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ABSTRACT 

Many advances have occurred in the field of optical design during the past decade. 

Some of the newer topics and concepts associated with the design and use of optical 

systems are complex and require comprehensive understanding of theory, expertise in 

state-of-the-art technology, and extensive computer simulations. 

This dissertation focuses on development of practical methods and tools for successful 

lens design and evaluation of state-of-the-art imaging and illumination systems. The 

dissertation addresses several current topics in modern optical engineering and utilizes 

approaches to provide insights into the inner workings of optical systems. Examples of 

modern mobile camera lenses are provided to show how specific methods can help to better 

understand these lens designs and to expand the imaging capabilities of miniature camera 

systems. 

Two simple but effective real ray tracing methods for correcting chromatic aberrations 

in imaging systems are described. The proposed methods separate monochromatic and 

chromatic aberration correction into two independent problems. This two-step approach 

provides effective alternatives in correcting chromatic aberrations. 

A number of unique calculations have been performed and some novel and interesting 

theoretical results, including the fourth-order theory of irradiance changes in axially 

symmetric optical systems, are reported. The specific relationships between the irradiance 

distribution and wavefront aberration coefficients to fourth order are derived for the first 

time. The practical case of relative illumination at the image plane of an optical system is 

also discussed in some detail. 
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CHAPTER I:  

INTRODUCTION 

This dissertation consists of a collection of topics that address current problems and 

applications of state-of-the-art imaging and illumination system lens design. Each topic is 

presented independently as a self-contained and self-explanatory chapter. Every chapter 

contains an introduction, references, detailed description of the proposed methods, several 

practical examples, and concluding remarks. 

The goal of this dissertation is to supply useful tools and methods for successful lens 

design, to discuss the applicability of the proposed methods, and to explain their advantages 

and disadvantages in comparison to other methods used in optical design. 

The chapter-wise organization of the dissertation is as follows. 

In Chapter II, a set of novel tools and techniques for analysis and aberration correction 

of optical imaging systems is presented. These tools are developed and implemented as an 

aid to lens designers who are concerned about the detailed and comprehensive 

understanding of complex lenses and trade-offs involved in the design. Examples of state-

of-the-art imaging systems are provided to show how these specific methods can help to 

better understand the design trade-offs and to expand the imaging capabilities of modern 

camera systems. The author contributions to the material described in different sections of 

this chapter varied. Some sections provide an overview of previously published methods 

and offer software implementation of these methods, other sections elaborate and extend 

ideas and results published elsewhere. 
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In Chapter III, the concept of the aberration function is extended to define two functions 

that describe the light irradiance distribution at the exit pupil plane and at the image plane 

of an axially symmetric optical system. Similarly to the wavefront aberration function, the 

irradiance function is expanded as a polynomial, where individual terms represent basic 

irradiance distribution patterns. The conservation of flux in optical imaging systems is used 

to derive the specific relation between the irradiance coefficients and wavefront aberration 

coefficients. It is shown that coefficients of the irradiance functions can be expressed in 

terms of wavefront aberration coefficients and first-order system parameters.  

The practical case of relative illumination at the image plane of an optical system is also 

discussed in some detail. Several examples of lenses that instead of the cos4-law show 

improved illumination at the focal plane are analyzed. The theory of irradiance changes in 

axially symmetric optical systems is used to provide insight into the role of individual 

aberration coefficients in the image illumination fall-off of these lenses.   

Chapter IV describes two simple but effective real ray tracing methods for correcting 

chromatic aberrations in imaging systems. The correction of chromatic aberrations is 

typically performed using aberration formulas or by using real ray tracing. While the use 

of aberration formulas might be effective for some simple optical systems, it has limitations 

for complex and fast lenses. The chromatic aberration correction for such systems may be 

insufficient due to the presence of higher order aberrations that are not accounted for by 

aberration coefficients. For this reason, chromatic aberration correction is usually 

accomplished with real ray tracing, which allow for an accurate view of the actual image.  
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Real ray tracing optimization is performed by minimization of some error function. 

However, existing optimization tools in lens design software typically mix the correction 

of monochromatic and chromatic aberrations by construction of an error function that 

minimizes both aberrations at the same time. This mixing makes the correction of one 

aberration type dependent on the correction of the other aberration type.  

The proposed real ray tracing methods separate monochromatic and chromatic 

aberration correction into two independent problems. This two-step approach can be used 

to correct both chromatic change of focus and chromatic change of magnification, as well 

as higher-order chromatic aberrations. The chromatic aberration correction is not limited 

to a specific bandwidth. Several design examples for the use of these methods are presented 

and discussed. It is shown that the proposed methods provide effective alternatives in 

correcting chromatic aberrations. Furthermore, a similar algorithm to that used for 

chromatic aberration correction is applied to athermalize an optical system. 

Chapter V proposes several useful base optical surface descriptions in closed form that 

resemble the ideal profile that is required in a lens and provide effective solutions to 

imaging and non-imaging problems. Using the concept of base surface, an aspheric 

polynomial surface can be constructed by power expansion of the base term, and a freeform 

surface can also be constructed by superposition of several base surfaces having different 

parameter values. These aspherical/freeform surfaces substantially describe the desired 

surface for uniform illumination on a target plane or allow stigmatic imaging surface after 

surface along a particular ray. Examples of the performance of these surfaces that were 
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constructed using the concept of base surface are provided, and some of their properties 

are discussed. 

The theoretical results and practical methods described in this dissertation serve to 

provide new insights into the optical design of state-of-the-art imaging and illumination 

systems, to advance the theory of aberrations, and to enhance the optics community’s 

collective understanding of present topics in modern optical engineering. 

Some of the material included in the chapters have been previously published as journal 

papers or conference proceedings papers [1-6]. The parts of this dissertation that use 

previously published material make clear references to the corresponding papers.  
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CHAPTER II:  

ANALYSIS AND EVALUATION TOOLS IN MODERN LENS 

DESIGN 

2.1 INTRODUCTION  

Lens design today is realized almost entirely on a personal computer. Lens design 

programs have evolved over the past decade to meet the increasing performance demands 

of state-of-the-art optical systems, which are often difficult to design, fabricate, and align. 

These programs can handle various optical design tasks and configurations including but 

not limited to rotationally symmetric systems, free-space systems, non-sequential and 

sequential systems, systems that include highly aspherized, diffractive or other free-form 

surfaces, and so on. Some programs include additional simulation tools necessary to 

manufacture a practical optical system, such as consideration of manufacturing methods to 

be used, mechanical and thermal considerations, manufacturing tolerancing, antireflective 

coatings, and other complex factors to be included in the total design of an optical system 

[1]. 

The evaluation of an optical system in lens design software is performed by tracing real 

rays. Real ray tracing is a powerful tool that provides strong analysis capabilities and gives 

the designer the information necessary to understand and explain the behavior of a lens and 

how it may perform in an actual system. Moreover, different mathematical methods for 

lens design optimization utilize ray tracing to make changes in the system to improve the 

image quality. 
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Although only a very minimal amount of manual calculation is usually carried out today 

during the lens design process, blind use of a lens design program almost certainly fails to 

find and deliver an efficient and practical solution to any lens problem. Thus, the design 

produced by applying a blind process may be over constrained, may be difficult to 

manufacture or align, or it may have marginal performance.  

Understanding of the classic principles and lens design techniques and application of 

these lens design fundamentals is essential to find a preferable solution and also to guide 

and select alternative optimization paths for the program to follow. Once the acceptable 

configuration for the lens design efforts is intelligently determined, the engineer may 

benefit from the power of the computer programs to improve and polish the system [2].  

As optical technology evolves, there is a need to enhance software capabilities to model 

technological innovations. This chapter contains a discussion of the principles and 

techniques that are appropriate to design work with a modern lens design program and are 

helpful in analyzing complex optical systems as well as more basic lens types. Furthermore, 

this chapter presents a set of novel tools. These tools are developed and implemented as an 

aid to lens designers who are concerned about the detailed and comprehensive 

understanding of complex lenses and trade-offs involved in the design. In addition, the 

proposed tools help to identify the main driver of lens performance, to predict sensitivity 

to manufacturing tolerances, and to determine redundant degrees of freedom.  

Examples of state-of-the-art imaging systems are provided to show how specific 

methods can help to better understand these lens designs and to expand the imaging 

capabilities of modern camera systems. 
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2.2 LENS EVALUATION FROM POWER DISTRIBUTION AND SYMMETRY 

PRINCIPLES  

The way optical elements are combined determines the basic properties of a lens system 

and, as a consequence, selecting a proper configuration is a key for a successful design 

effort. Two important types of design schemes are distinguished that allow achieving the 

desired optical performance.  

The first approach is the concept of lens relaxation, which was reviewed by Glatzel and 

Shafer [3, 4]. In a relaxed lens, the surface Seidel aberrations contributions must each be 

kept very small to prevent higher-order aberrations from arising. To achieve this, a fairly 

large number of low-power elements are needed, and the lens inevitably becomes longer. 

When used successfully, the relaxation design technique results in very broad merit 

function minimum, smooth wavefronts, loose manufacturing tolerances, and small 

chromatic variation in aberrations.  

A different approach suggests compensating for aberrations by introducing large 

amounts of opposing aberrations within the design. It should be taken into account that 

balancing large amounts of aberration brings with it an additional stress which in most 

cases produces aberrations of a higher order. By contrast to relaxed lenses, in lenses with 

a lot of stress built into them, even a small parameter change gives a substantial change in 

the system performance. The advantage, however, is that it allows for a shorter optical 

system. 

Both relaxed and stressed optical configurations have advantages and disadvantages. It 

is desirable to incorporate relaxation into a design. However, it is very difficult to apply 
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this approach to any simple lens since more variables are required to successfully utilize 

the relaxation principle. Some stress is often introduced to make the system less 

complicated and to meet other design requirements. 

There is a need for lens design tools that allow one to quantify relevant lens attributes 

and provide adequate comparison between different optical configurations. Two applicable 

parameters for quantifying optical power distribution and lens symmetry are proposed by 

Sasian and reviewed in this section [5]. These parameters are independent of lens scaling, 

conjugate, aperture size and field angle, and thus provide consistent comparison between 

different designs and fair evaluation of the imaging potential of a lens.  

The paraxial refraction equation is considered to define the first parameter W , 

 ' 'n u nu y   . (2.1) 

In this equation ' 'n u  and nu  are products of the index of refraction and first-order 

marginal ray slope before and after refraction at the surface; y  is the marginal ray height 

at the surface; and   is the surface optical power. Therefore, the weighted surface power 

is given by the difference between the marginal first-order ray slope before and after 

refracting at the surface. To obtain the normalization factor, the sum of the terms in Eq. 2.1 

is taken over all the system surfaces. It follows that 
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where jw  is the weighted optical power of surface j . In Eq. 2.3, the surfaces with large 

jw  contribute more to provide the overall optical power, and therefore, jw  indicates where 

the optical power originates within the system. Moreover, jw  is independent of scaling, 

aperture and conjugate since all parameters in Eq. 2.2 are invariant under these 

transformations and also independent of the field angle by construction. The parameter W  

is established as the square root of the averaged and squared weighted powers jw  of the 

lens surfaces as 

 2

1

1 N

j
j

W w
N 

  . (2.4) 

In a relaxed optical system, all surfaces contribute equally to provide the complete 

optical power of the system, and W  is minimized. Thus, small values of W indicate 

efficient use of the optical power and relaxed design, while large values of W  suggest a 

stressed optical system. 

Symmetry of the lens is another important attribute that has a substantial impact on 

defining the form of the lens. In a symmetrical optical system, some aberrations tend to 

cancel out or may be avoided; these outcomes permit a higher level of aberration 

correction. Thus, symmetrical or nearly symmetrical lens design forms allow for a more 

balanced and better corrected solution. 

The second proposed parameter measures the degree of symmetry to which the surfaces 

of an optical system are used. Optical surfaces that satisfy aplanatic condition 

  ' ' 0u n u n u n     or are concentric to the stop or to its images 0A ni   refract 
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the light in a symmetrical way. Here A  is the product of the index of refraction and the 

chief ray incidence angle at the surface j . It follows that js , based on the aplanatic and 

concentric conditions,    

 
 

 
1 1

1 ' 'j j j
stop N

s A u n
m ni n u

 


, (2.5) 

indicates the degree of symmetry of an optical surface. The normalization factor is 

chosen to make js  independent of the lens field of view and conjugate. The parameter S   

is established as the square root of the averaged and squared js  of the lens surfaces as 

 2

1

1 N

j
j

S s
N 

  . (2.6)  

In optical systems with a high degree of symmetry, all surfaces satisfy aplanatic or 

concentric conditions, and S  is minimized. Small values of S  provide conditions for 

aberration cancelation and superior image quality over large fields. 

Symmetry and power distribution are recognized to have an important impact on the 

imaging performance of lenses, and parameters W  and S  help to identify optimum design 

forms. Lenses with low values of W  and S  are expected to perform better than lenses with 

high values. Common values of W  and S  for several well-known design configurations 

are presented in Table 2.1. The parameters are calculated in Zemax OpticStudio by 

evaluating Eq. 2.4 and Eq. 2.6 in a macro program [6]. The macro is given in Appendix A. 

Petzval optical configurations follow the relaxation principle: low-power optical 

elements are located near the aperture where the marginal ray height is large, while stronger 

optical elements are located next to the image plane where the marginal ray height is small. 
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In a typical Petzal lens, a small amount of aberration is generated over a small field of 

view, and a value for W  is smaller than S .  

On the other hand, Double-Gauss lenses exhibit values of W  that are larger than S . 

Typical Double-Gauss design takes advantage of symmetry properties of surfaces and is 

distinguished by a small amount of field-dependent aberrations across a large field of view.   

A Cook Triplet lens compromise between the attributes of power distribution and 

symmetry. These lenses typically exhibit almost equal values of W  and S . Relatively large 

values of W  and S  for a Cook Triplet lens indicate stress inherent in this design form. 

Another major design type that can cover a respectable field of view at a relative high 

speed is a Reversed Telephoto lens. When reversed telephoto form is pushed to extreme, 

the total field of 180  or more can be covered. To support a large field of view, at least a 

roughly symmetrical construction is required. A well-corrected Reversed Telephoto Wide-

Angle lens demonstrates almost equal and relatively low values of W  and S . 

Table 2.1 Common values of W  and S  for widely-used lens design forms.  

Lens Form W  S  

Petzval Lens 0.4 0.7 

Double-Gauss 1 0.3 

Cook Triplet 1 0.9 

Reversed Telephoto Wide-Angle 0.4 0.3 

2.3 EVALUATION OF THE RAY INVARIANT PRODUCT 
It is well known in lens design that minimizing the angles of incidence and refraction of 

rays at element surfaces is important to reduce aberrations: large or small ray angles are 
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indicative of stress or relaxation in a lens system. The evaluation of the incidence angles 

can be used to detect surfaces that contribute to the particular aberration or generate 

significant high-order aberrations. Therefore, reducing the angles of incidence is usually a 

change that causes the aberrations to be reduced. Moreover, for high-incidence angles, 

Snell’s Law of refraction becomes very non-linear, producing a highly unstable situation, 

which often explodes as the lens construction parameters are incremented during the design 

and optimization or depart slightly from the nominal values due to manufacturing 

tolerances. 

However, the angle of incidence and angle of refraction are different in air versus in the 

material, and this can lead to confusion in assessing a given lens. As an insightful tool, the 

ray invariant product sin( )n i  is instead evaluated surface by surface where i  is the ray 

incidence angle and n  is the index of refraction of the media. The rays used are the real 

marginal and chief rays. A macro program that calculates and plots the ray invariant 

product for each surface of a lens is given in Appendix B. 

The examination of the angles of incidence for a critical ray path is a widely applicable 

technique that will often indicate the source of a design problem.  

2.4 EVALUATION OF LIMITING ABERRATIONS IN A LENS  

During the lens design and evaluation, it is important to identify the main driver of lens 

performance and to determine specific limiting aberrations in the system. Once the designer 

understands all limiting factors, the lens may be further improved by applying an 
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appropriate technique to correct these specific limiting aberrations or choosing a different 

lens configuration to keep them from arising.    

The elements comprising the total aberration of an optical system can be computed 

directly from the specific ray trace data. For example, the slopes of the ray fans at the 

origins indicate the presence of field curvature, astigmatism or defocus aberrations. The 

complete aberration content can be further estimated by decomposing the ray or wave 

aberration curves into individual components.  

However, real optical systems are degraded by multiple aberrations and interpretation 

of such plots may not be quite obvious. Different orders of aberrations are balanced over 

the aperture and over the field to achieve the best image quality, and limiting aberrations 

suffered by a particular lens design are not readily evident. Moreover, if higher-order 

aspheres are used in the design, the transverse aberration plots or field curvature plots often 

show oscillatory behavior, as in Fig. 2.1. Introducing more orders of aspherical expansion 

may improve the lens performance, but results in the higher spatial frequency of the errors 

and makes the interpretation of the plots even more difficult. 
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Fig. 2.1 Optical path difference (scale is 1 wave) and field curvature plots for a typical mobile camera lens. 

Excellent performance is achieved by utilizing highly aspherical surfaces. As a result, the plots show 

oscillatory behavior that makes the interpretation more difficult. 

An alternative approach to determine the limiting aberration in a lens is introducing 

fictitious degrees of freedom and using optimization routines in the lens design software to 

effectively target and remove this particular aberration. The magnitude and order of the 

aberration that is analyzed can be estimated from the coefficients of the optimization 

variables. The contribution of the aberration to the overall lens performance is derived by 

analyzing the emerging wave or ray aberration plots of the reoptimized lens.  

The particularly onerous aberrations to consider are spherical, oblique spherical and 

field curvature aberrations. Three techniques to introduce fictitious degrees of freedom to 

target different orders of the above aberrations are discussed in detail in this section.   

The field-independent aberrations comprise defocus and spherical aberration; both 

aberrations are constant over the entire field of view of the lens and are functions only of 

the pupil coordinates. The direct evaluation of spherical aberration is a simple matter. First, 

all active variables in the design are removed and a marginal ray height solve for the surface 
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thickness that precedes the image plane is assigned. The solve ensures that defocus 

aberration is completely excluded from the analysis. Next, a zero-thickness aspherical plate 

is introduced at the stop aperture of the lens. The lens is then reoptimized while targeting 

an RMS Wavefront Error for the on-axis field point and using aspheric coefficients of the 

plate as optimization variables. In the reoptimized lens, the aspheric coefficients of the 

plate are proportional to different orders of spherical aberration. For example, if fourth-

order asphere was used, the fourth-order spherical aberration coefficient 040W  is given by  

 4
040 4 ( 1) aptW A n r    , (2.7)  

where 4A  is the aspheric plate coefficient, n   is the index of refraction of the plate, and 

aptr  is the semi-diameter of the stop aperture. Moreover, an overall contribution of spherical 

aberration to the total performance of the lens can be assessed from the relative change in 

the merit function value before and after optimization. A significant change in the value of 

the merit function suggests that spherical aberration is indeed limiting the performance of 

the lens. 

Oblique spherical aberration is a type of high order aberration that, similarly to primary 

spherical aberration, has at least fourth power dependence in aperture. However, oblique 

spherical aberration also has at least second power field dependence. Oblique spherical 

aberration is found by constructing multiple configurations in lens design software. Each 

configuration is similar to the arrangement constructed for evaluation of primary spherical 

aberration and represents a single field of the lens. Field curvature aberration is removed 

by adjusting the focal plane of each configuration to the sagittal focus. The RMS Wavefront 
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Error in the sagittal direction is minimized to separate oblique spherical aberration from 

astigmatism. This model does not allow one to calculate the magnitude of the specific order 

of oblique spherical aberration, nevertheless it is useful in analyzing the field behavior of 

a lens.  

Field curvature is a field-dependent displacement of the image formed by a lens system 

from the Gaussian image plane. In many modern lens designs, the residual Petzval field 

curvature is corrected by balancing higher orders of field curvature and astigmatism. The 

field curves in these designs are wavy with multiple crossing across the field of view, which 

makes the aberration analysis difficult.  

The field curvature contribution to the total aberration of a lens can be estimated to any 

order by constructing a simple model. First, all active variables in the design are removed 

and a marginal ray height solve for the surface thickness that precedes the image plane is 

assigned. The solve ensures that defocus aberration is completely excluded from the 

analysis. Next, the aperture-dependent components such as spherical and oblique spherical 

aberrations are removed by stopping down the lens to f/100 or so. Finally, the image surface 

is turned into an aspherical surface, and the lens is than reoptimized while targeting the 

RMS Wavefront Error in the sagittal direction and using aspheric coefficients of the image 

surface as optimization variables. In the reoptimized lens, the aspheric coefficients of the 

image surface are proportional to different orders of field curvature aberration. For 

example, if a second-order asphere was used, the fourth-order field curvature coefficient 

220W  is given by  
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, (2.8)  

where 2A  is the aspheric coefficient, / #f  is the focal ratio of the lens, and ir  is the 

maximum image height. Moreover, if the aperture of the lens is restored to the original 

value, field curvature aberration is still compensated by the aspherical image surface and 

is removed from the total aberration of a lens.  

The methods discussed in this section decouple spherical, oblique spherical and field 

curvature aberrations from the total aberration that degrades image quality of a lens system, 

thereby providing insight into the specific role of these aberrations in the optical design 

process. Examples of analysis utilizing these techniques are provided in subsequent 

sections. 

2.5 EVALUATION OF HIGHER ORDER ABERRATION CONTENT  

Aberration theory has proven being useful in problem solving and guiding an intelligent 

optical design process. It allows calculating the magnitude of image quality degradation, 

provides insight on the source of aberrations, and explains the nature of the optical image 

formation.  

Current developments in theory and application of aberrations have their advantages 

and disadvantages. Seidel theory is well understood and provides a fair approximation for 

some simple lenses. Higher-order aberrations in such lenses are small and the fourth-order 

theory is sufficient for predicting performance. The sixth-order aberration theory grants 

new insights, but is too elaborated and complex to use. In addition to five primary 
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aberrations, the designer needs to consider nine more aberration terms. Moreover, the sixth-

order and higher-order aberration coefficients can be further differentiated into intrinsic 

and extrinsic (or induced) components. When the incoming beam has no aberrations in it, 

a refracting surface contributes only intrinsic aberrations. The extrinsic aberrations arise 

when aberrations due to previous surfaces are present in the incoming beam. As the result, 

it is practically impossible to keep track of all twenty-three aberration terms to six order.  

Approximations involving the aberration theory is the reason that aberration correction 

in complex state-of-the-art lenses is usually accomplished with real ray tracing which 

enables an accurate view of the actual image. On the other hand, real ray tracing 

optimization lacks insight into how aberrations are corrected and balanced within the lens.  

There is a need for simple and efficient tools for aberration analysis of optical imaging 

systems that enhance the detailed and comprehensive understanding of complex lenses and 

explain trade-offs involved in the design. In addition, evaluation of the higher-order 

aberration content helps to identify the main driver of lens performance, to predict 

sensitivity to manufacturing tolerances, and to determine the redundant degrees of freedom. 

This knowledge is essential for designing efficient imaging lenses and for correctly 

interpreting the results of the real ray tracing optimization. 

In an axially symmetric optical system, only certain wavefront deformations are 

possible. Instead of keeping track of all aberration terms, these terms are combined 

according to four aberration symmetries: spherical aberration, coma, astigmatism, and field 

curvature. The magnitude of these four aberration symmetries is calculated by using real 

ray tracing and evaluating the optical path difference for a given ray. This calculation, 
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unlike the classical methods of aberration analysis, is made without decomposing the 

aberration into specific orders. The computation of aberrations using real ray data is not an 

approximation of the aberrations, but is accurate. As a consequence, the method permits 

analyzing stressed lens design solutions where fourth-order aberrations are balanced with 

higher-order aberrations.  

Table 2.2 provides the sixth-order aberrations of an axially symmetric system organized 

in groups according to aberration symmetry [7]. For example, the symmetry of spherical 

aberration includes all field-independent aberrations of at least the six order, while the 

symmetry of coma consists of all six and higher-order aberration terms that have an odd 

power dependence in aperture. To determine the magnitude of aberration symmetries, real 

rays are traced through the system. The wave aberration with respect to an ideal wavefront 

is described by the optical path difference  , , ,x y x yOPD H H    for rays specified by the 

normalized field  ,x yH H  and normalized pupil  ,x y   coordinates referenced initially 

to the optical path of the chief ray. The formulas used to calculate the aberration symmetries 

are given in Table 2.2. These definitions assume that there is no focus error. Vignetting 

also has not been considered for this investigation. The calculation is limited to rotationally 

symmetric optical systems with spherical, aspheric or any axially symmetric free-form 

surfaces. 

A macro program was written that implements equations in Table 2.2 to calculate four 

aberration symmetries and to divide the surface contributions to the total aberration of an 

optical system into intrinsic and extrinsic components (see Appendix C).  
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Table 2.2 Sixth-order aberrations organized in groups according to aberration symmetry and formulas used 

to calculate four aberration symmetries of the total aberration.  

Wavefront aberration Symmetry Formula 

 060W     Spherical aberration 
symmetry 040(0,0,0,1)OPD W

 

   331W H H H       
Coma aberration 

symmetry 

(0,1,0,1) (0, 1,0,1)
2

OPD OPD 

131W
 

  
2

151W H      

 
3

333W H   

   
2

420W H H     Field curvature 
aberration symmetry 

(0,1,1,0) (0,0,0,1)OPD OPD  

220W
   

2
240W H H     

  
2

422W H H H    Astigmatism aberration 
symmetry 

(0,1,0,1) (0,1,1,0)OPD OPD  

131 222COMA W W  
    

2

242W H      

The images of the aperture stop in object and image spaces are the entrance and exit 

pupils, respectively. There are also intermediate images of the stop in each space of the 

system that serve as intermediate entrance and exit pupils for each optical surface. The 

intermediate exit pupil for a surface is equivalent to the entrance pupil for the following 

surface. Each surface generally introduces aberrations to the wavefront, as well as errors 

in mapping coordinates between intermediate pupils. In the following calculation, it is 

important to use a common set of coordinates that accounts for the distortion of the pupil 

coordinates. In each step, a uniform grid of rays is defined at the intermediate exit pupil. 

The rays passing through the uniform exit pupil coordinates are found by using a built-in 

iterative method in lens design software often referred to as ray aiming. 
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The procedure to determine intrinsic and extrinsic aberration components of the surface 

j  is straightforward and is similar to one described by Hoffman [8]. First, the rays are traced 

to the intermediate exit pupil of the surface j  and the total aberration for all surfaces up to 

the surface j  is calculated. Next, the total aberration for all surfaces up to the surface 1j   

is found by tracing rays to the intermediate exit pupil of the surface 1j  . Since a common 

set of coordinates on the intermediate exit pupils is used for both calculations, the complete 

aberration of the surface j  is calculated by simply subtracting the total aberration values 

calculated in steps one and two. Finally, the intrinsic aberration component of the surface 

j  is found by setting up a separate optical system that consists of the surface j  alone. The 

system parameters are defined by the intermediate first-order object and image locations; 

the intermediate entrance and exit pupils; and the intermediate first-order object coordinate. 

The extrinsic aberration of the surface j  is found by subtracting the intrinsic aberration 

component calculated in the previous step from the complete aberration of the surface j  

found earlier. Fig 2.2 shows an example of the calculation of intrinsic and extrinsic 

aberration components for the secondary mirror of a Cassegrain Telescope.   
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Fig. 2.2 The procedure to calculate intrinsic and extrinsic aberration components for the secondary mirror of 

a Cassegrain Telescope: (a) – the total aberration of the primary and secondary mirror is determined; (b) – 

the total aberration of the primary mirror is evaluated at the intermediate image plane; (c) – an optical system 

that consists of the secondary mirror alone is set up, and the intrinsic aberration component of the secondary 

mirror is calculated. To establish a set of common coordinates, rays are always aimed at the exit pupil. 

Much attention is given to the presentation of aberrations. Siedel aberrations are often 

presented as individual surface aberration contributions. Ideally, all optical surfaces 

contribute a small amount of aberration which adds up to close to zero total aberration. 

Surfaces with maximum contributions are decisive for the total aberration correction.   An 

alternative presentation is referred to in literature as Siedel Pegel diagrams [9]. Siedel Pegel 

diagrams plot the partial sums of individual surface contributions or, in other words, the 
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cumulative aberration propagating in the optical system. A large cumulative aberration 

generated within the system often indicates an additional stress inherent in the design and 

can be easily read from the associated Pegel diagrams.  

The goal of this section is to present the method for calculating aberration symmetries 

and to gain insight into the higher-order aberration behavior of lens systems. Hofmann and 

Shafer have previously shown that the extrinsic aberration component is an essential and 

fundamental element of the higher-order aberration balance in many well-corrected lenses 

[8, 10-12]. The proposed aberration presentation as four aberration symmetries simplifies 

their analysis and provides additional insight.  

2.6 ANALYSIS EXAMPLE: MOBILE PHONE CAMERA  

Mobile camera technology and devices is a very fast growing field in the imaging 

market and is impacting the industry by deliberately replacing conventional photographic 

cameras. The design and packaging of a miniature camera lens module imposes unique 

optical design challenges. In this section, methods and techniques discussed previously are 

applied to analyze several state-of-the-art mobile camera lenses and to explore how a 

curved image surface can benefit the lens design of these optical systems [13]. 

A curved image sensor can potentially improve the chief ray incidence angle (CRA) on 

the sensor, as well as the aberration balancing, image quality, packaging, and 

manufacturing tolerance sensitivity.  
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2.6.1 First-Order Properties  

The layouts of two lenses, one with a flat imaging surface called the benchmark lens 

and another with a curved imaging surface called the evaluation lens, are shown in Fig. 

2.3.  

 

 
Fig. 2.3 Optical layout of a mobile camera. (a) - Conventional flat field design based on existing patent 

(benchmark lens). (b) - Representative lens imaging on a curved sensor (evaluation lens).  

The design specifications are summarized in Table 2.3. The requirements have been 

derived by comparing products in the market, from patent data, and from publications in 

the mobile platform optical design and fabrication sector.  

 

 

 

 

 

 

 

(a) (b) 
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Table 2.3 Design specifications of a typical mobile camera lens.  

Requirement Value 

Sensor format 1/3” 

f/# 2.2 

FOV [deg] 70 

f 4.5 

Total length [mm] <5.5 

Distortion <1% 

Number of lenses 5 

Materials COC, OKP4 

Edge thickness [mm] >0.1 

Center thickness  [mm] >0.3 

Air gap  [mm] >0.1 

Surface slope [deg]   <55 

Element aspect ratio <1:5 

IR cut filter  [mm]  0.2 

Surface slope [deg]   <55 

Digital image sensors become less efficient when the incident light is at higher obliquity. 

The field of view (FOV) of the mobile camera is large, and the CRA proportional to the 

FOV. Therefore, for better CRA control, the aperture stop in a conventional mobile lens is 

placed close to the front, away from the image plane. The CRA is usually limited to no 

more than 30 degrees.  However, if the image sensor is curved, the CRA is significantly 

reduced. Thus, the stop location has more flexibility and can be moved to make the lens 

system less unsymmetrical about the stop. 
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Fig. 2.4 plots values of jw  and js  defined in Section 2.2 per optical element for both 

lenses. Total values correspond to parameters W  and S  also defined in Section 2.2. The 

plot provides an indication of where the optical power originates within the system. Both 

designs have similar configuration: the first three lenses provide most of the optical power 

while the last two elements are weak correcting lenses. However, the power distribution in 

the lens imaging on a curved sensor is more symmetrical about the stop. In a symmetrical 

or nearly symmetrical optical system, all odd aberrations tend to cancel out, permitting a 

higher level of aberration correction. W  and S  values of the evaluation lens are around 

0.5 and slightly lower comparing to the benchmark lens.  

  

 
Fig. 2.4 Comparison of the first-order properties for a flat field design (benchmark lens) and a representative 

lens imaging on a curved sensor (evaluation lens). (a) – Optical power evaluation utilizing parameters jw  

and W . (b) – Symmetry evaluation utilizing parameters js  and S . A curved image surface allows a more 

symmetrical power distribution around the aperture stop.    

2.6.2 Angles of Refraction  

In Fig. 2.5, the ray refraction invariant sin( )n I  discussed in Section 2.3 is evaluated 

surface by surface for both lenses. The rays used are the real marginal and chief rays. As 

(a) (b) 
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shown, the angles of refraction of the marginal ray for the evaluation lens are slightly larger 

indicating more refraction and lens stress. Though, the evaluation design is faster. 

 

 

Fig. 2.5 Ray refraction invariant. (a) - Conventional flat field design based on existing patent (benchmark 

lens). (b) - Representative lens imaging on a curved sensor (evaluation lens). The angles of refraction of the 

marginal ray are slightly higher for the faster design with a curved image surface. 

2.6.3 Spherical Aberration Correction Analysis  

Diagrams of surface contributions to the symmetry of spherical aberration for the 

benchmark lens are shown in Fig. 2.6. The calculation of aberration symmetries was 

discussed in Section 2.5. The individual surface components are often very large. For 

example, the front and back surfaces of the second element contribute significant fourth- 

and high-order spherical aberration of opposite sign that balance one another. The 

associated Pegel diagram clearly shows tens waves of spherical aberration propagating 

inside the element, and, consequently, tight surface alignment tolerances are expected for 

this component. In the benchmark lens, the fourth-order spherical aberration is prevailing 

over high-order spherical aberration. Notice that large intrinsic aberration components 

induce extrinsic spherical aberration on the back surface of the second element. However, 

since the propagation distance inside the element is relatively small, the extrinsic spherical 

(a) 

(a) (b) 
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aberration is also small. From the Pegel diagram, we conclude that correction of spherical 

aberration is predominantly accomplished with first two elements. 

 

 

Fig. 2.6 Surface contributions to the symmetry of spherical aberration and associated Pegel diagram for a flat 

field design (benchmark lens). 

The limiting aberrations for the evaluation lens are spherical aberration, oblique 

spherical aberration and sphero-chromatism.  The correction of spherical aberration is 

accomplished within the front group of elements. However, in contrast to the benchmark 

lens, the surface contributions to the spherical aberrations generally all have similar 
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magnitude, but the opposite sign for the fourth- and high-order components, giving large 

system sums that propagate and must be balanced against one another. Fig. 2.8 shows the 

variation of spherical aberration and oblique spherical aberration across the field of view. 

The plot in Fig. 2.8 is generated with the limiting aberration analysis methods discussed in 

Section 2.4. Spherical and oblique spherical aberrations are balanced at about middle of 

the FOV, leaving a small amount of residual aberration elsewhere. 

 

Fig. 2.7 Surface contributions to the symmetry of spherical aberration and associated Pegel diagram for a flat 

field design (benchmark lens) and a representative lens imaging on a curved sensor (evaluation lens). 
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Fig. 2.8 Residual spherical and oblique spherical aberration across the field of view of a representative lens 

imaging on a curved sensor (evaluation lens). 

2.6.4 Field Curvature Correction Analysis  

In a flat field lens, field curvature correction is obtained by introducing negative optical 

power, and this leads to more overall optical power. Field curvature correction optically 

stresses a lens, and aberration residuals grow larger. For a given image quality, a lens with 

a curved imaging surface can have faster optical speed due to reduced optical stress. Field 

curvature aberration is compensated by the curved sensor. 

The field curves of the benchmark design, shown in Fig. 2.9, are typical for a flat field 

mobile lens. The field curves are wavy with multiple crossing across the FOV. The Petzval 

radius is -19.12mm. Sharp imaging on a flat surface is achieved without satisfying the 

classical requirement of having a Petzval sum nearly zero. As shown in Fig. 2.10, the 

aspheric optical elements located close to the image plane contribute higher-order field 

curvature and astigmatism. Different orders of the field curvature and astigmatism are 

balanced to compensate for any residual Petzval curvature. The induced aberrations of 



50 
 

 
 

elements four and five are very significant in magnitude. The induced aberration 

component is an inherent part of the aberration balance in a mobile lens and is essential as 

an effective design variable. 

In contrast, the field curves for the evaluation lens of much more smooth. The Petzval 

radius is -8.74mm (about two times the focal length); this clearly indicates that the field 

curvature is compensated by the curved image surface. The image surface radius of 

curvature is -10.86mm. 

 

Fig. 2.9 Field curves. (a) - Conventional flat field design based on existing patent (benchmark lens). (b) - 

Representative lens imaging on a curved sensor (evaluation lens). A curve image surface compensates the 

field curvature aberration. 

 

 

 

 

 

(a) (b) 
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Fig. 2.10 Surface contributions to the symmetry of field curvature and astigmatism for a flat field design 

(benchmark lens). 

2.6.5 Image Quality  

Figure 2.11 plots the modulation transfer function (MTF) for both lenses. Both designs 

show very good performance over the entire FOV with an average MTF of about 70% at 

112 lp/mm (grey scale Ny/4 frequency for a 1.1um pixel) and over 45% MTF at 225 lp/mm 

(grey scale Ny/2 frequency for a 1.1um pixel). However, the lens designed for a curved 

image sensor is not only one f-number faster compared with the conventional design, but 
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also shows more uniform MTF over the field. It would be very unlikely to achieve similar 

aberration correction for this f-number for a flat sensor with five lens elements. In the 

benchmark lens, the MTF at high frequencies varies significantly with the field angle. The 

MTF of the evaluation lens is more uniform over the field. 

  

Fig. 2.11 MTF a mobile camera: (a) – Conventional flat field design at f/2.2 (benchmark lens); (b) – 

Representative lens imaging on a curved sensor at f/1.6 (evaluation lens).  The lens imaging on a curved 

sensor is one f-stop faster and shows more uniform performance over the field. 

2.6.6 Tolerance Analysis  

It is important to provide insight into the sensitivity to manufacturing tolerances. Tilts 

and decenters have the largest effect on the as-built performance of the mobile lens. The 

effect of misalignments is evaluated for a lens element decenter of 5 m  and tilt of 0.1 . 

These values are considered being commercial tolerances for small molded plastic optical 

elements; however, in practice much tighter tolerances are specified to increase lens 

manufacturing yield. The RMS wavefront error, root summed squared over the field, is 

used as a criterion. Twenty-one field points are analyzed: five field points in each +X, −X, 

+Y, −Y directions and the on-axis field. 

(a) (b) 
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 Since the tolerance sensitivity strongly depends on the focal ratio of the lens, both flat 

field and curved sensor designs are compared at f/2.2. The tolerance sensitivity of the 

evaluation lens is also estimated at f/1.6. The results are summarized in Fig. 2.12.  

As expected, the f ∕1.6 lens is the most tolerance sensitive: the manufacturability may 

be a limiting factor for this fast design. Fortunately, the fabrication technologies of molded 

optics are constantly improving, allowing tighter tolerances. Comparison of lenses at f ∕2.2 

shows that the evaluation lens is performing better under manufacturing tolerances than 

the benchmark design.  

  

Fig. 2.12 Sensitivity to lens element decenter and tilt. Lens imaging on a curved sensor shows better as-build 

performance. The horizontal line indicates the nominal criterion value. 

2.6.7 Total Length  

The total length of a mobile camera is an important design parameter. A shorter lens, 

such as a telephoto lens, imposes optical stress on the system, and departs more from the 

symmetry by introducing more optical power in the individual elements. As the aberrations 

substantially increase with lens stress, it would be nearly impossible to control the 

remaining aberrations for the required FOV and focal ratio (f/#). Thus, in practice, no 

substantial reduction in length is obtained using a curved image sensor.  
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2.7 CONCLUSION  

Successful optical design has always required a combination of computational methods 

and the experience of the lens designer. In this chapter, several appropriate principles and 

techniques for evaluation of complex optical imaging systems have been presented and 

discussed. These tools have been developed and implemented in a commercial lens design 

program as an aid to lens designers who are concerned about the detailed and 

comprehensive understanding of the inner workings of lenses and trade-offs involved in 

the design. 

The ideas proposed in this chapter are that (1) two applicable parameters for quantify 

relevant lens attributes and providing adequate comparison between different optical 

configurations are the optical power distribution and lens symmetry; (2) the examination 

of the ray invariant product sin( )n i  for a critical ray path is a widely applicable technique 

that will often indicate the source of a design problem; (3) understanding the limiting 

aberrations of a lens is critical in order to further improve the design by applying an 

appropriate technique to correct these specific limiting aberrations or choosing a different 

lens configuration to keep them from arising; (4) a better understanding of the intrinsic and 

extrinsic surface contributions to the overall aberration balance is essential for designing 

efficient imaging lenses. 

Methods and techniques discussed in this chapter were applied to analyze state-of-the-

art mobile camera lenses and explore how a curved image surface can benefit the lens 

design of these optical systems. In summary, the curved image surface allows producing 

an equivalently performing design with faster focal ratio (f/#) than the conventional design. 
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It was found that about one f-stop improvement in speed can be achieved while preserving 

uniform image quality over the entire FOV. Small f/# number lenses provide a better and 

very desirable low light imaging and can accommodate for a larger number of sensor pixels 

leading to better resolution. The aperture stop location between first and second elements 

is optimal for aberration balancing and controlling the total length of the system. The author 

believes that in practice a curved image surface will not allow substantial reduction in 

length of a mobile camera.  

The radius of curvature of the sensor in the presented design is about 11mm for a 4.5 

mm focal length lens. Although the author is unaware of commercially available curved 

sensors suitable for mobile applications, potential benefits may force further development 

of this technology allowing a new generation of faster compact mobile cameras. 
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CHAPTER III: 

GEOMETRICAL IRRADIANCE CHANGES IN A 

SYMMETRIC OPTICAL SYSTEM 

3.1 INTRODUCTION  

In the development of the theory of aberrations in optical imaging systems, emphasis 

has been given to the study of image aberrations, which are described as wave, angular, 

transverse, or longitudinal quantities [1]. The light irradiance variation, specifically at the 

exit pupil plane and at the image plane of an optical system, is a radiometric aspect of the 

system that is also of interest. An accurate diffraction calculation of the system’s point 

spread function requires not only knowledge of the wavefront phase but also of its 

amplitude. These, the phase and amplitude are usually calculated geometrically at the exit 

pupil of the system.  

The light irradiance distribution at the exit pupil plane and/or at the image plane of an 

optical system can be derived from basic radiometric principles, such as conservation of 

flux [2]. This chapter provides a study of the relationship between irradiance at these two 

planes and the system’s wavefront aberration coefficients. This study is based on 

geometrical optics. 

The concept of the wavefront aberration function is well established. The wavefront 

aberration function ( , )W H   of an axially symmetric system gives the geometrical 

wavefront deformation at the exit pupil as a function of the normalized field H  and 

aperture   vectors. The field vector and the aperture vector may be defined in either object 
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or image spaces. Two vectors uniquely specify any ray propagating in the lens system. The 

wavefront aberration function is expanded into polynomial series of the rotational 

invariants as dot products of the field and aperture vectors, specifically ( )H H , ( )H   

and ( )  , and to the fourth order of approximation on H  and     is written as 
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 (3.1) 

where each aberration coefficient , ,k l mW  represents the amplitude of basic wavefront 

deformation forms [3]. Similarly, a pupil aberration function ( , )W H   can be defined to 

describe aberration between the pupils. This function is constructed by interchanging the 

role of the field and aperture vectors, and to fourth order it is 
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 (3.2) 

where the pupil aberration coefficients are barred to distinguish them from the image 

aberration coefficients. 
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In analogy with the wavefront aberration function, the irradiance function ( , )I H  is 

defined that gives the irradiance at the image plane of an optical system. To the fourth order 

of approximation, this irradiance function is expressed as  

 

     

     

      

       

, ,

000 200 111 020

22
040 131 222

2

220 311 400

( , )

,

j m n

j m n
I H I H H H

I I H H I H I

I I H I H

I H H I H H H I H H

   

  

     

  

     

      

      

       



 (3.3) 

where the irradiance coefficients , ,k l mI  represent basic illumination distribution patterns at 

the image plane. In addition, another irradiance function ( , )I H   is also defined that gives 

the irradiance of the beam at the exit pupil plane of an optical system,  

 
     

      

       

, ,
, ,

000 200 111 020

2 2

040 131 222

2
220 311 400

( , ) ( ) ( ) ( )

,

j m n
l k m

j m l
I H I H H H

I I I H I H H

I H H I H H H I H

I H H I H I

   

  

 

      

   

      

      

       



 (3.4) 

where each irradiance coefficient , ,l k mI  represents basic apodization distributions at the exit 

pupil, as shown in Fig. 3.1. In these functions, it is assumed that the irradiance is greater 

than zero for any point defined by the normalized field H  and aperture   vectors. 
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It is worth noting the symmetry between the image aberration function ( , )W H  and the 

pupil aberration function ( , )W H  , and likewise the symmetry between the image 

irradiance function ( , )I H  and the pupil irradiance function ( , )I H  . 

 

Fig. 3.1 Second- and fourth-order apodization terms at the exit pupil given by the coefficients of the pupil 

irradiance function. 

The question the author pose and answer is: what is the relationship between the 

wavefront aberration functions ( , )W H   and ( , )W H  , and the irradiance functions 

( , )I H   and ( , )I H  ? The conservation of flux in an optical system is used to determine 

the relationship between wavefront and irradiance coefficients. The particular case of 

relative illumination at the image plane is also discussed in some detail.  The theoretical 

results are in agreement with real ray tracing. Overall, this chapter provides new insights 

into the irradiance changes in an optical system, and furthers the theory of aberrations. 
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3.2 RADIATIVE TRANSFER IN AN OPTICAL SYSTEM  

This section reviews radiometry and shows how aberrations relate to conservation of 

optical flux   in an optical system. Fig. 3.2 illustrates the basic elements of an axially 

symmetric optical system and the geometry defining the transfer of radiant energy. Rays 

from a differential area dA  in the object plane pass through the optical system and 

converge at the conjugate area 'dA  in the image plane. An arbitrary plane S  in object space 

and a plane 'S  conjugate to S  in image space are defined. The differential cross sections 

of the beam dS  in S  and 'dS   in 'S   are optically conjugated to first order.    

 

Fig. 3.2 Geometry defining the transfer of radiant energy from differential area dA  in object space to the 

conjugate area 'dA  in image space. The radiant flux through all cross sections of the beam is the same. 

In a lossless and passive optical system, the element of radiant flux d  is conserved 

through all cross sections of the beam. If we choose planes S  and 'S  at the entrance and 

exit pupils respectively, the equation for the conservation of flux becomes 

 
4 4

2 2

cos ( ) ' 'cos ( ') '
'o o

dAdS dA dSd L L d
e e

 
     , (3.5) 

where oL  is the source radiance. In Eq. 3.5, a Lambertian source is assumed and, 

consequently, oL  is constant. The object space angle   is between the ray connecting dA  
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and dS , and the optical axis of the lens system. Similarly, '  is the image space angle 

between the ray connecting 'dA  and 'dS , and the optical axis. e ( 'e ) is the axial distance 

between the object (image) plane and the entrance (exit) pupil plane respectively.  

Eq. 3.5 provides the radiant flux along a particular ray in an optical system. Since the 

normalized field H  and aperture   vectors uniquely specify any ray propagating in the 

optical system, Eq. 5 gives the radiant flux as a function of normalized field H  and pupil 

coordinates  . 

The irradiance on the exit pupil plane is obtained by dividing the radiant flux that is 

incident on a surface by the unit area. It follows that  

 4 4
2 2
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Where ( , )dI H   is the differential of irradiance on the exit pupil plane. Similarly, the 

irradiance on the image plane is obtained by dividing the radiant flux by the image surface 

unit area as in 

 4 4
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And ( , )dI H   is now the differential of irradiance on the image plane. The differentials of 

irradiance ( , )dI H   and ( , )dI H   are functions of the field and aperture vectors.  

Eq. 3.6 and Eq. 3.7 are general and do not involve any approximations. However, care 

must be taken in evaluating these expressions, since the angles   and '  may vary due to 

aberrations. In addition, the differential areas dA , 'dA , dS  and 'dS  may also vary for 

different points in the aperture and in the field of the lens. 
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3.3 IRRADIANCE FUNCTION OF A PINHOLE CAMERA 

This section calculates coefficients of the irradiance function defined in Eq. 3.6 and Eq. 

3.7 for a pinhole camera. The pinhole camera produces images of illuminated objects as 

light passes through an aperture, as shown in Fig. 3.3.   

 

Fig. 3.3 Geometry defining a pinhole camera. Images are formed as light passes through the aperture. 

In this model, the field vector H  is defined on the image plane and the aperture vector 

  is set on the plane of the aperture. The irradiance functions ( , )I H   and ( , )I H   give 

the relative irradiance along the ray specified by the field and aperture vectors. It follows 

from Eq. 3.6 and Eq.3.7 that irradiance distribution at a point specified by H  on the focal 

plane or at a point specified by   on the aperture plane are given by 4cos ( ')  of the 

particular ray. To calculate the coefficients of the irradiance functions to fourth order, 

4cos ( ')  is expressed in terms of first-order system parameters as (see Appendix D) 
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 (3.8) 

where 'u  and 'u  are the first-order marginal and chief ray slopes in image space. 
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In aberration theory, the reference sphere is used as the reference to measure the wavefront 

deformation. In analogy, the geometry in Fig. 3.3 can be used to define a model of 

irradiance ( , )pinholeI H   which is helpful as a reference and for further calculations. In an 

actual system, image and pupil aberrations affect the irradiance distribution. 

3.4 IRRADIANCE ON THE IMAGE PLANE 

The aperture vector   is selected at the exit pupil plane and, thus, it defines the ray 

intersection with this plane. Rays at the exit pupil pass through a uniform grid by 

construction, and differential areas 'dS  are constant given that we choose to define rays at 

the exit pupil. To calculate the image plane irradiance, Eq. 3.7 is evaluated in image space 

as 

 4
0 cos ( ')dI I    (3.9) 

where 

 0 2

'
e'o
dSI L , (3.10) 

Where 0 1I   is a constant corresponding to the irradiance value for the on-axis field point. 

In contrast to a pinhole camera, in an actual system, the ray angle in Eq. 3.11 is modified 

by image aberrations. To calculate the irradiance distribution at the image plane of an 

optical system with the aperture stop at the exit pupil, 4cos ( ')  is expressed in terms of 

first-order system parameters and wavefront aberration coefficients (see Appendix E). 

Table 3.1a provides a summary of the second-order image plane irradiance coefficients. It 

is interesting to note that the second-order irradiance terms are not affected by image 
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aberrations and that the image plane irradiance to second order is equivalent to the ideal 

irradiance of a pinhole camera 

          
(2) (2) 2 2, , 1 2 ' 4 ' ' 2 'pinholeI H I H u u u H u H H            . (3.11) 

Table 3.1b summarizes the fourth-order image plane irradiance coefficients. The fourth-

order irradiance coefficients are the sum of two components. The first component is 

represented by products of the first-order ray slopes 'u   and 'u  in image space. The second 

component includes additional terms that are functions of the fourth-order image aberration 

coefficients and first-order ray slopes.  

 Table 3.1a. Second-order irradiance coefficients (2)
, ,k l mI  at the image plane of an optical system. 

   2
020 2 'I u        

 

   111 4 ' 'I H u u H      
 

   2
200 2 'I H H u H H   

 

 

 

 

 

 

Table 3.1b. Fourth-order irradiance coefficients (4)
, ,k l mI  at the image plane of an optical system. 

   
2 24

040 040
16[3 ' ' ']I u W u u
Ж

      
 

     3 2
131 040 131

16 12[12 ' ' ' ' ']I H u u W u W u u H
Ж Ж

             
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   
2 22 2 2

222 131 222
8 8[12 ' ' ' ' ']I H u u W u W u u H
Ж Ж

       

     2 2 2
220 131 220

4 8[6 ' ' ' ' ']I H H u u W u W u u H H
Ж Ж

           

     3 2 2
311 222 220 311

8 8 4[12 ' ' ' ' ' ']I H H H u u W u W u W u u H H H
Ж Ж Ж

          

   
2 24 2

400 311
4[3 ' ' ]I H H u W u H H
Ж

   
 

3.4 IRRADIANCE ON THE EXIT PUPIL PLANE 

To calculate the irradiance distribution on the exit pupil plane of an optical system, Eq. 

3.6 is evaluated in image space as 

 4
0

' cos ( ')dAdI I
dA

    (3.12) 

and 

 0 2eo
dAI L 

  
 

, (3.13) 

where 0 1I   is a constant corresponding to the irradiance value for the on-axis field point. 

A comparison of Eq. 3.12 and Eq. 3.9 reveals an additional term 'dA
dA

 that is given by the 

ratio between the elements of area at the object and image planes. In an optical system with 

aberrations, the ratio  may vary over the pupil and over the field. Two differential areas 

are related by the determinant of the Jacobian ( , )J H   of the transformation  

 ' ( , )dA J H dA . (3.14) 

If the Jacobian determinant is expressed in terms of wavefront aberration coefficients, 

the differential of irradiance on the exit pupil plane is calculated by evaluating Eq. 3.12 

'dA
dA
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and keeping terms to fourth order (see Appendix F). Table 3.2a and Table 3.2b provide a 

summary of the exit pupil plane irradiance coefficients to the fourth order of 

approximation. 

The coefficients , ,k l mI  are the sum of several components. The first component is 

represented by products of the first-order ray slopes   and  in image space and is 

equivalent to the first component of , ,k l mI  coefficients. The second component includes 

additional terms that are functions of the fourth-order image aberration coefficients and 

first-order ray slopes. Note that the second-order terms of the exit pupil irradiance function 

are modified by image aberrations, in contrast to the second-order terms of the image plane 

irradiance. The third component of the coefficients (4)
, ,k l mI  is proportional to the six-order 

image aberration coefficients.  Finally, there are additional terms that involve products of 

the fourth-order aberrations.  

 In Table 3.1 and Table 3.2, the field vector H  is set at the object plane and the aperture 

vector   is defined at the exit pupil plane. The derivation assumes that the aperture stop 

coincides with the location of the aperture vector which is the exit pupil plane. The 

formulas would change depending on whether the field vector H  is at the object or image 

plane, and on whether the aperture vector   and the stop are at the entrance pupil, the exit 

pupil, or at an intermediate pupil. 

Table 3.2a. Second-order irradiance coefficients (2)
, ,k l mI  at the exit pupil plane of an optical system. 

   2
020 311

4[ 2 ' ]I H H u W H H
Ж

    
 

'u 'u
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   111 220 222
4 6[ 4 ' ' ]I H u u W W H
Ж Ж

      
 

   2
200 131

4[ 2 ' ]I u W
Ж

       
 

Table 3.2b. Fourth-order irradiance coefficients (4)
, ,k l mI  at the exit pupil plane of an optical system. 

   
2 24 2

040 511 311 311 3112

6 3 3[3 ' ' ]I H H u W W u W W H H
Ж Ж Ж

     
 

   3 2 2
131 422 420 222 220 311

10 8 5 2 6[12 ' ' ' ' ' 'I H H H u u W W W u W u W u u
Ж Ж Ж Ж Ж

         

                                 220 311 222 3112 2

4 10 ]W W W W H H H
Ж Ж

     

 
2 2 2 2 2

222 333 331 131 222 220 311
12 4 2 12 8 2[12 ' ' ' ' ' ' ' 'I H u u W W W u W u u W u u W u
Ж Ж Ж Ж Ж Ж

       

 

                       
2

222 222 222 220 311 1312 2 2

8 16 4 ]W W W W W W H
Ж Ж Ж

     

   2 2 2 2
220 331 131 222 220 311

6 5 2 4 5[6 ' ' ' ' ' ' ' 'I H H u u W W u W u u W u u W u
Ж Ж Ж Ж Ж

          

                              311 131 222 2202 2

10 8 ]W W W W H H
Ж Ж

      

   3 2 2
311 242 240 222 220 131

10 8 5 2 6[12 ' ' ' ' ' 'I H u u W W W u W u W u u
Ж Ж Ж Ж Ж

           

                               220 131 222 1312 2

4 10 ]W W W W H
Ж Ж

       

   
2 24 2

400 151 131 131 1312

6 3 3[3 ' ' ]I u W W u W W
Ж Ж Ж

        
 

3.5 COEFFICIENT RELATIONSHIP 

For the case in consideration of having the field vector at the object plane and the 

aperture vector at the exit pupil plane, the second order relationships in Table 3.3 follow. 
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Table 3.3. Relationships between second-order irradiance coefficients (2)
, ,k l mI  and (2)

, ,k l mI . 

020 200 131
4I I W
Ж

 
 

111 111 220 222
4 6I I W W
Ж Ж

  
 

200 020 311
4I I W
Ж

 
 

Thus it is possible to determine aberration coefficients from measurements of the 

irradiance at the exit pupil plane and at the image plane of an optical system [4]. However, 

since the field vector is defined at the object plane, the image plane irradiance refers to 

image points H H  and, as a consequence, measurements should be made at conjugate 

object-image points. 

3.6 COMBINATION OF IRRADIANCE COEFFICIENTS 

In the derivation of the irradiance coefficients, it has been assumed that the object has a 

constant or Lambertian radiance. However, it may be desirable to determine the irradiance 

coefficients when the object has a different emission profile. In this case, the source 

radiance is expanded as polynomial series of dot products of the field and aperture vectors 

and to the second order, for example, can be written as        

 0( , ) (1 ( ) ( ) ( )),L H L A B H C H H            (3.15) 

where A , B  and C  are coefficients describing the emission profile. We substitute Eq. 

3.15 into Eq. 3.9 and Eq. 3.10 and write the irradiance coefficients to second order as 

    
(2) 2 2, 1 [ 2 ' ]( ) [ 4 ' ' ]( ) [ 2 ' ] .I H u A u u B H u C H H                 (3.16) 
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Thus, second order variations in the source radiance produce second order variations in 

irradiance at the image plane. In addition, other higher-order irradiance terms, not 

presented here, result from different combinations of the source radiance terms with 

irradiance terms in Table 3.1a and Table 3.1b.  These higher order terms can be considered 

as extrinsic irradiance aberrations that result from the interaction of the incoming irradiance 

variations and aberration in the system. 

However, Eq. 3.16 shows that with respect to the irradiance of a pinhole camera 

( , )pinholeI H   second order variations in object space simply add to obtain the irradiance in 

image space. 

3.7 IRRADIANCE COEFFICIENTS AND CHOICE OF COORDINATES 

The irradiance coefficients depend on the location of the field and aperture vectors. 

Tables 3.1 and 3.2 give the coefficients for the case of having the field vector at the object 

plane and the aperture vector at the exit pupil plane. This case is an important one as for a 

diffraction calculation knowledge of the amplitude of the field at the exit pupil is necessary; 

this amplitude is taken to be equal to the square root of the irradiance function ( , )I H  . 

For completeness, Table 3.4 and Table 3.5 present the corresponding formulas for other 

cases on the location of the field and aperture vectors. The derivation of coefficients in 

Table 3 and Table 4 is outlined in Appendixes G and H. 
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Table 3.4a. Second-order irradiance coefficients (2)
, ,k l mI  at the image plane of an optical system with the 

field vector at the object plane and the aperture vector at the entrance pupil plane. 

   2
020 311

4[ 2 ' ]I u W
Ж

       
 

   111 220 222
4 6[ 4 ' ' ]I H u u W W H
Ж Ж

      
 

   2
200 131

4[ 2 ' ]I H H u W H H
Ж

    
 

 

 

Table 3.4b. Fourth-order irradiance coefficients (4)
, ,k l mI  at the image plane of an optical system with the field 

vector at the object plane and the aperture vector at the entrance pupil plane. 

 
2 4 2

040 040 511 311
16 6 3[3 ' ' ' 'I u W u u W W u
Ж Ж Ж

        

                    
2

222 040 220 040 311 3112 2 2

48 48 3 ]W W W W W W
Ж Ж Ж

      
 

   3 2 2
131 040 131 422 420 222

16 12 10 8 5[12 ' ' ' ' ' 'I H u u W u W u u W W W u
Ж Ж Ж Ж Ж

            

                           2
220 311 131 040 220 1312 2

2 6 112 28' ' 'W u W u u W W W W
Ж Ж Ж Ж

       

                            222 131 220 311 222 3112 2 2

30 4 10 ]W W W W W W H
Ж Ж Ж

        

 
2 2 2 2

222 131 222 333 331
8 8 12 4[12 ' ' ' ' 'I H u u W u W u u W W
Ж Ж Ж Ж

       

                   2 2
131 222 220 311

2 12 8 2W u W uu W uu W u
Ж Ж Ж Ж

         

                  131 131 222 222 220 222 040 0402 2 2 2

48 16 8 64W W W W W W W W
Ж Ж Ж Ж

     

                   
2

222 222 222 220 311 1312 2 2

8 16 4 ]W W W W W W H
Ж Ж Ж

     

   2 2 2
220 131 220 331

4 8 6[6 ' ' ' ' 'I H H u u W u W u u W
Ж Ж Ж

        

                            2 2
222 220 311 131

2 4 5 5' ' ' ' ' 'W u u W u u W u W u
Ж Ж Ж Ж

         
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            040 040 131 131 222 220 220 220 220 2222 2 2 2 2

96 16 16 16 4W W W W W W W W W W
Ж Ж Ж Ж Ж

      

                              131 311 220 2222 2

10 8 ]W W W W H H
Ж Ж

      

   3 2 2
311 222 220 311 242 240

8 8 4 10 8[12 ' ' ' ' ' 'I H H H u u W u W u W u u W W
Ж Ж Ж Ж Ж

         

                            2 2
222 220 131

5 2 6' ' ' 'W u W u W u u
Ж Ж Ж

       

            040 131 131 222 131 220 222 311 220 3112 2 2 2 2

80 28 32 6 4W W W W W W W W W W
Ж Ж Ж Ж Ж

      

                              220 131 222 1312 2

4 10 ]W W W W H H H
Ж Ж

     

 
2 4 2 2

400 311 151 131
4 6 3[3 ' ' ' ...I H H u W u W W u
Ж Ж Ж

       

                     
2

040 220 040 222 131 311 131 1312 2 2 2

32 24 8 3 ]W W W W W W W W H H
Ж Ж Ж Ж

    
 

Table 3.5a. Second-order irradiance coefficients (2)
, ,k l mI  at the exit pupil plane of an optical system with the 

field vector at the object plane and the aperture vector at the entrance pupil plane. 

   2
020 311

4[ 2 ' ]I H H u W H H
Ж

      

   111 220 222
4 6[ 4 ' ' ]I H u u W W H
Ж Ж

      
 

   2
200 131

4[ 2 ' ]I u W
Ж

       
 

 

 

 

 

Table 3.5b. Fourth-order irradiance coefficients (4)
, ,k l mI  at the exit pupil plane of an optical system with the 

field vector at the object plane and the aperture vector at the entrance pupil plane. 

 
2 4 2

040 511 311 040
6 3 16[3 ' ' ' 'I H H u W W u W u u
Ж Ж Ж

      
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                    
2

222 040 220 040 311 3112 2 2

48 48 3 ]W W W W W W H H
Ж Ж Ж

       

   3 2 2
131 422 420 222 220 311

10 8 5 2 6[12 ' ' ' ' ' 'I H H H u u W W W u W u W u u
Ж Ж Ж Ж Ж

         

                            2
040 131 131 040 220 131 222 1312 2 2

16 12 112 28 30' ' 'W u W u u W W W W W W
Ж Ж Ж Ж Ж

              

                             220 311 222 3112 2

4 10 ]W W W W H H H
Ж Ж

     

 
2 2 2 2 2

222 333 331 131 222 220 311
12 4 2 12 8 2[12 ' ' ' ' ' ' ' 'I H u u W W W u W u u W u u W u
Ж Ж Ж Ж Ж Ж

         

          2
131 222 131 131 222 222 220 222 040 0402 2 2 2

8 8 48 16 8 64' ' 'W u W u u W W W W W W W W
Ж Ж Ж Ж Ж Ж

        

                    
2

222 222 222 220 311 1312 2 2

8 16 4 ]W W W W W W H
Ж Ж Ж

     

   2 2 2 2
220 331 131 222 220 311

6 5 2 4 5[6 ' ' ' ' ' ' ' 'I H H u u W W u W u u W u u W u
Ж Ж Ж Ж Ж

                                               

2
131 220 040 040 131 131 222 220 220 220 220 2222 2 2 2 2

4 8 96 16 16 16 4' ' 'W u W u u W W W W W W W W W W
Ж Ж Ж Ж Ж Ж Ж

        

                              311 131 222 2202 2

10 8 ]W W W W H H
Ж Ж

      

   3 2 2
311 242 240 222 220 131

10 8 5 2 6[12 ' ' ' ' ' 'I H u u W W W u W u W u u
Ж Ж Ж Ж Ж

           

                               2 2
222 220 311

8 8 4' ' ' 'W u W u W u u
Ж Ж Ж

    

               040 131 131 222 131 220 222 311 220 3112 2 2 2 2

80 28 32 6 4W W W W W W W W W W
Ж Ж Ж Ж Ж

      

                                220 131 222 1312 2

4 10 ]W W W W H
Ж Ж

       

 
2 4 2 2

400 151 131 311
6 3 4[3 ' ' 'I u W W u W u
Ж Ж Ж

       

                  
2

040 220 040 222 131 311 131 1312 2 2 2

32 24 8 3 ]W W W W W W W W
Ж Ж Ж Ж

     
 

 

3.8 COEFFICIENTS VERIFICATION 

In order to support the analytical derivation, the magnitude of the irradiance coefficients 

was determined both through the formulas derived and numerically. A macro program was 

written to calculate the irradiance coefficients by making an iterative fit to a selected set of 
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irradiance values across the aperture and field of an optical system. The iterative algorithm 

is similar to one used by Sasian to fit aberration coefficients [5].  

For example, for an optical system with the stop aperture at the entrance pupil, the 

routine in Table 3.6 was executed to find the magnitude of the irradiance coefficients 

 020I    and  
2

040I   . According to Eq. 3.7, the normalized irradiance at the specified 

field and aperture points is given by   4' cos ' ,dS H
dS

  . The quantity 

  4' cos ' ,dS H
dS

   was computed in a lens design program by defining a small circle at 

the entrance pupil and tracing real rays to calculate the area of the corresponding ellipse at 

the exit pupil.  

After a few iterations of the loop in Table 3.6, the coefficients  020I    and 

 
2

040I    converged to the theoretical values with insignificant error.  A similar 

approach was applied to validate the remaining irradiance coefficients. The iterative fit 

methodology was used to test the coefficients values at several conjugate distances and 

aperture stop positions for both single surface and a system of several surfaces. The obvious 

agreement of the formulas with the coefficients found with the iterative fit supports the 

validity of the theory. 

As an example, the irradiance coefficients for a Landscape lens [6] shown in Fig. 3.4 

were calculated both ways. The lens operates at f/8 and the field of view (FOV) is limited 

to 30°. Table 3.7 presents a comparison of coefficients where the differences in the eighth 

decimal place are likely due to numerical computation errors. 
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Table 3.6 Iterative algorithm that was used to fit irradiance coefficients. 

FOR   1 to 100i   

          

4 6 8 10 2
200 400 600 800 1000

2 6 8 10 4
400 200 600 800 1000

2

4

4

600 20 4

4

0

( 1  )

( 1  )

( 1  

0.2

0.4

0.6

cos ( ){0, }
'

cos ( ){0, }
'

cos ( ){0, }
'

real

real

real

real

I

I I I I I I

Ri

I I I I I I

Ri

I I I I

dS
dS

dS
dS

dS
dS



 
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

 
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

 






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













   
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00 800 1000

2 4 6 10 8
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2 4 6 8 10
1000 200 400 600 800

4

4

)

( 1  )

( 1  

0.8

1

)

cos ( ){0, }
'

cos ( ){0, }
'

real

real

I I

Ri

I I I I I I

Ri

I I I I I I
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dS
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
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 
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
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
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

      

    

 NEXT   

  
 

(a) (b) 
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Fig. 3.4 (a) – Layout of the Landscape lens used to compare irradiance coefficients computed analytically 

and numerically. (b) – the optical path difference plots for on-axis and full-field positions (plot scale is two 

waves). In order to minimize fitting errors, the FOV of the lens is limited to 30°.   

Table 3.7 Comparison of irradiance coefficients computed analytically and numerically. The agreement to 

eighth digits supports the correctness of the formulas. 

Irradiance coefficient 

, ,k l mI  
Analytical formula Numerical calculation 

 020I    -0.0051310721 -0.0051310695 

 111I H   
0.0051413131 0.0051413122 

 200I H H  -0.0563954333 -0.0563954267 

 
2

040I    -0.0002767939 -0.0002768392 

  131I H      0.0003447530 0.0003447656 

 
2

222I H   0.0003958170 0.0003958224 

  220I H H     
0.0004320213  

  311I H H H    -0.0001299094 -0.0001299152 

 
2

400I H H  
0.0028603412 0.0028602385 

 

 

 

3.9 RELATIVE ILLUMINATION  

A practical and important case is the relative illumination  RI H   at the image plane of 

an optical system, which can be written to fourth order as 
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      
2

200 4001RI H I H H I H H     . (3.16) 

This is given in the limit of a small aperture by the terms  200I H H  and  
2

400I H H

of the irradiance function ( , )I H  . It has been shown in previous sections that the 

irradiance coefficients depend on the location of the field and aperture vectors. The theory 

of irradiance changes in axially symmetric optical systems provides a closed form solution 

that approximates to fourth order the image illumination fall-off and accounts for the 

illumination effects of aberrations in an unvignetted optical system. In this section, the role 

of individual aberration terms in the relative illumination is discussed and the results are 

validated with real ray tracing. 

3.9.1 Historical Background  

The distribution of light at the focal plane of an optical system is an important aspect of 

a lens performance. Joseph Petzval was well aware of the image plane illumination and 

back in 1858 stated, "A third quality of the new combination of lenses is the equal strength 

of light from the center to the utmost corners of a surface of the image [7]..." The term 

relative illumination was used as early as the 1900’s, when photographers were concerned 

with the non-uniform illumination in different regions of the negative [8, 9]. In the 1950s, 

the increasing demand for wide-angle lenses used for aerial photography and other 

purposes renewed interest in the subject. As shown in Fig. 3.5, it was found that the 

decrease in relative illumination of wide-angle lenses limited the angle of view of the early 

objectives to approximately 95°-105°. The interest in creating accurate topographic maps 



78 
 

 
 

led to the development of new lens design solutions capable of producing usable imagery 

over a greater angular field of view [10]. 

Relative illumination is defined as the ratio of the irradiance on the focal plane at off-

axis field positions to the irradiance at the center of the field. The relationship between the 

illumination and the field angle is derived from basic radiometric principles. For many 

practical purposes, the cos4-law has been considered a reasonable approximation to the 

illumination fall-off produced by a lens at its focal plane; however, assumptions involved 

in the derivation of the cos4-law are often found to be incorrectly interpreted in the optical 

literature [2].   

 

Fig. 3.5 Stadium at the University of Arizona simulated through an early wide-angle lens (US 2031792). 

Sharp decrease in illumination toward the corners of the image limits the field-of-view of the objective. 

The cos4-law states that the irradiance of different parts of the image formed by the 

optical system vary as the fourth power of the cosine of the chief ray angle in object space. 

As some topographic lenses were found to not follow the cos4-law the difference was 

referred to as the ‘lens effect’ [10]. Reiss showed that the cos4-law is precisely followed 

only by an optical system corrected for all image aberrations with an aperture stop that 
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precedes the lens and the object at infinite distance [11]. Other authors have emphasized 

the importance of considering the effect of pupil aberrations and stop position on the 

illumination. It was found that it is possible to design a lens system in such a way that the 

decrease in illumination towards the edge of the field occurs more gradually than the cos4-

law [12-14].  

In 1946, Roossinov patented a wide-angle lens that instead of the cos4-law realized a 

cos3-law. The area of the entrance aperture of this objective increases towards the edge of 

the field of view. This phenomenon is achieved by maximum divergence from Abbe’s 

conditions of sines for the front half of the objective, with the object located in the plane 

of the diaphragm [15]. 

In 1986, Rimmer outlined a method to accurately calculate relative illumination by real 

ray tracing. His method is based upon the theory developed by Hopkins and requires 

determining the size of the exit pupil in the direction cosine space [16, 17]. Similar 

computation methods of relative illumination are used in modern lens design software [18]. 

Although it is well known that the relative illumination in an optical system is a function 

of many variables, there is still confusion regarding the specific role of distortion, pupil 

aberrations and aperture stop position on the distribution of light at the focal plane.  

3.9.2 Relative Illumination Coefficient Summary  

Table 3.8 presents the second 200I  and fourth order 400I  coefficients of the relative 

illumination function  RI H  for several cases in the location of the aperture and field 

vectors. When the stop is between system components, the system is then divided into part 
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A preceding the stop and part B following the stop, and aberrations of each part are then 

used to define the irradiance coefficients. Note that both image and pupil aberration 

coefficients are used (see Appendix I) [19]. 

Examination of the functional form of the coefficients allows one to make several points 

of interest. First, to second order pupil coma influences the relative illumination and can 

nullify the coefficient 200I  in some cases. This is known as Slyusarev effect. Alternatively, 

the relationship between image and pupil aberrations 

 2
131 311 { }

2
ЖW W u   , (3.17) 

can be used to determine how image distortion 311W influences relative illumination [20]. 

Second, if the system is telecentric in image space ' 0u   and is also aplanatic 131 0W 

, 151 0W  , and 040 0W  then the relative illumination is uniform to fourth order. Such a 

system would have a  sinf  image height mapping [21]. Other cases for uniform 

illumination are also possible that require 2
131

42 ' 0u W
Ж

   .   

 

 

Table 3.8. Second and fourth-order irradiance coefficients describing relative illumination. 

Case 200I  
400I  

Pinhole camera. 22 'u 
 

43 'u
 

Field vector at the image 
plane. 22 'u 

 

43 'u
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Stop and aperture vector at 
the exit pupil plane. 

Field vector at the object 
plane. 

Stop and aperture vector at 
the exit pupil plane. 

22 'u   4 2
311

43 ' 'u W u
Ж

    

Field vector at the image 
plane. 

Stop and aperture vector at 
the entrance pupil plane. 

2
131

42 'u W
Ж

  

 

4 2
151 131 131 1312

040 220 040 2222

6 3 33 ' '

1 32 24

u W W u W W
Ж Ж Ж

W W W W
Ж

   

   

 

Field vector at the object 
plane. 

Stop and aperture vector at 
the entrance pupil plane. 

2
131

42 'u W
Ж

  

 

4 2 2
311 151 131 131 1312

040 220 040 222 131 3112

4 6 3 33 ' ' '

1 32 24 8

u W u W W u W W
Ж Ж Ж Ж

W W W W W W
Ж

    

    
 

Stop and aperture vector at 
plane between components of 
the lens. 

Field vector at the image 
plane. 

2
131

42 ' Bu W
Ж

    

4 2
151 131 131 1312

040 220 040 2222

6 3 33 ' '

1 32 24

B B B B

B B B B

u W W u W W
Ж Ж Ж

W W W W
Ж

   

   

 

Stop and aperture vector at 
plane between components of 
the lens. 

Field vector at the object 
plane. 

2
131

42 ' Bu W
Ж

  
 

4 2 2 2
311 311 151 131

040 220 040 222 131 3112

131 131 131 3112 2

4 4 6 33 ' ' ' '

1 32 24 8

3 8

A B B B

B B B B B B

B B B A

u W u W u W W u
Ж Ж Ж Ж

W W W W W W
Ж

W W W W
Ж Ж

    

    

 

 

Third, if the system is telecentric in object space 0u  , and if the Herschel condition of 

the pupils is satisfied 

  2
131 8

ЖW u  , (3.18) 
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then the relative illumination would follow to second order a 3cos ( ')  rule in a system 

where the aperture vector is defined at the entrance pupil plane or at the intermediate pupil. 

This follows since the cosine-to-the-third-power of the angle in image space is given by 

 3 23cos ( ') 1 ' ...
2

u     (3.19) 

Fourth, contrary to intuition pupil spherical aberration 040W  may not influence the 

relative illumination when the aperture vector is at the entrance pupil plane and 

220 222 0W W  , though it may change the chief ray angle of incidence at the image plane. 

3.9.3 Example: Mobile Phone Camera Lens   

Miniature cameras for consumer electronics and mobile phones are a rapidly growing 

technology. The system level requirements such as manufacturing cost, packaging, and 

sensor characteristics impose unique challenges for optical designers. The relative 

illumination is one of the interesting characteristics of miniature camera lens designs.  

The typical distortion requirement in mobile camera lenses is <2% and the FOV is large 

(common FOV values are 65 - 75°). On the other hand, the chief ray incidence angle (CRA) 

on the sensor is usually limited to no more than 30°. The CRA impacts the relative 

illumination, which often is set to 50% at the sensor corners. For better CRA control, the 

aperture stop in a conventional mobile lens is placed close to the front, away from the 

image plane. The aperture stop position and the strong aspheric next to the image plane 

generate exit pupil spherical aberration, which reduces the CRA. 
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Mobile lenses are well known for the extensive use of aspheric surfaces. The interaction 

of multiple aspherics within the design enables a high level of control over aberrations. 

Particularly, sharp imaging on a flat surface can be achieved without satisfying the classical 

requirement of having a Petzval sum nearly zero. The aspheric optical elements located 

close to the image plane contribute higher-order field curvature and astigmatism. Different 

orders of the field curvature and astigmatism are balanced to compensate for any residual 

Petzval curvature [22]. 

  
 
 
 

Fig. 3.6 U.S. Patent 6441971: (a) Layout, (b) field curvature and distortion plot. Distortion correction 

requirements do not allow one to significantly reduce the chief ray incidence angle on the sensor (CRA). Exit 

pupil spherical aberration shifts the pupil radially and reduces the CRA. Higher order field curvature and 

astigmatism are balanced to compensate for the residual Petzval field curvature.    

To illustrate how aberrations affect the relative illumination of a mobile camera lens, 

different terms in the close-from solution are evaluated for one of the early miniature digital 

camera patents [23]. The three-element design shown in Fig. 3.6a covers a FOV of 64° at 

f/2.8. Field curvature and distortion plots are shown in Fig. 3.6b. A small positive fourth-

order distortion is compensated with a higher-order negative distortion resulting in <0.5% 

(a) (b) 
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of total distortion. The Petzval radius is about two times the focal length; this clearly 

indicates that the residual field curvature is compensated by balancing higher orders of the 

field curvature and astigmatism. Aberration contributions to the relative illumination, 

sorted in descending order, are summarized in Table 3.9. 

Table 3.9 Contributions to the relative illumination for US. 6441971. 

2nd order 

coefficient (
200I ) 

Numerical value 4th order 

coefficient (
400I ) 

Numerical value 

22 'u  -0.745977 43 'u  0.417361 

131
4 W
Ж

 0.034043 
151

6 W
Ж

 -0.055200 

  
040 2222

24 W W
Ж

  0.025298 

  2
311

4 'W u
Ж

 0.018905 

  
040 2202

32 W W
Ж

  -0.016739 

  2
131

3 'W u
Ж

  -0.009523 

  
131 3112

8 W W
Ж

  0.000863 

  
131 1312

3 W W
Ж

 0.000217 

Total -0.711934  0.343373 

 

As expected, the major contribution to the deviation from the cos4-law comes from the 

pupil coma and distortion. However, since the distortion is small and pupil coma is 

proportional to the distortion, the ability to manipulate the relative illumination through 

these terms is limited. The products of residual field curvature, astigmatism, and pupil 

spherical aberration contribute significantly to the change in relative illumination of a 
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mobile lens to fourth-order and may provide an effective degree of freedom during the lens 

design process. The relative illumination curves calculated with real ray tracing and using 

the analytical approximation are presented in Fig. 3.7. The plot shows excellent agreement 

between real ray tracing and the analytical solution over the entire FOV, confirming that 

the assumptions used in the derivation are still valid for relatively fast lenses with relatively 

large FOVs.   

 
Fig. 3.7 Relative illumination plot for U.S. Patent 6441971. Analytical equation and real ray tracing 

calculation show excellent agreement over the entire FOV. 

3.9.4 Example: Wide-Angle Lens   

The field of view of a wide angle objective that follows the cos4-law is limited to 

approximately 95°-105° due to a sharp decrease in illumination at the margin of the image. 

In US. Patent 2516724, shown in Fig. 3.8a, the decrease in the illumination follows the 

cos3-law and this makes it possible the widening of the angle of view up to 120° or more. 
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In this design the area of the entrance pupil increases towards the edge of the field of view 

approximately by the factor of two, and as the result, the area of oblique beams entering 

the objective differs negligibly from the area of the axial beams. The author of the patent 

explains this phenomenon by maximum divergence from Abbe’s conditions of sines for 

the front half of the objective with an object located in the plane of the diaphragm, or in 

other words, by maximizing pupil coma for the front half of the objective as shown in Fig. 

3.8b [15]. 

    
 

Fig. 3.8 U.S. 2516724: (a) Layout, (b) beam footprints at the exit pupil. The wide-angle objective consists of 

two nearly symmetrical halves. The form of the greatly curved exterior meniscus lens elements is of great 

importance. These meniscus lenses contribute substantial pupil coma, which increases the pupil area for 

oblique beams.   

Aberration theory allows quantifying the required amount of pupil coma to achieve the 

cos3-law decrease in illumination. Similarly to Eq. 3.8, the cosine-to-the-third-power of the 

angle in the object space is given by 

 3 2 4 23 15cos ( ) [1 ( ) ( ) ].
2 8

u H H u H H         (3.20) 

(a) (b) 



87 
 

 
 

US. Patent 2516724 consists of two more or less symmetrical halves. If two exactly 

symmetrical halves are assumed , the distortion of parts A and B has the same magnitude 

but opposite sign. Moreover, each part of the symmetrical optical system is separately 

corrected for field curvature and astigmatism. A simplified expression for the relative 

illumination of a symmetrical optical system follows as 

 

2
131

4 2 2
151 131 131 1312

4( ) 1 [ 2 ' ]( )...

6 3 3[3 ' ' ]( ) .

EP B

B B B B

Ri H u W H H
Ж

u W W u W W H H
Ж Ж Ж

    

    

 (3.21) 

In a symmetrical lens the paraxial chief ray slope in object and image spaces are equal. 

The value of fourth- and six-order pupil coma are calculated by setting Eq. 3.21 equal to 

Eq. 3.20 and solving the following system of equations 

2 2
131

4 32 ' ,
2Bu W u

Ж
     

 4 2 4
151 131 131 1312

6 3 3 153 ' ' ,
8B B B Bu W W u W W u

Ж Ж Ж
     (3.22) 

'u u . 

The term 131 1312

3
B BW W

Ж
 is small and can be neglected. If the image pupil relationship 

in Eq. 3.20 and the fact that distortion in a symmetrical optical system is zero are 

considered, the required amount of pupil coma is estimated to be 

 2
131 ,

8B
ЖW u  (3.23) 

 4
151 .

8B
ЖW u   (3.24) 



88 
 

 
 

Fig. 3.9 shows relative illumination curves calculated with real ray tracing alongside the 

analytical solution. Since the analytical solution provides a fourth-order approximation to 

relative illumination, there is excellent agreement with real ray tracing calculation only up 

to about 20° half field angle. For larger field angles, the six- and higher-order relative 

illumination terms, not presented here, contribute significantly to the illumination of the 

lens. The fourth-order approximation is not accurate enough to describe the relative 

illumination beyond 20° half field angle.     

 
Fig. 3.9 Relative illumination plot for U.S. Patent 2516724. Analytical fourth-order approximation and real 

ray tracing calculation show excellent agreement up to about 20° half field angle. 

3.9.5 Example: Lens Optimization for a Target Relative Illumination   

The analytical solutions presented in this paper allow efficient optimization for a desired 

relative illumination during the lens design process. A straightforward way to calculate the 

relative illumination in a lens design program is to determine the exit pupil area by tracing 
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the rays in reverse from the image point in the direction cosines space. The relative 

illumination is proportional to the area of the pupil or to the number of rays that pass 

through the system [17]. Although this method is precise, the numerical integration 

requires tracing a large number of rays and therefore significantly slows down the 

optimization. On the other hand, it is possible to calculate the wave aberration coefficients 

by tracing only two first-order rays and to estimate the relative illumination over the entire 

field of view of a lens.  

To demonstrate that the fourth-order approximation to the relative illumination is 

sufficiently accurate for practical purposes, the close-form solution is used to design a lens 

that has uniform illumination over the field. The objective being modified is a Double 

Gauss lens that operates at f/4 and has a FOV of 40°. The distortion is limited to be <5%, 

and both second- and fourth-order relative illumination coefficients are targeted to zero.  

The resulting system layout and relative illumination plot are shown in Fig. 3.10. The 

image is equally illuminated over its entire area.  
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Fig. 3.10 A Double Gauss lens was reoptimized while targeting both second- and fourth-order relative 

illumination coefficients to zero. The fourth-order approximation is sufficiently accurate for practical 

purposes and allows efficiently optimizing for a desired relative illumination during the lens design process. 

3.9.6 Relative Illumination: Conclusion   

Among other image quality requirements, the relative illumination may have a strong 

impact on the performance of a lens. A number of authors have shown that the standard 

cos4-law of illumination fall off is not accurate for an objective with image and pupil 

aberrations. However, a detailed and comprehensive investigation of the relation between 

relative illumination and individual aberration coefficients to fourth-order has not been 

previously discussed. 

In this section, the problem has been approached from the aberration theory point of 

view. A closed form solution that approximates the image illumination fall-off and 

accounts for the illumination effects of aberrations in an unvignetted optical system is 

derived and presented.  

Three different possible aperture stop positions are considered: as the last element, as 

the first element and between components of the lens system. Only the piston irradiance 
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term is considered in the derivation, which is equivalent to the specification of a small 

diaphragm. Table 3.8 gives the relative illumination to the fourth-order of approximation 

in terms of aberration coefficients for each case.  

If the aperture stop of the system follows the lens, only third-order distortion contributes 

to the fourth-order relative illumination coefficient. On the other hand, if the aperture stop 

precedes the lens, both image and pupil aberrations affect the relative illumination. In this 

case, it is possible to have sufficient pupil aberrations such that the illumination will be 

more uniform or even constant over the entire field. If the aperture stop is located between 

the components of the lens, image and pupil aberration contributions of the rear half and 

distortion of the front half of the objective are considered separately. This result reveals a 

new path to improve image quality and required illumination by balancing aberrations of 

the two halves. In several special cases, it is also possible to come up with a more compact, 

reduced form of the equations.  

Several examples of lenses that instead of the cos4-law show improved illumination at the 

focal plane are discussed in detail. Aberration theory is used to provide insight into the role 

of individual aberration coefficients in the relative illumination of these lenses. Although 

the specification of a small diaphragm was used in the derivation, this approximation has 

shown to be sufficiently accurate for practical purposes. 

3.9 CONCLUSION  

This chapter presents a second- and a fourth-order theory of irradiance changes in 

axially symmetric optical systems. The concept of the irradiance function is reviewed and 
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an interpretation of the irradiance aberrations is discussed. The irradiance function terms 

represent basic distribution patterns in the irradiance of a beam at the exit pupil plane or at 

the image plane of an imaging system. 

The irradiance coefficients are found via basic radiometric principles, such as 

conservation of flux, and are derived from purely geometric considerations. This approach 

gives us the specific relationship between the irradiance distribution and wavefront 

aberration coefficients. The edge diffraction effects are not considered in this study, and 

unclipped and unfolded beams are assumed.  

Table 3.1 and Table 3.2 give the irradiance coefficients in terms of wavefront aberration 

coefficients and first-order system parameters to the fourth order of approximation. 

Specific formulas are provided for irradiance at the image and at the exit pupil of an optical 

system. The irradiance coefficients depend on the selection of coordinates. In this chapter, 

the field vector is defined at the object plane, while the aperture vector is defined at the exit 

pupil plane. The formulas for the irradiance coefficients in Table 1 and Table 2 show 

excellent agreement with the results from real ray tracing. Relative illumination and several 

cases of interest where the coordinate position changes have also been discussed. 

The theory of irradiance aberrations enhances our knowledge about the behavior of light 

as it propagates in optical systems and provides insights into how individual wavefront 

aberration terms affect the light irradiance produced by a lens system at its image plane or 

at the exit pupil plane. 
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CHAPTER IV:  

RAY TRACING METHODS FOR CORRECTING CHROMATIC 

ABERRATIONS IN IMAGING SYSTEMS 

4.1 INTRODUCTION  

 Correction of chromatic aberrations in imaging systems has been the subject of research 

for many generations of scientists and still remains one of the most challenging problems 

in lens design. The early experiments of Isaac Newton, which later were developed into his 

color theory, started a detailed understanding of chromatic effects in optical systems. Since 

Conrady’s solution to the powers for an apochromatic triplet that uses the partial dispersion 

vs. V-number graph, many graphical methods have been derived for glass selection. In 

particular Hoogland’s method, is considered the best according to Rayces [1, 2]. More 

comprehensive glass selection methods have been also developed for finding proper glass 

combinations to design systems corrected for two, three, four and even more wavelengths. 

A notable example is the method of Robb and Mercado [3, 4] that is based on Buchdahl 

chromatic coordinates. This work has been extended by Albuquerque et. al. [5] to include 

higher order aberration and to include some minimization metrics. Sigler [6], points out 

that chromatic aberration correction through the selection of optical glass has been one of 

the most extensively studied subjects in the field of lens design. 

While excellent results for color correction are reported in literature, there is still a gap 

between theory and practice and many methods can be considered purely academic. 

Aberration formulas are typically based on the first-order properties of the system or 
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include only finite number of higher-order aberration coefficients. However, as the 

complexity of actual systems grows, these simple metrics are not sufficient to estimate the 

final chromatic performance. Other reported techniques require additional mathematical 

calculation which cannot be implemented directly in the lens design software and require 

external tools. The use of additional software interrupts the lens designer work flow and 

adds a significant amount of time and effort.  

The correction of chromatic aberrations still remains challenging in high aperture large 

field systems with a broad band. Modern optical instruments, such as used in medicine, 

astronomy, semi-conductor, defense and security markets, take advantage of different 

spectral bands spanning from short UV to long IR. Depending on the application, these 

systems are sometimes designed to support several spectral bands. The new generation of 

sensors which are sensitive to a larger bandwidth, for example from visible to short-wave 

infrared, are already available commercially. Moreover, some state-of-the-art applications 

may use several sensors supporting different bandwidth within the same optical channel.  

Approximations involving the theoretical methods is the reason that aberration 

correction in complex state-of-the-art lenses is usually accomplished with real ray tracing 

which enables an accurate view of the actual image. Real ray tracing optimization is 

performed by minimization of some error function. However, the standard error function 

in lens design software typically mixes the correction of monochromatic and chromatic 

aberrations. In that case correction of chromatic aberration is strongly dependent on the 

correction of the monochromatic aberration.  
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In chapter, the chromatic aberrations correction is separated from the correction of 

monochromatic aberrations of a lens system. Two simple but effective real ray tracing 

methods are presented [7, 8]. These two methods can be implemented within optical design 

software and can be used to correct both chromatic change of focus and chromatic change 

of magnification of imaging systems, as well as higher-order chromatic aberrations. The 

chromatic aberration correction is not limited to a specific bandwidth. The proposed 

methods are capable of finding solutions for complex lens systems, as well as simple lens 

types. 

The first method of forward and reverse ray tracing is explained in Section 4.2 and, its 

limitations are discussed. In Section 4.3, the second method is presented which is an 

algorithm for writing an error function that separates aberrations. Some examples and 

guidelines to application of the methods are provided in Section 4.4. Section 4.5 introduces 

a modification to the second method to aid in the athermalization of imaging systems. 

Section 4.6 concludes this chapter. 

4.2 FORWARD AND REVERSE RAY TRACING 

This section presents the method of forward and reversed ray tracing. One of the 

fundamental axioms of geometrical optics is the principle of reversibility of the optical path 

of rays [9, 10]. According to this principle any ray traced through an optical system, if 

reversed in propagation direction, will retrace the same path backwards. Consequently, for 

any arbitrary optical system, all rays traced forward and then backwards will have the same 

optical path, i.e. both chromatic and monochromatic aberrations cancel out.  
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To implement the method in sequential lens design software, a virtual mirror is 

introduced at the image plane of the original optical system, and a reversed copy of the 

system is added. Note that in our case, in contrast to regular reflection from the mirror, the 

sign of thicknesses remains the same. The part of the system before the mirror is called the 

real part, and the part after the mirror is referenced to as the virtual part. This sequential 

model allows us to keep the same corresponding angles for the ray propagating in the real 

and virtual parts of the system. In addition, for any ray, the optical path in the real and 

virtual part will have the same value, but opposite sign, i.e. both chromatic and 

monochromatic aberrations cancel out as desired.  The schematic representation of the ray 

tracing flow is shown in Fig. 4.1. 

 
Fig. 4.1 Forward and reverse ray tracing flow chart. 

In order to make the chromatic aberrations show, the optical glasses in the real part of 

the system is changed to fictitious, non-dispersive model glasses. For the model glass the 

refractive index of the original glass at the primary wavelength of the design is used and 

zero dispersion is specified, i.e. zero glass V-number, and zero partial dispersion. In the 

real part of the system, rays that have the same object and pupil coordinates but different 

wavelength will follow the same path. However, in the virtual part, the optical path will be 

different due to dispersion of the actual glasses. With this real and virtual lens model, for 

a given object point, the optical path difference will be zero for the primary wavelength 
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due to cancellation. For other wavelengths the chromatic aberration will show because 

there is no cancellation between the real and virtual parts. Thus the chromatic aberration 

content is separated from the monochromatic aberration content. 

Since only chromatic aberrations are present, the full power of an optimizer can be 

dedicated for color correction. This results in an advantage. Global optimization together 

with iterative substitution of similar glass types is used to reduce the chromatic aberration 

through the selection of optical glass in the virtual part of the system. The real part of the 

system remains unchanged which will force the monochromatic solution to be close to the 

original design.  

The focal length and focal ratio (f/#) of the virtual system is controlled during 

optimization. In addition, the forward and reverse ray tracing model should have unit 

magnification. If original lens was designed for infinite conjugate, a paraxial lens with 

focal length equal to the focal length of the original system is used to focus the beam.  

An example of forward and reversed ray tracing model for an Edmund Optics f=20 mm 

achromatic doublet is shown in Fig. 4.2. The primary wavelength is the d-line. Both the 

chromatic and the monochromatic aberrations are present for the on-axis field in the 

original design. The forward and reversed ray tracing model is then constructed according 

to the procedure described above. Since the doublet is used at an infinite conjugate, an f=20 

mm paraxial lens is added to the modified system to focus the beam. Notice in Fig. 4.2 (d) 

that for the d-line the Optical Path Difference (OPD) is zero across the aperture. All 

monochromatic aberrations are canceled and only chromatic aberrations for the F and C 
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lines are present in the forward and reversed model system. This is the starting point for 

the optimization process.      

  
 
 

  

  
 
 

Fig. 4.2 Edmund Optics f=20 mm Achromatic Doublet: (a) original lens and (b) on Axis OPD fan, (c) forward 

and reversed ray tracing model and (d) on Axis OPD fan. The OPD fan full scale is 0.5 waves. 

This forward and reversed ray tracing model demonstrates the geometrical method of 

separation of chromatic and monochromatic aberrations. However, this method has some 

limitations and drawbacks. The model glass, used in the real part of the system, changes 

propagation of the rays for the wavelength that differs from the primary wavelength. The 

deviations of these rays from the original path accumulate as the rays propagate through 

real and virtual parts of the system. In certain cases it may cause total internal reflection, 

vignetting of some of the rays, or cause singularities in the optical path for particular object 

(a) (b) 

(c) (d) 
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and pupil coordinates. Moreover, the model has twice as many optical surfaces as the 

original design, which significantly slows down ray tracing time. Nevertheless, it is a useful 

method. 

4.3 ABERRATION SUBSTRACTION METHOD 

In this section, the chromatic and monochromatic aberrations are separated directly in 

the error function. The aberration of the primary wavelength is simply subtracted from the 

aberration due to other wavelengths.  

In software, the lens designer can choose to minimize the wave aberrations or the ray 

aberrations. An error function is written where the optimization targets are changed as 

follows. For any wavelength   and primary wavelength prime  the wave aberration target 

is modified to be 

   /primary primaryOPD OPD      . (4.1)  

For ray aberrations, the primary wavelength is subtracted directly without applying any 

normalization. The optimization target is then modified for every field point and every 

pupil coordinate in the error function. The chief ray at the primary wavelength is used as a 

reference for both ray or wave aberrations calculations. This procedure can be easily 

implemented by writing a macro program (see Appendix J). Fig. 4.3 shows the aberration 

subtraction procedure. 
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Fig. 4.3 Aberration subtraction method flow chart. 

Several comments on the dynamics of minimization of the modified error function are 

provided below. In the original design the primary wavelength’s monochromatic aberration 

will match the target aberration value, by construction. Initially, and similarity to the 

forward and reversed ray tracing technique, the primary wavelength will not contribute to 

the error function. During the optimization, the original lens will change and the primary 

wavelength‘s monochromatic aberration will be different. The weight placed on the 

primary wavelength, in the modified error function, will force the monochromatic solution 

to be close to the original design. Further minimization of the modified error function 

together with iterative substitution of similar glass types will reduce, if proper glass 

combinations exist, all chromatic aberrations to the same monochromatic aberration value.  

The direct subtraction of the aberrations in the error function is a similar concept to the 

previous method of forward and reverse ray tracing. The chromatic aberrations are 

separated from the monochromatic aberration and minimized to the same value. While the 

method of Section 4.2 has clear geometrical model, the aberration subtraction method of 

this section has several noticeable advantages. First, the method is simpler: there is no need 

to build a complicated sequential model. Ray tracing time will not be significantly 

increased. Second, rays are traced only forward and there will be no issues with TIR and 

vignetting as discussed in the previous section. Finally, the actual amount of aberration is 

controlled in the design. Other optimization operands can be added to the modified error 
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function to allow better control of various design parameters. For example, if the design 

requirements are on the Modulation Transfer Function (MTF), we may choose to add MTF 

operands to the error function. 

4.4 GUIDELINES OF APPLICATION OF THE METHODS 

The author emphasize that the presented methods are not aim to improve the 

monochromatic performance of a system, but to reduce the chromatic aberration to the 

monochromatic value. Both presented methods could be applied at the intermediate design 

stage, when the monochromatic performance is close to the requirements and chromatic 

aberrations are corrected to some extent. In order to gradually reduce the overall amount 

of aberration in the system, the methods could be applied in an iterative process. Each 

iteration includes the following steps: 

 Optimize the lens with a given error function. During this optimization one may 

choose to put addition weight on the primary wavelength. Putting additional 

weight on the primary wavelength will improve the monochromatic 

performance and allow a better target for application of the methods in the next 

step.  

 Apply the forward and reversed ray tracing method or aberration subtraction 

method. Use global optimization with iterative glass substitution. 

 Proceed to the next iteration till no new combinations of glass are found in a 

reasonable amount of time.  

The chart on Fig. 4.4 summaries the algorithm. 
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Fig. 4.4 Suggested algorithm for application of presented methods. 

4.4 EXAMPLE OF OPTIMIZATION USING THE METHODS 

The proposed methods were successfully applied to correct chromatic aberration and 

improve imaging performance of several complex lenses. This section provides examples 

of optimization using the aberration subtraction method.  

  4.4.1 Canon Telephoto Lens  

As an example, the presented methods were applied to a Canon telephoto lens [11]. This 

is a long-focal-length (300mm) optical system that operates at f/2.9. Focusing is performed 

by moving one of the lens units. The lens operates in the visible from 436 nm to 656 nm. 

The primary wavelength of the design which is also the reference for the monochromatic 

aberrations is 588 nm. An original patent data for an infinite and a two meter object distance 

configurations is shown in Fig. 4.5. 
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Fig. 4.5 Canon telephoto lens original patent data for infinite (a, c, e) and two meter (b, d, f) object distance 

configurations. The OPD fan scale is 2 waves. 

The goal was to improve the polychromatic MTF while keeping the same number of 

elements, vignetting, focal length and f/#. The iteration algorithm described above was 

used. Three iterations with aberration subtraction method for chromatic aberration 

correction were performed. In the last iteration MTF operands were added to the error 

function to target the polychromatic MTF. The OPD fans of the original design and 

(a) (b) 

(b) (c) 

(d) (e) 
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iterations 1, 2 and 3 for the infinite and two meter object distance configurations are shown 

in Figs. 4.6 and 4.7. The glass combinations used in the original design and iterations 1, 2 

and 3 are given in Table 4.1. 

  
 
 

  
 

Fig 4.6 OPD fans for infinite object distance at 436nm, 486nm, 588nm and 656nm: (a) - patent data, (b) – 

iteration 1, (c) – iteration 2, (d) – iteration 3. Plot scale is 2 waves. 

 
 
 
 
 
 
 
 
 
 

(a) (b) 

(c) (d) 
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Fig. 4.7 OPD fans for two meter object distance at 436nm, 486nm, 588nm and 656nm: (a) - patent data, (b) 

– iteration 1, (c) – iteration 2, (d) – iteration 3. Plot scale is 2 waves. 

In each iteration the chromatic aberration is made to match better the monochromatic 

aberration value. Between the iterations the system was reoptimized to minimize the 

monochromatic aberration. Overall, the amount of aberrations in the system is gradually 

reduced. The polychromatic MTF improvement is also shown on Figs. 4.8 and 4.9. 

 

 

 

(a) (b) 

(c) (d) 
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Fig. 4.8 Polychromatic MTF from 436nm to 656nm for infinite object distance: (a) - patent data,  

(b) - final design. 

  
  

Fig. 4.9 Polychromatic MTF for 436nm to 656nm for 2 meters object distance: (a) - patent data,  

(b) - final design. 

This significant improvement of MTF over the entire field of view and a good balance 

was obtained for both the infinite and the two meter object distances. 

 

 

 

 

 

 

 

(a) (b) 

(a) (b) 
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Table 4.1 Optical glasses used in designs on Fig. 4.6 and 4.7. 

Element # Patent Iteration 1 Iteration 2 Iteration 3 

1 
FCD1 N-FK51A PFK85 LITHOTECH-

CAF2 

2 
FCD1 LITHOTECH-

CAF2 
LITHOTECH-
CAF2 

LITHOTECH-
CAF2 

3 S-LAM54 N-LAF21 LAFN21 TAF4 

4 
LITHOTECH-
CAF2 

LITHOTECH-
CAF2 

LITHOTECH-
CAF2 

LITHOTECH-
CAF2 

5 S-TIM1 BAFD16 PBM2 F3 
     
6-1 S-TIH53 S-NPH1 S-NPH1 SFL57 
6-2 S-LAH55V TAF5 YGH52 YGH52 
     
7-1 S-NPH53 S-NPH1 S-NPH1 S-NPH1 
7-2 S-LAL14 LAKL12 LACL1 LAKN6 
     
8-1 S-TIH53 PBH23 FDS2 SF10 
8-2 S-LAL7 LAK12 LAKN13 LAFL1 
     
9 S-LAH55V S-LAM2 SF9 SF19 
10 S-NSL3 BSL7 BAK2 L-PHL2 
11 S-BAL41 P-SK57Q1 PSK2 BSC7 
12 S-BSL7 S-BSL7 S-BSL7 S-BSL7 

  4.4.2 SWIR Zoom Lens  

The shortwave infrared (SWIR) range (wavelength from 900 to 1700 nm) allows day-

to-night high resolution imaging. Recently, a new generation of detectors was developed 

allowing sensing in SWIR band. Since conventional optical glass transmits SWIR light, 

such cameras provide a cost effective solution for a wide variety applications and 

industries.  

Additional example shows the correction of chromatic aberration by utilizing presented 

methods in a 24-140mm zoom lens [12]. The system operates at f/3.8 in the SWIR spectral 
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band. Zoom function is realized by moving three groups of elements. In lens design 

software zoom function is simulated using four lens configurations. The primary 

wavelength of the design which is also the reference for the monochromatic aberrations is 

1300 nm.  

As pointed out earlier, a starting system which has a good monochromatic performance 

and moderate chromatic aberration correction is required. The goal is to improve MTF of 

the system by reducing the chromatic aberration. In addition, balanced performance over 

the entire zoom range is desired. Finally, it is desirable to eliminate special glass types to 

allow a cost effective solution. The iteration algorithm described in Section 4.4 was used, 

and three iterations with aberration subtraction method for chromatic aberration correction 

were performed. Original system and final system layout for a single zoom position are 

shown in Figure 4.10.  

  
 

Fig. 4.10 Zoom lens layout: (a) - original design  and (b) - reoptimized lens. 

In each iteration the chromatic aberration is made to match better the monochromatic 

aberration value. Between the iterations the system was reoptimized to minimize the 

monochromatic aberration. Overall, the amount of aberrations in the system is gradually 

reduced. Special glass types, for example N-SK10, were replaced with standard glass. The 

(a) (b) 
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polychromatic MTF of the original system and improved polychromatic MTF of the final 

system are shown on Fig. 4.11. The glass combinations used in the original and final 

designs are given in Table 4.2. 
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Fig. 4.11 Zoom lens polychromatic MTF: f=24mm: original design (a) and reoptimized lens (b); f=60mm: 

original design (c) and reoptimized lens (d); f=100mm: original design (e) and reoptimized lens (f); 

f=140mm: original design (g) and reoptimized lens (h). 

This significant improvement of polychromatic MTF over the entire field of view and a 

good balance over the entire zoom range was obtained. 

(a) (b) 

(c) 
 
 
 
 

(d) 

(e) (f) 

(g) (h) 
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Table 4.2 Optical glasses used in designs on Fig. 4.10 and 4.11. 

Element # Original design Final design 

1 N-SK2HT S-BSL7 
2 N-LAK33B S-LAM59 
3 S-BAM4 S-PHM52 
   
4-1 N-LASF44 S-LAH52 
4-2 S-FLP53 S-FPL53 
   
5-1 S-FPL53 BSL7Y 
5-2 N-SK4 S-PHM52 
   
6 S-BSL7 S-LAM59 
  L-BAL35 
7-1 S-LAH65V S-TIH10  
7-2 S-FPM2  
   
8-1 S-FTM16 S-TIM2 
8-2 N-SK10 S-FPM2  
   
9 S-LAM52 L-LAH87 
10 N-LASF44 L-LAH87 
   
11-1 S-FPL53 S-TIM2 
11-2 N-LASF43 S-FPM2 
   
12-1 S-FPM2 S-FPM2 
12-2 S-BAL42 S-LAH65 
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4.5 ABERRATION SUBTRACTION METHOD FOR ATHERMALIZATION OF 

IMAGING SYSTEMS 

Thermal stability is another key requirement for many lens systems. Optical systems 

can be exposed to a wide range of temperatures. A temperature change has the major effects 

of changing the index of refraction of the optical glass and the geometry of the lens 

elements. First-order imaging properties of the lens are affected and additional aberrations 

are induced due to perturbation of the system from the nominal design.  

Typically a lens is designed for some mean temperature. Once a nominal design is 

finished, a set of glasses that satisfies both the monochromatic and chromatic aberration 

correction requirements has been found. Such design may fail to maintain the desirable 

image quality over the whole range of possible temperatures. In order to insure reasonable 

performance, the effect of a uniform, homogeneous temperature change, is simulated. 

Athermalization, the condition of not varying with temperature, is achieved, similarly to 

chromatic aberration correction, by selection of materials. The goal is to keep the aberration 

correction invaraint over the whole required temperature range. The aberration subtraction 

method described in Section 4.3 is modified to separate aberrations induced by thermal 

effects from aberrations in the nominal design.   

In lens design software, a uniform temperature change can be modeled by adding lens 

configurations. Each configuration simulates some particular temperature by adjusting the 

index of refraction of the optical materials, changing the shape of the optical elements, and 

adjusting the lens spacings. A separate error function is generated for each configuration. 

In the aberration subtraction method for athermalization of imaging systems the aberration 
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of the nominal configuration is simply subtracted from the aberration of other 

configurations. Then an error function is written where the optimization targets are changed 

as follows. For any wavelength, field point and pupil coordinate, the wave or ray aberration 

targets are modified to be the aberration value at this point in the nominal configuration. 

The chief ray at the primary wavelength is used as a reference for both ray or wave 

aberrations calculations. Once again this procedure can easily be implemented by writing 

a macro program (see Appendix J). Fig. 4.12 shows the aberration subtraction procedure 

for athermalization. 

 
Fig. 4.12 Aberration subtraction method for athermalization flow chart. 

Several comments on the dynamics of minimization of the modified error function are 

provided below. In the original design the nominal configuration’s aberration will match 

the target aberration value, by construction. Initially the nominal configuration will not 

contribute to the error function. During the optimization, the original lens will change and 

the nominal configuration’s aberration will be different. The weight placed on the nominal 

configuration, in the modified error function, will force the aberration correction to be close 

to the original design. Further minimization of the modified error function together with 

iterative substitution of similar glass types will reduce, if proper glass combinations exist, 

all other lens configuration’s aberrations to the same nominal configuration’s aberration 

value. Therefore a similar monochromatic and chromatic performance is maintained for 
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the whole temperature range. The aberrations induced by thermal effects are separated from 

the nominal design aberration and minimized to the same value.  

As an example, the presented method of athermalization is applied to a single focus lens 

[13]. This is a 14 mm focal-length optical system that operates at f/1.75. The lens supports 

a bandwidth from 420nm in the visible to 1700 nm in the near infra-red (NIR). The lens is 

athermal from 20 C  to 60 C . An original system layout is shown in Fig. 4.13. 

  
Fig. 4.13 Optical layout of a single focus athermal lens.  

The iterative algorithm described in Section 4.4 was used. The OPD fans and MTF plots 

of the original design and final design are shown in Fig. 4.14 and 4.15. The glass 

combinations used in the original design and final iteration are given in Table 4.3. 
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Fig. 4.14 OPD fans: (a) – original design @ 20 C , (b) - final design@ 20 C , (c) – original design @

20 C , (d) - final design @ 20 C , (e) – original design @ 60 C , (f) - final design @ 60 C . Plot scale 

is 5 waves. 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Fig. 4.15 Polychromatic MTF for 420nm to 1700nm: (a) – original design @ 20 C , (b) - final design@

20 C ,(c) – original design @ 20 C , (d) - final design @ 20 C , (e) – original design @ 60 C , (f) - 

final design @ 60 C . 

This slight improvement of MTF over the entire field of view and the good balance was 

obtained for the whole temperature range. 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Table 4.3 Optical glasses used in designs in Fig. 4.14 and Fig.4.15. 

Element # Original design Final design 

1 N-SSK8 K7 
2 N-SK57 N-SK57HT 
3 N-BAK2 N-BAK2 
4-1 N-SF57 N-SK57HT 
4-2 N-FK51A N-PK52A 
5-1 N-LASF40 N-LASF40 
5-2 N-KZFS2 N-KZFS2 

4.5 CONCLUSION 

Two methods for chromatic aberration correction have been presented in this chapter. 

Both methods are based on real ray tracing and can be implemented in commercial lens 

design software. The idea is to separate the chromatic aberration content from the 

monochromatic aberration content and use standard lens design software optimization 

tools, such as global optimization and iterative glass substitution. The separation of 

aberrations removes the dependence in correction of one aberration type from the 

correction of other aberration type. In that case the optimization process is focused on 

reducing chromatic aberration to the monochromatic aberration value. The author finds 

these methods to be effective in correcting chromatic aberration beyond what a standard 

error function would do. 

The presented methods are not limited to any specific bandwidth, can be used to correct 

both chromatic change of focus and chromatic change of magnification, support multi-

configuration systems, and do not require any additional/external calculations. Unlike other 

methods found in the literature, the presented methods are not limited to the finite number 

of aberration coefficients used in an error function, since real ray tracing is used to reduce 
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the chromatic aberrations. The user can take advantage of any additional lens design 

software features; for example, additional constrains can be added to the error function or 

a filter can be used to eliminate unwanted glass types.  

The proposed methods work the best when applied in the intermediate design stage, 

when monochromatic performance is reasonable and chromatic aberrations are corrected 

to some extent. 

As an example of application of the methods, the chromatic aberration correction in a 

Canon telephoto lens and in an elaborated zoom system was improved. The chromatic 

correction methods were iterated with regular optimization as described in Section 4.4 to 

gradually reduce the overall aberration in the system. The final glass combination, which 

was found by application of the aberration subtraction method, allows reducing both 

chromatic and monochromatic aberrations while using only standard glass types. 

Significant improvement in the polychromatic MTF over the entire FOV was obtained. The 

final solution is not readily found with standard optimization methods as can be tested. 

Finally, the methods were extended to a different glass selection problem – 

athermalization of imaging systems. The aberration subtraction algorithm was modified to 

separate aberrations induced by temperature effects from the nominal design aberrations. 

In that case the optimization process is focused on reducing additional aberration due to 

thermal effects to the nominal aberration value.  

Although the algorithms presented here are not limited to any specific lens design 

software, in this work Zemax OpticStudio lens design program was used. The pupil was 

sampled using Gaussian quadrature method with 20 rings and 12 arms. Optimization time, 
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which of course depends on the complexity of particular lens, is typically less than one 

hour for a simple system. 
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CHAPTER V:  

USEFUL ASPHERIC/FREEFORM SURFACE DESCRIPTIONS 

FOR IMAGING AND NON-IMAGING PROBLEMS 

5.1 INTRODUCTION 

Optical design depends on optical surface description and, therefore, the lens designer’s 

choice of the surface type is often a key to provide efficient solutions to imaging and non-

imaging problems.  

For imaging applications, the well-known axially symmetric conic and polynomial 

surface of Eq. 5.1 provides solutions for a vast number of problems,  

  
 

2
2 4 6 8

2 4 6 82 2
...

1 1 1
crz r A r A r A r A r

k c r
    

  
, (5.1) 

where c  is the curvature of the surface, k  is the conic constant, and 'A s  are the even 

aspheric polynomial coefficients.    

However, a significant number of terms is required in some cases to provide an adequate 

solution with aspheric surfaces constructed by superposition of higher-order polynomials. 

On the other hand, both the optimization convergence and optimization time get worse as 

the number of higher-order aspheric terms becomes large. In addition, lens systems that 

contain lens elements that use higher-order aspheric terms are susceptible to creating 

imaging/non-imaging artifacts when they are slightly misaligned. These artifacts are 

created because the higher-order terms may create bumps and dips that under perfect 
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registration cancel out, but that under a slight misalignment add up, thus creating the 

artifacts. 

The case of non-imaging optics also requires surfaces that typically cannot be 

represented by conic/polynomial-type expansions.  Therefore, to solve illumination optics 

problems, several surface descriptions including splines, implicitly defined surfaces, 

surfaces based on Bernstein polynomials, and freeform surfaces have been proposed [1-8]. 

On the other hand, most illumination problems are solved numerically, and the resulting 

data points are interpolated for ray tracing purposes. Numerical methods provide a solution 

surface as a set of data points. However, in some applications, it is desirable to describe 

the solution surface in closed form in order to be specific about the nature of the surface. 

Thus, there is a need for surface descriptions that effectively solve illumination problems 

and that can ideally be expressed in closed analytical form. 

Some advantages of using closed-form surface descriptions are that the actual surface 

can be precisely specified, that some tolerancing analyses can be produced, and that 

parametric studies can be conducted. 

This chapter proposes three base surface descriptions in closed form that resemble the 

ideal profile that is required in a lens. Using the concept of base surface, 

aspherical/freeform surfaces are constructed and demonstrated in closed form. These 

surfaces substantially describe the desired surface for uniform illumination on a target 

plane or allow stigmatic imaging surface after surface along a particular ray. Examples of 

the performance of these surfaces that were constructed using the concept of base surface 

are provided, and some of their properties are discussed. 
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5.2 PEDAL CURVE TO THE ELLIPSE 

U.S. Patent 4,734,836 describes a lens for uniform illumination on a planar target using 

an approximate point source. The first surface of this axially symmetric lens is spherical in 

shape and is concentric with the point-like source. The second surface is concave near the 

center and turns smoothly into convex towards the lens edge.  Thus, the lens spreads out 

the light to avoid a bell-shaped illumination profile.  The design of the concave-convex 

surface can be extreme as rays may come up to 75 or more degrees of inclination with 

respect to the optical axis.  

The pedal curve to the ellipse is shown in Fig. 5.1 and is given analytically by the 

equation 

  
22 2 2 2 2 2a x b y x y   , (5.2) 

where a  is the major axis of the ellipse and b  is the minor axis. The sag  pS r  of the 

surface can be obtained by rotation of the pedal curve about the z axis and is written as, 

  
 2 2 4 2 2 22 4

2p

b r b a b r
S r b

   
  , (5.3) 

where 2 2r x y  is the radial distance from the optical axis or z  axis.  pS r  is a base 

surface for the pedal to the ellipse curve. It is noted that this pedal curve to the ellipse 

resembles the concave-convex profile that is the desired surface for uniform illumination 

on a target plane [9].  
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Fig. 5.1 (a) - Pedal curve to the ellipse. (b) - Coordinate axes on half the pedal curve. Note the change of 

curvature from the curve center to the edge. 

Now an aspherical surface  1z r  is constructed by building a polynomial on the base 

surface  pS r as, 

              2 3 4 5 6
1 1 2 3 4 5 6 ...p p p p p pz r A S r A S r A S r A S r A S r A S r      , (5.4) 

where the 'A s  represent deformation coefficients. A freeform  2z r surface is also 

constructed by a superposition of base surfaces as, 

        2 1 /1 2 p/2 3 /3 ...p pz r A S r A S r A S r    , (5.5) 

where each of the  /p nS r terms have their own independent a , b , and A coefficients. 

These two surfaces  1z r and  2z r  were programmed as user-defined surfaces in Zemax 

OpticStudio optical design software [10] (see Appendix K). 

To design a surface, the light source is assumed to be point-like and Lambertian: the 

intensity decreases as the cosine function of the angle of ray emission   with respect to the 

z axis of Fig. 5.1. The source is located on the optical axis, and the target surface is flat and 

perpendicular to the optical axis.  

(a) (b) 



127 
 

 
 

The optical flux ( )  from a Lambertian point source 0L  as a function of angle   is 

given by 

        2
0 0

0

2 cos sin sinL d L


         . (5.6) 

The fractional optical flux from a Lambertian source and from a flat surface that is 

uniformly illuminated are given by    2 2
maxsin / sin   and 2 2

max/Y Y , respectively. It 

follows that for uniform illumination on a flat surface, conservation of optical flux requires 

that for a given ray emitted at angle    with respect to the optical axis, the ray intersection 

Y  at the target surface should satisfy 

  

 
max

max

sin
sin

Y
Y




 , (5.7) 

where max  is the maximum angle of emission and maxY  is the maximum ray intersection 

at the target surface.  

For the actual surface design, 20 rays from the source were traced equally spaced in 

angle of emission from 0   to max  . An error function was created as the sum of the 

squares of the differences of ray intercept and the theoretical ray intercept Y . Then using 

the damped least square and the orthogonal descent optimization methods, the error 

function was minimized. It was noted that when ray total internal reflection took place, the 

ray tracing stopped for that ray and the optimization process stagnated. This indicated that 

no physical solution was possible due to the index of refraction value or to a target surface 

in closed proximity to the lens. The surface coefficients were used by the optimizer as 
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degrees of freedom to reduce the error function.  The coefficients were released as variables 

in sets of two and as the optimizer proceeded, more coefficients were released.  

To illustrate the performance of the surfaces, two lenses made out of polycarbonate 

plastic (n=1.58546992 at λ=587.5618 nm) were designed. The first lens used the aspheric 

surface profile  1z r  with a maximum ray angle of max 75   degrees. The second lens 

used the freeform surface profile  2z r with also a maximum ray angle of max 75  .  

For both lenses, the marginal ray (at max ) angle of incidence on the surface was 

constrained to zero degrees with respect to the optical axis. In addition, the distance from 

the Lambertian point source to the aspheric/freeform surface was 5 mm and the distance 

from the source to the target surface was 20 mm. The lenses and ray trace are shown in 

Figs. 5.2 and 5.3, respectively, and the surface descriptions are given in Tables 5.1 and 5.2, 

respectively.  

   

Fig. 5.2 Aspheric lens with profile  1z r  and ray trace to the target surface. 

   

Fig. 5.3 Freeform lens with surface profile  2z r  and ray trace to the target surface. 
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Table 5.1 Coefficients defining the surface profile  1z r . 

 1z r  a [mm] b [mm] A1 A2 

 10.209629 4.1375154 -0.76745888 -0.0076601472 
 A3 A4 A5 A6 

 0.0032823004 3.9058491e-005 -0.00036512352 8.911191e-005 

Table 5.2 Coefficients defining the surface profile  2z r . 

 2z r  a [mm] b [mm] A 

 1S r  27.089235 5.7955684 -0.34716392 

 2S r  10.330664 11.189056 -0.55695918 

 3S r  117.56108 71.18933 -0.5932761 

To evaluate the performance of the aspheric and freeform surfaces, plots of the relative 

illumination and transverse ray error on the target surface were produced as shown in Fig. 

5.4 and Fig. 5.5, respectively. 
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Fig. 5.4 Relative illumination (a) and transverse ray error in mm (b) of the aspheric lens at the target surface 

 2z r for lens of Fig. 5.2. Transverse ray error plot scale is 3mm . 

  

 

Fig. 5.5 Relative illumination (a) and transverse ray error in mm (b) of the freeform lens at the target surface 

for lens of Fig. 3. Transverse ray error plot scale is 0.3mm . 

It is clear from examination of the relative illumination and transverse ray error plots 

that the freeform surface profile of the lens in Fig. 5.3 is able to best model the ideal surface.  

In contrast, the relative illumination plot for the aspheric surface varies from about 0.5 to 

1 and this is not a good surface match for the ideal surface.  

Noteworthy is that the freeform lens plots do not exhibit significant oscillation at the 

edge of the target. This result can be explained by the absence of higher-order terms in the 

surface description. This lack of oscillation is in fact a useful outcome as many aspheric 

(a) (b) 

(a) (b) 
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and freeform surfaces constructed by superposition of higher-order polynomials are subject 

to produce oscillation on the ray behavior.  

It is worth mentioning that two factors that contribute to complicating or preventing 

discovery of solutions are failure of the ray-tracing algorithm to find the ray intersection 

point on the surface as it becomes steep, and ray total internal reflection. Further, in these 

type of solutions the angle of incidence can be large near the inflection point of the surface 

and Fresnel light reflection losses can be significant.  

5.3 OFF-AXIS CONIC SURFACE 

The conic and polynomial surface of Eq. 5.1 provides solutions for the case of the axially 

symmetric system. However, when one wishes to design an assymetric optical system, it 

is desirable to have a convenient expression for the surface in a coordinate system that is 

centered on the off-axis surface segment rather that centered on the axis of symmetry. The 

analytical expression of the conic surface in a coordinate system that is not aligned with 

the axis of symmetry is more complex and not readily available. In this section, the 

derivation of the general conic surface in such a coordinate system is reviewed [11]. This 

off-axis conic surface is used as a base surface to construct an aspherical surface and is 

successfully applied to design a three-mirror unobscured telescope.   

A general expression of an axially symmetric conic surface is rewritten as 

     
  

1/22 21 (1 )
1

z r R R k r
k

      
 (5.7) 
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where 1R c  is the radius of curvature of the surface. The paraboloid expression is 

obtained by taking the limit of Eq. 5.7 as 1k  .  Next, the expression of the conic as 

viewed from a coordinate system that is tangent to the surface at a general point away from 

the axis of symmetry is derived. The geometry is shown in Fig. 5.6.  

 

Fig. 5.6 The geometry defining global and local coordinates of the off-axis conic segment. 

Without loss of generality, the new coordinate origin is chosen on the Y  axis; thus, 0Y  

is the distance from the rotation axis to the new coordinate center. From Eq. 5.7 it follows 

that      

     
0

0
0 1/22 2

0

tan
(1 )x Y

Yz
x R k Y





 
     

, (5.8) 

    
  

1/22 2
0 0 0

1( ) (1 )
1

Z z Y R R k Y
k

       
. (5.9) 

The rotation of coordinates is now performed according to 

    0 0 0' cos( ) ' sin( )x x z Y      , (5.10a) 

    'y y , (5.10b) 

    0 0 0' sin( ) ' cos( )z x z Z      , (5.10c) 

    0 0 0 0' ( ) cos( ) ( ' ) sin( )x x Y z Z       , (5.11a) 

    'y Y , (5.11b) 
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    0 0 0 0' ( ) sin( ) ( ' ) cos( )z x Y z Z        . (5.11c) 

For compactness, the dimensionless variables  

    
0' y' '; ; ' ; ;Yx z zu v w w

R R R R R
      (5.12) 

and the quantities  

    

0
0 2 2 1/2

0
1/22 2

0
0 2 2

0

0
0

sin( ) ;
[ ]

( 1)cos( ) ;

1;

;

Ys
R kY

R k Yc
R kY

L k
ZW R





 


  
   

 

 



 (5.13) 

are introduced. 

Eq. 5.11a, Eq. 5.11b and Eq. 5.7 are now substituted into Eq. 5.10c. 

    
2 2 1/2

0
1 (1 ([ ] ] ))L uc ws v us wc W
L

        (5.14) 

After some algebraic manipulations, Eq. 5.14 is reduced to a quadratic equation as in 

    
2 2 22 ( ) ( ) 0w w h ju fu gv     . (5.15) 

The solution for ( , )w u v  is 

    
2 2 2 1/2( ) [( ) ]w h ju h ju fu gv        (5.16) 

where 2( )sf g


 , 2 2
1

( )g Lc s 


 ,  h gs
  and  1j L scg   .   

An aspherical surface  3z r  is now constructed by adding a plane-symmetric XY 

polynomial to the base surface in Eq. 5.16 as 
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      2 2 2 3 4 2 2 4
3 1 2 3 4 5 6 7( ) ...z r w r A x A y A x y A y A x A x y A y        . (5.17) 

The XY polynomial in Eq. 5.17 is centered at the origin of the off-axis conic segment 

and, thus, provides effective degrees of freedom for the lens design of plane-symmetric 

mirror systems. The surface  3z r  was programmed as a user-defined surface in Zemax 

OpticStudio optical design software (see Appendix K). 

The following design shows the performance improvement made by using aspheric 

surfaces 3( )z r  in an f/2 three-mirror unobscured design, with the design parameters given 

in Table 5.3. The design specification is similar to one used by Chrisp [8]. The aperture 

stop is located at the secondary mirror. 

Table 5.3 Design requirements for the three-mirror telescope. 

Parameter Requirement 
Field of view (FOV) 10 deg x 9 deg 
Focal length 35.7 mm 
Focal ratio f/2 

For comparison, the design utilizing aspheric surfaces 3( )z r  has been created with the 

mirror sizes, separations and incidence angles that closely resemble the non-uniform 

rational-basis spline (NURBS) freeform design reported by Chrisp.  

The design procedure is the following.  

First, the reflective system is constructed with confocal surfaces such that the imaging 

along the optical axis ray (OAR) is stigmatic surface after surface, as shown in Fig. 5.7. 

These types of systems have a reduced number of aberrations and potentially can provide 

better imaging: constant astigmatism, constant coma, anamorphism, and spherical 
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aberrations exactly cancel out [12]. The mirror surface description 3( )z r  simplifies the 

design of these confocal systems by allowing one to optimize the offset parameter 0Y  for 

a given geometry. The image plane is constrained to be perpendicular to the OAR.  

 

 
Fig. 5.7 Three-mirror system with confocal surfaces. (a) Layout (b) OPD plots over the entire FOV (the plot 

scale is 10 waves at 3 m ). 

Next, mirror curvatures, conic constants and spacings are removed from the 

optimization, and polynomial coefficients are released to correct the off-axis aberrations. 

Although no constrains on distortions were mentioned by Chrisp, in the current design the 

distortion is limited to <3%. The final system layout is given in Fig. 5.8. The OPD plots 

and Spot diagrams are shown in Fig. 5.9. The performance is close to being diffraction-

limited over the entire FOV. 

(a) (b) 
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Fig. 5.8 Layout of the three-mirror system. (a) The design with NURBS freeform surfaces reported by Chrisp; 

(b) The current design with 3( )z r  aspherical surfaces. 

  

 
Fig. 5.9 Reoptimized three-mirror system. 8th order plane symmetric polynomials are added to the mirror 

surfaces. (a) OPD plots (the plot scale is 1 wave at 3 m ); (b) Spot diagrams. 

The RMS Spot over the field is shown in Fig. 5.10. In his design, Chrisp reported the 

average RMS Spot size over the field to be14 m . In the current design, the average RMS 

Spot is about 8.5 m . 

(a) (b) 

(a) (b) 
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Fig. 5.10 The RMS Spot Size of the three-mirror system. (a) The design with NURBS freeform surfaces 

reported by Chrisp; (b) The current design with 3( )z r  aspherical surfaces. 

Although the design presented by Crisp shows excellent performance, the surface 

representation with NURBS has a number of disadvantages. The major optical design 

programs are not capable of optimizing NURBS grid-type surfaces in imaging systems. 

For this reason, the optimization of the design by Chrisp was accomplished with the in-

house code. Moreover, the NURBS design represents a “brute force” solution, while the 

aspheric surface profile of the mirrors 3( )z r  is clearly able to best model the ideal surface 

and to allow one to intelligently approach the optical design.   

5.4 EXTENDED CARTESIAN OVAL SURFACE 

The Cartesian Oval is an optical surface that separates two homogeneous refracting 

media and produces a perfect point image of a point object. In the special case of a mirror 

surface in which the index of refraction of object and image space media have the same 

magnitude but the opposite sign, the Cartesian Oval solutions are conic surfaces. Other 

well-known solutions are a sphere for the case of aplanatic and concentric conjugate points 
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or conic surface with the conic constant equal to the minus square of the index of refraction 

for the case of having one conjugate point at infinity. However, the general sag equation 

of the Cartesian Oval is complicated, and the Cartesian Oval is not readily available as a 

standard surface in commercial lens design software. The solution for the explicit sag of 

the Cartesian Oval has been previously discussed by other authors. Moreover, an alternate 

iterative method for the sag of the Cartesian Oval has also been provided [13].   

This iterative method solves the defining optical path length equation for the Cartesian 

Oval for any ray from the object point O  to the image point 'O , as shown in Fig. 5.11.   

    
      

2 22 2
1 1 2 2 1 1 2 2(r) (r) 0,

p axis

c c

OPL OPL

n s S r n s S r n s n s

 

           
 (5.18) 

where  cS r  is the sag of the Cartesian Oval; 1n  and 2n  are the indexes of refraction in 

object and image spaces; and 1s  and 2s  are the object and image distances from the surface 

vertex. 
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Fig. 5.11 Geometrical variables used to define the Cartesian Oval surface. 

The Cartesian Oval has the property of perfectly imaging an object point into an image 

point with any numerical aperture. However, the imaging performance of the Cartesian 

Oval degrades rapidly for off-axis field positions. In this section, the Cartesian Oval is used 

as a base surface to create an aspherical surface. The aspherical surface  4z r  is 

constructed by building a polynomial on the base surface  cS r as, 

              2 3 4 5 6
4 1 2 3 4 5 6 ...c c c c c cz r A S r A S r A S r A S r A S r A S r      , (5.19) 

where the 'A s  represent deformation coefficients. A freeform  5z r surface is also 

constructed by a superposition of base surfaces as, 

        2 1 c/1 2 c/2 3 c/3 ...z r A S r A S r A S r    , (5.20) 

where each of the  s/nS r terms have their own independent 1s , 2s , and A coefficients. 

The goal of this polynomial surface is to extend the off-axis imaging capabilities of the 

Cartesian Oval. Surface  4z r  and  5z r  were programmed as the user defined surfaces in 

Zemax OpticStudio optical design software [10] (see Appendix K). 

Noteworthy is that the Cartesian Oval surface can take a variety of shapes according to 

the conjugate parameters 1s  and 2s : concave and convex surface shapes, as well as surfaces 

that are concave near the center and turn smoothly into convex towards the lens edge.  

For example, the surface profile  4z r  is used to fit two Pedal surfaces shown in Fig. 

5.12. The Pedal surface in Fig. 5.12a has the major axis 5a mm  and the minor axis 

15b mm . This surface is strongly concave near the center and turn smoothly into slightly 
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convex towards the lens edge. The Pedal surface in Fig. 5.12b has the major axis 5a mm  

and the minor axis 10b mm . This surface is slightly concave near the center and turn 

smoothly into strongly convex towards the lens edge. For this fit, the surface sag at 100 

points equally spaced in aperture from 0r   to max 10r mm  was evaluated for both 

surfaces. An error function was created as the sum of the squares of the differences of the 

surface sag  4z r  and the Pedal surface sag. Then using the damped least square and the 

orthogonal descent optimization methods, the error function was minimized. The surface 

4 ( )z r  coefficients were used by the optimizer as degrees of freedom to reduce the error 

function. The index of refraction of object and images spaces 1 1n   and 2 1.5n   were 

chosen arbitrary. The conjugate distances 1s  and 2s , and polynomial coefficients were 

released as variables and as the optimizer proceeded, more coefficients were released.  

Table 5.4 summarizes the RMS fit error as a function of the number of optimization 

variable used in the fit. The prescription for surfaces in Table 5.4 are provided in Table 5.5 

and Table 5.6. Relatively large residual error for both surfaces indicates that the Pedal 

curve to the ellipse provides a better representation for the concave-convex profile lenses. 

 

  
Fig. 5.12 Pedal surface profile used for the fit. (a) The major axis 5a mm and the minor axis 15b mm

; (b)  The major axis 5a mm and the minor axis 10b mm . 

 

(a) (b) 
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Table 5.4 The RMS fit error between Pedal surfaces see in Fig. 5.12 and aspherical surface 4 ( )z r as a 

function of the number of optimization variables used in the fit. 

Number of 

Parameters 

RMS Fit Error for the surface 

in Fig. 5.12a [mm]  

RMS Fit Error for the 

surface in Fig. 5.12b [mm] 
3 1.92250 0.61958 
4 0.60046 0.39904 
5 0.22685 0.35787 
6 0.10811 0.32312 
7 0.09792 0.29325 
8 0.08932 0.28577 

 

Table 5.5 Coefficients defining the surface profile  4z r  used to fit the Pedal surface in Fig. 5.12a. 

# of 

Par. 1[ ]s mm   2[ ]s mm  
A1 A2 A3 A4 A5 A6 

3 4.40735 1.00865 -3.67178      
4 4.41304 1.02403 -5.23497 -2.22104     
5 4.41560 1.03132 -6.33459 -5.99284 -2.82966    
6 4.63623 1.05380 -7.85547 -1.32626 -1.50141 -6.52185   
7 4.63617 1.05365 -8.01806 -1.46306 -1.88774 -1.10109 -1.85167  
8 4.63633 1.05405 -7.93003 -1.42684 -1.87234 -1.13041 -1.31116 7.92262 
 

Table 5.6 Coefficients defining the surface profile  4z r  used to fit the Pedal surface in Fig. 5.12b. 

# of 

Par. 1[ ]s mm   2[ ]s mm  
A1 A2 A3 A4 A5 A6 

3 4.75887 8.69102 -3.32689      
4 4.29490 8.11311 -2.83046 -6.05352     
5 4.29357 8.09574 -2.70601 -7.89477 -8.82643    
6 4.29356 8.09564 -2.88590 -6.91806 1.31532 -2.58629   
7 4.29264 8.08377 -2.91148 8.41478 2.10056 -1.08043 7.67221  
8 4.29221 8.07830 -2.83740 1.42260 1.90860 -1.58230 2.61426 -1.31240 
 

As an example of the performance of the proposed surface, a 1:1 relay imaging lens 

composing from two identical singlet elements was designed, as shown in Fig. 5.14. The 
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system is symmetrical about the aperture stop.  Both elements are plano-convex lenses with 

the aspheric convex surface profile defined by  4z r . The lens operates at f/2 and has a 

focal length of 20mm.  

 

Fig. 5.13 Layout of the 1:1 relay imaging lens designed with the extended Cartesian Oval surfaces. 

The design procedure is the following. First, the system is constructed with Cartesian 

Oval surfaces such that the imaging on axis is stigmatic surface after surface. Parameters 

1s  and 2s   for the Cartesian Oval surfaces are selected to achieve a perfectly collimated 

beam at the stop. Next, a 3mm field of view is added, and polynomial coefficients are 

released to balance the off-axis aberrations. In the final design, a balanced performance 

over the entire field is achieved. 

 

 



143 
 

 
 

 

Fig. 5.14 OPD plots of the reoptimized 1:1 relay lens (the plot scale is 5 waves at 588nm). 

5.5 CONCLUSION 

In this chapter, the concept of a base surface from which an aspheric polynomial surface 

can be constructed by power expansion of the base term, and from which a freeform surface 

can also be constructed by superposition of several base surfaces having different 

parameter values was introduced.  

The surfaces  1z r  and  2z r  that are presented in this chapter are useful for providing 

specific illumination distributions. Notably, the freeform surface  2z r  exhibits little 

oscillation in the relative illumination or transverse ray error.  

The surfaces  3z r , 4 ( )z r  and 5 ( )z r  are useful for designing systems where the 

imaging is stigmatic surface after surface along a particular ray. Moreover, these surfaces 

provide additional degrees of freedom to balance aberration for off-axis field positions. 
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CHAPTER VI:  

CONCLUSION 

This dissertation presented of a collection of topics that address current problems and 

applications of state-of-the-art imaging and illumination system lens design. Each topic 

was introduced independently as a self-contained and self-explanatory chapter.  

In Chapter II, several useful principles and techniques for evaluation of complex optical 

imaging systems have been presented and discussed. These methods and techniques were 

applied to analyze state-of-the-art mobile camera lenses and to explore how a curved image 

surface can benefit the lens design of these optical systems. 

The ideas proposed in this chapter are that (1) two applicable parameters for quantify 

relevant lens attributes and providing adequate comparison between different optical 

configurations are the optical power distribution and lens symmetry; (2) the examination 

of the ray invariant product sin( )n i  for a critical ray path is a widely applicable technique 

that will often indicate the source of a design problem; (3) understanding the limiting 

aberrations of a lens is critical in order to further improve the design by applying an 

appropriate technique to correct these specific limiting aberrations or choosing a different 

lens configuration to keep them from arising; (4) a better understanding of the intrinsic and 

extrinsic surface contributions to the overall aberration balance is essential for designing 

efficient imaging lenses. 



146 
 

 
 

Chapter III presented a second- and a fourth-order theory of irradiance changes in 

axially symmetric optical systems. The concept of the irradiance function was reviewed 

and an interpretation of the irradiance aberrations was discussed.  

The irradiance function terms represent basic distribution patterns in the irradiance of a 

beam at the exit pupil plane or at the image plane of an imaging system. The irradiance 

coefficients were found via basic radiometric principles, such as conservation of flux, and 

were derived from purely geometric considerations. Specific formulas and relationships 

between the irradiance distribution and wavefront aberration coefficients to fourth order 

were provided for irradiance at the image and at the exit pupil of an optical system. The 

practical case of relative illumination at the image plane of an optical system was also 

discussed in some detail. 

The theory of irradiance aberrations enhances our knowledge about the behavior of light 

as it propagates in optical systems and provides insights into how individual wavefront 

aberration terms affect the light irradiance produced by a lens system at its image plane or 

at the exit pupil plane. 

Two methods for chromatic aberration correction have been presented in Chapter IV. 

Both methods are based on real ray tracing and can be implemented in commercial lens 

design software. The idea is to separate the chromatic aberration content from the 

monochromatic aberration content and use standard lens design software optimization 

tools, such as global optimization and iterative glass substitution. The separation of 

aberrations removes the dependence in correction of one aberration type from the 
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correction of other aberration type. In that case the optimization process is focused on 

reducing chromatic aberration to the monochromatic aberration value.  

The presented methods are not limited to any specific bandwidth, can be used to correct 

both chromatic change of focus and chromatic change of magnification, support multi-

configuration systems, and do not require any additional/external calculations. Unlike other 

methods found in the literature, the presented methods are not limited to the finite number 

of aberration coefficients used in an error function, since real ray tracing is used to reduce 

the chromatic aberrations. As an example of application of the methods, the chromatic 

aberration correction in a Canon telephoto lens and in an elaborated zoom system was 

improved.  

The ray tracing methods were further extended to a different glass selection problem – 

athermalization of imaging systems. The algorithm was modified to separate aberrations 

induced by temperature effects from the nominal design aberrations. In that case the 

optimization process is focused on reducing additional aberration due to thermal effects to 

the nominal aberration value.  

In Chapter V, the concept of a base surface from which an aspheric polynomial surface 

can be constructed by power expansion of the base term, and from which a freeform surface 

can also be constructed by superposition of several base surfaces having different 

parameter values was introduced.  

Surfaces that were presented in this chapter are useful for providing specific 

illumination distributions or for designing systems where the imaging is stigmatic surface 

after surface along a particular ray. Examples of the performance of these surfaces that 
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were constructed using the concept of base surface were provided, and some of their 

properties were discussed. 

The theoretical results and practical methods described in this dissertation serve to 

provide new insights into the optical design of state-of-the-art imaging and illumination 

systems, to advance the theory of aberrations, and to enhance the optics community’s 

collective understanding of present topics in modern optical engineering. 
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APPENDIX A:  

LENS EVALUATION FROM POWER DISTRIBUTION AND 

SYMMETRY MACRO FOR ZEMAX  
! Written by Jose Sasian, modified by Dmitry Reshidko  
 
N=nsur() 
W=0. 
S=0. 
t=0 
wss=0 
sss=0 
 
PARAXIAL ON 
 
GETSYSTEMDATA 1 
nstop=VEC1(23) 
pmag=VEC1(16) 
 
 
! Chief ray trace to get angle of incidence at stop. 
RAYTRACE 0,1,0,0 
nkb=INDX(nstop-1) 
ucb=RAYM(nstop-1)/RAYN(nstop-1) 
Bstop=nkb*ucb 
 
! Trace a Marginal ray. 
RAYTRACE 0,0,0,1 
 
! Paraxial Ray Slope at image space. 
ni=INDX(N) 
pumi=RAYM(N)/RAYN(N) 
 
 
FOR k=1, N, 1 
 
! Marginal ray 
          RAYTRACE 0,0,0,1 
 
          radk=RADI(k) 
          If (radk==0) then radk=10000000000000000000 
          nk=INDX(k) 
          nkb=INDX(k-1) 
          dnk=nk-nkb   
          ym=rayy(k) 
          um=RAYM(k)/RAYN(k) 
          umb=RAYM(k-1)/RAYN(k-1) 
          delm=um/nk-umb/nkb 
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! Chief ray 
          RAYTRACE 0,1,0,0 
 
          yc=rayy(k) 
          uc=RAYM(k)/RAYN(k) 
          ucb=RAYM(k-1)/RAYN(k-1) 
          B=nkb*(yc/radk+ucb) 
          delc=uc/nk-ucb/nkb 
 
! Skip a dummy surface. 
          IF (nk==nkb) 
                    t=t+1 
                    GOTO 1 
          ENDIF 
 
          LG=-nk*(um*yc-uc*ym) 
 
          Wk = -1/(1-pmag)*ym/(ni*pumi)*dnk/radk 
          W = W + Wk*Wk 
          Wss = Wss + Wk 
 
          Sk = 1/(1-pmag)*B*delm/(Bstop*ni*pumi) 
          S = S + Sk*Sk 
          Sss = Sss + Sk 
 
          FORMAT 10.2 
          IF (k==1)  
                    Print "      Surface    W           S" 
          ENDIF 
 
          Print k,"  ", wk,"  ",Sk 
          LABEL 1 
 
NEXT 
Print 
Print "       SUM","  ", wss,"  ",Sss 
 
W=SQRT(W/(N-t)) 
S=SQRT(S/(N-t)) 
 
PARAXIAL OFF 
 
PRINT " " 
PRINT "Power Distribution        W: ", W 
PRINT "Degree of Symmetry        S: ", S 
 
Optreturn 1, w 
Optreturn 2, s 
Optreturn 3, wss 
Optreturn 4, sss 
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APPENDIX B: 

EVALUATION OF THE RAY INVARIANT PRODUCT 

MACRO FOR ZEMAX 
! Written by Chia-Ling Li, modified by Dmitry Reshidko 
 
DECLARE surf, double, 1, 60 
DECLARE chief, double, 1, 60 
DECLARE marg, double, 1, 60 
DECLARE comb, double, 1, 60 
 
 
!*************  
FORMAT 10.5 
 
PRINT 
PRINT "    Surface#  NsinI_chief(1,0)    NsinI_marginal(0,1) NsinI_specific(1,1)" 
PRINT 
!***************************************************** 
 
!Starts the surface by surface calculation with a loop  
 
j=0 
 
FOR i=1, NSUR(), 1 
 
    dummy=indx(i-1)-indx(i) 
    IF (dummy == 0) 
        GOTO 1 
    else 
 
        j=j+1 
        C=OCOD("RAED") 
 
        !Trace chief ray after surface 
        Ic=OPEV(C,i,pwav(),0,1,0,0) 
        chief(j)=indx(i)*sine(Ic/180*3.14159265359) 
 
        !Trace marginal ray after surface 
        Im=OPEV(C,i,pwav(),0,0,0,1) 
        marg(j)=indx(i)*sine(Im/180*3.14159265359) 
 
        !Trace specific ray after surface 
        Is=OPEV(C,i,pwav(),0,1,0,1) 
        comb(j)=indx(i)*sine(Is/180*3.14159265359)  
 
    surf(j)=i 
     
    PRINT "  ",surf(j),"    ",chief(j), "       ",marg(j), "         ",comb(j) 
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    ENDIF 
    Label 1 
NEXT 
 
!*********** 
!Make a plot 
 
PLOT NEW 
PLOT TITLE, "surface#  vs  n*sin(I)" 
PLOT TITLEX, "surface#" 
PLOT TITLEY, "n*sin(I)" 
PLOT BANNER, "RESULTS GENERATED USING NsinI.ZPL" 
PLOT FORMATX,"%2.0f" 
PLOT FORMATY, "%1.2f" 
PLOT DATA, surf, chief, j, 0, 0, 0 
PLOT DATA, surf, marg, j, 1, 0, 0 
PLOT DATA, surf, comb, j, 5, 0, 0 
PLOT COMM1, "black curve : chief ray (1,0)"  
PLOT COMM2, "blue  curve : marginal ray (0,1)"  
PLOT COMM3, "pink  curve : specific ray (1,1)" 
PLOT GO 
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APPENDIX C:  

EVALUATION OF HIGHER ORDER ABERRATION 

CONTENT MACRO FOR ZEMAX 
! Written by Dmitry Reshidko 
! Float by stop size aperture 
! Remove pickups and solves 
 
!Compute higher order contribution 
DECLARE DISP_arr,double,1,5 
 
start_surf = 1 
nominal_object_units = 0 # 0 - Angle; 1 - Object height 
vis = 1 
plot_scale = 0 
plot_scale_s = 0 
DISP_arr (1) = 1    # SA 
DISP_arr (2) = 1    # COMA 
DISP_arr (3) = 1    # ASTI 
DISP_arr (4) = 1    # FC 
DISP_arr (5) = 0    # DIST 
 
p_wave = PWAV() 
p_wave_um = WAVL(p_wave) 
C=OCOD("OPDC") 
C1=OCOD("SPHA") 
C2=OCOD("COMA") 
C3=OCOD("ASTI") 
C4=OCOD("FCUR") 
C5=OCOD("DIST") 
CF=OCOD("FCGS") 
CFN=OCOD("SFNO") 
CA=OCOD("RAIN") 
 
print 
n_surf = NSUR() 
 
! Set ray aiming to real 
SYSP 70, 2 
 
DECLARE ABER_A_arr,double,2,5,n_surf 
DECLARE ABER_B_arr,double,2,5,n_surf 
DECLARE ABER_TOTAL_arr,double,2,5,n_surf 
DECLARE ABER_EX_arr,double,2,5,n_surf 
DECLARE ABER_INT_arr,double,2,5,n_surf 
DECLARE ABER_SEIDEL_arr,double,2,5,n_surf 
DECLARE ABER_TOTAL_SUR_arr,double,1,5 
DECLARE RADII_arr,double,1,n_surf+2 
DECLARE COLOR_arr,double,1,5 
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DECLARE ASPH4_arr,double,1,n_surf+2 
DECLARE ASPH6_arr,double,1,n_surf+2 
DECLARE ASPH8_arr,double,1,n_surf+2 
DECLARE ASPH10_arr,double,1,n_surf+2 
DECLARE ASPH12_arr,double,1,n_surf+2 
DECLARE ASPH14_arr,double,1,n_surf+2 
DECLARE ASPH16_arr,double,1,n_surf+2 
 
COLOR_arr(1) = 3 
COLOR_arr(2) = 2 
COLOR_arr(3) = 7 
COLOR_arr(4) = 6 
COLOR_arr(5) = 24 
 
! save nominal conjugates 
nom_obj_dist = THIC(0) 
obj_dist = nom_obj_dist 
 
! Calculate pupil distance and diameter 
GETSYSTEMDATA 1 
restore_pupil = 0 
f_num_w = VEC1(10) 
IF (VEC1(23)!=1) 
 
nom_pupil_r = VEC1(11) 
nom_pupil_d = VEC1(12) 
nom_stop_surf = VEC1(23) 
 
! Move stop being the first surface 
INSERT 1 
SURP 1,THIC,nom_pupil_d*-1 
SURP 1, SDIA, nom_pupil_r/2 
SURP 0,THIC,THIC(0)+nom_pupil_d 
STOPSURF 1 
obj_dist = THIC(0) 
n_surf = n_surf + 1 
restore_pupil = 1 
 
IF (nom_pupil_d>1e5) 
print "System telecentric object space" 
ENDIF 
 
ENDIF 
 
start_surf = start_surf + 1 
 
UPDATE 
! Determine max field  
PARAXIAL ON 
RAYTRACE 0, 1, 0, 0, p_wave 
IF RAYE() THEN print "ERROR!" 
nom_max_field = RAYY(n_surf) 
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PARAXIAL OFF 
num_fields = NFLD() 
nom_max_field_deg = FLDY(num_fields) 
SYSP 101, 2 
 
! set solve 
INSERT n_surf 
n_surf = n_surf + 1 
SOLVETYPE n_surf-1, TM, 0, 0, 0, 0 
UPDATE 
 
! Consider vignetting 
FLAG_B = 0 
 
FOR i_surf, start_surf, n_surf-1, 1 
 
temp$ = $GLASS(i_surf) 
SURP i_surf,COMM, temp$ 
temp$ = "" 
SURP i_surf,GLAS, temp$ 
 
NEXT 
 
DECLARE ABER_arr,double,2,5,n_surf-1 
DECLARE SEIDEL_arr,double,2,5,n_surf-1 
 
UPDATE 
 
print "W040W131W222W220W311" 
print "W0n0WnmlWnmmWnm0Wn11" 
print 
 
SA_siedel_total = 0 
COMA_siedel_total = 0 
ASTI_siedel_total = 0 
FC_siedel_total = 0 
DIST_siedel_total = 0 
 
SA_all_total = 0 
COMA_all_total = 0 
ASTI_all_total = 0 
FC_all_total = 0 
!DIST_all_total = 0 
 
max_scale = 0 
max_scale_s = 0 
 
FOR i_surf, start_surf, n_surf-2, 1 
 
!!!!! Calculate aberrations for A !!!!!!! 
STOPSURF 1 
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! Restore glass in A 
FOR j_surf, 0, i_surf-1, 1 
dummy = SPRO(j_surf, 1) 
temp$ = $buffer() 
SURP j_surf,GLAS, temp$ 
NEXT 
 
! insert XP 
INSERT i_surf 
 
! Remove glass in B 
dummy = SPRO(i_surf-1, 1) 
temp$ = $buffer() 
test$ = "MIRROR" 
IF (temp$ $== test$)  
temp$ = "" 
ENDIF 
FOR j_surf, i_surf, n_surf+1, 1 
SURP j_surf,GLAS, temp$ 
NEXT 
 
! Remove fields 
SYSP 100, nominal_object_units 
SYSP 103, 2, 0 
 
UPDATE 
 
!! Here we go to XP !! 
 
! Calculate XP distance distance 
 
nominal_i_thick = THIC(i_surf-1) 
total_i_thick = 0 
FOR j_surf, i_surf-1, n_surf, 1 
total_i_thick = total_i_thick + THIC(j_surf) 
NEXT 
 
GETSYSTEMDATA 1 
xp_pupil_diam = VEC1(13) 
xp_pupil_dist = VEC1(14) 
 
!IF (i_surf==3) THEN GOTO DEBUG 
 
! Move stop to the XP 
 
SURP i_surf-1,THIC,total_i_thick+xp_pupil_dist 
SURP i_surf, SDIA, xp_pupil_diam/2 
STOPSURF i_surf 
 
!! End go to XP !! 
 
IF ((total_i_thick+xp_pupil_dist)>1e5) 
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print i_surf,"-A telecentric image space" 
ENDIF 
 
IF (THIC(n_surf-1)>1e5) 
print i_surf,"-A afocal" 
ENDIF 
 
! Change fields 
SYSP 100, nominal_object_units 
SYSP 103, 2, nom_max_field_deg 
 
 
! Evaluate aberration for part A 
 
GOSUB EVALUATE_ABERRATIONS 
 
ABER_A_arr(1,i_surf) = = SA_all 
ABER_A_arr(2,i_surf) = COMA_all 
ABER_A_arr(3,i_surf) = ASTI_all 
ABER_A_arr(4,i_surf) = FC_all 
!ABER_A_arr(5,i_surf) = DIST_all 
 
!IF (i_surf==3) THEN GOTO DEBUG 
 
! Move stop back and restore 
STOPSURF 1 
SURP i_surf-1,THIC,nominal_i_thick 
DELETE i_surf 
 
!!!!! Calculate TOTAL aberrations !!!!!!! 
 
! Restore glass in A 
FOR j_surf, 0, i_surf, 1 
dummy = SPRO(j_surf, 1) 
temp$ = $buffer() 
SURP j_surf,GLAS, temp$ 
NEXT 
 
! insert XP 
INSERT i_surf+1 
 
! Remove glass in B 
dummy = SPRO(i_surf, 1) 
temp$ = $buffer() 
test$ = "MIRROR" 
IF (temp$ $== test$)  
temp$ = "" 
ENDIF 
FOR j_surf, i_surf+1, n_surf+1, 1 
SURP j_surf,GLAS, temp$ 
NEXT 
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! Remove fields 
SYSP 100, nominal_object_units 
SYSP 103, 2, 0 
 
UPDATE 
 
!! Here we go to XP !! 
 
! Calculate XP distance distance 
 
nominal_i_thick = THIC(i_surf) 
total_i_thick = 0 
FOR j_surf, i_surf, n_surf, 1 
total_i_thick = total_i_thick + THIC(j_surf) 
NEXT 
 
GETSYSTEMDATA 1 
xp_pupil_diam = VEC1(13) 
xp_pupil_dist = VEC1(14) 
 
! Move stop to the XP 
 
SURP i_surf,THIC,total_i_thick+xp_pupil_dist 
SURP i_surf+1, SDIA, xp_pupil_diam/2 
STOPSURF i_surf+1 
 
!! End go to XP !! 
 
IF ((total_i_thick+xp_pupil_dist)>1e5) 
print i_surf,"-TOTAL telecentric image space" 
ENDIF 
 
IF (THIC(n_surf-1)>1e5) 
print i_surf,"-TOTAL afocal" 
ENDIF 
 
! Change fields 
SYSP 100, nominal_object_units 
SYSP 103, 2, nom_max_field_deg 
 
! Evaluate Total aberrations !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  
 
GOSUB EVALUATE_ABERRATIONS 
 
ABER_TOTAL_arr(1,i_surf) = SA_all 
ABER_TOTAL_arr(2,i_surf) = COMA_all 
ABER_TOTAL_arr(3,i_surf) = ASTI_all 
ABER_TOTAL_arr(4,i_surf) = FC_all 
!ABER_TOTAL_arr(5,i_surf) = DIST_all 
 
ABER_SEIDEL_arr(1,i_surf) = OPEV(C1,i_surf,p_wave,0,0,0,0) 
ABER_SEIDEL_arr(2,i_surf) = OPEV(C2,i_surf,p_wave,0,0,0,0) 
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ABER_SEIDEL_arr(3,i_surf) = OPEV(C3,i_surf,p_wave,0,0,0,0) 
ABER_SEIDEL_arr(4,i_surf) = OPEV(C4,i_surf,p_wave,0,0,0,0) + 
0.5*OPEV(C3,i_surf,p_wave,0,0,0,0) 
ABER_SEIDEL_arr(5,i_surf) = OPEV(C5,i_surf,p_wave,0,0,0,0) 
 
! Determine max field  
PARAXIAL ON 
RAYTRACE 0, 1, 0, 0, p_wave 
IF RAYE() THEN print "ERROR!" 
nom_max_field = RAYY(n_surf+1) 
PARAXIAL OFF 
 
!IF (i_surf==3) THEN GOTO DEBUG 
 
! Move stop back and restore 
STOPSURF 1 
SURP i_surf,THIC,nominal_i_thick 
DELETE i_surf+1 
 
!!!!! Calculate aberrations for B !!!!!!! 
 
! Restore glass in A 
FOR j_surf, 0, i_surf-1, 1 
dummy = SPRO(j_surf, 1) 
temp$ = $buffer() 
SURP j_surf,GLAS, temp$ 
NEXT 
 
! Remove glass in B 
dummy = SPRO(i_surf-1, 1) 
temp$ = $buffer() 
test$ = "MIRROR" 
IF (temp$ $== test$)  
temp$ = "" 
ENDIF 
FOR j_surf, i_surf, n_surf+1, 1 
SURP j_surf,GLAS, temp$ 
NEXT 
 
UPDATE 
 
! Create coupling stop 
 
thick_pupil = 0 
FOR j_surf, i_surf, n_surf, 1 
thick_pupil = thick_pupil + THIC(j_surf) 
NEXT 
 
GETSYSTEMDATA 1 
xp_pupil_diam = VEC1(13) 
xp_pupil_dist = VEC1(14) 
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INSERT i_surf 
 
IF (ABSO(xp_pupil_dist)>1e9) 
SURP i_surf,THIC,THIC(i_surf-1) 
ELSE 
SURP i_surf,THIC,(xp_pupil_dist + thick_pupil)*-1 
IF ((xp_pupil_dist + thick_pupil)>1e5) 
print i_surf,"-B telecentric object space" 
ENDIF 
ENDIF 
 
SURP i_surf,GLAS, temp$ 
SURP i_surf, SDIA, xp_pupil_diam/2 
STOPSURF i_surf 
 
! Adjust the conjugates 
thick_object = 0 
FOR j_surf, i_surf-1, 1, -1 
thick_object = thick_object + THIC(j_surf) 
NEXT 
 
SURP 0,THIC,(-thick_object + xp_pupil_dist) 
 
! insert XP 
INSERT i_surf+2 
 
! Remove glass in A 
FOR j_surf, 0, i_surf-1, 1 
SURP j_surf,GLAS, temp$ 
NEXT 
 
! Set glass in B 
dummy = SPRO(i_surf+1, 1) 
temp$ = $buffer() 
test$ = "MIRROR" 
IF (temp$ $== test$)  
SURP i_surf+1,GLAS, temp$ 
temp$ = "" 
FOR j_surf, i_surf+2, n_surf+2, 1 
SURP j_surf,GLAS, temp$ 
NEXT 
ELSE 
FOR j_surf, i_surf+1, n_surf+2, 1 
SURP j_surf,GLAS, temp$ 
NEXT 
ENDIF 
 
! Remove fields 
SYSP 100, 2 
SYSP 103, 2, 0 
 
UPDATE 



161 
 

 
 

 
!! Here we go to XP !! 
 
! Calculate XP distance distance 
 
nominal_i_thick = THIC(i_surf+1) 
total_i_thick = 0 
FOR j_surf, i_surf+1, n_surf+1, 1 
total_i_thick = total_i_thick + THIC(j_surf) 
NEXT 
 
GETSYSTEMDATA 1 
xp_pupil_diam = VEC1(13) 
xp_pupil_dist = VEC1(14)  
 
! Move stop to the XP 
 
SURP i_surf+1,THIC,total_i_thick+xp_pupil_dist 
SURP i_surf+2, SDIA, xp_pupil_diam/2 
STOPSURF i_surf+2 
 
!! End go to XP !! 
 
IF (ABSO(total_i_thick+xp_pupil_dist)>1e5) 
print i_surf,"-B telecentric image space" 
ENDIF 
 
IF (ABSO(THIC(n_surf-1))>1e5) 
print i_surf,"-B afocal" 
ENDIF 
 
! Change fields 
SYSP 100, 2 
SYSP 103, 2, nom_max_field 
 
!IF (i_surf==6) THEN GOTO DEBUG 
 
! Evaluate aberration for part B !!!!!!!!!!!!! 
FLAG_B = 1 
GOSUB EVALUATE_ABERRATIONS 
ABER_B_arr(1,i_surf) = SA_all 
 
IF (nom_max_field>0) 
ABER_B_arr(2,i_surf) = COMA_all 
print "+", GLCZ(n_surf+2)-GLCZ(i_surf+1) 
ELSE 
ABER_B_arr(2,i_surf) = -1*COMA_all 
print i_surf,"     -", GLCZ(n_surf+2)-GLCZ(i_surf+1) 
ENDIF 
 
IF (nominal_object_units) 
IF (nom_max_field>0) 
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ABER_B_arr(2,i_surf) = -1*COMA_all 
print "+", GLCZ(n_surf+2)-GLCZ(i_surf+1) 
ELSE 
ABER_B_arr(2,i_surf) = COMA_all 
print i_surf,"     -", GLCZ(n_surf+2)-GLCZ(i_surf+1) 
ENDIF 
ENDIF 
 
ABER_B_arr(3,i_surf) = ASTI_all 
ABER_B_arr(4,i_surf) = FC_all 
!ABER_B_arr(5,i_surf) = DIST_all 
FLAG_B=0 
 
! Move stop back and restore 
STOPSURF 1 
SURP i_surf+1,THIC,nominal_i_thick 
DELETE i_surf+2 
DELETE i_surf 
SURP 0,THIC,obj_dist 
 
! Restore fields 
SYSP 100, nominal_object_units 
SYSP 103, 2, nom_max_field_deg 
 
UPDATE 
 
NEXT 
 
 
FOR i_surf, 0, n_surf-1, 1 
dummy = SPRO(i_surf, 1) 
temp$ = $buffer() 
SURP i_surf,GLAS, temp$ 
NEXT 
 
! Calculating extrinsic aberrations 
FOR i_aber=1,5,1 
FOR i_surf, start_surf, n_surf-2, 1 
ABER_EX_arr(i_aber,i_surf) = ABER_TOTAL_arr(i_aber,i_surf) - ABER_A_arr(i_aber,i_surf) - 
ABER_B_arr(i_aber,i_surf) 
ABER_INT_arr(i_aber,i_surf) = ABER_B_arr(i_aber,i_surf)-ABER_SEIDEL_arr(i_aber,i_surf) 
IF ((ABSO(ABER_EX_arr(i_aber,i_surf))> max_scale) & DISP_arr(i_aber))   THEN 
max_scale=ABSO(ABER_EX_arr(i_aber,i_surf)) 
ABER_TOTAL_SUR_arr (i_aber) = ABER_TOTAL_SUR_arr (i_aber) + ABER_EX_arr(i_aber,i_surf) 
+ ABER_INT_arr(i_aber,i_surf) 
NEXT 
NEXT 
 
IF (plot_scale>0) THEN max_scale=plot_scale 
 
! Restore system 
DELETE n_surf-1 



163 
 

 
 

SURP 0,THIC,nom_obj_dist 
 
! restore EP 
IF (restore_pupil==1) 
STOPSURF nom_stop_surf+1 
DELETE 1 
ENDIF 
 
UPDATE 
 
! printing 
FORMAT 0.4 
print 
print "W0n0     Wnml     Wnmm     Wnm0     Wn11" 
print 
FOR i_surf, start_surf, n_surf-2, 1 
IF restore_pupil==1 
print i_surf-1 
ELSE 
print i_surf 
ENDIF 
print "S:",ABER_SEIDEL_arr(1,i_surf), "", ABER_SEIDEL_arr(2,i_surf), "", 
ABER_SEIDEL_arr(3,i_surf), "", ABER_SEIDEL_arr(4,i_surf), "", ABER_SEIDEL_arr(5,i_surf) 
print "I:",ABER_INT_arr(1,i_surf), "", ABER_INT_arr(2,i_surf), "", ABER_INT_arr(3,i_surf), "", 
ABER_INT_arr(4,i_surf) 
print "E:",ABER_EX_arr(1,i_surf), "", ABER_EX_arr(2,i_surf), "", ABER_EX_arr(3,i_surf), "", 
ABER_EX_arr(4,i_surf) 
print "TS:",ABER_INT_arr(1,i_surf)+ABER_EX_arr(1,i_surf), "", 
ABER_INT_arr(2,i_surf)+ABER_EX_arr(2,i_surf), "", 
ABER_INT_arr(3,i_surf)+ABER_EX_arr(3,i_surf), "", 
ABER_INT_arr(4,i_surf)+ABER_EX_arr(4,i_surf) 
print 
print 
 
NEXT 
 
print 
print "TOTAL:" 
printOPEV(C1,0,p_wave,0,0,0,0), "", OPEV(C2,0,p_wave,0,0,0,0), "", OPEV(C3,0,p_wave,0,0,0,0), "
",OPEV(C4,0,p_wave,0,0,0,0) + 0.5*OPEV(C3,0,p_wave,0,0,0,0)  
print ABER_TOTAL_arr(1,n_surf-2)-OPEV(C1,0,p_wave,0,0,0,0), "", ABER_TOTAL_arr(2,n_surf-2)-
OPEV(C2,0,p_wave,0,0,0,0), "", ABER_TOTAL_arr(3,n_surf-2)-OPEV(C3,0,p_wave,0,0,0,0), "", 
ABER_TOTAL_arr(4,n_surf-2)-(OPEV(C4,0,p_wave,0,0,0,0) + 0.5*OPEV(C3,0,p_wave,0,0,0,0)) 
print 
print "CHECK:" 
print ABER_TOTAL_SUR_arr(1), "", ABER_TOTAL_SUR_arr(2), "", ABER_TOTAL_SUR_arr(3), " 
", ABER_TOTAL_SUR_arr(4) 
print 
 
print "T","",OPEV(C1,0,p_wave,0,0,0,0) , "", ABER_TOTAL_arr(1,n_surf-2)-
OPEV(C1,0,p_wave,0,0,0,0), "", , "", OPEV(C2,0,p_wave,0,0,0,0) , "", 
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print ABER_TOTAL_arr(2,n_surf-2)-OPEV(C2,0,p_wave,0,0,0,0),  "","", OPEV(C3,0,p_wave,0,0,0,0) , 
"",  
print ABER_TOTAL_arr(3,n_surf-2)-OPEV(C3,0,p_wave,0,0,0,0),  "","",  OPEV(C4,0,p_wave,0,0,0,0) 
+ 0.5*OPEV(C3,0,p_wave,0,0,0,0) , "", ABER_TOTAL_arr(4,n_surf-2)-(OPEV(C4,0,p_wave,0,0,0,0) + 
0.5*OPEV(C3,0,p_wave,0,0,0,0)) 
 
IF VIS 
 
declare x_arr, double,1,7 
declare y_arr, double,1,7 
 
PLOT NEW 
 
FOR i_surf, start_surf, n_surf-2, 1 
 
ind=0.0 
FOR i_aber=1,5,1 
IF DISP_arr (i_aber) 
height = ABER_EX_arr(i_aber,i_surf) 
!IF (abso(height)>max_scale) THEN height = max_scale 
x_arr(1) = i_surf+ind+0.01 
x_arr(2) = i_surf+ind+0.01 
x_arr(3) = i_surf+ind+0.19 
x_arr(4) = i_surf+ind+0.19 
x_arr(5) = i_surf+ind+0.01 
x_arr(6) = i_surf+ind+0.19 
x_arr(7) = i_surf+ind+0.01 
y_arr(1) = 0 
y_arr(2) = height 
y_arr(3) = height 
y_arr(4) = 0 
y_arr(5) = height 
y_arr(6) = height 
y_arr(7) = 0 
PLOT DATA, x_arr, y_arr, 7,COLOR_arr(i_aber) 
ENDIF 
ind = ind+0.2 
NEXT 
NEXT 
 
PLOT TITLE, "High order surface contribution" 
PLOT TITLEX, "Surface number" 
PLOT TITLEY, "Aberration [waves]" 
PLOT RANGEY,-max_scale,max_scale 
PLOT RANGEX, start_surf, n_surf-1 
PLOT FORMATX, "%0.0f" 
PLOT FORMATY, "%0.2f" 
PLOT TICK, 1, max_scale/4 
PLOT GO 
 
ENDIF 
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LABEL DEBUG 
 
END 
 
SUB EVALUATE_ABERRATIONS 
 
IF !FLAG_B 
RADII_arr(i_surf+1) = RADI(i_surf+1) 
SURP i_surf+1, CURV, 0 
ASPH4_arr (i_surf+1) = PARM(2,i_surf+1) 
SURP i_surf+1, PARM, 0, 2 
ASPH6_arr (i_surf+1) = PARM(3,i_surf+1) 
SURP i_surf+1, PARM, 0, 3 
ASPH8_arr (i_surf+1) = PARM(4,i_surf+1) 
SURP i_surf+1, PARM, 0, 4 
ASPH10_arr (i_surf+1) = PARM(5,i_surf+1) 
SURP i_surf+1, PARM, 0, 5 
ASPH12_arr (i_surf+1) = PARM(6,i_surf+1) 
SURP i_surf+1, PARM, 0, 6 
ASPH14_arr (i_surf+1) = PARM(7,i_surf+1) 
SURP i_surf+1, PARM, 0, 7 
ASPH16_arr (i_surf+1) = PARM(8,i_surf+1) 
SURP i_surf+1, PARM, 0, 8 
ENDIF 
 
FOR j_surf,i_surf+2,n_surf,1 
RADII_arr(j_surf) = RADI(j_surf) 
SURP j_surf, CURV, 0 
ASPH4_arr (j_surf) = PARM(2,j_surf) 
SURP j_surf, PARM, 0, 2 
ASPH6_arr (j_surf) = PARM(3,j_surf) 
SURP j_surf, PARM, 0, 3 
ASPH8_arr (j_surf) = PARM(4,j_surf) 
SURP j_surf, PARM, 0, 4 
ASPH10_arr (j_surf) = PARM(5,j_surf) 
SURP j_surf, PARM, 0, 5 
ASPH12_arr (j_surf) = PARM(6,j_surf) 
SURP j_surf, PARM, 0, 6 
ASPH14_arr (j_surf) = PARM(7,j_surf) 
SURP j_surf, PARM, 0, 7 
ASPH16_arr (j_surf) = PARM(8,j_surf) 
SURP j_surf, PARM, 0, 8 
NEXT 
 
IF FLAG_B 
FOR j_surf,1,i_surf,1 
RADII_arr(j_surf) = RADI(j_surf) 
SURP j_surf, CURV, 0 
ASPH4_arr (j_surf) = PARM(2,j_surf) 
SURP j_surf, PARM, 0, 2 
ASPH6_arr (j_surf) = PARM(3,j_surf) 
SURP j_surf, PARM, 0, 3 
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ASPH8_arr (j_surf) = PARM(4,j_surf) 
SURP j_surf, PARM, 0, 4 
ASPH10_arr (j_surf) = PARM(5,j_surf) 
SURP j_surf, PARM, 0, 5 
ASPH12_arr (j_surf) = PARM(6,j_surf) 
SURP j_surf, PARM, 0, 6 
ASPH14_arr (j_surf) = PARM(7,j_surf) 
SURP j_surf, PARM, 0, 7 
ASPH16_arr (j_surf) = PARM(8,j_surf) 
SURP j_surf, PARM, 0, 8 
NEXT 
ENDIF 
 
!IF ((i_surf==8) & FLAG_B) THEN GOTO DEBUG 
 
UPDATE 
 
H0 =   OPEV(C,0,p_wave,0,0,0,1) 
Hy =   OPEV(C,0,p_wave,0,1,0,1) 
Hym =  OPEV(C,0,p_wave,0,-1,0,1) 
Hx =   OPEV(C,0,p_wave,0,1,1,0) 
delta_s =   OPEV(CF,0,p_wave,0,1,0,0) 
 
 
 
IF (!FLAG_B & (RADII_arr(i_surf+1) != 0)) 
SURP i_surf+1, CURV, 1/RADII_arr(i_surf+1) 
SURP i_surf+1, PARM, ASPH4_arr(i_surf+1),2 
SURP i_surf+1, PARM, ASPH6_arr(i_surf+1),3 
SURP i_surf+1, PARM, ASPH8_arr(i_surf+1),4 
SURP i_surf+1, PARM, ASPH10_arr(i_surf+1),5 
SURP i_surf+1, PARM, ASPH12_arr(i_surf+1),6 
SURP i_surf+1, PARM, ASPH14_arr(i_surf+1),7 
SURP i_surf+1, PARM, ASPH16_arr(i_surf+1),8 
ENDIF 
 
FOR j_surf,i_surf+2,n_surf,1 
IF (RADII_arr(j_surf) != 0) 
SURP j_surf, CURV, 1/RADII_arr(j_surf) 
SURP j_surf, PARM, ASPH4_arr(j_surf),2 
SURP j_surf, PARM, ASPH6_arr(j_surf),3 
SURP j_surf, PARM, ASPH8_arr(j_surf),4 
SURP j_surf, PARM, ASPH10_arr(j_surf),5 
SURP j_surf, PARM, ASPH12_arr(j_surf),6 
SURP j_surf, PARM, ASPH14_arr(j_surf),7 
SURP j_surf, PARM, ASPH16_arr(j_surf),8 
ENDIF 
NEXT 
 
IF FLAG_B 
FOR j_surf,1,i_surf,1 
IF (RADII_arr(j_surf) != 0) 



167 
 

 
 

SURP j_surf, CURV, 1/RADII_arr(j_surf) 
SURP j_surf, PARM, ASPH4_arr(j_surf),2 
SURP j_surf, PARM, ASPH6_arr(j_surf),3 
SURP j_surf, PARM, ASPH8_arr(j_surf),4 
SURP j_surf, PARM, ASPH10_arr(j_surf),5 
SURP j_surf, PARM, ASPH12_arr(j_surf),6 
SURP j_surf, PARM, ASPH14_arr(j_surf),7 
SURP j_surf, PARM, ASPH16_arr(j_surf),8 
ENDIF 
NEXT 
ENDIF 
 
! SA 
SA_all = H0 
 
! COMA 
COMA_all = (Hy-Hym)/2 
 
! ASTI 
ASTI_all = (Hy-Hx) - COMA_all 
 
! FC 
FC_all = Hx - SA_all 
 
RETURN 
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APPENDIX D:  

SERIES EXPANSION OF THE COSINE-TO-THE-FOURTH-

POWER OF THE RAY ANGLE 
By definition, the cosine-to-the-fourth-power of the angle between the ray connecting 

the point ( ' , ' )s sx y  on the aperture plane and point ( ' , ' )i ix y  on the image plane, and the 

optical axis is 
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 (D.1) 

where 'e  is the axial distance between the image plane and the aperture plane.  

 

Fig. D.1 Geometrical variables involved in computing irradiance of a pinhole camera.  

Points ( ' , ' )s sx y  and ( ' , ' )i ix y  are specified by the field H  aperture   vectors, as in 

Fig. D.1, and are expressed in terms of the first-order system parameters as 
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and 
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Here 'y  and 'u  are the chief ray height and slope at the image plane, 'y  and 'u  are 

the marginal ray height and slope at the aperture plane. 

Eq. D.2 and Eq. D.3 are substituted into Eq. D.1, and the fourth order approximation to the 

cosine-to-the-fourth-power of the ray angle is obtained from the first two terms of a Taylor 

series expression  
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'( , )H   in Eq. D.4 indicate that the function is evaluated for a ray connecting a point 

defined by   on the aperture plane and a point defined by H  on the image plane. 
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APPENDIX E:  

DERIVATION OF THE IRRADIANCE FUNCTION AT THE 

IMAGE PLANE OF AN OPTICAL SYSTEM WITH THE 

APERTURE VECTOR AT THE EXIT PUPIL 
In an actual system, rays may not pass through the ideal image point due to aberrations, 

as shown in Fig. E.1. The ray intersection with the image plane is determined by 

considering the transverse ray errors H  and it is defined by the vector H H . 

 

Fig. E.1 Geometrical variables involved in computing irradiance on the focal plane of an optical system 

with the aperture stop at the exit pupil. Real rays (solid lines) and first-order rays (dashed lines) coincide at 

the exit pupil. Real rays may not pass through the ideal image point due to aberrations. 

In the presence of image aberrations, the cosine-to-the-fourth-power of the ray angle 

4cos ( '( , ))H H   is evaluated by writing the differential as 

 4 4 4cos ( '( , )) cos ( '( , )) cos ( '( , ))HH H H H H        , (E.1) 

where 4cos ( '( , ))H H   is the gradient of the function in Eq. D.4 with the respect to 

the field vector H . With no second-order terms in the aberrations function, the terms  

4cos ( '( , ))H H H    result in irradiance terms that are at least of fourth order. 
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Thompson has shown that the gradient operator is given by the derivative of the function 

with respect to the designated vector [3.3]. It follows that to first order 

 4 2cos ( '( , )) [ 4 ' 4 ' ' )].H H u H u u            (E.2) 

Finally, the terms 4cos ( '( , ))H H H    are summarized in Table E.1.  

Table E.1 Summary of contributions to irradiance from the transverse ray errors H . 

Ray aberration 
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APPENDIX F:  

DERIVATION OF THE IRRADIANCE FUNCTION AT THE 

EXIT PUPIL OF AN OPTICAL SYSTEM WITH THE 

APERTURE VECTOR AT THE EXIT PUPIL 
To obtain the Jacobian determinant, the transverse ray aberration vector H  is 

expressed in orthogonal components along unit vectors ̂  and k̂  as 

 ˆˆ kH H H k     , (F.1) 

where  is a unit vector along the aperture vector   and k̂  is a unit vector perpendicular 

to the aperture vector  , as shown in Table F.1.  

Table F.1 Third-order transverse ray aberrations in the orthogonal coordinates. 

Ray aberration H  ̂  k̂  
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Then, the transformations 'H H H     and 'k k kH H H    is considered, which 

gives the position of the given ray at the image pupil, and so the Jacobian determinant is 

obtained as 
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k k

H HH HyJ H H
y H H H H

 

 


  

    
   

, (F.2) 

where H H   is the divergence of the transverse ray error vector, and 
H

H







, k

k

H
H




, 

k

H
H




 and kH

H 




 are derivative of the transverse ray error vector in the orthogonal 

coordinates [3.4, 3.5]. 

With no second order terms in the aberration function, the terms k

k

H H
H H





 

 
 and 

k

k

H H
H H





 

 

 result in irradiance terms that are at least of fourth order. The derivatives 

of the third-order transverse ray aberrations in orthogonal coordinates are summarized in 

Table F.2. 

Table F.2 Third-order transverse ray aberrations derivatives in orthogonal coordinates. 

Ray aberration 

 
H H
    

kH kH   
kH H    H kH


   

040H      

131H  
23  2    

222H  
4 H  2 H   2 kH  

220H  
4 H   4 kH   

H
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311H  
2 2(3 )kH H   

2 2( 3 )kH H   
2 kH H  2 kH H  

400H      

The relationships between wavefront deformations and transverse ray aberrations to 

fifth order are given in Table F.3. The fifth-order transverse ray errors are related to the 

wavefront deformation by the gradient of the aberration function and include additional 

terms that are products of the fourth-order pupil aberration coefficients and paraxial ray 

slopes 'u  and 'u  in image space. The subscripts H  and   refer to the components along 

the field and aperture vectors respectively [3.1].  

Table F.3 Fifth-order transverse ray aberrations for an optical system with the stop aperture at the exit pupil. 

Ray aberration H  61 ( , )W H
Ж     

Terms (5)O  

2
060 ( )H       

060
6 W
Ж

  2
040

6 'W u
Ж

  

2
151 ( )HH H    

151
1 W
Ж

  2
131 040

1 1[ ' 4 ' ']
2

W u W u u
Ж

     

151 ( )( )H H        
151

4 W
Ж

  2
131 040

1 [4 ' 8 ' ']W u W u u
Ж

     

2
333 ( )HH H H   

333
3 W
Ж

  2
131 222

1 [2 ' 4 ' ']W u W u u
Ж

     

331 ( )( )HH H H H     
331

1 W
Ж

  2 2
220 311 131

1 1 3[2 ' ' ' ' ]
2 2

W u u W u W u
Ж

       

331 ( )( )H H H H      
331

2 W
Ж

  2 2
222 131 220 311

1 [2 ' ' ' 4 ' ' ' ]W u u W u W u u W u
Ж

       

2
242 ( )H H     

242
2 W
Ж

  2
222 131

1 [2 ' 4 ' ']W u W u u
Ж

     

242 ( )( )HH H H      
242

2 W
Ж

  2 2 2
040 131 222

1 [4 ' 4 ' ' ' ]W u W u u W u
Ж

      

240 ( )( )HH H H       
240

4 W
Ж

  2 2
220 131 040

1 [3 ' ' ' 2 ' ]W u W u u W u
Ж

      

422 ( )( )HH H H H H    
422

2 W
Ж

  2 2
222 220 311

1 [3 ' 2 ' 2 ' ']W u W u W u u
Ж

       

2
420 ( )H H H    

420
2 W
Ж

  2
220 311

1 [ ' ' ']W u W u u
Ж

   
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2
511 ( )HH H H H   

511
1 W
Ж

  2
311

1 3 '
2

W u
Ж

   

The divergence of the transverse ray errors  results in terms that are at least of 

second order. Sasian has shown the procedure to calculate the divergence operator of the 

function with respect to the designated vector [3.5, 3.24]. Following this procedure and 

taking the required derivatives, the terms in Table F.4 are obtained. 

The Jacobian coefficients in Table F.4 are the sum of all components. Thus, for example, 

the term  
2

400J H H  is given by  

  
22

400 511 311 311 3112

6 9 3[ ' ]J W W u W W H H
Ж Ж Ж

     . (F.3) 

Finally, the coefficients in Table 3.2 are obtained by combining equations in Table 3.1, 

Table F.2 and Table F.4, and keeping only second- and fourth-order terms. 

 

Table F.4 Terms corresponding to the determinant of the Jacobian transformation between the object and 

image planes for an optical system with the stop aperture at the exit pupil. 

Irradiance 

coefficient 

, ,k l mJ  

Fourth-order aberration 

contributions 

 

Six-order 

aberration 

contributions 

 

Orthogonal 

derivative 

contributions 

 020J    
131

4 W
Ж

  
  

 111J H   
220

4 W
Ж

  

222
6 W
Ж

  

  

 200J H H  
311

4 W
Ж

  
  

 
2

040J    2
131 040

1 [5 ' 16 ' ']W u W u u
Ж

     151
6 W
Ж

  131 1312

3 W W
Ж

 

H H 
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  131J H      

2 2
222 220

1 [7 ' 6 ' ]W u W u
Ж

     

2
131 040

1 [22 ' ' 16 ' ]W u u W u
Ж

     

242
10 W
Ж

  

240
8 W
Ж

  

220 1312

4 W W
Ж

 

222 1312

10 W W
Ж

 

 

 

 
2

222J H   

2
131 222

1 [10 ' 20 ' ']W u W u u
Ж

     

2
220 311

1 [8 ' ' 2 ' ]W u u W u
Ж

     

 

333
12 W
Ж

  

331
4 W
Ж

  

222 2222

8 W W
Ж

 

222 2202

16 W W
Ж

 

311 1312

4 W W
Ж

  

 

 

  220J H H     

2
131 222

1 [7 ' 2 ' ']W u W u u
Ж

     

2
220 311

1 [12 ' ' 3 ' ]W u u W u
Ж

     

 
 

331
6 W
Ж

  

 

311 1312

10 W W
Ж

 

222 2202

8 W W
Ж

  

 
 

 

  311J H H H    

2 2
222 220

1 [15 ' 14 ' ]W u W u
Ж

     

311
14 ' 'W u u
Ж

  

 

 

 

220 3112

4 W W
Ж

 

222 3112

10 W W
Ж

 

 
2

400J H H  2
311

9 'W u
Ж

   311 3112

3 W W
Ж

 

 

 

 

 

 

 

 

 

 

 

422
10 W
Ж



420
8 W
Ж



511
6 W
Ж


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APPENDIX G:  

DERIVATION OF THE IRRADIANCE FUNCTION AT THE 

IMAGE PLANE OF AN OPTICAL SYSTEM WITH THE 

APERTURE VECTOR AT THE ENTRANCE PUPIL 
In an optical system with the stop aperture at the entrance pupil, the ray angle in image 

space is determined by considering the transverse ray errors at both image and exit pupil 

planes, as shown in Fig. G.1. 

 

Fig. G.1 Geometrical variables involved in computing irradiance at the focal plane of an optical system 

with the aperture stop at the entrance pupil. Real rays (solid lines) and first-order rays (dashed lines) 

coincide at the entrance pupil. Real rays may not pass through the ideal points at the exit pupil and image 

planes due to aberrations. 

In the presence of image and pupil aberrations, the cosine-to-the-fourth-power of the 

ray angle 4cos ( '){ , }H H     is evaluated by writing the differential as 

4 4 4

4

cos ( '){ , } cos ( '){ , } cos ( '){ , } ...

cos ( '){ , } ,
HH H H H H

H

      

  

   

 
 (G.1) 

where 4cos ( '){ , }H H   is the gradient of the function in Eq. D.4 with the respect to the 

field vector H  and 4cos ( '){ , }H    is the gradient of the function with the respect to 
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the aperture vector  . The terms 4cos ( '){ , }H H H    are discussed in Appendix E 

and are given in Table E.1. The terms 4cos ( '){ , }H      are calculated in a similar 

manner and are summarized in Table G.1.  

Table G.1 Summary of contributions to irradiance from the transverse ray errors  . 

Ray aberration 

  
Correction term 

 24 'u     

Correction term 

 4 ' 'u u H    

 040
4 W H H H
Ж

    2
040

16 'W u H H H
Ж

    2
040

16 ' '( )W u u H H
Ж

   

 131
1 W H H
Ж

    2
131

4 'W u H H
Ж

       131
4 ' 'W u u H H H
Ж

    

 131
2 W H H
Ж

   
22

131
8 'W u H
Ж

     131
8 ' 'W u u H H H
Ж

    

 222
2 W H
Ж

     2
222

8 'W u H
Ж

       
2

222
8 ' 'W u u H
Ж

   

 220
2 W H
Ж

     2
220

8 'W u H
Ж

        220
8 ' 'W u u H H
Ж

     

 311
1 W
Ж

     
22

311
4 'W u
Ж

      311
4 ' 'W u u H
Ж

      

To obtain the Jacobian determinant, the transverse pupil ray aberration vector   is 

expressed in orthogonal components along unit vectors ĥ  and k̂  as 

 ˆ ˆ
h kh k      , (G.2) 

where ĥ  is a unit vector along the aperture vector H  and k̂  is a unit vector perpendicular 

to the aperture vector H . Then, the transformations 'h h h      and 'k k k      is 

considered, which gives the position of the given ray at the image pupil, and so the Jacobian 

determinant is found 

 
2

2

' '( , ) (1 )h k h k
p

h k k h

dS yJ H
dS y 

   
 

   

   
     

   
, (G.2) 
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where     is the divergence of the transverse pupil ray error vector, and 










, k

k








, 

k








 and k










 are derivative of the transverse ray error vector in the orthogonal 

coordinates [3.4, 3.5].  

Notice that the Jacobian determinant in Eq. G.2 resembles the Jacobian determinant 

defined in Eq. F.2. It follows that the terms in Eq. G.2 are obtained from Table F.4 by 

interchanging the image and pupil aberration coefficients, exchanging the field and 

aperture vectors, interchanging the chief and marginal ray slopes, and changing sign of the 

Lagrange invariant. Moreover, since the aperture vector is now located at the entrance 

pupil, we also need to consider the change of the fifth-order transverse pupil aberration 

coefficients with the aperture vector location. Table G.2 summarizes the Jacobian 

determinant terms in Eq. G.2. Finally, the results in Table 3.4 are obtained by combining 

equations in Table E.1, Table G.1 and Table G.2, and keeping terms to fourth order. 

 

 

 

 

 

 

 

 

Table G.2a Terms corresponding to the determinant of the Jacobian transformation between entrance and 

exit pupil planes for an optical system with the stop aperture at the entrance pupil. 
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Irradiance 

coefficient 

p/ , ,k l mJ  

Fourth-order pupil 

aberration 

contributions 

 

Six-order pupil 

aberration 

contributions 

 

Coordinate distortion 

contributions 

Orthogonal 

derivative 

contributions 

 /020pJ H H  
311

4 W
Ж

 
   

 

 /111pJ H   
220

4 W
Ж

 

222
6 W
Ж

 

   

 /200pJ    
131

4 W
Ж

 
   

 

 

 
2

/040pJ H H  

 
2

131

040

5 '

16 ' '

W u
Ж

W u u
Ж

 

 
 
 

151
6 W
Ж

 
040 2202

040 2222

131 3112

32

24

8

W W
Ж

W W
Ж

W W
Ж







 

 
 
 

131 1312

3 W W
Ж

 

 

 

 

 

 

  
/131pJ

H H H  

 

2
222

2
220

7 '

6 '

W u
Ж

W u
Ж

 

131

2
040

22 ' '

16 '

W u u
Ж

W u
Ж

 

 
 
 

242

240

10

8

W
Ж

W
Ж

 

040 1312

131 2222

131 2202

222 3112

220 3112

80

28

32

6

4

W W
Ж

W W
Ж

W W
Ж

W W
Ж

W W
Ж











 

 
 
 

220 1312

222 1312

4

10

W W
Ж

W W
Ж

 

 

 

 

 

 
2

/222pJ H   

2
131

222

10 '

20 ' '

W u
Ж

W u u
Ж

 

220

2
311

8 ' '

2 '

W u u
Ж

W u
Ж

 

 
 

333

331

12

4

W
Ж

W
Ж

 

131 1312

222 2222

220 2222

040 0402

48

16

8

64

W W
Ж

W W
Ж

W W
Ж

W W
Ж









 

 

222 2222

222 2202

311 1312

8

16

4

W W
Ж

W W
Ж

W W
Ж


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  

p/220J

H H   

 

 
2

131

222

7 '

2 ' '

W u
Ж

W u u
Ж

 

220

2
311

12 ' '

3 '

W u u
Ж

W u
Ж

 

 
 
 
 
 

331
6 W
Ж

 

040 0402

131 1312

222 2202

220 2202

220 2222

96

16

16

16

4

W W
Ж

W W
Ж

W W
Ж

W W
Ж

W W
Ж











 

 
 
 
 

131 3112

220 2222

10

8

W W
Ж

W W
Ж



 

 

 

 

  

/311pJ

H    
 

2
222

2
220

15 '

1 '

W u
Ж

W u
Ж

 

311
14 ' 'W u u
Ж

 

 
 
 

 
 

422

420

10

8

W
Ж

W
Ж

 

 

131 0402

220 1312

222 1312

112

28

30

W W
Ж

W W
Ж

W W
Ж







 

 
 

220 3112

222 3112

4

10

W W
Ж

W W
Ж

 

 

 
2

/400pJ    

 

 
2

311
9 'W u
Ж

 

 

 

511
6 W
Ж

 222 0402

220 0402

48

48

W W
Ж

W W
Ж

 

 

 

 

311 3112

3 W W
Ж
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APPENDIX H:  

DERIVATION OF THE IRRADIANCE FUNCTION AT THE 

EXIT PUPIL OF AN OPTICAL SYSTEM WITH THE 

APERTURE VECTOR AT THE ENTRANCE PUPIL 
Rather than following the comprehensive procedure used in previous sections, the 

irradiance coefficients of an optical system with the stop aperture at the entrance pupil are 

determined by using a symmetry principle. Since both the field vector H  and the aperture 

vector   are defined in object space, the roles of the object and entrance pupils can be 

exchanged without loos of generality and then the relationships in Table 3.5a and Table 

3.5b follow. These relationships are obtained from the image plane irradiance coefficients 

in Table 3.4a and Table 3.4b by interchanging the image and pupil aberration coefficients, 

exchanging the field and aperture vectors, interchanging the chief and marginal ray slopes, 

and changing sign of the Lagrange invariant. 
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APPENDIX I:  

DERIVATION OF THE IRRADIANCE FUNCTION AT THE 

IMAGE PLANE OF AN OPTICAL SYSTEM WITH THE 

APERTURE VECTOR AT THE INTERMIDIATE POSITION 
In order to derive an expression for the image plane illumination of a lens system with 

an internal diaphragm, the lens is divided into two parts and the contribution of each part 

is evaluated saperatly. As shown in Fig. I.1, Part A consists of all optical elements between 

the object plane and the diaphragm and thus has the aperture stop at the exit pupil. Part B 

includes all elements between the diaphragm and the image plane and has the aperture stop 

at the entrance pupil. By construction, the exit pupil of part A is the entrance pupil of part 

B. Furthermore, the image formed by A is the object of B. 

 

Fig. I.1 Geometrical variables involved in computing irradiance at the focal plane of the optical system 

with the aperture stop between components the lens. The lens is divided into two parts A and B, and 

contributions of each part are evaluated individually. 
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If part A is corrected for all image aberrations, the beams after A converge to the image 

points defined by the field vector H . The incoming beams incident on part B have no 

aberrations and in the limit of small aperture relative illumination of the system is given by 

the expression similar to the case of having the aperture stop at the entrance pupil 

 

2
131

4 2 2 2
311 151 131

2
040 220 040 222 131 3112

2
131 1312

4( ) 1 [ 2 ' ]( )...

4 6 3[3 ' ' ' ]( ) ...

1 32 24 8 ( ) ...

3 ( ) ,

EP B

B B B

B B B B B B

B B

RI H u W H H
Ж

u W u W W u H H
Ж Ж Ж

W W W W W W H H
Ж

W W H H
Ж

    

    

     

 

 (I.1) 

where the subscript B refers to aberration coefficients of part B alone. Most objectives with 

the internal diaphragm are designed to provide the best image quality only at the system 

focal plane. Parts A and B of the objective are not corrected individually. Part A forms a 

highly aberrated image, which is reimaged and compensated by the rest of the system. In 

the limit of small aperture, the distortion of A contributes transverse ray errors AH  to the 

third order given by 

 311
1 ( ) .A AH W H H H
Ж

     (I.2) 

The image points of A are now defined by the vector AH H   and the relative 

illumination of the system is calculated by evaluating Eq. I.1 at ( )EP ARI H H . The 

second-order terms contribute extra fourth-order terms and the expression for the relative 

illumination of an optical system with internal diaphragm to fourth order is  
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2
131

4 2 2 2 2
311 311 151 131

2
040 220 040 222 131 3112

2
131 131 131 3112 2

4( ) 1 [ 2 ' ]( )...

4 4 6 3[3 ' ' ' ' ]( ) ...

1 32 24 8 ( ) ...

3 8[ ]( ) .

EP B

A B B B

B B B B B B

B B B A

RI H u W H H
Ж

u W u W u W W u H H
Ж Ж Ж Ж

W W W W W W H H
Ж

W W W W H H
Ж Ж

    

     

     

  

 (I.3) 

A comparison of Eq. I.1 and Eq. I.3 reveals two additional terms that are caused by the 

aberrations of part A. The term 2
311

4 'AW u
Ж

, combined with the term 2
311

4 'BW u
Ж

, results 

in the total distortion of the system: 2
311

4 'W u
Ж

. The term 131 3112

8
B AW W

Ж
  is a product of 

the pupil aberration of part B and the image aberration of part A. In the special case of an 

optical system with symmetry around the stop, the distortion of parts A and B has the same 

magnitude but opposite sign. Moreover, each part of the symmetrical optical system is 

separately corrected for field curvature and astigmatism. If 311 311A BW W   is substituted 

into Eq. I.3, a simplified expression for the relative illumination of a symmetrical optical 

system can be written as 

 

2
131

4 2 2
151 131 131 1312

4( ) 1 [ 2 ' ]( )...

6 3 3[3 ' ' ]( ) .

EP B

B B B B

Ri H u W H H
Ж

u W W u W W H H
Ж Ж Ж

    

    

 (I.4) 

The relative illumination of a symmetrical optical system does not depend on the 

aberration contributions of elements that precede the diaphragm. More uniform 

illumination at the focal plane can be achieved by controlling the pupil coma of the rear 

part of the system. 
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APPENDIX J:  

ABERRATION SUBSTRACTION METHOD FOR 

CHROMATIC ABERRATION CORRECTION AND 

ATHERMALIZATION OF IMAGING SYSTEM ZEMAX 

MACRO 
The following macro updates the Default Merit Function based on the optical path 

difference according to the aberration subtraction method for chromatic aberration 

correction.  

! Written by Dmitry Reshidko 
! Inputs 
n_waves = NWAV() 
p_wave = PWAV() 
n_config = NCON() 
 
DECLARE wave_arr, DOUBLE, 1, n_waves 
 
FOR i=1,n_waves,1 
wave_arr(i) = WAVL(i) 
NEXT 
 
IF DEBUG 
print "Wavelength:" 
FOR i=1,n_waves,1 
print wave_arr(i) 
NEXT 
ENDIF 
 
! Input # of Rings and Arms as in Gaussian Quadrature  
INPUT "Number of rings:",rings 
INPUT "Number of arms:",arms 
 
n_fields = NFLD() 
 
! First line in the Default Merit Function 
INPUT "Start at:", start_line 
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start_line = start_line + 3 
 
LABEL CONFIGS 
 
ind=1 
on_axis = 1 
FOR i_field=1,n_fields,1 
     IF on_axis        
        cur_line = start_line 
        FOR i_popd=1,rings,1 
          popd_val = OPER(cur_line + (p_wave-1)*rings + i_popd, 10) 
          ind = 1 
          FOR i_opd=i_popd,rings*n_waves,rings 
               SETOPERAND cur_line + i_opd , 8, 
popd_val*wave_arr(p_wave)/wave_arr(ind) 
               ind = ind + 1 
          NEXT 
         NEXT  
        on_axis = 0  
        cur_line = cur_line + rings*n_waves + 1 
    ELSE 
          FOR i_popd=1,rings*arms/2,1 
               popd_val = OPER(cur_line + (p_wave-1)*rings*arms/2 + i_popd, 10) 
               ind = 1 
               FOR i_opd=i_popd,rings*arms/2*n_waves,rings*arms/2 
                    SETOPERAND cur_line + i_opd , 8, 
popd_val*wave_arr(p_wave)/wave_arr(ind) 
                    ind = ind + 1 
               NEXT 
          NEXT  
        cur_line = cur_line + arms*rings/2*n_waves + 1 
ENDIF 
     
NEXT 
 
IF n_config>1 
     n_config = n_config - 1 
     start_line = cur_line + 3 
     GOTO CONFIGS 
ENDIF 
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The following macro updates the Default Merit Function based on the ray errors 

according to the aberration subtraction method for athermalization of imaging systems. 

! Inputs 

DEBUG = 1 

n_waves = NWAV() 

p_wave = PWAV() 

n_config = NCON() 

DECLARE wave_arr, DOUBLE, 1, n_waves 

FOR i=1,n_waves,1 

wave_arr(i) = WAVL(i) 

NEXT 

! Input # of Rings and Arms as in Gaussian Quadrature  

INPUT "Number of rings:",rings 

INPUT "Number of arms:",arms 

n_fields = NFLD(); 

! First line in the Default Merit Function 

INPUT "Start at:", start_line 

start_line = start_line + 3 

ind=1; 

on_axis = 1; 

FOR i_field=1,n_fields,1 

     IF on_axis        

        cur_line = start_line 
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   FOR i_popd=1,rings*n_waves,1 

          popd_val = OPER(cur_line + i_popd, 10) 

          ind = 1 

          FOR i_opd=1,n_config,1 

               SETOPERAND cur_line + i_popd + (rings*n_waves + (n_fields-
1)*rings*arms*n_waves/2 + n_fields + 3)*(i_opd-1), 8, popd_val 

               ind = ind + 1 

          NEXT 

    NEXT  

         on_axis = 0  

        cur_line = cur_line + rings*n_waves + 1 

    ELSE 

          FOR i_popd=1,rings*arms/2*n_waves,1 

               popd_val = OPER(cur_line + i_popd, 10) 

               ind = 1 

          FOR i_opd=1,n_config,1 

               SETOPERAND cur_line + i_popd + (rings*n_waves + (n_fields-
1)*rings*arms*n_waves/2 + n_fields + 3)*(i_opd-1), 8, popd_val 

               ind = ind + 1 

          NEXT 

        NEXT  

        cur_line = cur_line + arms*rings/2*n_waves + 1 

    ENDIF 

NEXT 
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 APPENDIX K:  

ASPHERIC/FREEFORM SURFACE C CODE FOR USER 

DEFINED SURFACES IN ZEMAX 

Zemax user-defined surface C code for the Pedal Curve to the Ellipse. 

#include <windows.h> 
#include <math.h> 
#include <string.h> 
#include "usersurf.h" 
 
#pragma warning ( disable : 4996 ) // functions like strcpy are now deprecated 
for security reasons 
 
 
/* 
Written by Dmitry Reshidko (Sep 10, 2015) 
 
The sag equation for this surface is given by : 
base1 = (a1*a - a1*{ [a ^ 2 - 2 * r ^ 2 + (a ^ 4 + 4 * (a ^ 2 - b ^ 2)*r ^ 2) ^ 
1 / 2] / 2 } ^ 1 / 2) 
Z = StandardConic + a1*base1 + a2*base1^2 + ... + b1*base2 + b2*base2^2 + ... 
 
*/ 
 
int __declspec(dllexport) APIENTRY UserDefinedSurface3(USER_DATA *UD, 
FIXED_DATA3 *FD); 
 
/* a generic Snells law refraction routine */ 
int Refract(double thisn, double nextn, double *l, double *m, double *n, double 
ln, double mn, double nn); 
 
BOOL WINAPI DllMain(HANDLE hInst, ULONG ul_reason_for_call, LPVOID lpReserved) 
{ 
return TRUE; 
} 
 
int  __declspec(dllexport) APIENTRY UserDefinedSurface3(USER_DATA *UD, 
FIXED_DATA3 *FD) 
{ 
int i, sag_error; 
double alpha, power, t; 
double x, y, z, Z1, Z2, Zi, Z_tot_extra; 
int loop; 
double a1_axis, b1_axis, A1, A2, A3, A4, A5, A6; 
int num_pedal; 
double aa_axis, bb_axis, Ai_1, Ai_2, Ai_3, Ai_4, Ai_5, Ai_6; 
double betta, gamma, cvt, bettad, gammad; 
double r2, tp, dz, sag, mm, mx, my; 
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switch (FD->type) 
{ 
case 0: 
/* ZEMAX is requesting general information about the surface */ 
switch (FD->numb) 
{ 
case 0: 
/* ZEMAX wants to know the name of the surface */ 
/* do not exceed 12 characters */ 
strcpy(UD->string, "PedalSurface"); 
break; 
case 1: 
/* ZEMAX wants to know if this surface is rotationally symmetric */ 
/* it is not, so return a 1 */ 
strcpy(UD->string, "1"); 
break; 
case 2: 
/* ZEMAX wants to know if this surface is a gradient index media */ 
/* it is not, so return a null string */ 
UD->string[0] = '\0'; 
break; 
} 
break; 
case 1: 
/* ZEMAX is requesting the names of the parameter columns */ 
/* the value FD->numb will indicate which value ZEMAX wants. */ 
/* they are all "Unused" for this surface type */ 
/* returning a null string indicates that the parameter is unused. */ 
switch (FD->numb) 
{ 
case 1: 
strcpy(UD->string, "a1: along Z"); 
break; 
case 2: 
strcpy(UD->string, "b1: along Y"); 
break; 
case 3: 
strcpy(UD->string, "A1"); 
break; 
case 4: 
strcpy(UD->string, "A2"); 
break; 
case 5: 
strcpy(UD->string, "A3"); 
break; 
case 6: 
strcpy(UD->string, "A4"); 
break; 
case 7: 
strcpy(UD->string, "A5"); 
break; 
case 8: 
strcpy(UD->string, "A6"); 
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break; 
case 9: 
strcpy(UD->string, "Number Extra Pedal"); 
break; 
default: 
UD->string[0] = '\0'; 
break; 
} 
break; 
case 2: 
/* ZEMAX is requesting the names of the extra data columns */ 
/* the value FD->numb will indicate which value ZEMAX wants. */ 
/* they are all "Unused" for this surface type */ 
 
if (FD->numb <= FD->param[9] * 8) 
{ 
if ((((FD->numb - 1) % 8) + 1) == 1) 
{ 
sprintf(UD->string, "a%i: along Z", FD->numb/8 + 2); 
//strcpy(UD->string, "aii"); 
} 
else if ((((FD->numb - 1) % 8) + 1) == 2) 
{ 
sprintf(UD->string, "b%i: along Y", FD->numb / 8 + 2); 
//strcpy(UD->string, "bii"); 
} 
else 
{ 
sprintf(UD->string, "A%i%i", (FD->numb - 1) / 8 + 2, (((FD->numb - 1) % 8) - 
1)); 
//strcpy(UD->string, "AAA"); 
} 
} 
else 
{ 
UD->string[0] = '\0'; 
} 
 
break; 
case 3: 
/* ZEMAX wants to know the sag of the surface */ 
/* if there is an alternate sag, return it as well */ 
/* otherwise, set the alternate sag identical to the sag */ 
/* The sag is sag1, alternate is sag2. */ 
 
/* Pedal terms */ 
a1_axis = FD->param[1]; 
b1_axis = FD->param[2]; 
A1 = FD->param[3]; 
A2 = FD->param[4]; 
A3 = FD->param[5]; 
A4 = FD->param[6]; 
A5 = FD->param[7]; 
A6 = FD->param[8]; 
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num_pedal = FD->param[9]; 
 
 
UD->sag1 = 0.0; 
UD->sag2 = 0.0; 
 
/* invalid input - consider absolute value */ 
if (a1_axis < 0) return(-1); 
if (b1_axis < 0) return(-1); 
 
x = UD->x; 
y = UD->y; 
r2 = x*x + y*y; 
 
// Standard Sag 
alpha = 1 - (1 + FD->k)*FD->cv*FD->cv*r2; 
//if (alpha < 0) return(-1); 
 
if (alpha < 0) 
{ 
return -1; 
} 
else 
{ 
Z1 = (FD->cv*r2) / (1 + sqrt(alpha)); 
} 
 
Z2 = 0; 
/* Pedal terms I */ 
if (sqrt(r2) > b1_axis) 
{ 
Z2 = 0; 
} 
else 
{ 
betta = r2*(b1_axis*b1_axis - a1_axis*a1_axis) + a1_axis*a1_axis*a1_axis*a1_axis 
/ 4.0; 
if (betta < 0) 
{ 
Z2 = 0; 
} 
else 
{ 
gamma = a1_axis*a1_axis / 2.0 - r2 + sqrt(betta); 
if (gamma < 0) 
{ 
Z2 = 0; 
} 
else 
{ 
Z2 = a1_axis - sqrt(gamma); 
} 
} 
} 
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Z_tot_extra = 0; 
for (i = 1; i <= num_pedal; i++) 
{ 
 
aa_axis = FD->xdata[(i - 1) * 8 + 1]; 
bb_axis = FD->xdata[(i - 1) * 8 + 2]; 
Ai_1 = FD->xdata[(i - 1) * 8 + 3]; 
Ai_2 = FD->xdata[(i - 1) * 8 + 4]; 
Ai_3 = FD->xdata[(i - 1) * 8 + 5]; 
Ai_4 = FD->xdata[(i - 1) * 8 + 6]; 
Ai_5 = FD->xdata[(i - 1) * 8 + 7]; 
Ai_6 = FD->xdata[(i - 1) * 8 + 8]; 
 
 
if (aa_axis < 0) return(-1); 
if (bb_axis < 0) return(-1); 
 
 
/* Extra Pedal Terms */ 
Zi = 0; 
if (sqrt(r2) > bb_axis) 
{ 
Zi = 0; 
} 
else 
{ 
betta = r2*(bb_axis*bb_axis - aa_axis*aa_axis) + aa_axis*aa_axis*aa_axis*aa_axis 
/ 4.0; 
if (betta < 0) 
{ 
Zi = 0; 
} 
else 
{ 
gamma = aa_axis*aa_axis / 2.0 - r2 + sqrt(betta); 
if (gamma < 0) 
{ 
Zi = 0; 
} 
else 
{ 
Zi = aa_axis - sqrt(gamma); 
} 
} 
} 
 
Z_tot_extra += Ai_1*Zi + Ai_2*Zi*Zi + Ai_3*Zi*Zi*Zi + Ai_4*Zi*Zi*Zi*Zi + 
Ai_5*Zi*Zi*Zi*Zi*Zi + Ai_6*Zi*Zi*Zi*Zi*Zi*Zi; 
 
} 
 
UD->sag1 = A1*(Z1 + Z2) + A2*pow((Z1 + Z2), 2) + A3*pow((Z1 + Z2), 3) + 
A4*pow((Z1 + Z2), 4) + A5*pow((Z1 + Z2), 5) + A6*pow((Z1 + Z2),6) + Z_tot_extra; 
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// no hyperhemispheric support 
UD->sag2 = UD->sag1; 
 
break; 
case 4: 
/* ZEMAX wants a paraxial ray trace to this surface */ 
/* x, y, z, and the optical path are unaffected, at least for this surface type 
*/ 
/* for paraxial ray tracing, the return z coordinate should always be zero. */ 
/* paraxial surfaces are always planes with the following normals */ 
UD->ln = 0.0; 
UD->mn = 0.0; 
UD->nn = -1.0; 
 
/* Pedal terms */ 
a1_axis = FD->param[1]; 
b1_axis = FD->param[2]; 
A1 = FD->param[3]; 
num_pedal = FD->param[9]; 
 
 
// Standard Optical Power 
power = A1*(FD->n2 - FD->n1)*FD->cv; 
 
// Pedal contribution 
if ((a1_axis != 0) && (b1_axis != 0)) 
{ 
cvt = A1*(2.0*a1_axis*a1_axis - b1_axis*b1_axis) / a1_axis / a1_axis / a1_axis; 
power += (FD->n2 - FD->n1)*cvt; 
} 
 
/* Extra Pedal Terms */ 
for (i = 1; i <= num_pedal; i++) 
{ 
 
aa_axis = FD->xdata[(i - 1) * 8 + 1]; 
bb_axis = FD->xdata[(i - 1) * 8 + 2]; 
Ai_1 = FD->xdata[(i - 1) * 8 + 3]; 
 
if ((aa_axis != 0) && (bb_axis != 0)) 
{ 
cvt = Ai_1*(2.0*aa_axis*aa_axis - bb_axis*bb_axis) / aa_axis / aa_axis / 
aa_axis; 
power += (FD->n2 - FD->n1)*cvt; 
} 
} 
 
if ((UD->n) != 0.0) 
{ 
(UD->l) = (UD->l) / (UD->n); 
(UD->m) = (UD->m) / (UD->n); 
 
(UD->l) = (FD->n1*(UD->l) - (UD->x)*power) / (FD->n2); 
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(UD->m) = (FD->n1*(UD->m) - (UD->y)*power) / (FD->n2); 
 
/* normalize */ 
(UD->n) = sqrt(1 / (1 + (UD->l)*(UD->l) + (UD->m)*(UD->m))); 
/* de-paraxialize */ 
(UD->l) = (UD->l)*(UD->n); 
(UD->m) = (UD->m)*(UD->n); 
} 
break; 
 
case 5: 
/* ZEMAX wants a real ray trace to this surface */ 
 
/* Pedal terms */ 
a1_axis = FD->param[1]; 
b1_axis = FD->param[2]; 
A1 = FD->param[3]; 
A2 = FD->param[4]; 
A3 = FD->param[5]; 
A4 = FD->param[6]; 
A5 = FD->param[7]; 
A6 = FD->param[8]; 
num_pedal = FD->param[9]; 
 
/* invalid input - consider absolute value */ 
if (a1_axis < 0) return(-1); 
if (b1_axis < 0) return(-1); 
 
 
x = UD->x; 
y = UD->y; 
z = UD->z; 
 
/* make sure we do at least 1 loop */ 
t = 100.0; 
tp = 0.0; 
loop = 0; 
 
// calculate r2 for the first time 
r2 = x * x + y * y; 
 
while (fabs(t) > 1e-10) 
{ 
/* 
First, compute the sag using whatever the surface sag expression is. 
This is given the x and y starting points. The following block of code 
will change depending upon the surface shape, the rest of this iteration 
is typically common to all surface shapes. 
*/ 
 
sag_error = 0; 
// standard sag 
alpha = 1 - (1 + FD->k)*FD->cv*FD->cv*r2; 
// if (alpha < 0) return(-1); 
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if (alpha < 0) 
{ 
//return (-1); 
alpha = 1; 
Z1 = 1 / FD->cv; 
} 
else 
{ 
Z1 = (FD->cv*r2) / (1 + sqrt(alpha)); 
} 
 
/* Pedal terms I */ 
Z2 = 0; 
if (sqrt(r2) > b1_axis) 
{ 
sag_error = 1; 
} 
else 
{ 
betta = r2*(b1_axis*b1_axis - a1_axis*a1_axis) + a1_axis*a1_axis*a1_axis*a1_axis 
/ 4.0; 
if (betta < 0) 
{ 
sag_error = 1; 
} 
else 
{ 
gamma = a1_axis*a1_axis / 2.0 - r2 + sqrt(betta); 
if (gamma < 0) 
{ 
sag_error = 1; 
} 
else 
{ 
Z2 = a1_axis - sqrt(gamma); 
} 
} 
} 
 
if (sag_error == 1) 
{ 
 
betta = 0.99*0.99*b1_axis*b1_axis*(b1_axis*b1_axis - a1_axis*a1_axis) + 
a1_axis*a1_axis*a1_axis*a1_axis / 4.0; 
gamma = a1_axis*a1_axis / 2.0 - 0.99*0.99*b1_axis*b1_axis + sqrt(betta); 
Z2 = a1_axis - sqrt(gamma); 
sag_error = 0; 
 
} 
 
 
Z_tot_extra = 0; 
sag_error = 0; 
for (i = 1; i <= num_pedal; i++) 
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{ 
 
aa_axis = FD->xdata[(i - 1) * 8 + 1]; 
bb_axis = FD->xdata[(i - 1) * 8 + 2]; 
Ai_1 = FD->xdata[(i - 1) * 8 + 3]; 
Ai_2 = FD->xdata[(i - 1) * 8 + 4]; 
Ai_3 = FD->xdata[(i - 1) * 8 + 5]; 
Ai_4 = FD->xdata[(i - 1) * 8 + 6]; 
Ai_5 = FD->xdata[(i - 1) * 8 + 7]; 
Ai_6 = FD->xdata[(i - 1) * 8 + 8]; 
 
 
if (aa_axis < 0) return(-1); 
if (bb_axis < 0) return(-1); 
 
 
/* Extra Pedal Terms */ 
Zi = 0; 
if (sqrt(r2) > bb_axis) 
{ 
sag_error = 1; 
} 
else 
{ 
betta = r2*(bb_axis*bb_axis - aa_axis*aa_axis) + aa_axis*aa_axis*aa_axis*aa_axis 
/ 4.0; 
if (betta < 0) 
{ 
sag_error = 1; 
} 
else 
{ 
gamma = aa_axis*aa_axis / 2.0 - r2 + sqrt(betta); 
if (gamma < 0) 
{ 
sag_error = 1; 
} 
else 
{ 
Zi = aa_axis - sqrt(gamma); 
} 
} 
} 
 
 
if (sag_error == 1) 
{ 
 
betta = 0.99*0.99*bb_axis*bb_axis*(bb_axis*bb_axis - aa_axis*aa_axis) + 
aa_axis*aa_axis*aa_axis*aa_axis / 4.0; 
gamma = aa_axis*aa_axis / 2.0 - 0.99*0.99*bb_axis*bb_axis + sqrt(betta); 
Zi = aa_axis - sqrt(gamma); 
sag_error = 0; 
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} 
 
Z_tot_extra += Ai_1*Zi + Ai_2*Zi*Zi + Ai_3*Zi*Zi*Zi + Ai_4*Zi*Zi*Zi*Zi + 
Ai_5*Zi*Zi*Zi*Zi*Zi + Ai_6*Zi*Zi*Zi*Zi*Zi*Zi; 
 
} 
 
sag = A1*(Z1 + Z2) + A2*pow((Z1 + Z2), 2) + A3*pow((Z1 + Z2), 3) + A4*pow((Z1 + 
Z2), 4) + A5*pow((Z1 + Z2), 5) + A6*pow((Z1 + Z2), 6) + Z_tot_extra; 
 
 
/* okay, now with sag in hand, how far are we away in z? */ 
dz = sag - z; 
 
/* now compute how far along the z axis this is */ 
/* slow it down by a factor of 0.05 to support steep angles */ 
t = dz*0.05; 
 
/* propagate the additional "t" distance */ 
x += UD->l*t; 
y += UD->m*t; 
z += UD->n*t; 
 
/* add in the optical path */ 
tp += t; 
 
// update r2 
r2 = x * x + y * y; 
 
/* prevent infinte loop if no convergence */ 
loop++; 
if (loop > 100000) return(-1); 
} 
 
UD->path = tp; 
 
/* now do the normals */ 
if (r2 == 0) 
{ 
UD->ln = 0; 
UD->mn = 0; 
UD->nn = -1; 
} 
else 
{ 
mm = 0; 
alpha = 1.0 - (1.0 + FD->k)*FD->cv*FD->cv*r2; 
if (alpha < 0) return(-1); /* ray misses */ 
Z1 = (FD->cv*r2) / (1 + sqrt(alpha)); 
alpha = sqrt(alpha); 
 
 
// Pedal terms I 
Z2 = 0; 
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if (sqrt(r2) > b1_axis) 
{ 
Z2 = 0; 
} 
else 
{ 
bettad = 4.0*r2*(b1_axis*b1_axis - a1_axis*a1_axis) + 
a1_axis*a1_axis*a1_axis*a1_axis; 
betta = r2*(b1_axis*b1_axis - a1_axis*a1_axis) + a1_axis*a1_axis*a1_axis*a1_axis 
/ 4.0; 
 
if (betta < 0) 
{ 
Z2 = 0; 
} 
else 
{ 
gammad = a1_axis*a1_axis - 2.0*r2 + sqrt(bettad); 
gamma =  a1_axis*a1_axis / 2.0 - r2 + sqrt(betta); 
if (gamma < 0) 
{ 
Z2 = 0; 
} 
else 
{ 
Z2 = a1_axis - sqrt(gamma); 
mm -= (A1 + 2.0*A2*(Z1 + Z2) + 3.0*A3*pow((Z1 + Z2), 2) + 4.0*A4*pow((Z1 + Z2), 
3) + 5.0*A5*pow((Z1 + Z2), 4) + 6.0*A6*pow((Z1 + Z2),5))*sqrt(2.0) * 
((b1_axis*b1_axis - a1_axis*a1_axis) / sqrt(bettad) - 1) / sqrt(gammad); 
 
} 
} 
} 
 
// Conic part after computing Z2 
mm += (A1 + 2.0*A2*(Z1 + Z2) + 3.0*A3*pow((Z1 + Z2), 2) + 4.0*A4*pow((Z1 + Z2), 
3) + 5.0*A5*pow((Z1 + Z2), 4) + 6.0*A6*pow((Z1 + Z2),5))*(FD->cv / (1.0 + 
alpha))*(2.0 + (FD->cv*FD->cv*r2*(1.0 + FD->k)) / (alpha*(1.0 + alpha))); 
 
sag_error = 0; 
for (i = 1; i <= num_pedal; i++) 
{ 
 
aa_axis = FD->xdata[(i - 1) * 8 + 1]; 
bb_axis = FD->xdata[(i - 1) * 8 + 2]; 
Ai_1 = FD->xdata[(i - 1) * 8 + 3]; 
Ai_2 = FD->xdata[(i - 1) * 8 + 4]; 
Ai_3 = FD->xdata[(i - 1) * 8 + 5]; 
Ai_4 = FD->xdata[(i - 1) * 8 + 6]; 
Ai_5 = FD->xdata[(i - 1) * 8 + 7]; 
Ai_6 = FD->xdata[(i - 1) * 8 + 8]; 
 
 
if (aa_axis < 0) return(-1); 
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if (bb_axis < 0) return(-1); 
 
/* Extra Pedal Terms */ 
Zi = 0; 
if (sqrt(r2) > bb_axis) 
{ 
Zi = 0; 
} 
else 
{ 
betta = r2*(bb_axis*bb_axis - aa_axis*aa_axis) + aa_axis*aa_axis*aa_axis*aa_axis 
/ 4.0; 
bettad = 4.0*r2*(bb_axis*bb_axis - aa_axis*aa_axis) + 
aa_axis*aa_axis*aa_axis*aa_axis; 
if (betta < 0) 
{ 
Zi = 0; 
} 
else 
{ 
gamma = aa_axis*aa_axis / 2.0 - r2 + sqrt(betta); 
gammad = aa_axis*aa_axis - 2.0*r2 + sqrt(bettad); 
if (gamma < 0) 
{ 
Zi = 0; 
} 
else 
{ 
Zi = aa_axis - sqrt(gamma); 
mm -= (Ai_1 + 2.0*Ai_2*Zi + 3.0*Ai_3*Zi*Zi + 4.0*Ai_4*Zi*Zi*Zi + 
5.0*Ai_5*Zi*Zi*Zi*Zi + 6.0*Ai_6*Zi*Zi*Zi*Zi*Zi)*sqrt(2.0) * ((bb_axis*bb_axis - 
aa_axis*aa_axis) / sqrt(bettad) - 1) / sqrt(gammad); 
} 
} 
} 
 
 
} 
 
// mm now holds (1/r)*(dz/dr) 
 
mx = x * mm; 
my = y * mm; 
 
UD->nn = -sqrt(1 / (1 + (mx*mx) + (my*my))); 
UD->ln = -mx*UD->nn; 
UD->mn = -my*UD->nn; 
} 
 
/* restore coordinates */ 
UD->x = x; 
UD->y = y; 
UD->z = z; 
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if (Refract(FD->n1, FD->n2, &UD->l, &UD->m, &UD->n, UD->ln, UD->mn, UD->nn)) 
return(-FD->surf); 
break; 
case 6: 
/* ZEMAX wants the index, dn/dx, dn/dy, and dn/dz at the given x, y, z. */ 
 
/* This is only required for gradient index surfaces, so return dummy values */ 
UD->index = FD->n2; 
UD->dndx = 0.0; 
UD->dndy = 0.0; 
UD->dndz = 0.0; 
break; 
case 7: 
/* ZEMAX wants the "safe" data. */ 
/* this is used by ZEMAX to set the initial values for all parameters and extra 
data */ 
/* when the user first changes to this surface type. */ 
/* this is the only time the DLL should modify the data in the FIXED_DATA FD 
structure */ 
for (i = 1; i <= 11; i++) FD->param[i] = 0.0; 
for (i = 1; i <= 200; i++) FD->xdata[i] = 0.0; 
break; 
} 
return 0; 
} 
 
int Refract(double thisn, double nextn, double *l, double *m, double *n, double 
ln, double mn, double nn) 
{ 
double nr, cosi, cosi2, rad, cosr, gamma; 
if (thisn != nextn) 
{ 
nr = thisn / nextn; 
cosi = fabs((*l) * ln + (*m) * mn + (*n) * nn); 
cosi2 = cosi * cosi; 
if (cosi2 > 1) cosi2 = 1; 
rad = 1 - ((1 - cosi2) * (nr * nr)); 
if (rad < 0) return(-1); 
cosr = sqrt(rad); 
gamma = nr * cosi - cosr; 
(*l) = (nr * (*l)) + (gamma * ln); 
(*m) = (nr * (*m)) + (gamma * mn); 
(*n) = (nr * (*n)) + (gamma * nn); 
} 
return 0; 
} 
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Zemax user-defined surface C code for the Decentered Conic surface. 

#include <windows.h> 
#include <math.h> 
#include <string.h> 
#include "usersurf.h" 
 
/* 
Written by DR 09042016 
 
base = Decentered Conic 
sag = Decentered Conic + Plane Symmetric Polynomial 
 
*/ 
 
#define BIG_RAY 1.0E+010 
 
int __declspec(dllexport) APIENTRY UserDefinedSurface(USER_DATA *UD, FIXED_DATA 
*FD); 
 
/* a generic Snells law refraction routine */ 
int Refract(double thisn, double nextn, double *l, double *m, double *n, double 
ln, double mn, double nn); 
 
BOOL WINAPI DllMain(HANDLE hInst, ULONG ul_reason_for_call, LPVOID lpReserved) 
{ 
return TRUE; 
} 
 
int __declspec(dllexport) APIENTRY UserDefinedSurface(USER_DATA *UD, FIXED_DATA 
*FD) 
{ 
int i, loop; 
double power, t, tp, x, y, z, dz, sag, slowfactor, alpha; 
double R, k, K, u, v, eps, L, s, c, g, f, h, j, w, poly; 
double mx, my, poly_mx,poly_my; 
 
switch (FD->type) 
{ 
case 0: 
/* ZEMAX is requesting general information about the surface */ 
switch (FD->numb) 
{ 
case 0: 
/* ZEMAX wants to know the name of the surface */ 
/* do not exceed 12 characters */ 
strcpy(UD->string, "OffAxisConic"); 
break; 
case 1: 
/* ZEMAX wants to know if this surface is rotationally symmetric */ 
/* it is, so return any character in the string; otherwise, return a null string 
*/ 
UD->string[0] = '\0'; 
break; 
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case 2: 
/* ZEMAX wants to know if this surface is a gradient index media */ 
/* it is not, so return a null string */ 
UD->string[0] = '\0'; 
break; 
} 
break; 
case 1: 
/* ZEMAX is requesting the names of the parameter columns */ 
/* the value FD->numb will indicate which value ZEMAX wants. */ 
/* they are all "Unused" for this surface type except parameter 1 */ 
/* returning a null string indicates that the parameter is unused. */ 
switch (FD->numb) 
{ 
case 1: 
strcpy(UD->string, "y0"); 
break; 
case 2: 
strcpy(UD->string, "slowfactor"); 
break; 
default: 
UD->string[0] = '\0'; 
break; 
} 
break; 
case 2: 
/* ZEMAX is requesting the names of the extra data columns */ 
/* the value FD->numb will indicate which value ZEMAX wants. */ 
/* they are all "Unused" for this surface type */ 
/* returning a null string indicates that the extradata value is unused. */ 
switch (FD->numb) 
{ 
case 1: 
strcpy(UD->string, "Y"); 
break; 
case 2: 
strcpy(UD->string, "X2"); 
break; 
case 3: 
strcpy(UD->string, "Y2"); 
break; 
case 4: 
strcpy(UD->string, "X2Y"); 
break; 
case 5: 
strcpy(UD->string, "Y3"); 
break; 
case 6: 
strcpy(UD->string, "X4"); 
break; 
case 7: 
strcpy(UD->string, "X2Y2"); 
break; 
case 8: 



205 
 

 
 

strcpy(UD->string, "Y4"); 
break; 
case 9: 
strcpy(UD->string, "X4Y"); 
break; 
case 10: 
strcpy(UD->string, "X2Y3"); 
break; 
case 11: 
strcpy(UD->string, "Y5"); 
break; 
case 12: 
strcpy(UD->string, "X6"); 
break; 
case 13: 
strcpy(UD->string, "X4Y2"); 
break; 
case 14: 
strcpy(UD->string, "X2Y4"); 
break; 
case 15: 
strcpy(UD->string, "Y6"); 
break; 
case 16: 
strcpy(UD->string, "X6Y"); 
break; 
case 17: 
strcpy(UD->string, "X4Y3"); 
break; 
case 18: 
strcpy(UD->string, "X2Y5"); 
break; 
case 19: 
strcpy(UD->string, "Y7"); 
break; 
case 20: 
strcpy(UD->string, "X8"); 
break; 
case 21: 
strcpy(UD->string, "X6Y2"); 
break; 
case 22: 
strcpy(UD->string, "X4Y4"); 
break; 
case 23: 
strcpy(UD->string, "X2Y6"); 
break; 
case 24: 
strcpy(UD->string, "Y8"); 
break; 
case 25: 
strcpy(UD->string, "X8Y"); 
break; 
case 26: 
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strcpy(UD->string, "X6Y3"); 
break; 
case 27: 
strcpy(UD->string, "X4Y5"); 
break; 
case 28: 
strcpy(UD->string, "X2Y7"); 
break; 
case 29: 
strcpy(UD->string, "Y9"); 
break; 
case 30: 
strcpy(UD->string, "X10"); 
break; 
case 31: 
strcpy(UD->string, "X8Y2"); 
break; 
case 32: 
strcpy(UD->string, "X6Y4"); 
break; 
case 33: 
strcpy(UD->string, "X4Y6"); 
break; 
case 34: 
strcpy(UD->string, "X2Y8"); 
break; 
case 35: 
strcpy(UD->string, "Y10"); 
break; 
default: 
UD->string[0] = '\0'; 
break; 
} 
break; 
case 3: 
/* ZEMAX wants to know the sag of the surface */ 
/* The sag is sag1, alternate is sag2. */ 
 
UD->sag1 = 0.0; 
UD->sag2 = 0.0; 
 
/* if a plane, just return */ 
if (FD->cv == 0) return(0); 
 
R = FD->param[1]; 
 
if (FD->cv == 0) 
{ 
k = 0; 
} 
else 
{ 
k = 1/FD->cv; 
} 
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K = FD->k; 
x = UD->x; 
y = UD->y; 
 
u = y / k; 
v = x / k; 
eps = R / k; 
L = K + 1; 
s = eps / sqrt(1 - K*eps*eps); 
c = sqrt((1 - L*eps*eps) / (1 - K*eps*eps)); 
 
 
if ((R == 0) && (K == -1)) 
{ 
z = (x*x + y*y) / 2 / k; 
} 
else 
{ 
if (R == 0) 
{ 
alpha = k*k - (K + 1)*(x*x + y*y); 
if (alpha < 0) 
{ 
return -1; 
} 
else 
{ 
if (k / (K + 1) <= 0) 
{ 
z = 1 / (K + 1)*(k + sqrt(k*k - (K + 1)*(x*x + y*y))); 
} 
else 
{ 
z = 1 / (K + 1)*(k - sqrt(k*k - (K + 1)*(x*x + y*y))); 
} 
} 
} 
else 
{ 
g = -1 / (L*c*c + s*s); 
f = (s / eps)*(s / eps) * g; 
h = eps / s*g; 
j = -(L - 1)*s*c*g; 
alpha = (h + j*u)*(h + j*u) + f*u*u + g*v*v; 
 
if (alpha < 0) 
{ 
return -1; 
} 
else 
{ 
if (-(h + j*u) >= 0) 
{ 
w = -(h + j*u) - sqrt((h + j*u)*(h + j*u) + f*u*u + g*v*v); 
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} 
else 
{ 
w = -(h + j*u) + sqrt((h + j*u)*(h + j*u) + f*u*u + g*v*v); 
} 
z = w*k; 
} 
} 
 
} 
 
poly =  FD->xdata[1] * y + FD->xdata[2] * pow(x, 2) + FD->xdata[3] * pow(y, 2) + 
FD->xdata[4] * pow(x, 2) * pow(y, 1) + FD->xdata[5] * pow(y, 3) + FD->xdata[6] * 
pow(x, 4); 
poly += FD->xdata[7] * pow(x, 2) * pow(y, 2) + FD->xdata[8] * pow(y, 4) + FD-
>xdata[9] * pow(x, 4) * pow(y, 1) + FD->xdata[10] * pow(x, 2) * pow(y, 3); 
poly += FD->xdata[11] * pow(y, 5) + FD->xdata[12] * pow(x, 6) + FD->xdata[13] * 
pow(x, 4) * pow(y, 2) + FD->xdata[14] * pow(x, 2) * pow(y, 4) + FD->xdata[15] * 
pow(y, 6); 
poly += FD->xdata[16] * pow(x, 6) * pow(y, 1) + FD->xdata[17] * pow(x, 4) * 
pow(y, 3) + FD->xdata[18] * pow(x, 2) * pow(y, 5) + FD->xdata[19] * pow(y, 7); 
poly += FD->xdata[20] * pow(x, 8) + FD->xdata[21] * pow(x, 6) * pow(y, 2) + FD-
>xdata[22] * pow(x, 4) * pow(y, 4) + FD->xdata[23] * pow(x, 2) * pow(y, 6) + FD-
>xdata[24] * pow(y, 8); 
poly += FD->xdata[25] * pow(x, 8) * pow(y, 1) + FD->xdata[26] * pow(x, 6) * 
pow(y, 3) + FD->xdata[27] * pow(x, 4) * pow(y, 5) + FD->xdata[28] * pow(x, 2) * 
pow(y, 7) + FD->xdata[29] * pow(y, 9); 
poly += FD->xdata[30] * pow(x, 10) + FD->xdata[31] * pow(x, 8) * pow(y, 2) + FD-
>xdata[32] * pow(x, 6) * pow(y, 4) + FD->xdata[33] * pow(x, 4) * pow(y, 6) + FD-
>xdata[34] * pow(x, 2) * pow(y, 8) + FD->xdata[35] * pow(y, 10); 
 
UD->sag1 = z + poly; 
UD->sag2 = UD->sag1; 
break; 
 
case 4: 
/* ZEMAX wants a paraxial ray trace to this surface */ 
/* x, y, z, and the optical path are unaffected, at least for this surface type 
*/ 
/* for paraxial ray tracing, the return z coordinate should always be zero. */ 
/* paraxial surfaces are always planes with the following normals */ 
 
/* for the ogive surface, we will assume ro = 0 for this computation */ 
 
UD->ln = 0.0; 
UD->mn = 0.0; 
UD->nn = -1.0; 
power = (FD->n2 - FD->n1)*FD->cv; 
if ((UD->n) != 0.0) 
{ 
(UD->l) = (UD->l) / (UD->n); 
(UD->m) = (UD->m) / (UD->n); 
 
(UD->l) = (FD->n1*(UD->l) - (UD->x)*power) / (FD->n2); 
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(UD->m) = (FD->n1*(UD->m) - (UD->y)*power) / (FD->n2); 
 
/* normalize */ 
(UD->n) = sqrt(1 / (1 + (UD->l)*(UD->l) + (UD->m)*(UD->m))); 
/* de-paraxialize */ 
(UD->l) = (UD->l)*(UD->n); 
(UD->m) = (UD->m)*(UD->n); 
} 
break; 
case 5: 
/* ZEMAX wants a real ray trace to this surface */ 
/* 
 
/* slow the iteration down if the ray is steep */ 
slowfactor = FD->param[2]; 
if (slowfactor <= 0 || slowfactor > 1.0) slowfactor = 1.0; 
 
/* make sure we do at least 1 loop */ 
 
 
R = FD->param[1]; 
if (FD->cv == 0) 
{ 
k = 0; 
} 
else 
{ 
k = 1 / FD->cv; 
} 
K = FD->k; 
 
tp = 0.0; 
t = 100.0; 
x = UD->x; 
y = UD->y; 
z = UD->z; 
loop = 0; 
 
while (fabs(t) > 1e-10) 
{ 
 
u = y / k; 
v = x / k; 
eps = R / k; 
L = K + 1; 
s = eps / sqrt(1 - K*eps*eps); 
c = sqrt((1 - L*eps*eps) / (1 - K*eps*eps)); 
 
 
if ((R == 0) && (K == -1)) 
{ 
sag = (x*x + y*y) / 2 / k; 
} 
else 
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{ 
if (R == 0) 
{ 
alpha = k*k - (K + 1)*(x*x + y*y); 
if (alpha < 0) 
{ 
return -1; 
} 
else 
{ 
if (k / (K + 1) <= 0) 
{ 
sag = 1 / (K + 1)*(k + sqrt(k*k - (K + 1)*(x*x + y*y))); 
} 
else 
{ 
sag = 1 / (K + 1)*(k - sqrt(k*k - (K + 1)*(x*x + y*y))); 
} 
} 
} 
else 
{ 
g = -1 / (L*c*c + s*s); 
f = (s / eps)*(s / eps) * g; 
h = eps / s*g; 
j = -(L - 1)*s*c*g; 
alpha = (h + j*u)*(h + j*u) + f*u*u + g*v*v; 
 
if (alpha < 0) 
{ 
return -1; 
} 
else 
{ 
if (-(h + j*u) >= 0) 
{ 
w = -(h + j*u) - sqrt((h + j*u)*(h + j*u) + f*u*u + g*v*v); 
} 
else 
{ 
w = -(h + j*u) + sqrt((h + j*u)*(h + j*u) + f*u*u + g*v*v); 
} 
sag = w*k; 
} 
} 
 
} 
 
poly = FD->xdata[1] * y + FD->xdata[2] * pow(x, 2) + FD->xdata[3] * pow(y, 2) + 
FD->xdata[4] * pow(x, 2) * pow(y, 1) + FD->xdata[5] * pow(y, 3) + FD->xdata[6] * 
pow(x, 4); 
poly += FD->xdata[7] * pow(x, 2) * pow(y, 2) + FD->xdata[8] * pow(y, 4) + FD-
>xdata[9] * pow(x, 4) * pow(y, 1) + FD->xdata[10] * pow(x, 2) * pow(y, 3); 
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poly += FD->xdata[11] * pow(y, 5) + FD->xdata[12] * pow(x, 6) + FD->xdata[13] * 
pow(x, 4) * pow(y, 2) + FD->xdata[14] * pow(x, 2) * pow(y, 4) + FD->xdata[15] * 
pow(y, 6); 
poly += FD->xdata[16] * pow(x, 6) * pow(y, 1) + FD->xdata[17] * pow(x, 4) * 
pow(y, 3) + FD->xdata[18] * pow(x, 2) * pow(y, 5) + FD->xdata[19] * pow(y, 7); 
poly += FD->xdata[20] * pow(x, 8) + FD->xdata[21] * pow(x, 6) * pow(y, 2) + FD-
>xdata[22] * pow(x, 4) * pow(y, 4) + FD->xdata[23] * pow(x, 2) * pow(y, 6) + FD-
>xdata[24] * pow(y, 8); 
poly += FD->xdata[25] * pow(x, 8) * pow(y, 1) + FD->xdata[26] * pow(x, 6) * 
pow(y, 3) + FD->xdata[27] * pow(x, 4) * pow(y, 5) + FD->xdata[28] * pow(x, 2) * 
pow(y, 7) + FD->xdata[29] * pow(y, 9); 
poly += FD->xdata[30] * pow(x, 10) + FD->xdata[31] * pow(x, 8) * pow(y, 2) + FD-
>xdata[32] * pow(x, 6) * pow(y, 4) + FD->xdata[33] * pow(x, 4) * pow(y, 6) + FD-
>xdata[34] * pow(x, 2) * pow(y, 8) + FD->xdata[35] * pow(y, 10); 
 
sag += poly; 
 
/* okay, now with sag in hand, how far are we away in z? */ 
dz = sag - z; 
 
/* now compute how far along the z axis this is */ 
/* note this will crash if n == 0!! */ 
//t = dz / (UD->n); 
t = dz * slowfactor; 
 
/* for some aspheres, it is safer to use dz directly, as it is a smaller number 
*/ 
/* the convergence will be slower if the ray angle is steep, fast if near 
parallel to the axis */ 
 
 
/* propagate the additional "t" distance */ 
x += UD->l*t; 
y += UD->m*t; 
z += UD->n*t; 
 
/* add in the optical path */ 
tp += t; 
 
/* prevent infinte loop if no convergence */ 
loop++; 
if (loop > 5000) return(-1); 
} 
 
/* okay, we should be at the intercept coordinates now */ 
UD->x = x; 
UD->y = y; 
UD->z = z; 
 
/* don't forget the path! */ 
UD->path = tp; 
 
/* now do the normals, this is the tricky part  */ 
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u = y / k; 
v = x / k; 
eps = R / k; 
L = K + 1; 
s = eps / sqrt(1 - K*eps*eps); 
c = sqrt((1 - L*eps*eps) / (1 - K*eps*eps)); 
 
 
if ((R == 0) && (K == -1)) 
{ 
mx = x / k; 
my = y / k; 
} 
else 
{ 
if (R == 0) 
{ 
alpha = k*k - (K + 1)*(x*x + y*y); 
if (alpha < 0) 
{ 
return -1; 
} 
else 
{ 
if (k / (K + 1) <= 0) 
{ 
mx = -1 * x / sqrt(k*k - (K + 1)*(x*x + y*y)); 
my = -1 * y / sqrt(k*k - (K + 1)*(x*x + y*y)); 
} 
else 
{ 
mx = x / sqrt(k*k - (K + 1)*(x*x + y*y)); 
my = y / sqrt(k*k - (K + 1)*(x*x + y*y)); 
} 
 
} 
} 
else 
{ 
g = -1 / (L*c*c + s*s); 
f = (s / eps)*(s / eps) * g; 
h = eps / s*g; 
j = -(L - 1)*s*c*g; 
 
alpha = (h + j*u)*(h + j*u) + f*u*u + g*v*v; 
if (alpha < 0) 
{ 
return -1; 
} 
else 
{ 
 
if (-(h + j*u) >= 0) 
{ 
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mx = -1 * g*v / sqrt((h + j*u)*(h + j*u) + f*u*u + g*v*v); 
my = -j - ((h + j*u)*j + f*u) / sqrt((h + j*u)*(h + j*u) + f*u*u + g*v*v); 
} 
else 
{ 
mx = g*v / sqrt((h + j*u)*(h + j*u) + f*u*u + g*v*v); 
my = -j + ((h + j*u)*j + f*u) / sqrt((h + j*u)*(h + j*u) + f*u*u + g*v*v); 
} 
 
 
} 
} 
 
} 
 
poly_mx = 2 * FD->xdata[2] * pow(x, 1) + 2 * FD->xdata[4] * pow(x, 1) * pow(y, 
1) + 4 * FD->xdata[6] * pow(x, 3); 
poly_mx += 2 * FD->xdata[7] * pow(x, 1) * pow(y, 2) + 4 * FD->xdata[9] * pow(x, 
3) * pow(y, 1) + 2 * FD->xdata[10] * pow(x, 1) * pow(y, 3); 
poly_mx += 6 * FD->xdata[12] * pow(x, 5) + 4 * FD->xdata[13] * pow(x, 3) * 
pow(y, 2) + 2 * FD->xdata[14] * pow(x, 1) * pow(y, 4); 
poly_mx += 6 * FD->xdata[16] * pow(x, 5) * pow(y, 1) + 4 * FD->xdata[17] * 
pow(x, 3) * pow(y, 3) + 2 * FD->xdata[18] * pow(x, 1) * pow(y, 5); 
poly_mx += 8 * FD->xdata[20] * pow(x, 7) + 6 * FD->xdata[21] * pow(x, 5) * 
pow(y, 2) + 4 * FD->xdata[22] * pow(x, 3) * pow(y, 4) + 2 * FD->xdata[23] * 
pow(x, 1) * pow(y, 6); 
poly_mx += 8 * FD->xdata[25] * pow(x, 7) * pow(y, 1) + 6 * FD->xdata[26] * 
pow(x, 5) * pow(y, 3) + 4 * FD->xdata[27] * pow(x, 3) * pow(y, 5) + 2 * FD-
>xdata[28] * pow(x, 1) * pow(y, 7); 
poly_mx += 10 * FD->xdata[30] * pow(x, 9) + 8 * FD->xdata[31] * pow(x, 7) * 
pow(y, 2) + 6 * FD->xdata[32] * pow(x, 5) * pow(y, 4) + 4 * FD->xdata[33] * 
pow(x, 3) * pow(y, 6) + 2 * FD->xdata[34] * pow(x, 1) * pow(y, 8); 
 
mx += poly_mx; 
 
poly_my = FD->xdata[1] + 2 * FD->xdata[3] * pow(y, 1) + FD->xdata[4] * pow(x, 2) 
+ 3 * FD->xdata[5] * pow(y, 2); 
poly_my += 2 * FD->xdata[7] * pow(x, 2) * pow(y, 1) + 4 * FD->xdata[8] * pow(y, 
3) + FD->xdata[9] * pow(x, 4) + 3 * FD->xdata[10] * pow(x, 2) * pow(y, 2); 
poly_my += 5 * FD->xdata[11] * pow(y, 4) + 2 * FD->xdata[13] * pow(x, 4) * 
pow(y, 1) + 4 * FD->xdata[14] * pow(x, 2) * pow(y, 3) + 6 * FD->xdata[15] * 
pow(y, 5); 
poly_my += FD->xdata[16] * pow(x, 6) + 3 * FD->xdata[17] * pow(x, 4) * pow(y, 2) 
+ 5 * FD->xdata[18] * pow(x, 2) * pow(y, 4) + 7 * FD->xdata[19] * pow(y, 6); 
poly_my += 2 * FD->xdata[21] * pow(x, 6) * pow(y, 1) + 4 * FD->xdata[22] * 
pow(x, 4) * pow(y, 3) + 6 * FD->xdata[23] * pow(x, 2) * pow(y, 5) + 8 * FD-
>xdata[24] * pow(y, 7); 
poly_my += FD->xdata[25] * pow(x, 8) + 3 * FD->xdata[26] * pow(x, 6) * pow(y, 2) 
+ 5 * FD->xdata[27] * pow(x, 4) * pow(y, 4) + 7 * FD->xdata[28] * pow(x, 2) * 
pow(y, 6) + 9 * FD->xdata[29] * pow(y, 8); 
poly_my += 2 * FD->xdata[31] * pow(x, 8) * pow(y, 1) + 4 * FD->xdata[32] * 
pow(x, 6) * pow(y, 3) + 6 * FD->xdata[33] * pow(x, 4) * pow(y, 5) + 8 * FD-
>xdata[34] * pow(x, 2) * pow(y, 7) + 10 * FD->xdata[35] * pow(y, 9); 
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my += poly_my; 
 
UD->nn = -sqrt(1.0 / (1.0 + (mx*mx) + (my*my))); 
UD->ln = -mx*UD->nn; 
UD->mn = -my*UD->nn; 
 
 
//} 
 
if (Refract(FD->n1, FD->n2, &UD->l, &UD->m, &UD->n, UD->ln, UD->mn, UD->nn)) 
return(-FD->surf); 
break; 
case 6: 
/* ZEMAX wants the index, dn/dx, dn/dy, and dn/dz at the given x, y, z. */ 
 
/* This is only required for gradient index surfaces, so return dummy values */ 
UD->index = FD->n2; 
UD->dndx = 0.0; 
UD->dndy = 0.0; 
UD->dndz = 0.0; 
break; 
case 7: 
/* ZEMAX wants the "safe" data. */ 
/* this is used by ZEMAX to set the initial values for all parameters and extra 
data */ 
/* when the user first changes to this surface type. */ 
/* this is the only time the DLL should modify the data in the FIXED_DATA FD 
structure */ 
for (i = 1; i <= 8; i++) FD->param[i] = 0.0; 
for (i = 1; i <= 200; i++) FD->xdata[i] = 0.0; 
break; 
} 
return 0; 
} 
int Refract(double thisn, double nextn, double *l, double *m, double *n, double 
ln, double mn, double nn) 
{ 
double nr, cosi, cosi2, rad, cosr, gamma; 
if (thisn != nextn) 
{ 
nr = thisn / nextn; 
cosi = fabs((*l) * ln + (*m) * mn + (*n) * nn); 
cosi2 = cosi * cosi; 
if (cosi2 > 1) cosi2 = 1; 
rad = 1 - ((1 - cosi2) * (nr * nr)); 
if (rad < 0) return(-1); 
cosr = sqrt(rad); 
gamma = nr * cosi - cosr; 
(*l) = (nr * (*l)) + (gamma * ln); 
(*m) = (nr * (*m)) + (gamma * mn); 
(*n) = (nr * (*n)) + (gamma * nn); 
} 
return 0; 
} 
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Zemax user-defined surface C code for the Extended Cartesian Oval surface. 

#include <windows.h> 
#include <math.h> 
#include <string.h> 
#include <stdio.h> 
#include "usersurf.h" 
 
 
/*  
 
Written by Dmitry Reshidko 
 
base = Cartesian Oval  
sag = A1*base + A2*base^2 + A3*base^3 + A4*base^4 
 
The routine for computing the sag of Cartesian Oval was adopted from Jose 
Sasian: 
 
Four inputs are required 1) the distance from the object 
to the surface SM, 2) the distance from the surface to the image SP, 3) The 
index of refraction before 
the surface n1, and 4) the index of refraction after the surface n2. These 
parameters are parameters 1-4 in the 
surface editor. The sag of the surface is found by iteration and minimizing the 
opd error; a closed form 
formula is used to determine the derivatives. For object or image at a lage 
distance an approximation on the 
opd is made as to avoid errors. A good way to use this surface is to pick up the 
distances SM and SP. 
The distance SP is determined by a solve using the current surface radius of 
curvature. The C code was written 
by ZEMAX and modified by Jose Sasian 2010 */ 
 
int __declspec(dllexport) APIENTRY UserDefinedSurface3(USER_DATA *UD, 
FIXED_DATA3 *FD); 
 
/* a generic Snells law refraction routine */ 
int Refract(double thisn, double nextn, double *l, double *m, double *n, double 
ln, double mn, double nn); 
 
BOOL WINAPI DllMain(HANDLE hInst, ULONG ul_reason_for_call, LPVOID lpReserved) 
{ 
return TRUE; 
} 
 
 
int __declspec(dllexport) APIENTRY UserDefinedSurface3(USER_DATA *UD, 
FIXED_DATA3 *FD) 
{ 
int i, loop, loop2, sag_error; 
double   x2, y2, tp, x, y, z, zi, dz, mx, my, cvt, njm, njp, op1, op2, pp, qq, 
kk, ww, sag, hh; 
double sm, sp, r2, r, dnn, aa4, deno, nume, mag, n1, n2; 
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double A1, A2, A3, A4, A5, A6; 
 
double power, t, t2; 
 
 
switch (FD->type) 
{ 
case 0: 
/* ZEMAX is requesting general information about the surface */ 
switch (FD->numb) 
{ 
case 0: 
/* ZEMAX wants to know the name of the surface */ 
/* do not exceed 12 characters */ 
strcpy(UD->string, "CARTESIAN"); 
break; 
case 1: 
/* ZEMAX wants to know if this surface is rotationally symmetric it is, so 
return any character */ 
UD->string[0] = '1'; 
break; 
case 2: 
/* ZEMAX wants to know if this surface is a gradient index media it is not, so 
return a null string */ 
UD->string[0] = '\0'; 
break; 
} 
break; 
case 1: 
/* ZEMAX is requesting the names of the parameter columns the value FD->numb 
will indicate which value ZEMAX wants. returning a null string indicates that 
the parameter is unused. */ 
switch (FD->numb) 
{ 
case 1: 
strcpy(UD->string, "sm"); 
break; 
case 2: 
strcpy(UD->string, "sp"); 
break; 
 
case 3: 
strcpy(UD->string, "n1"); 
break; 
case 4: 
strcpy(UD->string, "n2"); 
break; 
case 5: 
strcpy(UD->string, "A1"); 
break; 
case 6: 
strcpy(UD->string, "A2"); 
break; 
case 7: 
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strcpy(UD->string, "A3"); 
break; 
case 8: 
strcpy(UD->string, "A4"); 
break; 
case 9: 
strcpy(UD->string, "A5"); 
break; 
case 10: 
strcpy(UD->string, "A6"); 
break; 
default: 
UD->string[0] = '\0'; 
break; 
} 
break; 
case 2: 
/* ZEMAX is requesting the names of the extra data columns the value FD->numb 
will indicate which value ZEMAX wants. returning a null string indicates that 
the extradata value is unused. */ 
switch (FD->numb) 
{ 
 
default: 
UD->string[0] = '\0'; 
break; 
} 
break; 
case 3: 
/* ZEMAX wants to know the sag of the surface */ 
 
UD->sag1 = 0.0; 
UD->sag2 = 0.0; 
 
cvt = FD->cv; 
 
n1 = FD->param[3]; 
n2 = FD->param[4]; 
 
A1 = FD->param[5]; 
A2 = FD->param[6]; 
A3 = FD->param[7]; 
A4 = FD->param[8]; 
A5 = FD->param[9]; 
A6 = FD->param[10]; 
 
dnn = n2 - n1; 
sm = FD->param[1]; 
sp = FD->param[2]; 
 
/* An ad-hoc iterative method to find the sag. The kk and ww parameters allow to 
handle the cases when the object is to the rigth of left of the surface and for 
positve and negative radius */ 
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kk = 1; 
 
if (sm > 0) 
{ 
 
kk = -1; 
 
} 
 
ww = 1; 
 
if (sp < 0) 
{ 
 
ww = -1; 
 
} 
 
r2 = UD->x * UD->x + UD->y * UD->y; 
r = sqrt(r2); 
 
 
t = 100.0; 
tp = 0.0; 
x = UD->x; 
y = UD->y; 
z = UD->z; 
 
/* Makes an estimate on the sag using gaussian optics and fourth order theory 
and starts a loop to caculate the sag*/ 
 
cvt = (n2 / sp - n1 / sm) / dnn; 
aa4 = -(1 / sm - cvt)*(1 / sm - cvt)*(1 / sp / n2 - 1 / sm / n1)*n1*n1 / 8 / 
dnn; 
z = r2*cvt / 2 + r2*r2*aa4; 
 
loop = 0; 
sag_error = 0; 
while (fabs(t) > 1e-10) 
{ 
 
if ((fabs(sm) <= 100000000)) 
{ 
op1 = n1*sqrt((-sm + z)*(-sm + z) + r2) + kk*n1*sm; 
} 
 
 
if ((fabs(sm) > 100000000)) 
{ 
op1 = n1*(z - r2 / 2 / sm - z*z / 2 / sm); 
} 
 
 
if ((fabs(sp) <= 100000000)) 



219 
 

 
 

{ 
op2 = n2*sqrt((sp - z)*(sp - z) + r2) - ww*n2*sp; 
} 
 
 
if ((fabs(sp) > 100000000)) 
{ 
op2 = n2*(-z + r2 / 2 / sp + z*z / 2 / sp); 
} 
 
t = (kk*op1 + ww*op2) / dnn; 
z = z + t; 
 
loop++; 
if (loop > 1000) 
{ 
sag_error = 1; 
break; 
} 
} 
 
// if can't compute the sag - give an estimate based on the fourth-order theory 
if (sag_error) 
{ 
cvt = (n2 / sp - n1 / sm) / dnn; 
aa4 = -(1 / sm - cvt)*(1 / sm - cvt)*(1 / sp / n2 - 1 / sm / n1)*n1*n1 / 8 / 
dnn; 
z = r2*cvt / 2 + r2*r2*aa4; 
sag_error = 0; 
} 
 
sag = A1*z + A2*z*z + A3*z*z*z + A4*z*z*z*z + A5*z*z*z*z*z + A6*z*z*z*z*z*z; 
 
UD->sag1 = sag; 
 
UD->sag2 = UD->sag1; 
 
break; 
 
case 4: 
/* ZEMAX wants a paraxial ray trace to this surface */ 
/* x, y, z, and the optical path are unaffected, at least for this surface type 
*/ 
/* for paraxial ray tracing, the return z coordinate should always be zero. */ 
/* paraxial surfaces are always planes with the following normals */ 
 
UD->ln = 0.0; 
UD->mn = 0.0; 
UD->nn = -1.0; 
njm = FD->n1; 
njp = FD->n2; 
 
sm = FD->param[1]; 
sp = FD->param[2]; 
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n1 = FD->param[3]; 
n2 = FD->param[4]; 
dnn = n2 - n1; 
 
A1 = FD->param[5]; 
 
cvt = (n2 / sp - n1 / sm) / dnn; 
 
 
power = A1*dnn*cvt; 
 
if ((UD->n) != 0.0) 
{ 
(UD->l) = (UD->l) / (UD->n); 
(UD->m) = (UD->m) / (UD->n); 
 
(UD->l) = (FD->n1*(UD->l) - (UD->x)*power) / (FD->n2); 
(UD->m) = (FD->n1*(UD->m) - (UD->y)*power) / (FD->n2); 
 
/* normalize */ 
(UD->n) = sqrt(1 / (1 + (UD->l)*(UD->l) + (UD->m)*(UD->m))); 
/* de-paraxialize */ 
(UD->l) = (UD->l)*(UD->n); 
(UD->m) = (UD->m)*(UD->n); 
} 
break; 
case 5: 
/* ZEMAX wants a real ray trace to this surface */ 
/* do not allow n == 0 */ 
if (UD->n == 0.0) return -1; 
 
/* An ad-hoc iterative method to find the sag. The kk and ww parameters allow to 
handle the cases when the 
object is to the rigth of left of the surface and for positve and negative 
radius */ 
 
cvt = FD->cv; 
n1 = FD->param[3]; 
n2 = FD->param[4]; 
dnn = n2 - n1; 
 
sm = FD->param[1]; 
sp = FD->param[2]; 
 
A1 = FD->param[5]; 
A2 = FD->param[6]; 
A3 = FD->param[7]; 
A4 = FD->param[8]; 
A5 = FD->param[9]; 
A6 = FD->param[10]; 
 
kk = 1; 
 
if (sm > 0) 
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{ 
 
kk = -1; 
 
} 
 
 
ww = 1; 
 
 
if (sp < 0) 
{ 
 
ww = -1; 
 
} 
 
tp = 0.0; 
t2 = 100.0; 
x = UD->x; 
y = UD->y; 
z = UD->z; 
 
cvt = (n2 / sp - n1 / sm) / dnn; 
aa4 = -(1 / sm - cvt)*(1 / sm - cvt)*(1 / sp / n2 - 1 / sm / n1)*n1*n1 / 8 / 
dnn; 
 
loop2 = 0; 
while (fabs(t2) > 1e-12) 
{ 
 
 
r2 = x * x + y * y; 
 
/* Makes an estimate on the sag using gaussian optics and fourth order theory 
and starts a loop to caculate the sag*/ 
 
zi = r2*cvt / 2 + r2*r2*aa4; 
loop = 0; 
t = 100.0; 
sag_error = 0; 
while (fabs(t) > 1e-12) 
{ 
 
if ((fabs(sm) <= 100000000)) 
{ 
op1 = n1*sqrt((-sm + zi)*(-sm + zi) + r2) + kk*n1*sm; 
} 
 
 
if ((fabs(sm) > 100000000)) 
{ 
op1 = n1*(zi - r2 / 2 / sm - zi*zi / 2 / sm); 
} 
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if ((fabs(sp) <= 100000000)) 
{ 
op2 = n2*sqrt((sp - zi)*(sp - zi) + r2) - ww*n2*sp; 
} 
 
 
if ((fabs(sp) > 100000000)) 
{ 
op2 = n2*(-zi + r2 / 2 / sp + zi*zi / 2 / sp); 
} 
 
t = (kk*op1 + ww*op2) / dnn; 
zi = zi + t; 
 
loop++; 
if (loop > 1000) return (1); 
 
} 
 
 
sag = A1*zi + A2*zi*zi + A3*zi*zi*zi + A4*zi*zi*zi*zi + A5*zi*zi*zi*zi*zi + 
A6*zi*zi*zi*zi*zi*zi; 
 
/* okay, now with sag in hand, how far are we away in z? */ 
dz = sag - z; 
 
/* now compute how far along the z axis this is */ 
/* slow it down by a factor of 0.01 to support steep angles */ 
t2 = dz*0.01; 
 
/* for some aspheres, it is safer to use dz directly, as it is a smaller number 
*/ 
/* the convergence will be slower if the ray angle is steep, fast if near 
parallel to the axis */ 
 
/* propagate the additional "t" distance */ 
x += UD->l*t2; 
y += UD->m*t2; 
z += UD->n*t2; 
 
/* add in the optical path */ 
tp += t2; 
 
/* prevent infinte loop if no convergence */ 
loop2++; 
if (loop2 > 10000) return(-1); 
} 
 
 
/* okay, we should be a the intercept coordinates now */ 
UD->x = x; 
UD->y = y; 
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UD->z = z; 
x2 = x*x; 
y2 = y*y; 
r2 = x2 + y2; 
r = sqrt(r2); 
 
/* don't forget the path! */ 
UD->path = tp;        // add fd->n1 
 
 
// Find Cartesian Oval 
zi = r2*cvt / 2 + r2*r2*aa4; 
loop = 0; 
t = 100.0; 
while (fabs(t) > 1e-10) 
{ 
 
if ((fabs(sm) <= 100000000)) 
{ 
op1 = n1*sqrt((-sm + zi)*(-sm + zi) + r2) + kk*n1*sm; 
} 
 
 
if ((fabs(sm) > 100000000)) 
{ 
op1 = n1*(zi - r2 / 2 / sm - zi*zi / 2 / sm); 
} 
 
 
if ((fabs(sp) <= 100000000)) 
{ 
op2 = n2*sqrt((sp - zi)*(sp - zi) + r2) - ww*n2*sp; 
} 
 
 
if ((fabs(sp) > 100000000)) 
{ 
op2 = n2*(-zi + r2 / 2 / sp + zi*zi / 2 / sp); 
} 
 
t = (kk*op1 + ww*op2) / dnn; 
zi = zi + t; 
 
loop++; 
if (loop > 1000) return (-1); 
} 
 
/* now do the normals */ 
/*Knowing the sag z then we can have the derivatives in closed form as 
follows:*/ 
mag = -(n1*sm)*(1 / sp / n2); 
if (((-1 + zi / sm)*(-1 + zi / sm) + r2 / sm / sm) < 0) return (-1); 
pp = sqrt((-1 + zi / sm)*(-1 + zi / sm) + r2 / sm / sm); 
if (((1 - zi / sp)*(1 - zi / sp) + r2 / sp / sp) < 0) return (-1); 
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qq = sqrt((1 - zi / sp)*(1 - zi / sp) + r2 / sp / sp); 
deno = mag*(-1 + zi / sm) / sm / pp - (1 - zi / sp) / sp / qq; 
nume = mag / sm / sm / pp + 1 / sp / sp / qq; 
 
my = -y*nume / deno*(A1 + 2 * A2*zi + 3 * A3*zi*zi + 4 * A4*zi*zi*zi + 5 * 
A5*zi*zi*zi*zi + 6 * A6*zi*zi*zi*zi*zi); 
mx = -x*nume / deno*(A1 + 2 * A2*zi + 3 * A3*zi*zi + 4 * A4*zi*zi*zi + 5 * 
A5*zi*zi*zi*zi + 6 * A6*zi*zi*zi*zi*zi); 
 
 
UD->nn = -sqrt(1 / (1 + (mx*mx) + (my*my))); 
UD->ln = -mx*UD->nn; 
UD->mn = -my*UD->nn; 
 
if (Refract(FD->n1, FD->n2, &UD->l, &UD->m, &UD->n, UD->ln, UD->mn, UD->nn)) 
return(-FD->surf); 
 
break; 
 
case 6: 
/* ZEMAX wants the index, dn/dx, dn/dy, and dn/dz at the given x, y, z. */ 
 
/* This is only required for gradient index surfaces, so return dummy values */ 
UD->index = FD->n2; 
UD->dndx = 0.0; 
UD->dndy = 0.0; 
UD->dndz = 0.0; 
break; 
case 7: 
/* ZEMAX wants the "safe" data. */ 
/* this is used by ZEMAX to set the initial values for all parameters and extra 
data when the user first changes to this surface type. This is the only time the 
DLL should modify the data in the FIXED_DATA FD structure */ 
for (i = 1; i <= 100; i++) FD->param[i] = 0.0; 
for (i = 1; i <= 100; i++) FD->xdata[i] = 0.0; 
break; 
} 
return 0; 
} 
 
int Refract(double thisn, double nextn, double *l, double *m, double *n, double 
ln, double mn, double nn) 
{ 
double nr, cosi, cosi2, rad, cosr, gamma; 
if (thisn != nextn) 
{ 
nr = thisn / nextn; 
cosi = fabs((*l) * ln + (*m) * mn + (*n) * nn); 
cosi2 = cosi * cosi; 
if (cosi2 > 1) cosi2 = 1; 
rad = 1 - ((1 - cosi2) * (nr * nr)); 
if (rad < 0) return(-1); 
cosr = sqrt(rad); 
gamma = nr * cosi - cosr; 
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(*l) = (nr * (*l)) + (gamma * ln); 
(*m) = (nr * (*m)) + (gamma * mn); 
(*n) = (nr * (*n)) + (gamma * nn); 
} 
return 0; 
} 
 
 

 


