.245 meters. The gaps between the 

segments are 10 mm. The inner ring of segments has 6 spokes. The inner ring radius of the spokes are 

solved for in Derby’s paper by,  

𝑅 =
(𝑟𝑎𝑝 − 𝑟𝑐) 

2 sin (
𝜋𝑛

2𝑁𝑠𝑝𝑜𝑘𝑒
)
 

which equates to 2.3725 meters [7]. Where 𝑟𝑎𝑝, is the radius of the aperture, 𝑟𝑐, is the radius of the central 

circular gap plus the gap size, 𝑛, is the integer number of semi-circles the spokes make, and 𝑁𝑠𝑝𝑜𝑘𝑒, is the 

number of spokes. The outer ring of segments has 12 spokes. The outer ring spokes radius are equal to the 
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inner ring spokes radius. The inner ring of segments each have a surface area of 1.86212 meters-squared. 

The outer ring of segments each have a surface area of 1.63988 meters-squared. The total area of the 

Pinwheel telescope pupil is 30.8512 meters-squared. See Figure 3 displaying the Pinwheel Segmented 

Mirror. 

Figure 3. Display of the Pinwheel Segmented Mirror Telescope Pupil. 

 

5. NOMINAL PSF SIMULATION RESULTS 

Both apertures, Hexagonal and Pinwheel, were input with the same system parameters. The 

wavelength used was 632.8e-9 meters. The focal length, propagation distance from pupil grid to the focal 

grid is 90 meters. The pixels per image are 512 x 512. The sample rate used is 20, well over the 

diffraction limited sampling rate. Increasing the pixels slowed down the software so high-resolution 
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images were not readily available, so instead the sampling rate was increased and sample spacing 

decreased. The airy rings being shown for both PSFs are 20. The units for the PSFs are in angular space, 

𝜆/𝐷. 

 

5.1. Hexagonal PSF 

The Hexagonal Aperture PSF bears many features. The central energy spot is attained by the smooth 

inscribed circles, and rectangular shapes creating low order frequencies. The central spot diameter is 

associated with the inscribed circle created by the inner edges of the entire aperture. The second dark 

circle diameter in the PSF is associated with the inner inscribed circle diameter of the central segment. 

The sharp edges and corners create higher-order frequencies that contribute to the flare effects. Within the 

aperture there are repeating periodic hexagonal shapes of different diameters and spatial locations, which 

create ordered harmonics that contribute to the periodic features seen throughout the PSF.  Figure 4 

displays the PSF for the Hexagonal Segmented Mirror with absolutely 0 misalignment error.  
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Figure 4. Display of the Hexagonal Segmented Telescope Pupil Ideal PSF Intensity in log 

scale. 

Section 2.5 above alluded to what is being seen from the hexagonal PSF here. Each pair of parallel edges 

from the segments creates a grating like structure on the pupil. The resulting PSF carries perpendicular 

flares or spikes to the edges of the segment in the pupil [7]. Figure 5 displays the PSF overlaid on the 

pupil to illustrate the diffraction spikes emanating from the center of the PSF [7].  

Figure 5. Display of the Hexagonal Segmented Telescope Pupil overlaid by the Ideal PSF. 

The edges of the segments have been color coated to further illustrate the diffraction grid on 

the pupil, which results in diffraction flares perpendicular to those edges. 

  

The center spot and the diffraction flares are repeated throughout the focal grid, although much 

darker. This can be explained as the diffraction from the other edges out-side the center segment 

interfering with each other at the focal plane. These effects are not viewable without the log scale. 
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5.2. Pinwheel PSF 

Figure 6 displays the PSF for the Pinwheel Segmented Mirror with absolutely 0 misalignment error. 

The Pinwheel PSF color scale is the same as the Hexagonal PSF color scale for a direct comparison. 

Figure 6. Display of the Pinwheel Segmented Telescope Pupil Ideal PSF in log scale. 

 

The curved spokes in the Pinwheel pupil are intended to fan out diffraction effects from the grating 

like obstructions created by the edges of the segments. As seen in Figure 6 the energy is evenly 

distributed so these flares or spikes are no longer apparent, creating a less dense energy concentration at 

the center compared to the hexagonal case. The circular edges can be considered as an infinite amount of 

tiny rectangular functions oriented along a spherical curve. The resulting PSF resembles a bow-tie, which 

is the cause of the energy fan-out. The arc length of the bow-tie corresponds to the arc length of the 
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circular edge. The energy distributed from the flares brighten the higher order rings in the PSF. The airy 

rings, or the zeros in the Intensity distribution of the PSF are not evenly spaced. This is caused by the 

diameter differences from the center circular gap and the Pinwheel Aperture full diameter. The rings 

width is smaller than the center gap creating a difference in zero values once the FFT is taken. A wide 

diameter in the pupil plane results in a narrower airy ring in the focal plane, which is the center gap. A 

small diameter in the pupil plane results in a wider airy ring in the focal plane. In other words, the 

subtraction of these two diameters results in a subtraction of the two corresponding Bessel functions in 

Fourier space creating rings that are not evenly spaced. 

 

6. PSF SENSITIVITY RESULTS 

6.1. Hexagonal Segment Random Piston Study 

Piston is defined here as a misalignment distance where the segment plane is translated either in front 

of the aperture plane or behind the aperture plane. This section will display 12 piston values that gradually 

increase. The Piston value will be applied randomly for each segment as + (plus) or – (minus) the value 

given. For this study the airy rings shown is set to 20. The Piston values given are 0nm, 10 nm, 20 nm, 30 

nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, and 1 mm. Figure 7 displays the Piston 

misalignment on the Hexagonal Aperture. Figure 8 displays the corresponding PSFs. 
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Figure 7. Display of the Hexagonal Segmented Telescope Pupil with the random Piston 

values on each of the segments. The color scale is set to the 100 nm value to show the Piston 

amount increase. 

 

 

Figure 8. Display of the corresponding PSFs for the Hexagonal Segmented Telescope Pupil 

with the random Piston values on each of the segments.  

 

As the piston values increase the energy in the center spot begins to increase, as seen in Figure 8. 

This can further be seen in Figure 9. The encircled energy radius (EER) is defined as the circle of radius 

equal to the point where 90% of the energy for the center spot is contained within. The Hexagonal 

Segmented Aperture Ideal PSF EER begins at 0.742 𝜆/𝐷. The airy radius is defined as 1.22 𝜆/𝐷, where 
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the first 0 is located, which is 100% of the center spot radius. The PSF from 100 nm of Piston 

misalignment expands the EER to 2.52  𝜆/𝐷, which is 3.4 times the ideal PSF EER. Eventually the Piston 

misalignment will expand the EER to number of segments across the aperture, which is 5 times the ideal 

PSF EER. The piston introduces no shift to each segmented PSF, which are stacked concentrically in the 

image plane. There are 18 segments that contribute the same geometry, creating 18 identical PSF copies, 

however out of phase. Therefore, the rings remain in the PSF at large piston values, while the periodic 

features become washed out. The limit becomes for center spot expansion becomes 3.71 𝜆/𝐷. The Piston 

value for 1 mm reaches 3.34 𝜆/𝐷, which is 4.5 times the ideal PSF EER. 

Figure 9. Display of the EER corresponding to PSFs for the Hexagonal Segmented 

Telescope Pupil with the random Piston values on each of the segments.  
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6.2. Pinwheel Segment Random Piston Study 

The Piston values used for the hexagonal case are the same used for the Pinwheel case. The Pinwheel 

Segmented Aperture Ideal PSF EER begins at 0.698 𝜆/𝐷. The PSF from 100 nm of Piston misalignment 

expands the EER to 1.99  𝜆/𝐷, which is 2.85 times the ideal PSF EER. Eventually the Piston 

misalignment will expand the EER to 5 times the ideal PSF EER, which is 3.49 𝜆/𝐷. When compared to 

the Piston case for the Hexagonal Aperture the rings of the PSF are quickly washed out. This is explained 

by the fact that each segment is oriented and geometrically different. When piston is applied each segment 

contributes a unique PSF, which are out of phase, and therefore was out the outer rings. The Piston value 

for 1 mm reaches 2.88 𝜆/𝐷, which is 4.12 times the ideal PSF EER. Figures 10, 11 and 12 display the 

Pinwheel aperture with the random Piston values on each segment, the corresponding PSFs, and the EER 

plot, respectively. 

Figure 10. Display of the Pinwheel Segmented Telescope Pupil with the random Piston 

values on each of the segments. The color scale is set to the 100 nm value to show the Piston 

amount increase. 
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Figure 11. Display of the PSFs for Pinwheel Segmented Telescope Pupil with the random 

Piston values on each of the segments.  

 

 

 

Figure 12. Display of the EER corresponding to PSFs for the Pinwheel Segmented Telescope 

Pupil with the random Piston values on each of the segments.  
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6.3. Hexagonal Segment Random Tip/Tilt Study 

Tip/Tilt is defined here as a misalignment rotated around the center point of each segment. The 

segmented is tilted in radians where the tan(∅) =
[𝑇𝑖𝑝 𝑇𝑖𝑙𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑛𝑚]

[
𝑑𝑖𝑎𝑚𝑠𝑒𝑔𝑚𝑒𝑛𝑡

2
]

 . The tilted segment is then 

randomly azimuthally rotated around the center point. The angle of tilt is related to the wavelength by 

∅ = 2𝜋 ∗
[𝑇𝑖𝑝 𝑇𝑖𝑙𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑛𝑚]

𝜆
 . This section will display 12 Tip/Tilt values that gradually increase. The 

Tip/Tilt value will be applied randomly for each segment as + (plus) or – (minus) the value given. The 

Tip/Tilt values given are 0 nm, 25 nm, 50 nm, 75 nm, 100 nm, 125 nm, 150 nm, 175 nm, 200 nm, 225 

nm, 250 nm, and 10 waves (~3191 nm). The values correspond the following input angles in nano-radians 

are calculated in Table A-5 in the Appendix.  Figure 13 displays the Tip/Tilt misalignment on the 

Hexagonal Aperture. Figure 14 displays the corresponding PSFs. Figure 15 displays the EER for the 

Tip/Tilt Hexagonal case. The EER continuously degrades as more tilt is introduced.  The tilt of each 

segment shifts each segment PSF to different locations resulting in 18 PSF, that do not overlap in the 

image plane. At 10 waves of Tip/Tilt the EER expands to 7.42 𝜆/𝐷, which is 10 times the Ideal EER. 

Figure 13. Display of the Hexagonal Segmented Telescope Pupil with the random Tip/Tilt 

values on each of the segments. The color scale is set to the 250 nm value to show the 

Tip/Tilt amount increase. 
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Figure 14. Display of the PSFs for the Hexagonal Segmented Telescope Pupil with the 

random Tip/Tilt values on each of the segments.  

 

 

Figure 15. Display of the EER corresponding to PSFs for the Hexagonal Segmented 

Telescope Pupil with the random Tip/Tilt values on each of the segments.  
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6.4. Pinwheel Segment Random Tip/Tilt Study 

The Tip/Tilt values used for the Hexagonal case is the same used for the Pinwheel case. Figures 16, 

17 and 18 display the Pinwheel aperture with the random Tip/Tilt values on each segment, the 

corresponding PSFs, and the EER plot, respectively. At 10 waves of Tip/Tilt the EER expands to 7.22 

𝜆/𝐷, which is 10.34 times the Ideal EER. 

 

Figure 16. Display of the Pinwheel Segmented Telescope Pupil with the random Tip/Tilt 

values on each of the segments. The color scale is set to the 250 nm value to show the 

Tip/Tilt amount increase. 

 

Figure 17. Display of the PSFs for the Pinwheel Segmented Telescope Pupil with the random 

Tip/Tilt values on each of the segments. 
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Figure 18. Display of the EER corresponding to PSFs for the Pinwheel Segmented Telescope 

Pupil with the random Tip/Tilt values on each of the segments. 

 

6.5. Summary of EER Study 

Table 2 and 3 below contain the summary for each EER case study and a comparison using the 

starting Ideal case with 0 misalignment. The expansion of the 90% point in 𝜆/𝐷 is divided by the Ideal 

case to produce a value for how many Ideal cases each misalignment expanded the central energy spot. 

Table 2 and 3 serve two purposes: a verification that the Misalignments are producing the results that are 

theoretically expected, and a comparison of for how the central energy spot is expanded for both Aperture 

types relative to their starting positions. Due to the random nature of the study the values do not expand 

the center spot energy in a linear fashion. However, the table clearly shows that the misalignments 

degrade the PSFs in the way one would expect. The Piston Misalignment reaches a peak near 5X the 
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Ideal, which is caused by the 5 segments that span the Full Aperture Diameter. The Tip/Tilt Misalignment 

does not reach a peak as expected, but degrades the PSFs as more angle is introduced. 

Table 2. Documentation of the EER study for the Piston Misalignment of each Segmented 

Aperture. 

 

Table 3. Documentation of the EER study for the Tip/Tilt Misalignment of each Segmented 

Aperture. 

[nm] Hexagonal [λ/D] X Ideal Pinwheel [λ/D] X Ideal

0 0.7423 0.6979

10 0.7457 1.0047 0.7005 1.0038

20 0.7555 1.0178 0.7154 1.0251

30 0.7719 1.0399 0.7249 1.0388

40 0.8031 1.0819 0.7391 1.0591

50 1.1343 1.5282 0.8227 1.1789

60 1.2998 1.7511 1.4425 2.0670

70 2.0249 2.7280 1.5457 2.2150

80 2.3913 3.2216 1.6227 2.3252

90 2.2279 3.0014 2.1042 3.0152

100 2.5197 3.3946 1.9828 2.8412

1 [mm] 3.3284 4.4841 2.8726 4.1163

Table 1. PISTON MISALIGNMENT

[nrads] Hexagonal [λ/D] X Ideal Pinwheel [λ/D] X Ideal

0 0.7423 0.6979

38.5 0.7471 1.0065 0.7045 1.0095

76.9 0.7781 1.0483 0.7461 1.0692

115.4 0.8009 1.0790 0.7911 1.1337

153.8 1.5863 2.1370 2.3355 3.3466

192.3 3.5169 4.7380 3.7313 5.3467

230.8 3.7732 5.0833 3.6385 5.2137

269.2 5.4161 7.2967 5.1728 7.4123

307.7 5.8382 7.8653 4.7725 6.8387

346.2 6.9986 9.4285 6.4376 9.2247

384.6 7.3612 9.9171 7.0870 10.1552

4909.2 7.4111 9.9844 7.2220 10.3487

Table 2. TIP/TILT MISALIGNMENT
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7. PSF PERFORMANCE BASED ON MONTE CARLO SIMULATION 

For the Monte Carlo Simulation each Aperture, Hexagonal and Pinwheel, segments were introduced 

the same amount of random misalignment per segment. The case studies for Piston and Tip/Tilt were done 

separately with the goal of identifying which Telescope Pupil may be less sensitive to inevitable 

misalignment by the support structures. The experiment was run 10 times for each case, for each Aperture 

in order to calculate an average and a standard deviation. The measure of quality common to each study 

was the average EER for each PSF and the average Strehl Ratio for each PSF. The Strehl Ratio is here is 

defined as the Ideal Segmented PSF center pixel value divided by the Misaligned Segmented PSF center 

pixel value. The random misalignment values were input into HCIPy and the corresponding non log PSFs 

were exported saving the pixel data. The images were then imported into Matlab, where a series of 

manually typed scripts processed the image to arrange each pixel value to range from 0 to 255, 0 being 

black and 255 representing white. The scripts used a common center pixel corresponding to the half-way 

point in x and y for each image. The scripts began at the center pixel, representing (0,0) in (x,y) cartesian 

space. A grab arm function was created to sweep through pixel values and store them into a separate 

vector adding each series of values as they swept the image. The arm’s 1st position was pixel (1,0). The 

arm would grab this value and then rotate about the center point, 2𝜋 radians grabbing every pixel it would 

touch minus the final pixel value, and adding these values along the way, creating a ring (perimeter) of 

brightness values. This value was stored in the separate vector as the first position. Then the arm would 

extend to (2,0) and sweep again. This process repeated until the edge of the image. The vector was fully 

populated with every arm grabber length, representing the total image brightness contained within the arm 

grabber’s ring (perimeter). An Integral function was created to integrate the vector of brightness rings to 

create vector_2, representing the brightness contained within each circle (area). Vector_2 was then 

normalized by the entire summed image brightness, the last column of vector_2. This was then plotted as 

a function of the proper 𝜆/𝐷. An interpolation function was created to sift vector_2 to extract the 90% 

EER point for each image. A schematic diagram depicting the flow of data and image processing 
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described above is displayed below in Figure 19.  A second function was created to extra each image’s 

center pixel value. Table A-1, A-2 in Appendix contains the extracted data from the scripts above for each 

image associated with the Piston Misalignment routine. Table A-3, A-4 in Appendix contains the extracted 

data for each image associated with the Tip/Tilt Misalignment routine. Figure 20 and 21 contains the 

Piston misalignment comparison study for Hexagonal Segmented Mirror vs Pinwheel Segmented Mirror 

for the EER and Strehl Ratio of each mirror type, respectively. Figure 22 and 23 contains the Tip/Tilt 

misalignment comparison study for the EER and Strehl Ratio of each mirror type. 
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Figure 19. Schematic Diagram displaying the procedure steps taken to produce and analyze 

the Misalignment Cases for each Aperture type. 
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Figure 20. Display of the EER values from the Monte Carlo analysis for each Aperture with 

random Piston Misalignment. 

 

 

 

 

 

 

 

 

 



  42 
 

Figure 21. Display of the Strehl Ratio values from the Monte Carlo analysis for each 

Aperture with random Piston Misalignment.  
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Figure 22. Display of the EER values from the Monte Carlo analysis for each Aperture with 

random Tip/Tilt Misalignment. 
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Figure 23. Display of the Strehl Ratio values from the Monte Carlo analysis for each 

Aperture with random Tip/Tilt Misalignment. 
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8. CONCLUSION 

It was the hypothesis of this paper that the Pinwheel Aperture would be less sensitive to segment 

misalignments relative to the Hexagonal Aperture. This hypothesis was assumed due to the intentional 

topology of the Pinwheel Aperture. The topology was designed to fan out the diffraction spikes 

introduced by the edges of the segments. This fan out feature of the Pinwheel was thought to have further 

anti-aberration like qualities. The plots above containing the Monte Carlo Runs for the Misalignment 

cases are inconclusive. The two apertures seem to behave similarly when the Misalignments are 

introduced. A deeper dive into the Monte Carlo averages shows that the hypothesis was incorrect. The 

Pinwheel Aperture is more sensitive to Piston and Tip/Tilt Misalignment than the Hexagonal Aperture. 

The Hexagonal Aperture was less sensitive for most of the Piston data runs, and overall was 1.20% less 

sensitive than the Pinwheel Aperture. The Hexagonal Aperture was less sensitive for all of the Tip/Tilt 

data runs, and overall was 7.05% less sensitive than the Pinwheel Aperture. The final data comparisons 

can be seen in Table 4 and Table 5 below. The EER data was preferred over the Strehl data because the 

standard deviations were much smaller, indicating a more precise measurement for the final comparison. 

Table 4. Summary of Monte Carlo analysis for Piston EER of each Aperture type. 
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Table 5. Summary of Monte Carlo analysis for Tip/Tilt EER of each Aperture type. 
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APPENDIX 

Table A-1. Hexagonal Aperture Data output for the Monte Carlo runs of random Piston 

Misalignment. 
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Table A-2. Pinwheel Aperture Data output for the Monte Carlo runs of random Piston 

Misalignment. 
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Table A-3. Hexagonal Aperture Data output for the Monte Carlo runs of random Tip/Tilt 

Misalignment. 
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Table A-4. Pinwheel Aperture Data output for the Monte Carlo runs of random Tip/Tilt 

Misalignment  
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Table A-5. Tip/Tilt values converted to input angle. 

 

 

 

 

  



  52 
 

REFERENCES 

1. Wall, W. (2018). Astronomy as a Science in Need of a Tool. In: A History of Optical 

Telescopes in Astronomy. Historical & Cultural Astronomy. Springer, Cham. https://doi-

org.ezproxy4.library.arizona.edu/10.1007/978-3-319-99088-0_1 

 

2. Goodman, Joseph W. Introduction to Fourier Optics. Fourth ed. 2017. Print. 

 

3. Oswalt, Terry D, and Ian S McLean. Planets, Stars and Stellar Systems, Volume 1. 

Dordrecht: Springer Netherlands, 2013. Web. 

 

4. Stahl, H. Philip. "JWST Primary Mirror Technology Development Lessons Learned." 

Proceedings of SPIE 7796.1 (2010): 779604-79608. Web. 

 

5. Feng, Yi-Ting, Jaren Nicholas Ashcraft, James B Breckinridge, James E Harvey, Ewan S 

Douglas, Heejoo Choi, Charles Lillie, Tony Hull, and Dae Wook Kim. "Topological Pupil 

Segmentation and Point Spread Function Analysis for Large Aperture Imaging Systems." 

11568 (2020): 115680I-15680I-13. Web. 

 

6. Yaitskova, Natalia, Kjetil Dohlen, and Philippe Dierickx. "Analytical Study of Diffraction 

Effects in Extremely Large Segmented Telescopes." Journal of the Optical Society of 

America. A, Optics, Image Science, and Vision 20.8 (2003): 1563-575. Web. 

 

7. Derby, K.Z, J.B Breckinridge, J.E Harvey, T. Hull, C.F Lillie, J.N Ashcraft, H. Choi, E.S 

Douglas, D. Kim, and University of Arizona Wyant College of Optical Sciences. Curved 

Primary Aperture Segmentation Enabling a Robust Quasi-Airy Pattern Point Spread 

Function (2022): Proceedings of SPIE - The International Society for Optical Engineering. 

Web. 

 

8. Harvey, James E, James B Breckinridge, Ryan G Irvin, and Richard N Pfisterer. "Novel 

Designs for Minimizing Diffraction Effects of Large Segmented Mirror Telescopes." 10745 

(2018): 107450L-07450L-14. Web. 

 

9. Yaitskova, Natalia, and Kjetil Dohlen. "Tip-tilt Error for Extremely Large Segmented 

Telescopes: Detailed Theoretical Point-spread-function Analysis and Numerical Simulation 

Results." Journal of the Optical Society of America. A, Optics, Image Science, and 

Vision 19.7 (2002): 1274-285. Web. 

 

10. Richter, J. L. "Spider Diffraction: A Comparison of Curved and Straight Legs." Applied 

Optics 23.12 (1984): 1907-913. Web. 

 

https://doi-org.ezproxy4.library.arizona.edu/10.1007/978-3-319-99088-0_1
https://doi-org.ezproxy4.library.arizona.edu/10.1007/978-3-319-99088-0_1


  53 
 

11. Breckinridge, James B, James E Harvey, Karlton Crabtree, and Tony Hull. "Exoplanet 

Telescope Diffracted Light Minimized: The Pinwheel-pupil Solution." 10698 (2018): 

106981P-06981P-10. Web. 

 

12. Milster, D. Tom, Chapter 5 Scalar Diffraction. 2019. 

 

13. Kreyszig, Norminton, Kreyszig, Herbert, and Norminton, E. J. Advanced Engineering 

Mathematics. 10th ed. 2011. Web. 

 

14. Nichols, Jonathan M, Ronald G Driggers, and Melvin H Friedman. Introduction to Infrared 

and Electro-Optical Systems, Second Edition. 2nd ed. Boston, Mass.: Artech House, 2012. 

Artech Optoelectronics and Applied Sciences. Web. 

 

15. Lightsey, Paul A, and Michael Chrisp. "Image Quality for Large Segmented Space 

Telescopes." Proceedings of SPIE 4850.1 (2003): 453-60. Web. 

 

16. Por, Emiel H, Sebastiaan Y Haffert, Vikram M Radhakrishnan, David S Doelman, Maaike 

Van Kooten, and Steven P Bos. "High Contrast Imaging for Python (HCIPy): An Open-

source Adaptive Optics and Coronagraph Simulator." 10703 (2018): 1070342-070342-14. 

Web. 


