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Abstract 
 
This report provides and overview of the study of imaging in Master course. The report has to main parts: The 
first one cover the theoretical part the imaging process from geometric optics till aberration theory. In this part 
of the report a quick review of concepts as: collinear transformations, Gaussian equations, symmetry in optical 
systems, Fourier optics and optical aberrations till sixth order aberration are reviewed.  The second part is a 
practical case. Starting form an on-axis Cassegrain telescope, the process of design of an unobscured telescope 
based in extended polynomial surface is described, including the correction of all the aberration in the system    
till fourth order. 
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Abbreviations and symbols 
 
‘ : Related to the image or image space 
c: Wave speed propagation in the vacuum 
F: Front focal point 
F’:  Rear focal point 
HW: Homework 

ℋ��⃗ :   Magnetic field �ℋ𝑥𝑥 ,ℋ𝑦𝑦,ℋ𝑧𝑧� 
m: Transverse magnification 
n:  Refraction index 
OA: Optical Axis 
OAR:  Optical Axis Ray 
P(x,y,z) :  Point at (x,y,z) 
P:  Front principal plane 
P’:  Rear principal plane 
Pw:  General pupil function 
Pmn:  Polynomial in the form xmyn 

𝑆𝑆:�   Stop Shifting Parameter 
TTC:  Tilted Component Telescope 

ℇ��⃗ :  Electric field �ℰ𝑥𝑥 ,ℰ𝑦𝑦, ℰ𝑧𝑧� 
µ:  Magnetic permeability of the medium 
𝜖𝜖:  Electric permittivity medium 
𝜖𝜖0:  Vacuum permittivity 
ρ:  Normalized aperture vector 
µ: Magnetic permeability of the medium 
µ0:  Vacuum permeability 
λ:  Wavelength 
ν:  Optical frequency 

∇:   Nabla operator = 𝜕𝜕
𝜕𝜕𝑥𝑥
𝑥𝑥� + 𝜕𝜕

𝜕𝜕𝑦𝑦
𝑦𝑦� + 𝜕𝜕

𝜕𝜕𝑧𝑧
�̂�𝑧 
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1 Introduction 
 
After two and a half years it is time to write this report, that allows me to recapitulate all that has happened 
during this academic challenge. I can divide the profit of the Master in 3 main aspects: 
 

• New insights  about known concepts.  For example, the possibility of evaluation of aberrations using 
first order ray tracing. 

 
• New perspectives.  For example, the Fourier interpretation of optical systems and it similarities with 

other fields of Engineering through the transfer function and the theory of linear systems. 
 

• New skills. For example, the development of a competency in using ray tracing software 
 
This report deals with all these topics.  Not too much in detail because there is material for several volumes, but 
in a way that it provides a consistent reference framework in key aspects of the Master, from the geometrical 
optics till the compensation of aberration in a plane symmetric system. 
 
Chapter 2 introduces the general concept of linear transformation and the cases of axisymmetric and plane 
symmetry systems.  For the first case the first order imaging equations with the coordinate system at the principal 
planes (Gaussian Equations) are deducted. 
 
Chapter 3 deals with the wave nature of light, starting from Maxwell’s equations, some concepts about 
diffraction theory including the equivalence between the propagation in free space based on the Point Spread 
Function (PSF) and the Fourier Transform approach. 
 
In Chapter 4 the idea of the wavefront aberration at the pupil as phase shift function is presented.  Then  the 
wavefront aberration representation using power series expansion and the Seidel sums are introduced. This 
chapter also describes the effect of aspheric surfaces and the position of the stop in the wavefront aberration 
function. In the second section of chapter 3rd aberration of the axisymmetric are expanded to plane symmetric 
systems 
 
Chapter  5  covers the practical part of the report focused on the design of a “Tilted Component Telescope” (TCT).  
The study plane symmetric systems is relevant for two reasons: First, it helps understanding what happens with 
axisymmetric systems when the elements are tilted by assembly and manufacturing tolerances.   Second with 
the introduction of free form optics and the modern technology of manufacturing the design of unobscured 
system based in mirrors have gained more and more importance.  Examples of this application are the modern 
systems of lithography using extreme ultraviolet (EUV) light for chips manufacturing.  The practical part of the 
report is the design of a hypothetical TCT based on extended polynomial surfaces in OpticStudio.  With a proper 
expansion and carefully selecting the polynomials to include in the surface it  is possible to correct plane 
symmetric aberrations till the 4th order. Finally, and academic exercise about removing the remaining field 
curvature was carried out introducing a refractive element in the vicinity of the image plane.  The design of this 
telescope is the outcome of an independent study performed under the tutorship of Professor Jose Sasián during 
the course of fall 2021. 
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2 Imaging systems 
 
In the most general sense IMAGING is the process of formation of an image of a real object.  The process involved 
always implies a transformation that can cover anything form the representation of a scene by a painter up to 
and including the image produced by a high-speed camera (time frequency) or high resolution camera (spatial 
frequency). 
 
In the current document the process of image formation will be done by an optical system.  That means that the 
light reflected or emitted by a three-dimensional object produces after passing through the system a three 
dimensional distribution of light.  The space where the object exists is called “object space”, respectively, the 
space where the image exists is called the “image space”.  Each space is infinite, and it has associated a refraction 
index.  In a system with a number n of surfaces, each surface defines its own object and image space, in total a 
complete system has n+1 optical spaces where the image of an element is the object of the next element. 
 
Now, if from an ideal object point such that emitting rays in all directions, some of these rays pass through an 
image system, and if for each object point one and only one image point exists.  A transformation between both 
spaces can be established and in the most general case its form is: 
 

𝑥𝑥′ = 𝑥𝑥′(𝑥𝑥,𝑦𝑦, 𝑧𝑧)      𝑦𝑦′ = 𝑦𝑦′(𝑥𝑥,𝑦𝑦, 𝑧𝑧)    𝑧𝑧′ = 𝑧𝑧′(𝑥𝑥,𝑦𝑦, 𝑧𝑧)   Eq. 1 
 
 
 

2.1 Colinear transformation 
 
if n (Refraction index in the object space) and n’  (Refraction index in the image space) are constant the collinear 
transformation is a useful mathematical tool to approximate an imaging system.  The general form of the linear 
transformation is given by: 
 

𝑥𝑥′ =  𝑎𝑎1𝑥𝑥+𝑏𝑏1𝑦𝑦+𝑐𝑐1𝑧𝑧+𝑑𝑑1
𝑎𝑎0𝑥𝑥+𝑏𝑏0𝑥𝑥+𝑐𝑐0𝑥𝑥+𝑑𝑑0

    Eq. 2a 

 
𝑦𝑦′ =  𝑎𝑎2𝑥𝑥+𝑏𝑏2𝑦𝑦+𝑐𝑐2𝑧𝑧+𝑑𝑑2

𝑎𝑎0𝑥𝑥+𝑏𝑏0𝑥𝑥+𝑐𝑐0𝑥𝑥+𝑑𝑑0
     Eq. 2b 

 

𝑧𝑧′ =  𝑎𝑎3𝑥𝑥+𝑏𝑏3𝑦𝑦+𝑐𝑐3𝑧𝑧+𝑑𝑑3
𝑎𝑎0𝑥𝑥+𝑏𝑏0𝑥𝑥+𝑐𝑐0𝑥𝑥+𝑑𝑑0

    Eq. 2c 

 
Where at least one of the constant coefficients a, b, c and d, in the denominator is not 0.  Equation 2 implies that 
a one to one relation exists between the object and the image space, as a consequence of that: 
 

• Points in object space produce points in image space. 
• Lines in object space produce lines in image space. 
• Planes in object space produce planes in image space. 
• An extended object formed by a collection of points in the object spaces produces and extended image 

formed by the superposition of the image of the object points 
 
In the general form (Eq. 2) the collinear transformation has 16 coefficients, but if the equation is divided by one 
of the coefficients the total number of independent coefficients required is 15.  5 non coplanar image points with 
3 spatial coordinates per point are required to find all the parameters of the transformation. 
 



8 
 

Equation 2 is used as starting point for the definition of general systems, eventually the number of parameters 
required to define the transformation are directly influenced by the symmetries of the system.  Two particular 
cases will be studied in this chapter.    
 
 
 

2.1.1 Rotational symmetric systems 
 
The collinear transformation is the representation of the famous Gaussian and Newtonian equations (depending 
on the coordinate reference systems). 
 
In the case of axial symmetry, a radial coordinate in the object and image can be defined by: 
 

𝜌𝜌 = �𝑥𝑥2 + 𝑦𝑦2     Eq. 3a 
 

𝜌𝜌′ = �𝑥𝑥′2 + 𝑦𝑦′2             Eq. 3b      
 
The axial symmetry imposes 2 conditions: 
   

• Planes normal to the axis of symmetry are imaged in planes normal to the axis of symmetry 
without distortion. 
 

• The origin in the object space is mapped in the origin in the image space. 
 
Because of these conditions, ρ’ and z’ are only functions of ρ and z.  Consequently, some of the coefficients in 
Eq. 2. will turn to 0, and the collinear transformation equations for an axisymmetric system are reduced to 
 

𝑥𝑥′ = 𝑎𝑎1𝑥𝑥
𝑐𝑐0𝑧𝑧+𝑑𝑑0

    Eq. 4a  

 

𝑦𝑦′ = 𝑏𝑏2𝑦𝑦
𝑐𝑐0𝑧𝑧+𝑑𝑑0

    Eq. 4b   

 
𝑧𝑧′ = 𝑐𝑐3𝑧𝑧

𝑐𝑐0𝑧𝑧+𝑑𝑑0
    Eq. 4c 

 
The coordinate system can be placed in the intersection between the plane of unit magnification (Principal 
Planes) and  the symmetry axis (Figure 1).  This convention in the coordinate system can be expressed in Eq 4 as: 

• x’= x  When z=0 
• y’=y  When z=0 
• z’=0  When z=0 

 
That necessarily means:  a1=b2=d0=1 and d3=0. 
 
By  the definition of the transverse magnification: 

   𝑚𝑚 = 𝑥𝑥′

𝑥𝑥
= 𝑦𝑦′

𝑦𝑦
= 1

𝑐𝑐0𝑧𝑧+1
   Eq. 5 

 
The conjugation between the rear and the front focal points, with planes in the infinity in object and image planes 
in Eq. 4c implies: 
 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧 = −∞; 𝑧𝑧′ = 𝑓𝑓′ = 𝑐𝑐3
𝑐𝑐0

   Eq. 6a 
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𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧 = −𝑓𝑓;  𝑧𝑧′ = ∞ ∴  𝑐𝑐0 = 1
𝑓𝑓
  Eq. 6b 

 
Replacing equations 6 and 5 in 4 the Gaussian equations that relate the object position, the image position, the 
focal lengths, and the magnification are obtained: 
 

𝑚𝑚 = 1
1−𝑧𝑧𝑓𝑓

     Eq. 7a 

𝑚𝑚 = 1 − 𝑧𝑧′

𝑓𝑓′
    Eq. 7b 

𝑧𝑧′

𝑓𝑓′
− 𝑧𝑧

𝑓𝑓
= 1    Eq. 7c 

 
 

 
Figure 1 Coordinate system for Gaussian equations 

Other convenient localization of the coordinate systems are the focal points.  This specific case corresponds to  
the Newtonian equations: 
 

𝑧𝑧′

𝑓𝑓′
= 𝑚𝑚     Eq. 8b 

𝑧𝑧 ∙ 𝑧𝑧′ = 𝑓𝑓 ∙ 𝑓𝑓′     Eq. 8c 
 

2.1.2 Plane symmetric systems 
 
For a system with plane symmetry in the yz (Figure 2)  following conditions are established: 
 

• x’(x)= x’(-x), y’(x)= y’(-x) and z’(x)=z’(-x) (plane symmetry) 
• The coordinate origins must be conjugated so that x’=y’=z’=0 when x=y=z=0 
• The z axis must map into the z’ axis. 
• The plane of symmetry in image space must be the y’-z’ 
• The origins must be located so that x’=x when y=z=0. 

 
After applying these conditions in Eq. 2 many coefficients are vanished and the resulting colinear transformation 
for plane symmetry is given by: 

𝑥𝑥′ = 𝑥𝑥
1+𝑏𝑏0𝑦𝑦+𝑐𝑐0𝑧𝑧

   Eq. 9a 

 

𝑦𝑦′ = 𝑏𝑏2𝑦𝑦
1+𝑏𝑏0𝑦𝑦+𝑐𝑐0𝑧𝑧

   Eq. 9b 

  

𝑧𝑧′ = 𝑐𝑐3𝑧𝑧+𝑏𝑏3𝑦𝑦
1+𝑏𝑏0𝑦𝑦+𝑐𝑐0𝑧𝑧

   Eq. 9c 
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Figure 2  Schematic representation of a plane symmetric system 

 
The derivation of equations akin to Gaussian equations for plane symmetry systems is substantially more 
complex.  It involves the use of Coddington equations and more elaborated trigonometric relations. More details 
about this topic can be found in chapter 15 [1] and in the appendix section in [2] . 
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3 Imaging based on wave theory 
 
A complete study about the interaction of an electromagnetic wave with the different components of an optical 
system is material complete book.   in this chapter the basic concepts required to understand the propagation of 
electromagnetic waves in free space, the interaction of them with an aperture and the black box representation 
of a general optic system are revisited.  This basic knowledge introduces the concept of pupil function as the 
output of an imaging system.  The theoretical frame presented in the following paragraphs is based on [1], [3], 
and [4]. 
 
The Maxwell’s equations describe the interaction between the electromagnetic disturbances and the matter.  
The starting point of this section are the Maxwell’s equations in absence of free charge: 

∇ × ℇ��⃗ = −𝜇𝜇 𝜕𝜕ℋ��⃗

𝜕𝜕𝜕𝜕
     Eq. 10a 

∇ × ℋ��⃗ = −𝜖𝜖 𝜕𝜕ℇ
��⃗

𝜕𝜕𝜕𝜕
     Eq. 10b 

∇ ∙ 𝜖𝜖ℰ⃗ = 0     Eq. 10c 

∇ ∙ 𝜇𝜇ℋ��⃗ = 0     Eq. 10d 
Where: 

ℇ��⃗ : Electric field �ℰ𝑥𝑥 ,ℰ𝑦𝑦, ℰ𝑧𝑧� 

ℋ��⃗ :  Magnetic field �ℋ𝑥𝑥 ,ℋ𝑦𝑦,ℋ𝑧𝑧� 
µ: Magnetic permeability of the medium 
ε: Electric permittivity medium 

∇:  Nabla operator = 𝜕𝜕
𝜕𝜕𝑥𝑥
𝑥𝑥� + 𝜕𝜕

𝜕𝜕𝑦𝑦
𝑦𝑦� + 𝜕𝜕

𝜕𝜕𝑧𝑧
�̂�𝑧 

 
 
If the medium of propagation of the wave is: dielectric, linear, isotropic (the permittivity is independent of the 
direction of polarization of the wave), homogeneous (permittivity is constant in the propagation medium) 
nondispersive (permittivity is independent of the wavelength) and nonmagnetic (magnetic permeability is equal 
a μ0) . After some manipulations between Maxwell’s equations, it turns out that the electric and the magnetic 
fields must fulfil equations 12 and 13 respectively 
 

   ∇2ℇ��⃗ − �𝑛𝑛
𝑐𝑐
�
2 𝜕𝜕2ℇ��⃗

𝜕𝜕𝜕𝜕2
= 0    Eq. 12 

 

∇2ℋ��⃗ − �𝑛𝑛
𝑐𝑐
�
2 𝜕𝜕2ℋ��⃗

𝜕𝜕𝜕𝜕2
= 0    Eq. 13 

 
Where the medium refraction index (n) is defined by: 

   𝑛𝑛 = � 𝜖𝜖
𝜖𝜖0
�     Eq. 14 

 
And light speed in the vacuum is given by: 

   𝑐𝑐 = 1
�𝜇𝜇0∙𝜖𝜖0

     Eq. 15 

 

The vectorial wave equations Eq. 12 and Eq 13 imply the same scalar relation for each component of the fields ℇ��⃗  
and ℋ��⃗ .  or example for ℇ𝑥𝑥: 

   ∇2ℇ𝑥𝑥− �
𝑛𝑛
𝑐𝑐
�
2 𝜕𝜕2ℇ𝑥𝑥
𝜕𝜕𝜕𝜕2

     Eq. 16 
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If Ω(x,y,z,t) is a scalar field that solves equations 12, 13 and 16,  the vectorial equation and any scalar component 
of the field  are summarized in: 
 

   𝜕𝜕2Ω
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2Ω
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2Ω
𝜕𝜕𝑧𝑧2

= �𝑛𝑛
𝑐𝑐
�
2 𝜕𝜕2Ω
𝜕𝜕𝜕𝜕2

   Eq. 17 

 
A possible set of solutions in separable variables of the scalar wave equation could be: 
 
   Ω(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝜓𝜓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ∙ 𝑒𝑒±2𝜋𝜋𝜋𝜋𝜋𝜋𝜕𝜕     Eq. 18 
 
Where ν is the optical frequency.  The function 𝜓𝜓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is only function of the spatial variables.  From the 
condition of separable variables in Eq. 17, it can be concluded that 𝜓𝜓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)  must fulfil the time-independent 
equation: 
 

   𝜕𝜕2𝜓𝜓
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜓𝜓
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜓𝜓
𝜕𝜕𝑥𝑥2

= −𝑘𝑘2𝜓𝜓    Eq. 19 

 
The term k is known as the “wave number”: 
 

   𝑘𝑘 = 2𝜋𝜋𝑛𝑛 𝜋𝜋
𝑐𝑐

= 2𝜋𝜋
𝜆𝜆

      Eq. 20 

 
The greek letter λ in Eq. 20 represents the wavelength in the dielectric medium.  Equation 19 is known as the 
Helmholtz equation and is used to study propagation of electromagnetic and mechanical waves in uniform 
homogeneous mediums. 
 
Three common solutions for the Helmholtz equation are: 
 

• Plane wave: 
𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐴𝐴𝑝𝑝𝑒𝑒𝜋𝜋𝑖𝑖(𝛼𝛼𝑥𝑥+𝛽𝛽𝑦𝑦+𝛾𝛾𝑧𝑧)        Eq. 22 
Where α, β and γ are the direction cosine of the propagation direction 
   

• Spherical wave: 

 𝑠𝑠(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐴𝐴𝑠𝑠
𝑒𝑒
𝑗𝑗∙𝑘𝑘�𝑥𝑥2+𝑦𝑦2+𝑧𝑧2

�𝑥𝑥2+𝑦𝑦2+𝑧𝑧2
      Eq. 23 

 
• Oblique spherical wave or Pinhole wave 

𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐴𝐴𝑜𝑜
𝑒𝑒
𝑗𝑗∙𝑘𝑘�𝑥𝑥2+𝑦𝑦2+𝑧𝑧2

�𝑥𝑥2+𝑦𝑦2+𝑧𝑧2
�𝑗𝑗𝑘𝑘 − 1

�𝑥𝑥2+𝑦𝑦2+𝑧𝑧2
� 𝑧𝑧
�𝑥𝑥2+𝑦𝑦2+𝑧𝑧2

        

 for z>>λ 

𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≅ 𝐴𝐴𝑜𝑜
𝑧𝑧

𝑗𝑗𝑖𝑖𝑧𝑧2

(𝑥𝑥2+𝑦𝑦2+𝑧𝑧2)
𝑒𝑒𝑗𝑗𝑖𝑖�𝑥𝑥2+𝑦𝑦2+𝑧𝑧2     Eq. 24 

 
 

3.1.1 Apertures and scalar diffraction. 
 
The formulation of a wave propagation is based on the original idea of the Dutch physicists Christiaan Huygens 
(1629 – 1695). For him each point in the wavefront of a disturbance was considered a new source of spherical 
waves, the wavefront at a later instant is defined by the envelope of the secondary wavelets, see Figure 3. 
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Figure 3 a) Huygens envelope construction in free space [3] b) Huygens’s wavelet through a small aperture [5] 

 
With some adjustments based in the interference theory proposed by Thomas Young, Fresnel propose a formal 
representation of the diffraction theory.  
 

 
   𝜓𝜓(𝑥𝑥,𝑦𝑦, 0)𝑠𝑠+ = 𝜓𝜓(𝑥𝑥,𝑦𝑦, 0)𝑠𝑠− ∙ 𝑡𝑡𝑎𝑎𝑝𝑝(𝑥𝑥,𝑦𝑦)    Eq. 27  
Where: 
 
𝜓𝜓(𝑥𝑥,𝑦𝑦, 0)𝑠𝑠+: Field after the aperture 
 
𝑡𝑡𝑎𝑎𝑝𝑝(𝑥𝑥, 𝑦𝑦): Amplitude transmittance aperture function 
 
𝜓𝜓(𝑥𝑥,𝑦𝑦, 0)𝑠𝑠−: Field before the aperture 
 
For example, the transmittance of a clear circular aperture is given by: 
 

   𝑡𝑡𝑎𝑎𝑝𝑝(𝑥𝑥, 𝑦𝑦) = 𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐 �2 �𝑥𝑥2+𝑦𝑦2

𝑟𝑟𝑎𝑎𝑎𝑎
�     Eq. 28 

 
A complete explanation of the propagation of the wave described by Eq.  27 is out of the scope of the report.  
Nevertheless, to present a complete frame of reference of aberration theory an overview of the diffraction 
phenomenon is required. The Figure 4 and Figure 5 [4] show a flow diagram summarizing how to deal with the 
propagation of waves in free space.  In essence there are two different approaches that describe the diffraction 
phenomena.  The right side of the diagram (Figure 4) shows the Free Space Point Spread Function (PSF) approach 
where the resulting electric field at the observation plane is calculated by integration of the individual response 
of the field in the aperture.  Depending on the distance between the aperture (or source) and the plane of interest 
different approximations are valid.  Rayleigh-Somerfield and Huygens are valid for the complete range of distance 
respect to the aperture (close, near, or far field), Fresnel approximation for near field and Fraunhofer 
approximation for far field.  The terms “close to the aperture”, “near field” and “far field” are stated by the 
Fresnel number Nf. 
 

   𝑁𝑁𝑓𝑓 = 𝑟𝑟𝑎𝑎𝑎𝑎
𝑧𝑧.𝜆𝜆

        Eq. 29 
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Each approximation has its own wavelet that model the input field, a complete description of the PSF method is 
summarized in Figure 5. 
 
 

 
Figure 4 Diffraction flow diagram, including free space point spread function and transfer function approaches [4] 

 
Diffraction as well as imaging systems can be modeled using the theory of linear shift invariant systems and the 
complete framework of the Fourier theory.  Broadly speaking for a given perturbation at z0, a system (including 
the free space, left branch in Figure 4) operates as a cascade of elements described in the Fourier domain by the 
transfer function. the image of one element is the object of the next element.  In the space domain the response 
is the convolution of the perturbation and the impulse response function of the element, so form the convolution 
theorem, in the Fourier domain the response of the system is fully described by the product of the transfer 
function and the (angular) spectral representation of the input.  
 
 
Figure 6 shows the main components of a physical imaging system.  The object is illuminated by a light source, 
or it is self-emitting.  The field at the object can be decomposed in a set of plane waves; then diffraction is 
considered using the Fourier theory and the concept of transfer function; finally, the intensity at the image plane 
is the time averaging of the electromagnetic waves transmitted through the system. 
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Figure 5  Summary of diffraction PSFs and distance of validity [Ref 4] 

 
 
 

 
Figure 6 Physical model of a optical imaging system [Ref. 6] 
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One way to model a system is thinking of the system as black box that maps the entrance pupil into the exit pupil.  
In a perfect system the relation between both pupils is described by geometrical optics. 
 

 
Figure 7 Generalized Model of an Imaging System [Ref 3] 

In Figure 7, the distances zo and zi represent the distances between the object and the entrance pupil and the 
distance between the exit pupil and the image plane.   
 
In geometrical optics a system produces stigmatic images: all the rays from an object point intersect in the same 
ideal point at the image plane as it is described in section 2.  In the physical world the best performance of an 
optical system is physically limited by diffraction.  Goodman in [3] provides the next definition for diffraction 
limited systems and its characteristics: 
 
 “An imaging system is said to be diffraction-limited if a diverging spherical wave, emanating from a point-source 
object, is converted by  the system into a new wave, again perfectly spherical, that converges towards an ideal 
point in the image plane, where the transverse location of that ideal image point is related to the transverse 
location of the original object point through a simple scaling factor (the magnification), a factor that must be the 
same for all points in the image field of interest if the system is to be ideal… For any real imaging system, this 
property will be satisfied, at best, over only finite regions of the object and image plane.  If the object of interest 
is confined to the region for which this property holds, then the system may be regarded as being diffraction 
limited” 
 
 
In Figure 7 we have defined an object coordinate system (ξ,η) and image coordinate system (u,v).  The 
formulation of the Fourier optics for incoherent illumination has established: 
 

   𝐼𝐼𝜋𝜋(𝑢𝑢, 𝑣𝑣) = 𝜅𝜅∬ �ℎ�𝑢𝑢 − 𝜉𝜉, 𝑣𝑣 − 𝜂𝜂���
2
∙ 𝐼𝐼𝑔𝑔�𝜉𝜉,𝜂𝜂��𝑑𝑑𝜉𝜉𝑑𝑑𝜂𝜂�∞

−∞   Eq. 30 
 
Equation 30 is key result.  The “image intensity” 𝐼𝐼𝜋𝜋  is the result of the convolution of the “intensity impulse 
response” |ℎ(𝑢𝑢, 𝑣𝑣)|2 with the “ideal image intensity” 𝐼𝐼𝑔𝑔�𝜉𝜉,𝜂𝜂��. 
 
Where ℎ(𝑢𝑢,𝑣𝑣) is the response from a spherical wave converging from the exit pupil: 
 

  ℎ�𝑢𝑢 − 𝜉𝜉,𝑣𝑣 − 𝜂𝜂�� = 1
𝜆𝜆2𝑧𝑧𝑖𝑖

2∬ 𝑃𝑃(𝑥𝑥, 𝑦𝑦) ∙ 𝑒𝑒
−𝑗𝑗 2𝜋𝜋𝜆𝜆𝑧𝑧𝑖𝑖

��𝑢𝑢−𝜉𝜉� �𝑥𝑥+(𝑣𝑣−𝜂𝜂�)𝑦𝑦�
𝑑𝑑𝑥𝑥 ∙ 𝑑𝑑𝑦𝑦∞

−∞  Eq. 31 

 
P(x,y) is the pupil function; for a diffraction limited system it is 1 inside the exit pupil aperture and 0 otherwise.  
 
Using the convolution theorem, equation 30 can be written in the spatial frequency domain as: 
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  𝒢𝒢𝜋𝜋(𝑓𝑓𝑋𝑋 ,𝑓𝑓𝑌𝑌) = ℋ(𝑓𝑓𝑋𝑋 ,𝑓𝑓𝑌𝑌) ∙ 𝒢𝒢𝑔𝑔(𝑓𝑓𝑋𝑋, 𝑓𝑓𝑌𝑌)      Eq. 32 
 
Where 𝒢𝒢𝑔𝑔(𝑓𝑓𝑋𝑋, 𝑓𝑓𝑌𝑌) and   𝒢𝒢𝜋𝜋(𝑓𝑓𝑋𝑋 ,𝑓𝑓𝑌𝑌) are the normalized spectra of 𝐼𝐼𝑔𝑔 and 𝐼𝐼𝜋𝜋: 
 

  𝒢𝒢𝑔𝑔(𝑓𝑓𝑋𝑋, 𝑓𝑓𝑌𝑌) = ∬ 𝐼𝐼𝑔𝑔(𝑢𝑢,𝑣𝑣)∙𝑒𝑒−2𝜋𝜋𝑗𝑗�𝑓𝑓𝑋𝑋𝑢𝑢+𝑓𝑓𝑌𝑌𝑣𝑣�𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣∞
−∞

∬ 𝐼𝐼𝑔𝑔(𝑢𝑢,𝑣𝑣)𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣∞
−∞

     Eq. 33 

 

  𝒢𝒢𝜋𝜋(𝑓𝑓𝑋𝑋 ,𝑓𝑓𝑌𝑌) = ∬ 𝐼𝐼𝑖𝑖(𝑢𝑢,𝑣𝑣)∙𝑒𝑒−2𝜋𝜋𝑗𝑗�𝑓𝑓𝑋𝑋𝑢𝑢+𝑓𝑓𝑌𝑌𝑣𝑣�𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣∞
−∞

∬ 𝐼𝐼𝑖𝑖(𝑢𝑢,𝑣𝑣)𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣∞
−∞

     Eq. 34 

 
ℋ(𝑓𝑓𝑋𝑋, 𝑓𝑓𝑌𝑌) is the Optical Transfer Function (OTF) defined by: 
 

  ℋ(𝑓𝑓𝑋𝑋, 𝑓𝑓𝑌𝑌) = 𝑂𝑂𝑂𝑂𝑂𝑂 = ∬ |ℎ(𝑢𝑢,𝑣𝑣)|2∙𝑒𝑒−2𝜋𝜋𝑗𝑗�𝑓𝑓𝑋𝑋𝑢𝑢+𝑓𝑓𝑌𝑌𝑣𝑣�𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣∞
−∞

∬ |ℎ(𝑢𝑢,𝑣𝑣)|2𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣∞
−∞

    Eq. 35 

  𝑀𝑀𝑂𝑂𝑂𝑂 = |𝑂𝑂𝑂𝑂𝑂𝑂|        Eq. 36 
 
The modulus of the OTF is known as the “Modulation Transfer Function” (MTF), equation 36.  It is an important 
indicator of the image quality of a system used extensively in chapter 5. 
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4 Wavefront aberration 
 
In the previous chapter a diffraction limited system  was define as a system which in presence of a point source  
produces a perfect spherical wave converging from the exit pupil towards the image point.  This ideal wavefront 
is represented in Figure 8 by the Gaussian reference sphere. If the wavefront emerging from the exit pupil (Actual 
wavefront in Figure 8) departs substantially from the Gaussian spherical wavefront the system is aberrated.  
Aberrations are commonly modelled as phase errors, to introduce them in the linear model described in previous 
chapter it is useful to define a new general pupil function Pw: 
 
 
  𝑃𝑃𝑤𝑤(𝑥𝑥,𝑦𝑦) = 𝑃𝑃(𝑥𝑥, 𝑦𝑦) ∙ 𝑒𝑒𝑗𝑗∙𝑖𝑖∙𝑊𝑊(𝑥𝑥,𝑦𝑦)     Eq. 37 
 
 
 

 
Figure 8 Gaussian reference sphere and aberrated wavefront at the exit pupil [Ref 3] 

 
The amplitude of the point spread function in the image point in an aberrated system would be understood as 
the Fraunhofer (Figure 4 and Figure 5)  diffraction pattern of an aperture with amplitude and phase transmittance 
defined by the real pupil function Pw.  The consequence of the aberrations for real systems is well described in 
[3]: 
 
 “Thus, aberrations cannot increase the contrast of any spatial-frequency component of the image, and in general 
will lower the contrast.  The absolute cutoff frequency remains unchanged, but severe aberrations can reduce the 
high-frequency portions of the OTF to such an extent that the effective cutoff is much lower than the diffraction-
limited cut off. 

 
Both effects described in the previous paragraph can be observed in Figure 9. 
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Figure 9 Spoke target and the aberrated image (result from HW5 OPTI 503) 

 

4.1 Axisymmetric Systems 
 
In the entire discussion presented in section 3  axial symmetry was subjacent: Circular apertures, point sources 
with spherical waves, spherical waves converging from a circular pupil. It is a natural consequence of the axial 
symmetry that for a point source on-axis the image point is an axisymmetric  blurred spot.  For off-axis points 
the situation is different: The pupil is no longer normal to the chief ray.  As a  consequence, the chief ray, the 
tangential ray and the sagittal ray do not focus on the same point as we can see in Figure 10 (Illustration of the 
formation of coma aberration).  The blurred spot is no longer symmetric with respect to the sampling in the pupil 
(Figure 10 a), but the field sampling shows  how the aberration pattern is symmetric in the field of view with 
respect to the optical axis (Figure 10 b) 
 

 
Figure 10 Off axis image point a) sampling of the pupil, b) Sampling of the field of view [6] 

 
 
In the representation of the system in Figure 7, a point in the object plane produce and spherical wavefront cone 
that fills the complete entrance pupil, then this wavefront is transferred and magnified to the exit pupil and after 
collapses in the image point. The same transformation from the object point to the image point using rays is 
shown in Figure 10 and Figure 11.   Where the Gaussian or first order ray, represented by the broken line is 
associated to the Gaussian sphere, and the real ray,  represented by the solid line is associated the actual 
wavefront.  For each ray we can define two vectors: The normalized aperture vector( �⃗�𝜌 (xp,yp))  and the 
normalized field vector  (𝐻𝐻��⃗ (Hx,Hy)).  The  aperture vector has its foot in the optical axis and can be placed either 
in the entrance or the exit pupil.  The field vector has its foot in the optical axis and can be placed in either the 
object or the image plane. The angle between both vectors in a plane normal to the optical axis is φ. 
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Figure 11 Gaussian ray (broken line) and real ray (solid) line in an optical system  [7] 

A practical approach to represent the wavefront aberration function W(x,y) is based in power series, using the 
axisymmetric condition.  It turns out that W(x,y) can be expressed as a power series of �𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �,  �𝐻𝐻��⃗ ∙ �⃗�𝜌� and 
(�⃗�𝜌 ∙ �⃗�𝜌): 
 

  𝑊𝑊�𝐻𝐻��⃗ , �⃗�𝜌� = ∑ 𝑊𝑊𝑖𝑖,𝑙𝑙,𝑚𝑚�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �
𝑗𝑗
�𝐻𝐻��⃗ ∙ �⃗�𝜌�

𝑚𝑚
(𝜌𝜌 ∙ 𝜌𝜌)𝑛𝑛𝑗𝑗,𝑚𝑚,𝑛𝑛    Eq. 37 

 

 
  �𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ � = 𝐻𝐻2        Eq. 38    
  (�⃗�𝜌 ∙ �⃗�𝜌) = 𝜌𝜌2       Eq. 39  

  �𝐻𝐻��⃗ ∙ �⃗�𝜌� = 𝐻𝐻 𝜌𝜌 𝑐𝑐𝑓𝑓𝑠𝑠(𝜑𝜑)      Eq. 40 
 
The sub-indices j, m, n are integers and the coefficients 𝑊𝑊𝑖𝑖,𝑙𝑙,𝑚𝑚 are the aberration coefficient that weight the 

shapes defined by the vectorial products:  �𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �
𝑗𝑗
�𝐻𝐻��⃗ ∙ �⃗�𝜌�

𝑚𝑚
(𝜌𝜌 ∙ 𝜌𝜌)𝑛𝑛.  The subindex in the wavefront aberration 

coefficients are given by: 
 
  𝑘𝑘 = 2𝑗𝑗 + 𝑚𝑚       Eq. 41  
  𝑙𝑙 = 2𝑛𝑛 + 𝑚𝑚       Eq. 42 
 
Using equations 37 to 42 the wavefront aberration function can be written in algebraic form. Table 1 is a 
summary of the wavefront aberration function till the sixth order.  It includes the vector and the algebraic forms.  
The table is divided by horizontal bars associated with the order defined by the summation of the exponents of 
H and ρ in the algebraic form.  The names of the aberration in many cases includes the order of the dependence 
of the aberration with the field coordinate, for example W131 is “linear” coma and W331 is “cubic” coma. A detailed 
description of the shapes of the aberrations for each order is presented in Figure 12, Figure 13, Figure 14, Figure 
15, and Figure 16. 
 
From Table 1 and Figure 12 to  Figure 16 it can be seen how, for each 2*nth order the aberrations of the previous  
2*(n-1)th order aberration are scaled by H2 and (n+1) new aberrations appears. 
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Table 1 Wavefront aberration for axisymmetric systems 

Aberration name 
and order 

Vector form Alegebraic form j m n k l 

Zero Order 

Uniform Piston 𝑊𝑊000  𝑊𝑊000  0 0 0 0 0 

Second Order 

Defocus 𝑊𝑊020(�⃗�𝜌 ∙ �⃗�𝜌) 𝑊𝑊020  𝜌𝜌2 0 0 1 0 2 

Magnification 𝑊𝑊111�𝐻𝐻��⃗ ∙ �⃗�𝜌� 𝑊𝑊111𝐻𝐻 𝜌𝜌 cos(𝜑𝜑) 0 1 0 1 1 

Quadratic Piston 𝑊𝑊200�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ � 𝑊𝑊200𝐻𝐻2
 1 0 0 2 0 

Fourth Order 

Spherical Aberration 𝑊𝑊040(�⃗�𝜌 ∙ �⃗�𝜌)2 𝑊𝑊040𝜌𝜌4 0 0 2 0 4 

Linear Coma 𝑊𝑊131�𝐻𝐻��⃗ ∙ �⃗�𝜌�(�⃗�𝜌 ∙ �⃗�𝜌) 𝑊𝑊131𝐻𝐻 𝜌𝜌3 cos(𝜑𝜑) 0 1 1 1 3 

Astigmatism 𝑊𝑊222�𝐻𝐻��⃗ ∙ �⃗�𝜌�
2
 𝑊𝑊222𝐻𝐻2 𝜌𝜌2 𝑐𝑐𝑓𝑓𝑠𝑠2(𝜑𝜑) 0 2 0 2 2 

Field Curvature 𝑊𝑊220�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �(�⃗�𝜌 ∙ �⃗�𝜌) 𝑊𝑊220𝐻𝐻2 𝜌𝜌2 1 0 1 2 2 

Distortion 𝑊𝑊311�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ ��𝐻𝐻��⃗ ∙ �⃗�𝜌� 𝑊𝑊311𝐻𝐻3 𝜌𝜌 cos(𝜑𝜑) 1 1 0 3 1 

Quartic Piston 𝑊𝑊400�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �
2
 𝑊𝑊400𝐻𝐻4 2 0 0 4 0 

Sixth Order 

Oblique Spherical A. 𝑊𝑊240�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �(�⃗�𝜌 ∙ �⃗�𝜌)2 𝑊𝑊240𝐻𝐻2 𝜌𝜌4 1 0 2 2 4 

Cubic Coma 𝑊𝑊331�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ ��𝐻𝐻��⃗ ∙ �⃗�𝜌�(�⃗�𝜌 ∙ �⃗�𝜌) 𝑊𝑊331𝐻𝐻3 𝜌𝜌3 cos(𝜑𝜑) 1 1 1 3 3 

4th Astigmatism 𝑊𝑊422�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ ��𝐻𝐻��⃗ ∙ �⃗�𝜌�
2
 𝑊𝑊422𝐻𝐻4 𝜌𝜌2 𝑐𝑐𝑓𝑓𝑠𝑠2(𝜑𝜑) 1 2 0 4 2 

Field Curvature 𝑊𝑊420�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �
2

(�⃗�𝜌 ∙ �⃗�𝜌) 𝑊𝑊420𝐻𝐻4 𝜌𝜌2 2 0 1 4 2 

Distortion 𝑊𝑊511�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �
2
�𝐻𝐻��⃗ ∙ �⃗�𝜌� 𝑊𝑊511𝐻𝐻5 𝜌𝜌 cos(𝜑𝜑) 2 1 0 5 1 

Piston 𝑊𝑊600�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �
3
 𝑊𝑊600𝐻𝐻6 3 0 0 6 0 

Spherical Aberration 𝑊𝑊060(�⃗�𝜌 ∙ �⃗�𝜌)3 𝑊𝑊060𝜌𝜌6 0 0 3 0 6 

Secondary Coma 𝑊𝑊151�𝐻𝐻��⃗ ∙ �⃗�𝜌�(�⃗�𝜌 ∙ �⃗�𝜌)2 𝑊𝑊151𝐻𝐻 𝜌𝜌5 cos(𝜑𝜑) 0 1 2 1 5 

Secondary Astigm. 𝑊𝑊242�𝐻𝐻��⃗ ∙ �⃗�𝜌�
2
(�⃗�𝜌 ∙ �⃗�𝜌) 𝑊𝑊242𝐻𝐻2 𝜌𝜌4 𝑐𝑐𝑓𝑓𝑠𝑠2(𝜑𝜑) 0 2 1 2 4 

Arrows [Ref 8] 𝑊𝑊333�𝐻𝐻��⃗ ∙ �⃗�𝜌�
3
 𝑊𝑊422𝐻𝐻3 𝜌𝜌3 𝑐𝑐𝑓𝑓𝑠𝑠3(𝜑𝜑) 0 3 0 3 3 
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Figure 12 Zero order group 

 

Figure 13 Second order group 
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Figure 14 Fourth Order group 
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Figure 15 Sixth Order group (common aberrations with 4th order group) 
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Figure 16 Sixth Order group (New Elements)



26 
 

In practice the piston terms do not degrade the performance of the system, they are a phase delay in the 
wavefront. The second order terms W111 and W020

  are associated with the magnification and the axial position 
of the image plane.  Because the Gaussian equation provides good information about the magnification and the 
position of the image plane, these terms are not considered aberrations.  Even more, often some defocus is 
deliberately induced in a system to partially correct other aberrations.  
 

4.1.1 Wavefront Aberration Coefficients 
 
The aberration coefficients till fourth order, also called primary aberrations can be calculated using Seidel sums, 
These sums are functions of: 

• Field of view 
• Aperture 
• Refraction indexes 
• Surface   curvature 
• Surface separation 
• Asphericity 
• Stop position 

 
A quite remarkable feature of the Seidel sums is the fact that all the information required for the calculation of 
the sums is contained in the ray tracing of the marginal and chief rays (geometric optics), the curvatures, and the 
refraction index of the media. The Table 2 show the wavefront coefficients (W###) in terms of the Seidel sums 
(S#).  The index in the summation operator (Σ) represent the surfaces in the optical system 
 
Table 2 Wavefront aberration Coefficients and Seidel Sums 

Aberration Coefficient Seidel Sum 

Spherical Aberration 

𝑾𝑾𝟎𝟎𝟎𝟎𝟎𝟎(𝝆𝝆��⃗ ∙ 𝝆𝝆��⃗ )𝟐𝟐 
𝑊𝑊040 =

1
8 𝑆𝑆𝐼𝐼  𝑆𝑆𝐼𝐼 = −��𝐴𝐴2𝑦𝑦Δ �

𝑢𝑢
𝑛𝑛��

𝜋𝜋

𝑗𝑗

𝜋𝜋=1

 

Linear Coma 

𝑾𝑾𝟏𝟏𝟏𝟏𝟏𝟏�𝑯𝑯���⃗ ∙ 𝝆𝝆��⃗ �(𝝆𝝆��⃗ ∙ 𝝆𝝆��⃗ ) 

𝑊𝑊131 =
1
2 𝑆𝑆𝐼𝐼𝐼𝐼  𝑆𝑆𝐼𝐼𝐼𝐼 = −��𝐴𝐴�̅�𝐴𝑦𝑦Δ �

𝑢𝑢
𝑛𝑛��

𝜋𝜋

𝑗𝑗

𝜋𝜋=1

 

Astigmatism 

𝑾𝑾𝟐𝟐𝟐𝟐𝟐𝟐�𝑯𝑯���⃗ ∙ 𝝆𝝆��⃗ �
𝟐𝟐
 

𝑊𝑊222 =
1
2 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼  𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 = −���̅�𝐴2𝑦𝑦Δ �

𝑢𝑢
𝑛𝑛��

𝜋𝜋

𝑗𝑗

𝜋𝜋=1

 

Field Curvature 

𝑾𝑾𝟐𝟐𝟐𝟐𝟎𝟎�𝑯𝑯���⃗ ∙ 𝑯𝑯���⃗ �(𝝆𝝆��⃗ ∙ 𝝆𝝆��⃗ ) 

𝑊𝑊220 =
1
2

(𝑆𝑆𝐼𝐼𝐼𝐼 + 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼) 𝑆𝑆𝐼𝐼𝐼𝐼 = −ℵ2�𝑃𝑃𝜋𝜋

𝑗𝑗

𝜋𝜋=1

 

Distortion 

𝑾𝑾𝟏𝟏𝟏𝟏𝟏𝟏�𝑯𝑯���⃗ ∙ 𝑯𝑯���⃗ ��𝑯𝑯���⃗ ∙ 𝝆𝝆��⃗ � 

𝑊𝑊220 =
1
2 𝑆𝑆𝐼𝐼  𝑆𝑆𝐼𝐼 = −��

�̅�𝐴
𝐴𝐴�ℵ

2𝑃𝑃 + �̅�𝐴𝑦𝑦Δ �
𝑢𝑢
𝑛𝑛��

�
𝜋𝜋

𝑗𝑗

𝜋𝜋=1

 

Chromatic change of focus 

𝜹𝜹𝝀𝝀𝑾𝑾𝟎𝟎𝟐𝟐𝟎𝟎 
𝜹𝜹𝝀𝝀𝑾𝑾𝟎𝟎𝟐𝟐𝟎𝟎 =

1
2𝐶𝐶𝐿𝐿 

 

𝐶𝐶𝐿𝐿 = ��𝐴𝐴𝑦𝑦Δ�
𝛿𝛿𝑛𝑛
𝑛𝑛 �

�
𝜋𝜋

𝑗𝑗

𝜋𝜋=1

 

Chromatic change of magnification 

𝜹𝜹𝝀𝝀𝑾𝑾𝟏𝟏𝟏𝟏𝟏𝟏 

𝜹𝜹𝝀𝝀𝑾𝑾𝟏𝟏𝟏𝟏𝟏𝟏 = 𝐶𝐶𝑇𝑇 

 
𝐶𝐶𝑇𝑇 = ���̅�𝐴𝑦𝑦Δ �

𝛿𝛿𝑛𝑛
𝑛𝑛 �

�
𝜋𝜋

𝑗𝑗

𝜋𝜋=1
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Where: 
Refraction Invariant marginal ray:   𝐴𝐴 = 𝑛𝑛𝑐𝑐 = 𝑛𝑛𝑢𝑢 + 𝑛𝑛𝑦𝑦𝑐𝑐    Eq. 43 
Refraction Invariant chief ray:   �̅�𝐴 = 𝑛𝑛𝚤𝚤̅ = 𝑛𝑛𝑢𝑢� + 𝑛𝑛𝑦𝑦�𝑐𝑐    Eq. 44 
Lagrange Invariant:    ℵ = 𝑛𝑛𝑢𝑢�𝑦𝑦 − 𝑛𝑛𝑢𝑢𝑦𝑦� = �̅�𝐴𝑦𝑦 − 𝐴𝐴𝑦𝑦�   Eq. 45  

Surface curvature:   𝑐𝑐 = 1 𝑓𝑓�       Eq. 46 

Petzval sum term:   𝑃𝑃 = 𝑐𝑐 ∙ Δ �1
𝑛𝑛
� = 𝑐𝑐 � 1

𝑛𝑛′
− 1

𝑛𝑛
�   Eq. 47  

    Δ �𝑢𝑢
𝑛𝑛
� = �𝑢𝑢

′

𝑛𝑛′
− 𝑢𝑢

𝑛𝑛
�     Eq. 48  

 
 
The last two rows in Table 2 are chromatic aberrations generated by the wavelength dispersion in dioptric 
systems.  The first order aberrations induced by dispersion are:  Change of focus (𝜹𝜹𝝀𝝀𝑾𝑾𝟎𝟎𝟐𝟐𝟎𝟎) and chromatic change 
of magnification (𝜹𝜹𝝀𝝀𝑾𝑾𝟏𝟏𝟏𝟏𝟏𝟏).  The operator  Δ �𝛿𝛿𝑛𝑛

𝑛𝑛
�  is  associated to the change of refraction index in the surface.  

As illustrative example, if a system is working in the visible FdC spectrum the operator Δ �𝛿𝛿𝑛𝑛
𝑛𝑛
� is given by: 

 

Δ �𝛿𝛿𝑛𝑛
𝑛𝑛
� = 𝛿𝛿𝑛𝑛′

𝑛𝑛′
− 𝛿𝛿𝑛𝑛

𝑛𝑛
;  𝛿𝛿𝑛𝑛 = 𝑛𝑛𝐹𝐹 − 𝑛𝑛𝐶𝐶    and  𝑛𝑛 = 𝑛𝑛𝑑𝑑  

 
 

4.1.2 Aspheric surfaces contribution 
 
One way to visualize an aspheric surface is to imagine a spherical surface with an aspherical cap. The sag (Zasph) 
for this surface till fourth order is defined by the conic constant and the coefficient A4: 
 

 𝑍𝑍𝑎𝑎𝑠𝑠𝑝𝑝ℎ = 1
2𝑟𝑟

(𝑥𝑥2 + 𝑦𝑦2) + 1
8𝑟𝑟3

(1 + 𝐾𝐾)(𝑥𝑥2 + 𝑦𝑦2)2 + 𝐴𝐴4(𝑥𝑥2 + 𝑦𝑦2)2  Eq. 49 

 
Where: 
 
r: is the radius at the vertex of the surface 
K: is the conic constant. For conic surface -ε2(ε is the eccentricity) 
A4: Fourth Coefficient  
 
The parameter “a” associated to the contribution of the aspheric surface in the Seidel sums depends on the way 
the aspheric surface is defined: 
 
For conic constant surfaces:  
 
  𝑎𝑎 = −𝜀𝜀2𝑐𝑐3𝑦𝑦4Δ(𝑛𝑛)      Eq. 50 
 
For fourth-order coefficient surfaces: 
 
  𝑎𝑎 = 8𝐴𝐴4𝑦𝑦4Δ(𝑛𝑛)       Eq. 51 
 
The contributions of the aspheric contribution to the Seidel coefficients are: 
 
  𝛿𝛿𝑆𝑆𝐼𝐼 = 𝑎𝑎        Eq. 52 

  𝛿𝛿𝑆𝑆𝐼𝐼𝐼𝐼 = �𝑦𝑦�
𝑦𝑦
�𝑎𝑎       Eq. 53 
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  𝛿𝛿𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑦𝑦�
𝑦𝑦
�
2
𝑎𝑎       Eq. 54  

  𝛿𝛿𝑆𝑆𝐼𝐼𝐼𝐼 = 0       Eq. 55 

  𝛿𝛿𝑆𝑆𝐼𝐼= �
𝑦𝑦�
𝑦𝑦
�
3
𝑎𝑎       Eq. 56 

  𝛿𝛿𝐶𝐶𝐿𝐿 = 0        Eq. 57 
  𝛿𝛿𝐶𝐶𝑇𝑇 = 0        Eq. 58 
 
As we can see in Eq. 55, 57 and 58 the contribution of the 4th order aspheric surfaces to the field curvature and 
chromatic aberrations is 0. 
 
Aspheric surfaces are an effective way of correcting spherical aberration when they are placed close to the stop 
or pupils. When the aspheric surface is placed far from the pupils it has a strong effect in astigmatism and 
distortion.  Unfortunately, both effects occur simultaneously.  For this reason, it is common to use the aspheric 
surface to control distortion and use lens bending for the astigmatism. 
 

4.1.3 Stop Shifting 
 
From Table 1 and equations 43 to 45 in section 4.1.1 we can see the dependency of the wavefront aberration 
coefficient of the optical invariants and eventually to the height and slope of the marginal and chief rays.  All 
these variables are strongly connected with the position of the stop in the system. The stop shifting parameter 
is given by: 
 

  𝑆𝑆̅ = 𝑢𝑢�𝑛𝑛𝑛𝑛𝑛𝑛−𝑢𝑢�𝑜𝑜𝑜𝑜𝑜𝑜
𝑢𝑢

= 𝑦𝑦�𝑛𝑛𝑛𝑛𝑛𝑛−𝑦𝑦�𝑜𝑜𝑜𝑜𝑜𝑜
𝑦𝑦

= �̅�𝐴𝑛𝑛𝑛𝑛𝑛𝑛−�̅�𝐴𝑜𝑜𝑜𝑜𝑜𝑜
𝐴𝐴

    Eq. 59 

The slope and the height of the marginal ray do not change with the stop shifting, so the refraction invariant 
changes only for the chief ray, in the equations 61 to 67 the symbol (*) represents values after the stop shifting: 
 
  �̅�𝐴𝑛𝑛𝑒𝑒𝑤𝑤 = �̅�𝐴𝑜𝑜𝑙𝑙𝑑𝑑 + 𝑆𝑆̅𝐴𝐴      Eq. 60 
 
The Seidel sums after stop shifting are given by equations 61 to 67. 
  𝑆𝑆𝐼𝐼∗ = 𝑆𝑆𝐼𝐼        Eq. 61 
  𝑆𝑆𝐼𝐼𝐼𝐼∗ = 𝑆𝑆𝐼𝐼𝐼𝐼 + 𝑆𝑆̅𝑆𝑆𝐼𝐼       Eq. 62 
  𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼∗ = 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 + 2𝑆𝑆̅𝑆𝑆𝐼𝐼𝐼𝐼 + 𝑆𝑆̅2𝑆𝑆𝐼𝐼      Eq. 63 
  𝑆𝑆𝐼𝐼𝐼𝐼∗ = 𝑆𝑆𝐼𝐼𝐼𝐼       Eq. 64 
  𝑆𝑆𝐼𝐼∗ = 𝑆𝑆𝐼𝐼 + 𝑆𝑆̅(𝑆𝑆𝐼𝐼𝐼𝐼 + 3𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼) + 3𝑆𝑆̅2𝑆𝑆𝐼𝐼𝐼𝐼 + 𝑆𝑆̅3𝑆𝑆𝐼𝐼    Eq. 65 
  𝐶𝐶𝐿𝐿∗ = 𝐶𝐶𝐿𝐿        Eq. 66 
  𝐶𝐶𝑇𝑇∗ = 𝐶𝐶𝑇𝑇 + 𝑆𝑆̅𝐶𝐶𝐿𝐿       Eq. 67 
 
As it is expected all the aberrations that are independent of the chief ray are unalerted: Spherical aberration, 
field curvature and chromatic change of focus, equation 61, 64 and 66. 
 
The position of the stop has also influence in the apertures of the elements and vignetting, so all these elements 
must be considered during the optimization process.  
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4.2 Plane symmetry systems 
 
The study of plane symmetric systems has a relevant importance in modern optic design because, it allows to 
understand the behavior of systems that have lost the axial symmetry due to manufacturing and assembly 
tolerance.  Another important application is the design of reflecting systems that avoid the central obscuration 
(Figure 18) inherent to the on-axis  reflecting system (Figure 17), including a wide variety of devices such as: 
tilted-component telescope, microlithography systems, etcetera . 
 
 

 
Figure 17 On-axis reflective telescope (with obscuration) 

 
Figure 18 Tilted mirror telescope (without obscuration) 

 
Section 2.1.2 introduces plane symmetry systems from the point of view of collinear transformation.  This section 
we will go into further details and describes the wavefront aberration function for such systems.  The 
methodology used in this section is described in deep in [2] and [8].  
 
In axisymmetric systems the reference for the vectors involved in the description of the wavefront aberration 
functions is the Optical Axis (Figure 17).  A similar reference is required in plane symmetry systems (Figure 18).  
The “Optical Axis Ray” (OAR) is contained in the symmetry plane and provides a frame of reference for the 
normalized aperture vector (�⃗�𝜌) and the normalized field vector (𝐻𝐻��⃗ ). 
 

The OA(R), 𝐻𝐻��⃗ , �⃗�𝜌  are common elements between axisymmetric and the plane symmetry systems, but when the 
condition of axisymmetric is broken, a new vector that fixes the relative position between  𝐻𝐻��⃗  and �⃗�𝜌 and the plane 
of symmetry, is needed.  This new entity is the vector (𝚤𝚤) that lies in the plane of symmetry and has its foot in 
the OAR.  It is represented in Figure 18 by the red arrow. 
 
Now all the necessary elements to define a wavefront aberration function akin to equation 37 are in place.  As 
in the case of axisymmetric systems it is a scalar field ,  but for plane symmetric systems it depends  on the 
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combination of the dot products between  the normalized aperture vector (�⃗�𝜌),  the normalized field vector (𝐻𝐻��⃗ ) 
and the symmetry unit vector (𝚤𝚤). The new wavefront aberration 𝑊𝑊�𝐻𝐻��⃗ , �⃗�𝜌, 𝚤𝚤� has the form:  
 

𝑊𝑊�𝐻𝐻��⃗ , �⃗�𝜌, 𝚤𝚤� = ∑ 𝑊𝑊2𝑖𝑖+𝑛𝑛+𝑝𝑝,2𝑚𝑚+𝑛𝑛+𝑞𝑞,𝑛𝑛,𝑝𝑝,𝑞𝑞�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �
𝑖𝑖

(�⃗�𝜌 ∙ �⃗�𝜌)𝑚𝑚�𝐻𝐻��⃗ ∙ �⃗�𝜌�
𝑛𝑛
�𝚤𝚤 ∙ 𝐻𝐻��⃗ �

𝑝𝑝
(𝚤𝚤 ∙ �⃗�𝜌)𝑞𝑞∞

𝑖𝑖,𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞   Eq. 68 
 
Where the dot products in equation 68 are: 
 

𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ = 𝐻𝐻2         Eq. 69 
�⃗�𝜌 ∙ �⃗�𝜌 = 𝜌𝜌2        Eq. 70 

𝐻𝐻��⃗ ∙ �⃗�𝜌 = 𝐻𝐻𝜌𝜌 cos(𝜙𝜙)       Eq. 71 

𝚤𝚤 ∙ 𝐻𝐻��⃗ = 𝐻𝐻 𝑐𝑐𝑓𝑓𝑠𝑠(𝛼𝛼)        Eq. 72 
𝚤𝚤 ∙ �⃗�𝜌 = 𝜌𝜌 𝑐𝑐𝑓𝑓𝑠𝑠(𝛽𝛽)        Eq. 73 

 

The relation between the vectors  𝐻𝐻��⃗ , �⃗�𝜌 and 𝚤𝚤, and the angles α, β and φ is shown in Figure 19. 
 

 
Figure 19 Field, aperture and symmetry unit vector and their angles 

 
The wavefront aberration functions generated by variating the indexes in equation 68 are presented in Table 3.  
The first column lists the name of the aberration.  The words linear, quadratic, etcetera are related with the 
power of H in the algebraic form.  The coefficients are coded in the form 𝑊𝑊2𝑖𝑖+𝑛𝑛+𝑝𝑝,2𝑚𝑚+𝑛𝑛+𝑞𝑞,𝑛𝑛,𝑝𝑝,𝑞𝑞 .  The subindexes 
represent the power of H, ρ, cos(φ), cos(α), cos(β) in the algebraic form. The last 5 columns correspond with the 
values of the indexes k, m, n, p, q. 
 
The observation of the last two indexes provides a clear idea of the symmetry of the wavefront aberration in the 
field of view.  When p=q=0, the wavefront aberration function is symmetric with respect to the OAR.  They are 
highlighted in blue in Table 3 and coincide with the aberrations in Table 1.  When p+q=1, the wavefront 
aberration is strictly plane symmetric; these terms are highlighted in orange. Finally, when the p+q=2 the 
wavefront aberrations have double plane symmetry; those are the green lines in  Table 3. 
 
The different types of symmetries are schematically represented in Figure 20 (axisymmetric), Figure 21 (single 
plane symmetry) and Figure 22 (doble plane symmetry). 
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Table 3 Wavefront aberrations for axisymmetric systems 

Aberration name and 
Group 

Vector form Algebraic form k m n p q 

First Group 

Constant Piston 𝑊𝑊00000  𝑊𝑊00000 0 0 0 0 0 

Second Group 

Field Displacement 𝑊𝑊01001(𝚤𝚤 ∙ �⃗�𝜌) 𝑊𝑊01001 𝜌𝜌 cos(𝛽𝛽) 0 0 0 0 1 

Linear Piston 𝑊𝑊10010�𝚤𝚤 ∙ 𝐻𝐻��⃗ � 𝑊𝑊10010 𝐻𝐻 cos(𝛼𝛼) 0 0 0 1 0 

Defocus 𝑊𝑊02000(�⃗�𝜌 ∙ �⃗�𝜌) 𝑊𝑊02000 𝜌𝜌2  0 1 0 0 0 

Magnification 𝑊𝑊11100�𝐻𝐻��⃗ ∙ �⃗�𝜌� 𝑊𝑊11100 𝐻𝐻𝜌𝜌 cos(𝜙𝜙) 0 0 1 0 0 

Quadratic Piston 𝑊𝑊20000�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ � 𝑊𝑊20000 𝐻𝐻2
 1 0 0 0 0 

Third Group 

Constant Astigmatism 𝑊𝑊02002(𝚤𝚤 ∙ �⃗�𝜌)2 𝑊𝑊02002 𝜌𝜌2 𝑐𝑐𝑓𝑓𝑠𝑠2(𝛽𝛽) 0 0 0 0 2 

Anamorphism 𝑊𝑊11011�𝚤𝚤 ∙ 𝐻𝐻��⃗ �(𝚤𝚤 ∙ �⃗�𝜌) 𝑊𝑊11011𝐻𝐻𝜌𝜌 cos(𝛼𝛼) cos(𝛽𝛽) 0 0 0 1 1 

Quadratic Piston 𝑊𝑊20020�𝚤𝚤 ∙ 𝐻𝐻��⃗ �
2
 𝑊𝑊20020 𝐻𝐻2 𝑐𝑐𝑓𝑓𝑠𝑠2(𝛼𝛼) 0 0 0 2 0 

Constant Coma 𝑊𝑊03001(�⃗�𝜌 ∙ �⃗�𝜌)(𝚤𝚤 ∙ �⃗�𝜌) 𝑊𝑊03001𝜌𝜌3 cos(𝛽𝛽) 0 1 0 0 1 

Linear Astigmatism 𝑊𝑊12101�𝐻𝐻��⃗ ∙ �⃗�𝜌�(𝚤𝚤 ∙ �⃗�𝜌) 𝑊𝑊12101𝐻𝐻𝜌𝜌2 cos(𝛽𝛽) cos(𝜙𝜙) 0 0 1 0 1 

Field tilt 𝑊𝑊12010(�⃗�𝜌 ∙ �⃗�𝜌)�𝚤𝚤 ∙ 𝐻𝐻��⃗ � 𝑊𝑊12010𝐻𝐻 𝜌𝜌2 𝑐𝑐𝑓𝑓𝑠𝑠2(𝛼𝛼) 0 1 0 1 0 

Quadratic Distortion I 𝑊𝑊21001�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �(𝚤𝚤 ∙ �⃗�𝜌) 𝑊𝑊21001𝐻𝐻2𝜌𝜌 cos(𝛽𝛽) 1 0 0 0 1 

Quadratic Distortion II 𝑊𝑊21110�𝐻𝐻��⃗ ∙ �⃗�𝜌��𝚤𝚤 ∙ 𝐻𝐻��⃗ � 𝑊𝑊21110 𝐻𝐻2𝜌𝜌 cos(𝛼𝛼) cos(𝜙𝜙) 0 0 1 1 0 

Cubic Piston II 𝑊𝑊30010�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ ��𝚤𝚤 ∙ 𝐻𝐻��⃗ � 𝑊𝑊30010𝐻𝐻3 𝑐𝑐𝑓𝑓𝑠𝑠2(𝛼𝛼) 1 0 0 1 0 

Spherical Aberration 𝑊𝑊04000(�⃗�𝜌 ∙ �⃗�𝜌)2 𝑊𝑊04000𝜌𝜌4 0 2 0 0 0 

Linear Coma 𝑊𝑊13100�𝐻𝐻��⃗ ∙ �⃗�𝜌�(�⃗�𝜌 ∙ �⃗�𝜌) 𝑊𝑊13100𝐻𝐻 𝜌𝜌3 cos(𝜙𝜙) 0 1 1 0 0 

Quadratic Astigmatism 𝑊𝑊22200�𝐻𝐻��⃗ ∙ �⃗�𝜌�
2
 𝑊𝑊22200𝐻𝐻2 𝜌𝜌2 𝑐𝑐𝑓𝑓𝑠𝑠2(𝜙𝜙) 0 0 2 0 0 

Field Curvature 𝑊𝑊22000�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �(�⃗�𝜌 ∙ �⃗�𝜌) 𝑊𝑊22000𝐻𝐻2 𝜌𝜌2 1 1 0 0 0 

Cubic Distortion 𝑊𝑊31100�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ ��𝐻𝐻��⃗ ∙ �⃗�𝜌� 𝑊𝑊311000𝐻𝐻3  𝜌𝜌 cos(𝜙𝜙) 1 0 1 0 0 

Quartic Piston 𝑊𝑊40000�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �
2
 𝑊𝑊40000𝐻𝐻4 2 0 0 0 0 
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Figure 20 Schematic representation of   two axisymmetric aberrations (adapted form [2]) 

 

 
Figure 21 Schematic representation of constant coma and linear astigmatism two aberrations with only planar symmetry 
(adapted form [2]) 

 
Figure 22 Schematic representation of anamorphism and constant astigmatism tow aberrations with double planar symmetry 
(adapted form [2]) 
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In [2] there  are expressions to calculate the  wavefront aberration coefficients.  For the work presented  in 
chapter 5, only a clear visualization of the shape, the symmetry and the order of the aberrations is needed due 
to the surfaces selected to compensate the different aberrations terms.
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5 Design of an unobscured telescope. 
 
This section is based on the independent study carried out as requirement for the Master.  The objective is 
designing a “Tilted Component Telescope” (TCT) which, inherent to its construction, presents plane symmetric 
aberrations. In the coming sections a strategy, introduced in [8], that allows the correction of aberration till 4th 
order, in plane symmetric systems, using freeform surfaces will be implemented.  The design and optimization 
were done using Zemax OpticStudio V21.2. 
 
The starting point is a Cassegrain on-axis telescope shown in Figure 23. Highlighted in green are the main 
characteristics of the system:  The aperture is 1200 mm and F/# is 12. The wavefront aberration and the 
wavefront aberration coefficients for this configuration are shown in Figure 24.  
  

 
Figure 23 Initial on axis telescope configuration. 

 
Figure 24 Wavefront aberration and Wavefront aberration coefficient on axis telescope 

Now the tilt in the  primary mirror to avoid the obscuration and more points in the field of view are included. A 
first optimization using the tilt of the secondary mirror as variable was executed. The main characteristics of this 
telescope are shown in Figure 25.  The wavefront aberration fans, and the spot diagrams are shown in Figure 26 
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and Figure 27, respectively.  Both diagrams show a strong presence of coma aberration that is constant in the 
whole field of view.  Figure 28, Shows  the grid distortion:  Two patterns symmetric with respect to the vertical 
plane can be identified.  The red lines and arrows describe a keystone distortion  meanwhile the green arcs 
represent a smile distortion pattern.   

 
Figure 25 Tillted component telescope based on spherical surfaces 

 

 
Figure 26 Wavefront aberration fans for a tilted component telescope based on spherical surfaces 
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Figure 27 Wavefront aberration fans for a tilted component telescope based on spherical surfaces 

 

Figure 28 Grid distortion for a tilted component telescope based on spherical surfaces  

 
In section 4.2 the shape, the symmetry, and the field dependence of the aberration wavefront function in plane 
symmetric systems were described. Three kinds of symmetry were identified: axial, double plane and “single” 
plane. The TCT presented in Figure 25 has at least two of these kinds of aberrations: The axial aberration inherent 
to the Cassegrain design and the plane symmetric constant coma introduced  after the tilting of the mirrors.  It 
seems logical that introducing surfaces that can deal with these aberrations is an effective strategy to optimize 
the system as it is suggested in [8]: 
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 “… Thus the aberration properties of a symmetric system can be thought of as the superposition of the properties 
of axial, double plane and plane symmetric systems.  The correction of the aberration of a given subgroup can be 
carried out using system properties according to subgroup symmetry.  For example using a freeform surface 
having axial Zα, double plane Zβ  or plane Zγ.  Mathematically, these aspheric terms are: 
 
  𝑍𝑍𝛼𝛼 = 𝛼𝛼(�⃗�𝜌. �⃗�𝜌)2     Eq. 74 
  𝑍𝑍𝛽𝛽 = 𝛽𝛽(�⃗�𝜌 ∙ 𝚤𝚤)     Eq. 75 
  𝑍𝑍𝛾𝛾 = 𝛾𝛾(𝚤𝚤 ∙ �⃗�𝜌)(�⃗�𝜌 ∙ �⃗�𝜌)    Eq. 76 
where α, β and γ are the aspheric coefficients.” 
 
There are many types of surfaces that meet the conditions from equations 74, 75 and 76.  One of them is the 
Extended Polynomial Surface included in OpticStudio, its surface sag is of the form: 

  𝑧𝑧 = � 𝑐𝑐.𝑟𝑟2

1+�1−(1+𝑖𝑖)𝑐𝑐2𝑟𝑟2
� + [∑ 𝐴𝐴𝜋𝜋𝐸𝐸𝜋𝜋(𝑥𝑥, 𝑦𝑦)𝑛𝑛

𝜋𝜋=1 ]  Eq. 77 

Where: 
Ai: Coefficients of the ith extended polynomial 
Ei: Power series expansion polynomial in the form xmyn 

c: Curvature 
k: Conic constant (k<-1 hyperbola, k=-1 parabolas, -1<k<0 for ellipses, k=0 for spheres and k>0 for oblate 
ellipsoids) 
 
In Eq. 77, the expression in the first square bracket is an axisymmetric conic surface equivalent to the Eq. 74.  The 
expression in the second bracket allows a power expansion for the aspheric surfaces associated to the equations 
75 and 76.  The first 15 terms of the power expansion in Eq. 77 are shown in Figure 29.  The polynomials are 
identified with the label Pmn where the indexes m and n correspond to the powers of x and y respectively.  The 
green () tick marks identify the polynomial with double symmetry associated with Eq. 75 meanwhile the blue 
() tick marks check the polynomials with only symmetry in the xz plane associated to equation 76. 
 
From the results in Figure 24, Figure 26 and Figure 27 the presence of spherical aberration associated to the 
spherical mirrors and a strong component of constant coma have been established, a good first step for the 
optimization will be switching the mirror surface to extended polynomial surfaces and then set as variable the 
conic constant and the polynomials x0y3 for both mirrors. Figure 30 shows the result obtained, the constant coma 
has been reduced by a factor of 3 compared to Figure 26. 
 
The wavefront aberration in Figure 30 is still dominated by the constant coma, the other polynomial in Figure 29 
with single plane symmetry is x2y.  The wavefront aberration resulting after including this polynomial is shown in 
Figure 31.  The uniform coma is totally removed and now the dominant aberration is linear astigmatism.  The red 
rectangles in the field label identify the field point in the y axis, the wavefront aberration fan in these points have 
a parabolic profile and the curvature of these profiles vary linearly with the field. 
 
The most convenient polynomial from Figure 29 to control the wavefront aberration in Figure 31 is P20.  After 
releasing this degree of freedom in both mirrors, the wavefront aberration is dominated by higher order terms 
as can be seen in Figure 32.  The surfaces prescription data for this design is shown in Figure 33, the variables 
used for the optimization are identified with the same colour code as in Table 3.  The conic constant in blue for 
compensation of the axisymmetric aberrations, X0Y3 and X2Y1 in orange for the compensation of the single 
plane symmetry and X2Y0 for the compensation of the aberrations with double plane symmetry. 
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Figure 29 15 first elements of the polynomial power expansion Pmn



39 
 

 

Figure 30 Wavefront aberration after implementation of extended polynomial surfaces. 

 
Figure 31 Wavefront aberration extended polynomial surfaces (P03 and P21) . 
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Figure 32 Wavefront aberration extended polynomial surfaces (P03, P21 and P20) . 

 

 
Figure 33 Complete prescription data for a TCT using extended polynomial surfaces 

The MTF curves including the diffraction limited performance (black lines) are shown in Figure 34. Figure 35 
shows spot diagram after optimization.  A careful inspection of Figure 32 to Figure 35 reveals that the best 
performance of the system is not at center of the field of view as it is desirable for an optical telescope.  The 
wavefront aberration fan for the central field (red rectangle) in Figure 32  shows that dominant aberration is 
defocus (parabolic profile in both pupil axes).  In the MTFs curves (Figure 34) the central field point has almost 
the worst performance (red boxes) meanwhile points at the edge of the field are almost diffraction limited, this 
performance is also confirmed by the spot diagram (Figure 35) where the difference between the Ariry disc (black 
circle) is maximum in the central field point (red box).  A possible explanation for this behavior is the introduction 
of defocus in the system to balance field curvature. There are some ways to improve the performance in central 
point: First, changing the weight of central field point via the “Field Data Editor”, second, implementing a field 
flattener element such as a field lens or a thick meniscus lens. All these options were implemented, and the 
results obtained are analyzed in the next paragraphs.   
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Figure 34 MTF for TCT system after optimization using conic constants and extended polynomial surface 
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Figure 35 Spot diagram for a TCT system after optimization using conic constants and extended polynomial surface 

Figure 36 shows a field data editor where 3 different weights were implemented: 100 for the central point, 3 for 
the intermediate points and 1 for the edge points.  The wavefront aberration fans, the MTF curves and the spot 
diagram, after changing the weights of the view points and running a wavefront based optimization, are shown 
in Figure 37, Figure 38 and Figure 39.  The three diagrams show an almost diffraction limited performance for 
the central field of view and a gradual degradation of the quality image from the center to the edge of the field.  
Figure 37 also confirms the presence of field curvature in the system.  There is a parabolic profile proportional 
with the square of the field of view (always with the same sign) interacting with some high order aberrations. 
 

 
Figure 36 Field data editor with 3 different weights along the field of view. 
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Figure 37 Wavefront aberration after changing the weight of the field points  
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Figure 38 MTFs curves after changing the weight of the field points  
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Figure 39 Spot diagrams after changing the weight of the field points 

 
As an academic exercise two different field flatteners were implemented in the system described in Figure 33.  
They are shown in Figure 40.  Option a) is based on a field lens just in front of the image plane, option b) uses as 
correction element a thick meniscus lens in the vicinity of the image plane.  Both lenses were implemented in N-
BK7 and with an aspect ratio diameter central thickness around 10:1. 
 
 
 

 
Figure 40 Two different option for field curvature correction a) Field lens, b) Thick meniscus lens 
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The results obtained for both designs are presented in Figure 41 (wavefront aberration fans) and Figure 42 (MTF 
curves).  Figure 41 shows that the wavefront aberration is about 4 times lower in the thick lens solution with 
respect to the field lens.  That means better performance for the second corrector solution, primarily in the zone 
highlighted by the red ellipse in Figure 42. 
 

 
Figure 41 Wavefront aberration fans for two different  field curvature correctors 
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Figure 42 MTFs curves for two different  field curvature correctors 

 



48 
 

6 Conclusion  
 
 

• Simulation software is a very powerful vehicle, but the design of well corrected systems is still a work of 
engineering.  In depth understanding of the interaction of the different elements is the path. It is there, 
in the understanding of relative basic concepts, such as third order aberrations, where a robust design 
with potential for optimization starts. 
 

• Freeform surfaces are becoming more common due to the development of manufacturing processes, 
from plastic mold till electron beam figuring, passing through numerical control polishing and diamond 
turning of aspheric surfaces.  These advances  make the manufacturing of geometries that 50 years ago 
were only exercises in the drafting table possible.  The possibilities are infinite in volume production, for 
example cell phones, but also in the most demanding applications such as astronomical instrumentation 
and semiconductor applications.  

  
• This report  is the final point of this master.   It was an amazing journey.  Not always easy, with its ups 

and downs, but writing this report I realize how much I have gained. 
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