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A schematic of a fabricated microtoroid resonator. Dmajor is the major
diameter and Dminor is the minor diameter as depicted in the figure.
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2.7 Threshold power for FWM and SRS. The SRS dominant region is
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2.8 Competition between FWM and SRS as a resonance is scanned.
(Left) A thermally broadened resonance is scanned from a short wave-
length to a long wavelength and (Right) the corresponding measured
spectrum at each stage is shown. FWM process is first excited at
stage I and the cascaded process continues until stage IV as the laser
is scanned. As the intracavity power increases, the SRS is also excited
at stage V and the competition between them starts. . . . . . . . . . 61

2.9 Competition between FWM and SRS at various coupling conditions.
(a) The microtoroid and the tapered fiber kept in contact. The height,
z, is varied from 0 to 2 µm. The toroid resonator and the tapered
fiber are in the same equatorial plane at z = 0 µm. (b) The SRS is
dominant process at z = 0 µm. The cascaded SRS is observed. (c)
The FWM and SRS are present simultaneously at z = 1 µm. (d) The
SRS is dominant process at z = 2 µm. A Raman comb is also observed. 62

3.1 (a) Experimental Setup. An external cavity diode laser (ECDL) is
amplified by a tapered amplifier (TA) and pumped into a cavity. A
polarization controller (PC) is used to excite either the TE or TM
mode family. Laser wavelength scanning is calibrated using a Mach-
Zehnder interferometer (MZI). The calibration and transmission data
are received by photodetectors (PDs) and monitored using a data ac-
quisition (DAQ) system or an oscilloscope (OSC). The spectrum was
simultaneously measured using an optical spectrum analyzer (OSA).
(b) Schematic of the sample chamber. Inset: microscope image of the
microcavity. (c) Q-factor measurement in air for a microtoroid. The
frequency axis is calibrated by a MZI of FSRMZI ≈ 17.5 MHz. The
loaded Q-factor of the fundamental mode was ∼ 1 × 108. (d) Rep-
resentative example of the calibrated spectrum scan. (e) Linewidth
measurement for the same toroid in water. Typically, the quality fac-
tor drops by around a factor of 2. For simplicity, the linewidth of the
left peak is used for the Q-factor estimation. . . . . . . . . . . . . . . 69
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3.2 Dispersion measurement and frequency comb generation in water. (a)
Deviation of the resonance frequencies, ωµ = ω0+D1µ+

1
2
D2µ

2+ . . .,
from an equidistant frequency grid (ω0 + D1µ) and µ is the rela-
tive mode number, where D1 = 2π × FSR with respect to a pump
mode (µ0). Each dot on the plot related to an eigenfrequency (ωµ)
of the cavity. A particular mode family is represented as a line that
consists of colored dots corresponding to measured Q-factors on a
logarithmic scale. The dot color may be used to identify a particular
mode family because a mode family has similar Q. The integrated
dispersion, Dint = ωµ − ω0 − D1µ = 1

2
D2µ

2 + . . ., describes normal
dispersion with D2/2π = −1.1877 MHz (red solid line; higher-order
terms are ignored). Black solid lines are drawn to visualize higher
order mode families and AMXs. The AMX can be easily observed
because it significantly alters eigenfrequencies, degrades the Q-factor
(shown by the dot color) and transmission depth of the resonances
(not shown here). The pump wavelength and AMX location is high-
lighted in orange and green, respectively. (b) Generated frequency
comb in water when the mode indicated in (a) is pumped. The pri-
mary comb is located at the wavelength where the AMX happens
(highlighted in green). (c) The integrated dispersion for a mode fam-
ily with a D2/2π ∼ −0.5158 MHz. The pump wavelength and AMX
location is highlighted in orange and green, respectively. (d) Gener-
ated frequency comb in water by pumping the mode shown in (c).
The primary comb is located at the wavelength where the AMX hap-
pens (highlighted in green). (e) The integrated dispersion for a mode
family where AMXs are considerably strong and dispersion cannot be
measured precisely. The pump wavelength and AMX location is high-
lighted in orange and green, respectively. (f) The generated frequency
comb when the mode indicated in (e) is pumped. . . . . . . . . . . . 71
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3.3 Measured dispersion and generated frequency comb in air. (a) Inte-
grated dispersion of a mode family where only a weak modal coupling
is present in the scan range. The pump wavelength is highlighted in
orange. The dot color represents the quality factor in a logarithmic
scale and helps to trace a mode family as shown in (a) and (d). (b)
Primary comb lines appear beyond the wavelength scan range from
the blue-detuned side. When multiple AMXs exist for the mode fam-
ily, the primary comb does not appear at the closest AMX location
but rather might be dependent on coupling power between the modes.
(c) A broadband frequency comb generated as the laser scans from
short to long wavelengths. The spectrum spans over 300 nm and cov-
ers the visible wavelength range. (d) Integrated dispersion for another
mode family. Several AMXs are observed over the wavelength scan
range. The pump wavelength is highlighted in yellow. (e) Primary
comb lines occur at ∼ 30 nm away from the pump wavelength. (f) A
broadband frequency comb spanning more than 200 nm. . . . . . . . 75

3.4 Numerical simulation on primary comb. (a) Simulation of the inte-
grated dispersion. Simulation parameters are described in the main
text. A simple two-parameter model is used [1]. The pump mode, and
weak and strong mode location are highlighted in orange, yellow, and
green, respectively. (b) Primary comb line generation. The primary
comb is generated where the stronger AMX happens (highlighted in
green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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4.1 Parametric four-wave mixing (FWM) and stimulated Raman scat-
tering (SRS) gain curves. (a - c) Gain/loss per roundtrip vs (a)
normalized power and (b), (c) normalized detuning in the normal-
dispersion regime. (a) Detuning (δ0) is fixed at 0. No gain is present
in the absence of modal interaction. Parametric gain can be created
by introducing modal interaction (∆ω > 0), which determines an
amplitude and width of the gain envelope, and a threshold power.
(b) Normalized power (S) is fixed at 4. Raman gain is not depen-
dent on the frequency shift. Parametric gain is maximized at a ≈ 3.
(c) Parametric and Raman gains at different pump powers with a
fixed frequency shift (a ≈ 2). Raman gain increases linearly with
the pump power, while parametric gain can be a function of both the
pump power and additional frequency shift. (d - f) Difference between
the FWM and SRS gains in 2D-parameter space. The FWM (SRS)
dominant region is filled with red (blue). Red (blue) dashed line rep-
resents zero gain for FWM (SRS). Horizontal dashed arrows indicate
excitation pathways explored in upcoming sections. The difference
between the FWM and SRS gains is normalized by loss (α) with the
chosen additional frequency shifts of (d) a = 1, (e) a = 2, and (f)
a = 4. Cases (i - vi) shows parameters analyzed in the following
sections. Note b is assumed to be 1 in all calculations. . . . . . . . . . 85

4.2 Excitation of dark soliton and SRS. (a) The integrated dispersion with
an AMX (a = 8, b = 3) based on equation (4.7). (b) The averaged
intracavity power (blue) and detuning (orange) as a function of time.
The normalized pump power is set to 4. (c) The spectral evolution of
the intracavity power. (d) The spectrum and temporal profile at the
stages marked in (b). Four stages are chosen at different detuning
values. A ‘Turing’ pattern appears at stage I. Solitons are generated
as shown at stages II and III. SRS is excited when the intracavity
power reaches the threshold intracavity power at stage IV. . . . . . . 89
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4.3 Excitation dynamics of a dark soliton and SRS at different AMX
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equation (4.7). Parameters for the AMX are a = 4, 8, 16 for case (i),
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for cases (iv) (blue), (v) (green), (vi) (red) and detuning (black) as a
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a representative spectrum (bottom), and temporal waveform (inset)
for each case. The dark soliton exists for a shorter detuning range at
a higher pump power (stages II and III). In other words, increasing
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4.5 Simulated stability chart for different additional frequency shift val-
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ABSTRACT

The ability to detect individual molecules without the need for labels or capture

probes is a topic of great interest in medical applications and scientific research.

Frequency-locked microtoroid optical resonators have shown promise in label-free

single molecule detection, but currently require prior knowledge of the molecule to

be detected and surface functionalization of the cavity. Meanwhile, microresonator-

based optical frequency combs have the potential to provide spectral information

on molecules, but generating them in aqueous biological sensing environments has

been challenging due to altered dispersion, coupling instability, and reduced quality

factor of the resonator.

In this study, we propose a novel approach to achieve bio-sensing compatible

spectroscopy by demonstrating the generation of frequency combs in both water

and air at near-visible wavelengths, using a microtoroid optical resonator. Micro-

toroid resonators are well-suited for biosensing due to their high quality (Q) factors

and small mode volumes. We achieve local anomalous dispersion by leveraging

the interaction between different transverse mode families within an overall normal

dispersion region, while preserving the advantageous structure and material of the

microtoroid resonator for biosensing. Our approach can eliminate the need for la-

bels or capture probes and has the potential to enable simultaneous detection and

identification of single molecules in both air and liquid at any wavelength. By uti-

lizing microresonator-based frequency combs to measure absorption spectra, we can

detect binding events and identify molecular species on the same device, without the
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need for additional structures or surface functionalization. This has the potential

to significantly reduce experimental costs and save time.

Despite the advantages of this application, there have been no previous demon-

strations of frequency comb generation in a biodetection setting where the resonator

is covered with liquid. Conventional dispersion engineering techniques have not been

effective in addressing the significant alteration of resonator dispersion caused by an

aqueous solution. In this study, we generated an optical frequency comb based on

a toroid resonator immersed in high-purity water, using an avoided mode crossing

(AMX) approach. We also discuss technical challenges associated with this demon-

stration and present numerical solutions to overcome them.

Overall, our findings can pave the way for label-free single-molecule spectroscopy

in aqueous environments using microtoroid resonators. We believe that this ap-

proach has promising potential for various biomedical and scientific applications.

Further studies are warranted to explore the full potential of this approach in di-

verse sensing environments and applications.
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CHAPTER 1

Fundamental Principles of Optical Microresonators

Research on optical microresonators has been ongoing for more than 20 years, and

interest in this field continues to grow due to advances in micro/nano fabrication

technologies. Optical microresonators offer unique and rich optical physics, and their

potential applications in miniaturizing bulky optical systems and integrating them

on a chip have significant implications, similar to electronics. In this chapter, basic

concepts and background knowledge of optical microresonators is briefly reviewed,

with a focus on silica microtoroid resonators, which are the subject of study in this

thesis.

The basic principles of silica microtoroid resonators, including their optical

modes and resonance frequencies, are discussed in this chapter. The fabrication

techniques used to create these resonators are also described, including the use of

lithography and etching processes.

1.1 Whispering-gallery-mode resonators

A whispering gallery mode (WGM) optical resonator is a type of optical cavity where

light waves are confined and circulate along the circumference of the resonator via

total internal reflection. The name "whispering gallery" comes from the effect that

occurs in some circular or elliptical buildings, such as the whispering gallery in St.

Paul’s Cathedral in London, where a person standing at one end of the gallery can
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hear a whisper from someone standing at the other end due to the reflection of sound

waves.

Similarly, in a WGM optical resonator, light waves can be confined and "whis-

pered" around the perimeter of the resonator due to the total internal reflection of

the light waves. This results in a highly localized and long-lived optical field that

can be used for a variety of applications, including sensing [2, 3, 4], filtering, and

nonlinear optics. WGM resonators can be made from a variety of materials, includ-

ing glass, silica, and polymers, and can have different shapes, such as spheres, disks,

and toroids [5].

1.1.1 Resonance frequencies

The resonance frequencies of optical microresonators are evenly spaced and deter-

mined by the following equations:

ωm =
2πmc

neffL
or λm =

neffL

m
(1.1)

In these equations, m represents the mode number, ωm represents the angular

frequency of the mth mode (λm represents the wavelength), neff represents the ef-

fective refractive index, L represents the roundtrip length of the resonator, and c

represents the speed of light. The roundtrip time, tR, is the inverse of the free-

spectral range (FSR) of the resonator, which can be expressed as tR = 1/FSR. It

is important to note that the FSR is a frequency-dependent value that is influenced

by the material and geometric dispersion of the medium.
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1.1.2 Microresonator dispersion

The dispersion of a microresonator arises from both material dispersion, which de-

scribes the frequency dependence of the refractive index, and geometric dispersion,

which is caused by the resonator’s structure. This results in non-equidistant reso-

nance frequencies and frequency-dependent mode spacings. The resonance frequency

of an arbitrary mode with a relative mode number µ can be expressed as a Taylor

series as following

ωµ = ω0 +D1µ+
1

2!
D2µ

2 +
1

3!
D3µ

3 + ... (1.2)

The equidistant frequency grid is represented by D1/2π, and D2 and D3 describe

the deviation of FSR from the center frequency in terms of second- and third-order

dispersion, respectively. Positive (negative) D2 coefficient represents anomalous

(normal) dispersion, respectively. The deviation of the resonance frequencies from

the equidistant frequency grids, also known as integrated dispersion Dint, can be

expressed as

Dint = ωµ − ω0 −D1µ =
1

2!
D2µ

2 +
1

3!
D3µ

3 + ... (1.3)

In this thesis, we only focus on the second order dispersion coefficient and ig-

nore the higher order dispersion coefficients. Dispersion is crucial for frequency

comb generation, affecting its bandwidth and phase-matching condition. A detailed

explanation of microresonator dispersion will be provided in chapter 2.
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1.2 Silica microtoroid resonators

The whispering-gallery-mode resonator has become a significant platform in various

fields of study, including nonlinear photonics and bio-detection, due to its ultra-

high quality factor and small mode volume. About two decades ago, researchers

developed the toroid resonator to address the surface roughness issues of the disk

resonator [6]. The microtoroid resonator, in particular, has become one of the

primary platforms for biosensing applications [7, 8], as the sensitivity of particle

detection is proportional to the quality factor over the mode volume. Figure 1.1

depicts the schematic of the fabrication procedures for a toroid resonator. The

process involves preparing a thermally grown silica layer on top of a silicon substrate,

patterning disks using photolithography, followed by a buffered oxide etch (BOE) to

remove the disks. The silicon layer is etched using XeF2 gas to isolate optical modes

from the silicon pillar. Finally, a CO2 laser is used to heat and reflow the surface of

the disks, forming a surface-induced structure. The results of the fabrication process

are presented at the top of Figure 1.1.

A microscopic images for a microdisk and microtoroid resonators are shown in

Figure 1.2. It’s worth noting that as fabrication techniques have improved, using a

CO2 laser to reflow the disk layer is no longer advantageous or even desirable due

to the high demand for integrating the resonator in a chip and precise geometri-

cal design of the cavity structure [9, 10]. It is challenging to control the melting

and reforming of the outer rim of the resonator with precision that can be eas-

ily achieved with current chip-based fabrication techniques. However, Despite the

limited fabrication control, the toroid resonator’s small mode volume and ultra-high
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Figure 1.1: Fabrication procedures of silica microtoroids. (a) A thermally grown
silica on top of a silicon substrate is prepared. A photoresist is applied, followed by
patterning disks using photolithography on the photoresist layer. (b) The pattern
is generated using HF wet etching. (c) XeF2 dry etching is performed to undercut
the silicon substrate. At this stage, this device is called microdisk resonator. (d)
CO2 laser is focused on the silica and melts silica to enhance surface roughness
dramatically. A toroidal shape is generated due to surface tension.

quality factor are still attractive properties that are useful for various fields of study,

including optomechanical photonics and single-particle detection.

1.2.1 Finite element analysis for optical eigenmodes

The finite element method (FEM) is used for eigenmode analysis of microresonators.

In FEM, the microresonator is modeled as a three-dimensional structure consisting of

various materials and shapes. The structure is discretized into small finite elements,

each of which is described by a set of equations based on its material properties and

geometry. These equations are then solved to obtain the electric and magnetic field

distributions inside the microresonator.

Eigenmode analysis involves finding the modes of electromagnetic fields that

satisfy the boundary conditions of the microresonator. These modes are known as

eigenmodes, and they correspond to the standing waves that can exist inside the
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Figure 1.2: Microscopic images of silica microdisk resonator and microtoroid res-
onator. (Left) A diameter of a fabricated microdisk resonator is 700 µm. A CO2

laser is focused to form a toroid resonator. (Right) A diameter of the toroid res-
onator is around 500 µm.

microresonator. Each eigenmode has a unique frequency and field distribution (fig-

ure 1.3).

1.3 Experimental setup

Figure 1.4 shows an experimental schematic for this experiment. A tunable laser

is amplified and injected into the cavity using a tapered fiber. A photodetector

(PD) is used to measure the intensity of the light that is transmitted through the

microresonator. This can be used to monitor the resonance characteristics of the

microresonator over time. A scanning of the laser is calibrated by a Mach-Zehnder

interferometer (MZI). A high sampling rate data acquisition (DAQ) card or an os-

cilloscope monitors both the MZI and transmission signal. An optical spectrum

analyzer (OSA) is used to measure the optical spectrum of the light that is trans-

mitted through the microresonator. The microresonator is typically sensitive to
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Figure 1.3: Eigenmode analysis for a microtoroid resonator. Representative mode
profiles for 8 optical modes are labeled with their orders of modes as TEij, where i
represents the radial mode number and j represents the azimuthal mode number.

temperature fluctuations, so a thermo-electric cooler is often used to maintain a

stable operating temperature. The experimental setup is shown in figure 1.5.

1.4 Coupling light into microresonators

There are several methods available to achieve the coupling of light into an optical

microcavity. One such method involves using a prism to couple light into a micro-

cavity. The prism is positioned near the microresonator, and laser light is focused

onto a spot close to it. Total internal reflection within the prism occurs, allowing

the evanescent tail of the light wave to couple into the resonator and vice versa.he

angle of incidence is adjusted to match the resonant wavelength of the resonator.

A similar method involves using angle-cleaved fibers. This technique requires two

fibers for coupling, which increases the degrees of freedom for proper positioning of

the fibers.

In this work we use tapered fiber coupling which has several advantages over
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ECDL TA PD OSA

Glass Chamber

Toroid Resonator

OSC

Figure 1.4: Simplified experimental setup for device characterization and measure-
ment. ECDL: external cavity laser diode; TA: tapered amplifier; PD: photodiode;
OSA: optical spectrum analyzer. OSC: oscilloscope

Figure 1.5: Experimental setup. (a) An optical microresonator is mounted on a
nano-positioning stage that allows it to be precisely aligned with the tapered fiber.
The microresonator is imaged with a microscope to monitor the alignment. (b) The
optical microresonator is placed on a thermo-electric cooler (TEC) attached on a
custom-built sample holder. The TEC is used to reduce a thermal fluctuation in
the surrounding environment.
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other coupling techniques. These advantages include high coupling efficiency, low

insertion loss, easy alignment, a wide range of wavelengths, and a compact size. The

tapered fiber can be precisely fabricated to match the mode of the resonator, which

leads to efficient coupling, and it can be used over a broad range of frequencies.

Tapered fiber coupling is a simple and easy technique to align, requiring only a

single fiber, which makes it suitable for applications where space is limited.

1.4.1 Fabrication of optical tapered fiber

The fabrication of an optical tapered fiber generally entails utilizing the fiber pulling

technique, which involves heating and elongating a fiber until it thins out at the

heated section. A standard single-mode optical fiber is used as the starting material,

which is initially cleaned using isopropyl alcohol and a lint-free cloth to remove any

impurities that may hinder the tapering process. Next, the fiber is secured within

a fiber pulling apparatus, comprising a heat source, fiber holder, and stretching

mechanism. The heat source is directed at a specific area of the fiber, typically a

few millimeters in length, with a uniform and stable heating region desired as shown

in Figure 1.6. While gradually elongating the fiber using the stretching mechanism,

heat continues to be applied cautiously to prevent breakage.

Throughout the process, the fiber diameter or transmitted light power after the

tapered fiber region is monitored. As the fiber diameter decreases, interference

between multi-modes within the tapered fiber leads to oscillation at the output

power. When the oscillation vanishes, the tapering process stops, and the tapered

fiber converts back to a single-mode fiber. It is important to note that the tapered

fiber guides light via the air-silica boundary.
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Figure 1.6: Heating an optical fiber with a hydrogen flame. The heating region of
the fiber is observed at various positions. The distance between the top of the flame
and the fiber is adjusted to 10 mm (a), 7 mm (b), 5 mm (c), and 3 mm (d). When
the distance is around 10 mm (a), only the ends of the heating region of the fiber
are illuminated (or heated), resulting in a fabrication failure. On the other hand,
at a distance of approximately 2 mm (d), the heating region of the optical fiber is
uniformly bright.

Theoretical description

The simplest possible model of coupling to and from a microresonator can be de-

scribed by a single mode of the waveguide and a single-cavity mode. The resonant

excitation of the internal cavity field is given by the equation:

da

dt
= −1

2
(κ2

0 + σ2
0)a+ iκ0s (1.4)

where a represents the energy amplitude in the resonator. The total energy

amplitude loss rate of the cavity is determined by the first term, which accounts

for contributions from the intrinsic resonator loss σ0 and external coupling κ0. The

last term describes the excitation of the resonator by the waveguide with coupling

coefficient κ0, where s is the power normalized with waveguide field. The phase of

this term reflects a π/2 phase shift upon coupling between the cavity and waveg-

uide. This equation applies when the internal losses and external coupling are small

enough to be treated independently, which is satisfied for the low-loss resonators
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investigated in this thesis.

The waveguide transmission is given by the interference between the optical

power not coupled into the resonator (t0 ≈ s) and the amount coupled out of the

cavity (eπ/2κ0a). Under the steady-state excitation condition for equation (1.4), the

transmission can be given by

T = |t0/s+ iκ0a/s|2 =
(
1−K

1 +K

)2

(1.5)

where K = κ2
0/σ

2
0 is a dimensionless parameter, known as ideality. In this

analysis, the coupling parameter K is introduced as the ratio of coupling between the

waveguide and resonator to intrinsic resonator loss. This parameter allows a simple

way to investigate the coupling regimes and properties of the system. There are

three coupling regimes that are commonly used to describe the coupling between a

waveguide and a microresonator: undercoupling, critical coupling, and overcoupling.

Undercoupling occurs when the coupling between the waveguide and the mi-

croresonator is weaker than the intrinsic loss of the microresonator (K < 1 or κ0 <

σ0). For a highly undercoupled regime (K ≪ 1), most of the light in the waveguide

does not couple into the microresonator and the transmission through the waveguide

in this regime is high, close to unity, and the circulating power inside the microres-

onator is low. However, as power is coupled into the cavity, there is a transmission

drop.

Critical-coupling is the point where the coupling coefficient is equal to the in-

trinsic loss of the resonator (K = 1 or κ0 = σ0). At this point, the input light is

perfectly coupled into the resonator, and the waveguide transmission drops to zero.
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The circulating power inside the resonator is at a maximum, which means that all

the input light is trapped inside the resonator.

Overcoupled regime occurs when the coupling coefficient is greater than the

intrinsic loss of the resonator (K > 1 or κ0 > σ0). In this regime, the waveguide

transmission increases, and the circulating power inside the resonator decreases.

The output coupling dominates the cavity loss, resulting in a π phase-shift of the

waveguide field.

When two multimode waveguides or resonators are coupled, there will typically

be cross-coupling between all available optical guided and radiation modes. To

account for the effect of output coupling to additional optical modes, the equation

for the internal energy amplitude decay rate can be modified by adding loss terms

for higher-order waveguide modes (κi>0) to equation (1.4). This modification results

in a generalized ideality expressed as

K =
κ2
0∑

i ̸=0 κ
2
i + σ2

0

(1.6)

The ideality of a system can be precisely measured experimentally by examining

the waveguide transmission, which is obtained by varying the distance, x, between

the waveguide and resonator. As the coupling amplitudes decrease exponentially

with the distance the coupling amplitude can be expressed as κ2 = κ2e−γ0x where

γ is spatial decay rate. Assuming a single higher-order waveguide mode is a domi-

nant source of coupling loss, the generalized ideality can provide the information on

additional losses in the coupling regime as follows
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K =
κ̄2
0e

−γ0x

κ̄2
i e

−γix + σ2
0

=

(
1±

√
T

1∓
√
T

)
(1.7)

Figure 1.7 illustrates the calculated coupling ideality under different coupling

conditions using equations (1.4) and (1.7). To experimentally measure the transmis-

sion of a resonance, one can vary the separation between the tapered fiber and the

microresonator, resulting in different behaviors depending on the phase-matching

conditions or tapered fiber diameters. Under ideal phase-matching conditions, en-

ergy can be efficiently transferred from the fiber’s single mode to the resonator’s

single mode. However, any phase-mismatch may cause higher order mode coupling

loss. To stabilize the system, it is often desired to have the resonator and tapered

fiber in contact, although this may require introducing some higher order mode

coupling loss to achieve a significant amount of light coupling into the resonator.

1.4.2 Experimental observation of coupling ideality

Two different cases for coupling ideality are discussed: a high and low coupling

ideality. For a high coupling ideality case, the most of the light in the waveguide

is transferred into the single mode in the microresonator. All of three coupling

regimes (under, critical, and over coupling) can be accessed by varying the separation

between the tapered fiber and the microresonator. This happens when the phases

of the light in the fiber and the resonator are aligned (or wave-vectors of them

are the same). Figure 1.8 shows the experimental observation on this condition.

When the separation between the fiber and resonator are decreases, a resonance is

observed. The transmission increases as the distance gets closer. However, at a
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Figure 1.7: Coupling ideality and corresponding transmission. (a) K versus posi-
tion for various taper diameters (or phase matching conditions) from equation (1.7).
Coupling amplitude for the higher order mode (κi) are set to zero (blue), low (red),
high (yellow). As the distance get smaller, the ideality get larger. The maximum
ideality (x = 0) decreases as the higher-order coupling loss increase. (b) The corre-
sponding tranmssion through a waveguide as a function of the separation distance.
When the higher-order coupling is zero (blue) or small (red), it is shown that all the
coupling regimes can be accessed by simply varying the distance. However, as the
higher-order coupling is high (yellow), only undercoupled regime can be accessed.
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certain distance, the transmission is maximized, then it starts to decrease as the

distance gets even closer. And finally the transmission is minimized when they are

in contact. Also refer the blue line in figure 1.7.

As discussed earlier in this section, in the case of low coupling ideality, there

will be more than one coupling mechanisms between the waveguide and resonator:

coupling from the single mode in the resonator to the single mode and higher order

mode in the tapered fiber. This happens when the phases of the light in the fiber and

the resonator are mis-aligned (or wave-vectors of them are not the same). Typically,

only the under-coupled regime can be accessed in this case. When the distance

between the fiber and resonator is 0.5 µm, a resonance is excited. As the distance

decreases, the transmission increases and reaches a maximum when they are in

contact, as indicated by the yellow line in figure 1.9. This condition is often desirable

as it ensures stable coupling, making it advantageous to excite a resonance in the

in-contact position.

1.5 Q-factor characterization

The Q factor, or quality factor, of an optical resonator is a measure of how well

the resonator can store and sustain light within it. It is defined as the ratio of the

energy stored in the resonator to the energy lost per optical cycle. In other words,

it quantifies the number of oscillations a resonator can undergo before its stored

energy is lost due to factors such as scattering, absorption, and transmission.

The Q factor is a crucial parameter for optical resonators, with higher Q factors

indicating narrower resonance linewidths and better light storage capabilities. Two

methods to measure Q factor are the ring-down method, which measures the decay
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Figure 1.8: Observation of high coupling ideality in experiment. The separation
between the tapered fiber and microresonator, d, was varied and the corresponding
resonances were observed. At d = 0.6 µm, the light began to couple from the fiber
to the resonator, referred to as the under-coupled regime. The coupling increased as
d decreased and reached a maximum at d ≈ 0.3 µm, known as the critical coupling
regime. However, as the distance decreased further, the transmission decreased
again, referred to as the over-coupling regime. When the fiber and resonator were
in contact, the transmission dropped to zero (not shown in this figure).
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Figure 1.9: Observation of low coupling ideality in experiment. The tapered fiber
diameter is increased compared to the high coupling ideality case. The separation
between the tapered fiber and microresonator, d, was varied and the corresponding
resonances were observed. At d = 0.5 µm, the light began to couple from the fiber
to the resonator, referred to as the under-coupled regime. The coupling increased
as d decreased and reached a maximum in contact. The critical and over coupling
regimes were not able to be accessed under this condition. Undesired coupling
losses can occur, but in cases where resonance excitation in the in-contact position
is preferred, such losses can actually be allowed.
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of light intensity over time after initial excitation with a pulse of light, and the

frequency scanning method, which involves scanning a continuous wave laser across

a resonance and fitting the resulting resonance curve to determine the Q factor. In

this work, only the frequency scanning method is used to characterize the Q factor.

The width of the resonance curve at the half-maximum point provides informa-

tion about the Q factor of the resonator. Specifically, the Q factor is related to the

resonance linewidth by the formula:

Qload =
λ

∆λ
=

ω

∆ω
(1.8)

where λ(ω) is the resonant wavelength (frequency), ∆λ(∆ω) is the full width at

half maximum of the resonance curve in wavelength (frequency), and the Qload is

measured Q factor and given by

1

Qload

=
1

Qint

+
1

Qext

(1.9)

where Qint is the intrinsic Q factor and Qext is the extrinsic Q factor. The intrinsic

Q-factor measures the energy lost per cycle within the resonator material, while the

extrinsic Q-factor measures the energy lost per cycle due to coupling between the

resonator and its surroundings. The total Q-factor is the inverse sum of the inverse

intrinsic and extrinsic Q-factors and is limited by the lower of the two Q-factors.

The expression for the intrinsic Q factor can expressed as

Qint =
2

1±
√
T
Qload (1.10)
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Figure 1.10: Q factor measurement. A continuous wave laser is used to excite the
resonator, and the wavelength of the laser is swept across a resonance of the res-
onator. The resulting intensity of the transmitted or reflected light is recorded as a
function of the laser’s wavelength. This produces a resonance curve that shows the
intensity of the light as a function of the laser’s wavelength, with a dip correspond-
ing to the resonance frequency of the optical resonator. The laser’s wavelength is
calibrated with a fiber-based Mach-Zehnder interferometer (MZI), shown as sinu-
soidal oscillations. By fitting a single (Left) or double (Right) lorentzian curve the
loaded q factor is measured.

where the sign expresses under coupling (+) and over coupling (−). From the

measured transmission spectrum, the intrinsic and coupling Q factors can be deter-

mined using the above equation. Figure 1.10 shows a representative measurement

of the Q factor in experiments.

The fundamental optical mode is typically distinguished by its narrow resonance

linewidth and high quality factor, and can be identified by its unique spectral char-

acteristics, such as the mode spacing (or free spectral range) or the largest evanes-

cent tail. The mode structure of the microresonator can be analyzed by examining

the transmission spectrum and identifying the resonant peaks corresponding to the

different optical modes. In experimental setups, the fundamental mode can be
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identified using the following technique: Initially, a thick part of a tapered fiber

is brought into contact with the microresonator where no optical mode coupling is

observed. Subsequently, the diameter of the tapered fiber is gradually decreased

until the coupling of the optical mode with the largest evanescent tail is observed,

which corresponds to the fundamental mode.

1.6 Thermal resonance shift

When a low power probe laser is scanned over a resonance of a microresonator, a

Lorentzian resonance dip can be observed in the transmission through the coupling

waveguide. On the other hand, if the same experiment is repeated with a high power

pump laser, an almost triangular resonance shape, known as the ’thermal triangle’,

can be observed when the scan is performed in the direction of decreasing optical

frequency.

The thermal frequency shift in an optical microresonator is influenced by several

factors, including the intracavity power. The intracavity power refers to the power

of the light circulating within the microresonator. In general, the thermal frequency

shift is proportional to the intracavity power. This is because the intracavity power

can generate heat within the microresonator, which can cause thermal expansion

and affect the resonant frequency. As the intracavity power increases, the amount

of heat generated also increases, leading to a larger thermal frequency shift.

Figure 1.11 shows examples of the thermal resonance shift. When the wave-

length scans from small to large wavelengths, the intracavity power increases and

the resonance wavelength shifts to longer wavelengths. Then, the resonance is broad-

ened and a ’thermal triangle’ can be observed. When the scan is performed slowly
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Figure 1.11: Thermal resonance shift at various pump powers. The ’thermal trian-
gle’ gets bigger as the pump power increases. The total width of the resonance is
proportional to the pump power. The same resonance is shown with different input
pump power 100 mW (a), 200 mW (b), 300 mW (c), and 400 mW (d). It can be also
observed that the two adjacent resonances couple together as the thermal triangle
gets broader.

enough compared to the thermal time constants of the system, the resonator can be

considered thermally locked to the resonator.

1.6.1 Q-factor and thermal triangle at various coupling conditions

In figure 1.12, the resonance of the microresonator when the fiber is in contact

at the equatorial plane is shown with varying tapered fiber diameter. And the

corresponding resonance measurements are shown. At positions 1 and 2, a narrow

resonance with an observable thermal triangle is present, but with low transmission

and intracavity power. As the tapered diameter increases, additional losses in the

coupling region cause the resonance to become broader.

Figure 1.13 displays the same resonance when the tapered fiber heights are varied

while the tapered diameter is fixed. The fiber and the resonator are in-contact. The

coupling height variation can change the coupling regime and measured Q factor.

At a height of y = 4 µm, the transmission is at its maximum, and the loaded Q
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factor is high, with an observable thermal triangle. In experiments, this coupling

condition is preferred for maximizing intracavity power.
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Figure 1.12: Measured resonances with various tapered fiber diameters at the equa-
torial plane between the fiber and the microresonator. The resonacne is under-
coupled at position 1, 2, and 3. The resonance is close to critical-coupled at posi-
tion 4. The resonance is close to over-coupled at position 5 and 6. The measured
Q factor is higher at position 1 and 2 and the thermal triangle is observed . The
measured Q factor decreases as the tapered diameter decreases.
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Figure 1.13: Measured resonances with various tapered fiber heights, y, from the
equatorial plane of the microresonator (inset). The resonacne is over-coupled at
y = 0, 1, 2, and 3 µm. The resonance is close to critical-coupled at y = 4 µm.
The resonance is close to under-coupled at y = 5, 6, and 7 µm. The measured Q
factor is higher at under- and critical-coupled regimes and the thermal triangle is
observed. A high transmission and measured Q factor are observed at y = 4 µm.
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CHAPTER 2

Microresonator-Based Nonlinear Optics

Microresonator-based optical frequency comb generation has several advantages over

other frequency comb techniques. These include small size, low power consumption,

wide spectral range, high repetition rates, compatibility with other systems, and

lower cost. However, microresonator-based frequency comb systems also have some

disadvantages, such as difficulty in tuning the comb line spacing, thermal fluctu-

ations and mechanical vibrations affecting the comb line stability, and nonlinear

processes causing unwanted noise and crosstalk.

Despite these challenges, microresonator-based frequency comb systems are gain-

ing popularity due to their unique advantages and the potential for further develop-

ment. Ongoing research is focused on improving the stability and precision of the

system, exploring new materials and fabrication techniques for the microresonators,

and optimizing the system for specific applications. In comparison to other fre-

quency comb techniques, such as mode-locked lasers and supercontinuum sources,

microresonator-based frequency combs offer a distinct set of advantages.

Mode-locked lasers are widely used for frequency comb generation but are bulky,

complex, and require a high level of expertise to operate. Supercontinuum sources,

on the other hand, are compact and can generate a broad spectral range, but they

lack the high repetition rates of microresonator-based frequency combs. Overall,

microresonator-based optical frequency comb generation is a promising technique
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with potential for various applications, including spectroscopy, metrology, and com-

munication systems. As research in this field continues, the performance and ca-

pabilities of the technology are likely to improve, further expanding its potential

applications.

2.1 Optical nonlinear process: four-wave mixing (FWM)

The response of a nonlinear medium to an electromagnetic wave typically describes

nonlinear optical effects. This response is characterized by the dielectric polarization

P , which can be expressed as a power series expansion of the electrical field E.

P = ϵ0χ
(1)E + ϵ0χ

(2)E2 + ϵ0χ
(3)E3 + ... (2.1)

where ϵ0 is the vacuum permittivity and χ(n) is the n-th order electrical suscep-

tibility. The second order nonlinearity term χ(2) vanishes in silica due to inversion

symmetry, allowing for an approximation of the dielectric polarization in four-wave

mixing as following

P = ϵ0χ
(1)E + ϵ0χ

(3)E3 (2.2)

where PL = ϵ0χ
(1)E represents linear induced polarization and PNL = ϵ0χ

(3)E3

denotes nonlinear induced polarization. The nonlinearity term χ(3), known as the

parametric Kerr nonlinearity, plays a significant role in self- and cross-phase mod-

ulation, as well as parametric frequency conversion processes. When the electric

fields with three different frequencies (ωk, ωl, ωm) and corresponding wave-vectors

(kk, kl, km) are introduced, the nonlinear polarization PNL contribution for the four-
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wave mixing process can lead to generation of waves with new frequencies given by

ωn = ±ωk ± ωl ± ωm.

The process responsible for generating frequency combs in microresonators is

FWM which can be classified into two types: degenerate and nondegenerate. De-

generate FWM occurs when two of the three input waves are at the same frequency,

and the third input wave is at a different frequency. Nondegenerate FWM involves

the mixing of three input waves at different frequencies in a nonlinear medium in-

side the resonator to produce a fourth output wave at a new frequency. In terms

of photons, FWM can be interpreted as the annihilation of two photons. In the

case of degenerate FWM, two photons with the same frequency ωk = ωm are anni-

hilated, and two photons with respective frequencies ωl and ωn are created, where

2ωk = ωl + ωn. In the non-degenerate case, two photons with different frequencies

ωk and ωl are destroyed, and two photons with frequencies ωm and ωn are cre-

ated, conserving energy such that ωk + ωl = ωm + ωn. These processes require the

phase-matching conditions as

kn = kk − kl + km (non− degenerate)

kn = 2kk − kl (degenerate)

Dispersion requirement for FWM process

There are two types of dispersion that can occur in microresonators. Normal disper-

sion occurs when the refractive index increases with increasing wavelength, while

anomalous dispersion occurs when the refractive index decreases with increasing
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wavelength. The dispersion of the microresonator consist of three main contribu-

tions: material dispersion, waveguide (or geometrical) dispersion, and modal dis-

persion. The Material dispersion refers to the variation in the refractive index of a

material with respect to the wavelength of light. This can cause different wavelengths

of light to travel at different speeds in the material, which can lead to dispersion

and distortion of the signal. The waveguide dispersion arises due to the geometri-

cal structure of the resonator. The modal dispersion refers to the variation in the

propagation delay of different modes of light in a waveguide or a resonator. This

can occur when the waveguide or the resonator has a geometrical structure that

supports multiple modes of light with different phase velocities. Material disper-

sion is typically the dominant source of dispersion in many microresonators, while

geometrical and modal dispersion can also contribute.

The dispersion requirement for FWM in an optical resonator varies depending

on the specific application, such as parametric amplification or frequency comb

generation. The frequency comb generation requires an anomalous dispersion in

the optical resonator. Anomalous dispersion helps in effectively phase-matching the

different optical frequencies involved in the FWM process, leading to efficient mixing

and high conversion efficiency. Also note that the quality factor of the resonator,

the nonlinearity of the medium, and the power levels of the interacting waves are

also crucial factors that determine the efficiency and performance of FWM in the

optical resonator. In the following subsection, it will be shown that the dispersion

of microresonators can be engineered to satisfy the dispersion requirement.
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2.1.1 Dispersion engineering on silica microbubble resonators

It is demonstrated that engineering geometry of a microbubble resonator can yield

anomalous dispersion at near-IR wavelength (∼ 780 nm) [11]. A microbubble res-

onator with around 1 micrometer wall thickness was fabricated and the optical fre-

quency comb was able to be observed (Figure 2.1). As a thickness of a microbubble

resonator gets thinner, the light gets confined tighter in the waveguide and compen-

sate the material dispersion. However, this demonstration is performed in air and

injecting liquid into or over the resonator can degrade the confinement, resulting

in normal dispersion at near-IR wavelength (∼ 780 nm). Figure 2.2 shows second

order dispersion parameters of a silica microbubble resonator with a diameter of

120 µm and thickness of 1.5 µm for given boundary conditions. It can be clearly

observed that as the surrounding material is replaced by liquid from air anomalous

dispersion (D2 > 0) at∼ 780 nm cannot be achieved. In the next section, alternative

methods for frequency comb generation will be discussed.

Fabrication techniques

Optical microbubble resonators can be fabricated through the following steps. First,

prepare a fused silica glass capillary with a diameter of a few hundred micrometers

and a length of a few centimeters. The capillary is heated with a CO2 laser or a gas

torch, and the glass is softened to form a bubble at the heating point. A gas flow

is introduced into the softended region of the capillary, causing the softened glass

to inflate and form a microbubble. The diameter and wall thichkness of microbuble

resonators can be fine-controlled with the capillary size, CO2 laser power, heating
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Figure 2.1: By engineering the geometry of the microbubble resonator, optical fre-
quency comb generation at 780 nm is achieved. The resonator’s design produces
anomalous dispersion, as depicted in the inset image. The tightly confined light
can counteract the normal dispersion of the silica and initiate the four-wave mix-
ing (FWM) process. Increasing the pump power can generate additional frequency
components.
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(1)

(2)

(3)

(1) / (2) / (3)(a) (b)

Figure 2.2: Finite element simulation on a microbubble resonator. (a) Geometry
of a microbubble resonator. Inside (1) and outside (3) of the resonator can be air
or liquid. Silica is chosen for material of the resonator (2). (b) Simulated second
order dispersion parameters at various wavelengths. A diameter of a microbubble
resonator is 120 µm and thickness of a wall is 1.5 µm in the simulation.
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time, and gas pressure. Fabricating a thin-walled microbubble resonator is a key

requirement for the FWM process to be initiated. We use CO2 laser with double-

sided heating technique for uniform heating (Figure 2.3). Note that non-uniform

heating leads to asymmetric microbubble shape and fabrication failure.

2.2 Avoided mode crossing (AMX)

In an optical resonator, there can be multiple resonant modes with slightly different

frequencies. When the frequency separation between two modes becomes small,

they can interact with each other and cause a phenomenon known as avoided mode

crossing (AMX). At the point of mode interaction, the modes exchange energy, and

their frequencies shift. This can result in an unexpected change in the resonator’s

spectral properties, such as a splitting or broadening of the resonance peak. AMX

occurs due to the complex interplay between the resonator’s geometry, material

properties, and the excitation conditions.

AMX can cause unwanted effects in some applications, such as in optical filters,

where the modes can interfere with each other and cause signal distortion. However,

in some cases, AMX can be desirable, such as in mode-locked lasers or optical

frequency combs, where the crossing can lead to the formation of new frequencies.

Understanding and controlling mode crossing is an important aspect of designing

and optimizing optical resonators for specific applications.

By virtue of this technique, regardless of the overall dispersion of a mode family

at a particular wavelength, the four-wave mixing (FWM) process can still be ini-

tiated. In a resonator, different optical modes have their own free spectral ranges

(FSRs) that can intersect or couple, causing deviations in FSRs. This localized
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Figure 2.3: Microbubble resonator fabrication technique. (a) Schematic of CO2

laser alignment. To heat and melt the silica uniformly, two beams are focused on
the silica capillary. (b) CO2 laser alignment for microbubble resonator fabrication.
Aperture stops are added to adjust the power of the front and rear beam, so that
we could make the beam power match each other.
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dispersion perturbation can create a local anomalous dispersion that satisfies the

phase-matching condition for the FWM process. This occurrence is also known as

intermodal coupling, mode hybridization, or mode anti-crossing. In this work, we

will refer to this phenomenon as AMX.

2.2.1 Large-size silica microtoroid resonators

There are several advantages of fabricating a larger size microresonators in a manner

of observing the AMX. Firstly, the mode spacing in a large microresonator is much

smaller than that in a small microresonator, which leads to a higher density of

resonant modes. This makes it easier to access a larger number of modes and

to investigate mode crossings in detail. And also, the resonant modes in a large

microresonator have a smaller free spectral range (FSR), which is the frequency

difference between adjacent resonant modes. In this case, the resonator supports

more optical modes that are spectrally overlapping, and the system exhibits more

AMXs.

A finite element simulation is performed to find the effective refractive indices of

19 different optical modes in a toroid resonator with a major diameter of 300 µm and

minor diameter of 30 µm as a function of wavelength [Fig. 2.4(a)]. The integrated

dispersion which reveals second-order or higher dispersion parameters is plotted

based on the simulation results [1] and mode crossings can be observed [Fig. 2.4(b)].

Note actual dimensions of a toroid resonator cannot be precisely designed due

to its unique fabrication process. Thus, there are some discrepancies between the

mode crossings from the simulation and the measurements. However, we believe,

even though the measurement and simulation data cannot be directly compared,
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(a) (b)

Mode Crossings

Figure 2.4: (a) Mode families of a microtoroid resonator. Effective refractive indices
of a toroid resonator with a major diameter of 300 µm and minor diameter of 30 µm.
(b) Integrated dispersion with respect to the fundamental TE mode. Mode crossings
with higher-order optical modes are observed.

the presence of AMXs may be claimed [Fig. 2.4(b)].

Fabrication techniques

It is found that a thicker silicon oxide layer are required to obtain high-Q microtoroid

resonators due to the thermal expansion mismatch between the silica layer and the

silicon substrate [12]. A proper control of thermally induced stress is critical to

obtain high-Q resonances. We choose a 6 µm thick silica layer in order to fabricate

a toroid resonaotr with a diameter of around 300 − 500 µm. Figure 2.5 shows

the major and minor diameter of the toroid resonator with different silica layer

thickness. We can estimate the minor diameter of the toroid resonator for a given

major diameter and silica thickness.
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Figure 2.5: Major and minor diameter of toroid resonators with different silica
layer thicknesses. (a) A schematic of a fabricated microdisk resonator. Ddisk is
the diameter of the disk and t is the silica layer thickness. (b) A schematic of a
fabricated microtoroid resonator. Dmajor is the major diameter and Dminor is the
minor diameter as depicted in the figure. (c) A relationship between the major and
minor diameter of the toroid resonator for Ddisk = 150 µm and t = 2 µm. The
major diameter and the minor diameter are inversely proportional for a given disk
resonator. (d) A relationship between the major and minor diameter of the toroid
resonator for Ddisk = 700 µm and t = 6 µm.
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2.3 Lugiato-Lefever equation (LLE) simulation

The Lugiato-Lefever equation (LLE) is a mathematical model that describes the

dynamics of light in a driven, Kerr-nonlinear microresonator [13]. It is a partial

differential equation that captures the interplay between the Kerr nonlinearity, dis-

persion, and driving input in the microresonator. The LLE is widely used to study

the behavior of optical frequency combs, solitons, and other nonlinear phenomena

in microresonators.

The master equation can be written as [13, 14]:

∂A

∂t
− i

1

2
D2

∂2A

∂ϕ2
− ig|A|2A = −

(κ
2
+ i(ω0 − ωp)

)
A+

√
κηPin

ℏω0

, (2.3)

where A(ϕ, t) is the internal electric field within the resonator. ϕ is the azimuthal

coordinate around the resonator. κ = κex + κ0 is the total cavity loss rate, where

κex and κ0 are the coupling rate and intrinsic loss rate. η = κex/κ is the coupling

efficiency. ω0 and ωp are the resonance frequency and the pumping frequency. g =

ℏω2
0cn2/n

2V0 is the Kerr frequency shift per photon, where n is the refractive index,

n2 is the nonlinear optical index, and V0 is the effective mode volume. D2 is the

second order dispersion parameter. In this study, we ignore higher-order (Di>2)

dispersion parameters to simplify simulations.

The split-step method is a numerical technique commonly used to solve the

Lugiato-Lefever equation. It involves splitting the equation into two parts, one that

describes the linear propagation and another that accounts for the nonlinear Kerr

effect. The linear part is solved using a fast Fourier transform (FFT) algorithm,

while the nonlinear part is solved using an iterative numerical method, such as the
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Runge-Kutta method.

Simulation parameters can be obtained from a dispersion measurement and a

finite element method. Figure 4.4 displays a representative simulation result. The

parameters for this simulation are given as follows: D1/2π = 200 GHz, κ = κex/2 =

κ0/2 = 24 MHz, V0 = 10866 µm3, Pin = 50 mW, and λ0 = 780 nm. A two-parameter

model is used to simulate avoided mode crossings (AMXs) as introduced in [1]. The

two parameters, a and b, illustrate the coupling strength and an AMX location,

respectively. As shown in Fig. 4.4(a), we introduced one weak and one strong modal

crossing in the integrated dispersion (Dint) as experimentally measured (similar to

what is shown in Fig. Fig. 4.2(c) but not exactly the same). The model parameters a

is κ/2, 10κ, and b is 5, 20 for the weak and strong AMXs, respectively. The resonance

is swept from the blue-detuned side to the red-tuned side. The simulation is stopped

when a primary comb is observed as shown in Fig. 4.4(b).

2.4 Other third-order nonlinear interactions

There are several nonlinear optical processes that can occur in a microresonator with

the third-order nonlinearity besides four-wave mixing (FWM). Third harmonic gen-

eration and triple sum frequency generation are possible and have been observed,

but they are typically not of interest for the present case as they are not within the

comb bandwidth. Stimulated Brillouin scattering and stimulated Raman scattering

are other efficient nonlinear processes that can compete with FWM. However, these

inelastic photon-phonon scattering processes in the resonator material do not con-

serve photonic energy unlike FWM, which is necessary for equidistant comb spectra.
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2.4.1 Stimulated Raman scattering (SRS)

Stimulated Raman scattering (SRS) is a third-order nonlinear process that can be

observed without any dispersion engineering techniques, as it does not require a

phase matching condition. To observe SRS, a resonance with an ultra-high quality

factor is pumped and thermally locked. Once the pumping power exceeds a certain

threshold, Raman lasing occurs, and Figure 2.6 shows the generated spectrum of

the SRS process. In this particular case, the pumping wavelength is 778.83 nm and

power is 3 mW.

FWM involves the interaction of three or more optical waves to generate a fourth

wave, while SRS involves the interaction of light with the vibrational modes of a

material, leading to the generation of a scattered photon with a different frequency.

In FWM, the generated frequency is either the sum or the difference of the origi-

nal frequencies, while in SRS, the scattered frequency is shifted from the incident

frequency by the frequency of the vibrational mode.

2.4.2 Threshold power for FWM and SRS

The Raman lasing threshold occurs when cavity round-trip gain equals round-trip

loss. For an intensity-dependent gain coefficient, the threshold power for SRS is

given by

PRaman
t =

π2n2

λPλRgR
VeffQ

−1
int,PQ

−1
int,R

(1 +KP )
2

KP

(1 +KR) (2.4)

where n is the index of refraction, Veff is the effective pump mode volume,

λP (R) is the pump (Raman) wavelength, gR is the nonlinear bulk Raman gain
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Figure 2.6: Generated stimulated Raman scattering (SRS) spectrum. A pump wave-
length is 778.83 nm. The first SRS happens at 810 nm. A cascaded process is
observed and continues up to around 10th order. The last SRS is observed at 1050
nm which is more than 200 nm away from the pump wavelength.
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coefficient, Qint,P (R) is the intrinsic Q factor for the pump (Raman) mode, and

KP (R) = Qint,P (R)/Qext,P (R) is the coupling parameter for the pump (Raman) mode.

The threshold pump power for FWM is expressed as

PFWM
t =

ω2
0Q

−2
int(1 +K)2 + (∆ω/2)2

γ∆ω(c/neff)

π2Rneff

2λP

(K + 1)2

QintK
(2.5)

where K = Qint/Qext is the coupling parameter, ω0 is the angular mode fre-

quency, γ = (ωPn2)/(cAeff) is the effective nonlinearity, n2 is the Kerr nonlinearity

for silica, c is the speed of the light, Aeff is the effective mode area, R is the radius

of the resonator,

∆ω = 2ωP − ωs − ωi = D2/2− δω

is the frequency detuning, ωs(i) is the angular signal (idler) frequency, D2 is the

second order dispersion coefficient, δω = ω0−ωP is the effective frequency detuning,

ω0 is the angular pump frequency.

Figure 2.7 shows threshold power for FWM as a function of the detuning fre-

quency and coupling parameter. In experiment, δω is negative and D2 is positive

for the anomalous dispersion regime, and the frequency detuning is positive.

2.4.3 Competition between FWM and SRS processes

In microresonators, four-wave mixing (FWM) and stimulated Raman scattering

(SRS) can both be efficient nonlinear optical processes. The competition between

these two processes depends on several factors, including the resonator properties,

the input power, and the material properties.

FWM is typically more efficient than SRS in microresonators due to the strong



60

Figure 2.7: Threshold power for FWM and SRS. The SRS dominant region is color-
coded as blue, while the FWM dominant region is as red. The threshold power for
the FWM is plotted at Q factor of 1 × 108 (a), 5 × 107 (b), and 2 × 107 (c). The
minimum threshold power can be found for slightly under-coupled regime. Simula-
tion parameters: λ0 = 780 nm, R = 150 µm, neff = 1.445, gR = 1.32× 10−13 W/m,
Aeff = 10 µm2, n2 = 2.2× 10−20 m2/W.

confinement and enhancement of the optical fields. This makes FWM dominant

at low input powers. However, as the input power increases, SRS can become

more important, especially when the resonator material has a high Raman gain

coefficient. At high input powers, the Raman gain coefficient can be larger than the

Kerr coefficient, leading to a switch from FWM to SRS.

Overall, the competition between FWM and SRS in microresonators depends

on a complex interplay of resonator properties, input power, material properties,

and temperature. Understanding this competition is important for optimizing the

performance of microresonator-based devices for various applications, such as optical

frequency comb generation.

Figure 2.8 illustrates the complex competition between FWM and SRS as the

pump laser is scanned from a short to long wavelength. A thermal triangle is

observed and the laser can be thermally locked. At stage I, the FWM process is

triggered. The signal and idler frequencies are generated. A cascaded FWM happens
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Figure 2.8: Competition between FWM and SRS as a resonance is scanned. (Left)
A thermally broadened resonance is scanned from a short wavelength to a long wave-
length and (Right) the corresponding measured spectrum at each stage is shown.
FWM process is first excited at stage I and the cascaded process continues until
stage IV as the laser is scanned. As the intracavity power increases, the SRS is also
excited at stage V and the competition between them starts.

and more frequency components are generated at stage II, III, and IV. At stage V,

it is interesting that SRS is excited and both of FWM and SRS are present and start

to compete each other. This competition is also observed at stage VI and continues.

Coupling sensitive competition

As we discussed in the previous section, the threshold power for the FWM process

is dependent on the coupling parameter. Varying the coupling condition may result

in different dynamics of the FWM and SRS processes. Figure 2.9 depicts spectra at

different coupling condition by varying the contact height between the tapered fiber

and the resonator.
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Figure 2.9: Competition between FWM and SRS at various coupling conditions. (a)
The microtoroid and the tapered fiber kept in contact. The height, z, is varied from
0 to 2 µm. The toroid resonator and the tapered fiber are in the same equatorial
plane at z = 0 µm. (b) The SRS is dominant process at z = 0 µm. The cascaded
SRS is observed. (c) The FWM and SRS are present simultaneously at z = 1 µm.
(d) The SRS is dominant process at z = 2 µm. A Raman comb is also observed.
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CHAPTER 3

Optical Frequency Combs in Aqueous and Air Environments at Visible to Near-IR

Wavelengths†

The ability to detect and identify molecules at high sensitivity without the use

of labels or capture agents is important for medical diagnostics, threat identifica-

tion, environmental monitoring, and basic science. Microtoroid optical resonators,

when combined with noise reduction techniques, have been shown capable of label-

free single molecule detection, however, they still require a capture agent and prior

knowledge of the target molecule. Optical frequency combs can potentially provide

high precision spectroscopic information on molecules within the evanescent field

of the microresonator; however, this has not yet been demonstrated in air or aque-

ous biological sensing. For aqueous solutions in particular, impediments include

coupling and thermal instabilities, reduced Q factor, and changes to the mode spec-

trum. Here we overcome a key challenge toward single-molecule spectroscopy using

optical microresonators: the generation of a frequency comb at visible to near-IR

wavelengths when immersed in either air or aqueous solution. The required disper-

sion is achieved via intermodal coupling, which we show is attainable using larger

microtoroids, but with the same shape and material that has previously been shown

ideal for ultra-high sensitivity biosensing. We believe that the continuous evolution
†Contents presented in this chapter has been published in "Optical Frequency Combs in Aque-

ous and Air Environments at Visible to Near-IR Wavelengths," Optics Express, 30, 8690-8699
(2022) [15]
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of this platform will allow us in the future to simultaneously detect and identify

single molecules in both gas and liquid at any wavelength without the use of labels.

3.1 Introduction

Optical microtoroid resonators are attractive biochemical sensors due to their ultra-

high quality (Q) factors and small mode volumes [16, 13, 17, 18, 19, 20, 21, 22]. In

addition, microtoroids have a larger capture area compared to nanoscale sensors such

as nanorods, nanowires, and nanotoroids [23] thus making detection events more

likely [24]. We have previously demonstrated that single molecules can be detected

without the use of labels using a microtoroid optical resonator in combination with

noise reduction techniques [8, 25, 26]. To achieve specific detection, the surface

of the resonator needs to be functionalized for the target molecule of interest. A

non-functionalized resonator can also detect binding events; however, in this case

not only does the target molecule need to be known in advance, but the solution

must either be pure or the molecules of interest must have very different binding

characteristics.

In many cases, however, target analytes are unknown and need to be identified.

Since optical frequency combs can be used to identify molecular species [27, 28, 29],

generating a frequency comb with a microtoroid may enable detection and molecular

identification on the same device without having to functionalize the surface of the

sensor by measuring amplitude attenuation of comb lines (or absorption spectrum

of the target). Surface functionalization adds both complexity and cost to the

experiment and reduces the Q-factor which reduces sensitivity. A toroidal geometry

is desired for biochemical sensing over other high-Q geometries such as microdisks
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that have been used to generate combs as it has a large (∼ 100 nm) evanescent field

sensing region that is needed for biochemical sensing.

Despite the potential advantages of using frequency combs for biochemical sens-

ing, frequency comb generation in aqueous solution has not previously been demon-

strated. A key challenge is that resonator dispersion is altered significantly when

an aqueous solution is injected over the resonator, making it difficult to realize the

required anomalous mode dispersion. To the best of our knowledge, conventional

dispersion engineering techniques have not addressed this issue [30, 31]. Here, we

generated an optical frequency comb in water and air at visible to near IR wave-

lengths on a microtoroid optical resonator overcoming a limit of conventional dis-

persion engineering. This can be achieved via an avoided mode crossing (AMX),

which is an interplay between different transverse optical modes in a resonator.

3.2 Dispersion engineering and avoided mode crossings

Typically, dispersion engineering is needed to generate microresonator based fre-

quency combs [32]. Total cavity dispersion is a function of material, waveguide

geometry, and optical mode distribution. Material dispersion can be engineered

by either replacing a material or doping it. For biosensing experiments which are

performed in aqueous solutions, it is often desired to use visible or near visible wave-

lengths as the absorption of light in water at those wavelengths is minimized. At

these wavelengths, the group velocity dispersion of a typical material is strongly nor-

mal, so the overall cavity dispersion is also normal. However, waveguide dispersion

can be engineered to compensate the material dispersion [10], resulting in overall

anomalous dispersion even at visible wavelengths. Since different optical modes have
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their own mode profile and effective refractive index (neff) the overall dispersion is

also a function of optical mode [1, 11, 33].

Numerous forms of microresonator dispersion engineering have been demon-

strated in the near-visible regime. In a microbubble resonator, a very thin waveguide

structure was fabricated that confined the light and overcompensated the normal dis-

persion of the silica for the fundamental TM mode at 780 nm [11]. A silica microdisk

with a large wedge angle was shown to achieve an anomalous dispersion at 780 nm by

controlling the angle of the wedge (a form of waveguide dispersion) [34]. Anomalous

dispersion was also generated in a silicon-nitride integrated ring resonator by using

a high radial order mode (modal dispersion) [33, 35]. These demonstrations are all

based on a fixed cladding material; however, varying the surrounding material can

alter the overall dispersion.

While tight confinement of light can overcompensate material dispersion in the

visible and NIR wavelength regime, a high refractive index contrast between the

waveguide material (i.e., silica) and the cladding (i.e., air) is needed. If the sur-

rounding air is replaced by a liquid (n > 1.33), the light loses strong confinement,

and the normal dispersion of the material cannot be compensated (see Supplemen-

tary Information Section 1 for more details). Several ways to overcome this issue

include adding a high index material coating on the resonator surface [36, 37, 38],

engineering the modal dispersion of a cavity [33], or replacing the waveguiding ma-

terial by a higher index material [39, 30, 31].

If, however, it is desired to preserve the material and structure of a resonator,

a different approach is needed. A distinct property of a resonator where different

optical modes have their own free spectral range (FSR) is that they can interact
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and couple with one another resulting in deviations from the original, unperturbed

FSR [40, 41, 1, 42]. This localized dispersion perturbation can lead to a local

anomalous dispersion which can meet a phase-matching condition for the four wave

mixing (FWM) process. At visible or near visible wavelengths, optical frequency

combs have been generated via AMXs in a crystalline WGM resonator [41], a mi-

croring resonator [43, 44, 45], dual microring resonators [46, 47], and a wedge disk

resonator [9, 48, 49]. Chip-based ring resonators can be designed to introduce AMXs

at desired locations using a thermal heater [50] or by adding an another resonator

nearby [51, 46, 47]. Although toroidal resonators have been one of main platforms in

biosensing experiments, there has been no demonstration of optical frequency comb

generation under a sensing environment where the toroid is immersed in liquid.

3.3 Device fabrication & dispersion measurement

Currently, microtoroids with a major diameter of ∼ 100 µm are used for biosensing

applications [8] . This diameter, however, yields a large FSR (∼ 700 GHz in the

NIR) resulting in only tens of mode numbers in the scanning wavelength range

(∼ 8 THz) of our system. To efficiently introduce and characterize AMXs, it is

highly desirable to have many modes. This can be done by fabricating a larger

diameter toroid [52]. To fabricate larger toroids [Fig. 3.1(b)], we chose a thicker

silica layer in order to avoid stress induced defects ("buckling") caused by different

thermal expansion coefficients between the silica layer and the substrate as the cavity

diameter increases [12]. Buckling can significantly degrade the fabrication quality

but can be controlled by proper choice of the device layer thickness and the amount

of undercut and is therefore not a limiting factor for the optical performance of the
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device if for example, we wish to change the FSR of the resonator [9].

To fabricate a large (∼ 500-µm) diameter microtoroid, a ∼ 700-µm diameter disk

resonator is first fabricated using conventional lithography and etching techniques [6,

53, 54]. A thermally grown 6 µm thick silicon dioxide layer on top of the silicon

substrate (WaferPro) was used. The amount of undercut for the microdisk needs to

be large enough to isolate an optical mode from the silicon pillar and small enough to

prevent buckling. By defocusing our laser beam and increasing the power of the CO2

laser, we can reflow ∼ 500-µm-diameter or larger toroids [Fig. 3.1(b)]. An ultra-

high Q factor (Q > 108) is routinely measured. Figure 3.1(c) shows a linewidth

measurement of a resonance of a large-diameter toroid in air. Laser scanning is

calibrated with a Mach-Zehnder interferometer (MZI). A linewidth measurement of

the cavity in water is shown in Fig. 3.1(e). Typically the linewidth broadens by

around a factor of two when the cavity is immersed in a liquid due to less mode

confinement or particle binding due to impurities in the liquid.

The cavity is characterized by first positioning a large-diameter toroid resonator

in a sample chamber built by gluing a glass coverslip on top of a custom made sample

holder [Fig. 3.1(b)]. Water which is de-gassed in a vacuum chamber is then injected

into the chamber with a syringe pump. When the chamber is filled with liquid, a

tapered fiber is coupled to the resonator to inject light into the cavity. A tunable

laser (New Focus TLB-6712-P) scans wavelengths from 765 nm to 781 nm while its

scan wavelength is precisely calibrated by a MZI with a FSR of 17.5 MHz. The

calibration data and the transmission signal are both received by photodetectors

(New Focus 1801) and monitored by a high sampling rate data acquisition card (NI

PCI-6115) [55, 32]. An example spectrum is shown in Fig. 3.1(d). More than 10
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Figure 3.1: (a) Experimental Setup. An external cavity diode laser (ECDL) is am-
plified by a tapered amplifier (TA) and pumped into a cavity. A polarization con-
troller (PC) is used to excite either the TE or TM mode family. Laser wavelength
scanning is calibrated using a Mach-Zehnder interferometer (MZI). The calibration
and transmission data are received by photodetectors (PDs) and monitored using
a data acquisition (DAQ) system or an oscilloscope (OSC). The spectrum was si-
multaneously measured using an optical spectrum analyzer (OSA). (b) Schematic
of the sample chamber. Inset: microscope image of the microcavity. (c) Q-factor
measurement in air for a microtoroid. The frequency axis is calibrated by a MZI of
FSRMZI ≈ 17.5 MHz. The loaded Q-factor of the fundamental mode was ∼ 1×108.
(d) Representative example of the calibrated spectrum scan. (e) Linewidth measure-
ment for the same toroid in water. Typically, the quality factor drops by around
a factor of 2. For simplicity, the linewidth of the left peak is used for the Q-factor
estimation.
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modes are excited as shown in the spectrum of approximately two FSRs. In order

to introduce AMXs, we excited not only the low order modes but also other higher

order modes in the cavity by placing the tapered fiber in contact with the top of the

toroid [56] and adjusting phase-matching conditions [57]. In order to enhance the

stability of the coupling condition, a wall is fabricated next to the toroid and used

to support the fiber [58]. The laser is tuned to a resonance by decreasing optical

frequency to achieve thermal locking [59]. The spectrum is recorded using an optical

spectrum analyzer (OSA, Thorlabs 202C).

3.4 Frequency comb generation in water and air

Frequency comb generation in water using a microtoroid resonator via the AMX

approach is shown in Figure 3.2. The dispersion of the cavity is characterized and

plotted in Figs. 3.2(a), (c), and (e). The measured resonance frequencies are marked

as dots over the whole scan spectrum. The resonance frequencies are plotted as

deviations from an equidistant frequency grid with a FSR (D1). A mode family can

be interpreted as a line connecting dots. If a mode family has a FSR of D1 and no

dispersion, it may be shown as a horizontal line. Different slopes of each line can be

understood as different FSRs for each mode family. The color of the dots represent

measured Q-factors and helps trace a mode family.

To better understand the eigenfrequency locations, we analyze the dispersion

properties of our comb. The dispersion properties of a mode family with mode

frequencies, ωµ, can be Taylor expanded as, ωµ = ω0 + D1µ + 1
2
D2µ

2 + . . ., where

µ is the relative mode number with respect to the pump (µ0), ωµ are the resonance

frequencies, ω0 is the pump frequency, D1/2π is the FSR, and D2/2π is the second
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Figure 3.2: Dispersion measurement and frequency comb generation in water. (a)
Deviation of the resonance frequencies, ωµ = ω0 + D1µ + 1

2
D2µ

2 + . . ., from an
equidistant frequency grid (ω0 + D1µ) and µ is the relative mode number, where
D1 = 2π×FSR with respect to a pump mode (µ0). Each dot on the plot related to an
eigenfrequency (ωµ) of the cavity. A particular mode family is represented as a line
that consists of colored dots corresponding to measured Q-factors on a logarithmic
scale. The dot color may be used to identify a particular mode family because a mode
family has similar Q. The integrated dispersion, Dint = ωµ−ω0−D1µ = 1

2
D2µ

2+. . .,
describes normal dispersion with D2/2π = −1.1877 MHz (red solid line; higher-
order terms are ignored). Black solid lines are drawn to visualize higher order mode
families and AMXs. The AMX can be easily observed because it significantly alters
eigenfrequencies, degrades the Q-factor (shown by the dot color) and transmission
depth of the resonances (not shown here). The pump wavelength and AMX location
is highlighted in orange and green, respectively. (b) Generated frequency comb in
water when the mode indicated in (a) is pumped. The primary comb is located at
the wavelength where the AMX happens (highlighted in green). (c) The integrated
dispersion for a mode family with a D2/2π ∼ −0.5158 MHz. The pump wavelength
and AMX location is highlighted in orange and green, respectively. (d) Generated
frequency comb in water by pumping the mode shown in (c). The primary comb is
located at the wavelength where the AMX happens (highlighted in green). (e) The
integrated dispersion for a mode family where AMXs are considerably strong and
dispersion cannot be measured precisely. The pump wavelength and AMX location
is highlighted in orange and green, respectively. (f) The generated frequency comb
when the mode indicated in (e) is pumped.
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order dispersion (with higher order dispersion terms ignored) [60]. It is often useful

to introduce an integrated dispersion, Dint = ωµ − ω0 −D1µ = 1
2
D2µ

2 + . . ., which

shows the deviation of the resonance frequencies from the equidistant frequency grid

(FSR = D1/2π) with respect to a pump mode (µ = 0). The integrated dispersion

is plotted to extract D2 by fitting a curve (Di>2 are ignored). Note that µ0 ̸= µpump

for plotting purposes. The fitted dispersion coefficients are D1/2π = 170.7088 GHz,

D2/2π = −1.1877 MHz for a family [Fig. 3.2(a)] and D1/2π = 170.7073 GHz,

D2/2π = −0.5158 MHz for another mode family [Fig. 3.2(c)]. Dispersion for a mode

family shown in Fig. 2(e) may not be estimated where a dispersion curve is distorted

due to several strong AMXs present for the mode family. Because of the limited

wavelength scan range and the presence of strong and weak modal couplings, an

accurate measurement of these fits can not be faithfully guaranteed. The discrepancy

between the fitted D2/2π ≈ −1.19 MHz and the simulated D2/2π ≈ −1.63 MHz

can be attributed to fabrication uncertainty and the aforementioned limits.

Frequency comb generation in water was observed by pumping a resonance at

∼ 780 nm at a pump power of ∼ 20 mW [Fig. 3.2(a)]. The primary comb (the

first generated sideband) is located where the AMX happens [Fig. 3.2(b)]. A small

deviation between the AMX location (λ > 772 nm) and the primary comb location

(λ > 773 nm) can be explained by a frequency shift resulting from a temperature

increase of the cavity as a function of input power and detuning. As the resonance is

swept from high to low frequencies, an increase in intracavity power makes the cavity

hot and the frequency shift. This alters AMX locations because different transverse

modes might have different temperature shift coefficients [47, 61]. Another mode

family with a strong AMX at ∼ 767 nm and a weak perturbation at ∼ 776 nm
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is pumped [Fig. 3.2(c)]. As shown in Fig. 3.2(d), a stronger modal coupling may

satisfy the phase-matching condition first over others when multiple AMXs exist

even though the AMX is positioned further away from the others. Thus, the primary

comb line is located at ∼ 767 nm rather than ∼ 776 nm. Finally, the other mode

family [Fig. 3.2(e)] is pumped where strong AMXs are present and undisturbed

dispersion may not be characterized faithfully. The generated frequency comb is

shown in [Fig. 3.2(f)] and a significant asymmetry can be observed.

Some applications such as environmental monitoring require sensing and iden-

tification of particles in air [62]. Thus, a broadband frequency comb in air via an

AMX is demonstrated and shown in Fig. 3.3. Two different mode families are inves-

tigated. A high order mode family is pumped and the integrated dispersion is shown

in Fig. 3.3(a) with D1/2π of 214.8031 GHz and D2/2π of −1.4099 MHz approxi-

mately. There is no interaction between the pump mode family and a higher-order

mode family at λ ∼ 773 nm where no apparent frequency shift and line broadening

are observed. A weak perturbation is present at λ ∼ 779 nm, but primary comb

lines appear at λ ∼ 788 nm (48 FSRs away) which is beyond the scan range of our

tunable laser [Fig. 3.3(b)]. It is interesting to note that when several AMXs exist

at the pump wavelength, they compete to determine which is dominant in forming

the comb. A strong AMX outside the scan range may explain the position of the

primary comb line. As the laser is tuned from high to low frequency, a broader fre-

quency comb is generated covering more than 300 nm [Fig. 3.3(c)]. A strong AMX

might also explain the broad spectrum of the frequency combs [63]. Figure 3.3(d)

shows intergrated dispersion for a low order mode family. Fitting a curve yields

D1/2π ≈ 214.7849 GHz and D2/2π ≈ −1.5074 MHz. There is a weak AMX at



74

λ ∼ 772 nm and a strong AMX λ ∼ 778 nm. However, it is unexpected the primary

comb is not positioned at the strong AMX but rather ∼ 30 nm (63 FSRs) away from

the pump wavelength. We believe this observation can be attributed to detuning

dependent AMXs and the competition between AMXs. Resonators of similar size

have been used to sense H13CN, CH2Cl2, and acetone [64, 29, 65]. Proteins, due

to their larger molecular weight, have a broader absorption spectrum. In practice,

finer spectroscopic resolution can be obtained by using a dual comb technique to

record sharp absorption features in a particular gas phase sample.

In order to better understand primary comb generation in the presence of multi-

ple AMXs for a particular pump wavelength, a numerical simulation was performed

using the Lugiato-Lefever equation [13, 66, 67] (see Supplementary Information

Section 2 for more details). The integrated dispersion is determined using a sim-

plified two-parameter model [1] from experimental data [Fig. 3.2(e)] and is shown

in Fig. 3.4(a). A strong AMX is present at µ = 20 and a weak AMX exists at

µ = 5. A resonance is pumped at 780 nm with 50 mW. Figure 3.4(b) shows the

primary comb lines which agree with the strong AMX location (µ = 20). It was

found that adjusting modal coupling strengths results in different comb generation

dynamics (see Supplementary Information Section 4 for more details). For example,

from the simulation, by increasing the coupling strength for the weak perturbation,

the primary comb lines may appear at both weak and strong AMX locations.

3.5 Conclusion

In conclusion, we generated optical frequency combs in water with a microtoroid

resonator using an AMX approach. Although this demonstration is limited by nat-
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Figure 3.3: Measured dispersion and generated frequency comb in air. (a) Integrated
dispersion of a mode family where only a weak modal coupling is present in the scan
range. The pump wavelength is highlighted in orange. The dot color represents the
quality factor in a logarithmic scale and helps to trace a mode family as shown in
(a) and (d). (b) Primary comb lines appear beyond the wavelength scan range from
the blue-detuned side. When multiple AMXs exist for the mode family, the primary
comb does not appear at the closest AMX location but rather might be dependent
on coupling power between the modes. (c) A broadband frequency comb generated
as the laser scans from short to long wavelengths. The spectrum spans over 300 nm
and covers the visible wavelength range. (d) Integrated dispersion for another mode
family. Several AMXs are observed over the wavelength scan range. The pump
wavelength is highlighted in yellow. (e) Primary comb lines occur at ∼ 30 nm away
from the pump wavelength. (f) A broadband frequency comb spanning more than
200 nm.
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(a) (b)

Figure 3.4: Numerical simulation on primary comb. (a) Simulation of the inte-
grated dispersion. Simulation parameters are described in the main text. A simple
two-parameter model is used [1]. The pump mode, and weak and strong mode lo-
cation are highlighted in orange, yellow, and green, respectively. (b) Primary comb
line generation. The primary comb is generated where the stronger AMX happens
(highlighted in green).

urally occurring AMXs and a few comb lines observed, it suggests that one optical

resonator may function as both a spectrometer and a biosensor without building

additional structures. By introducing a Pound-Drever-Hall (PDH) locking mecha-

nism, improving the mechanical stability, and controlling temperature of the device

via a thermoelectric cooler (TEC) in liquid, we believe a broadband and low phase

noise frequency comb (or dark soliton) can be generated with a proper choice of

pumping power and detuning [50]. A further investigation on AMXs was performed

in air when there were multiple AMXs for a pump’s mode family. It was found that

if multiple AMXs are present, they compete with each other and the primary comb

line location may be determined by the intermodal coupling strength. A broadband

optical frequency comb spanning 300 nm was generated with the aid of a strong

AMX far away from the pump wavelength in the visible to NIR regime in air. We

note that the binding of molecules on the toroid could affect frequency comb genera-
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tion dynamics, but this effect might be minimized in case the frequency shift caused

by a particle binding (about 5 MHz for a particle size of 100 nm) is much smaller

than the FSR of the resonator (200 GHz) in this study [8]. This study suggests

a path for a new multi-functional photonic device that may detect and identify a

single molecule of interest in both gas and liquid.
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CHAPTER 4

Impact of Stimulated Raman Scattering on Dark Soliton Generation in a Silica

Microresonator†

Generating a coherent optical frequency comb at an arbitrary wavelength is impor-

tant for fields such as precision spectroscopy and optical communications. Dark

solitons which are coherent states of optical frequency combs in normal dispersion

microresonators can extend the operating wavelength range of these combs. While

the existence and dynamics of dark solitons has been examined extensively, require-

ments for the modal interaction for accessing the soliton state in the presence of a

strong Raman interaction at near visible wavelengths has been less explored. Here,

analysis on the parametric and Raman gain in a silica microresonator is performed,

revealing that four wave mixing parametric gain which can be created by a modal-

interaction-aided additional frequency shift is able to exceed the Raman gain. The

existence range of the dark soliton is analyzed as a function of pump power and de-

tuning for given modal coupling conditions. We anticipate these results will benefit

fields requiring optical frequency combs with high efficiency and selectable wave-

length such as biosensing applications using silica microcavities that have a strong

Raman gain in the normal dispersion regime.
†Contents presented in this chapter has been published in "Impact of stimulated Raman scat-

tering on dark soliton generation in a silica microresonator," Journal of Physics: Photonics, 5,
014001 (2022) [68]
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4.1 Introduction

The ultra-high quality (Q) factor and small mode volume of a microresonator greatly

enhances the intracavity intensity in the microresonator and yields nonlinear effects

such as stimulated Raman scattering (SRS) and four-wave mixing (FWM) [69, 70,

71]. While FWM is a parametric process where phase matching should be satisfied,

SRS does not require phase matching [72, 16]. Engineering the dispersion of the

cavity and choosing proper experimental parameters can excite FWM over SRS, and

generate optical frequency combs [16, 73, 74, 75]. The FWM process can initiate a

Kerr frequency comb and lead to soliton generation in microresonators with a proper

choice of power and detuning [60, 13, 14]. It was shown that a bright soliton which

is a coherent state of an optical Kerr frequency comb in the anomalous dispersion

regime can be soft-excited inherently (i.e., the soliton state can be reached with a

continuous wave (cw) background) only recently in microresonators [76, 13], while

more extensive studies had been performed in other platforms such as fiber lasers [77,

78, 79, 80, 81, 82]. In contrast, dark solitons may be soft-excited via intermodal

interaction [50, 83, 44] or aid of an auxiliary resonator [47, 51, 61, 84], and hard-

excited (i.e., the soliton state cannot be reached with a cw background and may

require manipulation of the background) by a modulated pump [85, 86, 87] or self-

injection locking [88, 89, 90] in the normal dispersion regime.

While optical microresonators can be designed to possess anomalous dispersion

at near-visible wavelengths by engineering the geometry of the resonator, often this

requires precise fabrication control or additional fabrication processes (e.g., incor-

poration of a particular coating) [32]. Anomalous dispersion, however, can also be
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created locally via interaction of different optical mode families supported in the

resonator. This can occur regardless of the dispersion of the cavity and operat-

ing wavelength [45, 50]. Since WGM resonators such as microtoroids and spheres

can support a greater number of optical modes compared to integrated microring

resonators, they can introduce modal interaction without precise fabrication tech-

niques. Thus, in this paper, we only focus on the mode-interaction-aided excitation

method which may be readily implemented on WGM resonators (e.g., microtoroid

or microsphere resonators) that are an attractive platform due to their higher Q

factor and do not need ultra-fine fabrication techniques as their surface roughness

can be greatly reduced by a thermal reflow process [91, 6]. Note that a higher Q

factor not only decreases the threshold power for nonlinear effects but is beneficial

in applications, such as biosensing [8, 15, 92, 20, 21, 24, 26, 93, 94].

SRS can lead to Raman lasing by pumping a resonance above its SRS threshold

power regardless of the dispersion of the cavity [72, 95]. Although engineering

dispersion of a cavity can make the FWM process dominant over the SRS process in

the anomalous dispersion regime, there may still be effects of the Raman interaction

including Raman self-frequency shift [96] and Stokes solitons [97, 98]. In crystalline

materials where the Raman gain has a narrow bandwidth, SRS can be avoided by

not overlapping the Raman gain and a mode of a cavity [99, 100]. Moreover, due to

the narrow Raman gain, it was demonstrated that SRS can assist FWM in normal

dispersion [101]. The interaction between FWM and SRS can also yield effects such

as Raman combs [102, 103], and broader Kerr frequency combs [104, 105].

The transition and competition between SRS and FWM has been studied in

the context of frequency detuning between a pump laser frequency and a resonant
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frequency, coupling conditions, and geometrical factors [16, 106, 74, 107, 108].

The transition from Raman oscillation to FWM based parametric oscillation was

reported in these works, but their analysis is limited to comparing the gains

(or threshold powers) for both phenomena. In fact, complex dynamics of these

nonlinear effects can be better understood by considering their interactions com-

bined with discrete resonance modes separated by a free-spectral range (FSR)

in a microcavity [109, 110, 111, 112]. While there are a number of stud-

ies on this interaction in optical resonator systems in the anomalous dispersion

regime [113, 102, 114, 96, 115, 97, 116, 105, 117, 118, 104], only a limited number

of studies focus on this in the normal dispersion regime [119, 101, 120, 121]. This

is partly due to its difficult excitation in experiments [76, 50]. Although the ex-

citation dynamics of dark solitons [63, 122, 44] and the influence of SRS on dark

solitons [121] has been investigated, the complex interaction of SRS and dark solitons

and their excitation dynamics has been less explored. Furthermore, in a material

with a strong Raman gain, dark soliton generation may be significantly perturbed

by SRS. This will, in turn, yield more limited conditions for both the excitation and

stability region of the dark soliton.

In this work, to address a lack of exploration on the issues above, we numerically

study the excitation and accessibility of dark solitons in the presence of Raman inter-

actions in a normally dispersive microresonator at near-visible wavelengths (here,

780 nm). We choose this wavelength region for potential biological sensing ap-

plications where aqueous solutions absorb less light compared to infrared region.

Since the Raman gain (gR) at this wavelength is twice as big as at infrared wave-

lengths (i.e., gR (λ= 0.78 µm) ≈ 2gR (λ= 1.55 µm)), the interaction may be even
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more complex [123, 124]. It was found that an additional frequency shift caused

by an avoided-mode-crossing (AMX) effect due to intermodal coupling can create

parametric gain whose amplitude and bandwidth are dependent on both location

and amplitude of the AMX. In case the pump power is below the threshold power

for SRS, FWM can be initiated and a dark soliton can be generated with a proper

AMX condition. Moreover, even if the pump power is above the threshold power

for SRS, a dark soliton can still exist but under more restricted conditions. We first

study how parametric gain can be introduced by the mode-interaction (or AMX)

and compare the parametric gain with the Raman gain with different simulation

parameters in section 4.2. Next, we numerically simulate a dark soliton under fixed

parameters (section 4.3). In section 4.4, we discuss in detail interactions of FWM

and SRS under different conditions. Finally, simulated stability charts are presented

in section 4.5.

4.2 Gain curves for FWM based parametric oscillation and stimulated

Raman oscillation

Raman gain exists regardless of the dispersion of a cavity, and can stimulate Raman

oscillation with no phase matching condition satisfied if it is externally pumped

beyond its threshold power [16]. The Raman gain per roundtrip, gR, in silica can

be expressed as follows [123, 125, 111]:

gR = α + gRbulk
P0

Aeff

Leff , (4.1)
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where α = (αi+θ)/2 is the total roundtrip loss in amplitude, αi is the roundtrip loss

in intensity due to absorption and scattering, θ is the coupling coefficient between

the cavity and the waveguide. gRbulk ≈ 1.3× 10−13 m/W is the bulk Raman gain of

silica at 780 nm, Aeff is the effective mode area, Leff = (α/L)−1(1− exp(−α)) is the

effective length, L is the length of the cavity, and P0 is the intracavity power which

can be obtained by the following equation [125, 111]:

(γL)2P 3
0 − 2δ0γLP

2
0 + (δ20 + α2)P0 = θPin, (4.2)

where δ0 = tR(ω0 − ωp) is the phase detuning of the pump frequency (ωp) with

respect to the nearest resonant frequency (ω0), tR is the cavity roundtrip time,

γ = n2ω0/(cAeff) ≈ 0.014 is the nonlinear coefficient, n2 is the nonlinear refractive

index, c is the speed of light in vacuum, and Pin is the pump power. Note that the

Raman gain is linearly dependent on the intracavity power which can be determined

by choosing a detuning and pump power for a cavity.

In the anomalous dispersion regime, the parametric gain of a cavity, gcav, can be

created and expressed by the equation [16, 110, 111]

gcav(Ω) = α +
√
(γLP0)2 − (δmis)2, (4.3)

where δmis = δ0 − (β2/2)LΩ
2 − 2γLP0 is the phase-mismatch due to the detuning,

dispersion, and nonlinearity, β2 is the second-order dispersion coefficient (β2 < 0

in anomalous dispersion regime), Ω = bD1 is the modulation frequency, b is the

mode number with the additional frequency shift (b = 1, unless otherwise stated,
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for simplicity), and D1 = 2πFSR is the FSR in angular frequency at ω0.

The parametric gain created by AMX may be expressed by adding an additional

phase shift in the normal dispersion regime (β2 > 0). The phase-mismatch term

then becomes

δmis = δ0 − (β2/2)LΩ
2 − 2γLP0 +∆δ (4.4)

where ∆δ = ∆ωtR is the additional phase shift per roundtrip, ∆ω = aκ is the

corresponding angular resonance frequency shift, a is the normalization factor of the

additional frequency shift, and κ/2π is the FWHM of the resonance of the cavity.

The second term in equation (4.4) which is negative in the normal dispersion regime

may be compensated by the additional frequency shift due to AMX (i.e., ∆δ >

0). Figure 4.1(a) shows both the normalized parametric gain and Raman gain

at different additional frequency shifts as a function of normalized power, S =√
γLθPin/α3, at a fixed detuning, δ0 = 0. Raman gain is not dependent on the

additional frequency shift and it remains the same. Interestingly, parametric gain

can be created by the ∆ω. It was found that the threshold power, existence range,

and maximum gain for the FWM process are dependent on the ∆ω. The threshold

power tends to increase linearly with the addition frequency shift, while the existence

range and maximum gain hit a maximum at a certain ∆ω value.

In practice, only the detuning is swept from high to low frequency instead of the

pump power to access a ’thermal triangle’ [59]. Thus, it may be straightforward

to plot the gain curves as a function of detuning from the blue to red-detuned

side. Figure 4.1(b) shows the same gain curves as a function of the normalized

detuning, ∆ = δ/α, at a fixed normalized power, S = 4, for different ∆ω values. The
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Figure 4.1: Parametric four-wave mixing (FWM) and stimulated Raman scattering
(SRS) gain curves. (a - c) Gain/loss per roundtrip vs (a) normalized power and
(b), (c) normalized detuning in the normal-dispersion regime. (a) Detuning (δ0) is
fixed at 0. No gain is present in the absence of modal interaction. Parametric gain
can be created by introducing modal interaction (∆ω > 0), which determines an
amplitude and width of the gain envelope, and a threshold power. (b) Normalized
power (S) is fixed at 4. Raman gain is not dependent on the frequency shift.
Parametric gain is maximized at a ≈ 3. (c) Parametric and Raman gains at different
pump powers with a fixed frequency shift (a ≈ 2). Raman gain increases linearly
with the pump power, while parametric gain can be a function of both the pump
power and additional frequency shift. (d - f) Difference between the FWM and SRS
gains in 2D-parameter space. The FWM (SRS) dominant region is filled with red
(blue). Red (blue) dashed line represents zero gain for FWM (SRS). Horizontal
dashed arrows indicate excitation pathways explored in upcoming sections. The
difference between the FWM and SRS gains is normalized by loss (α) with the
chosen additional frequency shifts of (d) a = 1, (e) a = 2, and (f) a = 4. Cases (i -
vi) shows parameters analyzed in the following sections. Note b is assumed to be 1
in all calculations.

parametric gain is created at a small additional frequency shift (a = 1), maximized

at a certain point (a = 3), and shrinks at a large frequency shift (a = 5). It may be

found that a certain amount of additional frequency shift is required to overcome
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the loss in the cavity, i.e., gcav > 0. In addition, there can be FWM dominant

regions over SRS for certain frequency shifts, i.e., gcav > gR > 0. Figure 4.1(c)

presents the same gain curves as a function of detuning at a fixed frequency shift

(∆ω = 2κ) for different normalized powers. The Raman gain curves increase with

pump power, while the parametric gain is bigger at S = 6 than other cases. SRS

dominates over FWM at relatively high pump powers; however, under a proper

frequency shift condition it is possible that FWM can overcome SRS at relatively

low pump power. A direct comparison between parametric and Raman gain is

shown in two-dimensional parameter space at different additional frequency shifts

in Figures 4.1(d - f). The red (blue)-colored region represents the larger parametric

(Raman) gain region. The Raman gain (blue dashed region) remains the same,

while the parametric gain (red dashed region) region gets bigger as a function of the

additional frequency shift, but shrinks after a maximum point.

4.3 Numerical model

The intracavity field of the microsresonator can be modeled by the well-known

Lugiato-Lefever equation (LLE) as follows [66, 109, 121]:

tR
∂E

∂t
= −(α + iδ0)E +

√
θEin − i

β2L

2

∂2

∂τ 2
E

+ iγL(1− fR)|E|2E + iγLfR(R ∗ |E|2)E (4.5)

where E(t, τ) is the internal electric field within the resonator, t is the slow time

describing the evolution of the field envelope, τ = tR(ϕ/π) is the fast time describing
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the temporal profile of the field envelope, and ϕ is the azimuthal coordinate around

the resonator. fR is the fractional coefficient which determines the strength of the

SRS term, and ∗ denotes the convolution. fR is assumed 0.18 for silica [124]. R(τ)

is the Raman response function

R(τ) =
τ 21 + τ 22
τ1τ 22

exp−τ/τ2 sin (τ/τ1) (4.6)

where τ1 = 12.2 fs and τ2 = 32 fs for fused-silica based fibers [124]. A complex dis-

persion profile of a microresonator without AMX can be described in the frequency

domain as follows: Dint = ωµ − (ω0 + D1µ) =
1
2
D2µ

2 + . . ., where Dint is the inte-

grated dispersion, and ωµ is the angular frequency of the relative mode number (µ)

with respect to the pump mode (µ = 0). Note that we ignore higher-order (βi>2

or Di>2) dispersion coefficients to simplify simulations and focus on effects of AMX

and SRS. The integrated dispersion with the AMX effect may be simply expressed

as [1]

Dint(µ, a, b) = ωµ − (ω0 +D1µ) =
1

2
D2µ

2 − aκ/2

µ− b− 0.5
(4.7)

where a and b determine the normalized amplitude and the location of the additional

frequency shift. Note this model describes the dispersion for resonators with a strong

intermodal coupling, while adding a single additional frequency shift for a specific

mode number better describes resonators with a weak AMX [50, 126]. Then the LLE

may be rewritten by taking the Fourier transform and the inverse Fourier transform
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of the dispersion and Raman terms:

tR
∂E

∂t
= −(α + iδ0)E +

√
θEin − iF−1 [tRDint · F [E]]

+ iγL(1− fR)|E|2E + iγLfR(F−1
[
F [R] · F [|E|2]

]
)E (4.8)

where F and F−1 denote the Fourier transform and the inverse Fourier transform,

respectively. The LLE is solved numerically using the split-step method where the

nonlinear and dispersion contributions are treated separately [125].

We consider a silica microtoroid resonator with a radius of 250 µm at 780 nm for

LLE simulations. The simulation parameters are set as follows: D1/2π = 130.4 GHz,

D2 = −5.72 MHz, Qload = 1× 108, α = tRω0/2Qload = 9.25× 10−5, θ = 2.71× 10−5,

γ = 0.014, and S = 4. The integrated dispersion with a AMX, Dint(µ, a = 8, b = 3),

is shown in figure 4.2(a). The normalized detuning is linearly increased over time

from -2 to 14 to scan the resonance from the blue-detuned side to the red-detuned

side which is usually done in real experimental situations. The corresponding av-

erage intracavity power is shown in Figure 4.2(b). The spectral evolution of the

intracavity field is shown in Figure 4.2(c). The spectral and temporal profile are

plotted in Figure 4.2(d) at different detuning values which are indicated as verti-

cal dashed lines in Figures 4.2(b) and (c). Unlike its counterpart bright soliton

where ’step-like’ patterns indicate transition to soliton states in the effectively red

detuned side [13, 55], dark solitons can be accessed in the effectively blue detuned

side [50, 44, 84]. Dark soliton states can be determined by their temporal profiles

which indicate pulse-like patterns.

As discussed in section 4.2, the AMX effect may generate parametric gain. Here
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Figure 4.2: Excitation of dark soliton and SRS. (a) The integrated dispersion with
an AMX (a = 8, b = 3) based on equation (4.7). (b) The averaged intracavity power
(blue) and detuning (orange) as a function of time. The normalized pump power
is set to 4. (c) The spectral evolution of the intracavity power. (d) The spectrum
and temporal profile at the stages marked in (b). Four stages are chosen at different
detuning values. A ‘Turing’ pattern appears at stage I. Solitons are generated as
shown at stages II and III. SRS is excited when the intracavity power reaches the
threshold intracavity power at stage IV.

we focus on the excitation pathway corresponding to case (ii) as labeled in Fig-

ure 4.1(e). In this case, it is expected that the FWM process is dominant over the

SRS process because the parametric gain is bigger than the Raman gain. But as

∆ increases, the intracavity power also increases and generates strong Raman gain

along with the parametric gain. Thus, some complex interaction or competition

between them may be expected. At stage I in Figure 4.2(d), it is shown that FWM

comb can be initiated and leads to a Turing pattern [50, 44]. The first sideband

location coincides with the AMX location (here, µ = b = 3) [45]. As the pump

wavelength increases, the bandwidth of the comb increases and a ’step-like’ pattern

in the blue-detuned side is observed indicating a transition to a coherent state as
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reported in [50, 44, 127]. Localized structures in the cavity are observed as the

detuning is increased (stages II and III in Figure 4.2(d)). The number of localized

structures is equivalent to the AMX location. We also observed that the number

of low intensity oscillations at the dark pulse profiles increases at a function of the

detuning (i.e., 4 and 5 oscillations at ∆ = 3 and 5, respectively) as it is predicted

theoretically [128, 129] and verified experimentally [50, 44]. At a large detuning,

the intracavity power is high enough to initiate SRS and the Raman oscillation gets

dominant (stage IV in Figure 4.2(d)). Note that the SRS gets dominant at a lower

intracavity power for a large fR.

4.4 Results and discussions

4.4.1 Influence of AMX on dynamics of dark soliton generation

While suppressing the AMX may simplify and help the excitation of bright soli-

tons in anomalous-dispersion microresonators [1], AMX is required to soft-excite a

FWM comb [41] and may lead to dark soliton states in normal-dispersion microres-

onators [45, 50]. We study three cases (corresponding to cases (i), (ii), and (iii)

as labeled in Figures 4.1(d), (e), and (f), respectively) where different excitation

dynamics of both the dark soliton and SRS are expected in each case. Again the

Raman gain is not dependent on the AMX, while the amplitude and bandwidth of

the parametric gain are dependent on the magnitude and location of the AMX as

shown in Figure 4.1(b). The first case (i) shows the parametric gain is not enough

to overcome the Raman gain and the Raman oscillation is a dominant effect. The

second case (ii) is where the parametric gain is bigger than the Raman gain and
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the FWM is the dominant process, but there may be a gain competition as the

intracavity power grows. More complex dynamics is observed as in case (iii) where

the parametric gain envelope shrink compared to the previous case.

The normalized coefficient (a) for the integrated dispersion, Dint(µ, a, b), is cho-

sen to be 4, 8, and 16 for cases (i), (ii), and (iii) at the fixed location b = 3,

respectively, as shown in Figure 4.3(a). The normalized detuning is increased from -

2 to 14. The averaged intracavity power is shown in Figure 4.3(b) for each case. The

spectral evolution profiles are shown in Figure 4.3(c). In case the parametric gain is

high and wide, FWM may be effectively excited even though Raman gain is present

and solitons can be generated (case (ii) in Figure 4.3(c)). In other words, because

nonlinear frequency conversion (here, FWM) consumes the intracavity power, it is

required to further increase the detuning to reach the threshold intracavity power for

the SRS, yielding a large existence range for the soliton. The spectrum and tempo-

ral profile are also shown which confirms three pulses in the cavity. However as the

parametric gain gets lower and narrower, FWM may be dominant over SRS for rel-

atively limited conditions or cannot be excited (cases (i) and (iii) in Figure 4.3(c)).

Then, SRS may be excited easily and a complex interaction between them can occur

which often leads to a chaotic temporal profile with Raman oscillation.

It is critical to introduce an appropriate AMX to access the dark soliton regime.

The location can be chosen simply by changing the wavelength of the pump source.

The amplitude of the frequency shift may be tuned by indirectly an auxiliary res-

onator with a microheater [46, 61, 84], directly controlling the temperature of a

cavity with a high thermo-optic coefficient [130], or through coupling an auxiliary

light into a resonance [131]. It is worth mentioning that an oscillatory behavior in
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Figure 4.3: Excitation dynamics of a dark soliton and SRS at different AMX condi-
tions. (a) The integrated dispersion with an AMX based on equation (4.7). Parame-
ters for the AMX are a = 4, 8, 16 for case (i), (ii), (iii), respectively, and b = 3 for all
cases. (b) The averaged intracavity power for cases (i) (blue), (ii) (green), (iii) (red)
and detuning (black) as a function of time. (c) Spectral evolution of the intracavity
fields (top), a representative spectrum (bottom), and temporal waveform (inset) for
each case. Different AMX conditions yield different accessible states (either dark
soliton or SRS dominant state). Too small or too large AMX strength reduces the
dark soliton state region as shown in cases (i) and (iii) compared to a proper AMX
condition in case (ii).

the intracavity power for case (iii) is shown in red in Figure 4.3(b) which may be

interpreted as a dark breather [132, 126].

4.4.2 Influence of pump power on dynamics of dark soliton generation

As the Raman gain does not depend on the AMX as discussed in previous sections,

there is a threshold power for SRS regardless of the AMX condition. However the

threshold power for FWM is contingent on the AMX effects. In fact, the threshold
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power for the parametric oscillation can be lower than the threshold power for

the Raman oscillation. In this case, the dark soliton regime can be accessed by

pumping the cavity with the power between the two threshold powers. As seen in

Figure 4.1(a) the parametric gain is in the shape of a semi-ellipse and has a certain

existence range as a function of the power, while the Raman gain increases linearly

with the intracavity power. This implies that although the Raman effect may be

dominant at high pump power, we may find a FWM dominant region at relatively

low pump power.

The parameters a and b for the dispersion profile are fixed to 8 and 3, respec-

tively, to focus on the effects of power. We chose three different normalized pump

powers (S = 3, 5, and 7) for simulations as shown for cases (iv), (v), and (vi) in

Figure 4.4(c) while keeping the other parameters the same, respectively. As shown

in Figure 4.1(e), we examine three cases: a FWM dominant case (iv), an intermedi-

ate case (v), and a SRS dominant case (vi). Provided that the pump power is below

the SRS threshold but above the FWM threshold power, a dark soliton state can be

accessed for a range of detuning conditions with no observation of the SRS effect,

as shown for case (iv) in Figure 4.4(c). Once the pump power is above the SRS

threshold power, SRS can be excited as the intracavity power increases and even-

tually the system will go to a chaotic state, as shown in Figure 4.4(c) for case (v).

As the pump power gets higher, SRS will be excited at low detuning values and the

soliton state cannot be accessed, as shown in Figure 4.4(c) for case (vi). Note that a

Raman comb can be observed around 810 nm, but no evidence of pulse-like pattern

can be found in this study [119].

In experimental situations, choosing an appropriate pump power and detuning is
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Figure 4.4: Excitation dynamics of a dark soliton and SRS at different pump powers.
(a) The integrated dispersion with an AMX based on equation 4.7, Dint(µ, 8, 3), for
all cases. (b) The averaged intracavity power for cases (iv) (blue), (v) (green),
(vi) (red) and detuning (black) as a function of time. (c) Spectral evolution of the
intracavity fields (top), a representative spectrum (bottom), and temporal waveform
(inset) for each case. The dark soliton exists for a shorter detuning range at a higher
pump power (stages II and III). In other words, increasing pump power is not always
beneficial in accessing a dark soliton state.

highly desired to effectively suppress SRS and generate a dark soliton only. However,

depending on the AMX condition, it may never be possible to initiate the FWM

effect via the mode-interaction-aided parametric gain (Figure 4.3). In case the modal

coupling condition cannot be controlled, increasing the threshold power for SRS or

decreasing the threshold power for FWM may lead FWM to be a dominant process

over SRS, which is demonstrated via a chemical method [133] or by adjusting the

coupling condition between the cavity and the waveguide [16, 106]. While no dark

breather is observed in this case, a large AMX strength may excite the breather
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state [126].

4.4.3 Stability charts

Because there are two important parameters, the detuning and the pump power,

different excited states of the system may be plotted in a two-dimensional parameter

plane at different modal coupling conditions. As we are only interested in soliton

states, the existence region of the soliton can be marked in the plane, which is

called a stability chart. This can give us insights on the dark soliton existence

and experimental guidelines. To analyze the stability of soliton states for a certain

detuning and pump power, the intracavity field is propagated using the LLE. For

a fixed pump power, the detuning is increased from -1 to 12 in a discrete step of

0.1 [134]. In each step, we allowed enough time (here, 30 τph) for the field to pass

transitory behavior from a sudden detuning increase and converge to a solution. We

recorded the evolution of the field for another period of time (here, 20 τph). Then,

this process is repeated for a different pump power. A soliton state is found if the

intracavity field of the frequency comb remains constant for the recorded period of

time. If Raman lasing occurs, the state is labeled as a SRS state. Although a dark

soliton state can be present in the presence of Raman lasing, we exclude this scenario

for simplicity as it quickly collapses into a chaotic state as shown in Figure 4.3(c).

Figure 4.5 shows regions of stable soliton states (blue and red) and SRS

states (green) at different AMX conditions. The AMX location (b) is fixed to 1 and

the strength (a) is set to 1, 2, and 4 for the stability analysis which are shown in

Figures 4.5(a), (b), and (c), respectively. The dark soliton existence region without

the Raman interaction is red-colored. The green region represents the presence of
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Figure 4.5: Simulated stability chart for different additional frequency shift values.
(a - c) The blue region represents the existence range of dark soliton states in the
presence of the Raman interaction (fR = 0.18) for various additional frequency shift
values of (a) a = 1, (b) a = 2, (c) a = 4. The red region where dark soliton states
exist in the absence of the Raman interaction (fR = 0) and the green region where
SRS is excited in the absence of the additional frequency shift are shown for compar-
ison. The existence range for dark soliton states with the Raman interaction (blue)
is narrower than the one without the Raman interaction (red). The blue region
increases along with the additional frequency shift, but decrease after its maximum
value (not shown here).

the Raman lasing without the modal coupling. Finally, the blue region describes the

existence of dark soliton states with the Raman interaction for an AMX condition.

When the AMX is relatively small (a = 1), the existence range of soliton states is

narrow without the Raman effect (red) and gets narrower with the effect in the nor-

mal dispersion regime (blue), which agrees well with literature [132, 128, 129, 121].

Interestingly, when the AMX strength is relatively large (a = 2, 4), the stable re-

gion becomes bigger and even compatible with the region in anomalous dispersion

regime. As shown in Figure 4.1, a relatively large AMX strength can introduce a

bigger parametric gain region which yields a wider region of soliton states. Thus,

it is desired to introduce a relatively significant AMX-induced frequency shift to

expand the stable region of the soliton states. Then, we can choose an appropriate

pump power and detuning based on the stability chart.
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In practice, unfortunately, it is not trivial to introduce a large modal coupling

and control it in a single microresonator. While it is demonstrated that the AMX

effects can be controlled by employing a main and an auxiliary microresonators

(or coupled microresonators) in an integrated platform [47, 84, 135], the coupled

microresonators may not be easily employed in WGM-type resonators due to diffi-

culties in fabrication. It might be desired that indirectly controlling the temperature

of the cavity without the additional cavity through an auxiliary light [131]. In ex-

periments, the mode structure of a microresonator has to at first be characterized

using dispersion measurement techniques [32]. Then, the AMX effect might need

to be controlled based on the stability charts. This will give the desired input

power and detuning values. Once a dark soliton is accessed, it will remain stable

as long as the other parameters are kept constant such as temperature, detuning,

and power [44, 83]. Feedback control of these parameters can assist in ensuring

long-term stability.

4.5 Conclusion

The interaction of FWM based parametric process and SRS process is investigated in

a normal-dispersion microresonator at near-visible wavelengths. The phase match-

ing requirement for the parametric process is satisfied by an additional phase shift

due to the additional frequency shift caused by an intermodal interaction. It is

shown that parametric gain can be created by the additional phase shift. Mean-

while, Raman gain is inversely proportional to wavelength, which makes the com-

petition between the parametric and Raman oscillation more complex at shorter

wavelengths. Nonetheless, it is found that a significant phase shift can expand and
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increase the parametric gain envelope which can overcome the Raman gain even at

shorter wavelengths. The dynamics of dark soliton generation is analyzed by solv-

ing the LLE numerically at various pump powers and modal coupling conditions.

The additional frequency shift can excite a dark soliton and extend the existence

range, but too large of a frequency shift induces an oscillatory state (or breather)

and shrinks the range. The stable region for dark solitons at various pump powers

and detuning conditions is summarized in stability charts.

We believe this work can provide practical experiment guidelines for AMX based

dark soliton generation in systems where the Raman gain is broad and large as

well as fundamental insights on the AMX effect. Being able to control the AMX

condition arbitrarily in a single microresonator (e.g., through temperature control

of the cavity) may guarantee dark soliton existence in any microresonator without

requiring an auxiliary microresonator, pump modulation, or self-injection-locking.
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CHAPTER 5

Summary and Outlook

To summarize, we have generated optical frequency combs in water using a mi-

crotoroid resonator with an avoided mode crossing (AMX) approach. This demon-

strates that a single optical resonator can function as a spectrometer and a biosensor

without additional structures. Further improvements, such as using a PDH locking

mechanism, enhancing mechanical stability, and controlling temperature, may result

in a broadband and low phase noise frequency comb or dark soliton. We also inves-

tigated AMXs in air and found that intermodal coupling strength may determine

the primary comb line location. A broadband optical frequency comb spanning a

wide wavelength range was generated in air with the help of a strong AMX.

Furthermore, this thesis investigates the interaction between the four-wave mix-

ing (FWM) based parametric process and stimulated Raman scattering (SRS) pro-

cess in a normal-dispersion microresonator at near-visible wavelengths. The compe-

tition between parametric and Raman oscillation is complex at shorter wavelengths

due to the inverse proportionality of Raman gain to wavelength. However, it is

found that a significant phase shift can expand and increase the parametric gain

envelope, overcoming the Raman gain even at shorter wavelengths. The dynamics

of dark soliton generation are analyzed numerically, and it is observed that the ad-

ditional frequency shift can excite dark solitons and extend their existence range.

Stability charts are summarized to identify the stable regions for dark solitons at
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various pump powers and detuning conditions.

This study presents practical guidelines for dark soliton generation based on the

AMX effect and suggests controlling the AMX condition in a single microresonator

for guaranteed dark soliton existence. Additionally, it proposes a promising ap-

proach for developing a multi-functional photonic device capable of detecting and

identifying single molecules in gas and liquid environments and provides fundamental

insights into the AMX effect and its potential applications in microresonator-based

devices.

Overall, our findings represent a significant advancement towards label-free,

single-molecule spectroscopy in both air and liquid environments, with potential ap-

plications in medical diagnostics and scientific research. So, this could be a ground-

breaking approach to overcome current limitations in single molecule detection and

identification without the need for labels or capture probes. With further research

and development, our approach has the potential to revolutionize biosensing and

open up new possibilities in various fields. Further studies are needed to fully un-

derstand and optimize this approach for practical applications. However, our results

provide a promising foundation for future research in this area. We hope that our

work will inspire further exploration and advancement in the field of label-free,

single-molecule spectroscopy.
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APPENDIX A

Modal Coupling Strength and Broadband Frequency Combs

Since a whispering gallery mode toroid resonator can support more than ten optical

modes, it may by expected that multiple AMXs can be present with respect to a

pumping mode as shown in Fig. 2.4. Based on the LLE simulation, we investigated

a competition for the four-wave mixing (FWM) process and the relationship be-

tween the intermodal coupling strength and the bandwidth of a frequency comb.

Figure A.1(a) shows the integrated dispersion with a weak modal crossing (a = κ/2

and b = 5) and a stronger AMX (a = 2κ and b = 5). Other simulation param-

eters are written in section 2.3 and fixed for all the simulations shown here. As

shown in Fig. A.1(b), the weak modal crossing initiated sideband generation first

and no sideband generation at the strong AMX location is observed. This may be

understood as when an AMX location is far away from a pump, it requires more

frequency shift to meet the phase-matching condition for the FWM process. Next,

the coupling strength for the strong AMX increased by a = 5κ [Fig. A.1(c)]. Then,

the strong AMX met the phase-matching requirement and a comb was generated at

both AMX locations. Finally, we increase the coupling strength for the strong AMX

by a = 10κ [Fig. A.1(e)]. Stronger modal coupling generated a broader frequency

comb as shown in Fig A.1(f) [63].
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Figure A.1: (a, c, e) Integrated dispersion with a weak perturbation at µ = 5 and
a strong modal crossing at µ = 20. Coupling strength increased from left to right
for the strong modal crossing. (b, d, f) Simulated spectrum based on the integrated
dispersion input from (a, c, e), respectively. A competition for the four-wave mixing
process between weak and a strong modal couplings can be observed in (b) and (d).
A broadband frequency comb is generated when the coupling strength is further
increased as shown in (f).
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APPENDIX B

Dispersion Measurement

In this appendix, a technique for measuring dispersion is discussed. The principles

of a Mach-Zehnder interferometer are briefly explained, along with details of the

experimental setup and measurement results.

B.1 Mach-Zehnder interferometer

Calibrating a tunable laser scan involves setting the wavelength scale of the laser

to a known reference. This calibration is important for accurately measuring the

wavelength of the laser output. The first step is to identify a stable and precise

reference source that can be used to calibrate the laser scan. In this work, we use a

fiber-based Mach-Zehnder interferometer.

Fiber-based Mach-Zehnder interferometer

A Mach-Zehnder interferometer (MZI) is an optical device that uses interference

of light to measure changes in phase or amplitude. A fiber-based Mach-Zehnder

interferometer (MZI) is a type of MZI that uses optical fibers as its main components.

The basic structure of a fiber-based MZI consists of a fiber optic splitter that

divides an incoming optical signal into two paths, which then recombine at a second

splitter to produce an interference pattern (figure B.1(b)). By adjusting the length



104

of one of the two fiber arms, the phase difference between the two paths can be

tuned, allowing for the measurement of small changes in phase or amplitude.

Experimental setup

Figure B.1(a) depicts the experimental setup for the dispersion measurement. The

tunable laser is scanned and splitted into two paths. One goes into the MZI and

generates an interference pattern which is a sinusoidal oscillation (or fringes). The

other passes the device under test, here, a fiber loop cavity. The fiber loop cavity

(FLC) is made with a 50:50 fiber coupler by connecting one input with one output.

Both of the light paths are monitored in photodetectors. The signals are collected

with a DAQ system. A representative measurement is shown in figure B.1(c). The

sinusoidal oscillation is observed with the MZI, while resonances are obtained with

the FLC. Since the FSR of the MZI can be measured with a electrical spectrum

analyzer, one can use this as a calibration signal. Then, the FSR of the FLC can

be calculated.

B.2 Resonance linewidth measurement

In this next experiment, we substitute the FLC with a microtoroid resonator while

keeping the rest of the setup the same. Figure B.2 shows the measurement of the

Q factor. The laser scanning is calibrated using the MZI pattern, and a lorentzian

curve is fitted to the resonance to estimate its full-width at half-maximum (FWHM).

The loaded Q factor is then calculated by taking the ratio of the laser frequency to

the FWHM. Chapter 1 provides more detailed information.
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Figure B.1: Mach-Zehnder interferometer calibration setup. (a) The tunable laser is
scanned and splitted into two paths. One goes through the MZI and the other passes
the fiber loop cavity (FLC). And both of the signals are measured in a DAQ card.
(b) The custom-built MZI in a enclosure. (c) The Resonances (Orange) from the
FLC and interference patterns from the MZI are measured. The FSR of the FLC is
calibrated based on the FSR of the MZI. TLD: tunable laser diode, FC: fiber coupler,
MZI: Mach-Zehnder interferometer, FLC: fiber loop cavity, PD: photodiode, DAQ:
data acquisition.
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Figure B.2: Q factor measurement with a MZI. A resonance of a microcavity is
shown in orange. A MZI pattern is shown in blue. Since the FSR of the MZI is
known, the scan can be calibrated into frequency. A lorentzian curve is fitted on
the resonance and the linewidth can be estimated. The loaded Q factor, then, can
be calculated.
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B.3 Dispersion characterization

Now that we covered the principles and examples of the MZI calibration and Q

factor measurement, we are ready to apply the same technique for the dispersion

measurement. Instead of measuring a single resonance, we increase the scanning

range of the laser up to one FSR and repeat it. Figure B.3 illustrates measured

transmission for multiple FSRs. Here, the x-axis represents one FSR and the whole

scanning range is 9 FSRs. The blue rectangle highlights an intermodal interaction of

two optical modes. The spacing between them changes over the scanning frequency.

When they are close in frequency and interact each other, a pulling effect can be

observed, also known as an avoided mode crossing (AMX) effect.

The AMX effect can be clearly visualized by plotting the integrated dispersion.

Please see chapter 1 for more detail. Figure B.4 shows the integrated dispersion.

The blue rectangle shows the AMX effect where a frequency difference between the

adjacent modes are altered. If there is no AMX effect, we expect to observe a line

where the frequency difference between the adjacent modes are nearly constant.

However, in the blue rectangle region, a line is bent due to the AMX.
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Figure B.3: Transmission spectrum of a microtoroid resonator. A tunable laser
is scanned for one FSR of an optical mode, and repeated up to 9 FSRs. The
transmission spectrum for each FSR is shown. The scanning frequency is calibrated
with a MZI. The blue rectangle highlights two optical modes interacting each other
and generating an AMX effect.
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Figure B.4: Integrated dispersion of a microtoroid resonator. The y-axis represents
the frequency difference between the the adjacent optical modes over the FSR. The
mode number is a relative number. The thres
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APPENDIX C

Matlab Codes

C.1 LLE simulation

main.m

% This code s o l v e s the LLE with the s p l i t −step method

% dE/dt ' =

% −(1+1 i ∗Delta ) ∗E + 1 i ∗IFT[−tR/alpha ∗Dint∗FT[E ] ] + F

% Reference : Phys . Rev . A 89 , 063814 (2014) or Nat . Photon . 4 , 471 476 (2010)

% Written by Gwangho Choi in Mar . 2022

% Modif ied from an example code in non l i nea r f i b e r op t i c s book

%−−−Spec i f y input parameters

inputParams ;

%−−−Sample numbers

nt = 2^9; % FFT Points

step_num = 2e5 ; % Number o f s t ep s in time

%−−−Set v a r i a b l e s

Delta = detunArray ( −2 ,14 ,0 ,1 , step_num) ; % [ De l t a_ in i t i a l , De l ta_f ina l , Detun_start ,

Detun_stop ]

% Pin = 0 . 0 2 ; % [W] : Driv ing Power

% s = sq r t ( Pin ) ∗ sq r t (gamma∗L∗ theta / alpha ^3) ;

s = 5 ; % [ −] : Normalized Pump Fie ld

S = ones (1 , nt ) ∗ s ; % [ −] : Pump Fie ld

Pin = ( s / sq r t (gamma∗L∗ theta / alpha ^3) ) . ^2 ; % [W] : Driv ing

Power

%−−−Set s imu la t i on parameters
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dp = 2∗ pi /nt ; % [ −] : Sampling Reso lut ion in po la r coo rd ina te

tMax = 120∗tau_ph ∗1 ; % [ s ] : Slow Time ( d e f au l t : 120∗tau_ph)

t_prime = alpha∗tMax/tR ; % [ −] : Normalized Slow Time

dt = t_prime/step_num ; % [ −] : Step S i z e in t ( Slow Time)

% dt = 0 . 0005 ;

%−−−Def ine tau and omega ar rays

p = (−nt /2 : nt/2−1)∗dp ; % Polar Coordinate Grid ( a . u . )

mu = f f t s h i f t (−nt /2 : nt/2−1) ; % Freq Array

t = l i n s p a c e (0 , t_prime , step_num) ; % Slow Time Array ( a . u . )

t_ns = t ∗tR/alpha ∗1 e9 ; % Slow Time Array ( ns )

t_tR = t∗tR/alpha /tR ;

f = f f t s h i f t (mu) ∗FSR + om0/2/ p i ;

lam = c . / f ;

%−−−De f i n i t i o n o f Raman response func t i on

R = ramanResponse (p , 12 . 2 , 32 , tR) ; % tau1 = 12 . 2 ; tau2 = 32 ; [ f s ]

fR = 0 . 1 8 ;

% fR = 0 . 2 4 5 ;

fR = 0 ;

%−−−Input f i e l d p r o f i l e

P_noise = 1e −12; % [W] : Noise Power (1 pW)

uu = sq r t ( P_noise ) ∗ sq r t (gamma∗L∗ theta / alpha ^3) ∗ ( rand (1 , nt ) ) ;

%−−−Store d i s p e r s i v e phase s h i f t s to speedup code

Dint = D2 / 2 . ∗ mu.^2 ;

a = kappa ∗2 ;

% a = 0 ;

b = 1 ;

% Dint = Dint − a /2 . / (mu−b−0.5) ;

Dint = Dint + a ∗ (mu == b) ;

Disp = tR ∗ Dint / alpha ;

% ∗∗∗∗∗∗∗∗∗ [ Beginning o f MAIN Loop ] ∗∗∗∗∗∗∗∗∗∗∗

[ so l , spec ] = sp l i t S t e p ( Delta , S , uu , dt , nt , step_num , Disp ,R, fR ) ;
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% ∗∗∗∗∗∗∗∗∗∗∗∗ [ End o f MAIN Loop ] ∗∗∗∗∗∗∗∗∗∗∗∗∗

splitStep.m

f unc t i on [ so l , spec ] = s p l i t S t e p ( Delta , S , uu , dt , nt , step_num , Disp ,R, fR )

% −−−−

% uu : I n i t i a l Input

% Delta : Detuning

% dt : Time Step

% nt : Sampling Number

% step_num : Evolut ion Number

% Disp : Dint

% dp : sampling

% S : External Input

% R: Raman Response

% fR :

% −−−−

down = 1e2 ; % Downsample f o r l e s s s t o rage

dp = 2∗ pi /nt ;

s o l = ze ro s ( nt , step_num/down) ;

s o l ( : , 1 ) = uu ;

% ∗∗∗∗∗∗∗∗∗ [ Beginning o f MAIN Loop ] ∗∗∗∗∗∗∗∗∗∗∗

% Scheme : 1/2N −> D −> 1/2N; f i r s t h a l f s tep non l i n ea r

temp = uu . ∗ exp ( (1 i ∗uu . ∗ conj (uu)−1−1 i ∗Delta (1 ) ) ∗ dt /2) + S∗dt /2 ; % note dtau/2

f o r n = 1 : step_num−1

temp = i f f t ( temp) ; % Convert to

f requency domain

f_temp = temp .∗ exp(−1 i ∗Disp ∗ dt ) ;

uu = f f t ( f_temp) ; % Back to time

domain

P = uu . ∗ conj (uu) ;

convl = ( nt∗dp) ∗ f f t ( i f f t (R) . ∗ i f f t (P) ) ;

convl = f f t s h i f t ( convl ) ; % Convolution Term
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Nlin = 1 i ∗((1−fR ) ∗P + fR∗ convl ) −1 −1 i ∗Delta (n) ;

temp = uu . ∗ exp ( Nlin ∗ dt ) + S . ∗ dt ; % Nonlinear , detuning , d i s s i p a t i o n , and

pump in order

i f rem(n , down) == 0

s o l ( : , n/down+1) = temp ; % Store time evo lu t i on

end

end

% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ [ End o f MAIN Loop ] ∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% uu = temp ; % Fina l f i e l d

% temp = f f t s h i f t ( i f f t (uu ) ) ; % Fina l spectrum

spec = f f t s h i f t ( i f f t ( so l , [ ] , 1 ) , 1 ) ;

detunArray.m

f unc t i on Delta = detunArray ( De l t a_ in i t i a l , De l ta_f ina l , Detun_start , Detun_stop ,

step_num)

% De l t a_ in i t i a l = −2;

% Del ta_f ina l = 10 ;

% Detun_start = . 1 ;

% Detun_stop = . 9 ;

Delta_start = l i n s p a c e ( De l t a_ in i t i a l , De l t a_ in i t i a l , step_num∗Detun_start ) ;

Delta_detun = l i n s p a c e ( De l t a_ in i t i a l , De l ta_f ina l , round ( step_num∗(Detun_stop−

Detun_start ) ) ) ;

Delta_stop = l i n s p a c e ( Delta_f ina l , De l ta_f ina l , round ( step_num∗(1−Detun_stop ) ) ) ;

Delta = cat (2 , Delta_start , Delta_detun , Delta_stop ) ;

ramanResponse.m

f unc t i on R = ramanResponse (p , tau1 , tau2 , tR)

tauc = tR/2/ p i ∗1 e15 ;

eta = tauc ∗( tau1^2+tau2^2) /( tau1∗ tau2^2) ;

a = tauc / tau2 ;

b = tauc / tau1 ;
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R = eta . ∗ exp(−a . ∗ p) . ∗ s i n (b . ∗ p) ;

R = heav i s i d e (p) . ∗R;

C.2 Dispersion characterization

main.m

[ data_0 , data_1 , data_2 , data_3 , f i le_name ] = read_tdms ;

mrkrs = mzi_to_markers ( data_2 ) ;

mzi_fsr0 = 40.1755 e6 ;

mzi_fsr0 = 103.1773 e6 ; % 2 m, 1050 nm

mzi_fsr0 = 39.934 e6 ; % 2 m, 1050 nm

f r e q = mzi_to_freq ( data_2 , mrkrs , mzi_fsr0 ) ;

% Pick a peak number from the ' f indpeaks ' f unc t i on .

idx_start = find_start_manual_user ( data_1 , data_2 , data_3 ) ;

[ ch_0 , ch_1 , ch_2 , ch_3 ] = crop_data ( data_0 , data_1 , data_2 , data_3 , idx_start , mrkrs (

end ) ) ;

f r e q = f r e q ( idx_start−mrkrs (1 ) +1:end ) ;

t rans = detrend (ch_1) ;

f s r = fsr_manual_user ( f req , t rans ) ;

read_tdms.m

f unc t i on [ data_0 , data_1 , data_2 , data_3 , f i le_name ] = read_tdms

current_dir = cd ;

[ fi le_name , path_name ] = u i g e t f i l e ( ' ∗ . tdms ' , ' S e l e c t the d a t a f i l e ( s ) ' , current_dir ) ;

tdms_file_name = f u l l f i l e (path_name , f i le_name ) ;

temp = tdmsread ( tdms_file_name ) ; % Now use t h i s f unc t i on . . .

temp = temp{1} ;

data_0 = tab l e2a r ray ( temp ( : , 1 ) ) ;
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data_1 = tab l e2a r ray ( temp ( : , 2 ) ) ;

data_2 = tab l e2a r ray ( temp ( : , 3 ) ) ;

data_3 = tab l e2a r ray ( temp ( : , 4 ) ) ;

end

mzi_to_markers.m

f unc t i on r e s u l t = mzi_to_markers ( data )

t i c ;

% (1) : Normalize the MZI (−1 to 1)

mzi = detrend ( data ) ∗2 − 1 ;

% (2) : Find zero−c r o s s i n g s

% : Could be many c r o s s i n g s due to no i sy s i g n a l s

signchange_x = f i nd ( d i f f ( s i gn (mzi ) ) ) + 1 ;

signchange_y = mzi ( signchange_x ) ;

% f i g u r e ; p l o t (mzi ) ; hold on ; p l o t ( signchange_x , signchange_y , ' o ' ) ; hold o f f

% Delete z e r o s . Only f i nd (+) <−> (−) s i gn changes .

z e r s = ( signchange_y == 0) ;

signchange_y ( z e r s ) = [ ] ;

signchange_x ( z e r s ) = [ ] ;

% (3) : Find a peak l a r g e r than a value between c r o s s i n g s .

% : I f no peak found , search f o r next c r o s s i n g

idx_down = ze ro s (1 , l ength ( signchange_x )−1) ;

idx_up = ze ro s (1 , l ength ( signchange_x )−1) ;

% Sp l i t data in to p i e c e s between the zero c r o s s i n g s

l en = length ( signchange_x ) −1;

mzi_ce l l = c e l l (1 , l en ) ;

f o r i = 1 : l ength ( signchange_x )−1

idx_down( i ) = signchange_x ( i ) ;

idx_up ( i ) = signchange_x ( i +1) ;
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mzi_cel l { : , i } = mzi ( idx_down( i ) : idx_up ( i ) ) ' ;

end

[ tmp , I ] = c e l l f u n (@max , mzi_ce l l ) ; % Find max f o r each p i e c e

I = I+idx_down−1;

r e s u l t = I (tmp>0.7) ;

h = f i g u r e ; p l o t (mzi ) ; hold on ; p l o t ( r e su l t , mzi ( r e s u l t ) , ' o ' ) ; hold o f f ;

f p r i n t f ( ' Finding "Markers" takes %.2 f seconds . \ n ' , toc ) ;

f p r i n t f ( ' Paused . . . Press Enter to Star t . . . \ n ' ) ;

pause ;

c l o s e (h) ;

end

detrend.m

[ up , ~ ] = enve lope ( data , 1 e5 , ' peak ' ) ;

r e s u l t = data . / up ;

mzi_to_freq.m

f unc t i on f r e q = mzi_to_freq (mzi , mrkrs , f s r 0 )

f p r i n t f ( ' Ca l i b r a t i on s t a r t ed . . . \ n ' ) ;

% Di spe r s i on c o e f f i c i e n t s . De t a i l s can be found in powerpoint s l i d e s .

d1 = −9.8646e−3;

d2 = 2∗0.10044 e−9;

d1 = − 436.6658 e−3; % [Hz ] : @ 1050 nm

d2 = 2 ∗ 106.0284 e−9; % [Hz ] : @ 1050 nm

% d1 = 0 ;

% d2 = 0 ;

d3 = 0 ;

l en = length ( mrkrs ) ; % number o f markers
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% 1. Throw data away be f o r e the f i r s t marker and a f t e r the l a s t marker .

idx_low = mrkrs (1 ) ;

idx_high = mrkrs ( l en ) ;

% mzi = mzi ( idx_low : idx_high ) ;

f r e q = ze ro s (1 , idx_high−idx_low+1) ;

mu = 1 : l en ;

mu0 = f l o o r ( l en /2) ; % Roughly at the mode at the cent e r

mu = mu−mu0 ;% Re la t i v e mode number

% Sp l ine F i t t i n g

%%{

t_start = t i c ;

k = len −1;

t_ f i t = ze ro s (1 , k ) ;

t_fit_2 = ze ro s (1 , k ) ;

t_fit_3 = ze ro s (1 , k ) ;

t_asin = ze ro s (1 , k ) ;

t_acos = ze ro s (1 , k ) ;

f o r i = 1 : len −1

% f o r i = 1e5 : 1 e5+2

f s r = f s r 0 + d1∗mu( i ) + d2/2∗mu( i )^2 + d3/ f a c t o r i a l (3 ) ∗mu( i ) ^3;

x = 1 : ( mrkrs ( i +1)−mrkrs ( i )+1) ;

y = mzi ( mrkrs ( i ) : mrkrs ( i +1) ) ;

xx = l i n s p a c e (1 , x ( end ) ,15) ; % 10 or 15 or 20 po in t s

t i c

yy = sp l i n e (x , y , xx ) ;

% yy = makima(x , y , xx ) ;

t_ f i t ( i ) = toc ;

t i c

pp = sp l i n e (xx , [ 0 yy 0 ] ) ;

% pp = makima(xx , yy ) ;

t_fit_2 ( i ) = toc ;

t i c
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yyy = ppval (pp , x ) ;

t_fit_3 ( i ) = toc ;

temp_len = length ( yyy ) ;

temp_min = min ( yyy ) ;

temp_idx = f i nd ( yyy == temp_min , 1 , ' f i r s t ' ) ;

yyy_dn = yyy ( 1 : temp_idx ) ;

temp_max = max(yyy_dn) ;

yyy_dn_norm = ( ( yyy_dn − temp_min) /(temp_max − temp_min) −0.5) ∗2 ;

i f i == 1

idx_prev = 1 ;

e l s e

idx_prev = mrkrs ( i )−mrkrs (1 ) +1; % Remember index f o r the prev ious loop

end

t i c

f o r j = 1 : temp_idx−1

df = f s r /2/ p i ∗( acos (yyy_dn_norm( j +1) )−acos (yyy_dn_norm( j ) ) ) ;

f r e q ( j + idx_prev ) = f r e q ( j + idx_prev − 1) + df ;

end

t_acos ( i ) = toc ;

yyy_up = yyy ( temp_idx : temp_len ) ;

temp_min = min (yyy_up) ;

temp_max = max(yyy_up) ;

yyy_up_norm = ( ( yyy_up − temp_min) /(temp_max − temp_min) −0.5) ∗2 ;

t i c

f o r j = 1 : temp_len−temp_idx

df = f s r /2/ p i ∗( a s in (yyy_up_norm( j +1) )−as in (yyy_up_norm( j ) ) ) ;

temp_idx_up = j + temp_idx − 1 ;

f r e q ( temp_idx_up + idx_prev ) = f r e q ( temp_idx_up + idx_prev − 1) + df ;

end

t_asin ( i ) = toc ;

% f i g u r e ; p l o t (x , y , xx , yy , x , yyy ) ;

% f i g u r e ; p l o t ( f r e q ( idx_prev+1: idx_prev+temp_len ) , yyy ) ;
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end

t_sum_fit = sum( t_ f i t ) ;

t_sum_fit_2 = sum( t_fit_2 ) ;

t_sum_fit_3 = sum( t_fit_3 ) ;

t_sum_acos = sum( t_acos ) ;

t_sum_asin = sum( t_asin ) ;

% temp = f r e q ( mrkrs (1 e5 )−mrkrs (1 ) : mrkrs (1 e5+3)−mrkrs (1 ) ) ;

tEnd = toc ( t_start ) ;

%}

f p r i n t f ( ' Ca l i b r a t i ng "Markers" takes %.2 f seconds . \ n ' , tEnd ) ;

end

find_start_manual_user.m

f unc t i on idx_start = find_start_manual_user ( data_1 , data_2 , data_3 )

% 1 : Find the f i r s t a few resonances o f the FLC

% 1−1: Crop the f i r s t 1 M data

num = 2e6 ;

crop_1 = data_1 ( 1 :num) ; % Transmiss ion

crop_2 = data_2 ( 1 :num) ; % MZI

crop_3 = data_3 ( 1 :num) ; % FLC. Note : use 125 kHz de t e c t o r f o r minus va lue s .

% 1−2: Find the re sonances o f the FLC.

% 1−2−1: Find max and min va lue s

% crop_3_max = max( crop_3 ) ;

% crop_3_min = min ( crop_3 ) ;

% 1−2−2: Find peaks with a high prominence and minus value .

% th r e s = (crop_3_max − crop_3_min ) ∗ . 8 ; % 80% i s an a rb i t r a r y number . Note : t h i s

didn ' t work i f the max i s f a l s e l y b ig

th r e s = mean( crop_3 ) ;

[ pks_y , pks_x ,~ ,~ ] = f indpeaks (−crop_3 , ...

' Threshold ' , 0 , ' MinPeakProminence ' , t h r e s /2 , ' MinPeakDistance ' ,1 e3 ) ;

pks_y = −pks_y ;

% 1−2−3: V i s u a l i z a t i o n

h = f i g u r e ; hold on ;

p l o t ( crop_3 , 'b−' ) ;
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p lo t ( crop_1 , ' r−' ) ;

p l o t ( crop_2 , ' g−' ) ;

p l o t (pks_x , pks_y , ' ko ' ) ;

t ex t (pks_x , pks_y−0.02 , num2str ( ( 1 : numel (pks_x) ) ' ) )

% 2 : Find the second resonance , because the f i r s t one may not be s t ab l e .

answer = inputd lg ( ' Choose a number f o r a FLC resonacne ' , ' Input ' ,1 ,{ ' 2 ' }) ;

idx = st r2doub l e ( answer {1}) ;

idx_start = pks_x( idx ) ;

c l o s e (h) ;

end

crop_data.m

f unc t i on [ ch_0 , ch_1 , ch_2 , ch_3 ] = crop_data ( data_0 , data_1 , data_2 , data_3 ,

idx_start , idx_end )

% len = length ( data_0 ) ;

ch_0 = data_0 ( idx_start : idx_end ) ;

ch_1 = data_1 ( idx_start : idx_end ) ;

ch_2 = data_2 ( idx_start : idx_end ) ;

ch_3 = data_3 ( idx_start : idx_end ) ;

end

fsr_manual_user.m

f unc t i on f s r = fsr_manual_user ( f req , t rans )

% We don ' t need the whole data .

% Let ' s f o cu s on 10 mi l i on data

n = 10 e6 ;

f r e q = f r e q ( 1 : n ) ;

t rans = trans ( 1 : n) ;

[ pks_y , pks_x ,~ ,~ ] = f indpeaks (−trans , ...

' Threshold ' , 0 , ' MinPeakProminence ' , 0 . 2 , ' MinPeakDistance ' , 1 ) ;
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% f indpeaks (−trans , f r eq , . . .

% ' MinPeakHeight ' ,− thresh , ' MinPeakProminence ' ,1− thresh , ' MinPeakDistance ' , 1 0 ) ;

pks_y = −pks_y ;

h = f i g u r e ; hold on ;

p l o t ( f r e q /1e9 , t rans ) ;

% xlim (min ( f r e q ) /1 e9 ∗ [1 1 ] + [ 0 1 ] ) ;

% xlim ( [ min ( f r e q ) max( f r e q ) ] /1 e9 ) ;

xl im (min ( f r e q ) ∗ [ 1 1 ]/1 e9 + [0 400 ] ) ;

p l o t ( f r e q (pks_x) /1e9 , pks_y , ' ko ' ) ;

t ex t ( f r e q (pks_x) /1e9 , pks_y−0.02 , num2str ( ( 1 : numel (pks_x) ) ' ) )

answer = inputd lg ( ' Choose two peaks f o r the mode fami ly (Put a space between the

numbers ) ' , ' Input ' ,1 ,{ ' 1 10 ' }) ;

answer = str2num ( answer {1}) ;

i d x_ f i r s t = answer (1 ) ;

idx_second = answer (2 ) ;

f r e q_ f i r s t = f r e q (pks_x( i d x_ f i r s t ) ) ;

freq_second = f r e q (pks_x( idx_second ) ) ;

f s r = freq_second − f r e q_ f i r s t ;

c l o s e (h) ;

end
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