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ABSTRACT

Polarimetric systems design has seen recent utilization of linear systems theory for

system descriptions. Although noise optimal systems have been shown, bandwidth

performance has not been addressed in depth generally and is particularly lacking

for Mueller matrix (active) polarimetric systems. Bandwidth must be considered in

a systematic way for remote sensing polarimetric systems design. The systematic

approach facilitates both understanding of fundamental constraints and design of

higher bandwidth polarimetric systems. Fundamental bandwidth constraints result

in production of polarimetric “artifacts” due to channel crosstalk upon Mueller

matrix reconstruction.

This dissertation analyzes bandwidth trade-offs in spatio-temporal channeled

Mueller matrix polarimetric systems. Bandwidth is directly related to the geometric

positioning of channels in the Fourier (channel) space, however channel positioning

for polarimetric systems is constrained both physically and by design parameters

like domain separability. We present the physical channel constraints and the

constraints imposed when the carriers are separable between space and time.

Polarimetric systems are also constrained by noise performance, and there is

a trade-off between noise performance and bandwidth. I develop cost functions

which account for the trade-off between noise and bandwidth for spatio-temporal

polarimetric systems. The cost functions allow a systems designer to jointly optimize

systems with good bandwidth and noise performance. Optimization is implemented

for a candidate spatio-temporal system design, and high temporal bandwidth

systems resulting from the optimization are presented. Systematic errors which

impact the bandwidth performance and mitigation strategies for these systematic

errors are are also presented.
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Finally, a portable imaging Mueller matrix system is built and analyzed based on

the theoretical bandwidth analysis and system bandwidth optimization. Temporal

bandwidth performance is improved by 300% over a conventional dual rotating re-

tarder Mueller matrix polarimeter. Reconstruction results from the physical instru-

ment are presented, and issues with the implemented system design are discussed.
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CHAPTER 1

INTRODUCTION

Research included in this dissertation comprises publishedwork, in presswork, or in

preparationwork for submission to journals. Portions of this work will be reproduced

here and may be copied verbatim, however quotes will not be used [1–8]. A list of the

novel contributions contained in this dissertation are below:

• Cost functions characterizing noise and channel bandwidth,

• A channel model for a speci󰅮ic spatio-temporal system,

• Analysis of geometric constraints on spatio-temporal channel structure due

to carrier function separability,

• Optimization for temporal bandwidth on a spatio-temporal model,

• A set of optimized systems showing temporal bandwidth improvements over

conventional systems,

• Analysis of noise and systematic error analysis on channeled systems, includ-

ing spatial illumination variation effects,

• The design and implementation of a candidate portable Mueller matrix po-

larimeter,

• A semi-empirical instrument model,

• Conditions on temporal carriers for spectral leakage free channels,

• ReconstructedMuellermatrix image data from the implemented instrument.
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1.1 Mathematical notation

This dissertation will use typical or standard notation from mathematics, physics,

and optics. Matrices will be represented as uppercase bold, 𝐌, vectors or parame-

ter/variable packs will be lowercase bold, 𝐱, 𝑖 typically denotes the standard imagi-

nary unit (although in context it may be used as an index), real and imaginary parts

of complex quantities are represented byℜ{𝑧} andℑ {𝑧} respectively. For brevity the

element of symbol, ∈, will occasionally be used, e.g., 𝑧 ∈ ℂ for 𝑧 is a complex number.

Blackboard bold represents a number set type, e.g.,ℝ4 for a 4-dimensional real 󰅮ield.

Additional notation will be introduced as necessary.

1.2 Motivation

Many attempts have been made to utilize polarimetric imaging and polarimetric

measurements for remote sensing purposes [9–18]. Polarimetric imaging is intrinsi-

cally promising to 󰅮ill voids in current imaging schemes; the underlying phenomenol-

ogy and imaging physics can yield improvements in target classi󰅮ication tasks which

cannot be easily realized by other modalities such as hyperspectral. Issues with po-

larimetric imaging include instrument complexity, computational limitations, lack of

statistically robust polarimetric datasets, lack of generalization of contrast improve-

ments from the lab to the 󰅮ield, and measurement bandwidth/speed limitations of

polarimetric instruments.

Even with the drawbacks outlined above, imaging polarimeters have proven to

be powerful tools for a wide variety of remote sensing tasks. Active and passive po-

larimeters for remote sensing have been developed for usage in many regions of the

optical spectrum. Polarimeters have been used to detect targetswith clutter [19], for

target identi󰅮ication [20], to penetrate scattering media [20–23] and to aid in three-

dimensional image reconstruction [24]. Polarimeters have been utilized in atmo-

spheric sensing applications, including determination of aerosol properties [16], dis-

crimination of ice/water phase particulates in clouds [25], and observation of plas-

mas in rocket engine exhaust [26]. Polarimeters have been used to estimate vege-

tation height, type, and quantity [27, 28]. Polarimeters have been also been used in

industry to detect defects in and calibrate liquid crystal displays [29,30].
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Recent advances in polarimetric instrument design [31–35] have facilitated sys-

tematic instead of ad-hoc designs for speci󰅮ic tasks using a linear systems framework.

ParticularlyAlenin andTyo [34] haveprovideda general framework todesign anype-

riodicallymodulated polarimetric instrument. An instrument will be presented here

which utilizes this framework to design an active polarimeter optimized for tempo-

ral bandwidth, however more general case(s) of spatio-temporal channels are also

discussed. Motivating examples of the need for more temporal bandwidth in active

polarimeters are polarimetric detection of optically active materials [36], dermatol-

ogy [37], polarimetric retinal imaging [38–40] and skin cancer detection [41,42].

Polarimetric imaging for remote sensing assumes classes of objects/targets of in-

terest which the operator has at most only partial control over (a medical patient

can be asked to sit still, but will still involuntarily move, and satellites measure mov-

ing objects which are under no control whatsoever). The lack of control of and abil-

ity to directly measure movement, surface structure, chemical composition, among

other factors requires remote sensing polarimeters to maximize bandwidth in order

tomake usefulmeasurements. The canonical approach to bandwidth in polarimetric

instruments is linear systems and channeled system design [34]. Faster instruments

minimize the need for complex image registration algorithms andprocessing. Higher

resolution instruments may allow for faster acquisition, or for more detail being re-

solved polarimetrically.

Prior to thework by LaCasse et al [33,43,44], bandwidth in channeled polarimet-

ric systems had not been addressed in depth, or only addressed as a consequence of

instrumental “error.” Additionally, prior to Alenin and Tyo [34] channeled systems

were designed in an ad-hoc manner. In this dissertation I address bandwidth using

the systematic design tools introduced by Alenin and Tyo [34] for a hybrid spatio-

temporally channeled Mueller matrix polarimetric system.

Although this dissertation primarily addresses bandwidth in channeled systems,

and channels of speci󰅮ic systems, noise in channeled systems must be taken into ac-

count. Alenin and Tyo have addressed noise in a systematic way for channeled sys-

tems, and have presented channeled systems which are optimized for noise perfor-

mance [34,45]. Channeled systems which have been optimized for bandwidth must

also address noise and system conditioning to noise, or be optimized under some
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systemconditioning constraints. If systemconditioning is not considered, thenband-

widthmay be high for the system, but noise effectsmay also be high, resulting in poor

Stokes parameter or Mueller matrix reconstruction.
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CHAPTER 2

REVIEW

ChanneledMueller matrix polarimeters and the concept of using these channels was

󰅮irst introduced by Azzam [46]. Azzam published a very speci󰅮ic case, 1) a speci󰅮ic

temporal framework was analyzed, 2) an implicit assumption about the object was

made, the object had no temporal bandwidth, i.e., the object was constant in time.

Oka, Sabatke, Derniak, Kudenov, and Hagen then demonstrated both spectrally chan-

neled and spatially (over spectrum) channeled systems [31, 47–51], mostly Stokes

polarimeters. Dubreuil et al [52] and Hagen et al [53] presented spectrally chan-

neled Mueller matrix polarimeters, which are non-imaging since the focal plane ar-

rays are used to resolve the spectrum. LaCasse, Chipman, Tyo, and LeMaster and

Hirakawa [35, 43, 44] described micropolarizer array partial Stokes polarimeters as

channeled systems, and LaCasse et al presented a spatio-temporally modulated hy-

brid channeled Stokes system [33], and subsequently bothMyhre et al [54] and Zhao

et al [55] presented spatially modulated full Stokes polarimeters. Finally Alenin and

Tyo [34] formalized a general framework which describes channeled polarimeters

almost completely, both Mueller and Stokes.

2.1 Polarized light

The “polarization” of light arises from the 3 spatial degrees of freedom allowed by

Maxwell’s equations [56]. Thepropagation of light canbe formalized via thePoynting

vector, 𝐬(𝐫, 𝐭), which quanti󰅮ies the directional energy 󰅮lux density, with units𝑊/𝑚2.

The vector 𝐫 = [𝑥 𝑦 𝑧]
𝑇

denotes the spatial coordinates and 𝑡 denotes time. At any

given instant in time and at some given point in space, the complex valued 𝐤-vector

will have a direction, and the polarization properties of the light are de󰅮ined to be in

the plane perpendicular to the real part of the𝐤-vector,ℜ{𝐤}. More generally, as time

advances, the polarization is the dynamic behavior of the vector 𝐄-󰅮ield in the plane

perpendicular to ℜ{𝐤} [56]. For the case of a propagating plane wave in isotropic,
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Figure 2.1: Electromagnetic radiation can be conceptualized as a wave traveling in

some direction,with components in the planes perpendicular to that propagation di-

rection. The plane components de󰅮ine the polarization. Optical polarimeters indi-

rectly measure a quantity proportional to the time averaged red ellipse and its direc-

tion shown in (b).

homogeneous, linear media, 𝐬(𝐫, 𝑡) and 𝐤, the complex valued wave-vector [56], are

parallel vectors when 𝐬(𝐫, 𝑡) ≠ 𝟎. For the plane wave shown in Figure 2.1, the Poynt-

ing vector is parallel to the +𝑧 direction, and the polarization behavior is described

in the set of 𝑥𝑦-planes. Here, elliptical polarization behavior is shown, elliptical be-

cause of the shape that is drawn out when looking down the axis of propagation, as

shown in Figure 2.1b.

Optical detectors cannot measure the phase of light at optical wavelengths di-

rectly. They can, however, measure a quantity proportional to the space inte-

grated time-averaged Poynting vector, which is equivalent to space integrated irra-

diance. Additionally, light incident on a detector or detector element (pixel) is not a

monochromatic plane wave. Any vector 󰅮ield whose components are elements of a

separable Hilbert space (of functions) can be represented as a possibly in󰅮inite, but

countable, superposition of plane waves [57], so a general 󰅮ield with speci󰅮ic spatial

properties and spectral properties, 𝐟(𝐫, 𝑡) can represented as

𝐟(𝐫, 𝑡) =∑

𝑗

e𝑗 exp [𝑖 (k𝑗 ⋅ r− 𝜔𝑗𝑡)] (2.1.1)

where the e𝑗 = (𝐸𝑗1 , 𝐸𝑗2 , 𝐸𝑗3) are possibly complex 󰅮ield amplitudes. The sum can
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be reordered since it is countable and uniformly convergent (if it wasn’t then an

arbitrary 󰅮ield couldn’t be represented as a superposition of plane waves; this re-

stricts the forms the sum can take mathematically). In this speci󰅮ic case, it can be

assumed that 𝐟(𝐫, 𝑡) is statistically stationary in time, given approximately constant

illumination of an object over the integration time of the sensor, and for coherent or

nearly coherent illumination, given that the number of the speckles on each detector

or detector element is large. For example, in a sun-lit scene, the sun position with re-

spect to the observed object is moving very slowly compared with acquisition time

and the light illuminating the object being imaged has undergonemultiple scattering

events. This type of illumination which can be modeled using stochastic processes.

The Poynting vector is then

s(r, 𝑡) = ℜ {e(r, 𝑡)} × ℜ {h(r, 𝑡)} (2.1.2)

where × denotes the cross product, e is the complex electric 󰅮ield, and h is the com-

plex magnetic (induction) 󰅮ield. For an electromagnetic plane wave in a homoge-

neous, isotropic, linear medium, i.e.

Electric vector 󰅮ield = ℜ{e0𝑒
𝑖(k⋅r−𝜔𝑡)}

Magnetic vector 󰅮ield = ℜ{h0𝑒
𝑖(k⋅r−𝜔𝑡)} , (2.1.3)

where e0 = e
′

0 + 𝑖e
″

0 is the possibly complex electric amplitude, h0 = h
′

0 + 𝑖h
″

0 is the

possibly complexmagnetic amplitude, and k = k
′

+𝑖k
″

is the possibly complexwave

vector; it can be shown that the time average of a Poynting vector can be represented

in the following form:

⟨s(r)⟩𝑡 =
𝑒−2k

″⋅r

2

(‖e
′

0‖
2 + ‖e

″

0‖
2) (𝜇′k′ + 𝜇″k″) − 2(𝜇′k″ − 𝜇″k′) × (e

′

0 × e
″

0)

𝑧0(𝜔/𝑐)(𝜇
′2 + 𝜇″2)

(2.1.4)

where 𝜇(𝜔) = 𝜇
′

(𝜔) + 𝑖𝜇
″

(𝜔) = 1 + 𝜒𝑚(𝜔) is the complex valued relative mag-

netic permeability and 𝑧0 is the impedance of free space [56]. This assumes that

s(r, 𝑡) is statistically stationary. Note that the × symbols in the above equation de-

note cross products. If the plane wave is in a typical optical medium then 𝜖
″

(𝜔) ≈ 0

and 𝜇
″

(𝜔) ≈ 0, where 𝜖(𝜔) = 𝜖
′

(𝜔) + 𝑖𝜖
″

(𝜔) = 1 + 𝜒𝑒(𝜔) is the complex valued
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relative permittivity. Additionally if k″ = 0 then Equation (2.1.4) can be simpli󰅮ied

to

⟨s(r)⟩𝑡 =
1

2

(‖e
′

0‖
2 + ‖e

″

0‖
2)

𝑧0√𝜇(𝜔)/𝜖(𝜔)
̂k (2.1.5)

where ̂k = k/‖k‖ [56]. The irradiance at a single point, r, is usually de󰅮ined as the

time average of the Poynting vector.

Equation (2.1.5) is for a single planewave, sowemust generalize the equation for

an arbitrary superposition of plane waves. For an arbitrary superposition of plane

waves

s(r, 𝑡) = ℜ{∑

𝑗

e𝑗 exp [𝑖 (k𝑗 ⋅ r− 𝜔𝑗𝑡)]} × ℜ{∑

𝑗

h𝑗 exp [𝑖 (k𝑗 ⋅ r− 𝜔𝑗𝑡)]} .

(2.1.6)

Since

ℜ{𝑧} =
1

2
(𝑧 + 𝑧∗) (2.1.7)

where ∗ denotes the complex conjugate Equation (2.1.6) can be rewritten

s(r, 𝑡) =
1

4
∑

𝑗

∑

𝑗′

⎛
⎜⎜

⎝

e𝑗 × h𝑗′ exp [𝑖(k𝑗 + k𝑗′) ⋅ r− 𝑖(𝜔𝑗 + 𝜔𝑗′)𝑡]

+ e𝑗 × h∗𝑗′ exp [𝑖(k𝑗 − k𝑗′) ⋅ r− 𝑖(𝜔𝑗 − 𝜔𝑗′)𝑡]

+ e∗𝑗 × h𝑗′ exp [−𝑖(k𝑗 − k𝑗′) ⋅ r+ 𝑖(𝜔𝑗 − 𝜔𝑗′)𝑡]

+ e∗𝑗 × h∗𝑗′ exp [−𝑖(k𝑗 + k𝑗′) ⋅ r+ 𝑖(𝜔𝑗 + 𝜔𝑗′)𝑡]

⎞
⎟⎟

⎠

(2.1.8)

In the above equation the terms inside the parentheses are added because the equa-

tionwill not 󰅮it on a single line, the parentheses donot represent a vector. When 𝑗 = 𝑗′

the time average of s for that portion of the sum is the same as in Equation (2.1.4).

What about when 𝑗 ≠ 𝑗′? Then the electric 󰅮ield is not associated with the magnetic

󰅮ield, and hence the cross product is not perpendicular to either plane wave. The

time average can be taken inside the sum and then the following four integrals must

be evaluated:

lim
𝑇→∞

1

2𝑇
∫

𝑇

−𝑇

exp [−𝑖(𝜔𝑗 + 𝜔𝑗′)𝑡]𝑑𝑡 (2.1.9)
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lim
𝑇→∞

1

2𝑇
∫

𝑇

−𝑇

exp [−𝑖(𝜔𝑗 − 𝜔𝑗′)𝑡]𝑑𝑡 (2.1.10)

lim
𝑇→∞

1

2𝑇
∫

𝑇

−𝑇

exp [𝑖(𝜔𝑗 − 𝜔𝑗′)𝑡]𝑑𝑡 (2.1.11)

lim
𝑇→∞

1

2𝑇
∫

𝑇

−𝑇

exp [𝑖(𝜔𝑗 + 𝜔𝑗′)𝑡]𝑑𝑡 (2.1.12)

Since they are sinusoids, they average to zero in all except the following special cases:

𝜔𝑗 = 𝜔𝑗′ , (2.1.13)

𝜔𝑗 = −𝜔𝑗′ . (2.1.14)

FromMaxwell’s equations, each plane wave component has the following property

k𝑗 ⋅ k𝑗 = k′𝑗 ⋅ k
′
𝑗 − k″𝑗 ⋅ k

″
𝑗 + 2𝑖k′𝑗 ⋅ k

″
𝑗 = 𝜔2

𝑗 𝜖0𝜇0𝜖(𝜔𝑗)𝜇(𝜔𝑗) = (
𝜔𝑗

𝑐
)
2

𝜖(𝜔𝑗)𝜇(𝜔𝑗)

(2.1.15)

but for imaging systems the 󰅮ield is usually propagating in air, which is close enough

to free space such that 𝜖(𝜔𝑗) = 𝜇(𝜔𝑗) ≈ 1. This implies there is no imaginary com-

ponent of the equation so

k𝑗 ⋅ k𝑗 = k′𝑗 ⋅ k
′
𝑗 = (

𝜔𝑗

𝑐
)
2

(2.1.16)

If 𝜔𝑗 = 𝜔𝑗′ then

lim
𝑇→∞

1

2𝑇
∫

𝑇

−𝑇

exp [−𝑖(𝜔𝑗 + 𝜔𝑗′)𝑡]𝑑𝑡 = 0 (2.1.17)

lim
𝑇→∞

1

2𝑇
∫

𝑇

−𝑇

exp [−𝑖(𝜔𝑗 − 𝜔𝑗′)𝑡]𝑑𝑡 = 1 (2.1.18)

lim
𝑇→∞

1

2𝑇
∫

𝑇

−𝑇

exp [𝑖(𝜔𝑗 − 𝜔𝑗′)𝑡]𝑑𝑡 = 1 (2.1.19)

lim
𝑇→∞

1

2𝑇
∫

𝑇

−𝑇

exp [𝑖(𝜔𝑗 + 𝜔𝑗′)𝑡]𝑑𝑡 = 0 (2.1.20)

and if 𝜔𝑗 = −𝜔𝑗′ then

lim
𝑇→∞

1

2𝑇
∫

𝑇

−𝑇

exp [−𝑖(𝜔𝑗 + 𝜔𝑗′)𝑡]𝑑𝑡 = 1 (2.1.21)
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lim
𝑇→∞

1

2𝑇
∫

𝑇

−𝑇

exp [−𝑖(𝜔𝑗 − 𝜔𝑗′)𝑡]𝑑𝑡 = 0 (2.1.22)

lim
𝑇→∞

1

2𝑇
∫

𝑇

−𝑇

exp [𝑖(𝜔𝑗 − 𝜔𝑗′)𝑡]𝑑𝑡 = 0 (2.1.23)

lim
𝑇→∞

1

2𝑇
∫

𝑇

−𝑇

exp [𝑖(𝜔𝑗 + 𝜔𝑗′)𝑡]𝑑𝑡 = 1. (2.1.24)

This implies that

⟨s(r, 𝑡)⟩𝑡 =
1

4
∑

𝑗

∑

𝑗′

⎛
⎜⎜

⎝

e𝑗 × h𝑗′ exp (𝑖(k𝑗 + k𝑗′) ⋅ r)

+ e𝑗 × h∗𝑗′ exp (𝑖(k𝑗 − k𝑗′) ⋅ r)

+ e∗𝑗 × h𝑗′ exp (−𝑖(k𝑗 − k𝑗′) ⋅ r)

+ e∗𝑗 × h∗𝑗′ exp (−𝑖(k𝑗 + k𝑗′) ⋅ r)

⎞
⎟⎟

⎠

=
1

4
∑

𝑗

∑

𝑗′

⎛

⎝

2ℜ {e𝑗 × h𝑗′ exp (𝑖(k𝑗 + k𝑗′) ⋅ r)}

+ 2ℜ {e𝑗 × h∗𝑗′ exp (𝑖(k𝑗 − k𝑗′) ⋅ r)}

⎞

⎠

(2.1.25)

where the 𝑗′ indices are restricted to only those where 𝜔𝑗 = 𝜔𝑗′ or 𝜔𝑗 = −𝜔𝑗′
1 for

each 󰅮ixed 𝑗. Equation (2.1.16) also forces the following condition:

‖k𝑗‖
2 = ‖k𝑗′‖

2 (2.1.26)

This means that any corresponding k𝑗′ vector must lie on the sphere of radius ‖k𝑗‖.

Finally, given a 2-dimensional detector (or pixel) with a spatial area de󰅮ined by

𝐷(𝐫), typically square or rectangular for pixels, and sometimes round for more sen-

sitive single pixel detectors, wemust integrate spatially to obtain the integrated irra-

diance which is proportional to the value read out by the detector, 𝑉𝑑:

𝑉𝑑 = ∫
𝐷(𝐫)

⟨s(r, 𝑡)⟩𝑡𝑑
2𝐴, (2.1.27)

where 𝑑2𝐴 is the appropriate differential area element for the 2-dimensional surface

𝐷(𝐫) ∈ ℝ3.

Equation (2.1.27) describes the most general case, formally, for the irradiance of

an electromagnetic 󰅮ield on an optical detector, given a measurement plane located

1Note that negative frequencies are allowed here and are required from the use of the Fourier

transform todescribe a real 󰅮ield, they are amathematical construct denotingquadrature, a purely real

trigonometric formof the Fourier transform could also be used, without any negative frequencies [58]
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in isotropic, homogeneous, linear media, however we cannot fully reconstruct the

incident 󰅮ield from ⟨s(r, 𝑡)⟩𝑡, since we have a many to one mapping (many 󰅮ield vari-

ables to a single 𝑉𝑑 value). Note that this analysis assumes measuring the 󰅮ield at the

detector plane, and propagation can be handled via the Fresnel propagation equa-

tions if needed. Given this fact, a subset of the complete polarization picture can be

measured via irradiance (or radiance)modulation and correlationswhich extract in-

formation about the time averaged version of the ellipse shown in Figure 2.1, over the

weighted sum of all wavelengths which the detector is sensitive to. This measurement

de󰅮ined polarization information has two commonly used formalisms, the coherence

formalism [59] and theMueller-Stokes formalism [60,61]. In the remote sensing and

polarimetric systems community, the Mueller-Stokes formalism is typically used.

2.2 Mueller-Stokes formalism

A compressed overview of the Mueller-Stokes mathematical formalism is presented

here, a complete description can be found elsewhere [4, 60, 61]. Stokes parameters

and linear transformations of those parameters are described by [60]

𝐬 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑠0

𝑠1

𝑠2

𝑠3

⎤
⎥
⎥
⎥
⎥
⎦

∝

⎡
⎢
⎢
⎢
⎢
⎣

⟨|𝐸𝑥|
2⟩ + ⟨|𝐸𝑦|

2⟩

⟨|𝐸𝑥|
2⟩ − ⟨|𝐸𝑦|

2⟩

2ℜ⟨𝐸𝑥𝐸
∗
𝑦⟩

2ℑ⟨𝐸𝑥𝐸
∗
𝑦⟩

⎤
⎥
⎥
⎥
⎥
⎦

, where 𝑠0 > 0, 𝑠20 ≥ 𝑠21 + 𝑠22 + 𝑠23 (2.2.1)

and

𝐬out = 𝐌 ⋅ 𝐬in (2.2.2)

𝑠0 represents (is proportional to) the total irradiance, 𝑠1 represents the prevalence

of horizontal linear polarization over vertical linear polarization, 𝑠2 represents the

prevalence of linear polarization oriented at 45° over linear polarization oriented

at -45°, and 𝑠3 represents the prevalence of right circular polarization over left cir-

cular polarization. A Mueller matrix, 𝐌 ∈ ℝ4×4, represents a linear transformation

of these four Stokes parameters and is therefore a four-by-four matrix. 𝐌 ∈ ℝ4×4

has constraints on it in order to be a physically realizable Mueller matrix [62]. Ac-

tive (aka Mueller) polarimeteric instruments must encode polarization information
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in irradiance, radiance, or radiant 󰅮lux, etc. to infer the Mueller matrix of some ob-

ject. A Mueller matrix object, 𝐌obj(𝐱), can then, in a generic way, be measured over

the domain 𝐱 = [𝑥 𝑦 𝑧 𝑡 𝜎]
𝑇

, where 𝑥, 𝑦, 𝑧 are spatial domains, 𝑡 is time, and 𝜎

is wavenumber (also denoted 𝑘) or some related domain like optical path difference

(OPD) or wavelength, 𝜆. Equation (2.2.2) then becomes [4]

⎡
⎢
⎢
⎢
⎢
⎣

𝑠0,out(𝐱)

𝑠1,out(𝐱)

𝑠2,out(𝐱)

𝑠3,out(𝐱)

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑚00(𝐱) 𝑚01(𝐱) 𝑚02(𝐱) 𝑚03(𝐱)

𝑚10(𝐱) 𝑚11(𝐱) 𝑚12(𝐱) 𝑚13(𝐱)

𝑚20(𝐱) 𝑚21(𝐱) 𝑚22(𝐱) 𝑚23(𝐱)

𝑚30(𝐱) 𝑚31(𝐱) 𝑚32(𝐱) 𝑚33(𝐱)

⎤
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎣

𝑠0,in

𝑠1,in

𝑠2,in

𝑠3,in

⎤
⎥
⎥
⎥
⎥
⎦

(2.2.3)

where 𝐬in is 󰅮ixed due to typical polarimetric instrument design. Usually polarization

information encoding is implemented by applying a known Mueller matrix to some

󰅮ixed 𝐬in via a polarization changing optical element. Evenwithmultiple polarization

changing elements, at some point in the instrument design a known and 󰅮ixed 𝐬in will

be input into the system. Optical detectors measure some quantity proportional to

𝑠0,out(𝐱) over the domain 𝐱.

An active instrument system equation can then be mathematically de󰅮ined by

𝐬out(𝐱) = 𝐀(𝐱) ⋅ 𝐌obj(𝐱) ⋅ 𝐆(𝐱) ⋅ 𝐬in (2.2.4)

where 𝐆(𝐱), 𝐀(𝐱) are denoted the generator and analyzer Mueller matrices respec-

tively, and𝐌obj(𝐱) is the unknown Mueller matrix being measured [60, 61]. Usually,

it is assumed that𝐌obj(𝐱) = 𝐌obj, a constant matrix. A typical measurement scheme

entails measuring or sampling some set of points {𝐱𝑛} or since 𝐆(𝐱), 𝐀(𝐱) can be in-

dependently changed via two sets of discrete samples over the domain {𝐱𝑛}, {𝐲ℓ}, and

then inverting the equation shown in Equation (2.2.4) to obtain an estimate of𝐌obj,

i.e., measurements

𝐬out(𝐱0; 𝐲0) = 𝐀(𝐱0) ⋅ 𝐌obj ⋅ 𝐆(𝐲0) ⋅ 𝐬in

𝐬out(𝐱1; 𝐲0) = 𝐀(𝐱1) ⋅ 𝐌obj ⋅ 𝐆(𝐲0) ⋅ 𝐬in

⋮

𝐬out(𝐱𝑛; 𝐲0) = 𝐀(𝐱𝑛) ⋅ 𝐌obj ⋅ 𝐆(𝐲0) ⋅ 𝐬in

⋮
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𝐬out(𝐱𝑛; 𝐲ℓ) = 𝐀(𝐱𝑛) ⋅ 𝐌obj ⋅ 𝐆(𝐲ℓ) ⋅ 𝐬in

⋮

are taken. However, for optical instruments, only the irradiance can be measured,

i.e.,

𝑠0,out(𝐱0; 𝐲0) = {𝐀(𝐱0) ⋅ 𝐌obj ⋅ 𝐆(𝐲0) ⋅ 𝐬in} |
𝑠0 element

𝑠0,out(𝐱1; 𝐲0) = {𝐀(𝐱1) ⋅ 𝐌obj ⋅ 𝐆(𝐲0) ⋅ 𝐬in} |
𝑠0 element

⋮

𝑠0,out(𝐱𝑛; 𝐲ℓ) = {𝐀(𝐱𝑛) ⋅ 𝐌obj ⋅ 𝐆(𝐲ℓ) ⋅ 𝐬in} |
𝑠0 element

.

⋮

Each 𝐀(𝐱𝑛), 𝐆(𝐲ℓ) is assumed to be known, which produces a set of linear equa-

tions. The number of unknowns in 𝐌obj is 16 when it is assumed to be constant,

so at least 16 measurements must be acquired. The inversion requires computing

{𝐀(𝐱𝑛) ⋅ 𝐌obj ⋅ 𝐆(𝐲ℓ) ⋅ 𝐬in} |
𝑠0 element

. The generator modulation can be thought of as

only a Stokes parameter modulation, 𝐬𝐆(𝐲ℓ) = 𝐆(𝐲ℓ) ⋅ 𝐬in [4], which simpli󰅮ies the

calculation [60]:

𝑠0,out(𝐱𝑛; 𝐲ℓ) =[𝑚00𝑎00(𝐱𝑛) + 𝑚10𝑎01(𝐱𝑛) + 𝑚20𝑎02(𝐱𝑛) + 𝑚30𝑎03(𝐱𝑛)]𝑠0(𝐲ℓ)

+[𝑚01𝑎00𝐱𝑛) + 𝑚11𝑎01(𝐱𝑛) + 𝑚21𝑎02(𝐱𝑛) + 𝑚31𝑎03(𝐱𝑛)]𝑠1(𝐲ℓ)

+[𝑚02𝑎00(𝐱𝑛) + 𝑚12𝑎01(𝐱𝑛) + 𝑚22𝑎02(𝐱𝑛) + 𝑚32𝑎03(𝐱𝑛)]𝑠2(𝐲ℓ)

+[𝑚03𝑎00(𝐱𝑛) + 𝑚13𝑎01(𝐱𝑛) + 𝑚23𝑎02(𝐱𝑛) + 𝑚33𝑎03(𝐱𝑛)]𝑠3(𝐲ℓ),

(2.2.5)

which can be rewritten as:

𝑠0,out(𝐱𝑛; 𝐲ℓ) =

3

∑

𝑖=0

3

∑

𝑗=0

𝑎0𝑖(𝐱𝑛)𝑠𝑗(𝐲ℓ)𝑚𝑖𝑗(𝐱𝑛; 𝐲ℓ) (2.2.6)
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where the 𝑠𝑗(𝐲ℓ) elements are components of 𝐬𝐆(𝐲ℓ). Equation (2.2.5) can also be

rewritten as a matrix equation for each 𝑛, ℓ pair

𝑠0,out(𝐱𝑛; 𝐲ℓ) = [𝑎00(𝐱𝑛) 𝑎01(𝐱𝑛) 𝑎02(𝐱𝑛) 𝑎03(𝐱𝑛)] ⋅ 𝐌obj ⋅

⎡
⎢
⎢
⎢
⎢
⎣

𝑠0(𝐲ℓ)

𝑠1(𝐲ℓ)

𝑠2(𝐲ℓ)

𝑠3(𝐲ℓ)

⎤
⎥
⎥
⎥
⎥
⎦

. (2.2.7)

See the next section for additional details about traditional Muellermatrix polarime-

ter equations.

For ideal channeled systems, it is assumed that the modulations,

𝑎01(𝐱), 𝑎02(𝐱), 𝑎03(𝐱) and 𝑠1(𝐱), 𝑠2(𝐱), 𝑠3(𝐱) are periodic functions of 𝐱. For

the remaining analyis we also assume that the 󰅮irst element of 𝐬𝐆(𝐱), cor-

responding to the total irradiance/radiance of the input, is equal to 12, i.e,

𝐬𝐆(𝐱) = [1 𝑠1(𝐱) 𝑠2(𝐱) 𝑠3(𝐱)]
𝑇

.

Amore convenient version of Equation (2.2.6) can be derived, suppose that Equa-

tion (2.2.4) is rewritten as :

𝐬out(𝐱) = 𝐀(𝐱) ⋅ 𝐬′𝐆(𝐱) (2.2.8)

where

𝐬′𝐆(𝐱) = 𝐌obj(𝐱) ⋅ 𝐬𝐆(𝐱). (2.2.9)

If Equation (2.2.8) is then expanded, and 𝑠0,out(𝐱), the 󰅮irst element of 𝐬out(𝐱), is in-

spected, then:

𝑠0,out(𝐱) = (𝐚(𝐱), 𝐬′𝐆(𝐱)) (2.2.10)

where 𝐚(𝐱) = [𝑎00(𝐱) 𝑎01(𝐱) 𝑎02(𝐱) 𝑎03(𝐱)], i.e., the inner product, (⋅, ⋅) of the

󰅮irst row of 𝐀 and the Stokes vector exiting the sample 𝐬′𝐆(𝐱). Then

𝑠0,out(𝐱) = (𝐚(𝐱), 𝐬′𝐆(𝐱)) (2.2.11)

2Irradiance/radiance could be modulated, but this may negate the utility of modulation in polar-

ization. Further work will be needed to fully characterize the tradeoffs for modulation in both polar-

ization and irradiance/radiance, however there is likely no utility in modulating irradiance/radiance.
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= (𝐚(𝐱),𝐌obj(𝐱) ⋅ 𝐬𝐆(𝐱)) (2.2.12)

= (𝐌
†
obj(𝐱) ⋅ 𝐚(𝐱), 𝐬𝐆(𝐱)), from functional analysis (2.2.13)

= (𝐌𝑇
obj(𝐱) ⋅ 𝐚(𝐱), 𝐬𝐆(𝐱)), since all Mueller matrices are purely real valued

(2.2.14)

Equation (2.2.14) is useful for intuition and for determining speci󰅮icMuellermatrices

needed for instrument calibration. Equation (2.2.14) can be explicitly expanded to

obtain Equation (2.2.5). Again, modulating in intensity is outside the scope of this

work, so the assumption 𝑎00(𝐱) ≡ 1 is asserted.

2.3 Polarimetric instruments

Generally, there are two major types of optical polarimetric imaging; 1) passive,

where the polarization of light being re󰅮lected fromobjects illuminatedwith a source

which we cannot control such as the sun is measured, yielding only Stokes parame-

ters, and 2) active, where the Stokes parameters of a source illuminating the scene

are actively controlled/modulated, yielding the Mueller matrix of the object.

2.3.1 Passive polarimeters

Passive polarimetric instruments have been in use for quite some time, including for

remote sensing tasks. Passive instruments are also called Stokes polarimeters, and

both “full Stokes” and partial Stokes instruments have been built and deployed. A

full Stokes instrument measures the complete set of Stokes parameters of a scene or

perhaps the incoming radiance. In optical wavelength measuring instruments, this

is accomplished via some analyzer modulation scheme. The equation for a Stokes

polarimeter is

𝐬out(𝐱) = 𝐀(𝐱) ⋅ 𝐬obj(𝐱) (2.3.1)

and in the optical wavelength regime the measured quantity which is proportional

to irradiance is

𝑠0,out(𝐱) = 𝑎00(𝐱) ⋅ 𝑠0,obj(𝐱) + 𝑎01(𝐱) ⋅ 𝑠1,obj(𝐱)
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+ 𝑎02(𝐱) ⋅ 𝑠2,obj(𝐱) + 𝑎03(𝐱) ⋅ 𝑠3,obj(𝐱). (2.3.2)

Real instruments take discrete measurements, so the left hand side (LHS) of Equa-

tion (2.3.2) becomes a discrete point measurement, then these measurements can

be concatenated into a 𝑛 × 1 vector, 𝐠𝑠0,out , for 𝑛measurements of 𝑠0,out(𝐱𝑗). If 𝐀(𝐱) is

known, then the right hand side (RHS) of Equation (2.3.2) can be rewritten as

[𝑎00(𝐱𝑗) 𝑎01(𝐱𝑗) 𝑎02(𝐱𝑗) 𝑎03(𝐱𝑗)] ⋅

⎡
⎢
⎢
⎢
⎢
⎣

𝑠0,obj(𝐱𝑗)

𝑠1,obj(𝐱𝑗)

𝑠2,obj(𝐱𝑗)

𝑠3,obj(𝐱𝑗)

⎤
⎥
⎥
⎥
⎥
⎦

(2.3.3)

for each 𝐱𝑗 . Note [𝑎00(𝐱𝑗) 𝑎01(𝐱𝑗) 𝑎02(𝐱𝑗) 𝑎03(𝐱𝑗)] is often denoted the “ana-

lyzer” or “analyzer vector” due to the formal projection of the measured Stokes pa-

rameters onto it, and “analyze” refers to the projection itself. This equation can then

be built up as:

𝐠𝑠0,out =

⎡
⎢
⎢
⎢
⎢
⎣

𝑎00(𝐱0) 𝑎01(𝐱0) 𝑎02(𝐱0) 𝑎03(𝐱0)

𝑎00(𝐱1) 𝑎01(𝐱1) 𝑎02(𝐱1) 𝑎03(𝐱1)

⋮ ⋮ ⋮ ⋮

𝑎00(𝐱𝑛−1) 𝑎01(𝐱𝑛−1) 𝑎02(𝐱𝑛−1) 𝑎03(𝐱𝑛−1)

⎤
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎣

𝑠0,obj(𝐱⌊(𝑛−1)/2⌉)

𝑠1,obj(𝐱⌊(𝑛−1)/2⌉)

𝑠2,obj(𝐱⌊(𝑛−1)/2⌉)

𝑠3,obj(𝐱⌊(𝑛−1)/2⌉)

⎤
⎥
⎥
⎥
⎥
⎦

(2.3.4)

= 𝐀 ⋅ 𝐬 (2.3.5)

provided that a fairly strong assumptionholds ;𝐬obj(𝐱) is approximately constant over

the range 𝐱0, 𝐱1, ⋯, 𝐱𝑛−1. ⌊⋅⌉ denotes the nearest integer function and 𝐀 is an 𝑛 × 4

matrix. 𝐬obj(𝐱) constant is equivalent to 𝐬obj(𝐱) having zero bandwidth extent in the

modulation domain.

In a real system noise must be accounted for,

𝐠𝑠0,out = 𝐀 ⋅ 𝐬 + 𝐧 (2.3.6)

where 𝐧 is a 𝑛 × 1 vector which contains both random noise and systematic errors.

Typically, 𝐬 can them be then be estimated as �̂� by

�̂� = 𝐀+ ⋅ 𝐠𝑠0,out (2.3.7)
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where 𝐀+ is the pseudoinverse of 𝐀. If the noise distribution is known, then addi-

tional conditioning can be done to improve the estimate.

Partial Stokes polarimeters can also be described. A common scheme is the mea-

surement of the 󰅮irst three Stokes parameters, 𝑠0, 𝑠1, 𝑠2 using either temporal (ro-

tating linear polarizers) or spatial (micropolarizer array) polarization modulation

schemes. Adapting Equation (2.3.4) to this case requires setting 𝑎03(𝐱𝑗) = 0, ∀𝑗

where ∀ denotes “for all.” This leads to the conclusion that this type of polarimeter

cannot detect 𝑠3, or equivalently that 𝑠3 is in the null space of the instrument operator.

Equation (2.3.4) can then be abbreviated for this case to

𝐠𝑠0,out =

⎡
⎢
⎢
⎣

𝑎00(𝐱0) 𝑎01(𝐱0) 𝑎02(𝐱0)

⋮ ⋮ ⋮ ⋮

𝑎00(𝐱𝑛−1) 𝑎01(𝐱𝑛−1) 𝑎02(𝐱𝑛−1)

⎤
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎣

𝑠0,obj(𝐱⌊(𝑛−1)/2⌉)

𝑠1,obj(𝐱⌊(𝑛−1)/2⌉)

𝑠2,obj(𝐱⌊(𝑛−1)/2⌉)

⎤
⎥
⎥
⎦

(2.3.8)

= 𝐀′ ⋅ 𝐬′ (2.3.9)

i.e. the last column of 𝐀 and 𝑠3,obj(𝐱⌊(𝑛−1)/2⌉) can be ignored. There are a myriad of

other types of Stokes and partial Stokes polarimeters, however this dissertation will

focus on active, or Mueller matrix instruments and Stokes instruments will not be

discussed in depth.

2.3.2 Active polarimeters

Active, or Mueller matrix polarimeters measure the Mueller matrix of an object,

𝐌obj. An analysis similar to the above for Stokes polarimeters is typically carried

out for active instruments. Equation (2.3.11) shows the measurement scheme for

a Mueller matrix polarimeter and is the multiple measurement version of Equa-

tion (2.2.7). Note that 𝐌(𝐱) is assumed to be approximately constant jointly over

both the 𝐱0, ⋯ , 𝐱𝑛−1 and the 𝐲0, ⋯ , 𝐲𝑚−1 value ranges, with the average at 𝐱𝑎. Equa-

tion (2.3.11) can then be rewritten as shown in Equation (2.3.12) where 𝐈𝑠0,out is size

𝑛 × 𝑚, 𝐀 is size 𝑛 × 4, 𝐆 is size 4 × 𝑚, and 𝐍, the noise matrix, is also of size 𝑛 × 𝑚.

The estimate of𝐌 is typically accomplished via

�̂� = 𝐀+ ⋅ 𝐈𝑠0,out ⋅ 𝐆
+ (2.3.10)
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𝐀
⋅
𝐌
⋅
𝐆
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𝐍
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.3
.1
2
) where 𝐆+ and 𝐀+ are the pseudoinverse

of 𝐆 and 𝐀 respectively. A more com-

pact form of Eqns. 2.3.12 and 2.3.10

can be used by “vectorizing” the matrix

equations. Equation (2.3.12) can be re-

written as [63]

𝐢𝑠0,out = (𝐆𝑇 ⊗𝐀)𝐦+ 𝐧

= 𝐖 ⋅ 𝐦+ 𝐧 (2.3.13)

where 𝐢𝑠0,out is vectorized as a row by row

concatenation of 𝐈𝑠0,out ,𝐦 is vectorized as

a row by row concatenation of 𝐌, and

⊗ denotes the Kronecker product. 𝐢𝑠0,out

has size 𝑚𝑛 × 1, 𝐦 has size 16 × 1 and

𝐖 = (𝐆𝑇 ⊗𝐀) has size𝑚𝑛 × 16. Equa-

tion (2.3.13) can then be inverted via

𝐦 = 𝐖+𝐢𝑠0,out (2.3.14)

where𝐖+ is the pseudoinverse of𝐖.

Active instruments have been uti-

lized in various laboratory settings, for

polarized bidirectional re󰅮lectance dis-

tribution (pBRDF) measurements, ellip-

sometry and index of refraction mea-

surements, measurements of LCD pan-

els and defects, etc. However, full

Mueller matrix instruments have seen

little use as deployable remote sensing

instruments, although the idea has been

discussed before [2, 64–69]. Aside from

the instrument presented here, I know

of only one other possible portable ac-

tive Mueller matrix instrument which
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has actually been built, by Advanced Optical Technologies, Inc. [70]. The polarimeter

fromAdvancedOptical Technologies is shown in a video on theirwebsite, however to

my knowledge, no public literature about the instrument exists other than the video.

One of the primary reasons for the dearth of active polarimetric instruments

for remote sensing is the complexity of instrument design and theoretical limits on

combinations of instrument speed (temporal bandwidth), image resolution (spatial

bandwidth), and spectral resolution. Moreover, many active instrument designs re-

quire extremely precise alignment of multiple optical paths, precise timing of rotat-

ing or moving components, and multiple sensors or apertures. Opto-mechanical de-

sign complexity is a hurdle to inexpensive, portable, and well performing polarimet-

ric instruments. Additionally, data coming from an instrument contain more infor-

mation than data from a typical color ormonochrome camera, speci󰅮ically four times

as much information for a passive system and sixteen times as much information for

an active system. The data processing requirements are also demanding, especially

for active (Mueller matrix) imaging polarimeters.

2.4 Channeled systems

Azzam [46] introduced the concept of channeled polarimetric systems in 1978 for

temporal carriers, however his analysis made the assumption that the object has

no temporal bandwidth. Error analysis was undertaken by Goldstein and Chipman

on this type of temporal channeled system for a dual rotating retarder polarimeter

(DRR) [71]. Other than theAzzamchanneledDRRpolarimeter, channeledpolarime-

ters discussions in the literature were rare until Oka and Kato’s letter on channeled

spectropolarimetry [47]. Thisworkdescribeda systemwhere the spectrally resolved

Stokes parameters could be measured in a single spectrometer measurement. The

Stokes parameter information is encoded into the spectrum as quasi-cosinusoidal

functions of wavenumber, 𝜎. The channels then emerge when the Fourier trans-

form of the spectrometer measurement is taken, with the channel space domain be-

ing optical path difference (OPD). The measured spectrum and channels are shown

in Figure 2.3. After the work of Oka and Kato, many spectrally channeled and

spatial-spectrally channeled systems were designed and described in the literature
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Figure 2.2: A Fourier photopolarimeter capable of measuring all 16 elements of the

Mueller matrix of an optical system. This is a DRR con󰅮iguration. Reproduced from

Azzam [46].

(a) Measured spectrum. (b) Fourier domain channels.

Figure 2.3: Encoded spectrum and resultant channels from the Oka and Kato spec-

tropolarimeter design. Reproduced from Oka and Kato [47].
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[52] [31,32,48–50,52,53], however none address bandwidth in a systematic way.

Recent work by Alenin and Tyo [34] has illuminated modulated (channeled) po-

larimeters and the underlying channel structure of a polarimeter in any modula-

tion domain, generalizing the work of Oka and Kato, Hagen, Kudenov and Dereniak,

Dubreil et al, etc. in the spectral and spectral-spatial modulation domains. This sec-

tion will present a similar analysis and the underlying mathematics are derived. As

in Alenin [34], the assumption is made that carriers are periodic in the underlying

domain.

The Fourier transform of the general instrument equation Equation (2.2.6) is:

𝑆0,out(𝝆) =

3

∑

𝑖=0

3

∑

𝑗=0

𝐴𝑖(𝝆) ∗ 𝑆𝑗(𝝆) ∗ 𝑀𝑖𝑗(𝝆) (2.4.1)

where

𝑆0,out(𝝆) = ℱ {𝑠0,out(𝐱)}𝐱→𝝆
, 𝐴𝑖(𝝆) = ℱ {𝑎0𝑖(𝐱)}𝐱→𝝆 ,

𝑀𝑖𝑗(𝝆) = ℱ {𝑚𝑖𝑗(𝐱)}𝐱→𝝆
, 𝑆𝑗(𝝆) = ℱ {𝑠𝑗(𝐱)}𝐱→𝝆

, (2.4.2)

∗ indicates convolution, and the Fourier domain has 𝝆 = [𝜉 𝜂 𝜒 𝜈 𝜏]
𝑇

corre-

sponding to 𝐱. Note that for periodic carriers each 𝐴𝑖 will be a set of delta functions,

and each 𝑆𝑗 will also be a set of delta functions. When these sets are convolved, they

will result in “channel splitting” [34]. The 󰅮inal set (a “cloud of delta functions” [34])

is then convolvedwith each respectiveMueller matrix element𝑀𝑖𝑗 in the Fourier do-

main. This results in a copy of the data for each Mueller matrix element centered on

each delta function in the “cloud.” Alenin and Tyo’s results are extended by consider-

ing the available bandwidth between these channels. The complete set of 𝛿-functions

for the system

3

∑

𝑖=0

3

∑

𝑗=0

𝐴𝑖(𝝆) ∗ 𝑆𝑗(𝝆) (2.4.3)

are de󰅮ined as the channels of the system, or the system’s channel structure [4].

2.4.1 Bandwidth in channeled systems

LaCasse et al began to investigate bandwidth in Stokes polarimeters as channeled

systems in 2011 [43] motivated by “polarization artifacts,” i.e., reconstructed im-
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Figure 2.4: A modulated measurement of the Stokes parameters using a rotating an-

alyzer polarimeter, with each parameter band limited such that the signal can be ide-

ally reconstructed. 𝑊𝐵 is bandwidth of each parameter, 𝑓0 is the frequency of ana-

lyzer rotation, and 𝑓𝑠 is the detector sampling frequency. The dashed blue line indi-

cates that 𝑠2 is in the quadrature component of the side band. The con󰅮igurationwith

maximum allowed bandwidth is shown. Reproduced from LaCasse et al [43].

ageswhich containednon-physically realizable, erroneous, polarization information.

These artifacts are particularly prevalent at edges or transition boundaries in the

scene for partial Stokes micropolarizer array polarimeters [72]. A key result was

that certain instrument designs and data processing used in conventional polarimet-

ric data reductionmatrix (DRM) schemes, as described inEquation (2.3.4), inherently

corrupt the reconstructed data. The equation

�̂�(𝐱) = 𝐖−1 {𝐼(𝐱)} = 𝑤(𝐱) ∗ 𝐙−1𝐀(𝐱)𝐼(𝐱) (2.4.4)

is derived where 𝐱 = (𝑥, 𝑦, 𝑡, 𝜆), 𝐙−1 is the constant modulator inner product in-

version matrix, 𝐀(𝐱) is the polarimetric carrier generation matrix, and 𝐼(𝐱) is the

modulated irradiance or radiance. The elements, 𝑍𝑖𝑗 of 𝐙 are de󰅮ined as

𝑍𝑖𝑗∫ 𝐴𝑖(𝑡)𝐴𝑗(𝑡)𝑑𝑡 (2.4.5)

where 𝐴𝑖(𝑡), 𝐴𝑗(𝑡) ∈ 𝐀(𝑡). Here the elements of 𝐙−1 are assumed to be constant over

the modulation [43]. LaCasse et al showed that the windowing function in the
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Figure 2.5: The four components of the estimated Stokes parameters in the Fourier

domain given by ℱ {𝑤(𝑡) ∗ 𝐙𝐀(𝑡)𝐼(𝑡)}
𝑡→𝑓

with 𝑤(𝑛) = rect (
𝑛

16
), a 16 sample rect

window. (a) ℱ { ̂𝑠0}, (b) ℱ { ̂𝑠1}, (c) ℱ { ̂𝑠2}, (d) ℱ { ̂𝑠3}. Differences from a triangle func-

tion in the Fourier domain indicate errors in the data reductionmethod. Reproduced

from LaCasse et al [43].

Figure 2.6: The four components of the estimated Stokes parameters given by

ℱ {𝐬(𝑡)}
𝑡→𝑓

= ℱ {𝐙𝐀(𝑡)𝐼(𝑡)}
𝑡→𝑓

prior to low pass 󰅮iltering with 𝑤(𝑡) according to

Equation (2.4.4). Also shown in the dotted line is the rectangular low pass 󰅮ilter that

ideally reconstructs the correct individual Stokes parameters. The marking 𝛾 is an

example of self-error, while the marking 𝜖 is an example of cross-error. If the low

pass 󰅮ilter 𝑤(𝑡) does not reject these frequencies outside of the shaded base band

artifacts will arise due to these error terms. Reproduced from LaCasse et al [43].
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typical DRM scheme has inherent cross talk issues as shown in Figure 2.5. For the

speci󰅮ic example in Figures 2.5 and 2.6, the ideal band-limited 󰅮ilter is [43]

ℱ {𝑤(𝑡)} = rect(
5𝑓

𝑓𝑠
) (2.4.6)

which is a sinc function in the timedomain, not a rect functionwhich is implied by the

DRMmethod. The 󰅮ilter selection is intrinsically dependent on object bandwidth, and

this work began the systematic analysis of bandwidth and 󰅮ilter design in channeled

polarimetric systems.

Design of polarimetric systems optimized for bandwidth in multi-domain chan-

neled systems is lacking in the literature, although LaCasse et al presented prelimi-

nary conference results on a spatio-temporally modulated Stokes polarimeter [33].

A hybrid systemwith both a rotating retarder +micropolarizer array was presented,

shown in Figure 2.7. The last design, (d), is bandwidth optimal but requires a custom

microanalyzer array given by [33]

[1
1

√3
cos𝜋𝑚

1

√3
cos𝜋𝑛

1

√3
cos𝜋(𝑚 + 𝑛)]

𝑇

(2.4.7)

where (𝑚, 𝑛) is the pixel location and𝑚, 𝑛 ∈ ℕ. This type of array cannot currently be

purchased in the commercialmarket. Additionally, constructing such an arraywould

be more dif󰅮icult than the currently available linear polarizer arrays since each pixel

location must analyze either
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, (2.4.8)

which necessitates manufacturing microanalyzer elements which are more compli-

cated than linear polarizers rotated to speci󰅮ic angles. Portions of the work in this

dissertation expand and extend the hybrid spatio-temporal ideas introduced by La-

Casse et al applied to active polarimetric instruments.

2.4.2 Notation
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Figure 2.7: Locations ofmodulated side bands in the frequencydomain for four imag-

ing polarimeters: (a) a full micropolarizer array polarimter , (b) a rotating retarder

polarimeter, (c) a polarimeter consisting of a rotating retarder followed by amicrop-

olarizer array polarimeter, (d) and a half wave retarder rotating 90∘ per temporal

sample in front of a micropolarizer array, which creates a polarimeter with maxi-

mum spatio-temporal bandwidth. Reproduced from LaCasse et al [33].
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Table 2.1: Notation for

channels.

positive negative

re
a
l

im
a
g
.

Visualization of system channel structures can be accom-

plished by graphing the sets of channels (𝛿-functions). A

𝛿-function canbe characterizedby its position, and its com-

plex magnitude. Table 2.1 outlines the graphical notation

that will be used, the blue triangles represent the real part

of the magnitude, red triangles represent the imaginary

part of the magnitude, the directions that the triangles

point represent whether the magnitude is positive or neg-

ative, and the size of each triangle represents the absolute value of the real part or

the imaginary part. Only channels for a single Mueller matrix element will be dis-

played for each visualization, with the locations for channels for all other Mueller

matrix elements being indicated by light gray-blue circles. Many channels, arising

from several Mueller matrix elements, end up being added together at the locations

shown. The relationship between the channels of different Mueller matrices is addi-

tive. An example of the channel structure for a spatio-temporally modulated system

corresponding to𝑀23(𝝆) is shown in Figure 3.1.

There is linear mixing between channels of the different elements of 𝐌obj, de-

scribed by a matrix, 𝐐, [34] so the channels must be unmixed via the pseudoinverse

matrix,𝐐+ [4,5] prior to inverting the Fourier transform. The𝐐matrix characterizes

noise propagation and channels can be chosen to minimize noise [4, 5, 34]. For the

channeled measurements, we can take the Fourier transform of each𝑚𝑖𝑗(𝐱):

𝑀𝑖𝑗(𝝆) = ℱ {𝑚𝑖𝑗(𝐱)}𝐱→𝝆
(2.4.9)

then the channeled system will convolve each 𝑀𝑖𝑗(𝝆) with the set of 𝛿-functions in

the channel structure, resulting in amixture of data in the Fourier domain. The exact

mixing is characterized by the 𝐐 matrix [34], and we can unmix by using the pseu-

doinverse, 𝐐+.

Some of the examples presented will be normalized to a temporal frequency

range of [−1, 1]. Since there is always a maximum sampling rate in practice, the rel-

ative bandwidth with respect to a maximum absolute frequency of 1 over the do-

main(s) of interest (this forms a hypercube) is optimized. Different norms and met-

rics could be used to normalize for optimization, and result in different optimization
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outcomes [5]. Due to the assumption of separable modulation functions for space

and time andMuellermatrix physicality conditions, channels are 󰅮ixed to travel along

constrained paths in the Fourier domain. The details of separability are discussed in

Chapter 3.

2.5 Applications

Stokes polarimeters and partial Stokes polarimeters have been used in awide variety

of applications. Some examples include remote sensing [14], satellite imaging and

estimations for weather, aerosols, and vegetation [27, 28, 73–75]. Ocean radiance is

alsomeasured both to estimate oceanwater column constituents and to verify ocean

atmosphere radiance models [76–80].

Active polarimeters, however, have seen less use overall, especially for remote

sensing. This is primarily due to the increase in instrument complexity, and the is-

sues of active illumination at range (primarily the problem of irradiance on the ob-

ject decreasing as range increases, and/or sunlight overpowering the active source

for outdoor remote sensing). This dissertation will focus on active polarimetric im-

agers, so Stokes applications will not be discussed in depth.

Active polarimetric instruments have primarily been used in the lab and as el-

lipsometers. Ellipsometry is a sub-󰅮ield of its own, and will not be discussed here.

Although there are a dearth of public results on utilization of active polarimetry for

remote sensing, there have been some unpublished attempts made by defense agen-

cies and their contractors to build and utilize active polarimeters for remote sens-

ing tasks. Most active instruments which have been built are partial polarimeters

which don’t measure the completeMueller matrix. LeMaster et al have built a partial

Muellermatrix polarimeter (pMMP) for the SWIRwavelength range [81], andHoover

has also apparently built an active polarimeter for remote sensing purposes [70],

however there are no details about the instrument available, so it is not currently

known if it is a partial or full Mueller matrix polarimeter. This dissertation will de-

velop a channeled framework for spatio-temporallymodulatedMuellermatrix imag-

ing polarimeters, optimize a speci󰅮ic system for bandwidth, simulate an example of

sucha system, designand implement anactual instrumentwhichuses thedesign, and
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󰅮inally present some data from the actual instrument. The instrument is designed to

be an active, portable, full Mueller matrix imager.
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CHAPTER 3

Bandwidth in spatio-temporal channeled systems

3.1 Introduction

ChanneledMueller matrix polarimeters and the concept of using these channels was

󰅮irst introduced by Azzam [46]. Azzam published a very speci󰅮ic case, where

(a) a speci󰅮ic temporal framework was analyzed,

(b) an implicit assumption about the object was made: the object had no tempo-

ral bandwidth, i.e., the object was constant in time.

This ensures a simpler description of the channels and the data, since the data is

constant it will be the same in both the temporal and the frequency domains. Prior to

the work by LaCasse et al [33,43,44], bandwidth in channeled polarimetric systems

had not been addressed, or only addressed as a consequence of instrumental “error.”

Additionally, prior to Alenin and Tyo [34] channeled systems were designed in an

ad-hoc manner. In this chapter bandwidth is addressed using the systematic design

tools introduced by Alenin and Tyo [34] for a hybrid spatio-temporally modulated

channeled active polarimetric system.

3.2 Spatio-temporal channels

This chapter will discuss a spatio-temporal system, with carriers and modulation in

the domain

𝐱 =

⎡
⎢
⎢
⎣

𝑥

𝑦

𝑡

⎤
⎥
⎥
⎦

(3.2.1)

and examples will primarily be from a quad-retarder + micropolarizer array sys-

tem [4]. First convolution with Dirac delta functions will be brie󰅮ly reviewed. Some
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component spatial carrier generation temporal carrier generation

polarizer 4

retarder 4

variable LC retarder 4

variable Pockel cell retarder 4

Faraday rotator 4

micropolarizer array 4

microretarder array 4

spatial light modulator 4 4

Table 3.1: Table of COTS polarization components.

unknown quantity,𝑚(𝑡), can modulate a sinusoidal function. Without loss of gener-

ality, cosine is chosen:

𝑓(𝑡) = cos 2𝜋𝜈0𝑡 ⋅ 𝑚(𝑡) (3.2.2)

Taking the Fourier transform of 𝑓(𝑡) gives

ℱ {𝑓(𝑡)}
𝑡→𝜈

= ℱ {cos 2𝜋𝜈0𝑡 ⋅ 𝑚(𝑡)}𝑡→𝜈 (3.2.3)

⟹ 𝐹(𝜈) = ℱ {cos 2𝜋𝜈0𝑡}𝑡→𝜈 ∗ ℱ {𝑚(𝑡)}
𝑡→𝜈

(3.2.4)

⟹ 𝐹(𝜈) =
1

2
[𝛿(𝜈 − 𝜈0) + 𝛿(𝜈 + 𝜈0)] ∗ 𝑀(𝜈) (3.2.5)

⟹ 𝐹(𝜈) =
𝑀(𝜈 − 𝜈0)

2
+
𝑀(𝜈 + 𝜈0)

2
(3.2.6)

where ℱ {⋅} is the Fourier transform, ∗ is convolution, and 𝛿(𝜈) is the Dirac delta

function. The last line is due to the property of convolution with delta functions, a

function will be “copied” to the location of a 𝛿-function when convolved with that 𝛿-

function. This gives us some tools for conceptual descriptions for the forward prob-

lem and hence the bandwidth.

A spatio-temporally channeled system allows for visualization of a 3-dimensional

space for insight, and also allows robust design to occur from common off the shelf

components (COTS). Many polarimetric design elements generate carriers either

spatially, temporally, or both. Table 3.1 illustrates some examples of ways to gener-

ate carriers, with many polarization elements being temporally changed by rotation
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or some other movement to change the Mueller matrix with respect to (w.r.t.) the

lab frame. Different channel schemes can be combined to yieldmore complex hybrid

schemes like the spatio-temporal channel structures discussed here.

In this chapter it is assumed that for a hybrid spatio-temporal system, the spatial

and temporal carriers are separable, i.e.,

𝑓(𝑥, 𝑦, 𝑡) = ℎ(𝑥, 𝑦) ⋅ 𝑔(𝑡). (3.2.7)

This enforces certain conditions in the channel space, primarily the multiplication

between “orthogonal” functions of (𝜉, 𝜂) and 𝜈 in the channel space, since

ℱ {𝑓(𝑥, 𝑦, 𝑡)} = ℱ {ℎ(𝑥, 𝑦)} ⋅ ℱ {𝑔(𝑡)} . (3.2.8)

which implies that there is no channel splitting between ℱ {ℎ(𝑥, 𝑦)} and ℱ {𝑔(𝑡)},

only location copying. This enforces the copying of all of the temporal channels at

the locations of the spatial channels. There can be some linear combinations of tem-

poral channels, but arbitrary channel locations on the upper hemisphere (re󰅮lected

by Hermicity to the lower hemisphere) of the 3-dimensional frequency space are re-

stricted due to the separability assumption. Although some preliminary work has

been carried out on the non-separable condition, it will not be discussed here. It is

not completely clear if physical limitations on polarimetric instruments will allow

for non-separable carriers, although I hypothesize that something like rotating a fo-

cal plane array with a micropolarizer array attached, or pushbroom sensors which

inherently couple space and time, will yield non-separable carriers.

Single channels, other than the zero frequency (DC, or baseband), cannot exist in

the frequency space. This is due to the fact that carriers are real valued, and therefore

the Fourier transform must be Hermitian:

𝑓(𝑥, 𝑦, 𝑡) ∈ ℝ3 = 𝑓even(𝑥, 𝑦, 𝑡) + 𝑓odd(𝑥, 𝑦, 𝑡) (3.2.9)

⟹ ℱ {𝑓(𝑥, 𝑦, 𝑡)} = 𝐹(𝜉, 𝜂, 𝜈) = ℱ {𝑓even(𝑥, 𝑦, 𝑡)} + ℱ {𝑓odd(𝑥, 𝑦, 𝑡)} (3.2.10)

= 𝐹real(𝜉, 𝜂, 𝜈) + 𝐹imag(𝜉, 𝜂, 𝜈) (3.2.11)

where 𝐹real(𝜉, 𝜂, 𝜈) is a real valued function and 𝐹imag(𝜉, 𝜂, 𝜈) is a purely imaginary

function. Additionally, 𝐹real(𝜉, 𝜂, 𝜈) is even and 𝐹imag(𝜉, 𝜂, 𝜈) is odd. This implies that

𝐹(𝜉, 𝜂, 𝜈) = 𝐹∗(−𝜉,−𝜂,−𝜈) (3.2.12)
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the de󰅮inition of Hermitian, where ∗ here is the complex conjugate. The fact that

𝐹real(𝜉, 𝜂, 𝜈) is even imposes a symmetry condition on the real valued channels,

any real valued channel in the frequency domain located away from (0, 0, 0) at say,

(𝜉0, 𝜂0, 𝜈0) must also have a channel located at (−𝜉0, −𝜂0, −𝜈0) with the same mag-

nitude and sign. Similarly since 𝐹imag(𝜉, 𝜂, 𝜈) is odd, any imaginary valued channel

in the frequency domain located at (𝜉0, 𝜂0, 𝜈0) ≠ (0, 0, 0) must also have a chan-

nel located at (−𝜉0, −𝜂0, −𝜈0) with the same magnitude and opposite sign. Equa-

tion (3.2.12) is the formal description of these symmetry conditions. Additionally,

the channel information can be represented in amore compact form since if𝐹(𝜉, 𝜂, 𝜈)

is known for 𝜉, 𝜂, 𝜈 ≥ 0 then 𝐹(−𝜉,−𝜂,−𝜈) can be deduced from Equation (3.2.12).

Due to this, only channels for 𝜉, 𝜂, 𝜈 ≥ 0have to be stored/manipulated, and the other

channels for 𝜉, 𝜂, 𝜈 < 0 can be constructed.

The above Hermicity and separability conditions constrain the channel(s) loca-

tion in the frequency domain. Because the carrier is separable, 𝐹(𝜉, 𝜂, 𝜈) = 𝐻(𝜉, 𝜂) ⋅

𝐺(𝜈), and Hermicity implies that

𝐻(𝜉, 𝜂) = 𝐻∗(−𝜉,−𝜂) (3.2.13)

𝐺(𝜈) = 𝐺∗(−𝜈). (3.2.14)

Conceptually, this implies that for each channel in the (𝜉, 𝜂) plane from𝐻(𝜉, 𝜂), chan-

nels from 𝐺(𝜈) will form in lines, perpendicular to the (𝜉, 𝜂) plane, at each channel

from𝐻(𝜉, 𝜂). Figure 3.1 illustrates this fact. There are 5 channels from𝐻(𝜉, 𝜂) in the

(𝜉, 𝜂) plane, and differing numbers of channels (due to superposition, channel can-

cellation, and that the (0, 0, 0) components do not have to be copied symmetrically)

along lines perpendicular to the (𝜉, 𝜂) plane from the channels formed by𝐺(𝜈). Non-

separable carriers would allow for channels to exist along trajectories different from

lines perpendicular to the plane, provided they can be physically implemented.

3.3 Physical constraints

In addition to the constraints enforced by Hermicity and separability, physical

Mueller matrices and Stokes parameters add additional constraints to the carriers,

and therefore to the channel structure. There is also concern about the validity of
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Figure 3.1: Example of a spatio-temporal channel structure with 𝛿-functions speci󰅮ic

to 𝑚23. The maximum bandwidth corresponds to the minimum distance between

two adjacent channels, taken over all possible adjacent channel pairs.
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(3
.3
.1
) treating micropolarizer arrays as sampled sinu-

soidal functions ,i.e., the micropolarizers can be

modeled as samples of continuously rotating po-

larizers, with the angle variable being dependent

on the spatial image plane coordinate (𝑥, 𝑦). This

assumption is valid under certain conditions but

will not be addressed here.

Gil [62] showed the simplest necessary and

suf󰅮icient conditions for a Mueller matrix to be

physical; the coherency matrix, 𝐇, correspond-

ing to the Mueller matrix 𝐌, must be Hermi-

tian positive semi-de󰅮inite. 𝐇 is de󰅮ined in Equa-

tion (3.3.1) [82], where 𝑚𝑗𝑘, 0 ≤ 𝑗, 𝑘 ≤ 3 are

the elements of the associated Mueller matrix𝐌

and 𝑖 is the imaginary unit. The constraints on

𝐇 are easy to understand, but they are not easy

to translate into constraints on channels. This

de󰅮inition for physical Mueller matrices can be

used to generate test matrices computationally,

by computing𝐇matrices and then transforming

them to Mueller matrices𝐌. The two conditions

on𝐇 are

• 𝐇 = 𝐇† where † here denotes conjugate

transpose.

• positive semi-de󰅮initeness, 𝐱†𝐇𝐱 ≥

0, ∀𝐱 ∈ ℂ4, where † denotes conjugate

transpose.

Translating these conditions to the Mueller-

Stokes formalism, i.e., the constraints on 𝐌, re-

sults in a very complicated set of inequality con-

ditions and other conditions [82–86]. The car-



55

rier equations result from the Mueller-Stokes equations, and the carriers are con-

strainedby thephysicality conditions. It is not yet clearwhat constraints are imposed

in the channel space by the physicality conditions.

The physicality conditions on Stokes parameters are 𝑠0 > 0, 𝑠20 ≥ 𝑠21 + 𝑠22 + 𝑠23 ,

which is imposed on 𝐬𝐆(𝐱) de󰅮ined in Chapter 2. If the assumption is made that the

carrier amplitudes are equal for 𝑠1(𝐱), 𝑠2(𝐱), 𝑠3(𝐱) then the physicality condition im-

plies that the maximum carrier amplitude for each Stokes parameter is

𝑠0

√3
(3.3.2)

for the case when maximum amplitude may be reached by 𝑠1(𝐱), 𝑠2(𝐱), 𝑠3(𝐱) simul-

taneously. However, the carrier could possibly be designed so that the maximum

amplitude of 𝑠1(𝐱), 𝑠2(𝐱), 𝑠3(𝐱), respectively, are spaced in such a manner that they

do not simultaneously reach a maximum. For this case, there will be periodic max-

imum(minimum) values for each 𝑠1(𝐱), 𝑠2(𝐱), 𝑠3(𝐱), denoted 𝐱max,1, 𝐱max,2, 𝐱max,3 re-

spectively. Then

𝑠20 ≥ 𝑠21 (𝐱max,1) + 𝑠22 (𝐱max,1) + 𝑠23 (𝐱max,1) (3.3.3)

𝑠20 ≥ 𝑠21 (𝐱max,2) + 𝑠22 (𝐱max,2) + 𝑠23 (𝐱max,2) (3.3.4)

𝑠20 ≥ 𝑠21 (𝐱max,3) + 𝑠22 (𝐱max,3) + 𝑠23 (𝐱max,3) (3.3.5)

and the question arises: If 𝑠1(𝐱), 𝑠2(𝐱), 𝑠3(𝐱) each reach the maximum of 𝑠0 in am-

plitude, how are the frequencies constrained? A more intuitive analysis may use the

Poincaré sphere with radius 𝑠0. Then, the carrier function can be represented as the

movement of the 3-vector

𝔰 = 𝑠0

⎡
⎢
⎢
⎣

cos𝜃 sin𝜙

sin𝜃 sin𝜙

cos𝜙

⎤
⎥
⎥
⎦

(3.3.6)

around the surface of the Poincaré sphere, where 𝜃 is the azimuthal angle and 𝜙 is

the elevation or polar angle. For purely a polarized carrier function, this implies that

the output is a function of two variables, 𝜃 and 𝜙, which are themselves functions of

the modulation domain, i.e., 𝜃 = 𝜃(𝐱) and 𝜙 = 𝜙(𝐱), and of course 0 ≤ 𝜃 < 2𝜋

and 0 ≤ 𝜙 ≤ 𝜋. A Fourier transform may then be performed, but there is not a
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very useful mathematical form of function composition for a Fourier transform [87]

in this case. Rigid rotations on the sphere are characterized by the special orthogonal

group in three dimensions, 𝐒𝐎(3), a matrix group of rotations. Due to this, quater-

nion representations may yield some better conceptual insight into the constraints

in the channel space, but are not evaluated here.

If the assumption is made, as in Alenin and Tyo [34], that 𝑠1(𝐱), 𝑠2(𝐱), 𝑠3(𝐱) are

󰅮inite periodic, that is they can be described by a 󰅮inite Fourier series or equivalently

a 󰅮inite sum of sinusoidal functions, then the 3-dimensional Fourier series represen-

tation, or Bravais lattice [88] can be used. The Bravais lattice representation is more

general that the one used in Alenin and Tyo [34] and implies

𝑠1(𝐱) = cos𝜃(𝐱) sin𝜙(𝐱) =∑

𝐤1

𝐹0(𝐤1)𝑒
2𝜋𝑖𝐤1⋅𝐱 (3.3.7)

𝑠2(𝐱) = sin𝜃(𝐱) sin𝜙(𝐱) =∑

𝐤2

𝐺0(𝐤2)𝑒
2𝜋𝑖𝐤2⋅𝐱 (3.3.8)

𝑠3(𝐱) = cos𝜙(𝐱) =∑

𝐤3

𝐻0(𝐤3)𝑒
2𝜋𝑖𝐤3⋅𝐱 (3.3.9)

where 𝐹0(𝐤1), 𝐺0(𝐤2), 𝐻0(𝐤3) are complex coef󰅮icients and 𝐤1, 𝐤2, 𝐤3 are the “recip-

rocal lattice vectors.” Since all Stokes parameter are real, 𝐹0(𝐤1), 𝐺0(𝐤2), 𝐻0(𝐤3) =

𝐹∗
0 (−𝐤1), 𝐺

∗
0(−𝐤2), 𝐻

∗
0(−𝐤3) respectively where ∗ denotes the complex conjugate.

All of these equations show general constraints, however translating them into

speci󰅮ic conceptual and intuitive constraints on the channels themselves is a subject

of future work. Moreover, the analyzerMueller matrix,𝐀(𝐱), has amore complicated

set of constraints, and is also the subject of future work.

3.4 Bandwidth

Given Equation (2.4.3) alone, an ideal distribution of delta functions, based on

sphere packing optimization already worked out in mathematics [89, 90] could be

derived. Optimal sphere packings represent optimal use of volume, i.e., they maxi-

mize density for packing spherical objects. This concept is needed in channeled sys-

tems design (and communication/information theory uses it extensively), to build

bandwidth optimal instruments, given an upper bound on total system bandwidth.
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Figure 3.2: Optimal equal sphere

packing arrangement for 3 di-

mensions : hexagonal close

packed (hcp). Animated in the

electronic version.

The upper bound is typically imposed by en-

gineering or physical constraints. Optimiz-

ing sphere packing provides each channel with

the greatest possible space when all channels

are constrained to some maximum bounding

box in the frequency domain. Additionally,

sphere packings of unequally sized spheres have

also been studied [91, 92]. Unfortunately, the

choice of sphere packings of the channels are

constrained due to the following requirements

which are imposed on Equation (2.2.6) as shown

in Section 3.3

• Physical realizability of the 𝐴𝑖 and 𝑆𝑗 , they are not actually made up of inde-

pendent delta functions.

• Reconstructability when there is delta function co-location (.i.e. when some

𝑀𝑖𝑗 is actually added to a different 𝑀𝑛𝑚 at the same location in the Fourier

space).

Alenin’s treatment [34] considers reconstructability and optimization based on the

equallyweighted variance (EWV),which is equivalent tominimization of theabsolute

error [93, p. 24] of a linear system operator. The optimization with respect to EWV

is, however, agnostic to bandwidth. I propose to use error sensitivity as a constraint

or cost parameter in maximizing the bandwidth. The error parameter/constraint

can be either condition number (relative error [93]) or equally weighted variance, or

functions thereof. Conceptually, absolute error quanti󰅮ies the actual maximum error

or deviation of a system, while relative error quanti󰅮ies the error relative to the mea-

surements of the system, the two are related but are not the same. For example, an

absolute error may have a magnitude of 0.1, but this number means something very

different if themagnitudes of themeasurements beingmade are on the order of 0.05

or on the order of 106, the former is a poor measurement system and the latter is a

good measurement system.

The treatment of bandwidth for channeled systems is mature and well known in
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information and communications theory [94–96]. The dif󰅮iculties of using a chan-

neled systems framework for polarimetric instruments are primarily 1) construct-

ing channels in 2 or more dimensions (many systems in communications theory are

1 dimensional), 2) addressing physicality constraints in an analytical way, and 3) ad-

dressing the complicated channel mixing behavior that is inherent to polarimetric

instruments. Point 3 has mostly been addressed by Alenin and Tyo [34] while point

2 is a complicated subject and details are elucidated in Section 3.3. All of these con-

straints must be enforced when optimizing for some cost function.

There will exist a set of channels (𝛿-functions) for each Mueller matrix element

𝑀𝑖𝑗(𝝆) in the Fourier domain. For each channel in that set,𝑀𝑖𝑗(𝝆) will be copied at

that channel’s location with𝑀𝑖𝑗(𝟎) being located precisely where the delta function

is located. The bandwidth of 𝑀𝑖𝑗 for some threshold 𝜖𝑐 ≥ 0 can be de󰅮ined as the

values of 𝝆where |𝑀𝑖𝑗(𝝆)| > 𝜖𝑐 . Fig.3.3 clari󰅮ies these concepts.

The polarimetric system channel structure restrains bandwidth because there is

a 󰅮inite distance between channels as shown in Figure 3.1. The channel structure

determines the bandwidth available for reconstruction. When the bandwidth of the

data becomes greater than the available bandwidth, then channel crosstalk occurs.

3.4.1 Crosstalk

Crosstalk is similar to aliasing, but not the same phenomenon. Crosstalk is the result

of limited channel bandwidth, and information (convolutions of data) in the channel

exceeding the bandwidth of that channel and ”spilling or bleeding” over to an adja-

cent channel. Crosstalk is a result of the choice of channel structure, as opposed to the

sampling rate (aliasing), even a continuously sampled channeled (unaliased) system

can have crosstalk. An example of crosstalk is shown in Figure 3.4. For polarimetric

instruments the physical channel structure determines the crosstalk bandwidth limits,

irrespective of the sampling used. That is, the set of physical carriers chosen by the

system designer impose a bandwidth limit which is independent of the sampling rate.

Aside from and independent of noise, channel crosstalk is the greatest limitation

to accurate Mueller matrix reconstruction. If the majority of the bandwidth of the

object is greater than the no crosstalk bandwidth limit, then the object cannot be
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Figure 3.3: An example of convolution of data with a channel. The gray band repre-

sents the range of 𝜖𝑐 , resulting in data being outside of the 𝜖𝑐 range for −0.5 < 𝜈 <

1.5. This implies a bandwidth of 2 arb. units for the Mueller data.
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Figure 3.4: An example of channel crosstalk. Mueller data is placed at two channels,

with the distance (bandwidth) between them less than the bandwidth of theMueller

data. When added, theMueller data fromdifferent channels adds together, leaving no

remedy to differentiate data between channels in the region of bandwidth crossover

(the neighborhood of 0) when given arbitrary Mueller data.
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accurately reconstructed or estimated. For a Mueller matrix polarimeter system, a

general remote sensing instrument shouldminimize the crosstalk (equivalentlymax-

imize the bandwidth) between channels equally. However, if the bandwidth distri-

bution is known or assumed a priori for objects of interest, and the bandwidths are

different for differentMuellermatrix elements, then it may be possible to design sys-

tems with unequal bandwidth between channels. This unequal distribution will not

be addressed in depth here, and I hope to analyze it in future work. Some theoretical

examples of unequal channel bandwidth systems are shown in the results section.

3.5 Filtering

Typically crosstalk can be “mitigated” by using 󰅮ilters around the channels to sup-

press or apodize the region where crosstalk occurs. This does not fully mitigate the

corruption from crosstalk however because

• Filterswhich apodize in someway result in smoothing of the data, essentially

removing information.

• Similar to the above, apodization or cutoff from the 󰅮ilters reduces the recon-

structable bandwidth of the resulting Mueller data.

• Filters won’t helpmuch in the case where a great deal of crosstalk is present.

Filtering is needed, but cannot fully alleviate the crosstalk issue. Filtering will not

be addressed in detail in this chapter; the literature on 󰅮iltering is vast and mature

in control theory and electrical engineering. A discussion on the 󰅮ilters speci󰅮ically

used for the examples and physical polarimetric instrument are in Chapter 5.

Filtering facilitates an additional requirement for reconstruction, however; to

provide data suitable for inversion by the 𝐐 matrix to obtain Mueller matrix esti-

mates. See Section 2.4.2 for the discussion of the 𝐐matrix. The data at each channel

is a mixture of corresponding Mueller matrix elements and must be unmixed via the

pseudoinverse of 𝐐, denoted 𝐐+ [34]. In order to separate out the “balls” of data

around each channel location, 󰅮ilters must be used. The 󰅮iltered “ball” of data will

have a center at the channel location, which can then be moved to (0, 0, 0). An ex-
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ample of a speci󰅮ic inversion algorithm, including the 𝐐 matrix and the 󰅮iltering, is

shown in Chapter 5.

3.6 Maximizing bandwidth

Increasing relative bandwidth can, of course, reduce crosstalk, and subsequently in-

crease the system resolution or speed for spatio-temporally channeled active polari-

metric systems. In order to maximize the relative bandwidth, we must think about

the system in a way which addresses ef󰅳iciency, otherwise an optimizer will increase

the maximum frequency (and hence the relative frequency distance between chan-

nels) ad in󰅳initum until a speci󰅮ication is met. Additionally, instruments with arbi-

trary measurement bandwidth do not exist. In order to constrain the bandwidth

maximization to relative frequencies, all of the channels are normalized to be con-

tained in a cube (or rectangular prism in certain cases) where the maximum fre-

quency is normalized to be some 󰅮ixed value. Different norms can be chosen to ac-

complish this as long as the norm used is consistent. The two simplest methods are

1) normalize in a 2-norm way, that is your maximum frequency is taken as a vector

and normalized by its 2-norm length, and all other channel locations are also nor-

malized by this same length, or 2) normalize in an ∞-norm way, that is normalize

each frequency domain coordinate by the respective maximum frequency channel

domain coordinate. The∞-norm normalization should be used for separable, or in-

dependent domains, while the 2-norm normalization should be used for general, or

non-separable domains. To clarify with an example, suppose that our maximum fre-

quency channel is located at [0.5, 0.5, 60]𝑇 , then the normalization factors would be

𝑛2-norm = √0.52 + 0.52 + 602 (3.6.1)

𝑛∞-norm,0 = 0.5 (3.6.2)

𝑛∞-norm,1 = 0.5 (3.6.3)

𝑛∞-norm,2 = 60 (3.6.4)

(3.6.5)
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Figure 3.5: An example of how varying retardance parameters change channels in

the channel space. Animated in the electronic version, use the controls displayed to

view.
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Figure 3.6: An example of how varying starting offset parameters change channels

in the channel space. Animated in the electronic version, use the controls displayed

to view.
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and for an arbitrary channel located at 𝐜arb = [𝜉arb 𝜂arb 𝜈arb]
𝑇

the two normaliza-

tions would be

𝐜arb,2-norm =
𝐜arb

√0.52 + 0.52 + 602
and 𝐜arb,∞-norm =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝝃arb

0.5

𝜼arb

0.5

𝝂arb

60

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(3.6.6)

In the examples shown here, the locations of frequency corresponding to the tempo-

ral domain, 𝜈, are normalized but the spatial frequencies are not because the exam-

ples assume a 󰅮ixed micropolarizer array which cannot be changed [4]. The spatial

frequency coordinates have no effect on the analysis when they are 󰅮ixed, but in gen-

eral, if optimization over spatial frequency is an option, the spatial frequency channel

coordinates would also need to be normalized. Normalization ensures that for a rel-

ative bandwidth optimization an oranges to oranges comparison is made as channel

location changes. The use of different normalization types will lead to different op-

timization outcomes.

3.7 Optimization

Optimization must account for bandwidth, reconstructability, and system condition-

ing. Bandwidth for polarimetric instruments has already been introduced earlier in

this chapter. Reconstructability de󰅮ines what elements of the Mueller matrix can be

reconstructed from a speci󰅮ic channeled system, i.e., an active instrument could re-

construct the full Mueller matrix, or only 𝑚00 (a normal camera paired with “󰅮lash-

light” illumination) or any partial Mueller matrix polarimeter (pMMP) in between.

There are constraints on which pMMPs can be realized as channeled systems, and

Alenin and Tyo have recently worked out some of these classes of pMMP systems

[97]. This chapter will focus on full Mueller matrix systems, but some examples of

pMMPs will be presented near the end. The bandwidth optimization process is sim-

ilar across all channeled system types. System conditioning can be described via the

condition number, CN, or equally weighted variance, EWV [98].
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Optimization strategy is a 󰅮ield in its own right, and there are a plethora of meth-

ods to minimize or maximize some 󰅮igure of merit or cost function. Often, the dif󰅮i-

culty in optimization problems lies in 1) de󰅮ining an appropriate cost function and

2) applying the correct optimization search strategy given the structure of the cost

function. Cost functions can oftenmapmultidimensional spaces to other spaces, and

may have many local minima or maxima, or they may be well behaved and suitable

for more ef󰅮icient optimization strategies. Two broad types of optimizations exist:

• convex, which implies that a unique local minimum/maximum exists and is

the global minimum/maximum.

• non-convex, which implies that many local minima/maxima exist.

Of course, the convexity is with respect to the cost function, and convex cost func-

tions are considered to be “easier” to optimize in practice, however there is nomath-

ematical proof which show that convex problems are necessarily easier to optimize

in general. If a cost function is convex, there are often fast and ef󰅮icient methods to

󰅮ind the global minimum/maximum. When the cost function is non-convex, there

are methods which can 󰅮ind good but not necessarily optimal solutions. Non-convex

optimizations include simulated annealing, genetic algorithms, multi-point gradient

descent (and associated quasi-Newtonmethods), conjugate gradient, etc. If possible,

cost functions for bandwidth maximization should be designed to be convex.

A general cost function can be de󰅮ined which accounts for both noise and band-

width:

𝒪[𝐀𝑐(𝝆), 𝐆𝑐(𝝆)] =
dist[𝐀𝑐(𝝆), 𝐆𝑐(𝝆)]

(𝐶𝑁[𝐀𝑐(𝝆), 𝐆𝑐(𝝆)])
𝑛

or
dist[𝐀𝑐(𝝆), 𝐆𝑐(𝝆)]

(𝐸𝑊𝑉[𝐀𝑐(𝝆), 𝐆𝑐(𝝆)])
𝑛

(3.7.1)

where 𝐆𝑐(𝝆) are the sets of generator channels from the PSG and 𝐀𝑐(𝝆) are the sets

of analyzer channels from the PSA, both are dependent on 𝝆, the Fourier domain

dual to the modulation domain. 𝐶𝑁 and 𝐸𝑊𝑉 both grow as systems become ill-

conditioned and 𝑛 controls the preference of system conditioning over bandwidth

in the cost function, as 𝑛 becomes larger the cost function will weight system con-

ditioning more heavily. The dist[𝐀𝑐(𝝆), 𝐆𝑐(𝝆)] function characterizes, in some way,

the bandwidth between channels or the distance between channels. This could be

an average distance, a minimum distance, etc.
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It must be emphasized that generally, channels from differentMueller matrix ele-

ments will be mixed together in the channel space at the same locations. This means

that the dist[𝐀𝑐(𝝆), 𝐆𝑐(𝝆)] must compute the distance between unique channel lo-

cations in the channel space. This is illustrated in Figures 3.5-3.7, 3.10 and 3.12,

the channels corresponding to different Mueller matrix elements are often added to

other elements at identical locations in the channel space. The unique channel lo-

cations and the distances between them determine bandwidth, while the 𝐐 matrix

characterizes the system conditioning. The dist[𝐀𝑐(𝝆), 𝐆𝑐(𝝆)] function is typically

smooth if channel cancellation (discussed below) does not occur. For separable sys-

tems, however, channel cancellation is explicitly used to improve bandwidth, result-

ing in discontinuities in dist[𝐀𝑐(𝝆), 𝐆𝑐(𝝆)].

3.8 Channel cancellation

For a separable channel structure, only channel cancellation/combination or reduc-

tion of overall channels may be used to increase the relative bandwidth between

channels. Figure 3.7 shows channel combination as relative retarder frequency is

changed for a quad-retarder + micropolarizer array system. At certain relative fre-

quencies, channels combine or cancel depending on their magnitudes, providing

larger distance (bandwidth) between channels. Running an optimizer over a cost

function, 𝒪[𝐀𝑐(𝝆), 𝐆𝑐(𝝆)] can then 󰅮ind a good, or possibly even optimal, channel

structure. An example of an optimal (to the best of our knowledge) channel struc-

ture for the quad retarder + micropolarizer array system is shown in Figure 3.10.

Channel cancellation poses a problem, however, the cost function becomes dis-

continuous when channels cancel. This implies that the cost function is not only

a non-convex type, but also requires derivative free optimization methods, po-

tentially increasing the computational time. Examples of derivative free meth-

ods are simulated annealing and genetic algorithms. As shown in Figure 3.7, the

dist[𝐀𝑐(𝝆), 𝐆𝑐(𝝆)] part of the cost function can decrease, then jump discontinuously

to a higher value when channels cancel or combine. One approach to mitigate this

problem is to systematically compute the set of discontinuities in someway [99,100],

since heuristically it appears that many of the local bandwidth maxima occur at
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Figure 3.7: An example of varying frequency parameters tomove channels around in

the channel space. Note the cancellation/addition at certain parameter values which

opens upmore bandwidth between the channels. Animated in the electronic version,

use the controls displayed to view.
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the discontinuities themselves. Another approach is to compute some de󰅮inite in-

tegral of the dist[𝐀𝑐(𝝆), 𝐆𝑐(𝝆)] function, which will lead to minima of the integral

function near the discontinuities. A computational approach would be to allow the

dist[𝐀𝑐(𝝆), 𝐆𝑐(𝝆)] to contain contain zeros initially (if we allow overlapping chan-

nels tomean zero distance), then to 󰅮ind all the zeros using an optimizer and save the

set of zeros for later re-evaluation. This approach still has the issues of multiple local

minima however, and the associated computational cost.

Optimization for a quad retarder + micropolarizer array system for the examples

presented here consisted of a hybrid process of inspection, optimizing a multi-nodal

objective function, and manually inputing starting points for hill climbing for local

maxima evaluation. Simulated annealing was also used. Sets of maxima found were

saved and iterated over many times to 󰅮ind the optimal systems presented in this

chapter, see Figure 3.10.

3.9 Bandwidth Optimization Discussion

In general a channeled system can be described by 𝐀𝑐(𝝆), 𝐆𝑐(𝝆), the sets of chan-

nels for the PSA and PSG respectively, in practice, however, there is typically a design

parameter space which 𝐀𝑐(𝝆), 𝐆𝑐(𝝆) depend upon. During the engineering and de-

signing process for polarimetric systems, other constraints come into play, and a de-

signer will typically be left with some set of free parameters to optimize the channel

structure over. These free parameters will be denoted by 𝖕.

Once the channeled system framework is understood, and the free parameters, 𝖕

of a spatio-temporally channeled systemare speci󰅮iedor known, then it is straightfor-

ward to design a cost function and run an optimizer over that function to optimize for

bandwidth or jointly for bandwidth, noise, and other constraints. The most dif󰅮icult

part of directly optimizing in the channel space is not, however, running an optimiza-

tion against the cost function. The dif󰅮icult task is designing a model which properly

describes the channel structure itself, with proper physical constraints, from which

an appropriate cost functionmay be derived. I have designed amodel for the speci󰅮ic

case of a quad-retarder + micropolarizer array system (see Chapter 5), and I hope to

adapt the currentmodel to generate generic spatio-temporally channeled systems in
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(a) HyDMIP-P (b) HyDMIP-S

Figure3.8: TheHybridDomainModulated ImagingPolarimeter (HyDMIP). (a) shows

the portable part of the testbed, HyDMIP-P; and (b) shows the full lab scatterometer,

HyDMIP-S. (a) is the primary focus here.

the near future.

Additionally, if the statistics of an object or set of objects are known, then non-

uniform bandwidth can be maximized. Most of the examples shown in this disserta-

tion optimize for an equal channel bandwidth between all channels. In certain cases,

more bandwidth may be wanted for certain sets of channels over other sets of chan-

nels and for certain Mueller matrix elements. This can all be accomplished by using

the appropriate cost function, but is non-trivial due to the channel mixing which oc-

curs between Mueller matrix elements.

3.10 An Example

Recently, hardware which I designed was acquired for the Advanced Sensing Lab

(ASL) at the University of Arizona College of Optical Sciences. The hardware plat-

form was designed to test a broad range of polarimetric techniques and imaging op-

erators, particularly channeled operators. This system is named the Hybrid Domain

Modulated Imaging Polarimeter (HyDMIP) shown in Figure 3.8.

Here I will focus on the portable instrument, HyDMIP-P, and derive the channel

structure and the freeparameterswhich canbeused for theoptimizationof theband-

width using a speci󰅮ic objective function 𝒪(𝖕), where 𝖕 is the set of free parameters



71

object
laser

lp
lr

lr

lr
lr

micropolarizer array

(a) layout
(b) micropolarizer tiling

Figure 3.9: Spatio-temporally channeled polarimeter schematic, lp=linear polarizer,

lr=linear retarder, blue components denote the polarization state generator (PSG),

green components denote the polarization state analyzer (PSA). The micropolarizer

array is the conventional tiling, shown in (b). (a) was derived and modi󰅮ied from a

󰅮igure created by Andrey Alenin.

which can be optimized over. The HyDMIP-P currently has a typical temporal carrier

generating polarization state generator, except that additional degrees of freedom

are introduced by using two retarders instead of the usual single retarder. The re-

ceiver uses spatio-temporal carriers. The temporal carriers for the receiver are also

generated via two retarders, and the spatial carriers occur via amicropolarizer array

aligned to a silicon sensor. See Chapter 5 for details about the instrument.

3.10.1 Instrument layout

The PSG of the instrument is similar to a typical rotating retarder polarimeter de-

sign, the only difference is two retarders are used instead of a single retarder to in-

crease the available degrees of freedom for optimization. The PSA is where the hy-

brid spatio-temporal carrier generation occurs and consists of two rotating retarders

coupled with a micropolarizer array attached to the silicon focal plane array (FPA).

Figure 3.9 shows a schematic of the system layout. The micropolarizer array is as-



72

sumed to be the conventional 0∘, 45∘, −45∘, 90∘ superpixel layout. Other layouts are

possible [35, 101], but not commercially available at the moment. Results on opti-

mization for other micropolarizer layouts are not presented here, but the same anal-

ysis will generalize to arbitrary micropolarizer layouts. The analysis presented here

shows the physical channels available for the system, and sampling is not addressed

in this chapter. The methods are general, but the channel structures presented here

are ideal physical channels speci󰅮ic to the instrument.

3.10.2 Derivation of analyzer and generator equations

Without the spatio-temporal dependencies denoted explicitly, the system equation

for HyDMIP-P becomes

𝐬out = 𝐏 ⋅ 𝐑𝛿4
⋅ 𝐑𝛿3

⋅ 𝐌 ⋅ 𝐑𝛿2
⋅ 𝐑𝛿1

𝐬in (3.10.1)

Where 𝐬in =

⎡
⎢
⎢
⎢
⎢
⎣

1

1

0

0

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐑𝛿𝑗
indicates a linear retarder with a retardance of 𝛿𝑗 , 𝐌obj is the

Mueller matrix which we desire to measure, and 𝐏 is the micropolarizer array. The

explicit dependence on 𝐱 or 𝖕 has been dropped here for brevity.

Using the exact same procedure as in Equation (2.2.14), the following inner prod-

uct can be obtained:

𝑠0,out = (𝐌𝑇 ⋅ 𝐑𝑇
𝛿3
⋅ 𝐑𝑇

𝛿4
𝐩 , 𝐑𝛿2

⋅ 𝐑𝛿1
𝐬in) (3.10.2)

where 𝐩 is the 󰅮irst row of 𝐏 and 𝐀𝑇 is the transpose of 𝐀. Given Equation (3.10.2),

we only need to compute 𝐑𝑇
𝛿3
⋅ 𝐑𝑇

𝛿4
𝐩 and 𝐑𝛿2

⋅ 𝐑𝛿1
𝐬in to proceed. For a conventional

micropolarizer array, in image plane coordinates [33]:

𝐩 =
1

2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1

cos 𝜋𝑥+cos 𝜋𝑦

2

cos 𝜋𝑥−cos 𝜋𝑦

2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.10.3)



73

but 𝐩 could be any spatial periodic arrangement of micropolarizers. A general lin-

ear retarder, 𝐑𝛿(𝜃(𝑡)) where 𝛿 is the retardance in radians, and 𝜃(𝑡) is the rotation

angle as a function of time, is represented by the Mueller matrix [102] (after some

trigonometric manipulation):

𝐑𝛿(𝜃(𝑡)) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 cos2
𝛿

2
+ sin2

𝛿

2
cos(4𝜃(𝑡)) sin2

𝛿

2
sin(4𝜃(𝑡)) − sin 𝛿 sin(2𝜃(𝑡))

0 sin2
𝛿

2
sin(4𝜃(𝑡)) cos2

𝛿

2
− sin2

𝛿

2
cos(4𝜃(𝑡)) sin 𝛿 cos(2𝜃(𝑡))

0 sin 𝛿 sin(2𝜃(𝑡)) − sin 𝛿 cos(2𝜃(𝑡)) cos 𝛿

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.10.4)

The notation for the 𝜃(𝑡) terms for each retarder can be simpli󰅮ied. Here, we make

the assumption that each retarder is rotating at a constant angular velocity, 2𝜋𝜈𝑗𝑡 for

each 𝑗. Furthermore, we assume that there is a maximum possible velocity for any of

the retarders; 2𝜋𝜈0𝑡, i.e., 𝜈1, 𝜈2, 𝜈3, 𝜈4 ≤ 𝜈0. These assumptions allow us to write the

𝜃(𝑡)s as the following linear relationships:

𝜃1(𝑡) = 2𝜋(𝐶1𝜈0𝑡 + 𝜖1) (3.10.5)

𝜃2(𝑡) = 2𝜋(𝐶2𝜈0𝑡 + 𝜖2) (3.10.6)

𝜃3(𝑡) = 2𝜋(𝐶3𝜈0𝑡 + 𝜖3) (3.10.7)

𝜃4(𝑡) = 2𝜋(𝐶4𝜈0𝑡 + 𝜖4) (3.10.8)

where

𝜈1 = 𝐶1𝜈0 (3.10.9)

𝜈2 = 𝐶2𝜈0 (3.10.10)

𝜈3 = 𝐶3𝜈0 (3.10.11)

𝜈4 = 𝐶4𝜈0 (3.10.12)
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and 𝜃1(𝑡), 𝜃2(𝑡), 𝜃3(𝑡), 𝜃4(𝑡) represent the rotation angles of𝐑𝛿1
, 𝐑𝛿2

, 𝐑𝛿3
, 𝐑𝛿4

respec-

tively, 𝜖1, 𝜖2, 𝜖3, 𝜖4 are constant offsets in normalized radians from the coordinates de-

󰅮ined by the PSG polarizer, and 0 ≤ 𝐶1, 𝐶2, 𝐶3, 𝐶4 ≤ 1 represent the respective angular

frequency rates with respect to the maximum rate 𝜈0.

Two linear retarders are multiplied together to obtain the Mueller matrix

𝐑𝐑(𝜈𝑖 , 𝜈𝑗 , 𝜖𝑖 , 𝜖𝑗; 𝛿𝑖 , 𝛿𝑗) = 𝐑𝛿𝑗
⋅ 𝐑𝛿𝑖

. Note that elements of 𝐑𝐑 are denoted by 𝑅𝑅𝑘𝑙 .

See Appendix A for additional detail.

Now 𝐑𝛿2
⋅ 𝐑𝛿1

𝐬in is derived from Equation (3.10.2):

⎡
⎢
⎢
⎢
⎢
⎣

1

𝑠1

𝑠2

𝑠3

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

1

𝑅𝑅11(𝜈1, 𝜈2, 𝜖1, 𝜖2; 𝛿1, 𝛿2)

𝑅𝑅21(𝜈1, 𝜈2, 𝜖1, 𝜖2; 𝛿1, 𝛿2)

𝑅𝑅31(𝜈1, 𝜈2, 𝜖1, 𝜖2; 𝛿1, 𝛿2)

⎤
⎥
⎥
⎥
⎥
⎦

. (3.10.13)

The 𝑅𝑅𝑘𝑙 de󰅮initions can be found in appendix A. 𝐑𝑡
𝛿3
⋅ 𝐑𝑡

𝛿4
𝐩, the other portion of the

inner product in Equation (3.10.2), is:

1

2

⎡
⎢
⎢
⎢
⎢
⎣

1

𝑎1

𝑎2

𝑎3

⎤
⎥
⎥
⎥
⎥
⎦

=
1

4

⎡
⎢
⎢
⎢
⎢
⎣

2

cos𝜋𝑥 (𝑅𝑅11 + 𝑅𝑅21) + cos𝜋𝑦 (𝑅𝑅11 − 𝑅𝑅21)

cos𝜋𝑥 (𝑅𝑅12 + 𝑅𝑅22) + cos𝜋𝑦 (𝑅𝑅12 − 𝑅𝑅22)

cos𝜋𝑥 (𝑅𝑅13 + 𝑅𝑅23) + cos𝜋𝑦 (𝑅𝑅13 − 𝑅𝑅23)

⎤
⎥
⎥
⎥
⎥
⎦

(3.10.14)

where each 𝑅𝑅𝑘𝑙 = 𝑅𝑅𝑘𝑙(𝜈3, 𝜈4, 𝜖3, 𝜖4; 𝛿3, 𝛿4) above due to space constraints.

3.10.3 Fourier transform of analyzer and generator equations

The channel structure cannowbeextracted from the equations thatwederived in the

last subsection. This is simple conceptually, we take the three dimensional Fourier

transforms of 1, 𝑠1, 𝑠2, 𝑠3 and 1, 𝑎1, 𝑎2, 𝑎3 and then convolve them as prescribed in

Equation (2.2.6). In practice, the computation is somewhat tedious, and for brevity

many of the steps are omitted here.

First, the Fourier transform of each of 1, 𝑠1, 𝑠2, 𝑠3 and 1, 𝑎1, 𝑎2, 𝑎3 are computed

(here the factor of
1

2
in Equation (3.10.14) can be ignored since it multiplies all chan-

nels in the 󰅮inal channel structure) and simpli󰅮ied. Then, without explicitly comput-
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ing the delta functions from appendix A we have:

ℱ {𝐑𝛿2
⋅ 𝐑𝛿1

𝐬in}[𝑥,𝑦,𝑡]→[𝜉,𝜂,𝜈]
= 𝛿(𝜉)𝛿(𝜂)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛿(𝜈)

ℱ {𝑅𝑅11(𝜈1, 𝜈2, 𝜖1, 𝜖2; 𝛿1, 𝛿2)}𝑡→𝜈

ℱ {𝑅𝑅21(𝜈1, 𝜈2, 𝜖1, 𝜖2; 𝛿1, 𝛿2)}𝑡→𝜈

ℱ {𝑅𝑅31(𝜈1, 𝜈2, 𝜖1, 𝜖2; 𝛿1, 𝛿2)}𝑡→𝜈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3.10.15)

and, given the following Fourier transform pairs:

cos𝜋𝑥 ↔
1

2
[𝛿 (𝜉 +

1

2
) + 𝛿 (𝜉 −

1

2
)]

cos𝜋𝑦 ↔
1

2
[𝛿 (𝜂 +

1

2
) + 𝛿 (𝜂 −

1

2
)]

then

2ℱ {𝐑𝑡
𝛿3
⋅ 𝐑𝑡

𝛿4
𝐩}

[𝑥,𝑦,𝑡]→[𝜉,𝜂,𝜈]

(3.10.16)

=
1

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4𝛿(𝜉)𝛿(𝜂)𝛿(𝜈)

[𝛿 (𝜉 +
1

2
) + 𝛿 (𝜉 −

1

2
)]ℱ {𝑅𝑅11 + 𝑅𝑅21}𝑡→𝜈 + [𝛿 (𝜂 +

1

2
) + 𝛿 (𝜂 −

1

2
)]ℱ {𝑅𝑅11 − 𝑅𝑅21}𝑡→𝜈

[𝛿 (𝜉 +
1

2
) + 𝛿 (𝜉 −

1

2
)]ℱ {𝑅𝑅12 + 𝑅𝑅22}𝑡→𝜈 + [𝛿 (𝜂 +

1

2
) + 𝛿 (𝜂 −

1

2
)]ℱ {𝑅𝑅12 − 𝑅𝑅22}𝑡→𝜈

[𝛿 (𝜉 +
1

2
) + 𝛿 (𝜉 −

1

2
)]ℱ {𝑅𝑅13 + 𝑅𝑅23}𝑡→𝜈 + [𝛿 (𝜂 +

1

2
) + 𝛿 (𝜂 −

1

2
)]ℱ {𝑅𝑅13 − 𝑅𝑅23}𝑡→𝜈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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This can be expanded into a linear combination of three separate vectors:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛿(𝜉)𝛿(𝜂)𝛿(𝜈)

0

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.10.17)

+
1

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

[𝛿 (𝜉 +
1

2
) + 𝛿 (𝜉 −

1

2
)]ℱ {𝑅𝑅11 + 𝑅𝑅21}𝑡→𝜈

[𝛿 (𝜉 +
1

2
) + 𝛿 (𝜉 −

1

2
)]ℱ {𝑅𝑅12 + 𝑅𝑅22}𝑡→𝜈

[𝛿 (𝜉 +
1

2
) + 𝛿 (𝜉 −

1

2
)]ℱ {𝑅𝑅13 + 𝑅𝑅23}𝑡→𝜈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.10.18)

+
1

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

[𝛿 (𝜂 +
1

2
) + 𝛿 (𝜂 −

1

2
)]ℱ {𝑅𝑅11 − 𝑅𝑅21}𝑡→𝜈

[𝛿 (𝜂 +
1

2
) + 𝛿 (𝜂 −

1

2
)]ℱ {𝑅𝑅12 − 𝑅𝑅22}𝑡→𝜈

[𝛿 (𝜂 +
1

2
) + 𝛿 (𝜂 −

1

2
)]ℱ {𝑅𝑅13 − 𝑅𝑅23}𝑡→𝜈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.10.19)

where, again, the parameter dependence, (𝜈3, 𝜈4, 𝜖3, 𝜖4; 𝛿3, 𝛿4), is omitted

for brevity. Appendix A contains detailed Fourier transform results for

𝑅𝑅11, 𝑅𝑅12, 𝑅𝑅13, 𝑅𝑅21, 𝑅𝑅22, 𝑅𝑅23, 𝑅𝑅31. Upon inspection of these results, the

following equalities hold:

ℱ {𝑅𝑅21}𝑡→𝜈 = −𝑖ℱ {𝑅𝑅11}𝑡→𝜈 + 𝑖 cos2
𝛿4

2
cos2

𝛿3

2
𝛿(𝜈) (3.10.20)
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ℱ {𝑅𝑅22}𝑡→𝜈 = 𝑖ℱ {𝑅𝑅12}𝑡→𝜈 + cos2
𝛿4

2
cos2

𝛿3

2
𝛿(𝜈) (3.10.21)

ℱ {𝑅𝑅23}𝑡→𝜈 = 𝑖ℱ {𝑅𝑅13}𝑡→𝜈 . (3.10.22)

These may then be substituted into Equation (3.10.16) to obtain

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛿(𝜉)𝛿(𝜂)𝛿(𝜈)

0

0

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.10.23)

+
1

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

[𝛿 (𝜉 +
1

2
) + 𝛿 (𝜉 −

1

2
)] [(1 − 𝑖)ℱ {𝑅𝑅11}𝑡→𝜈 + 𝑖 cos2

𝛿4

2
cos2

𝛿3

2
𝛿(𝜈)]

[𝛿 (𝜉 +
1

2
) + 𝛿 (𝜉 −

1

2
)] [(1 + 𝑖)ℱ {𝑅𝑅12}𝑡→𝜈 + cos2

𝛿4

2
cos2

𝛿3

2
𝛿(𝜈)]

[𝛿 (𝜉 +
1

2
) + 𝛿 (𝜉 −

1

2
)] (1 + 𝑖)ℱ {𝑅𝑅13}𝑡→𝜈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.10.24)

+
1

4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

[𝛿 (𝜂 +
1

2
) + 𝛿 (𝜂 −

1

2
)] [(1 + 𝑖)ℱ {𝑅𝑅11}𝑡→𝜈 − 𝑖 cos2

𝛿4

2
cos2

𝛿3

2
𝛿(𝜈)]

[𝛿 (𝜂 +
1

2
) + 𝛿 (𝜂 −

1

2
)] [(1 − 𝑖)ℱ {𝑅𝑅12}𝑡→𝜈 − cos2

𝛿4

2
cos2

𝛿3

2
𝛿(𝜈)]

[𝛿 (𝜂 +
1

2
) + 𝛿 (𝜂 −

1

2
)] (1 − 𝑖)ℱ {𝑅𝑅13}𝑡→𝜈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.10.25)
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We can then proceed to directly compute the convolutions, and then optimize over

the parameters, but this may become extremely tedious and prone to mistakes. In-

stead, I have exploited some of the symmetries of the convolution process and the re-

sultant delta functions and have written software which can optimize over the delta

function combinations and their parameters, with the convolution step taken after a

parameter evaluation step.

3.10.4 Discussion of parameters

By examining the equations in the Fourier domain derived above, we can see that

there are sets of delta functions, which are then convolved with one another to ob-

tain the 󰅮inal channel structure for the HyDMIP-P polarimeter. The effect of the off-

sets of the waveplates with respect to the reference frame, 𝜖1, 𝜖2, 𝜖3, 𝜖4 is to scale the

delta functions between the real and imaginary domains in Fourier space as shown

in Figure 3.6. The effect of 𝐶1, 𝐶2, 𝐶3, 𝐶4 is to move the delta functions ”up and down”

perpendicular to the 𝜉−𝜂 plane in Fourier space as shown in Figure 3.7. The location

on the 𝜉 − 𝜂 plane is 󰅮ixed by the layout of the micropolarizer array.

3.11 HyDMIP Results

After the free parameters for a quad-retarder + micropolarizer array system were

determined, a cost function was speci󰅮ied and optimized. As speci󰅮ied in the

previous section, each linear retarder consists of 3 free parameters to optimize

over; retardance, 𝛿𝑗; starting position or offset, 𝜖𝑗; and frequency or speed, 𝜈𝑗 .

Hence, the total number of free parameters for the system comes to 12; 𝖕 =

(𝛿1, ⋯ , 𝛿4, 𝜖1, ⋯ , 𝜖4, 𝜈1, ⋯ , 𝜈4). The starting offsets, 𝜖𝑗s, however, do not have an ef-

fect on the ideal system bandwidth performance for a balanced system, reducing the

number of effective free parameters to only 8. A balanced system is a system with

equal bandwidth for all channels. It appears that the offsets can be used to improve

bandwidth in unbalanced systems. Additonally in the chapter on noise and system-

atic error the 𝜖𝑗s can be used to re-optimize the channeled system for the case of

non-ideal retardances, and are useful for reducing systematic error.
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𝑚𝑖0 𝑚𝑖1 𝑚𝑖2 𝑚𝑖3

𝑚0𝑗

𝑚1𝑗

𝑚2𝑗

𝑚3𝑗

Figure 3.10: Optimal channel structure for a speci󰅮ic quad retarder + micropolarizer

system. The system is balanced (equal channel bandwidth).
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𝑚𝑖0 𝑚𝑖1 𝑚𝑖2 𝑚𝑖3

𝑚0𝑗

𝑚1𝑗

𝑚2𝑗

𝑚3𝑗

Figure 3.11: Close to optimal channel structure for a speci󰅮ic quad retarder + mi-

cropolarizer system. The system is balanced (equal channel bandwidth). The axes

are identical to those in Figure 3.1. 𝛿2 = 𝜋 here instead of the optimized 𝛿2 =

𝜋 − cos−1
1

√3
, this retardance is what was available to test these types of systems

in our physical instrument.
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𝑚𝑖0 𝑚𝑖1 𝑚𝑖2 𝑚𝑖3

𝑚0𝑗

𝑚1𝑗

𝑚2𝑗

𝑚3𝑗

Figure 3.12: Optimized channel structure for a speci󰅮ic dual retarder + micropolar-

izer system. The system is balanced (equal channel bandwidth). The axes are iden-

tical to those in Figure 3.1.
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retarder number, 𝑗 retardance, 𝛿𝑗 offset, 𝜖𝑗 frequency magnitude, 𝐶𝑗

1 𝜋 0 1/2

2 𝜋 − arccos [
1

√3
] 0 -1

3 𝜋 − arccos [
1

√3
] 0 1

4 𝜋 0 1/2

Table 3.2: Speci󰅮ications for optimized quad retarder + micropolarizer system.

The cost function for the results was de󰅮ined as

𝒪(𝖕) =
dist(𝖕)

[𝐶𝑁(𝖕)]
1

2

(3.11.1)

where 𝐶𝑁(𝖕) is the condition number of the resulting 𝐐 matrix [34] and dist(𝖕) is

balanced temporal channel bandwidth, i.e. the distance between the channels in the

𝜈 direction is equally spaced. Some unbalanced examples are also presented later in

this section. Running the cost function through both simulated annealing and multi-

point iterative hill climbing optimizers resulting in the best channel structure shown

in Figure 3.10, and an similar structure that we could physically build is shown in

Figure 3.11. This channel structure has the speci󰅮ications shown in Table 3.2. The

condition number of 𝐐 for this system is 2.53.

I also evaluated a dual rotating retarder system over the 6 optimization parame-

ters (𝛿1, 𝛿2, 𝜖1, 𝜖2, 𝜈1, 𝜈2). The best channel structure found for the dual retarder sys-

tem is shown in Figure 3.12. This channel structure has the speci󰅮ications shown in

Table 3.3. The condition number of𝐐 for this system is 3.4. The quad retarder +mi-

cropolarizer array system results in a signi󰅮icant temporal bandwidth improvement

over other instruments presented in the current literature. The dual retarder system

also realizes some bandwidth gains. The gains are shown in Table 3.4. This speci󰅮ic

retarder number, 𝑗 retardance, 𝛿𝑗 offset, 𝜖𝑗 frequency magnitude, 𝐶𝑗

1 2𝜋/𝑒 0 1

2 2𝜋/𝑒 0 −1/2

Table 3.3: Speci󰅮ications for optimized dual retarder + micropolarizer system. 𝑒 in

2𝜋/𝑒 here denotes the natural number.
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system type balanced? temporal bandwidth sensor resolution

typical dual rotating retarder yes 1/12 1

quad retarder + micropolarizer array yes 1/4 1/4

dual retarder + micropolarizer array yes 1/6 1/4

Table 3.4: Performance gains and tradeoffs for various system types. Note that tem-

poral bandwidth here is given as a fraction of some maximum frequency set to 1/𝑠.

When sampling and Nyquist is taken into account, the actual framerate of the instru-

ment will be 1/2 of temporal bandwidth listed in the table, multiplied by the base

camera framerate. Sensor resolution is the reconstructable resolution of theMueller

matrix images, as a fraction of the base full sensor size.

system type trades spatial bandwidth for temporal bandwidth. These systems only

have 1/4 of the available sensor resolution in the Mueller matrix image estimates.

The quad retarder + micropolarizer array channeled system achieves a 300% tem-

poral bandwidth improvement over a typical dual rotating retarder Mueller matrix

system.

3.11.1 Other spatio-temporal systems

A fewother systemswere brie󰅮ly evaluated, including a full Stokes system. These sys-

tems are not necessarily balanced, i.e., they may have unequal bandwidths between

channel groupings. One full Stokes system, shown in Figure 3.13 is of particular in-

terest, it is unbalanced, but has the ability to reconstruct the full Stokes parameters

at the full framerate of the base camera. This optimization utilized retarder offsets

to achieve this particular channel structure.

Anunbalanced systemwas also found for the fullMueller case, utilizing the Stokes

system described above as the PSA. The system achieves a temporal bandwidth frac-

tion of 2/7 and a condition number of 4. The speci󰅮ications are 𝛿1 = 𝜋, 𝛿2 =

2𝜋/3, 𝛿3 = 3𝜋/2, 𝛿4 = 𝜋, 𝜖1 = 𝜖2 = 𝜖3 = 0, 𝜖4 = −0.03125, 𝜈1 = 𝜈0/4, 𝜈2 = 𝜈0, 𝜈3 =

𝜈0/4, 𝜈4 = 𝜈0/8. The channels are shown in Figure 3.14. If we change 𝜈2 to 𝜈2 = 𝜈0/2

in this system, then a rank 10 pMMP results with a temporal bandwidth fraction of

2/3 and a condition number of 2, for the 10 reconstructable linear combinations of

Mueller matrix elements. The channel structure is shown in Figure 3.15



84

𝑠0

𝑠1

𝑠2

𝑠3

Figure 3.13: Optimized channel structure for a dual retarder + micropolarizer array

Stokes system. 𝛿1 = 3𝜋/2, 𝛿2 = 𝜋, 𝜖1 = 0, 𝜖2 = −0.03125, 𝜈1 = 𝜈0, 𝜈2 = 𝜈0/2. The

axes are identical to those in Figure 3.1.
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𝑚𝑖0 𝑚𝑖1 𝑚𝑖2 𝑚𝑖3

𝑚0𝑗

𝑚1𝑗

𝑚2𝑗

𝑚3𝑗

Figure 3.14: Optimized channel structure for a speci󰅮ic unbalanced quad retarder +

micropolarizer system. The axes are identical to those in Figure 3.1.
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𝑚𝑖0 𝑚𝑖1 𝑚𝑖2 𝑚𝑖3
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Figure 3.15: Optimized channel structure for a speci󰅮ic unbalanced quad retarder +

micropolarizer rank 10 pMMP system. The axes are identical to those in Figure 3.1.
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3.12 Conclusions

Fast active polarimetric imagers are required for usable, deployable, polarimetric re-

mote sensing applications. There have been a dearth of such imagers presented in

the literature to date, for both theoretical and actual system designs. I have shown

a systematic approach for bandwidth optimization using polarimetric linear systems

theory [34], and have shown examples of various systems and the bandwidth im-

provement which can theoretically be realized. What remains is to analyze system

sensitivity to deviations for the ideal theoretical systems laid out in this chapter, and

to verify that the systemdescriptions as presented here are correct. In the next chap-

ter, noise and systematic error are addressed, and in Chapter 5 an actual instrument

and results from that instrument are presented.

The theoretical results so far imply that an active Mueller matrix imaging system

may be built with as much as a 343% improvement over the typical dual rotating re-

tarder system as shown in Figure 3.14, however even better results may be obtained

in the future. Various pMMP and Stokes polarimetric imaging schemes also bene󰅮it

from the bandwidth analysis shown here, with a full Stokes polarimeter at the full

camera framerate presented in Figure 3.13. I have shown that for a base camera

framerate of 30𝑓𝑝𝑠, it is possible to

• Obtain full Mueller matrix images at 3.75𝑓𝑝𝑠, and perhaps even at 4.3𝑓𝑝𝑠 if

the system shown in Figure 3.14 can be built,

• Obtain full Stokes parameter images at 30𝑓𝑝𝑠,

• Obtain speci󰅮ic pMMP elements (linear combinations of Mueller elements)

at higher framerates, for the pMMP system shown in Figure 3.15, the 10 ele-

ments could be imaged at 10𝑓𝑝𝑠.

The design paradigm and bandwidth optimization derived in this chapter is gen-

eral, and can be applied to other spatio-temporal systems, and with model changes,

can be applied to arbitrary systems. Future work includes providing an arbitrary

bandwidth optimization framework, which only depends on the modulation domain

and the physical constraints of a system.
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CHAPTER 4

Noise and Systematic Error in Channeled Polarimeters

4.1 Introduction

The bandwidth optimized channeled systems shown in Chapter 3 resulted from op-

timizations given an ideal model. Real systems differ from the ideal systems; the pri-

mary factors of deviation from the ideal systems are random noise, systematic devi-

ation (tolerances), and other systematic effects like lens aberration and interference

effects. Noise and systematic deviations affect channeled systems and the available

bandwidth of those systems. The performance of real systemsmust be characterized

in order to build robust active polarimetric imagers.

Noise and systematic error in traditional polarimetric systems is well studied in

the literature [14, 63, 103–121], however not much has published on the effects of

noise and systematic error in channeled systems [34, 45, 122, 123]. Noise and sys-

tematic error can signi󰅮icantly affect polarimetric systems, andmust be addressed in

the channeled systems paradigm in order for channeled systems design methodolo-

gies to be adopted by practitioners in the 󰅮ield.

In this chapter noise and systematic error in channeled systems are discussed.

The impact of noise on bandwidth is also presented, and some mitigation strategies

are reported.

4.2 Noise and Error

Two primary phenomena contribute to invalid estimation and reconstruction from

polarimetric data: random noise and systematic error. Random noise is something

probabilistic, is unpredictable, and tends to change from measurement to measure-

ment. Systematic errors are consistent, yet unknown, deviations of a physical instru-

ment from what a user expects, or from some instrument model. These two error
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sources drive calibration methodologies and impact reconstruction/estimation ac-

curacies, and calibration can sometimes mitigate systematic errors.

4.2.1 Systematic Error

Systematic error must always be addressed in polarimetric instruments, otherwise

consistently inaccurate measurements result. Typical calibration methods require

measuring known samples, and subsequently solving amatrix equation (or an eigen-

value problem) to derive a system measurement matrix which quanti󰅮ies the system-

atic errors [46,60,71,124,125]. These same methods are relevant to channeled po-

larimeters, and provide system matrices which can be used for calibration. The way

the calibration is used for channeled systems, however, differs from the standard ap-

proach.

Sources of systematic error include deviations in retardances of waveplates, non-

normal raypaths through crystalline retarders, polarizers which are only partial di-

attenuators, geometric projections of certain diattenuators (i.e. either tilt in the ele-

ment or non-normal ray angles), dispersion for polarization gratings, etc. Mechanical

sources of error can include positioning bias; total error motion, axial error motion,

and tilt errormotion formechanical rotation stages; wedge angle in optical elements

(non-parallel entrance and exit faces); micro-element positioning error (e.g. microp-

olarizer angle errors); etc. These systematic errors tend to introduce repeatable bias

into the measurements which, with proper analysis and measurements, can be re-

moved.

Calibration is the process of taking experimental measurements which can be

used to deduce the systematic errors. Themeasured errors are really differences be-

tween the model (and the inverse) used for the system and the physical system, the

measured errors canbeused toupdate the systemmodel to better re󰅮lect reality. This

process can be done carefully once, or iteratively over time, or a combination of the

two. Typical calibration for polarimetric systems is carried out under the assump-

tion that the measured objects have no bandwidth (often for temporally channeled

systems) or that the measured objects are band-limited (for spatially or spectrally

channeled systems). In the channeled systems approach, this assumption must be

lifted.
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4.2.2 Random Noise

Random noise is the result of some process which 1) the operator cannot control

and 2) is not predictable but can be modeled by as some random variable. All mea-

surement systems will have random noise, and the impact of random noise can be

minimized via system design. The electrical engineering literature is quite robust in

the general description of random noise and mitigation strategies.

For polarimetric imaging systems, random noise sources include sensor noise

(both Johnson-Nyquist noise and shot noise), random (uncontrollable and unpre-

dictable) mechanical and opto-mechanical errors, illumination phenomena (e.g.

laser speckle), electrical voltage noise on inputs for voltage controlled polarization

optical carrier generation elements, etc. Random noise is usually modeled as some

sampled randomvariable pulled froman adequate distribution or statistical descrip-

tion.

Many commercially available pixelated sensors used to detect light in the visi-

ble range (the polarimeteric instrument designed in this dissertation operates in the

visible wavelength range) consist of either a charge coupled device (CCD) technol-

ogy or complementarymetal–oxide–semiconductor (CMOS) technology. Historically

performance has been better for CCD, but recently, scienti󰅮ic CMOS (sCMOS) has be-

gun to overtake CCD devices in terms of performance [126], which includes noise,

speed, and dynamic range. Typical random noise sources for digital optical sensors

include inherent quantum effects (Poisson distributed noise), thermal noise (Gaus-

sian distributed noise), readout circuitry effects (distributions vary, often Gaussian),

and 1/𝑓 noise, which has not yet been fully explained [88, 126, 127]. Fixed pattern

“noise”, or spatially varying defects and other effects, are often addressed as noise,

but these effects are systematic errors that should be addressed as part of the sys-

tem model. Most imaging camera devices are operated at frequencies high enough

that 1/𝑓 noise becomes negligible for most imaging purposes [88], so 1/𝑓 noise will

not be included here. The primary noise sources are then quantum (photon) noise,

thermal noise, and readout noise. An additional factor in the noise analysis is the ef-

󰅮iciency of the detector to convert photons to detectable signals. In total, the signal
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to noise ratio (𝑆𝑁𝑅) equation for sensors is typically written as [126]

𝑆𝑁𝑅2 =
𝜇2

𝜎2
𝑑 + 𝜎2𝑟 + 𝜎2𝑛

(4.2.1)

where 𝜇 is themean signal, 𝜎2
𝑑 is the dark or thermal noise variance, 𝜎2

𝑟 is the readout

noise variance, and𝜎2
𝑛 is the shot or quantumnoise variance. Thermal noise typically

has a normal/Gaussian distribution, shot noise typically has a Poisson distribution,

and the distribution for readout noise is sensor dependent. For CCD sensors, readout

noise is typically Gaussian, but for sCMOS sensors it often non-Gaussian. Depending

on the author, occasionally 𝑆𝑁𝑅 is substituted for 𝑆𝑁𝑅2 in Equation (4.2.1).

When a CCD or sCMOS sensor is operating in amoderate, but unsaturated, irradi-

ance range, typically the dominant noise component is the shot noise, with variance

𝜎2
𝑛 . Occasionally, the readout noise can also have noticeable effects in moderate ir-

radiance conditions, but usually only impacts low light imaging. Thermal noise only

has signi󰅮icant effects when operating in low light, low irradiance conditions.

4.3 Random noise in channeled systems

Random noise in channeled polarimetric systems should be addressed in the chan-

nel, or Fourier, domain. Measurements taken in the modulation domain can have

noise suf󰅮iciently modeled by techniques in the literature and from the general 󰅮ield

of electrical engineering [14,63,103–121]. The question then arises: what happens

to the noise when transformed into the Fourier domain?

Noise in themodulation domain can bemodeled via the typical imaging equation

𝐠 = ℋ𝐟(𝐱) + 𝐧 (4.3.1)

where 𝐠 is a 󰅮inite vector of length 𝑗, ℋ is some general imaging operator, 𝐟(𝐱) is

some object as function of the domain 𝐱, and 𝐧 represents the noise, also of length

𝑗 [88]. Generally, the noise is not necessarily additive even though the above equation

implies additive noise. For channeled polarimetric systems, we have

ℱ {𝐠} = ℱ {ℋ𝐟(𝐱) + 𝐧} (4.3.2)

= ℱ {ℋ𝐟(𝐱)} + ℱ {𝐧} in the case the noise is additive (4.3.3)
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In real systems, we have discrete measurements, and use discrete Fourier trans-

forms (DFTs), typically implemented as fast Fourier transfroms (FFTs). Fortunately,

Schoukens and Renneboog have already worked out this case for DFTs and additive

noise [128]. The result is quite important for channeled polarimetric systems, no

matter the noise distribution in themodulation domain, the noise is approximately nor-

mal orGaussian in theFourier domain. Additionally, the covariancematrix of thenoise

among the Fourier coef󰅮icients is approximately diagonal even for colored noise in

the modulation domain. There are conditions which must be met: 1) the number of

samples must be “large enough” and 2) the noise in the modulation domain must be

statistically stationary. For a 1-dimensional noise vector, the Fourier coef󰅮icients are

given by [128]

𝑎𝑗 =

𝑁−1

∑

𝑘=0

𝑛𝑘𝑒
−2𝜋𝑖𝑘𝑗/𝑁, 0 ≤ 𝑗 ≤ 𝑁 − 1 (4.3.4)

where 𝑛𝑘 is the 𝑘th element of the noise vector 𝐧. Note that 𝑛𝑘 can be represented as

a random variable. Since 𝑛𝑘 is a random variable in Equation (4.3.4), by the central

limit theorem the 𝑎𝑗s will approach a normal/Gaussian distribution as 𝑁 increases

[128]. The only issue is that the distribution parameters may differ between the real

and imaginary parts of the distribution of the 𝑎𝑗s.

Schoukens andRenneboog also show that the correlationmatrix betweenFourier

coef󰅮icients is usually approximately diagonal, which implies independence of the

Fourier coef󰅮icients of the noise. The conditions are de󰅮ined by [128]

|𝜌𝑅𝑅𝑖𝑗 | <
4𝑝

𝑁(1 − 𝑝2) − 4𝑝
(4.3.5)

|𝜌𝐼𝐼𝑖𝑗 | <
4𝑝2

𝑁(1 − 𝑝2)
(4.3.6)

|𝜌𝑅𝐼𝑖𝑗 | <
2𝑝

𝑁(1 − 𝑝)
(4.3.7)

where 𝜌𝑅𝑅𝑖𝑗 is the real-real expectation part of the 𝑖𝑗th element of the correlation ma-

trix, 𝜌𝐼𝐼𝑖𝑗 is the imaginary-imaginary expectation part of the 𝑖𝑗th element of the corre-

lationmatrix, and 𝜌𝑅𝐼𝑖𝑗 is the real-imaginary part of the 𝑖𝑗th element of the correlation

matrix, and 𝑖 ≠ 𝑗. Schoukens and Renneboog de󰅮ine the correlation matrix in the
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standard way:

𝑅𝑖𝑗 =
𝐶𝑖𝑗

√𝐶𝑖𝑖𝐶𝑗𝑗
(4.3.8)

where𝑅𝑖𝑗 is an element of the correlationmatrix and𝐶𝑖𝑗 is an element of the standard

covariance matrix [128]. The correlation matrix here is taken amongst the 𝑎𝑗s, the

coef󰅮icients of the DFT of the noise. 𝑝 in the above equations is a speci󰅮ic quantity

related to the color of the noise in 𝐧 [128]. 𝑁 can be adjusted, provided the 𝑝 for a

speci󰅮ic noise type is known, until all of the off diagonal 𝜌𝑖𝑗s are “small enough.”

Schoukens’ and Renneboog’s analysis only addresses the 1-dimensional DFT case

however, for spatio-temporally channeled systems, we really have the 3-dimensional

imaging equation

𝐆 = ℋ𝐟(𝐱) + 𝐍 (4.3.9)

where 𝐆,𝐍 are 3-dimensional arrays with elements 𝑔𝑘1𝑘2𝑘3 , 𝑛𝑘1𝑘2𝑘3 respectively. The

3-dimensional DFT is then used resulting in :

𝑎𝑗1𝑗2𝑗3 =

𝑁1−1

∑

𝑘1=0

𝑁2−1

∑

𝑘2=0

𝑁3−1

∑

𝑘3=0

𝑛𝑘1𝑘2𝑘3𝑒
−2𝜋𝑖𝑘1𝑗1/𝑁1𝑒−2𝜋𝑖𝑘2𝑗2/𝑁2𝑒−2𝜋𝑖𝑘3𝑗3/𝑁3 (4.3.10)

It is clear that the same central limit theorem argument applies here, except that the

multidimensional central limit theorem is used, and the result is approximately the

multi-dimensional normal distribution. What is not entirely clear is the behavior of

the covariance matrix for the multidimensional case. It should be noted that noise

ampli󰅮ication from the inversion of the 𝐐 matrix has been addressed by Alenin and

Tyo [34].

4.3.1 Sensor noise

An analytical result for the 3-dimensional casewill not beworked out here, but some

simulations of the noise using typical distributions for CCD sensorswill be presented.

The typical unit used for noise descriptions for commercially available sensors is the

photoelectron, 𝑒−. Noise values are often given in root mean square (𝑅𝑀𝑆). For ex-

ample, the camera in a spatio-temporally channeled polarimeterwhich I built (Chap-

ter 5) has a thermal noise of 50𝑒 − 𝑅𝑀𝑆. For additive white Gaussian noise, this
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corresponds to a variance of 2500𝑒−2. Figure 4.1 shows the covariance matrix be-

tween Fourier transformed noises on a 3-dimensional space consisting of an 8 × 8

pixel array and 4 time points. The covariance matrix is the result of 100, 000 simu-

lated noise realizations in the space time domain. The maximum magnitude of any

off-diagonal covariance matrix entry is 0.01. The read noise and thermal noise dis-

tributions were both assumed to have standard deviation values of 75𝑒− andmeans

of 75𝑒−. No incident light was assumed, i.e., Poisson noise was zero to isolate the

effects of the Gaussian noise for analysis which is equivalent to subtracting off a de-

terministic mean illumination. This is not something which would occur in a real

sensor since sensor outputs cannot be negative. The maximum magnitude of any

off-diagonal covariance matrix entry was 0.011. These speci󰅮ic illumination simu-

lations assumed uniform, non-spatially varying, illumination however. These simu-

lations indicate that the covariance derivation of Schoukens and Renneboog [128]

likely holds in the multi-dimensional DFT case for spatially uniform illumination.

In an active polarimeter, we often have a varying illumination pattern over the

󰅮ield of view (FOV). This will cause a spatial noise variation in practice formedium to

large illumination, when the dominate noise source is represented as a Poisson dis-

tribution. The variance, and the SNR, are then spatially varying parameters, which

combines aspects of random noise and systematic error and breaks the stationarity

assumption of Schoukens and Renneboog. The instrument which I designed (Chap-

ter 5) uses a laser for the source, which has a 2-dimensional spatial Gaussian irra-

diance pro󰅮ile in the object plane. This implies that the shot noise will have a spa-

tial dependence over the sensor. The noise result for this spatial dependence when

transfered to the Fourier domain are shown in Figure 4.4. This 󰅮igure was created

with the same read and thermal noise parameters as in Figure 4.1, but with Poisson

distributed noise for a spatial Gaussian pro󰅮ilewith a peak value of 25, 000𝑒−, shown

in Figure 4.2. The space-time domain noise volumewas also a 8×8 pixel array and

4 time points, and Poisson noise was generated by sampling a Poisson distribution

with the correct mean at each spatial point, then subtracting the mean and adding

back 4 standard deviations. The last operation was implemented to keep the noise

positive. For 𝑁 photoelectrons a sample is

𝑛𝑃,𝑘1𝑘2𝑘3 = 𝑃(𝑒−𝑎(𝑥
2
𝑘1
+𝑦2

𝑘2
)𝑁) − 𝑒−𝑎(𝑥

2
𝑘1
+𝑦2

𝑘2
)𝑁 + 4√𝑒−𝑎(𝑥

2
𝑘1
+𝑦2

𝑘2
)𝑁 (4.3.11)
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Figure 4.1: 8×8 pixel array and 4 time point (256 total measurements) noise covari-

ance matrix for thermal and read noise only (no shot noise). 100,000 realizations

were Fourier transformed and the subsequent covariance matrix was computed be-

tween all Fourier coef󰅮icients. The imaginary part is not shown, since all imaginary

parts of the matrix elements were less than 0.01. Both the thermal and read noise

were assumed to be sampled from Gaussian distributions with means and standard

deviations of 75𝑒−.

where 𝑛𝑃,𝑘1𝑘2𝑘3 is the noise sampled from the spatially dependent Poisson distribu-

tion 𝑃(𝑒−𝑎(𝑥
2
𝑘1
+𝑦2

𝑘2
)𝑁). −1 ≤ 𝑥𝑘1 , 𝑦𝑘2 ≤ 1 are coordinates dependent on the spatial

pixel location and𝑎 changes the “spread” of theGaussian. In the examples here𝑎 = 4.

An example of a noise realization is shown in Figure 4.3. This analysis shows that

for a spatially varying irradiance pro󰅮ile in the object plane, the sensor noise in the

channel space becomes correlated to some degree.

4.3.2 Other noise

Noise sources other than sensor noise are also present, including thermal 󰅮luctua-

tions in the optical elements, random rotation errors for rotating carrier generation

elements, random electrical signal noise for electrically driven carrier generation el-

ements, etc. Generally high frequency thermal 󰅮luctuations have negligible impact,
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Figure 4.2: 8 × 8 pixel array spatial Gaussian irradiance pro󰅮ile. The peak value is

25, 000𝑒−.
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Figure 4.3: 8×8 pixel array Poisson noise realization from a spatial Gaussian pro󰅮ile

in photoelectrons 𝑒−.
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Figure 4.4: 8×8 pixel array and 4 time point (256 total measurements) noise covari-

ance matrix for thermal, read noise, and shot noise with a Gaussian irradiance pro-

󰅮ile illuminating the detector. 100,000 realizationswere Fourier transformed and the

subsequent covariance matrix was computed between all Fourier coef󰅮icients. The

imaginary part is not shown, since all imaginary parts of the matrix elements are

small. The largest off off-diagonal magnitudes are about 0.16.
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and slowly varying thermal effects can be mitigated by systematic error strategies,

e.g. measuring a waveplate’s retardance over temperature and then compensating

a measurement by including a temperature reading at the same time the measure-

ment is acquired. The primary noise sources that a systemdesignermust include are

random carrier generation errors, introduced by rotation or electrical noise. Noise

also originates from the illumination source for the PSG, but high frequency small

magnitude source 󰅮luctuations are indistinguishable from sensor noise and can be

lumped together with sensor noises, and low frequency variation can be mitigated

in a systematic way by either using well controlled sources or measuring the source

radiance/irradiance directly and compensating for source variation.

Random carrier noise, together with sensor noise, are often the most important

sources of noise for the system designer. Carrier noise has the effect of perturbing

the carrierwith respect to the idealmeasurement or sample point(s) on the Poincaré

sphere. This can be conceptualized as introducing small amounts of aperiodicity into

the carrier generation scheme or function. This noise does not change the channel

locations, but reduces the magnitude of the channels (𝛿-functions) as the noise in-

creases. This effect is shown in Figure 4.5.

4.4 Systematic error in channeled systems

Systematic error in channeled systems has not been developed in depth, and I could

only 󰅮ind a single article by Dubreuil et al which speci󰅮ically quanti󰅮ies the effects

of systematic errors on a polarization grating channeled polarimeter [123]. In any

channeled system, systematic error effects are limited to

• Moving channel locations,

• Changing channel magnitudes (both/either real or imaginary parts),

• Inducing spectral leakage (since real systems are sampled),

• Adding unwanted/extraneous channels,

• Corrupting channel (𝛿-function) shape.
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Figure 4.5: Channel effects as rotation wander noise increases for a carrier genera-

tion element like a retarder. On the left is the carrier function with noise, and on the

right are the channels resulting from the carrier. The noise free carrier resulted in

channels with an amplitude of 512. Animated in the electronic version.

Systematic errorswhichmove the channel locations change the available bandwidth.

Spurious channels also can change the available bandwidth, and contribute to chan-

nel crosstalk. Changes in channel magnitudes result in changes to the conditioning

of the 𝐐 matrix, which impacts noise ampli󰅮ication and reconstructability. Spectral

leakage can occur when carrier function positions are systematically different from

speci󰅮ications. System errors can be both static or dynamic.

Retardance deviations can cause extraneous channels for rotating retarders as

shown in Figure 4.6. Here, channel cancellationwas used to obtain a high bandwidth

spatio-temporally channeled Mueller matrix system, and the actual retardances of

retarders used to build the system created spurious channels. Fortunately, for band-

width optimization, the effects of spurious channels can be reduced; details will be

shown later in the chapter. Another systematic effect which can have signi󰅮icant im-

pacts on the channel structure is drift. Drift occurs when some carrier generation el-

ement which was designed to be periodic is periodic at a slightly different frequency

than the design frequency, which causes the carrier frequency and the sampling fre-

quency to drift apart from correct phasing. Drift can be caused by control system



100

−.5
0 .5

−.5
0

.5
−1

0

1

𝜉
𝜂

𝜈

Figure 4.6: An example of systematic error in a real instrument, the small triangles

represent extraneous channels which are present due to retardance deviation from

the speci󰅮ications.
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Figure 4.7: Channel effects as rotation drift occurs for a carrier generation element

like a retarder. On the left is the carrier function with random biased drift applied,

and on the right are the channels resulting from the carrier, blue, , is the real part

and red, , is the imaginary part. Without drift there are two real (blue) channels

with no imaginary components. Animated in the electronic version.

bias for rotating elements, or possibly unaccounted for hysteresis in electrical carrier

generation elements, among other causes. An example of drift for a cosine carrier is

shown in Figure 4.7. Drift can also be caused by a skip or time shift, even when the

sampling and carrier frequency have a correct ratio to one another. An example of a

skip is a missed sample trigger, which results in an unknown time shift in the carrier

function, but the subsequent sampling frequency may remain accurate. Time shifts

causing channel structure changes is due to the fact that polarimetric channel struc-

tures are not shift invariant linear systems. Amissed trigger from a real instrument

channel structure is shown in Figure 4.8. In a real system, if the number of triggers

missed is unknown, then continued measurements are not possible since the chan-

nel structurewill no longer be known. This type of systematic error can bemitigated

by externally tracking the carrier generator position andupdating the reconstruction

algorithm to handle trigger errors, or by carefully designing a system to have a very

low probability of missing triggers.
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Figure 4.8: Channel effects of 3 missed trigger events in a physical instrument, likely

due to a Microsoft Windows system interrupt. Note the spectral leakage present

when the time shift occurs in the DFT window; when the DFT window is before any

missed triggers there is little to no spectral leakage, and when the DFT window is

after any missed triggers there is also little to no spectral leakage, but the channel

structure between the two is inconsistent. Animated in the electronic version.
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(a) speci󰅮ied micropolarizer tiling (b) mean micropolarizer tiling

Figure 4.9: Speci󰅮ied (left) and the mean of the physical (right) micropolarizer array

tiling unit cells. Array adapted from a 󰅮igure by Andrey Alenin.

4.5 Spatio-temporal example

A test and validation systemwas built as discussed in Chapter 5 and some speci󰅮ic re-

sults concerning noise are shown here. The systemwas designed using channel can-

cellation/combination tomaximizebandwidth, and the system is a separable channel

design. For separable channeled systems (see Section 3.2) a potentially serious prob-

lem arises; at the locations in the frequency space where the channel cancellation(s)

occurred, channels may again be present due to deviations of real components, re-

sulting in a non-ideal physical system. These extraneous channels will be convolved

with Mueller data, and introduce channel crosstalk.

Systematic errors and noise sources are quanti󰅮ied using a semi-empirical model,

details are in Chapter 5, and some of the results shown here are from simulations

using this model.

4.5.1 Systematic error

Systematic errors in our speci󰅮ic instrument include variations in micropolarizer ar-

rayorientations fromspeci󰅮ications, retardancedeviations forwaveplates,waveplate

wedge, and spatially varying irradiance in the object plane due to laser illumination.
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This dissertation will not address the issue of waveplate wedge. The 󰅮irst systematic

error that must be managed is the spurious channels which result from the wave-

plate retardance errors. An example of extraneous channels is shown in Figure 4.6.

The small triangles represent the spurious channels.

The second major systematic error is imparted from the manufacturing defects

of the micropolarizer array. Defects consist of per pixel orientation error and pixel-

to-pixel extinction ratio variation. Each pixel of the micropolarizer array used in the

instrumentwas characterized for extinction ratio and orientation. Details on the spe-

ci󰅮ic micropolarizer array used in the instrument are in Chapter 5. Ideal micropolar-

izer array channels (the Fourier domain structure) were computed using the mean

values of the physical array orientations,−0.72∘, +45.33∘, −43.95∘, 89.34∘ which dif-

fers from the original micropolarizer array speci󰅮ications of 0∘, +45∘, −45∘, 90∘; see

Figure 4.9 for examples of the micropolarizer array tiling. Graphs of the real parts of

the resultant channels for themicropolarizer arrayby itself are shown inFigures4.10

and 4.11. Note that because of the magnitude of the 𝛿-functions, an inverse hyper-

bolic sine scaling is used instead of a log scale, because it can handle zero values

appropriately [129]. The transformation is

𝑓(𝑦, 𝐶) =
log

10
(𝐶𝑦 + √𝐶2𝑦2 + 1)

𝐶
. (4.5.1)

The graphs shown inFigures4.10 and4.11use𝐶 = 1.057, which gives approximately

log scaling for large values.

In Figure 4.11, the graphs for the ideal and physical cases are shown for the lines

along 𝜂 = 0 and 𝜉 = 0, taken from the 2-dimensional plots shown in Figure 4.10, and

they show 󰅮iner detail since they are not downsampled like the 󰅮igures in Figure 4.10.

The third primary systematic error is the result of non-uniform illumination,

speci󰅮ically a spatially Gaussian irradiance pro󰅮ile in the object plane. As shown in

Figure 4.4 a spatially varying irradiance pro󰅮ile has an effect on the noise in themod-

ulation domain, and it also has a systematic effect on the channel structure. The as-

sumption is made that the illumination at the object plane is purely polarized, which

implies that the Stokes parameter vector at each object space pixel differs only by

a multiplicative constant, which in our case is a 2-dimensional Gaussian. This im-

plies that the channel spatial shapeswill be the Fourier transformsof possibly shifted
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Ideal Physical

𝑠0

𝑠1

𝑠2

Figure 4.10: Physical micropolarizer array channels vs ideal micropolarizer array

channels. Each graph is a 2-dimensional DFT of the physical and ideal micropolar-

izer arrays. The ideal array parameters used the mean polarizer angle values taken

from the physical microgrid. In the 󰅮igures the axes ranges are −1/2 ≤ 𝜉, 𝜂 ≤ 1/2

and −6 ≤ 𝑧 ≤ 6; the 𝜉 axis is on the lower right and the 𝜂 axis is on the lower

left. We can observe some extraneous spatial micropolarizer channels which occur

at the (0, 0) and (−1/2,−1/2) locations due to the mean angles being slightly dif-

ferent from 0∘, +45∘, −45∘, 90∘. The vertical 𝑧-axis is inverse hyperbolic sine scaled.

The array size was 980 × 980. Note that the graphs have been downsampled for

visualisation purposes, the actual 𝛿-functions are much thinner and dif󰅮icult to view.
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Figure 4.11: Physical micropolarizer array channels vs ideal micropolarizer array

channels. Each graph is taken from the 2-dimensional DFT (Figure 4.10) along 𝜂 = 0

and 𝜉 = 0 respectively, since all the relevant channels lie on these lines. The vertical

axis is inverse hyperbolic sine scaled. The array sizewas980×980. Blue, , denotes

the ideal array and red, , denotes the physical array.
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Figure 4.12: An example of the effect of Gaussian illumination on the channel struc-

ture. Left pane shows the real part of the channel structure with Gaussian illumi-

nation in the 𝜈 = 0 plane for the system shown in Figure 3.10 and the channels for

𝑚00, 𝑚11, 𝑚12, with themagnitude inversely hyperbolic sine scaled. The right pane is

the spatial Gaussian irradiance pro󰅮ile at the object plane. Note that a narrow Gaus-

sian pro󰅮ile was used to exaggerate the effect on the channels. Animated in the elec-

tronic version, with position of the Gaussian pro󰅮ile varying.

Gaussians. It could be argued that this systematic error is not necessarily an error,

as the illumination has a spatial Gaussian pro󰅮ile, and the reconstruction will re󰅮lect

this fact. For remote sensing purposes, itmay be bene󰅮icial to to remove the Gaussian

pro󰅮ile, either prior to reconstruction, e.g., deconvolving the known Gaussian in the

channel space, or in post processing, e.g., normalizing the Mueller matrix image. The

former would likely be well suited to the use of a 2-dimensional Wiener 󰅮ilter [130]

done in the spatial domain (since the Gaussian pro󰅮ile can be viewed as a multiplica-

tive operation in space) prior to Fourier transforming to the Fourier domain. This

operation, however, assumes that the Gaussian illumination pro󰅮ile is well charac-

terized. If the Gaussian pro󰅮ile is removed in an in󰅮inite SNR (ideal) system case then

the channel structure becomes the same as in the uniform illumination case, so the

effects of the spatially varying noise must be evaluated 󰅮irst. Figure 4.12 graphically

illustrates the channel domain effect of a spatial Gaussian illumination pro󰅮ile.
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4.5.2 Noise

For our physical instrument, random errors primarily consist of sensor noise, wave-

plate rotation wander, and laser speckle. Speckle will not be discussed, as our in-

strument has a low enough 𝑓/# that ∼ 21 speckles are incident on each pixel when

imaging with the stop(s) open. In the example system discussed here the effect of

rotation wander error is the same on the system channels as the simpler channels

shown in Figure 4.5, i.e., rotationwander noise decreases themagnitude of the chan-

nels. Since rotation wander was adequately addressed in Section 4.3 it will not be

discussed further here.

The noise source remaining for analysis is the sensor noise, and a CCDwas used in

our instrument. As previously stated, the noise sources for a CCD sensor are thermal

noise, with a Gaussian/normal distribution, readout noise, alsowith a Gaussian/nor-

mal distribution, and photon/quantum noise, with a Poisson distribution. Simula-

tions will be presented here which show the effects of the various sensor noise types

on the channel structure of the system described in Figure 3.10.

Both readout noise and thermal noise are approximately Gaussian in CCD sensors

and hence the analysis for both noise types is identical. The Gaussian noise effects on

channel structure is shown as a function of SNR in Figure 4.13, for Gaussian additive

noise in themodulationdomain. The results are simulated, but show that the channel

structure itself is quite robust to thermal and readout detector noise. Herewe switch

to a different view of the channels to better view the noise effects. Each line of

channels in the 𝜈 direction is plotted in Figure 4.13 and Gaussian noise is added in a

simulation to the 󰅮inal irradiance for this result. The SNR is shown in the 󰅮igure, and

it appears that the channel structure is stable for an SNR above somewhere between

1 and 2.

The 󰅮inal noise source is the Poisson distributed noise, and the additional effects

of the Poisson noise being spatially varying. Spatially varying Poisson noisewas gen-

erated as a function of irradiance on the detector from the spatial distribution aswell

as the irradiance 󰅮luctuation from the spatio-temporal carriers at simulated time-

points. These requirements for the noise modeling (the joint dependence on sensor

irradiance and the spatial distribution) make it more dif󰅮icult to simulate than the

readout and thermal noises. Poisson distributions become expensive to compute as
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Gaussian detector noise

Figure 4.13: Gaussian detector noise effects on channel structure. Note that these are

channels similar to the channels as shown in Fig. 3.10, but plotted along the 𝜈 lines

where the channels are located. They are not exactly the same channels because this

model incorporatedmany of the systematic errors of the real instrument, resulting in

different channelmagnitudes. The left column is the real part, the right column is the

imaginary part, there are 16 colors in each graph representing each Mueller matrix

element. The 󰅮irst row is 𝜈 at 𝜉 = 0, 𝜂 = −0.5, the second row is 𝜈 at 𝜉 = −0.5, 𝜂 = 0

and the third row is 𝜈 at 𝜉 = 0, 𝜂 = 0. Animated in the electronic version. The

animation is a spectrogram with window length 64 samples.
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Figure 4.14: Normalized error between a Poisson distributionwithmean𝑁, denoted

𝑝𝑑𝑓𝑃(𝑁), and the approximate Gaussian distribution with mean 𝜇 = 𝑁 and variance

𝑁, denoted 𝑝𝑑𝑓𝐺(𝑁,𝑁), as a function of the mean in photoelectrons, 𝑒−.

the mean increases; it is then bene󰅮icial to switch to using the Gaussian distribution

which approximates a Poisson distribution for large𝑁. Figure 4.14 shows a graph of

the normalized error between the Poisson and approximate Gaussian distributions

as a function of the mean 𝑁. The normalized error calculation is

𝐸(𝑁) =

100,000

∑

𝑗=1

[𝑝𝑑𝑓𝑃(𝑁)(𝑗) − 𝑝𝑑𝑓𝐺(𝑁,𝑁)(𝑗)]
2

𝑝𝑑𝑓2𝑃(𝑁)(𝑗)
, (4.5.2)

i.e., the normalized square “area” where 𝑗 corresponds to the integer number of pho-

toelectrons on the 𝑥 axis for the distributions. My Matlab code for generating Pois-

son distributed noise switches over to using the correspondingGaussian distribution

when the number of mean photoelectrons is above 1000. Poisson distributed noise

for a uniformspatial irradiancewas also computed and compared to the spatial Gaus-

sian pro󰅮ile. Figure 4.15 shows the 𝑚00 channels for both irradiance pro󰅮iles, other

channels have similar differences. The difference is as expected, a Gaussian multi-

plied by a sinusoidal function due to the spatial Gaussian irradiance.

The question remains, what effects does the spatially dependent noise have on

the channel structure?
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Figure 4.15: Uniform irradiance pro󰅮ile with Poisson noise vs Gaussian irradiance

pro󰅮ile with Poisson noise for the 𝑚00 channel. The 𝑦-axis is inversely hyperbolic

sine scaled. Other channels have similar differences. All curves are taken in the 𝜈 = 0

plane, along 𝜉, i.e., the 𝜂 = 0 line. (a) shows the case where the peak pixel irradiance

corresponds to 6𝑒− detected per pixel, and (b) shows the case where the peak pixel

irradiance corresponds to 40, 006𝑒− detected per pixel.
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4.6 Optimization

For some types of systematic error, it is possible to mitigate at least some of the im-

pacts on system performance by re-optimizing the channel system. For example, the

bandwidth of the system shown in Figure 3.10 does not depend on the initial re-

tarder starting positions in the ideal case. This leaves 4 parameters to utilize in the

real system for mitigation of systematic errors. Speci󰅮ically the increased crosstalk

fromextraneous channels can beminimized to some degree by optimization over the

retarder starting positions.

The effects of the extraneous channels for the quad retarder + micropolarizer

system can be minimized by re-optimizing over the system channels using the re-

maining free parameters available while 󰅮ixing the ones constrained by the physical

instrument components. For the quad-retarder + micropolarizer system example

(Figure 3.10), once the actual retardances are 󰅮ixed, the system can be re-optimized

using the starting position of each retarder and adding a parameter to the cost func-

tionwhich characterized themagnitudes of the spurious channels comparedwith the

magnitudes of the adjacent channels. For general spatio-temporal systems this kind

of methodwill work after some of the physical components are speci󰅮ied, if there are

any free parameters left to optimize over. The secondary optimization function for

the quad-retarder + micropolarizer system is

max
𝜖1,𝜖2,𝜖3,𝜖4

min
𝑐𝑗,𝑆𝑘𝑗

mag[𝑐𝑗]

mag[𝑆𝑘𝑗]
(4.6.1)

where 𝜖𝑖 are the offset/starting positions of the retarders, 𝑐𝑗 are the list of speci-

󰅮ied channels identi󰅮ied by location, 𝑆𝑘𝑗 are lists of each 𝑐𝑗s adjacent extraneous chan-

nels and mag[⋅] is the magnitude of a channel. The adjacent spurious channels, for

this speci󰅮ic optimization, are only computed temporally, that is each 𝑐𝑗 will have at

most 2 adjacent spurious channels. In the general case, there may be spurious chan-

nels located arbitrarily (subject to physicality constraints) in the channel domain,

and some partition would need to be made to de󰅮ine which spurious channels are

“adjacent” and which are not. A simple way to accomplish this would be to de󰅮ine

a norm dependent (hyper)-sphere centered on each channel 𝑐𝑗 and de󰅮ine anything

inside of the sphere to be adjacent. Implementing this is a subject of futurework. For



113

Figure 4.16: An example of varying the starting position of a retarder, 𝜖2 to optimize

the impact of extraneous channels on the bandwidth optimized system shown in Fig-

ure 3.10 for𝑚22.
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Figure 4.17: Re-optimized channel structure for a speci󰅮ic quad retarder + micropo-

larizer systemwith extraneous channels. The axes are identical to those in Figure 3.1.

temporal carrier generation we may use the simpler 1-dimensional adjacency de󰅮i-

nition. The optimization de󰅮ined here maximizes the ratio of the magnitude of the

channels we want, 𝑐𝑗 to the spurious channels 𝑆𝑘𝑗 . Figure 4.16 shows the effects of

varying the starting position of the 2nd retarder, 𝜖2, for a bandwidth optimized quad

retarder + micropolarizer array system. An optimized system for actual retardances

𝛿1 = 3.116, 𝛿2 = 1.566, 𝛿3 = 2.173, 𝛿4 = 3.148 is shown in Figure 4.17.

Other optimizations to mitigate systematic error are possible, for instance in

spectropolarimeters [31, 45, 53, 122] it may be possible to re-optimize the retar-

dances after each manufactured retarder is characterized to enforce the speci󰅮ied

channel structure, as is done in themodulation domain by Snik et al [131] to enforce
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a different constraint (system conditioning minimization over a broad spectrum).

For the balanced quad retarder + micropolarizer array system shown in 󰅮igure Fig-

ure 3.10 channel cancellation is dependent on the two outside retarders having 𝜋

retardance, so extraneous channels cannot be mitigated through retardance adjust-

ment of the other waveplates after manufacturing speci󰅮ications are known. How-

ever, it may be possible to adjust the retardances to mitigate systematic error for

other systems, like the unbalanced system shown in Figure 3.14.

If the system designer has the time, the best approach is an iterative one with a

single component being sourced at a time, the component beingmeasured and char-

acterized, then the system being re-optimized to reset the other components spec-

i󰅮ications to minimize the systematic errors, with the process being repeated [131]

until the system is complete.

4.7 Conclusion

The system designer must account for systematic errors and random noise in po-

larimetric channeled system designs. Most random noise becomes approximately

Gaussian distributed and approximately independent in the channel space. How-

ever, spatially dependent illumination creates an exception to noise independence

in the channel domain for spatio-temporally channeled systems, and generally non-

statistically stationary noise in the modulation domain can create noise correlations

in the channel domain.

I have shown examples of these noise pro󰅮iles and systematic errors for a spatio-

temporally channeled polarimeter and how both noise and systematic errors can af-

fect the channel structure. I have also shown how to mitigate some forms of sys-

tematic error using free optimization parameters which may remain for the system

designer to use for this purpose.
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CHAPTER 5

Hybrid domain modulated imaging polarimeter (HyDMIP)

5.1 Introduction

Previously, Chapters 3 and 4 introduced channel structures for spatio-temporally

modulated polarimeters and analyzed the noise effects in those channeled systems.

In this chapter I present an instrument which utilizes these concepts, including the

design, the physical instrument, and results from the instrument. Discussions with

Andrey Alenin, Charles LaCasse, and Scott Tyo led to the following general design

requirements for the portable HyDMIP, HyDMIP-P:

• Ability to generate and analyze arbitrary Stokes parameters, with full cover-

age on the Poincaré sphere.

• Visible wavelength range, preferably in the 635-830nm wavelength range,

due to preliminary skin cancer detection indications from Alenin.

• Have imaging capability.

• Have the ability to test some of the hybrid modulation theory developed by

our research group.

• Be portable.

• Acquire data for remote sensing classi󰅮ication tasks.

• Be able to validate classi󰅮ication/discrimination algorithms, includingmulti-

class algorithms.

The 󰅮irst requirement, to access arbitrary states of the Poincaré sphere, lead to initial

designs utilizing two retarders in both the PSG and PSA respectively. A half wave lin-

ear retarder in combinationwith another linear retarder allows for the generation of

(and analysis of) arbitrary Stokes parameters. This led to the decision to use at most
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4 rotating retarders in the system design, which results in temporally modulation.

The decision to test hybridmodulation theory developed by LaCasse and Tyo [33,43]

determined the requirement to use amicropolarizer array bonded to a silicon detec-

tor array. Finally, portability and visible wavelengthswere speci󰅮ied due to a number

of applicationswhich interested our group at the time, namely skin cancer detection,

general outdoor/indoor remote sensing tasks andmaterial discrimination including

fruit defect detection, and trained classi󰅮ier algorithm performance evaluation for

polarimetric detection tasks.

Thework in this dissertation grew from the need tomaximize the temporal band-

width of the portable instrument, given the other design constraints. An end to end

system design and the implementation of that design will be shown here, includ-

ingmechanical and opto-mechanical design, control system and software implemen-

tations, troubleshooting/implementation issues, instrument validation, and results

from the instrument. The physical instrument results imply that the underlying the-

ory from Chapters 3 and 4 is correct. The portable instrument is a component of a

larger instrument system, the hybrid domain modulated imaging polarimeter (Hy-

DMIP) which consists of a lab instrument and a portable instrument as shown in

Figure 3.8. This chapter will only discuss the portable instrument.

5.2 Physical design

The instrument design is based on the initial layout composed of a polarizer state

generator (PSG) consisting of a linearly polarized source which generates temporal

carriers via two linear rotating retarders and a polarization state analyzer (PSA) con-

sisting of two rotating linear retarders followed by amicropolarizer array at the focal

plane of the camera. The basic layout is shown in Figure 3.9.

5.2.1 Polarization state generator

The PSG is a typical rotating retarder design [46], with the polarization components

placed in a collimated optical space, the only difference is that we use two rotating

retarders instead of one. Figure 5.3 shows the detailed source design. The initial

design was speci󰅮ied to be spectrally broadband from 635 − 830𝑛𝑚. The design in-
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cluded broadband retarders and a 2400𝑊 (635𝑊 radiant power) Xenon (Xe) arc

lamp source. The Xe source would have allowed for low sunlight imaging, near dawn

or dusk, however costs for the Xe source were determined to be too high. An alter-

native design was developed, an inexpensive yet powerful solid state 671𝑛𝑚 laser

source was chosen, and the design was refactored for this source in the the polar-

ization state generator (PSG). This allows for the PSA to be operated as a broadband

portable full Stokes polarimeter by itself, or as a narrowband active Mueller matrix

polarimeter when combined with the 671𝑛𝑚 PSG.

The PSG with the laser source in the 󰅮inal design cannot image in sunlight, this

is because near the 671𝑛𝑚 wavelength sunlight has about 1.4𝑊/𝑚2 per 𝑛𝑚 of irra-

diance at air mass 1.5 (𝐴𝑀1.5) [132]. Even during sunset conditions, the irradiance

on average drops to about 1/3 of the 𝐴𝑀1.5 value, which can be computed using the

formula [133].

𝐼 = 1.1 ⋅ 𝐼0 ⋅ (0.7)
𝐴𝑀0.678

(5.2.1)

where 𝐼0 = 1353𝑊/𝑚2 for the 𝐴𝑀0 curve integrated over wavelength. The 𝐴𝑀 can

be calculated from the approximation

𝐴𝑀 =
1

cos𝜃
(5.2.2)

where 𝜃 is the sun zenith angle. According to the National Oceanic and Atmospheric

Administration (NOAA), in Tucson, AZ on August 1, 2015 at 6:30pm, 𝜃 = 80.85∘

corresponding to 𝐴𝑀 = 6.29. When this value is plugged into Equation (5.2.1) we

obtain a value about 0.35 of the 𝐴𝑀1.5 value. Substituting into the per wavelength

values, we then obtain about 0.5𝑊/𝑚2 per 𝑛𝑚 of irradiance near 671𝑛𝑚. Assuming

a 5𝑛𝑚 wide 󰅮ilter on our PSA optics, a total of 2.5𝑊/𝑚2 of irradiance from sunlight

will be incident on our object plane (of course this depends on the plane angle with

respect to the sun, but this is an order of magnitude calculation). To put polarized

irradiance in a 1-to-1 ratio with the sun irradiance would then require large laser

powers in the 1 − 25𝑊 range, depending on range and optics. Lasers in this power

range were cost prohibitive. This constrained us to computing a requirement for

laser power for night imaging.

Prior to computing the required laser power, sensor speci󰅮ications need to be

known. The sensor for the instrument was sourced from 4D Technologies, Inc. A
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QE Pixel Size # of Pixels Fill Factor Full Well (𝑒−) Total Noise (𝑒−)

0.2 9𝜇𝑚 1 × 106 0.55 50,000 72

Table 5.1: KAI-1010 sensor speci󰅮ications for 671𝑛𝑚.

MoxtekTM micropolarizer arraywas bonded to the focal plane of an Illunis RMV-1010

camera with a Kodak KAI-1010 CCD focal plane array. The sensor speci󰅮ications are

shown in Table 5.1. Each photon impinging on a detector pixel will have energy ℎ𝑐/𝜆

where 𝜆 is the wavelength, ℎ is Planck’s constant, and 𝑐 is the speed of light. The

pixel area then determines the number of photons irradiating it, and the quantum

ef󰅮iciency determines how many of those photons are converted to photoelectrons.

The number of photoelectrons for our speci󰅮ic sensor is approximately

𝑁𝑒− = 0.55 ⋅ 𝑁𝑝𝜂 = 0.11𝑁𝑝 (5.2.3)

where𝑁𝑝 = 𝑁 ⋅ 𝐴𝑝,𝑁 is the number of incident photons per unit area, 𝐴𝑝 is the pixel

area, 𝜂 is the quantum ef󰅮iciency (QE), and the 0.55 constant is due to the 󰅮ill factor.

This implies a ratio of 9.09 photons to each photoelectron. The energy per photon at

671𝑛𝑚 is

𝐸𝑝 =
ℎ𝑐

𝜆
≈
2.0 ⋅ 10−16𝐽 ⋅ 𝑛𝑚

671𝑛𝑚
≈ 3.0 ⋅ 10−19𝐽. (5.2.4)

Instead of each individual pixel the computation can utilize the entire sensor area,

it does not change the above equations. Furthermore, in an imaging system, the ap-

proximation can bemade that our source beam spread ismatched to our optical 󰅮ield

of view (FOV) which implies that for planar objects nearly perpendicular to our in-

strument’s optical axis, we canassume that nearly all of the re󰅮lected light is collected,

with the re󰅮lection characterized by the albedo of the object. Typical dark land ma-

terials (soil, etc.) have an albedo of 0.1. If we would like a uniform surface with an

albedo of 0.1 to, on average, produce around 20, 000 photoelectrons per per pixel per

image, then a 1𝑀𝑃 sensor requires a total of 2 ⋅ 1010 photoelectrons per image. This

corresponds to an energy of

𝐸𝑝,𝑖 = 9.09 ⋅ 2 ⋅ 1010 ⋅ 3.0 ⋅ 10−19𝐽 = 5.4 ⋅ 10−8𝐽 (5.2.5)

per image. If we assume that the integration time is 1/60 seconds (16.67𝑚𝑠), then
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for a continuous wave (CW) laser, this corresponds to

5.4 ⋅ 10−8𝐽

1𝑠/60
= 3.2 ⋅ 10−6𝑊. (5.2.6)

When the albedo is taken into account, a factor of10 increase is required; 3.2⋅10−5𝑊.

Finally, our speci󰅮ic optical system has 𝑓/# = 2.4 which corresponds to the light

collection ability, and remains a slow enough optical system that the approximation

Ω =
𝜋

4𝑓/#2
= 0.14 (5.2.7)

holds, whereΩ is the solid angle. A Lambertian surface re󰅮lects radiance equally into

the hemisphere of 2𝜋 steradians, so the collection factor is

0.14

2𝜋
≈ 0.02. (5.2.8)

The total power is then divided by this value to get the source power required;

3.2 ⋅ 10−5𝑊/0.02 = 1.5 ⋅ 10−3𝑊. When the micropolarizer array elements are taken

into account (a reduction of about half in light received on average) then the require-

ment becomes 3.0 ⋅ 10−3𝑊. If the exposure time of the sensor is assumed to be 1𝑚𝑠

instead of 16.67𝑚𝑠, then the source power requirement becomes 5.0 ⋅ 10−2𝑊 or

about 50𝑚𝑊 which corresponds well to what we see with the actual instrument.

The source which was procured is rated for a maximum of 200𝑚𝑊 CW, and is ad-

justable in output from about 5𝑚𝑊 to 200𝑚𝑊. The source has a vertically linearly

polarized output beam with respect to the mounting plane of the laser. The source

is a LaserglowTM LRS-0671-PFM-00100-05 LabSpec 671𝑛𝑚 DPSS Laser Systemwith

a beam output power variation of < 5% RMS over 4 hours. This laser source has a

1/𝑒2 beam diameter of 2𝑚𝑚 and a quality factor of𝑀2 < 1.2 [134].

The laser beam is subsequently expanded via a ThorlabsTM BE04R/M re󰅮lective

beam expander. A re󰅮lective beam expander was chosen for 1) broadband wave-

length capability as compared with a refractive beam expander, 2) compactness for

weight savings elsewhere. The broadband capability of the re󰅮lective beam expander

allows for 󰅮lexibility to install a laser source and polarization components at wave-

lengths other than 671𝑛𝑚 if needed in the future. The compactness allows for a

smaller breadboard footprint, saving weight. A beam expander is needed in the de-

sign tomitigate systematic errors which could result from spatial variation in the ro-

tatingwaveplates, i.e the full clear aperture of thewaveplate should be illuminated to
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Figure 5.1: Aplanatic lens system. The speci󰅮ied lens has 𝑓 = 51𝑚𝑚,𝐷 =

31.7𝑚𝑚, 𝐿 = 25.4𝑚𝑚,𝑊𝐷 = 35𝑚𝑚. These speci󰅮ications are for 633𝑛𝑚, so the

focal length will change slightly for 671𝑛𝑚 light. Courtesy of CVI Melles Griot.

eliminate the effects of spatial variation in the retarders. A ThorlabsTM GL10-B Glan

Laser polarizer was mounted to the front output port of the beam expander to clean

up the laser polarization. The extinction ratio is approximately 100, 000 ∶ 1 for this

polarizer. The output beam is collimated.

The expanded linearly polarized beam then passes through two retarders. The

retarders are MeadowlarkTM precision polymer coated for 670𝑛𝑚 with a 25.4𝑚𝑚

diameter. The 󰅮irst retarder is a half wave (𝜋) retarder, and the second is a quarter

wave retarder (𝜋/2). See Figure 5.3 for opto-mechanical details. These retarders

were ordered prior to the optimization work from Chapter 3, otherwise the second

retarder would have been speci󰅮ied with a retardance of 𝜋 − cos−1(1/√3) which is

approximately0.348waves. The rotation of the retardersmodulates the polarization

state of the beam, generating carriers. To ensure minimal systematic errors from
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rotation errors, a position accuracy and repeatability requirement of 30 arcseconds

was speci󰅮ied for the rotation stages. Additionally, a rotation speed of 1000𝑟𝑝𝑚was

speci󰅮ied to allow for future speed increases, and to allow for experiments on various

system types and speeds to be robust. IntelLiDrivesTM built custom low pro󰅮ile rota-

tion stages ( model number ACR-55UT) for this purpose with a 55𝑚𝑚 aperture to

install waveplates or polarizers into. Stage repeatability was tested via a 󰅮ixture con-

sisting of a telescope system mounted to the rotation stages. The telescope system

wasused tomagnify the angular errors of the rotation stages. A laserwasmounted so

that the beam passed through the lens system on the stage, resulting in a spot on the

opposite wall. The stageswere then rotated 360∘ 100 times and the spot was imaged

with a camera. Since the spot was approximately Gaussian, a centroiding algorithm

was used to give good approximate centers on the wall from the images taken with

the camera. Measurements were taken between all components, and an angular er-

rorwas computed, which resulted in a single pixel shift on the camera corresponding

to about 2.5 arcseconds of angular change of the rotary stage. 6 stages were ordered,

and all but one were well within speci󰅮ications, with one being right at the repeata-

bility speci󰅮ication of 30 arcseconds. The 4 stages with the best repeatability were

selected to be assembled into the HyDMIP-P, all with < 10 arcsecond repeatability.

The repeatability test was designed with help from Rafael Rojas, and Rafael Rojas

conducted the tests.

After the Stokes parameter generation from the retarders, the beam then passes

through a lens systemwith a focal length designed to ensure that the beam spread in

the far 󰅮ield approximately matches the FOV at distances greater than 50𝑚. The lens

system is a CVI Melles Griot APM-75.0-15.0-633 aplanat. It is designed for 633𝑛𝑚;

we did not solicit a custom 671𝑛𝑚 aplanat due to cost constraints (CVI laser quoted

a cost of ∼ $6000 for the custom element). The details of the lens design are shown

in Figure 5.1. The clear aperture is 15mm, and the beam diameter entering the beam

expander corresponds to 2𝑚𝑚 [134]. The beam expander then expands the beam

diameter to about 8𝑚𝑚. We can use [135]

𝜔0 =
𝑀2𝜆𝑓

𝜋𝑟in
=
1.2 ⋅ 671𝑛𝑚 ⋅ 50

𝜋 ⋅ 4
≈ 3.2𝜇𝑚 (5.2.9)

to compute the focal spot size at the beamwaist after the lens where𝜔0 is the beam
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Figure 5.2: CVI lens assembly mount. Threaded to Thorlabs SM-1 speci󰅮ications so

that off the shelf retainer rings can be used.
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Figure 5.3: Source assembly, zoom in for detail. The laser beam is expanded to about

a 8𝑚𝑚 beam diameter prior to passing through the retarders.

waist radius at the focus and 𝑟in is the radius of the beam impinging on the lens sys-

tem. This equation is really only accurate to 󰅮irst order. A focal length of 50𝑚𝑚 was

assumed for 671𝑛𝑚 light due to lack of information from CVI Melles Griot regarding

the focal length at 671𝑛𝑚 or alternatively the lens prescription, whichwould have al-

lowed me to compute the 671nm focal length myself. The far 󰅮ield divergence angle

for the beam is then

𝜃𝑑 =
𝜆𝑀2

𝜋𝜔
(5.2.10)

where 𝜔 is the beam waist radius. Substituting in 𝜔0 from above yields

𝜃𝑑 =
0.671𝜇𝑚(1.2)

𝜋3.2𝜇𝑚
= 0.08 ≈ 4.6∘ (5.2.11)

The Kodak sensor is approximately 9.1𝑚𝑚×9.1𝑚𝑚 is size, which is circumscribed

by a circle of diameter 12.87𝑚𝑚. The focal length for the PSA optical imaging system
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is∼ 103𝑚𝑚. At an object plane 50𝑚 from the lens this corresponds to a circular 󰅮ield

of view (FOV)with diameter 6.25𝑚which corresponds to an subtended half-angle of

about 3.6∘ from the observer. We are near in󰅮inity focus at 50𝑚 so the 3.6∘ is approxi-

mately the same FOV subtended angle for any object plane> 50𝑚. This is within the

far 󰅮ield angular beam spread for the source of 4.6∘. A custom lens assembly mount

was designed toworkwith the other components, shown in Figure 5.2. The complete

source assembly is shown in Figure 5.3.

5.2.2 Polarization state analyzer

The polarization state analyzer (PSA) is a spatio-temporal hybrid channeled system.

The micropolarizer array provides spatial carrier generation [33, 35, 43], and two

rotating retarders provide temporal carrier generation. After the beam from the PSG

re󰅮lects from the object, the light is collected by the PSA. The design provides for the

rotating retarders to be placed in a collimated optical space via an afocal element.

The imaging optics assembly was designed with the following constraints

• Minimal cost,

• Flat contrast and resolution limits across the image (i.e. MTF is 󰅮ixed across

FOV),

• Changeable front lens,

• Variable focus,

• Variable aperture stop.

• Applicable to the 9𝑚𝑚 × 9𝑚𝑚 sensor size.

These constraints led to commercial off the shelf lenses being selected due to the

performance versus cost advantages that they have over custom designs or semi-

custom designs (e.g. Edmund Optics® or Thorlabs® lens assemblies). For the visible

range, Pentax®, Canon®, Nikon®, and others make high performance, low cost cam-

era lenses. After reviewing MTFs curves from different manufacturers for various

lenses, Pentax® lenses were chosen due to their consistency across the FOV. Pentax
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had, to the the best of our knowledge from the technical speci󰅮ications we had access

to, the most consistent MTF, contrast, and vignetting pro󰅮iles across the 󰅮ield of view.

Attempts were made to obtain lens prescriptions or Zemax black boxes to facilitate

optical design, but none of the companies were willing to provide us with this infor-

mation. The 󰅮lange focal distance (𝐹𝐹𝐷) is, however, a public speci󰅮ication, and for

Pentax® K-mount camera lenses 𝐹𝐹𝐷 = 45.46𝑚𝑚. The K-mount bayonet system

allows for quick front lens changes on the system if desired. Another bene󰅮it to the

Pentax® lenses was the ability to install a computer controlled autofocus system in

the future. The lenses contain a small screw like element which is spun by the cam-

era body to autofocus, and would allow us to use a motor to control the lens focus.

Other brands have autofocus built into the lens through an electronic communication

protocol, making it infeasible to utilize in our polarimeter since this protocol is not

public.

The lens assemblydesign required that the rotating retarders be located in anom-

inally collimated optical space. Additionally, the Pentax® lenses were designed for a

󰅮ilm format sensor plane size of 36𝑚𝑚×24𝑚𝑚. This created a requirement formini-

󰅮ication to the 9𝑚𝑚 × 9𝑚𝑚 actual sensor size of our micropolarizer array camera.

A fairly simple design was implemented, an initial lens forms an intermediate image,

then a lens is placed so that the intermediate image is at the focal length, forming an

afocal system. This results in rays passing through the retarders being collimated,

and the lens assembly is also designed to minify the intermediate image. The de-

sign is shown in Figure 5.4 modeled via thin lenses given the known focal lengths.

The assumption is made that the 󰅮irst lens forms an image at an intermediate image

plane, the next lens images the intermediate image to in󰅮inity, and 󰅮inally the third

lens images from in󰅮inity to the sensor. Lenses are notated 𝐿1, 𝐿2, 𝐿3 in order of light

propagation. 𝐿1 is designed to be a changeable lens, and for the full active system a

Pentax SMCP-FA 77mm f/1.8 Limited was used, 𝐿2 is a Pentax 70mm f/2.4 DA Lim-

ited Lens and 𝐿3 is a Pentax SMCP-FA43mm f/1.9 Limited Lens attached to the sensor

body with a K-mount to C-mount converter. The system 𝑓/# = 2.4 with the 77𝑚𝑚

focal length lens for 𝐿1.

The 󰅮irst two lenses 𝐿1 and 𝐿2 had to be af󰅮ixed in an afocal con󰅮iguration and re-

quired custom lensmounts. In order tomitigate the time intensive reverse engineer-
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DURIP_Receiver.ZMX
Configuration 1 of 1

Layout

4/17/2012
Total Axial Length:  163.00000 mm

Figure 5.4: Receiver lens design. The left plane is the intermediate imagewith a total

height of 24𝑚𝑚, the second plane is 𝐿2 as a thin lens, the third plane is 𝐿3 as a thin

lens, and the fourth plane is the sensor plane with a total height of ∼ 10.5𝑚𝑚. The

actual sensor is slightly smallerwith aheight of9.1𝑚𝑚, but thiswas the closestmatch

available with the focal lengths available from Pentax.
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Figure 5.5: Receiver afocal lens mount body design. The Samsung adapters are not

shown, but attach to either side. Zoom in for detail.

ing of themechanical K-mount, SamsungMA9NXK adapterswere purchased to be in-

corporated into the afocal lens mount. These adapters are used to convert K-mount

lens to a Samsung NX10 mount. Rafael Rojas helped to measure the adapters and

build Solid Works models of the adapters for use in the assembly design. The Sam-

sung MA9NXK adapters where modi󰅮ied to be bolted to the lens mount body shown

in Figure 5.5. This required machining, drilling, and reassembly. The complete lens

mount assembly is shown in Figure 5.6. Because the 𝐹𝐹𝐷 is known for the lenses,

the requirement for the afocal lens mount assembly is that the 󰅮lange to 󰅮lange dis-

tance be 2𝐹𝐹𝐷 = 90.92𝑚𝑚. The afocal assembly provides (nearly) collimated rays

through the rotating retarders and the 󰅮inal lens then re-images onto themicropolar-

izer focal plane array sensor. The mounting plates for the rotation stages were also

custom designed as shown in Appendix B, as well as other opto-mechanical details.

The sensor is a Kodak 1010 CCD array with a micropolarizer array bonded di-
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Figure 5.6: Receiver afocal lens mount assembly. The modi󰅮ied Samsung adapters

are shown exploded in the bottom right view. Zoom in for detail.
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Figure 5.7: Receiver (PSA) assembly, zoom in for detail.

rectly to the focal plane by 4D TechnologiesTM. The camera can operate at up to

28.4𝑓𝑝𝑠 when in a triggered mode. The camera uses a cameralink data connection.

The complete PSA assembly is shown in Figure 5.7.

5.2.3 Triggering

Timing is critical for channeled polarimeters since the systems are not shift invariant.

This requires a triggered camera, with triggers coinciding to speci󰅮ic retarder posi-

tions. The controllers for the rotation stages unfortunately cannot be programmed

to output pulse trains which are somemultiple of the position, or of somemultiple of

the encoder pulse. The only output available from themotor controllers is the digital

encoder pulse train, with 540, 000 pulses per rotation. Sampling right at the Nyquist

frequency of the system shown in Figure 3.11 requires 32 samples per rotation of the

slow motors and 16 samples per rotation of the fast motors. This results in 16, 875



131

(a) Spatio-temporal design (b) Actual Instrument

Figure 5.8: Hybrid Domain Modulated Imaging Polarimeter - Portable (HyDMIP-P)

and 33, 750 pulses between triggers respectively. I had access to an Arduino Uno

microcontroller and decided use the Arduino to downsample the pulses and output

camera triggers. Several iterations of Arduino control softwarewere required, due to

the pulse width of the encoder output pulses being ∼ 1𝜇𝑠. This narrow pulse width

caused the 󰅮irst few iterations of the Arduino software to miss pulses. The 󰅮inal ver-

sion of the Arduino software is shown in Appendix B.

5.2.4 Overview

The physical system consists of 4 rotating retarders and a micropolarizer array.

The retarders are rotated by precision motors with a maximum rotation speed of

1000𝑟𝑝𝑚. Both the PSG and PSA were designed so that the retarders reside in a col-

limated optical space, and the source beam spread was matched to the PSG 󰅮ield of

view. A rendering of the complete instrument and a photograph of the physical in-

strument are shown in Figure 5.8. A summary of the instrument speci󰅮ications are

shown Table 5.2

5.3 Control system

The HyDMIP polarimeter requires a control system and the associated software to

procure and process images. The control software design architecture consists of 6

main modules;

• a motor control module,

• a camera control module,
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Table 5.2: System speci󰅮ications

Component Type Detail

P
S
G

source 671𝑛𝑚 laser 200𝑚𝑊

P
S
G

retarder(s) 671𝑛𝑚 1𝑖𝑛 dia.

P
S
G

stages(s) up to 1000rpm < 15arc sec accuracy

P
S
G

optics aplanatic @ 633𝑛𝑚 matched to PSA FOV

P
S
A

sensor silicon 1𝑀𝑃 array @ 28.4 fps 9𝜇𝑚 pixels, micropolarizer array

P
S
A

retarder(s) 630 − 835𝑛𝑚 2𝑖𝑛 dia.

P
S
A

stages(s) up to 1000rpm < 15arc sec accuracy

P
S
A

optics afocal section for retarders f/2.4

• an image aggregator and pre-processor module,

• a reconstruction module,

• a classi󰅮ication module,

• a user interface module.

The classi󰅮ication module is only partially built and will not be discussed in detail;

however it is designed as a modularized architecture where different classi󰅮ication

algorithm modules can be plugged in for different classi󰅮ication or estimation tasks

from the polarimetric data. The user interface module will also not be discussed.

The reconstructionmodule is currently templated in Matlab, but is not implemented

in 󰅮inal form, which will be in C++ and CUDA for real-time reconstruction capability.

CUDA is a C-like language which is compiled for Nvidia graphical processing units

(GPUs). GPUs offer large and inexpensive computational speed ups for linear algebra

operations, and are ideal for parallelizable computations. The motor control mod-

ule and the camera control module are complete and written to the C++14 standard.

They are multi-threaded and can take advantage of modern hardware. The code is

also written in a platform independent way and can be compiled on both Microsoft

Windows® and Linux operating systems. All modules were designed to be as general
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as possible, for example the motor control module is designed to accept any number

of motors and even different motor types. The camera module has an interface al-

lowing for any number of camera hardware implementations to be used if necessary.

Figure 5.9 shows a 󰅮lowchart of the overall control system design.

5.3.1 Stage control

The IntelLiDrive rotation stages are driven and controlled by Copley ControlsTM

Xenus XTL ampli󰅮iers. These ampli󰅮iers have two interfaces for computer control,

RS-232 serial and CANOpen. CANOpen control requires a CiA compatible CANOpen

software stack combined with a CAN bus card installed in a computer. CAN is an

acronym forControllerAreaNetwork and is aphysical communicationbusused in in-

dustrial and automation applications. CANOpen is a communications protocol which

uses a CAN bus. The CANOpen protocol is much faster and more 󰅮lexible than the

RS-232 serial communication; however it is more dif󰅮icult to use. The open source

CANOpen stack CANFestival 3.0 was used.

The CANOpen protocol consists of two types of messages, the service data object

(SDO) and the process data object (PDO). SDOs are usually used for initialization, net-

work protocol setup, etc. PDOs are used once the system moves to an event driven

and/or active stage. SDOs require more network overhead and are therefore slower.

The CANOpen syntax and semantics are esoteric and use a hexadecimal addressing

schemeandmanyof the data received or sent require exercises in bit 󰅮lipping. To alle-

viate this error prone syntax Iwrote a complete semantic translation of the CANOpen

objects and functions supported by typical automation devices and speci󰅮ically the

Xenus XTL. For example to read the position via an SDO now only requires

1 sdoCommunicator . Read ( i , CANOpenFunctions : : Pos i t i onAc tua lVa lue , data )

in C++, where i is the CANid corresponding to a speci󰅮ic stage and data is a structure

where the position data will be placed. The CANOpenFunctions enumerated class

translates semantic meaning to the hexadecimal addresses.

The stage control software consists of 5 sub-modules, 1) a master controller, 2)

a master settings object, 3) an SDO communicator object, 4) a PDO communicator
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Figure 5.9: Control system design overview 󰅮lowchart. RS denotes rotation stage.

The motor control and camera control modules are fully implemented. The remain-

ing modules are only partially or not implemented at this time. The reconstruction

module is implemented in Matlab, but cannot operate in real time at the moment.
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object, 5) a per stage information/settings object, and 6) a data storage object. These

sub-modules work together to make using the stages straightforward. The master

settings object is used to set all of the network and motor parameters needed, then

passed to the constructor of the master controller. The master controller initializes

all stages, homes them, and sets them to the appropriate starting positions. It then

waits for a start function call, which starts the rotation of all motors speci󰅮ied in the

master settings object. Once started the master automatically records all speci󰅮ied

PDO information, including velocity, position, and time elapsed since the last update,

for each stage. This requires setting theupdate speed,which is currently every667𝜇𝑠

for each stage.

5.3.2 Camera control

The camera control module is written in C++14 and has interfaces abstracted from

speci󰅮ic implementations of camera types. It has multi-threaded threadsafe queuing

for storing images until they are retrieved. It is general and robust enough to handle

any camera hardware implementation, provided new camera implementation code

is written. The interface abstraction allows any code which uses the camera(s) to be

written for the interface application programming interface (API), and the interface

will not change for a change in camera implementation. This allows for new cam-

era hardware or different cameras to be used and installed in the system without

rewriting the software stack. The only software which has to be written for a camera

change is a speci󰅮ic implementation module which inherits the general interface.

There are two primary interfaces in the camera control mod-

ule, AbstractSingleCameraWrapper and MultipleCameraCaptureControllerInterface.

AbstractSingleCameraWrapper provides an interface for any single camera. A dummy

camera instance, DummySingleCameraWrapper, has been built for extensive test-

ing and evaluation of the single camera interface and programs relying upon it.

MultipleCameraCaptureControllerInterface is an interface which can control any group of

instances derived from AbstractSingleCameraWrapper. This allows for multiple camera

control for generic cameras.

Finally, images are stored in the Image class, which automatically stores images in

the correct format depending on the actual implementation of the camera hardware



136

Figure 5.10: Class diagram for the camera module. The lines with arrows denote

inheritance.
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which provided the image. This includes parameters like color/monochrome, bits

per pixel, image size, etc. The Image class also automatically converts and stores raw

data to 󰅮loating point data, for graphical processing unit (GPU) computationswhen/if

needed. If a region of interest is needed, the Image class provides this capability. The

Image class also provides an image id 󰅮ield for each image.

The camera control interfaces provide a user with the ability to obtain images or

queues (stacks) of images in a threadsafe manner. Any implementation is required

to stamp images with unique image ids, so that any lost or dropped image can be

detected by a user of the interfaces. Once a user reads an image, then the user has

responsibility for that image, i.e., the camera interfaces are designed to delete images

once they are read by a user, they are not persistent after a read in camera control

implementations. SeeFigure5.10 for the class diagramof the camera controlmodule.

5.3.3 Pre-processing

The pre-processing module collates and and packages the images, and if needed,

queues images or image stacks onto the GPU for processing. This module is also de-

signed to perform simple pre-processing image operations like thresholding, mask-

ing, ROI, or normalization. It is written in C++14 and is thread-safe. This module is

not yet complete, and in the future I would like to addmorphological operations and

fast convolutions to the pre-processing capabilities.

Aggregation capabilities include the ability to apply a general ”shuf󰅮ling” or per-

mutation map when images are collected frommultiple cameras, including shuf󰅮ling

of ROIs within the same image if needed. This capability was not needed for the spe-

ci󰅮ic polarimeter discussed here since we have a single camera.

5.3.4 Reconstruction

The reconstruction module is planned to be implemented in C++14 and CUDA, but

is currently implemented in Matlab as a proof of concept. The reconstruction mod-

ule takes an image stack, a 𝐐 matrix (as described in Chapter 3), a 󰅮ilter set, and a

channel location set to produce reconstructed Mueller matrix images. The 󰅮iltering

will be discussed in detail in a later section. Each 󰅮ilter produces a spatio-temporal
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data cube. After the 󰅮ilters are applied, the resulting data cubes are linearly trans-

formed according to 𝐐+, the pseudoinverse of 𝐐. Recall that this transformation is

applied in the channel, or Fourier, space. The transformation results in a set of 16

data cubes (in the (𝜉, 𝜂, 𝜈) domain) corresponding to each Mueller matrix element.

These data cubes are then each individually inverse Fourier transformed to obtain a

spatio-temporal data cube ( in the (𝑥, 𝑦, 𝑡) domain) for each Mueller matrix element,

which can then be displayed or processed further.

5.4 Calibration

Actual instruments differ from the ideal models we derived in Chapter 3. Our chan-

nel structure optimization assumed perfect polarizers, retarders, etc. This gave us

a good design to 󰅮irst order, but calibration is needed to to compute a proper 𝐐ma-

trix [34] and compute the physical channel structure. The𝐐matrix is computedwith

the semi-empiricalmodel described below in the next section. This section describes

the calibration of the instrument, with the majority of the calibration effort devoted

to micropolarizer array characterization. Retardance calibration was not done, re-

tardance speci󰅮icationswere providedwith each retarder by themanufacturerwhich

were used in the modeling.

5.4.1 Micropolarizer array

The 󰅮irst step of calibrationwas calibrating themicropolarizer array. This calibration

was accomplished in a non-imaging setup by 1) placing white paper in front of a ro-

tatable polarizer as a diffuser, which was then placed in front of the micropolarizer

array andmasked off for stray light, 2) rotating the polarizer with 1∘ increments and

recording an image frame at each increment, 3) 󰅮itting a Malus’ like function to each

micropolarizer pixel and recording the parameters. The Malus’ like function is

𝑓(𝑎, 𝑏, 𝜃′) = 𝑎 + 𝑏 ⋅ cos2(𝜃 + 𝜃′) (5.4.1)

where 𝜃 is the rotation angle of the reference polarizer and 𝜃′ is the angle of the mi-

cropolarizer of the pixel with respect to the lab reference frame (set by the reference

polarizer). The extinction ratio can then be estimated by either using the actual data
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for each pixel, or by

𝐸𝑅 =
𝑎

𝑎 + 𝑏
(5.4.2)

note that the above doesn’t account for dark current. If bad pixels are eliminated,

our extinction ratios range from about 1 ∶ 10 to 1 ∶ 50, with the mean at ∼ 1 ∶ 17.

Bad pixels are pixels which are either ”hot” or ”dark,” i.e., they don’t respond to vari-

ations in irradiance and output a very high digital number or a low digital number

respectively. These ratios were calculated directly from the data. The Malus’ like law

parameter 󰅮its for each pixel are then used as inputs for Mueller matrices of diatten-

uators. The calibration data was recorded with help from Rafael Rojas and the initial

󰅮its to the Malus’ like function were performed by Oscar G. Rodrı́guez-Herrera, how-

ever I re-ran the 󰅮its using a more stringent stopping criteria and a multi-threaded

optimization routine in Matlab. Initially there appeared to be a much larger angular

variance among the nominally 0∘ micropolarizers as compared with the other ele-

ments, however this appears to be an artifact from the 󰅮irst optimization procedure;

the subsequent more stringent optimization procedure appears to have eliminated

this variance difference.

The systematic effects on the channel structure of the physical micropolarizer

array are addressed in Section 4.5

5.4.2 PSA and PSG reference frame

Another issue with the instrument is the in plane, i.e., around the optical axis, rota-

tion between the PSG and the PSA. In the ideal system, the components are all aligned

to some 󰅮ixed reference frame, with the Stokes parameters of the input into themod-

ulation optics of the PSG being the horizontally linearly polarized state

𝐬in =

⎡
⎢
⎢
⎢
⎢
⎣

1

1

0

0

⎤
⎥
⎥
⎥
⎥
⎦

(5.4.3)

and the micropolarizer array and camera in the PSA are oriented so that the 0∘ mi-

cropolarizer elements are aligned to the same 𝑥𝑦-axis as the Stokes parameters after
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the polarizer in the PSG. However, this is not the case in the physical system. First,

the laser output linear polarization state is nearly vertical, not horizontal, and there

is a rotation between that vertical state and the 𝑥𝑦-coordinate frame attached to the

mean 0∘ micropolarizer element. Themean 0∘ element here denotes the literal mean

of all 0∘ elements of the micropolarizer array. Furthermore, once a reference is de-

󰅮ined, the fast axis of each retarder in the systemmust be aligned in a systematic way

so that the fast axis position is known with respect to the de󰅮ined reference frame.

As shown in Chapter 3, the rotation of the retarders has no affect on the ideal

system, but it can affect the systematic errors of the real system. The simplest way

to 󰅮ind and set the retarder orientations is to use the element by element calibration

method. The laser is polarized to a high quality linear state after the Glan-Laser po-

larizer, and it is used as the reference axis. That is, the fast axes of the retarders are

oriented 90∘ from linear polarization axis of the PSG laser. Note that the fast axis of

each retarder is visually marked by the manufacturer. Retarder orientation calibra-

tion can be accomplished in the following way:

(a) prior to any retarders being inserted into the beam path, either orient the

PSA and PSG so that the beam path goes directly from the PSG through the

PSA, or orient the PSA and PSG in a re󰅮lective con󰅮igurationwhere amirror is

placed far away in a quasi-monostatic orientation and the beam is re󰅮lected

through the apertures for the retarders.

(b) after the last retarder aperture on the PSA, place another rotatable linear

reference polarizer and rotate it until maximum extinction is reached, i.e.,

until the PSG polarizer and the reference polarizer are crossed.

(c) place the 󰅮irst retarder (in optical propagation order) into the stage mount.

(d) rotate the stage until the visible mark is approximately horizontal. Then ro-

tate the stage until maximum extinction is reached after the reference polar-

izer. Record the stage position. Repeat this 10 to 20 times. Take an average

of the recorded stage positions. This position is the position for which the

slow axis of the retarder is aligned to the linear polarization of the PSG. Lock

the position of the stage for this particular retarder and leave the retarder in

place.
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(e) repeat the above step for each subsequent retarder.

The above procedure is not currently automated, but I intend to automate in the fu-

ture.

The remaining orientation to calibrate is the rotation angle between the PSG and

the micropolarizer array. This can be accomplished via a procedure similar to the

retarder calibration procedure. First insert a reference polarizer and maximize the

extinction of the PSG light and record the angular position. This polarizer must be

󰅮ixed in a location where the micropolarizer array camera can image through it. I

used a Meadowlight 50𝑚𝑚 Versalight wire grid polarizer in an accurate rotatable

mount with rotation scale markings. Next, insert the camera into the 󰅮inal position

and securely mount it. When imaging through the polarizer (into something with

enough illumination, I used a white wall), the darkest set of pixels will correspond

to the micropolarizer elements which are linearly polarized in nominally the same

direction as the PSG light. Finally, rotate the reference polarizer until this dark set

of pixels is minimized in irradiance (maximized in extinction). Record the difference

between the original angular position of the reference polarizer and the current po-

sition. This is the angular rotation offset between the micropolarizer array and the

PSG and PSA retarders. This angular difference is used in the semi-empirical model

described in the next section. The measured rotation offset was ∼ −3.9∘.

5.5 Semi-empirical model

Reconstruction requires accurate knowledge of the actual channels of the physical

instrument, which dictates the entries of the 𝐐 matrix for Mueller matrix recon-

struction. Since it is dif󰅮icult to probe the entire system matrix dynamically, a semi-

empirical model was developed to characterize the physical system. All calibrations

and known retardances were used in the model. Additionally, the model was de-

signed to support potential systematic errors and noise sources. The actual bulk re-

tardances of each retarder are used in the model, which is a valid assumption since

the retarders are in collimated optical spaces and therefore the retardance doesn’t

have any signi󰅮icant spatial variation at the object or image planes. Finally, sampling

at the correct framerate is implemented into the model. The model was designed to
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address Johnson (Gaussian like) detector noise, Poisson noise, spatially varying il-

lumination, and the remaining systematic error of retarder position wander during

rotation. The model also allows for any Mueller matrix object to be inserted, and as-

sumes that the object has a spatial size equivalent to the camera image frame size.

The model does not account for the systematic errors induced from the imaging op-

tics, speckle, lens aberrations, etc. This is a forward model, given a set of system pa-

rameters, noise parameters, and time resolved Mueller matrix objects, it computes

a simulated spatio-temporal data cube for the imaging camera, which can then be

Fourier transformed into the channel space.

Themodel uses all system, calibration andnoise informationavailable to compute

the Stokes parameters at each pixel, (𝑥𝑘, 𝑦𝑙) at each time step, 𝑡𝑚 as follows:

𝐬out(𝑥𝑘, 𝑦𝑙 , 𝑡𝑚) = 𝐏(𝑥𝑘, 𝑦𝑙) ⋅ 𝐑([𝜈4(𝑡𝑚) + 𝑛𝜈4], 𝜖4, 𝛿4) ⋅ 𝐑([𝜈3(𝑡𝑚) + 𝑛𝜈3], 𝜖3, 𝛿3)

⋅ 𝐌test,𝐼(𝑡𝑚) ⋅ 𝐑([𝜈2(𝑡𝑚) + 𝑛𝜈2], 𝜖2, 𝛿2) ⋅ 𝐑([𝜈1(𝑡𝑚) + 𝑛𝜈1], 𝜖1, 𝛿1)𝐬in

(5.5.1)

where

𝐬in =

⎡
⎢
⎢
⎢
⎢
⎣

1

−1

0

0

⎤
⎥
⎥
⎥
⎥
⎦

, due to the laser polarization orientation (5.5.2)

and𝐌test,𝐼(𝑡𝑚) is a Mueller matrix object multiplied spatially by the illumination pat-

tern 𝐼 and can change in time 𝑡𝑚. The 𝑛𝜈𝑘 are noise realizations sampled from what-

ever rotation wander distribution is chosen. 𝐏(𝑥𝑘, 𝑦𝑙) represents the calibrated and

properly rotated micropolarizer array at pixel (𝑘, 𝑙), and is a linear polarizer matrix

assumed to be [102]

1

2

⎡
⎢
⎢
⎢
⎢
⎣

𝐴 𝐵 cos 2𝜃 𝐵 sin 2𝜃 0

𝐵 cos 2𝜃 𝐴 cos2 2𝜃 + 𝐶 sin2 2𝜃 (𝐴 − 𝐶) cos 2𝜃 sin 2𝜃 0

𝐵 sin 2𝜃 (𝐴 − 𝐶) cos 2𝜃 sin 2𝜃 𝐶 cos2 2𝜃 + 𝐴 sin2 2𝜃 0

0 0 0 𝐶

⎤
⎥
⎥
⎥
⎥
⎦

(5.5.3)

where (5.5.4)

𝐴 = 𝑇max + 𝑇min, (5.5.5)
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𝐵 = 𝑇max − 𝑇min, (5.5.6)

𝐶 = 2√𝑇max𝑇min (5.5.7)

at each pixel, where 𝑇max is the maximum transmission corresponding to 𝑎 + 𝑏 from

Equation (5.4.1) and 𝑇min is the minimum transmission corresponding to 𝑎 from

Equation (5.4.1). The system channels can be derived bymaking𝐌test,𝐼(𝑡𝑚) constant

over time and with one element at 0 ≤ 𝑖, 𝑗 ≤ 3 equal to 1 and all other elements

zero, then evaluating the system over all 𝑖, 𝑗. This gives the channel response of each

speci󰅮ic Mueller matrix element. Finally, the 𝑠0 component of the 󰅮inal Stokes param-

eters are taken, and Gaussian (corresponding to read noise and thermal noise) and

Poisson distribution samples are applied to simulate the CCD sensor noise. Noise

strengths can be changed for the Gaussian component, and the Poisson component

is computed per pixel and is dependent on the 𝑠0 magnitude at that pixel. This im-

plicitly captures illumination variations and the effects of these variations on Poisson

noise. The available noise types for rotation wander are Gaussian and uniform dis-

tributions. Each response for each time step and each pixel is then assembled into a

3-dimensional data cube and Fourier transformed. The channel weights can then be

read off to assemble the 𝐐matrix.

The forward model was used with a region of interest of size 980 × 980 pixels

on the focal plane. On a computer with 32𝐺𝐵 of RAM blocks of up to 72 temporal

frames could be processed through the model in reasonable times of less than an

hour. For this size, 980 × 980 × 72, 32𝐺𝐵 of RAM was necessary, attempts on com-

puterswith less RAMcould not complete evenwhen allowed to run formultiple days.

The semi-empirical model was used to generatemany of the simulated results in this

dissertation, and was used to generate the 𝐐 matrix required for reconstruction of

Mueller matrix images from actual data shown later in this chapter.

5.6 Filtering and sampling

Prior to inversion to obtain the Mueller matrix images, the data must be 󰅳iltered in

the Fourier domain in order to obtain data ”cubes” to apply the 𝐐 matrix to. The

unique channel locations are determined by the design of the system channel struc-

ture, and the sampling scheme. The micropolarizer array samples spatially right at
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the Nyquist frequency, and the instrument is also designed to sample temporally

right at the Nyquist frequency as well. This is done primarily to mitigate spectral

leakage.

The 󰅮iltering process described here implicitly sets the center of the 󰅮iltered data

to zero frequency (moved to “base band”), which is denoteddemodulation in the com-

munications literature, i.e. the data is both 󰅮iltered and demodulated before unmix-

ing.

5.6.1 Spectral leakage

In the polarimetric systemdesign, wemust temporally sample (via our focal plane ar-

ray, i.e., a camera). We also are forced to use awindowof samples, sincewedon’t have

in󰅮inite time or computer memory. These windows must be integer periods of our

carrier frequencies, otherwise we get spectral leakage. The seminal paper on spec-

tral leakage and mitigation is by Harris [137]. When performing a discrete Fourier

transform (DFT, including FFT), if thewindow length is not an integermultiple of the

period, then frequencies from the sharp cutoff become introduced into the DFT.

The camera on our polarimeter has amaximum framerate of 28.4 frames per sec-

ond (fps); however the following analysis addresses differences between sampling at

30𝑓𝑝𝑠 and 32𝑓𝑝𝑠. The balanced bandwidth optimal systemdesign for this particular

type of system has sets of 9 temporal channels, including the DC or 0 channel, cor-

responding to the temporal modulation dimension. Due to Hermicity, this implies

that there are 4 unique temporal frequencies other than 0 for this design, and they

are evenly spaced (balanced). The maximum frequency is limited by the physical

rotation speed limitations of a retarder, and the sample rate of the camera (due to

Nyquist).

The above puts constraints on the windows, frequencies, and sampling rates that

we can use without spectral leakage. It may be desirable to sample at slightly above

Nyquist; however in our case spectral leakage does not warrant doing so. Our win-

dowmust be an integer number of periods of all 4 frequencies. Practically thismeans

that we do not want to increase the sampling rate to something slightly over Nyquist,

because of the interplay between Nyquist, spectral leakage, and channel frequency

spacing.
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Figure 5.14: Sum of cosines curve sampled at the Nyquist frequency (blue dots) and

slightly higher than the Nyquist frequency (red squares).

Figure 5.14 is a graph of

𝑓(𝑡) = cos 2𝜋(3.75𝑡) + cos 2𝜋(7.5𝑡) + cos 2𝜋(11.25𝑡) + cos 2𝜋(15𝑡). (5.6.1)

The blue dots denote sampling at 30 fps (or once every
1

30
𝑠), and the red squares

denote sampling at 32 fps.

When we take the Fourier transform ℱ{𝑓(𝑡)}𝑡→𝜈 for the 30fps sampled case we

obtain the graph in blue in Figure 5.15. This is the correct representation, there is no

imaginary part, and the discrete 𝛿-functions are located precisely at the frequencies

expected from the corresponding real (non-discrete) Fourier transform results. The

red graphs show the spectral leakage issue, the imaginary part becomes non-zero,

and the 𝛿-functions ”split” into positive and negative parts. This creates problems

when trying to reconstruct data after 󰅮iltering. Note that we have the leftmost 𝛿-

function at twice the magnitude of the others for the blue, 30fps, case and a missing

𝛿-functionon the right side. This is due to the channel being sampled right atNyquist.

There are ways to mitigate spectral leakage when we reconstruct our data from the

channel(s), but this makes writing the reconstruction code more dif󰅮icult, more bug

prone, etc. Suppose that we denote our sampling rate

𝑓𝑠 = 𝑛𝑠
1

𝑠
, 𝑛𝑠 ∈ ℕ, (5.6.2)
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Figure 5.15: Fast Fourier transforms of the sampled sum of cosines curve, blue cor-

responds to the Nyquist sampling rate, and red corresponds to the slightly greater

than Nyquist rate.

i.e., 𝑛𝑠 evenly spaced samples per second, where 𝑛𝑠 is an integer. Now suppose that

we also have de󰅮ined an ordered list of channel frequencies,

𝜈0 ≤ 𝜈1 ≤ ⋯ ≤ 𝜈𝑘 ≤
𝑓𝑠

2
, (5.6.3)

where the last frequency is necessarily less than or equal to the Nyquist frequency

(caveat : when sampling at Nyquist there exist functions which cannot be recon-

structed, the Nyquist condition is strictly less than, but we typically may use the

equality in engineering applications). Given these assumptions, we nowwant to 󰅮ind

the minimumwindow length which encloses an integer number of sampled periods,

for each frequency.

The sample increment is

Δ𝑡 =
1

𝑓𝑠
, (5.6.4)

so we need to 󰅮ind𝑚 such that

𝑓0(0) = 𝑓0(𝑚Δ𝑡) (5.6.5)

𝑓1(0) = 𝑓1(𝑚Δ𝑡) (5.6.6)
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⋮ (5.6.7)

𝑓𝑘(0) = 𝑓𝑘(𝑚Δ𝑡) (5.6.8)

simultaneously, where 𝑓𝑗(𝑡) = cos 2𝜋(𝜈𝑗𝑡) or 𝑓𝑗(𝑡) = sin 2𝜋(𝜈𝑗𝑡). This implies that

for an arbitrary 𝑗,

1 = cos 2𝜋(𝜈𝑗𝑚Δ𝑡) or 0 = sin 2𝜋(𝜈𝑗𝑚Δ𝑡) (5.6.9)

which then leads to the fact

𝜈𝑗𝑚Δ𝑡 = 𝑙𝑗 , 𝑙𝑗 ∈ ℕ (5.6.10)

⟹ 𝑚 =
𝑙𝑗

𝜈𝑗Δ𝑡
, ∀𝑗 (5.6.11)

⟹ 𝑚 =
𝑙𝑗𝑓𝑠

𝜈𝑗
, ∀𝑗 (5.6.12)

This last equation reveals a key piece of information; 𝑓𝑠/𝜈𝑗 must be a rational number.

The last line above can then be rearranged to solve for 𝑙𝑗 ,

𝑙𝑗 =
𝑚𝜈𝑗

𝑓𝑠
, (5.6.13)

since𝑚 is 󰅮ixed and both 𝜈𝑗 and 𝑓𝑠 can be speci󰅮ied as shown previously, for example

cos 2𝜋(3.75𝑡) + cos 2𝜋(7.5𝑡) + cos 2𝜋(11.25𝑡) + cos 2𝜋(15𝑡), (5.6.14)

sampled at 30fps. For our example, we have the following set of equations

𝑙0 =
3.75𝑚

30
=
𝑚

8
(5.6.15)

(5.6.16)

𝑙1 =
7.5𝑚

30
=
𝑚

4
(5.6.17)

(5.6.18)

𝑙2 =
11.25𝑚

30
=
3𝑚

8
(5.6.19)

(5.6.20)

𝑙3 =
15𝑚

8
=
𝑚

2
. (5.6.21)
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By inspection we can see that 𝑚 ≥ 8, and plugging in 𝑚 = 8 does in fact satisfy all

of the equations, resulting in 𝑙0 = 1, 𝑙1 = 2, 𝑙2 = 3, 𝑙3 = 4. For this example, the

smallest window is 8 samples.

A spectral leakage free channel construction requires:

𝑚 =
𝑙𝑗𝑓𝑠

𝜈𝑗
, ∀𝑗 , (5.6.22)

where𝑚 ∈ ℕ is theminimumnumber of samples, 𝑓𝑠 is the sampling rate, 𝜈𝑗 is each of

the channel frequencies, 𝑙𝑗 corresponds to the number of periods in the window for

each respective 𝜈𝑗 , and 󰅮inally 𝑓𝑠/𝜈𝑗 must be rational. Notice that, typically 𝑓𝑠 is 󰅮ixed,

which implies that there can never be an irrational ratio between any of the channel

frequencies if we want the channels to remain free of spectral leakage.

5.6.2 Filter types

Filtersmust be applied in the channel space aroundeachunique channel (𝛿-function)

location to both suppress crosstalk and to isolate the Mueller object data which is

convolved with that channel. If crosstalk is large, then the suppression effect of the

󰅮ilters is limited. If the spatio-temporal frequency distribution of speci󰅮ic objects

or classes of objects is known then 󰅮ilters can be designed which reject frequencies

not in the distribution. Recent work by LaCasse et al has shown a way to compute

spectral density response functions for channeled polarimetric systems [138], which

quanti󰅮ies how the power spectral density of Stokes parameters is transformed in the

channeled system. Thiswork shows how the power spectral density transforms for a

given system and then shows how to compute optimal 󰅮ilters. However, further work

is needed to design an optimal system give the power spectral density.

For a general instrument, few assumptions can be made about the statistical

properties (the power spectral densities) of the objects being polarimetrically im-

aged. We know that spatial frequencies are limited by the imaging optics, and that

unaliased temporal frequencies are limited by the CCD sensor temporal bandwidth

and integration times. As discussed in Chapter 3 the channel structure then limits the

reconstructable spatio-temporal bandwidth. Many natural scenes have bandwidth

power grouped around low frequencies in both space and time, so this assumption
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(a) Spatio-temporal domain (b) Fourier domain

Figure 5.16: Space-time (𝑥, 𝑦, 𝑡)modulated data ”cube” transformed into Fourier do-

main.

will be made. Note that a different analysis is needed for something like a system

which scans (pans) across a scene at some known rate, as this will change the as-

sumption about the temporal frequencies being clustered around the zero frequency.

An example of the data prior to 󰅮iltering is shown in Figure 5.16. A data ”cube” of

a spatial region of interest of my hand moving while holding a piece of ground glass

is shown on the left, and the Fourier transform of those data is shown on the right.

Since we have a general instrument, the 󰅮ilters we use should pass as much of the

data as possible, up to the band limit. There are a variety of 󰅮ilters which accomplish

this, from the simple rectangular 󰅮ilter, Gaussian and Gaussian like 󰅮ilters, Hann and

Hammingwindows, and various 󰅮lat top 󰅮ilters such as theTukey, etc. I chose a 󰅮lat top

󰅮ilter which I came across in mathematical analysis: the Planck-taper window [139].

I chose Planck-taper 󰅮ilters because

• They are functions with compact support.

• They are 𝐶∞, i.e. in󰅮initely differentiable.

• They have a 󰅮lat top and can approach the 𝑟𝑒𝑐𝑡() function

• The transition from 0 to 1 is controlled by a single parameter, 𝜖.
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The Planck-taper 󰅮ilter is de󰅮ined in 1 dimension over the interval [−𝑇, 𝑇] by

𝑓(𝑡, 𝜖) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

0 𝑡 ≤ −𝑇

1

exp(
𝑇−𝑇(1−2𝜖)

𝑡−𝑇
+

𝑇−𝑇(1−2𝜖)

𝑡+𝑇(1−2𝜖)
)+1

−𝑇 < 𝑡 < −𝑇(1 − 2𝜖)

1 −𝑇(1 − 2𝜖) ≤ 𝑡 ≤ 𝑇(1 − 2𝜖)

1

exp(
𝑇(1−2𝜖)−𝑇

𝑡−𝑇(1−2𝜖)
+

𝑇(1−2𝜖)−𝑇

𝑡−𝑇
)+1

𝑇(1 − 2𝜖) < 𝑡 < 𝑇

0 𝑇 ≤ 𝑡

(5.6.23)

which is easily adapted to3dimensionsby substituting a radius fromeach channel lo-

cation for 𝑡. I use a weighted radius to form ellipsoidal 󰅮ilters for the spatio-temporal

system since the channel space is not equally scaled. The data presented later in

this chapter were 󰅮iltered with 3 dimensional Planck taper 󰅮ilters with 𝜖 = 0.25.

5.6.3 Implementation

Dif󰅮iculties aroseduring the implementationof 󰅮iltering andapplicationof the𝐐+ma-

trix. As shown in Figure 5.17 the 3 dimension 󰅮ilters are only complete for the center

column of the data in the spatio-temporal channel space. Due to sampling right at the

Nyquist frequency, the resulting data and 󰅮ilters only cover half (and for two channel

locations, a quarter) of the space. To apply𝐐+ properly then requires reconstruction

of the other half (or other three quarters of the space) using the Hermicity relations.

This reconstruction is straight forward in theory, but is error prone in practice, te-

dious, and subject to errors when writing the 󰅮iltering code. After extensive testing

the Hermitian extension code was veri󰅮ied to be correct and produced results which

are correct when using simulated data from the semi-empirical model. Filtered data

of an entire 980 × 980 × 72 for 𝜉, 𝜂, 𝜈 data ”cube” is shown in Figure 5.18.

5.7 Validation

After calibration was 󰅮inished, a small validation procedure was undertaken. This

validation procedure is not exhaustive and a full procedure will need to be designed

in the future. A mirror was placed across the room from the polarimeter and light

was directed so that it was imaged onto the focal plane. A defocus was introduced
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−1 0 1
0

0.5

1

𝑥

𝑦

(a) 1-dimensional

(b) 3-dimensional

Figure 5.17: Planck-taper 󰅮ilters used for our system. In (b) yellow represents amag-

nitude of 1 and blue represents a magnitude close to, but greater than, 0.
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Figure 5.18: Filtered data in the Fourier domain, 󰅮iltered via Planck taper 󰅮ilters. The

󰅮igure depicts an isosurface (surface of equal magnitude) to show the data.
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via the lens focusing mechanism on the PSA in order to minimize detector pixel sat-

uration, and the laser was turned to minimum power, about 4𝑚𝑊. A polarizer was

introduced into the beam path, and rotated until it was at maximum extinction with

the source, this ensured that the polarizers transmission axis was nominally aligned

with the 𝑥-axis of the instruments polarization reference frame. Raw data was then

collected and compared to data generated by the semi-empirical model for an ideal

linear polarizerMuellermatrix. The comparisonwasdone in the channel space. Both

sets of channel datawere normalized inmagnitude by the zero frequency component

magnitude in order to make them comparable.

As shown in Figures 5.19 and 5.20 the channel structures are close to one an-

other, providing some validation of the instruments actual channel structure. There

remain some differences which need to be analyzed further in the future, however

the channel structure generated by the semi-empirical model can be used to attempt

to reconstruct data, and is used for the results in the next section.

5.8 Imaging results

After calibration was 󰅮inished and the semi-empirical model veri󰅮ied, all of the hard-

ware and software components were in place to take data and compute Mueller ma-

trix images. The procedure for Mueller matrix image reconstruction is exactly the

same as for the reconstruction of the semi-empirical model output: collect a data

stream of 72 images, Fourier transform the 3 dimensional data ”cube,” 󰅮ilter the data

through the Planck taper 󰅮ilters, and recombine the data linearly as prescribed by the

𝐐+ matrix generated by the semi-empirical model. As stated previously, this recon-

struction cannot yet be accomplished in real time, the reconstruction algorithm is

written in Matlab which is not performant enough to accomplish real time speeds.

The data were collected was at a distance of approximately 4 − 5𝑚 and the po-

larimeter was stationary (i.e. not panned or rotated while the images were taken).

After collection began I movedmy hand in the framewhile holding a piece of ground

glass. Laser power was set to ∼ 10𝑚𝑊 and integration time was 30𝑚𝑠. Position

data were carefully checked to ensure that there were no missed camera triggers for

the data used for reconstruction.
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Figure 5.19: Polarizer channel response from the semi-empirical model (red,

dashed) versus the physical instrument (blue, solid). The left column are the real

parts and the right column are the imaginary parts. The 󰅮irst row is taken along the

center column line, 𝜈, of the channel structure where 𝜉 = 𝜂 = 0, the second row

is taken along the line 𝜉 = 0, 𝜂 = −0.5 and the third row is taken along the line

𝜉 = −0.5, 𝜂 = 0. The channels match well, but there are some differences.
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Figure 5.20: Polarizer channel response differences between the semi-empirical (SE)

model and the physical instrument, the physical instrument data was subtracted

from the SE model data. The left column are the real parts and the right column

are the imaginary parts. The 󰅮irst row is taken along the center column line, 𝜈, of

the channel structure where 𝜉 = 𝜂 = 0, the second row is taken along the line

𝜉 = 0, 𝜂 = −0.5 and the third row is taken along the line 𝜉 = −0.5, 𝜂 = 0. The

channels match well, but there are some differences.
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Figure 5.21: Moving handMuellermatrix reconstruction. All elements except for𝑚00

are normalized by𝑚00. Animated in the electronic version.
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Figure 5.22: Moving hand reconstruction. On the left is the reconstruction of 𝑚01

and on the right is a downsampled raw camera image. Animated in the electronic

version.

The complete Mueller reconstruction output is shown in Figure 5.21, and in the

electronic version is animated at the actual framerate of 3.5𝑓𝑝𝑠. A comparison of the

reconstructed 𝑚01 and a downsampled raw image is shown in Figure 5.22 and the

animation is at the raw camera frame rate of 28.4𝑓𝑝𝑠. When my hand movements

exceed the temporal bandwidth, the effects of crosstalk canbe seen as “ringing” edges

in the reconstructed Mueller images.

There appear to be some inconsistencies in the reconstructed images that are not

physically or intuitively correct. For instance, for a scattering surface like my hand

and ground glass, it is unlikely that my hand is actually diattenuating like the 󰅮irst

row shown in Figure 5.21 suggests. I have not shown it to be the case, but I strongly

suspect that this artifact is due to the possible strong crosstalk into the𝑚01, 𝑚02, 𝑚03

channels by the zero frequency component. The zero frequency component has a

large magnitude and so could produce more crosstalk into the temporally adjacent

channels, which consist of the channels for the𝑚01, 𝑚02, 𝑚03 elements. See the 󰅮irst

row of the system in Figure 3.11 for the details about this potential issue.

Mitigation of this crosstalk could be eliminated if an independent estimate of𝑚00
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could be obtained. A 󰅮irst attempt can be made by summing over an ideal micropo-

larizer “superpixel.” Recall

𝑠0(𝐱) =

3

∑

𝑖=0

3

∑

𝑗=0

𝑎0𝑖(𝐱)𝑠𝑗(𝐱)𝑚𝑖𝑗(𝐱)

which implies for an ideal micropolarizer “superpixel”

𝐚0∘ =

⎡
⎢
⎢
⎢
⎢
⎣

1

𝑅𝑅11

𝑅𝑅12

𝑅𝑅13

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐚45∘ =

⎡
⎢
⎢
⎢
⎢
⎣

1

𝑅𝑅21

𝑅𝑅22

𝑅𝑅23

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐚−45∘ =

⎡
⎢
⎢
⎢
⎢
⎣

1

−𝑅𝑅21

−𝑅𝑅22

−𝑅𝑅23

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐚90∘ =

⎡
⎢
⎢
⎢
⎢
⎣

1

−𝑅𝑅11

−𝑅𝑅12

−𝑅𝑅13

⎤
⎥
⎥
⎥
⎥
⎦

. (5.8.1)

explicitly. If the pixels of the “superpixel” are then added together we obtain:

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚0𝑗(𝐱0)+𝑅𝑅11(𝑡)

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚1𝑗(𝐱0)

+𝑅𝑅12(𝑡)

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚2𝑗(𝐱0) + 𝑅𝑅13(𝑡)

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚3𝑗(𝐱0)

+

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚0𝑗(𝐱1)+𝑅𝑅21(𝑡)

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚1𝑗(𝐱1)

+𝑅𝑅22(𝑡)

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚2𝑗(𝐱1) + 𝑅𝑅23(𝑡)

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚3𝑗(𝐱1)

+

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚0𝑗(𝐱2)−𝑅𝑅21(𝑡)

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚1𝑗(𝐱2)

−𝑅𝑅22(𝑡)

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚2𝑗(𝐱2) − 𝑅𝑅23(𝑡)

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚3𝑗(𝐱2)

+

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚0𝑗(𝐱3)−𝑅𝑅11(𝑡)

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚1𝑗(𝐱3)

−𝑅𝑅12(𝑡)

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚2𝑗(𝐱3) − 𝑅𝑅13(𝑡)

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚3𝑗(𝐱3), (5.8.2)

where 𝐱0, 𝐱1, 𝐱2, 𝐱3 represent the same time points 𝑡, but different positions within

the “superpixel.” If the assumption that 𝐱0 ≈ 𝐱1 ≈ 𝐱2 ≈ 𝐱3 ≈ �̅� is made then
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Equation (5.8.2) can be simpli󰅮ied to

4

3

∑

𝑗=0

𝑠𝑗(𝑡)𝑚0𝑗(�̅�). (5.8.3)

This equation does not give 𝑚00, but instead the inner product of the input carrier

vector with the 󰅮irst row of the Mueller matrix object. Further analysis is needed to

extract𝑚00 alone.

5.9 Discussion

I designed, built, and calibrated an instrument to test one of the theoretical systems

developed in Chapter 3. A physical design was implemented and custom parts spec-

i󰅮ied and assembled. A partial software stack was developed with rotation stage and

camera control modules being completely implemented. The reconstructionmodule

is templated and working in Matlab, but needs to be transfered to a C++/CUDA im-

plementation to allow the instrument to reconstruct Mueller matrix images in real

or reasonable times. The overall software architecture is 󰅮inished, but the GUI and

classi󰅮ication modules need to be 󰅮inished in the future.

Some preliminary validation showed the the system design, system modeling,

and the physical system nominally agree with one another. More robust validation

is needed in the future, however. Additionally, the microgrid array calibration was

accomplished via a diffuse piece of paper, a proper Lambertian source, e.g. an in-

tegrating sphere, needs to be used to recalibrate the microgrid array with greater

accuracy. This is planned in the near future.

Finally, reconstruction of data from the instrument shows that crosstalk remains

an issue that polarimetric system designers must contend with, and there are also

some artifacts which remain to be resolved, i.e. the 󰅮irst row of the reconstructed

data in Figure 5.21 does not appear to be physically correct and further validation

and analysis is needed.
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CHAPTER 6

Closing Remarks

Using the tools of linear systems for polarimetric systems allows both the physical

system limitations to become lucid and to design polarimetric systems in a system-

atic way. In this dissertation I have shown how to optimize spatio-temporal systems

for bandwidth using the inherent geometry present in channeled systems. I have

shown the results of this optimization, which allow for as much as a 343% improve-

ment in temporal bandwidth over conventional Mueller matrix polarimeters.

In real systems, noise and systematic error must be addressed, and can cause re-

construction issues for polarimetric instruments. There is not much in the literature

addressing the speci󰅮ic effects of noise on polarimetric channeled systems, and I be-

gin to address these effects in Chapter 4. Noise effects include noise from spatially

non-uniform illumination sources like lasers. Furthermore, systematic error in chan-

neled systems has only been addressed previously for a speci󰅮ic system in a single

journal article. In Chapter 4 I address systematic errors for channeled systems in a

more general way, and enumerate the ways speci󰅮ic types of systematic errors affect

channeled systems. This analysis has both general contributions, and contributions

speci󰅮ic to spatio-temporal systems.

Lastly, there is a dearth of Mueller matrix polarimeters being used for remote

sensing purposes, which is mainly due to the dif󰅮iculty of manufacturing fast instru-

ments. I have designed and built a fast, portable, Mueller matrix polarimeter to test

the theoretical ideas outlined in Chapter 3. This system achieves 3.5𝑓𝑝𝑠when a cam-

era at 28.4𝑓𝑝𝑠 is used as the base camera. The system validates the theory in Chap-

ter 3, and shows that the bandwidth optimizations result in fasterMuellermatrix po-

larimeters. There remain issues, however. The𝑚00 channel has a very large magni-

tude, resulting in large crosstalk into the channels adjacent to𝑚00 along 𝜈, which cor-

rupts the resulting Mueller matrix image reconstruction. This crosstalk issue must

be mitigated in order for these types of instruments to be viable for the 󰅮ield.

Continuation of both channeled systemdesign andbandwidth optimization in the
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future will include a general design framework whereby a system design can choose

channels directly in the channel space in an arbitrary domain, and the framework

will produce polarization elements which can produce those channels. The instru-

ment needs further testing andmore development on the control systems, including

implementing real time reconstruction.
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APPENDIX A

Derivations of Quad-retarder + micropolarizer array equations

A.1 Two retarder Mueller matrix

The two retarder Mueller matrix 𝐑𝐑(𝜈𝑘, 𝜈𝑙 , 𝜖𝑘, 𝜖𝑙; 𝛿𝑘, 𝛿𝑙) = 𝐑𝛿𝑙
⋅ 𝐑𝛿𝑘

has the following

form :

𝑅𝑅00 = 1, 𝑅𝑅01 = 𝑅𝑅02 = 𝑅𝑅03 = 𝑅𝑅10 = 𝑅𝑅20 = 𝑅𝑅30 = 0 (A.1.1)

𝑅𝑅11 = [cos2
𝛿𝑙

2
+ sin2

𝛿𝑙

2
cos 8𝜋(𝜈𝑙𝑡 + 𝜖𝑙)] [cos

2
𝛿𝑘

2
+ sin2

𝛿𝑘

2
cos 8𝜋(𝜈𝑘𝑡 + 𝜖𝑘)]

+ sin2
𝛿𝑙

2
sin2

𝛿𝑘

2
sin 8𝜋(𝜈𝑙𝑡 + 𝜖𝑙) sin 8𝜋(𝜈𝑘𝑡 + 𝜖𝑘)

− sin 𝛿𝑙 sin 𝛿𝑘 sin 4𝜋(𝜈𝑙𝑡 + 𝜖𝑙) sin 4𝜋(𝜈𝑘𝑡 + 𝜖𝑘) (A.1.2)

𝑅𝑅12 = [cos2
𝛿𝑙

2
+ sin2

𝛿𝑙

2
cos 8𝜋(𝜈𝑙𝑡 + 𝜖𝑙)] sin

2 𝛿𝑘

2
sin 8𝜋(𝜈𝑘𝑡 + 𝜖𝑘)

+ sin2
𝛿𝑙

2
sin 8𝜋(𝜈𝑙𝑡 + 𝜖𝑙) [cos

2
𝛿𝑘

2
− sin2

𝛿𝑘

2
cos 8𝜋(𝜈𝑘𝑡 + 𝜖𝑘)]

+ sin 𝛿𝑙 sin 𝛿𝑘 sin 4𝜋(𝜈𝑙𝑡 + 𝜖𝑙) cos 4𝜋(𝜈𝑘𝑡 + 𝜖𝑘) (A.1.3)

𝑅𝑅13 = −[cos2
𝛿𝑙

2
+ sin2

𝛿𝑙

2
cos 8𝜋(𝜈𝑙𝑡 + 𝜖𝑙)] sin 𝛿𝑘 sin 4𝜋(𝜈𝑘𝑡 + 𝜖𝑘)

+ sin2
𝛿𝑙

2
sin 𝛿𝑘 sin 8𝜋(𝜈𝑙𝑡 + 𝜖𝑙) cos 4𝜋(𝜈𝑘𝑡 + 𝜖𝑘)

− sin 𝛿𝑙 cos 𝛿𝑘 sin 4𝜋(𝜈𝑙𝑡 + 𝜖𝑙) (A.1.4)

𝑅𝑅21 = sin2
𝛿𝑙

2
sin 8𝜋(𝜈𝑙𝑡 + 𝜖𝑙) [cos

2
𝛿𝑘

2
+ sin2

𝛿𝑘

2
cos 8𝜋(𝜈𝑘𝑡 + 𝜖𝑘)]

+ [cos2
𝛿𝑙

2
− sin2

𝛿𝑙

2
cos 8𝜋(𝜈𝑙𝑡 + 𝜖𝑙)] sin

2 𝛿𝑘

2
sin 8𝜋(𝜈𝑘𝑡 + 𝜖𝑘)

+ sin 𝛿𝑙 sin 𝛿𝑘 cos 4𝜋(𝜈𝑙𝑡 + 𝜖𝑙) sin 4𝜋(𝜈𝑘𝑡 + 𝜖𝑘) (A.1.5)
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𝑅𝑅22 = sin2
𝛿𝑙

2
sin2

𝛿𝑘

2
sin 8𝜋(𝜈𝑙𝑡 + 𝜖𝑙) sin 8𝜋(𝜈𝑘𝑡 + 𝜖𝑘)

+ [cos2
𝛿𝑙

2
− sin2

𝛿𝑙

2
cos 8𝜋(𝜈𝑙𝑡 + 𝜖𝑙)] [cos

2
𝛿𝑘

2
− sin2

𝛿𝑘

2
cos 8𝜋(𝜈𝑘𝑡 + 𝜖𝑘)]

− sin 𝛿𝑙 sin 𝛿𝑘 cos 4𝜋(𝜈𝑙𝑡 + 𝜖𝑙) cos 4𝜋(𝜈𝑘𝑡 + 𝜖𝑘) (A.1.6)

𝑅𝑅23 = − sin2
𝛿𝑙

2
sin 𝛿𝑘 sin 8𝜋(𝜈𝑙𝑡 + 𝜖𝑙) sin 4𝜋(𝜈𝑘𝑡 + 𝜖𝑘)

+ [cos2
𝛿𝑙

2
− sin2

𝛿𝑙

2
cos 8𝜋(𝜈𝑙𝑡 + 𝜖𝑙)] sin 𝛿𝑘 cos 4𝜋(𝜈𝑘𝑡 + 𝜖𝑘)

+ sin 𝛿𝑙 cos 𝛿𝑘 cos 4𝜋(𝜈𝑙𝑡 + 𝜖𝑙) (A.1.7)

𝑅𝑅31 = sin 𝛿𝑙 sin 4𝜋(𝜈𝑙𝑡 + 𝜖𝑙) [cos
2
𝛿𝑘

2
+ sin2

𝛿𝑘

2
cos 8𝜋(𝜈𝑘𝑡 + 𝜖𝑘)]

− sin 𝛿𝑙 sin
2 𝛿𝑘

2
cos 4𝜋(𝜈𝑙𝑡 + 𝜖𝑙) sin 8𝜋(𝜈𝑘𝑡 + 𝜖𝑘)

+ cos 𝛿𝑙 sin 𝛿𝑘 sin 4𝜋(𝜈𝑘𝑡 + 𝜖𝑘) (A.1.8)

𝑅𝑅32 = sin 𝛿𝑙 sin
2 𝛿𝑘

2
sin 4𝜋(𝜈𝑙𝑡 + 𝜖𝑙) sin 8𝜋(𝜈𝑘𝑡 + 𝜖𝑘)

− sin 𝛿𝑙 cos 4𝜋(𝜈𝑙𝑡 + 𝜖𝑙) [cos
2
𝛿𝑘

2
− sin2

𝛿𝑘

2
cos 8𝜋(𝜈𝑘𝑡 + 𝜖𝑘)]

− cos 𝛿𝑙 sin 𝛿𝑘 cos 4𝜋(𝜈𝑘𝑡 + 𝜖𝑘) (A.1.9)

𝑅𝑅33 = − sin 𝛿𝑙 sin 𝛿𝑘 sin 4𝜋(𝜈𝑙𝑡 + 𝜖𝑙) sin 4𝜋(𝜈𝑘𝑡 + 𝜖𝑘)

− sin 𝛿𝑙 sin 𝛿𝑘 cos 4𝜋(𝜈𝑙𝑡 + 𝜖𝑙) cos 4𝜋(𝜈𝑘𝑡 + 𝜖𝑘)

+ cos 𝛿𝑙 cos 𝛿𝑘 (A.1.10)

where 𝑅𝑅𝑘𝑙 are elements of 𝐑𝐑 and we have dropped the arguments for brevity.

A.2 Fourier transform of two retarder Mueller matrix elements

We only explicitly calculate the Fourier transform for

𝑅𝑅11, 𝑅𝑅12, 𝑅𝑅13, 𝑅𝑅21, 𝑅𝑅22, 𝑅𝑅23, 𝑅𝑅31 since they are the relevant elements to
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our speci󰅮ic application. The calculations are tedious, but straightforward.

ℱ {𝑅𝑅11}𝑡→𝜈 = cos2
𝛿𝑙

2
cos2

𝛿𝑘

2
𝛿(𝜈) (A.2.1)

+
𝑒2𝜋𝑖𝜈𝜖𝑘

2
cos2

𝛿𝑙

2
sin2

𝛿𝑘

2
[𝛿(𝜈 − 4𝜈𝑘) + 𝛿(𝜈 + 4𝜈𝑘)]

+
𝑒2𝜋𝑖𝜈𝜖𝑙

2
sin2

𝛿𝑙

2
cos2

𝛿𝑘

2
[𝛿(𝜈 − 4𝜈𝑙) + 𝛿(𝜈 + 4𝜈𝑙)]

+
𝑒2𝜋𝑖𝜈(𝜖𝑙−𝜖𝑘)

2
sin2

𝛿𝑙

2
sin2

𝛿𝑘

2
[𝛿(𝜈 − 4[𝜈𝑙 − 𝜈𝑘]) + 𝛿(𝜈 + 4[𝜈𝑙 − 𝜈𝑘])]

−
𝑒2𝜋𝑖𝜈(𝜖𝑙−𝜖𝑘)

4
sin 𝛿𝑙 sin 𝛿𝑘[𝛿(𝜈 − 2[𝜈𝑙 − 𝜈𝑘]) + 𝛿(𝜈 + 2[𝜈𝑙 − 𝜈𝑘])]

+
𝑒2𝜋𝑖𝜈(𝜖𝑙+𝜖𝑘)

4
sin 𝛿𝑙 sin 𝛿𝑘[𝛿(𝜈 − 2[𝜈𝑙 + 𝜈𝑘]) + 𝛿(𝜈 + 2[𝜈𝑙 + 𝜈𝑘])]

ℱ {𝑅𝑅21}𝑡→𝜈 = −
𝑖𝑒2𝜋𝑖𝜈𝜖𝑘

2
cos2

𝛿𝑙

2
sin2

𝛿𝑘

2
[𝛿(𝜈 − 4𝜈𝑘) − 𝛿(𝜈 + 4𝜈𝑘)] (A.2.2)

−
𝑖𝑒2𝜋𝑖𝜈𝜖𝑙

2
sin2

𝛿𝑙

2
cos2

𝛿𝑘

2
[𝛿(𝜈 − 4𝜈𝑙) − 𝛿(𝜈 + 4𝜈𝑙)]

−
𝑖𝑒2𝜋𝑖𝜈(𝜖𝑙−𝜖𝑘)

2
sin2

𝛿𝑙

2
sin2

𝛿𝑘

2
[𝛿(𝜈 − 4[𝜈𝑙 − 𝜈𝑘]) − 𝛿(𝜈 + 4[𝜈𝑙 − 𝜈𝑘])]

−
𝑖𝑒2𝜋𝑖𝜈(𝜖𝑙−𝜖𝑘)

4
sin 𝛿𝑙 sin 𝛿𝑘[𝛿(𝜈 − 2[𝜈𝑙 − 𝜈𝑘]) − 𝛿(𝜈 + 2[𝜈𝑙 − 𝜈𝑘])]

+
𝑖𝑒2𝜋𝑖𝜈(𝜖𝑙+𝜖𝑘)

4
sin 𝛿𝑙 sin 𝛿𝑘[𝛿(𝜈 − 2[𝜈𝑙 + 𝜈𝑘]) − 𝛿(𝜈 + 2[𝜈𝑙 + 𝜈𝑘])]

ℱ {𝑅𝑅12}𝑡→𝜈 =
𝑖𝑒2𝜋𝑖𝜈𝜖𝑘

2
cos2

𝛿𝑙

2
sin2

𝛿𝑘

2
[𝛿(𝜈 − 4𝜈𝑘) − 𝛿(𝜈 + 4𝜈𝑘)]

+
𝑖𝑒2𝜋𝑖𝜈𝜖𝑙

2
sin2

𝛿𝑙

2
cos2

𝛿𝑘

2
[𝛿(𝜈 − 4𝜈𝑙) − 𝛿(𝜈 + 4𝜈𝑙)]

−
𝑖𝑒2𝜋𝑖𝜈(𝜖𝑙−𝜖𝑘)

2
sin2

𝛿𝑙

2
sin2

𝛿𝑘

2
[𝛿(𝜈 − 4[𝜈𝑙 − 𝜈𝑘]) − 𝛿(𝜈 + 4[𝜈𝑙 − 𝜈𝑘])]

+
𝑖𝑒2𝜋𝑖𝜈(𝜖𝑙−𝜖𝑘)

4
sin 𝛿𝑙 sin 𝛿𝑘[𝛿(𝜈 − 2[𝜈𝑙 − 𝜈𝑘]) − 𝛿(𝜈 + 2[𝜈𝑙 − 𝜈𝑘])]

+
𝑖𝑒2𝜋𝑖𝜈(𝜖𝑙+𝜖𝑘)

4
sin 𝛿𝑙 sin 𝛿𝑘[𝛿(𝜈 − 2[𝜈𝑙 + 𝜈𝑘]) − 𝛿(𝜈 + 2[𝜈𝑙 + 𝜈𝑘])]

ℱ {𝑅𝑅22}𝑡→𝜈 = cos2
𝛿𝑙

2
cos2

𝛿𝑘

2
𝛿(𝜈) (A.2.3)

−
𝑒2𝜋𝑖𝜈𝜖𝑘

2
cos2

𝛿𝑙

2
sin2

𝛿𝑘

2
[𝛿(𝜈 − 4𝜈𝑘) + 𝛿(𝜈 + 4𝜈𝑘)]
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−
𝑒2𝜋𝑖𝜈𝜖𝑙

2
sin2

𝛿𝑙

2
cos2

𝛿𝑘

2
[𝛿(𝜈 − 4𝜈𝑙) + 𝛿(𝜈 + 4𝜈𝑙)]

+
𝑒2𝜋𝑖𝜈(𝜖𝑙−𝜖𝑘)

2
sin2

𝛿𝑙

2
sin2

𝛿𝑘

2
[𝛿(𝜈 − 4[𝜈𝑙 − 𝜈𝑘]) + 𝛿(𝜈 + 4[𝜈𝑙 − 𝜈𝑘])]

−
𝑒2𝜋𝑖𝜈(𝜖𝑙−𝜖𝑘)

4
sin 𝛿𝑙 sin 𝛿𝑘[𝛿(𝜈 − 2[𝜈𝑙 − 𝜈𝑘]) + 𝛿(𝜈 + 2[𝜈𝑙 − 𝜈𝑘])]

−
𝑒2𝜋𝑖𝜈(𝜖𝑙+𝜖𝑘)

4
sin 𝛿𝑙 sin 𝛿𝑘[𝛿(𝜈 − 2[𝜈𝑙 + 𝜈𝑘]) + 𝛿(𝜈 + 2[𝜈𝑙 + 𝜈𝑘])]

ℱ {𝑅𝑅13}𝑡→𝜈 = −
𝑖𝑒2𝜋𝑖𝜈𝜖𝑘

2
cos2

𝛿𝑙

2
sin 𝛿𝑘[𝛿(𝜈 − 2𝜈𝑘) − 𝛿(𝜈 + 2𝜈𝑘)] (A.2.4)

−
𝑖𝑒2𝜋𝑖𝜈𝜖𝑙

2
sin 𝛿𝑙 cos 𝛿𝑘[𝛿(𝜈 − 2𝜈𝑙) − 𝛿(𝜈 + 2𝜈𝑙)]

+
𝑖𝑒2𝜋𝑖𝜈[2𝜖𝑙−𝜖𝑘]

2
sin2

𝛿𝑙

2
sin 𝛿𝑘[𝛿(𝜈 − 2[2𝜈𝑙 − 𝜈𝑘]) − 𝛿(𝜈 + 2[2𝜈𝑙 − 𝜈𝑘])]

ℱ {𝑅𝑅23}𝑡→𝜈 =
𝑒2𝜋𝑖𝜈𝜖𝑘

2
cos2

𝛿𝑙

2
sin 𝛿𝑘[𝛿(𝜈 − 2𝜈𝑘) + 𝛿(𝜈 + 2𝜈𝑘)] (A.2.5)

𝑒2𝜋𝑖𝜈𝜖𝑙

2
sin 𝛿𝑙 cos 𝛿𝑘[𝛿(𝜈 − 2𝜈𝑙) + 𝛿(𝜈 + 2𝜈𝑙)]

−
𝑒2𝜋𝑖𝜈[2𝜖𝑙−𝜖𝑘]

2
sin2

𝛿𝑙

2
sin 𝛿𝑘[𝛿(𝜈 − 2[2𝜈𝑙 − 𝜈𝑘]) + 𝛿(𝜈 + 2[2𝜈𝑙 − 𝜈𝑘])]

ℱ {𝑅𝑅31}𝑡→𝜈 = −
𝑖𝑒2𝜋𝑖𝜈𝜖𝑘

2
cos 𝛿𝑙 sin 𝛿𝑘[𝛿(𝜈 − 2𝜈𝑘) − 𝛿(𝜈 + 2𝜈𝑘)] (A.2.6)

−
𝑖𝑒2𝜋𝑖𝜈𝜖𝑙

2
sin 𝛿𝑙 cos

2
𝛿𝑘

2
[𝛿(𝜈 − 2𝜈𝑙) − 𝛿(𝜈 + 2𝜈𝑙)]

−
𝑖𝑒2𝜋𝑖𝜈[𝜖𝑙−2𝜖𝑘]

2
sin 𝛿𝑙 sin

2 𝛿𝑘

2
[𝛿(𝜈 − 2[𝜈𝑙 − 2𝜈𝑘]) − 𝛿(𝜈 + 2[𝜈𝑙 − 2𝜈𝑘])]



169

APPENDIX B

Instrument details

We include here some opto-mechanical details, the Source Assembly is the PSG, and

the Receiver Assembly is the PSA. Fig B.1 shows a top view of the instrument design.

(a) Top view of PSG (b) Top view of PSA

Figure B.1: Renderings of the source and receiver for HyDMIP.

B.0.1 PSG custom parts
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Figure B.4: PSG laser mount.

B.0.2 PSA custom parts

Custom parts designed for both the PSA and PSG are included here.

B.0.3 Mounting and display hardware



172

17

A

10

 120 x  0.201  THRU
 1/4-20 UNC - 2B  THRU 4

.5
00

 
 5

.5
00

 

 1.500 ±.010 14 x 1.000

7 
x 

1.
00

0

4 x  0.201  0.350
1/4-20 UNC - 2B  0.200

2 x .500
2 x .500

4 
x 

2.
00

0

.005 A B

.015 A

.005 A B

B

4 x  0.201  0.350
1/4-20 UNC - 2B  0.200

2 x  0.313  0.400
3/8-16 UNC - 2B  0.200 2 

x 
.5

00
2 

x 
5.

00
0

2 x 1.000

2 x 5.000

2 x 2.500

1.
56

3
1.

87
5

.05 A B
.005 A B

.1 A B

.1 A B

BOTTOM

1

Breadboard Mod 1 (DURIP)

33

University of Arizona : Optical Sciences

Weight: 8.08

N/A

TiBread
A3

SHEET 1 OF 1SCALE:1:5

Part #

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURENAME

DEBUR AND 
BREAK SHARP 
EDGES .005-.025, 
MACHINED FILLET
RADII .015-.10

FINISH:

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN INCHES

TOLERANCES:
     X.X: 0.1in
   X.XX: 0.01in
 X.XXX: 0.005in

Q.A

MFG

APPV'D

CHK'D

DRAWN

Quantity : 1
ALL UNTOLERANCED BASIC 
DIMESIONS DEFINED BY 

0.01 A B C  

125
ALL MACHNED SURFACES 

         UNLESS OTHERWISE SPECIFED

ALL ANGLES ±1° UNLESS
OTHERWISE SPECIFIED

Figure B.5: PSA lightweight breadboard.
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Figure B.6: Modi󰅮ied Samsung K-mount adapter, additional detail and model.
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Figure B.7: 4D TechnologiesTM micropolarizer camera mount.
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Figure B.8: Dual rotation stage mounting plate. Mounts 2 IntelLiDrives stages back

to back with high tolerances between the two mounting surfaces. Used in both the

PSG and PSA.
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Figure B.10: Angle bracket for monitor mount.
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FigureB.11: Multi-mount bracket. Mounts the PSG andPSAassembly together on the

same plane. Allows for the angle between the PSA and PSG assembly to be adjusted.

Can be mounted to a standard video (television) grade tri-pod.
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Figure B.12: Multi-mount bracket assembly. Mounts the PSA and PSG and viewing

monitor together, and mounts to a tripod.



179

B.0.4 Code

// Pulse downsampling code fo r Arduino .

2 void setup ( ) {

pinMode (3 ,OUTPUT) ;

4 pinMode (12 , INPUT) ;

}

6

// super f a s t pulse count ing loop , works f o r 480kHz pulse t r a i n .

8 void loop ( ) {

byte t ogg l e ;

10 i n t encoderCount ;

u in t 8 _ t sampledPin , l a s tVa l , portDOut ;

12 portDOut = B00001000 ;

14 t o gg l e = 0 ;

encoderCount = 0 ;

16 l a s t V a l = PINB & B00010000 ;

no In te r rup t s ( ) ;

18 while ( t rue )

{

20 sampledPin = PINB & B00010000 ;

i f ( l a s t V a l ^ sampledPin )

22 {

encoderCount ++;

24 l a s t V a l = sampledPin ;

}

26 // Each pulse has 2 s t a t e s , low and high , t h i s

// with a modulus t ogg l e had to be done fo r speed ins t ead

28 // o f count ing pu l ses i t counts s t a t e changes .

i f ( encoderCount == 8437 + togg l e )

30 {

portDOut ^= B00001000 ;

32 PORTD = portDOut ;

encoderCount = 0 ;

34 t o gg l e = (~ togg l e ) & 1 ;

}

36 }

}
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