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Abstract 

Chromatic dispersion, Kerr nonlinearity, and amplified spontaneous emission (ASE) 

noise are three common problems for the optical communication systems. For the 

systems using direct detection scheme, we detect the power of the signal. Therefore, the 

information is carried by the signal power, which is pulse amplitude modulation (PAM). 

In this system, chromatic dispersion and Kerr nonlinearity will broaden the pulse and 

cause intersymbol interference, while ASE noise will degrade the signal to noise ratio and 

increase the error rate. For the system using coherent detection, we can detect not only 

the power but also the phase of the signal. Thus, the information can be carried by the 

power and the phase of the signal, which is quadrature amplitude modulation (QAM). In 

this system, the signal will see a phase shift during the propagation induced by the Kerr 

nonlinearity, which will cause an error if the phase shift is not corrected on the receiver 

side. In order to optimize the performance or design the solution for the system, a careful 

study of the impact of these three effects on the signal is needed. In this thesis, I study the 

theory of the pulse broadening effect caused by chromatic dispersion and Kerr 

nonlinearity, and as well as the bit error rate performance with the accumulation of ASE 

noise. Moreover, I use split-step Fourier method to solve the nonlinear Schrödinger 

equation in MATLAB and simulate the propagation of 2-PAM and 4-QAM signal. The 

impact of these three effects and the bit error rate behavior of the coherent detection 

system are demonstrated and discussed.  
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Chapter 1 

Introduction 

Nowadays, the requirement of the information transmission rate becomes very large. 

More people use the internet to connect with others all over the world, which means that 

we need to transmit more data at the same time and extend the transmission length. Due 

to the low loss property of fiber, people start to use optical fiber as the information 

transmission media after Corning introduced the low attenuation fiber. Therefore, it is 

important to know what happens when the light signal propagates in the fiber and how to 

increase the transmission rate in the fiber. 

Since the optical communication began in 1966 [1], people have developed many 

techniques to increase the data transfer rate. In the very beginning, people use on-off 

keying (OOK) to modulate the light source and send the zero-one bit data [2]. Later on, 

the detection technique is improved, people start to use multilevel pulse amplitude 

modulation (M-PAM) [3], which increase the number of bits represented by one symbol. 

For example, if the modulated signal has four amplitude level, then one received symbol 

(pulse) can stand for two bits (level one stand for 00; level two stand for 01, the rest stand 

for 10 and 11). Since the coherent detection is used [4], we can detect the phase of the 

signal, not only the power. Thus, modulation formats like phase shift keying (PSK) is 

introduced. This modulation format can reduce the power consumption compared to the 

PAM format because the information is carried on the phase of the light but not by the 
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amplitude of the pulse. For example, we can use a pulse with same amplitude, and four 

different phase 0,
𝜋

2
, π,

3𝜋

2
 to represent two bits at a time just like 4-PAM signal. Finally, 

the hybrid of the PAM and PSK become quadrature amplitude modulation (QAM) format 

[5, 6], which use two orthogonal basis function cos(ωt)  and sin(ωt)  to carry the 

information. These are the modulation techniques people use to increase the bit rate of 

the single optical channel (single wavelength). On the other hand, there are some 

multiplexing techniques that can increase the number of the optical channels that can 

propagate in the fiber simultaneously, such as polarization-division multiplexing (PDM) 

[7, 8]: two optical channels with orthogonal polarization states propagate at the same time, 

space-division multiplexing (SDM) [9]: multiple optical channels with different orbital 

angular momentum (OAM) states, and orthogonal frequency division multiplexing 

(OFDM) [10-12]: multiple channels with different carrier frequencies that are orthogonal 

in the frequency domain. In this thesis, we will focus on the PAM and QAM modulation 

technique, analyze the transmission property of the system and the performance of the 

PAM and QAM signal quality. In Chapter 2, we will introduce the theoretical principle of 

the optical communication system, including three main problems we face when the 

optical signal propagating in the fiber, how we deal with them, and how these problems 

affect the transmission quality. In Chapter 3, we use numerical methods to simulate the 

behavior of the optical signal propagating in the communication system. We will 

introduce the numerical method we use and the process of simulation. In the end, we 

compare the simulation result and theoretical study and then have some discussion about 

the difference between them. 
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Chapter 2 

Principles of optical communication systems 

When we talk about the optical communication systems, we usually use achievable bit 

rate (how many bits we can send per second) [13], propagation length [14, 15], and bit 

error rate (BER, ratio between error bit and transmitted bit) to evaluate the quality of the 

system [16]. More precisely speaking, the quality of the system means that under certain 

bit error rate requirement, the highest transition bit rate and longest propagation length 

we can achieve. However, before we go to that part, we need to know what will distortion 

the optical signal – the optical pulse propagating in the fiber.    

In general, two things will disturb the quality of optical signal and cause an error at the 

receiver side. First one is the power noise generated during the propagation period, which 

will be discussed in section 2.3; another is the pulse broadening due to the characteristic 

of the fiber [17], and the reason of the pulse broadening can be separated into two groups: 

linear effect and nonlinear effect. In section 2.1, the phenomena of linear effect will be 

introduced, and we will discuss how to deal with the broadening of the optical pulse. In 

section 2.2, the nonlinear effect is described. In section 2.3, we will see what should be 

considered when we want to estimate the quality of the optical communication system. 

In the situation of low optical power and low bit rates in the optical system, we can 

assume that the refractive index is not affected by the optical power, and there is no 



10 

interaction between different optical signals, which means the fibers here are regarded as 

a linear medium. In this case, the signal will see some linear distortion effects. Such as 

modal dispersion: the spatial components in the multimode fiber propagated with 

different velocity; chromatic dispersion (CD): the spectral components (mainly in the 

single mode fiber) dispersed in time; and polarization mode dispersion (PMD) [18]: the 

two orthogonal polarization modes see different refractive indexes because of the 

birefringence effect due to asymmetric structure of the fiber.  

However, high power lasers and new modulation techniques become more popular 

nowadays, which give us the ability to send more information at the same time.  When 

we increase the optical power or the number of the channels in the fiber, the fiber here 

will become a nonlinear medium, and the signal will see some nonlinear distortion effects. 

Such us self-phase modulation (SPM): the pulse frequency instantaneously variate in 

time based on the Kerr effect; cross-phase modulation (XPM) [19]: the nonlinear phase 

shift of the signal in one channel is affected both by the power of that channel itself and 

the power of other channels; four-wave mixing (FWM): the mutual interaction between 

different optical signals generate a new signal with different frequency, and some 

nonlinear scattering (stimulated Raman scattering and stimulated Brillouin scattering).  

In this thesis, we will focus on two effects: chromatic dispersion and self-phase 

modulation. For an optical transmission system with a single channel in single mode fiber, 

our goal is to increase the transmission bit rate for given signal power, SNR and 

propagation length. To approach higher transmission bit rate, we would like to shorten 

the pulse duration as much as possible. Thus, the pulse broadening and the pulse 
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attenuation in the fiber – due to chromatic dispersion and self-phase modulation, will be 

two major problems we have. 

 

2.1 Chromatic dispersion 

The reason why we have chromatic dispersion phenomena is that the group velocity is a 

function of wavelength in the fiber. Which means different wavelength parts of the same 

optical pulse propagate with different velocity, some wavelength parts will propagate 

faster than the other parts. Thus, after some propagation length, the pulse will broaden, 

and affect the optical pulse in another time slot. Here, group velocity is defined as 𝑣𝑔 =

(
𝑑𝛽(𝜔)

𝑑𝜔
)

−1

; where 𝛽(𝜔)  is propagation constant, which can be expanded by Taylor’s 

expansion (when optical pulse has narrow bandwidth of frequency ω, which is true in 

most of the cases in optical communication area) as [17]: 

 𝛽(𝜔) ≅ 𝛽(𝜔0) + (𝜔 − 𝜔0)
𝑑𝛽

𝑑𝜔|𝜔=𝜔0

+ (𝜔 − 𝜔0)2 𝑑2𝛽

𝑑𝜔2
|𝜔=𝜔0

+ (𝜔 − 𝜔0)3 𝑑3𝛽

𝑑𝜔3
|𝜔=𝜔0

( 1 ) 

We can see that the first term in the denominator of group velocity 
1

𝑣𝑔
= (

𝑑𝛽(𝜔)

𝑑𝜔
)  is 

constant (
𝑑𝛽

𝑑𝜔|𝜔=𝜔0

) . The second term is 2(ω − 𝜔0)
𝑑2𝛽

𝑑𝜔2
|𝜔=𝜔0

, which make the group 

velocity become frequency (wavelength) dependent if 
𝑑2𝛽

𝑑𝜔2
|𝜔=𝜔0

is not zero. Due to this 

relation between 
𝑑2𝛽

𝑑𝜔2
|𝜔=𝜔0

and group velocity 𝑣𝑔 , this constant 
𝑑2𝛽

𝑑𝜔2
|𝜔=𝜔0

is commonly 

known as group velocity dispersion (GVD) coefficient, 𝛽2 =
𝑑2𝛽

𝑑𝜔2
|𝜔=𝜔0

, often expressed 



12 

in 
𝑝𝑠2

𝑘𝑚
⁄ . On the other hand, 

𝑑3𝛽

𝑑𝜔3
|𝜔=𝜔0

 is known as differential dispersion parameter 𝛽3, 

often expressed in 
𝑝𝑠3

𝑘𝑚
⁄ , which is related to the slop of chromatic dispersion. 

In order to analyze the pulse broadening phenomena, we need to introduce some other 

parameters we use in the system. For the pulse propagate in the fiber, it is common to 

assume that the pulse shape is varying slowly, and we can use a Gaussian function to 

describe the pulse amplitude, A(0, t) = 𝐴0 exp (−
𝑖 𝐶0  𝑡2

2𝜏0
2 ) exp (−

𝑡2

2𝜏0
2). Here, 𝐴0 = √𝑃0 

is the peak amplitude; 𝑃0  is the peak power. The term exp (−
𝑡2

2𝜏0
2)  represent the 

Gaussian shape in the time domain. The term exp (−
𝑖 𝐶0 𝑡2

2𝜏0
2 ) represents the initial chirp 

(pre-chirp) of this pulse. It doesn’t affect the envelope of the pulse, but it change the 

timing distribution of different wavelength group of the pulse. As mentioned above, some 

wavelength groups will propagate faster than others due to chromatic dispersion. This 

initial chirp can compensate a part of the dispersion and slightly suppress the broadening 

phenomena for short term transmission. The most important parameter here is 𝜏0, the half 

width at the 1 𝑒⁄  maximum (HWEM) of power, which represent the pulse width. Fig. 1. 

Shows the amplitude and the power in the time domain, we can see that the power is 

about 𝑒−1 ≅ 0.36 of the maximum at the time t = 𝜏0. 

Fig. 1. Input pulse amplitude and power. 
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Now, we can take a look at the chromatic dispersion induced pulse broadening effect [20]: 

 
𝜏(𝑧)

𝜏0
= √(1 +

𝐶0𝛽2𝑧

𝜏0
2 )

2

+ (
𝛽2𝑧

𝜏0
2 )

2

+ (1 + 𝐶0
2) (

𝛽3𝑧

2𝜏0
2)

2

 ( 2 )  

Here, 𝜏0 is the pulse width of input pulse,  𝜏(𝑧) is the pulse width at the propagation 

distance z.  

 

Fig. 2. Pulse broadening due to chromatic dispersion. 

 

As seen in Fig. 2, the different pre-chirp coefficient can affect the development of pulse 

broadening development. If the pre-chirp coefficient has different sign with group 

velocity dispersion 𝛽2, the term (1 +
𝐶0𝛽2𝑧

𝜏0
2 )

2

 can be less than one under certain distance 

z. However, it will not go to negative because the square and it will still growing with 

large z, so as other terms. On the other hand, since the pulse broadening comes from the 

delay between different wavelength groups, we can say that the broadened pulse also 
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become more chirped, and the chirp induced by the chromatic dispersion can be 

represented as:𝐶(z) = 𝐶0 + (1 + 𝐶0
2)

𝛽2𝑧

𝜏0
2 . 

To reduce the impact of dispersion, we can have a different strategy for different 

transmission distance requirement. For a short transmission distance requirement 

(typically less than 40km), we can adjust the pre-chirp coefficient to maintain the pulse 

width under some tolerance. For higher transmission distance requirement, we need other 

technologies help.   

In general, we have two ways to deal with dispersion. One is digital signal processing 

(DSP) method [21]. On the receiver side, after the optical signal is detected and translated 

to the electrical signal, we can use some DSP recover the broadened signal to the original 

shape.   Another one is dispersion management method [22]. During the whole 

transmission distance requirement, we can insert some segments of dispersion 

compensating fiber (DCF) which has different sign of chromatic dispersion 𝛽2 with the 

single mode fiber (SMF) we used for propagation. In this thesis, we will focus on 

dispersion management method and discuss more about that. 

For dispersion compensation, we have to calculate the length of the DCF we need for the 

system. We can review the meaning of the dispersion again and see the pulse broadening 

from another perspective. In the very beginning, dispersion phenomena comes from the 

difference of the group velocity between different wavelength, 𝑣𝑔 = (
𝑑𝛽(𝜔)

𝑑𝜔
)

−1

. We can 

say that the propagation time for a distance L of a particular group is 𝜏𝑔 =
𝐿

𝑣𝑔
= 𝐿 (

𝑑𝛽(𝜔)

𝑑𝜔
). 

Thus, the pulse broadening effect can be described by the difference of the arriving time 

between different group, ∆𝜏𝑔 =
𝑑𝜏𝑔

𝑑𝜔
 ∆𝜔 = 𝐿 (

𝑑2𝛽(𝜔)

𝑑𝜔2 ) ∆𝜔 . For an optical pulse at 
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particular wavelength with spectral width ∆𝜔 , the pulse broadening become  ∆𝜏𝑔 =

𝐿 𝛽2 ∆𝜔. Here, we can see that the order of propagation length L and GVD coefficient 𝛽2 

is the same. In other words, in order to compensate the pulse broadening cause by the 

chromatic dispersion, the length of DCF and SMF need to satisfy 𝐿𝑆𝑀𝐹 𝛽2,𝑆𝑀𝐹 +

𝐿𝐷𝐶𝐹  𝛽2,𝐷𝐶𝐹 = 0. For example, if we use 80km long SMF, and the GVD coefficient of 

SMF and DCF are 𝛽2,𝑆𝑀𝐹 = −20 
𝑝𝑠2

𝑘𝑚
⁄  and 𝛽2,𝐷𝐶𝐹 = 127.5 

𝑝𝑠2

𝑘𝑚
⁄ , we will need 

about 12.55 km of DCF to compensate the chromatic dispersion.  

There are three types of the dispersion compensation map. First one is pre-compensation: 

put all the DCF we need in front of the SMF; the second one is post-compensation: put 

all the DCF after the SMF; the third one is the combination of the first and second types: 

put half DCF in the front and a half in the end. 
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From Fig. 3, it is obvious that in the case of pre- and post-compensation, the pulse width 

will become very broad during the propagation. If we only consider the dispersion, they 

are the same, all of them can compensate the dispersion and recover the pulse shape. 

However, the pulse will also see the nonlinear effect in the fiber. As mentioned at the 

beginning of this Chapter, four-wave mixing is a nonlinear effect that will generate a new 

frequency of light due to the interaction of two different frequency components. If the 

pulse width becomes too broad to interact with another pulse, the quality of the signal 

decreases because of this nonlinear effect. 

To sum up, we will use pre- plus post-compensation strategy to deal with the dispersion, 

so we can maintain the pulse width to be always less than two times of the original value.  

 

Fig. 3. Dispersion management map and pulse broadening. 
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2.2 Nonlinear Kerr effect 

In the last section, we have known the reason why chromatic dispersion will cause pulse 

broadening and how we deal with it. Now, we will discuss why nonlinear Kerr effect will 

also affect the pulse width. 

The phenomena of pulse width changing due to nonlinear Kerr effect starts from the 

property of the reflection index of the fiber. When the optical power is low in the fiber, 

the reflection index is almost constant and will not change with the power. However, 

when the optical power is high enough, the reflection index become power dependent. 

Due to the time-varying property of the pulse power, we can see that the reflection index 

become a function of time. Further, it will cause a time-varying phase shift on the pulse, 

called self-phase modulation (SPM). Since the frequency is the changing rate of the phase, 

SPM will make the pulse more chirped. In the end, this more chirped pulse will broaden 

(or shorten, depends on the initial chirp) during the propagation because of the chromatic 

dispersion. 

Now, we can rewrite the pulse broadening effect and take the nonlinear Kerr effect into 

account this time. For the evaluation of an un-chirped Gaussian pulse propagation in the 

fiber, including the impact of chromatic dispersion and self-phase modulation, the pulse 

broadening effect can be represented as [20]: 
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𝜏(𝑧)

𝜏0
= √1 +

√2𝐿𝑒𝑓𝑓

𝐿𝑛𝑒𝑙

𝛽2𝑧

𝜏0
2 + (1 +

4

3√3

𝐿𝑒𝑓𝑓
2

𝐿𝑛𝑒𝑙
2) (

𝛽2𝑧

𝜏0
2 )

2

 ( 3 ) 

Here, the effective length 𝐿𝑒𝑓𝑓 =
1−exp(−𝛼𝐿)

𝛼
 comes from the considering of the fiber loss 

𝛼. Since the nonlinear effect depends on the pulse power, and the power will continuous 

decay during the propagation because of the fiber loss, the meaning of the effective 

length is that the pulse will use the same power acting with the fiber and see the same 

nonlinear effect as the situation that the power decrease with the whole length L. 𝐿𝑛𝑒𝑙 is 

nonlinear length that means the maximum nonlinear phase shift at this effective length is 

1 rad, 𝐿𝑛𝑒𝑙 =
1

𝛾𝑃0
. 𝛾 is the nonlinear coefficient of the fiber and 𝑃0 is the input peak power.  

There are three terms in this representation, first term 1 and third term (1 +

4

3√3

𝐿𝑒𝑓𝑓
2

𝐿𝑛𝑒𝑙
2) (

𝛽2𝑧

𝜏0
2 )

2

 are always positive and third grows very fast. The second term 
√2𝐿𝑒𝑓𝑓

𝐿𝑛𝑒𝑙

𝛽2𝑧

𝜏0
2  

can be negative and slow down the growing rate of pulse width if the GVD coefficient is 

negative, which is the case of SMF. That is because the chirp induced by the nonlinear 

Kerr effect always has the same direction. In the leading edge, the pulse power is 

increasing, the reflection index is increasing nonlinearly, n(P) = 𝑛0 + 𝑛2
𝑃

𝐴𝑒𝑓𝑓
, the 

nonlinear phase shift is decreasing (like a modulation on the phase), and the frequency 

variation (which is derivative of the phase shift) is negative. It is known as red-shift 

(frequency decrease and wavelength increase). In the trailing edge, the pulse power is 

decreasing nonlinearly, cause a positive frequency variation, which is known as blue-shift. 

Thus, this self-phase modulation effect can also be seen as chirping because it change the 

timing distribution of different wavelength groups. Further, if this chirped pulse 
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propagate in a fiber whose chromatic dispersion chirp the pulse in the inverse way, they 

may compensate a part of each other and slow down the growing rate of pulse width. 

 

Fig. 4.pulse broadening induced by dispersion and SPM. 

 

Fig. 4 represents the pulse broadening effect including the chromatic dispersion and self-

phase modulation. In the low power case, the nonlinear effect is small; the pulse is 

broadened just like the case without nonlinearity. In the high power case, a part of the 

chromatic dispersion and self-phase modulation compensate each other and slow down 

the broadening effect. Now, we may ask what power is high enough to see the 

compensation. 

It is common to use a parameter [20], 𝑁2 =
𝐿𝐷

𝐿𝑛𝑒𝑙
, to describe the strength of chromatic 

dispersion and self-phase modulation. 𝐿𝐷  is called dispersion length, which means an 

unchirped Gaussian pulse will have broadening ratio of √2 when it propagate to this 

length without nonlinear effect. When this parameter 𝑁  is much smaller than 1, it is 

dispersion dominate, the broadening of the pulse is primary due to the chromatic 
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dispersion, like the low power case in the figure. If this parameter 𝑁 is close to 1, the 

dispersion and SPM are similar, the pulse width will grow very slowly, like the beginning 

of the high power case in the figure above. In the case of the parameter much higher than 

1, the broadening effect is dominated by SPM. The reason why we don’t show this case 

in the figure is that the mathematical representation of broadening effect in this section is 

just an approximation. To know the accurate broadening effect considering dispersion 

and SPM, we need to solve the nonlinear Schrodinger equation (NLSE), which will be 

described in Chapter 3. 

 

 

2.3 Fiber Loss, OSNR, and BER 

After the discussion of the chromatic dispersion and nonlinear Kerr effect of the fiber, 

here comes the last important property of the fiber – the fiber loss. Unlike the dispersion 

and SPM, the fiber loss doesn’t affect the pulse shape; it decreases the pulse power. 

Before the optical amplifier is developed, we receive the signal and regenerate the signal 

to increase the transmission length; after we have the optical amplifier in the market, we 

can simply amplifier the pulse power to maintain the power and extent the transmission 

length. However, it also brings some side effects, and the most obvious problem is the 

spontaneous emission of the gain media in the amplifier. The spontaneous emission will 

propagate with the signal and be amplified by the next optical amplifier, called the 

amplified spontaneous emission (ASE) noise. The receiver will detect both of ASE noise 

and the signal; the ASE noise will affect the calculated signal power and cause an error. 
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Further, since the output power of the amplifier is the summation of ASE noise and the 

signal power, the more ASE noise generated by the amplifier, the less signal power can 

be propagated. The ratio between optical signal and noise power (OSNR) will become 

lower and lower, and error rate of the system will become higher and higher, like Fig. 5. In 

the following, we will introduce how to calculate the ASE noise power and the relation 

between ASE noise power and the error rate of the system. 

 

Fig. 5 OSNR behavior versus transmission length [17] 

  

In theory [17], the spontaneous emission power can be represented as: 

 𝑃𝑠𝑝(𝜈) = (𝐺 − 1) 𝑁𝐹𝑛𝑜  ℎ𝜈 𝐵𝑜𝑝 ( 4 ) 

where 𝐺 is the gain of amplifier, 𝐺 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
. If there are no amplification, 𝐺 = 1, there are 

no spontaneous emission noise. 𝑁𝐹𝑛𝑜 is the noise figure of the optical amplifier, which is 

the optical signal to noise ratio relation between the input and output, 𝑁𝐹𝑛𝑜 =
𝑂𝑆𝑁𝑅𝑖𝑛

𝑂𝑆𝑁𝑅𝑜𝑢𝑡
. ℎ𝜈 

is the power of the photon. 𝐵𝑜𝑝  is the bandwidth of the optical amplifier. From the 

relation we can see that for the noise power point of view, we should use more amplifier 
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and chose the gain value as low as possible to minimize the noise power. For example, if 

we need to amplifier the signal 100 times, in the case of one amplifier, the gain 𝐺 = 100. 

In the case of two amplifier, each one will have gain 𝐺 = 10. Thus, the total ASE noise 

power will be 𝑃𝑠𝑝,𝑜𝑛𝑒 𝐴𝑀𝑃(𝜈) = 99 𝑁𝐹𝑛𝑜  ℎ𝜈 𝐵𝑜𝑝 and 𝑃𝑠𝑝,𝑡𝑤𝑜 𝐴𝑀𝑃(𝜈) = 2 ∗ 9 𝑁𝐹𝑛𝑜 ℎ𝜈 𝐵𝑜𝑝. 

The case using two amplifier has ASE noise power less than the case using one amplifier. 

However, we also need to consider the cost since the optical amplifier is expensive. It 

becomes a trade-off between price and noise power.  

In general, for a system using SMF as the propagation media, we put optical amplifier 

tens of kilometers a time to compensate the loss of the fiber, and the gain we chose is just 

enough to compensate the loss of that segment of fiber. Thus, the total ASE noise power 

will be  

 𝑃𝑠𝑝,𝑡𝑜𝑡𝑎𝑙(𝜈) = 𝑁 (𝐺 − 1) 𝑁𝐹𝑛𝑜  ℎ𝜈 𝐵𝑜𝑝 ( 5 ) 

𝑁 is the number of the amplifier we use, 𝑁 =
𝐿

𝐿𝑠𝑝𝑎𝑛
. 𝐿 is the total propagation length, and 

𝐿𝑠𝑝𝑎𝑛 is the distance between two optical amplifier. Moreover, the OSNR at the receiver 

side can be represented as  

 𝑂𝑆𝑁𝑅 =
𝑃𝑠𝑖𝑔

𝑃𝑛𝑜𝑖𝑠𝑒
=

𝑃𝑐ℎ−𝑃𝑠𝑝,𝑡𝑜𝑡𝑎𝑙(𝜈)

𝑃𝑠𝑝,𝑡𝑜𝑡𝑎𝑙(𝜈)
 ( 6 ) 

𝑃𝑐ℎ is the channel power, the averaged power of particular wavelength. 
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Fig. 6. OSNR development versus the number of the EDFA 

 

Fig. 6 is an example of the OSNR performance versus the number of EDFA we use. The 

gain of EDFA is chosen to compensate the loss of 80km SMF, G = 0.2 × 80 dB ≅ 40. 

The noise figure of EDFA is typical 5 dB. Optical bandwidth is typical 12.5 GHz. We 

can see that the OSNR decrease very fast in the beginning. If we want to have OSNR 

higher than 20 dB, we need to control the number of EDFA lower than 50.  

From the discussion above, we can see that the longer distance we want to achieve, the 

more amplifier we need to use, the larger ASE noise it will generate, and the lower 

OSNR we will get on the receiver. But what is the lowest OSNR we can accept, it will 

depend on the relation between OSNR and bit error rate (BER), and this relation will be 

different when we use different kinds of signal.  

We start from the simplest signal, the return to zero (RZ) coding, 2-level pulse amplitude 

modulated signal (2-PAM). This kind of signal always has the same pulse width, since it 

will return to zero in each time slot, and it only has two possible pulse amplitude 1 and 0, 

or 1 and -1, depends on the detection technique. For direct detection scheme, we can only 
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detect the power of the signal; the amplitude is 1 or 0, the BER of this 2-PAM signal can 

be represented as  

 𝐵𝐸𝑅2𝑃𝐴𝑀,𝐷𝐷 = 𝑃𝑒,2𝑃𝐴𝑀,𝐷𝐷 = Ψ (√
𝐸𝑏

𝑁0
) =

1

2
erfc (√

𝐸𝑏

2𝑁0
) ( 7 ) 

Erfc (x) is the complementary error function, 𝑒𝑟𝑓𝑐(x) =
2

√𝜋
∫ 𝑒−𝑦2

𝑑𝑦
∞

𝑥
. 

𝐸𝑏

𝑁0
 is the 

information signal to noise ratio which has relation with OSNR above, 
𝐸𝑏

𝑁0
=

2 𝐵𝑜𝑝

𝑅𝑠,𝑖𝑛𝑓𝑜

𝑂𝑆𝑁𝑅

𝑙𝑜𝑔2𝐿
. 

𝑅𝑠,𝑖𝑛𝑓𝑜 is the information symbol rate, and 𝑀 means the modulation level. On the other 

hand, if we use coherent detection, we can measure the phase of the optical signal, 

amplitude of the 2-PAM signal can be 1 and -1, the power is the same, but has phase shift 

of π. The BER of the 2-PAM using coherent detection can be 

 𝐵𝐸𝑅2𝑃𝐴𝑀,𝐶𝐷 = 𝑃𝑒,2𝑃𝐴𝑀,𝐶𝐷 = Ψ (√
2𝐸𝑏

𝑁0
) =

1

2
erfc (√

𝐸𝑏

𝑁0
) ( 8 ) 

For example, there is a 2-PAM signal whose OSNR = 10 , information symbol rate 

𝑅𝑠,𝑖𝑛𝑓𝑜 = 10 𝐺𝑆
𝑠⁄ = 10 𝐺𝑏

𝑠⁄ , optical bandwidth of EDFA is typical 0.1nm, 𝐵𝑜𝑝 =

0.1 𝑛𝑚 = 12.5 𝐺𝐻𝑧. Then 𝐵𝐸𝑅2𝑃𝐴𝑀,𝐷𝐷 ≅ 2.9 × 10−7, 𝐵𝐸𝑅2𝑃𝐴𝑀,𝐶𝐷 ≅ 7.7 × 10−13. The 

following figure is the BER performance of 2-PAM signal, it’s obvious that the coherent 

detection case move to error free region faster than direct detection case. (in practice, 

10−12 of BER is low enough to be regard as error free region) Fig. 7 is the BER behavior 

of a 2-PAM signal with direct detection and coherent detection. Within the same BER 

requirement, system using direct detection always need to have about 3dB information 

SNR higher than the system using coherent detection. 
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Fig. 7. BER development versus the information SNR of a 2-PAM signal. 

 

In more general case, for an L-PAM signal using coherent detection, the BER can be  

 𝐵𝐸𝑅𝐿−𝑃𝐴𝑀,𝐶𝐷 ≅
𝑃𝑒,𝐿−𝑃𝐴𝑀,𝐶𝐷

𝑙𝑜𝑔2𝐿
=

1

𝑙𝑜𝑔2𝐿

𝐿−1

𝐿
erfc (√

3

𝐿2−1

𝐸𝑏  𝑙𝑜𝑔2𝐿

𝑁0
) ( 9 ) 

𝑃𝑒,𝐿−𝑃𝐴𝑀,𝐶𝐷  is the symbol error rate. Since one L-PAM pulse has L kinds of different 

amplitude, one L-PAM symbol represent 𝑙𝑜𝑔2𝐿 bits. For example, 4-PAM can represent 

two bits, and four amplitude represent 00, 01, 10, and 11.  

Now, we can take a look at more complicated modulation format. Thanks for the 

coherent detection technique, we can extract the phase information of the received signal. 

Quadrature amplitude modulation (QAM) is a modulation format that loads the 

information on the pulse amplitude and phase. We can regard QAM signal as the span of 

two basis signal, each has PAM format, and there is phase shift of 
𝜋

2
 between them. Fig. 8 

is the constellation diagram of the QAM signal with different modulation level (with 

same symbol power). 
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Fig. 8. Constellation diagram of 4-QAM, 16QAM, and 64-QAM signal. 

 

Thus, the BER of an M-ary QAM signal (2D span of two L-PAM signals, L = √𝑀) can 

be represented as 

 𝐵𝐸𝑅𝑀−𝑄𝐴𝑀 ≅
𝑃𝑒,𝑀−𝑄𝐴𝑀

𝑙𝑜𝑔2𝑀
=

1−(1−𝑃𝑒,𝐿−𝑃𝐴𝑀,𝐶𝐷)
2

𝑙𝑜𝑔2𝑀
=

1

𝑙𝑜𝑔2𝑀
{1 − [1 −

√𝑀−1

√𝑀
 𝑒𝑟𝑓𝑐 (√

3

2(𝑀−1)

𝐸𝑠,𝑄𝐴𝑀

𝑁0
)]

2

}  

  ( 10 ) 

In the right-hand side, 
𝐸𝑠,𝑄𝐴𝑀

𝑁0
 is the information symbol SNR of the QAM signal, which 

has relation with OSNR,  
𝐸𝑠,𝑄𝐴𝑀

𝑁0
=

2 𝐵𝑜𝑝

𝑅𝑠,𝑖𝑛𝑓𝑜
𝑂𝑆𝑁𝑅,  𝐸𝑠,𝑄𝐴𝑀 = 2 𝐸𝑠,𝑃𝐴𝑀 = 2 𝐸𝑏,𝑃𝐴𝑀  𝑙𝑜𝑔2𝐿.  
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Fig. 9. BER behavior versus information SNR of 4-QAM, 16-QAM, and 64-QAM signal. 

 

Fig. 9 shows the BER performance of the QAM signal with different modulation level. 

Under same electrical signal symbol to noise ratio, the higher modulation level has higher 

BER. Since the distance between constellation points become smaller when the 

modulation level increase, the higher modulation level signal is more sensitive to the 

noise. 

In Chapter 3, we will combine all the discussion in this Chapter and use MATLAB to 

simulate the performance of an optical communication system. 
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Chapter 3 

Numerical method and result 

3.1 Modeling of signal propagation and detection 

In Chapter 2 we have introduced that three main problems will affect the quality of the 

signal, and how we evaluate the performance of an optical communication system. 

However, the mathematical representation in Chapter 2 is only an approximation. For a 

more precise description, we need to use a more accurate model, which is nonlinear 

Schrodinger equation. In the following section, we will introduce this equation, how to 

solve the equation, and how to use the result to evaluate the performance of the optical 

communication system. 

 

 

3.1.1 Nonlinear Schrodinger equation 

Including the impact of the fiber attenuation, chromatic dispersion, and nonlinear Kerr 

effect, the generalized nonlinear Schrodinger equation has the form [17]: 
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∂A(z,t)

∂z
+ β1

∂A(z,t)

∂t
+

𝑖β2

2

∂2A(z,t)

∂t2 −
β3

6

∂3A(z,t)

∂t3 = 𝑖γ|A(z, t)|2A(z, t) −
1

2
αA(z, t) ( 11 ) 

 As mentioned, β3 is much smaller than the β2, and the β1 term only represents the time 

delay between input and output so that we can ignore these two terms and the 

consolidated equation becomes: 

 
∂A(z,t)

∂z
= 𝑖γ|A(z, t)|2A(z, t) −

1

2
αA(z, t) −

𝑖β2

2

∂2A(z,t)

∂t2  ( 12 ) 

Here, A(z, t) is the pulse shape function we want to know, and the input pulse we use is 

pre-chirped Gaussian pulse A(0, t) = 𝐴0 exp (−
𝑖 𝐶0 𝑡2

2𝜏0
2 ) exp (−

𝑡2

2𝜏0
2), as we mentioned in 

section 2.1. On the right hand side, there are three terms. First term 𝑖γ|A(z, t)|2A(z, t) 

represent the nonlinear effect (self-phase modulation mentioned in section 2.2). Second 

term −
1

2
αA(z, t) is associated to fiber loss. Third tem −

𝑖β2

2

∂2A(z,t)

∂t2  describe the chromatic 

dispersion. On the left side, 
∂A(z,t)

∂z
 is the development of the pulse shape. If we know the 

representation of right hand side mathematically, we can calculate the shape function at 

z1 A(z1, t) by the function at z0 A(z0, t). 

There are two well-known methods to solve the equation: Finite-difference method [23] 

and split-step Fourier method [24]. The former one uses some schemes to approximate 

the time differential terms in the equation; the latter one uses the Fourier transform to 

solve the problem in the frequency domain. It is said that for a system whose carrier pulse 

has a slowly varying amplitude, the split-step Fourier method is the more efficient way to 

solve the equation. Therefore, in this thesis, we will use split-step Fourier method (SSFM) 

to solve the nonlinear Schrodinger equation. 
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3.1.2 Split-step Fourier method 

The main point of this method is to split the whole transmission length into many small 

segments, and assume that the segment is small enough that the linear and nonlinear part 

of this segment can act independently. Thus, we can split the solving process into two 

steps. The first step we deal with the linear part and assume there is no nonlinear effect. 

The second step we deal with the nonlinear part and assume there is no linear effect. 

Mathematically, it is done by rewriting the nonlinear Schrodinger equation into this form: 

∂A(z,t)

∂z
= (D̂ + N̂) A(z, t) , while D̂  is the linear operator, D̂ = −

iβ2

2

∂2

∂t2 −
α

2
; N̂  is the 

nonlinear operator, N̂ = iγ|A(z, t)|2. After that, since the step size ∆z is small, it can be 

approached by  

 A(z + ∆z, t) ≅ exp(N̂ ∆z) exp(D̂ ∆z) A(z, t) ( 13 ) 

For the linear part, we can evaluate the operator in the Fourier domain:  

 exp(D̂ ∆z) A(z, t) = 𝐹𝑇−1 {exp [(
iβ2

2
𝜔2 −

α

2
) ∆z ]  𝐹𝑇{A(z, t)}} ( 14 ) 

For the nonlinear part, it can be approached by  

 exp(N̂ ∆z) A(z, t) = exp(𝑖𝛾|𝐴(𝑧, 𝑡)|2∆z) A(z, t) ( 15 ) 

Further, there is a more accurate way to calculate the A(z + ∆z, t), which is symmetric 

split-step Fourier method (S-SSFM), just separate the linear step into two pieces: 



31 

 A(z + ∆z, t) ≅ exp (D̂
∆z

2
) exp(N̂∆z) exp (D̂

∆z

2
) A(z, t) ( 16 ) 

At this time, we calculate the linear operator with half step size first, A (z +
∆z

2
, t) ≅

exp (D̂
∆z

2
) A(z, t). And then operate the nonlinear part at the middle point:  

 exp(N̂ ∆z) A (z +
∆z

2
, t) = exp (∫ N̂(z′)∆z′z+∆z

z
) A (z +

∆z

2
, t) 

 ≅ exp (
N̂(z)+N̂(z+∆z)

2
∆z) A (z +

∆z

2
, t) ≅ exp [N̂ (z +

∆z

2
) ∆z] A (z +

∆z

2
, t) ( 17 ) 

Finally, we operate the linear part with the rest half step size to get A(z + ∆z, t). 

Here, I use this algorithm to solve the nonlinear Schrodinger equation in the MATLAB. 

Fig. 10 shows the simulation result of the simplest case. 

 

Fig. 10. Pulse broadening and power decay simulated by SSFM. 

 

Fig. 10 is the pulse broadening behavior and averaged power behavior of an unchirped 

Gaussian pulse propagating in the SMF. The parameters of the fiber here are: GVD 

coefficient 𝛽2 = −20 
𝑝𝑠2

𝑘𝑚
⁄ ; transmission length L = 80 𝑘𝑚; nonlinearity coefficient 

γ = 1.3 1
𝑊 𝑘𝑚⁄ . The parameter of the pulse are: symbol rate 𝑅𝑠 = 10 𝐺𝑆

𝑠⁄ ; 
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corresponding time slot 𝑇𝑠 =
1

𝑅𝑠
= 100 𝑝𝑠; initial pulse width 𝜏0 =

𝑇𝑠

4
= 25 𝑝𝑠, which is 

chosen to be 1/4 of time slot in order to have most of the power inside the time slot; 

averaged pulse power 𝑃𝑎𝑣𝑔 = 0 𝑑𝐵𝑚 = 1 𝑚𝑊, which is common used in the industry;  

corresponding peak power and peak amplitude can be calculated by the relation 

∫ |𝐴(𝑧,𝑡)|2𝑑𝑡

𝑇𝑠
2

−
𝑇𝑠
2

𝑇𝑠
= 𝑃𝑎𝑣𝑔, in this case will be 𝑃0 ≅ 2.27 𝑚𝑊 and 𝐴0 = √𝑃0 ≅ 1.51 √𝑚𝑊.  

As mentioned in Chapter 2, we can calculate the dispersion length and nonlinear length 

from the parameters above to see if this signal is dispersion dominated or nonlinear 

dominated. 𝐿𝐷 =
𝜏0

2

|𝛽2|
= 31.25 𝑘𝑚 , 𝐿𝑁𝐿 =

1

𝛾 𝑃0
≅ 339 𝑘𝑚 , the parameter 𝑁2 =

𝐿𝐷

𝐿𝑛𝑒𝑙
≅

0.092, N ≅ 0.304, it’s smaller than one, but not too much, so we can imagine that the 

chromatic dispersion are stronger than self-phase modulation in this case.  

 

Fig. 11. Pulse broadening and power decay of high input power. 

 

Fig. 11 is the high power case. The averaged power is about 10.35 dBm, which make 

𝐿𝐷 = 𝐿𝑁𝐿 = 31.25 𝑘𝑚. Compare to the 0 dBm case, the pulse width in this case maintain 

nearly the same in the beginning 20km. After that, the pulse start broaden because the 

nonlinearity decrease due to the decaying power. Thus, if we turn off the fiber loss, like 
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Fig. 12, we can see that the dispersion and self-phase modulation compensate many of 

each other and the pulse width grow very slow. 

 

Fig. 12. Pulse broadening and power decay of high input power without fiber loss. 

 

Now, as we mentioned in Chapter 2, we can use DCF to compensate the dispersion and 

use amplifiers to compensate the fiber loss. Fig. 13 is the structure. 

 

Fig. 13. Structure of the communication system. 

 

As the figure in section 2.1, the first segment of DCF in front of the transmitter is used as 

pre-compensation fiber. Here, it can be regarded as pre-chirp DCF. The following 

segment of SMF, 𝐿𝑆𝑀𝐹 = 80 𝑘𝑚, segment of DCF, 𝐿𝐷𝐶𝐹 = 12.55 𝑘𝑚, and two amplifier 

constitute a single span. The total loss of one span is 80 𝑘𝑚 × 0.2 𝑑𝐵
𝑘𝑚⁄ +

12.55 𝑘𝑚 × 0.5 𝑑𝐵
𝑘𝑚⁄ = 22.275 𝑑𝐵. The gain of this two amplifier is chosen to be 

similar in order to minimize the ASE noise power, here is 11.1 dB  and 11.175 dB. 

DCFSMF

Tx

prechirp
DCF DCFSMF

Rx

1 span
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Fig. 14. Pulse broadening and power behavior of 2 span propagation. 

 

Fig. 14 is the pulse broadening and power behavior of the structure above. The slowly 

changing curve stands for the propagation in SMF, the fast changing curve represent the 

propagation in DCF. The length of the DCF in the second (final) span is half because the 

other half is placed in front of the transmitter. After these two span propagation, the pulse 

width is recovered to the original value, and the power is also recovered to the initial. 

 

 

3.1.3 Bit error rate calculation 

In the section 3.1.2, we use S-SSFM to solve the nonlinear Schrodinger equation in the 

MATLAB and evaluate the pulse width and power behavior in the communication 

system. Now, we will introduce how to add the ASE noise on the signal and calculate the 

BER in the MATLAB.  

In general, we usually use awgn() function (add white Gaussian noise to signal), to add 

the noise to the signal or use wgn() function (generate white Gaussian noise) to create the 

noise. There are two bullied in function in the MATLAB we use to generate the noise 
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with Gaussian distribution property. In the awgn() function, we need to know the signal 

to noise ratio of the information (SNR) to complete the process. The algorithm is like this: 

we have a series of pulse amplitude, {𝐴1, 𝐴2, … , 𝐴𝑁}, if there are no initial noise, all the 

amplitude will be the same; then we use the ASE noise power to calculate the SNR in the 

awgn() function; finally, put the information into the awgn() function, it will give me a 

new series of pulse amplitude with noise {𝐴′1, 𝐴′2, … , 𝐴′𝑁}. The distribution of this series 

is Gaussian distribution, and the variance will be the noise power. In the wgn() function, 

we can use ASE noise power to generate a series of noise amplitude {𝑁1, 𝑁2, … , 𝑁𝑁}, 

whose variance is the noise power; and add this noise amplitude on the signal pulse 

amplitude, {𝐴′1, 𝐴′2, … , 𝐴′𝑁} = {𝐴1 + 𝑁1, 𝐴2 + 𝑁2, … , 𝐴𝑁 + 𝑁𝑁} . For example, in the 

case of 2-PAM signal using coherent detection, the averaged pule power is 0 dBm, and 

peak power is 2.267 mW. If we have an averaged ASE noise power 𝑃𝐴𝑆𝐸 = −3 dBm ≅

0.5 mW , then the OSNR = 3 dB  and corresponding information SNR =
𝐸𝑠

𝑁0
=

2 𝐵𝑜𝑝

𝑅𝑠,𝑖𝑛𝑓𝑜
𝑂𝑆𝑁𝑅 ≅ 4.99 ≅ 6.98 dB. The pule amplitude distribution is shown in  here. Signal 

peak amplitude 𝐴0 = √𝑃0 ≅ 1.506 √mW. 
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Fig. 15. Pulse amplitude distribution of  averaged pule power 0 dBm, OSNR 3dB. 

 

Now, after we have the series of amplitude, it’s time calculate the bit error rate (BER). To 

calculate the BER, we need to define the decision area to decide each amplitude is an 

error or not. In the same case, 2-PAM using coherent detection, the signal can be 

{𝐴0, −𝐴0}. Thus, the decision area is simple, for the pulse with amplitude 𝐴0 , if the 

amplitude has real part less than zero real(𝐴′
1~𝑁) < 0, it will be regarded as an error, 

vice versa. The BER is the ration between the error bit number and total bit number. Here, 

my total bit number is 107, the BER in my calculation by using awgn() function is about 

7.918 × 10−4, BER by using wgn() function is about 8.072 × 10−4. Further, the BER 

here is predictable. Base on the relation mentioned in section 2.3, the BER of 2-PAM 

signal using coherent detection can be represented as 
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 𝐵𝐸𝑅2𝑃𝐴𝑀,𝐶𝐷 = 𝑃𝑒,2𝑃𝐴𝑀,𝐶𝐷 = Ψ (√
2𝐸𝑏

𝑁0
) =

1

2
erfc (√

𝐸𝑏

𝑁0
) ( 18 ) 

Due to the calculation above, we know that the 
𝐸𝑏

𝑁0
 here is 4.99, so the theoretical BER 

value here is 𝐵𝐸𝑅2𝑃𝐴𝑀,𝐶𝐷 = 7.9284 × 10−4 . The simulation results above are in the 

same order. 

Now, we can move on to an advanced modulated signal, 4-QAM. For the same averaged 

power, the amplitude of a 4-QAM signal can be {
1+1𝑖

√2
𝐴0,

−1+1𝑖

√2
𝐴0,

−1−1𝑖

√2
𝐴0,

1−1𝑖

√2
𝐴0}. If 

we have the same ASE noise power as the case above, 𝑃𝐴𝑆𝐸 = −3 dBm ≅ 0.5 mW , 

OSNR = 3 dB, the information SNR =
𝐸𝑠

𝑁0
≅ 4.99. The amplitude distribution is in Fig. 16. 

 

Fig. 16. Input pulse amplitude distribution of 4-QAM signal with averaged power 0dBm, OSNR 3dB. 

 

The signal amplitude in this case is 
1+1𝑖

√2
𝐴0. Since the real and imaginary part of the 

amplitude are more close to zero, the error rate is higher than 2-PAM case although the 

noise power is the same. The symbol error rate here is 𝑃𝑒 ≈ 0.0254. The corresponding 
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BER is 𝐵𝐸𝑅𝑄𝐴𝑀 ≅
𝑃𝑒

𝑙𝑜𝑔2𝑀
≅ 0.0127. On the theory side, the BER of M-QAM signal has 

form 

 𝐵𝐸𝑅𝑀−𝑄𝐴𝑀 ≅
1

𝑙𝑜𝑔2𝑀
{1 − [1 −

√𝑀−1

√𝑀
 𝑒𝑟𝑓𝑐 (√

3

2(𝑀−1)

𝐸𝑠,𝑄𝐴𝑀

𝑁0
)]

2

} ( 19 ) 

The theoretical BER value here is 𝐵𝐸𝑅4−𝑄𝐴𝑀 ≅ 0.0128, the simulation value is very 

close to the theoretical value. 

To sum up, we can see that with the same averaged signal power and the same noise 

power, if we choose to use 4-QAM modulation format, the BER is much higher than the 

2-PAM format. In other words, 4-QAM signal is more sensitive to the noise, so the total 

transmission length should be shorter than the 2-PAM case to maintain the same BER 

performance. 

 

 

3.2 Simulation result of the optical communication 

system 

Base on the discussion in section 3.1, we can know the whole simulation process: create a 

series of initial pulse; let it propagate in some segments of fiber; after each segment of 

fiber, use an amplifier to compensate the fiber loss and add the ASE noise; calculate the 

BER performance at the receiver side. Here, we can have several different cases to study. 

First, no initial noise, only the ASE noise and the fiber dispersion and nonlinearity. We 

can compare the simulation result and the theory mentioned in section 2.3 to see if the 
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dispersion or the nonlinearity will affect the BER performance. Second, only the initial 

noise without fiber propagation, find the relation between the initial noise and BER, 

which has been shown in section 3.1.3. In this case the result of the simulation (generate 

a series of pulse amplitude with particular noise power and calculate the BER of this 

series of amplitude) and the theory (mathematical relation between BER and information 

SNR =
𝐸𝑏

𝑁0
) are matched. However, one can notice that in order to achieve the 8 × 10−4 

BER of the 2-PAM signal with 3dB OSNR, the number of the pulse we need is about 107. 

Thus, we can imagine that, in the first case with no initial noise, based on the Fig. 6, 

OSNR versus number of the amplifier in the section 2.3, the OSNR is much higher than 

3dB if we only consider the ASE noise, so the number of the pulse we need should be 

much higher than 107. Since I use my laptop to run the simulation, it’s really hard for me 

to simulate the first case. It turns out the third case, propagation with initial noise. In the 

following I will choose a high initial noise in order to reduce the number of pulse we 

need, let it propagate in the system and calculate the bit error rate, then compare the result 

between simulation and theory. 

 

 

3.2.1 Optical system with PAM signal 

Before the simulation, we can use the mathematical relation between OSNR, BER and 

amplifier number to predict what we should see. Fig. 17 describe the ONSR and BER 

behavior during the propagation. The system parameter is: 2-PAM format, averaged input 
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power 0 dBm, initial OSNR 0dB, single span includes 80 km SMF, 12.4 km DCF, and 

two EDFA with same gain value 11.1 dB.  

 

Fig. 17. OSNR and BER performance versus span number of 2-PAM signal 

 

We can see that in this system, both OSNR and BER are changing very slowly. BER only 

increase 0.00035 after 100 spans in this system. Thus, we can imagine that the output 

signal should be similar to the input signal.  

Fig. 18 is the simulation result of this system with 3 span propagation and using 6000 

input pulses. 
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Fig. 18. Input and output amplitude distribution of 2-PAM signal. 

 

It is interesting that the shape of the amplitude distribution is changed. The input signal 

has circle shape because the noise is Gaussian distribution, so as ASE noise. However, 

after this 3 span propagation, the output signal amplitude distribution is no longer circle. 

The in-phase part (real part) becomes small, and the quadrature part (imaginary part) 

becomes large. The BER increased from 0.0122 to 0.0155 (∆BER = 0.0033), higher than 

the prediction. 

In order to know this shape change is caused by the propagation or not, we do some test. 

First, we close all the noise and let a series of the pulse with amplitude evenly distributed 

from 0 to 3 propagate in the system. 
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Fig. 19. Nonlinear phase shift of pulse amplitude. 

 

As seen in Fig. 19, the pulse amplitude distribution is banding. The higher pulse amplitude 

has a larger phase shift. Compare to the output amplitude distribution above, the small 

amplitude maintains the same, and the high amplitude shift to a higher area, they are 

matched. Base on this property, we think that it is caused by the nonlinearity of the fiber 

because only the high amplitude has the phase shift. Thus, if we turn off the nonlinearity, 

set 𝛾𝑆𝑀𝐹 = 0 and 𝛾𝐷𝐶𝐹 = 0, the amplitude distribution should be the same. 

We can observe from Fig. 20 that the output amplitude distribution maintains the circle 

shape as the input. The BER change from 0.0127 to 0.0121. The output BER is lower 

than the input BER, but I think it because the pulse number is not high enough. From the 

figure at the beginning of this section, the BER different of this 3 span system only 

consider the ASE noise is less than 0.00005. The number of the input pulse I use is 10000. 

Thus, the resolution of BER is 0.0001. This simulation result is not too strange. 
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Fig. 20. Input and output amplitude distribution of 2-PAM signal, without nonlinearity. 

    

Based on these tests, it is clear that the amplitude distribution shape-changing and the 

BER increase is due to the nonlinearity of the fiber. Now, the next question is how 

serious will the nonlinearity affect the BER performance of the system. From the test 

above we have seen that the BER increase 0.0033 during the 3 span propagation in the 

system with nonlinearity, and the BER doesn’t increase without nonlinearity. But this is 

the performance of the signal with initial OSNR 0dB. For the practical situation, the 

transmitter modules produced by the industry nowadays usually have high initial OSNR 

about 50 dB. Almost all the pulse amplitude has the same value, and there is no high 

amplitude components which will see high nonlinear phase shift. The BER increase due 

to nonlinearity should be small. Unfortunately, it is really hard for me to simulate this 

extremely small initial OSNR. If I find a way to increase the efficiency of the code, I may 

have a chance to try this situation. However, there is still something we can try. The last 

test in this part is to see the accumulation of the nonlinear phase shift.    
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Fig. 21. Input and output amplitude distribution of 2-PAM signal, 6 spans. 

 

In the previous test, the propagation length is 3 span. In Fig. 21, the propagation is 6 span. 

It is obvious that the banding becomes more serious. The BER increase from 0.013 to 

0.0322 (∆BER = 0.0192), much higher than the case with 3 span propagation (0.0033). 

To sum up, from the simulation of this system we can learn that the nonlinearity affects 

the amplitude distribution of the signal and increase the BER. Further, this nonlinear 

phase shift will accumulate during the propagation, the longer propagation length of the 

system, the higher BER of the signal. On the other hand, it is a unique problem for the 

system using coherent detection. Since this nonlinearity only gives the signal a phase 

shift, but not change the power of it. The system using direct detection technique only 

detect the power of the signal, so nonlinear phase shift is not a problem. We can go back 

to see the theory in the section 3.1.2, the nonlinear part in the SSFM method is 

exp(N̂ ∆z) A(z, t) = exp(𝑖𝛾|𝐴(𝑧, 𝑡)|2∆z) A(z, t), it put a time varying phase shift on the 

signal, but the absolute value of the signal maintain the same. In some research [10, 12, 

25], this nonlinear phase shift effect is called common phase error. Since there signal has 
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high OSNR, every amplitude are really close to each other, every constellation point see 

the same phase shift, so it is “common” phase error. Further, they also have the solution 

for that [26]. The way they deal with this error is to use pilot tones inserted in the input 

signal. At the receiver side, by checking the phase of these pilot tones, one can know the 

rotation phase and correct the received signal. However, this solution only works for high 

OSNR. If the signal has low OSNR like the case here, the phase shift is no more 

“common.” We need to prevent the OSNR degraded to this low value while ASE noise 

accumulated during the propagation.  

In the industry nowadays, it is not so popular for communication systems to use the 

coherent technique. But some company has produce transmitter modules using the 

coherent technique, like CFP2-ACO transceiver module. This module use modulation 

format from QPSK (4-QAM) to 16-QAM, producing highest 256 Gb/s for C-Band 

DWDM system, longest achievable transmission distance 2000 km. Since the 

requirement of transmission rate is growing, we can expect more coherent techniques 

developed in the future.  

 

 

3.2.2 Optical system with QAM signal 

In the simulation of the system with 2-PAM signal, we learn that the nonlinearity of the 

fiber affect the output signal amplitude distribution and increase the BER. We also see 

that this nonlinear phase shift will accumulate. Here, for the system with 4-QAM signal, 

we also start from the mathematical relation between OSNR, BER and span number 

without the considering of nonlinearity. 
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Fig. 22. OSNR and BER behavior of 4-QAM signal. 

 

Since the distance between two constellation points of the 4-QAM signal (√2𝐴0) is 

smaller than that of 2-PAM signal (2𝐴0), the initial BER of 4-QAM signal is higher than 

2-PAM signal with same OSNR, while the BER changing with span number is still very 

small without nonlinearity.  

For the system with initial OSNR 0 dB, averaged input power 0 dBm, propagation length 

3 spans. Fig. 23 is the input and output amplitude distribution and BER. 

  

Fig. 23. Input and output amplitude distribution of 4-QAM signal, 3 span. 
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Just like the system with 2-PAM signal, we can see the amplitude distribution change and 

the BER increase from 0.0569 to 0.0854 (∆BER = 0.0285 ). Compare to the same 

propagation length and same initial OSNR case with the 2-PAM signal (∆BER = 0.0033); 

the 4-QAM system is more sensitive to the nonlinearity. 

Since the QAM system has higher BER with initial OSNR 0dB, we can try to increase 

the initial OSNR to see the difference. The first try here is the simulation with initial 

OSNR 3dB. 

 

Fig. 24. Input and output amplitude distribution of 4-QAM signal, initial OSNR 3dB. 

 

In Fig. 24, it shows that the BER increase from 0.0129 to 0.0243 (∆BER = 0.0114), 

which is smaller than the case with initial OSNR 0 dB (∆BER = 0.0285). One also can 

see from the figure that the shape-changing is slightly smaller than the case with initial 

OSNR 0 dB. This result is matched with the discussion in the 2-PAM system. The higher 

the initial OSNR, the lower the BER difference.   

The last simulation is the change of the input power. The reason we choose the averaged 

input power to be 0 dBm is that it’s the common choice in the industry. I had an 
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opportunity to tested several commercial transceiver modules this summer, and all of 

them have averaged power around 0 dBm. There are several reasons that I can think 

about it now. First one is power consumption, the higher power needs higher electrical 

power and higher cost. The second one is the trade-off between OSNR and nonlinearity. 

Base on the description of OSNR in section 2.3, 𝑂𝑆𝑁𝑅 =
𝑃𝑠𝑖𝑔

𝑃𝑛𝑜𝑖𝑠𝑒
=

𝑃𝑐ℎ−𝑃𝑠𝑝,𝑡𝑜𝑡𝑎𝑙(𝜈)

𝑃𝑠𝑝,𝑡𝑜𝑡𝑎𝑙(𝜈)
. Within 

the same noise power, if we have higher channel power, the OSNR can be higher and 

BER can be lower. However, due to the simulation result of the 2-PAM and 4-QAM 

system, the higher power will see more nonlinear phase shift and cause the error. 

Combine these consideration, we can do some simulation to check if 0 dBm is a good 

choice for the 4-QAM system. Previously, we already have the result with input power 0 

dBm, initial OSNR 3dB, so the noise power here is -3 dBm. We can fix the noise power 

at -3 dBm and adjust the input power to -1 dBm and 1 dBm to see the BER changing. 

   

Fig. 25. Input and output amplitude distribution of 4-QAM signal, input power -1dBm. 

 

Fig. 25 is the result of the input power -1 dBm, initial OSNR 2 dB case (so the noise 

power is -3 dBm). The BER increase from 0.0232 to 0.0316, ∆BER = 0.0084. Compare 
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to the case of 0 dBm input power, this case has lower BER difference because the 

nonlinear phase shift is small, but the overall BER is higher due to the low initial OSNR. 

Thus, we can say that the OSNR induced BER is higher than nonlinearity induced BER 

in this case. 

 

Fig. 26. Input and output amplitude distribution of 4-QAM signal, input power 1 dBm. 

 

Fig. 26 is the case of input power 1 dBm and initial OSNR 4dB. The BER increase from 

0.0062 to 0.0219 (∆BER = 0.0157). It is obvious that the shape change is large, and the 

nonlinearity induced BER is the largest among these three cases. However, due to the 

high initial OSNR and low initial BER, the output BER is still the lowest, slightly smaller 

than the case of 0 dBm input power. Base on the simulation results in this part, from the 

output BER point of view, we should choose the case of 1 dBm input power. If we want 

to cost down, we can also consider 0 dBm input power, since the overall BER 

performance is similar in these two cases. 
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Chapter 4 

Conclusions 

In this thesis, we study the impact of linear and nonlinear effects in optical systems with 

2-PAM and 4-QAM signal. In Chapter 2, we study the theory about three main problems 

in the optical system and how we deal with them. Also, we introduce the mathematical 

relation between BER and parameters of the system. In Chapter 3, we investigate the 

process of solving nonlinear Schrodinger equation to simulate the evaluation of an optical 

pulse. After that, we show some simulation results of the BER performance of the system 

with 2-PAM and 4-QAM signal. Based on these results, it is obvious that the nonlinearity 

of the fiber changes the amplitude distribution shape and increase the BER of the system 

using coherent detection. Further, this nonlinear phase shift can accumulate, and the 

problem will become serious when we extend the propagation length. In the end, we 

study the BER performance versus different input power to see what is the optimized 

input power. So far, the simulation study here is limited by the efficiency of the code. In 

the future, if I can find some ways to increase the simulation speed, we can do some 

simulation with the situations more close to the industry level.   
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