
PRACTICAL CONSIDERATIONS IN EXPERIMENTAL
COMPUTATIONAL SENSING

by

Phillip K. Poon

Copyright © Phillip K. Poon 2016

A Dissertation Submitted to the Faculty of the

COLLEGE OF OPTICAL SCIENCES

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2016

2

THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the disser-
tation prepared by Phillip K. Poon titled Practical Considerations in Experimental
Computational Sensing and recommend that it be accepted as fulfilling the disser-
tation requirement for the degree of Doctor of Philosophy.

Date: 9 December 2016
Amit Ashok

Date: 9 December 2016
Rongguang Liang

Date: 9 December 2016
Michael E. Gehm

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direc-
tion and recommend that it be accepted as fulfilling the dissertation requirement.

Date: 9 December 2016
Dissertation Director: Amit Ashok

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for
an advanced degree at the University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission,
provided that accurate acknowledgment of source is made. Requests for permission
for extended quotation from or reproduction of this manuscript in whole or in part
may be granted by the copyright holder.

SIGNED: Phillip K. Poon

4

ACKNOWLEDGEMENTS

Graduate school is an arduous experience. It is difficult by nature. It forces one into
a state of mind which embraces the edge of knowledge and trek into the unknown.
I was fortunate to have many guides who showed me the path, even when there
were times when I wandered off to get my bearings. Along the way I encountered
many people who not only helped me with the journey but bestowed kindness and
friendship, asking for nothing in return.

My main guide along the journey was Professor Michael Gehm. I first met
him when I took a graduate level Linear Algebra course which I found particularly
challenging. I often went to his office hours asking for help and his ability to be
patient and explain concepts from different perspectives is a gift few teachers have.
As an advisor, I would like to thank him for all of the help and guidance he has given
me over the years. His generosity for funding my graduate studies as well as trips
to conferences is appreciated. He believed in me more than I believed in myself. I
consider him not only as a mentor but as a father figure.

I especially want to thank Professor Esteban Vera, who I first met as a postdoc-
toral researcher in the Laboratory for Engineering Non-Traditional Sensors (LENS)
and supervised me for the majority of my graduate studies. Much of the work and
results in this disseration is due to his guidance. Even after he started his profes-
sorship in Chile, he was willing to review my data and suggest different things to
try. He is directly responsible for much of my training as an experimentalist and
programmer.

I also thank Doctor Dathon Golish. His approach to work and life was a calming
effect in often stressful times. He made major contributions to the Adaptive Feature
Specific Spectral Imaging-Classifier (AFSSI-C) and provided valuable feedback on
various research projects and conference presentations.

Thank you Professor Mark Neifeld and Professor Amit Ashok for being my ad-
visor and supervisor during my first year as a PhD student. They were the first
to introduce me to many of the techniques and subjects related to computational
sensing. They taught me fundamental concepts in optics, statistical signal process-
ing and programming. Many of the results in this dissertation would not have been
possible without their teachings.

I’ve also had many other supervisors along the way whose effort should be ac-
knowledged: My undergraduate advisor at San Diego State University, Professor
Matthew Anderson. Doctor John Crane, who was my supervisor during my in-
ternship at the Lawrence Livermore National Laboratory. Professor Joseph Eberly
and Professor Gary Wicks who were my advisors at the Institute of Optics at the
University of Rochester.

I would like to formally express gratitude to a number of exceptional teachers
throughout my life. Professor Tom Milster who taught Diffraction and Interfer-

5

ence and allowed me to be a teaching assistant for that course. Professor Masud
Mansuripur, whose course in Electromagnetic Waves was the most elegant and well
taught version of the classical nature of light that I have ever had the pleasure to
experience. Professor Jeff Davis, who first ignited my passion for optics while I was
an undergraduate physics student at San Diego State University.

I also want to thank several faculty members who committed time from their busy
schedules to help with several milestones of my graduate school experience. Spe-
cial thanks to Professor Julie Bentley, Doctor James Oliver, and Professor Richard
Morris who wrote letters of recommendation for me. Appreciation goes to Professor
Tom Milster, Professor Harrison Barrett, Professor Russell Chipman, and Professor
John Greivenkamp who formed my oral comprehensive exam committee. Thank you
to Professor Rongguang Liang who served on my doctoral dissertation committee.

I would like to thank several members of the Duke Imaging and Spectroscopy
Program (DISP) laboratory for their friendship: Patrick Llull, Mehadi Hassan, Evan
Chen, and Tsung Han Tsai.

Other graduate students, colleagues, and faculty must also be thanked, for at
one time or another they all helped me: Basel Salahieh, Vicha Treeaporn, John
Hughes, Myungjun Lee, Sarmad H. Albanna, Professor Lars Furenlid, Doctor Joseph
Dagher, Professor Daniel Marks, Professor Janick Roland-Thompson, Mary Pope,
Mark Rodriguez, and Amanda Ferris.

I’ve had the good fortune to form friendships with an amazing set of group-
mates as part of the LENS. David Coccarelli invited our family to spend our first
Thanksgiving in North Carolina with him and we had many discussions about college
basketball and life. I want to express my sincere gratitude to Matthew Dunlop-Gray,
who designed and constructed the AFSSI-C which is the foundation for much the
work in this disseration. I learned so much from Matthew especially much of my
practical skills. Tariq Osman constructed the Static Computational Optical Under-
sampled Tracker (SCOUT) which is also a major part of this dissertation. Alyssa
Jenkins whose combination of sense of humor and intelligence is unmatched. Thank
you to Qian Gong for your kindness, positivity, and generousity. Thank you Xiaohan
Li for keeping me company that final year of graduate school, conversations about
basketball and helping me with my math. Thank you David Landry for helping
me with all software and computer programming related issues. Thank you Joel
Greenberg for your help and advice. Thank you Kevin Kelly, Adriana DeRoos, An-
drew Stevens and Dineshbabu Dinakarababu for your friendship. Finally, I consider
Wei-Ren Ng as one of my best friends and as a unofficial brother. Our time in the
LENS group was marked by many late nights spent working in the lab and office
and mornings in the gym. He was generous in sharing his knowledge and gave me
the advice that I often did not want to hear but was true.

Appreciation goes to the all the staff at the College of Optical Sciences at the
University of Arizona. It is one of the most friendly and well run academic depart-
ments I have ever had the fortune to be a part of. I hope my career will reflect well
upon the college.

Finally, I would like to thank my closest friends that I’ve met throughout the
years. They often provided much needed respites during my journey—Christopher
MacGahan, Ricky Gibson, Krista MacGahan, Kristi Behnke, Michael Gehl, Carlos
Montances, Matthew Reaves, Vijay Parachuru, Eric Vasquez. Thank you for letting
me into your lives and being part of mine.

6

Last but not least, to my family. You make me happy.

7

DEDICATION

For my wife. We moved from city to city. You stuck with me through the highs

and lows. You cooked dinner for me when I came home from a long day. You did

the chores so I could concentrate on research. You acted as both mother and

father to our son while I wrote. You believed in me even when I did not. You

sacrificed your dreams and goals so I could accomplish mine.

You’re the real Ph.D.

8

Contents

List of Figures . 11

ABSTRACT . 15

Chapter 1 Introduction . 17
1.1 Isomorphic Sensing . 18
1.2 Development of Multiplexing in Sensing 23
1.3 Forward Models and Inverse Problems 25
1.4 Indirect Imaging . 26
1.5 The Digital Imaging Revolution . 28
1.6 Compressive Sensing . 29
1.7 Practical Considerations in Computational Sensing 33
1.8 Dissertation Overview . 36

Chapter 2 Formalism . 38
2.1 Isomorphic Sensing . 39
2.2 Multiplexing . 40

2.2.1 Coding Schemes . 40
2.2.2 The Fellgett Advantage . 42

2.3 Principal Component Analysis . 43
2.4 Bayesian Statistics . 45

2.4.1 Example: Updating Probabilities with Bayes’ Theorem 47
2.4.2 Maximum A Posteriori . 49

2.5 Compressive Sensing . 50
2.5.1 The Nyquist-Shannon Sampling Theorem 51
2.5.2 Sparsity, Incoherence, and the Restricted Isometry Property . 51
2.5.3 Solving Inverse Problems For Compressive Sensing 55

2.6 Conclusion . 60

Chapter 3 Static Computational Optical Undersampled Tracker 61
3.1 Motivation for the Static Computational Undersampled Tracker . . . 61
3.2 SCOUT Architecture . 64
3.3 Optimizing the SCOUT . 68

3.3.1 Simulating a SCOUT System 68
3.3.2 Quantifying Reconstruction Error 68
3.3.3 Optimizing Optical System Parameters 69

3.4 Experiment . 72
3.4.1 Experimental Setup . 72
3.4.2 Calibration . 73

Contents – Continued

9

3.4.3 Reconstruction: `1 regularized Least Squares Minimization . . 75
3.4.4 Experimental Results . 76

3.5 Conclusion . 79

Chapter 4 Adaptive Feature Specific Spectral Imaging-Classifier 81
4.1 Motivation . 81
4.2 Architecture . 86

4.2.1 Forward Model . 90
4.3 Adaptive Classification Algorithm . 93

4.3.1 Updating Probabilities . 95
4.3.2 Extension to Spectral Imaging 97

4.4 Experiments . 99
4.4.1 Hardware . 99
4.4.2 Implementing Codes . 103
4.4.3 Calibration . 104

4.4.3.1 Spatial Calibration 104
4.4.3.2 Spectral Calibration 109
4.4.3.3 Noise Model Calibration 113

4.5 Experimental Results . 114
4.6 Conclusion . 118

Chapter 5 Computational Spectral Unmixing 119
5.1 Introduction . 119
5.2 The Linear Mixing Model . 120

5.2.1 Unmixing in Traditional Spectral Imaging 121
5.3 Architecture . 122

5.3.1 Forward Model . 124
5.4 Solving the Inverse Problem . 125
5.5 Prior work . 126

5.5.1 Prior Efforts in Computational Spectral Unmixing 126
5.5.2 Prior efforts using LCOS Computational Spectral Imaging . . 126

5.6 Design and Selection of Spectral Filters for Unmixing 127
5.6.1 Adaptive Unmixing Algorithm For the AFSSI-C 127
5.6.2 Hybrid Spectral Filters for the LCSI 129

5.7 Results . 132
5.7.1 Simulation Results For the AFSS 132
5.7.2 Initial Experimental Results of Compressive Unmixing Using

the AFSSI-C . 133
5.7.3 Simulation Results For the LCSI 141

5.8 Conclusion . 142

Chapter 6 Conclusion . 144
6.1 Future Outlook . 146

Appendix A Derivation of the Least Squares Estimator 147

Contents – Continued

10

Appendix B SCOUT Experimental Results 150
B.1 Zero Background Difference Frames 150
B.2 Non-Zero Background Difference Frames 155

Appendix C The Psuedo-Code For SCOUT Experiment 160

Appendix D SCOUT Simulation Code . 165

Appendix E Derivation of the Update Rule for Log-Likelihood Ratios 186
E.1 Calculating the conditional probabilities from the log-likelihood ratio

matrix . 190

Appendix F AFSSI-C Experimental Results 192

Appendix G The Psuedo-Code For Single Pixel Adaptive Spectral Unmixing
Using the AFSSI-C . 200

Glossary . 207

Acronyms . 211

Symbols . 213

11

List of Figures

1.1 A systems view of a traditional sensing scheme. 18
1.2 A systems view of a computational sensing scheme. 19
1.3 A pinhole camera. 21
1.4 An isomorphic slit spectrometer with a 4F configuration. 22
1.5 A general flowchart for image and data compression techniques. . . . 29
1.6 A single pixel camera architecture. 32

2.1 The architecture of the Fourier Transform Spectrometer. 43
2.2 Graphical demonstration of joint probability. 46
2.3 Candy example for updating probabilities with Bayes’ theorem 47
2.4 Example of sparse signal recovery using `1 regularized least squares

algorithms . 58
2.5 The sensing matrix used for Figure 2.4 59
2.6 Geometric interpretation of `1 regularized least squares. 59

3.1 The architecture of a hypothetical parallel single pixel camera to cap-
ture simultaneous projections. 63

3.2 Flowchart of SCOUT system architecture. 64
3.3 The SCOUT architecture. 65
3.4 An example of the system matrix of the SCOUT. 67
3.5 The coherence and reconstruction error versus defocus distance. . . . 70
3.6 The coherence and reconstruction error versus pitch of mask 2. 71
3.7 Photograph of SCOUT recording a moving object scene of a black

background. 72
3.8 Photograph of SCOUT camera disassembled to show the lens and the

first mask. 72
3.9 Difference frame 1 of a sequence of two movers on a black background. 77
3.10 Difference frame 9 of a sequence of two movers on a black background. 77
3.11 Difference frame 1 of a reconstruction video of two movers on a non-

zero background. 78

4.1 Discrete representation of the spectral datacube and various scanning
measurement techniques . 82

4.2 The architecture of the Computed Tomography Imaging Spectrome-
ter (CTIS). 84

4.3 The optical image before being sampled by the focal-plane array
(FPA) in the CTIS . 84

4.4 The architecture of the Coded Aperture Snapshot Spectral Imaging
(CASSI). 85

List of Figures – Continued

12

4.5 The architecture of the Adaptive Feature Specific Spectrometer. . . 87
4.6 The architecture of the Adaptive Feature Specific Spectral Imaging-

Classifier . 88
4.7 Visualization of datacube progression through the AFSSI-C system. . 89
4.8 Depiction of the pPCA (simple 2D example). 95
4.9 Systems Level Flowchart for AFSSI-C Experiment 100
4.10 Four class spectral library used for the AFSSI-C experiment. 101
4.11 Four class spectral source used for the AFSSI-C experiment 102
4.12 Photograph of AFSSI-C. 103
4.13 The image produced by the camera without any post-processing. . . . 105
4.14 Spatial Calibration Grid of Dots Used In AFSSI-C Experiment 106
4.15 The detector image of the array of white dots as part of the spatial

calibration . 107
4.16 The detector image of the array of white dots as part of the spatial

calibration . 108
4.17 Speeding Up Spatial Calibration By Looking In Regions Around Pre-

vious Spatial Calibration Image Dots 109
4.18 Depiction of spectral calibration . 111
4.19 Depiction of spectral calibration . 112
4.20 Estimating the System Noise . 114
4.21 Data from after the third measurement step at 0, -3, and -6 dB TSNR.

The left column is a depiction of the Digital Micro-Mirror Display
(DMD) code, center is the output from the detector, and the right is
the classification decision at the current measurement. 115

4.22 Comparison of the AFSSI-C experimental system results to the sim-
ulation results for multiple TSNR levels by plotting the classifica-
tion error versus measurement. Shown are repeated experiments of a
64× 64× 38 spectral datacube and a 4-class library. 116

4.23 Simulation comparing the classification performance for different
measurements at TSNR = 0 for different systems: the AFSSI-C
with designed features (joint pPCA), the AFSSI-C with random fea-
tures, the traditional pushbroom imager, the traditional tunable fil-
ter imager, and the traditional whiskbroom imager. The input is a
64× 64× 38 spectral datacube with a 4-class library. 117

5.1 Linear versus Non-Linear Mixing . 121
5.2 LCOS Based Spectral Imager . 123
5.3 The normalized spectral filters created by the Holoeye PLUTO SLM

and polarizing beam splitter . 132
5.4 Comparison of Spectral Unmixing Techniques for the AFSSI-C at five

different SNR levels . 134
5.5 Comparison of Spectral Unmixing Techniques for the AFSSI-C versus

Measurement Duration . 135
5.6 Six Endmember Spectra Used For Spectral Unmixing Experiment . . 136
5.7 Unmixing Architecture for Spectral Unmixing Experiment 137
5.8 Computer Aided Design (CAD) drawing of experimental mixing setup.138

List of Figures – Continued

13

5.9 Ground Truth Images for Spectral Unmixing Experiment 139
5.10 Average RMSE of 32 × 32 Experimental Spectral Unmixing Results

Using the AFSSI-C . 140
5.11 Image of 32 × 32 Experimental Spectral Unmixing Results Using the

AFSSI-C after the 40th measurement. 140
5.12 Single Pixel Experimental Spectral Unmixing Results Using the

AFSSI-C . 141
5.13 Comparing Random and Hybrid Spectral Filter Selections for the LCSI142

B.1 Difference frame 1 of a sequence of two movers on a black background.150
B.2 Difference frame 2. 151
B.3 Difference frame 3. 152
B.4 Difference frame 4. 152
B.5 Difference frame 5. 152
B.6 Difference frame 6. 153
B.7 Difference frame 7. 153
B.8 Difference frame 8. 153
B.9 Difference frame 9. 154
B.10 Difference frame 10. 154
B.11 Difference frame 1 of a sequence of one mover on a non-zero background.155
B.12 Difference frame 2. 155
B.13 Difference frame 3. 156
B.14 Difference frame 4. 157
B.15 Difference frame 5. 157
B.16 Difference frame 6. 157
B.17 Difference frame 7. 158
B.18 Difference frame 8. 158
B.19 Difference frame 9. 158
B.20 Difference frame 10. 159

F.1 Data from after the first measurement step at 0, -3, and -6 dB TSNR.
The left column is a depiction of the DMD code, center spatially
calibrated is the output in system pixels from the camera, and the
right is the classification decision at the current measurement. 193

F.2 Data from after the second measurement. 193
F.3 Data from after the third measurement step. 194
F.4 Data from after the fourth measurement step. 194
F.5 Data from after the fifth measurement step. 195
F.6 Data from after the sixth measurement step. 195
F.7 Data from after the seventh measurement step. 196
F.8 Data from after the eighth measurement step. 196
F.9 Data from after the nineth measurement step. 197
F.10 Data from after the tenth measurement step. 197
F.11 Data from after the 15th measurement step. 198
F.12 Data from after the 20th measurement step. 198
F.13 Data from after the 25th measurement step. 199

List of Figures – Continued

14

F.14 Data from after the 30th measurement step. 199

15

ABSTRACT

Computational sensing has demonstrated the ability to ameliorate or eliminate many

trade-offs in traditional sensors. Rather than attempting to form a perfect image,

then sampling at the Nyquist rate, and reconstructing the signal of interest prior

to post-processing, the computational sensor attempts to utilize a priori knowledge,

active or passive coding of the signal-of-interest combined with a variety of algo-

rithms to overcome the trade-offs or to improve various task-specific metrics. While

it is a powerful approach to radically new sensor architectures, published research

tends to focus on architecture concepts and positive results. Little attention is given

towards the practical issues when faced with implementing computational sensing

prototypes.

I will discuss the various practical challenges that I encountered while developing

three separate applications of computational sensors. The first is a compressive sens-

ing based object tracking camera, the Static Computational Optical Undersampled

Tracker (SCOUT), which exploits the sparsity of motion between consecutive frames

while using no moving parts to create a psuedo-random shift variant point-spread

function. The second is a spectral imaging camera, the Adaptive Feature Specific

Spectral Imaging-Classifier (AFSSI-C), which uses a modified version of Principal

Component Analysis with a Bayesian strategy to adaptively design spectral filters

for direct spectral classification using a digital micro-mirror device (DMD) based

architecture. The third demonstrates two separate architectures to perform spectral

unmixing by using an adaptive algorithm or a hybrid techniques of using Maximum

Noise Fraction and random filter selection from a liquid crystal on silicon based

computational spectral imager, the LCOS Computational Spectral Imager (LCSI).

All of these applications demonstrate a variety of challenges that have been

addressed or continue to challenge the computational sensing community. One issue

16

is calibration, since many computational sensors require an inversion step and in the

case of compressive sensing, lack of redundancy in the measurement data. Another

issue is over multiplexing, as more light is collected per sample, the finite amount of

dynamic range and quantization resolution can begin to degrade the recovery of the

relevant information. A priori knowledge of the sparsity and or other statistics of the

signal or noise is often used by computational sensors to outperform their isomorphic

counterparts. This is demonstrated in all three of the sensors I have developed.

These challenges and others will be discussed using a case-study approach through

these three applications.

17

Chapter 1

Introduction

This chapter provides the motivation for the need to address the practical issues in

experimental computational sensing. While computational sensing has the ability

to ameliorate or eliminate trade-offs in many traditional isomorphic sensors, the

sensor engineer is faced with a new of set challenges when designing a computational

sensor. For example, while both computational and traditional isomorphic sensors

often require calibration, a computational sensor can be more sensitive to calibration

error due to the lack of redundancy in the measurement data. It is the author’s hope

that a full discussion on these various challenges will encourage more research on

these issues.

Isomorphic sensing is the concept that the measurement data of a sensor resem-

bles the signal-of-interest [1]. For example, in a camera, the digital image looks like

the object. In isomorphic sensing the analog hardware, analog-to-digital converter

(ADC), and processing algorithms are separate components, see Figure 1.1.

Computational sensing is the concept that a joint design of the sensor, often

though active coding (often called structured illumination) or passive coding of the

analog signal, with inversion algorithms will outperform the isomorphic sensor, see

Figure 1.2 [2]. An example of computational sensing is the Adaptive Feature Spe-

cific Spectrometer (AFSS), where psuedo-arbitrary spectral filters adapt between

measurements to quickly classify the input spectrum [3]. While isomorphic sensors

can provide flexible sensing in multiple applications, joint design of a computational

sensor will often lead to performance increases in resource constrained scenarios.

Throughout this chapter and the rest of this dissertation, I will provide many exam-

18

Signal of
Interest

Analog
Instrument

Point by
point

Sampling

Computer
processing

Figure 1.1: The signal-of-interest is incident upon the analog instrument. The ana-
log instrument forms an isomorphism of the signal which is then periodically sampled
point-by-point through an analog-to-digital converter (ADC) device. Once the signal is in
digital form, post-processing algorithms are often used to perform various tasks such as
noise reduction, detection, and classification. Notice that the analog instrument, sampling
scheme, and processing are all seperated.

ples that highlight the differences between computational and isomorphic sensing.

Rather than a rigorous discussion, this chapter will discuss some of the major

developments and concepts in the field of computational sensing on an intuitive level.

This will familiarize the reader with important terminology and techniques common

in the field. This chapter will also discuss some of the challenges I and many other

experimentalists and engineers have faced when developing computational sensing

prototypes. I will close this chapter with a brief look ahead to the rest of the

dissertation.

1.1 Isomorphic Sensing

In Greek, the word isomorphic loosely translates to “equal in form.” Traditional sen-

sors perform isomorphic sensing. In the context of this dissertation, an isomorphic

sensor is any sensor which attempts to produces measurement data that resembles

the signal-of-interest. In this paradigm, the analog instrument, sampling scheme,

and post-processing algorithms are separate components and processes.

I will discuss three important examples of isomorphic sensors: the pinhole cam-

era, the photographic camera and the optical spectrometer1. These sensors have

inspired many other optical and non-optical sensors throughout history, so it is nat-

ural to use them as examples for comparison when discussing computational sensing.

Before I continue, I want to define measurement because it can often be used in

1I will call the optical spectrometer just a spectrometer from now on, even though there are

many instruments called spectrometers that not concerned with optical spectra

19

Signal of
Interest

Sampling
Scheme

Computer
processing

Structured
Illumination

Analog
Instrument

Analog
Coding

Analog
Decoding

Figure 1.2: In a computational sensor, coding, decoding, and structured illumination
are used in addition to the analog instrument, the algorithms, and sampling scheme. The
dashed boxes represent optional processes that may or may not be needed.

20

an informal manner. In this dissertation a measurement has a very specific meaning.

A measurement is a process that converts a physical phenomena to a collection of

data. The signal-of-interest is the physical phenomena that one is interested in

quantifying. I will call the collection of data the measurement data. The word

sensing has a less precise meaning and I will use it in an informal manner. Sensing

is any act that uses techniques, instruments, or processes that produces measurement

data.

In the photographic camera, the signal-of-interest is the intensity distribution

of the object. The analog instrument consists of the lenses which are designed and

fabricated to produce an image that looks like the object at the FPA. The better the

optics the more the image resembles the object. The FPA then samples the image

and produces a digital representation of the intensity distribution of the object,

the measurement data. If one is interested in performing a task such as detection

or classification, the measurement data is sent to a post processing algorithm to

perform those tasks.

There are two major sub-systems in the photographic camera which determine

how well it performs: the optics and the FPA. Ideally, the optics (the analog in-

strument in this case) will produce a point-spread function (PSF) which is at the

physical limit set by diffraction given the aperture size. For example, in a task such

as the detection of a star from several neighboring stars in the night sky, if the PSF

is much larger than the center to center seperation of the two stars in the optical

image, it will be difficult to detect. Even if the PSF is small enough, the FPA must

sample at a fine enough pixel-to-pixel spacing, called the pixel pitch, to accurately

reproduce the intensity variations at the scale which is pertinent to the task. Intu-

itively, this makes sense because if the stars are imaged onto a single pixel, then one

cannot ever hope to be able to accurately the detect the star without some other

prior or side information.

The pinhole camera consists of a small hole and a box which prevents any light

except from the pinhole from entering, see Figure 1.3. The pinhole camera is useful

for imaging in parts of the electromagnetic spectrum and particles for which there

is no direct analog to the refractive lens or reflective mirror. Like the photographic

camera, the smaller the PSF diameter, the better the spatial resolution. Unfortu-

nately, in the traditional pinhole camera, the only way to reduce the PSF diameter

21

z z'

Pinhole Object Image

h

h'

Figure 1.3: A pinhole camera is a simple imaging system that forms an image without a
lens or mirror. This is due to the ray nature of light. A small hole will only admit a small
amount of rays from an object point that is radiating light. Each point on a object emits
light at different angles, and the image formed is a superposition of different rays. The
smaller the hole, the less blurry the image. However, small holes also limit the amount of
light

is by decreasing the diameter of the pinhole which reduces the amount of light.

In the spectrometer, the signal of interest is the spectrum of the object. The

optics are designed to take the incoming light and separate various wavelength com-

ponents, see Figure 1.4. The part of the spectrometer which is used to physically

isolate the wavelengths is called a monochromator . The monochromator contains a

prism or diffraction grating which creates a wavelength dependent angular sepera-

tion. The result is a spectral intensity as a function of position at the FPA. The FPA

and post-processing algorithms are used in the same manner as the photographic

camera, which is to sample the spatially varying intensity (which is now encoding

spectral information) creating a digital version of it and to perform various tasks on

the measurement data. For now, I will concentrate on the slit spectrometer, which

measures the spectrum at a single spatial location on the object.

In the spectrometer, one of the important performance metrics is spectral res-

olution, which I denote δλ. The spectral resolution is the smallest difference in

wavelength the instrument can discern. Large spectral resolutions can degrade the

spectrometers ability to discern important parts of the spectrum. Similarly with the

camera, the FPA must have a pixel pitch which is small enough to correctly sample

the variations in the spectrum.

The point-by-point nature of isomorphic sensing is both a strength and a source

22

f f f f
Slit Lens Dispersive

Element
Lens Focal-Plane

Array

λ

Figure 1.4: An isomorphic slit spectrometer with a 4F configuration. The slit limits the
lateral extent of the object (or intermediate image). The light from the slit is collimated
and separated into different angles based on the wavelength. A second lens then images
wavelength shifted copies of the slit on the image plane where the detector is. As the slit
size decreases, less light is allowed, but one gains spectral resolution by rejected light from
neighboring locations on the object.

of weakness. The strength comes from the straightforward and intuitive architecture

of the isomorphic sensor. Each subsystem: the optics, the focal-plane array (FPA),

and the post-processing can be designed and constructed separately as long as they

meet their individual specifications. As long as the signal-to-noise ratio (SNR) is

sufficient and the sampling rate is high enough, one is guaranteed to recover the

signal.

One of the weaknesses of the isomorphic approach is the ability to measure low

SNR signals. Because the signal-of-interest is sampled in a completely point-by-point

at each exposure, each pixel indepdently contributes a certain amount of noise. If the

noise dominates, the measurement fidelity decreases, forcing the operator to increase

the exposure time. For weak signals, the exposure time can become prohibitive and

for temporally dynamic signals this leads to a loss of temporal resolution. Indeed,

one of the major engineering trade-offs faced by traditional spectrometer designers

is that when one attempts to increase the light collection (increased slit-width)

the spectral resolution δλ degrades. Similarly, in the pinhole camera, there is a

throughput versus spatial resolution trade-off, increasing the size of the pinhole

degrades the PSF.

23

It would be easy to assume that recent progress in machine learning and statisti-

cal signal processing combined with the dramatic increase in computing power that

one could simply post-process poor measurements and obtain useful data. However,

this is not possible due to the an important theorem in information theory called

the data processing inequality [4]. The information content of a signal cannot be

increased through post-processing.

Another weakness of isomorhic sensing is that the seperation of the analog in-

strument, the sampling scheme, and the data processing algorithms lead to increased

size, weight and power-cost (SWAP-C). As I mentioned in the photographic camera,

the optics must be designed to produce a small PSF. For demanding applications, the

optical design and fabrication can be the most expensive component of the sensor.

While the price of FPAs sensitive to the visible wavelength region have fallen, FPAs

sensitive to certain parts of the electromagnetic spectrum can be quite expensive or

non-existant [5, 6].

In many cases, the signal is redundant and high resolution sampling becomes a

waste of resources, such as data storage and communications bandwidth. A good

example is in photography where often the post-processing takes the digital image

and applies a compression algorithm which looks for patterns in the signal and

reduces the file size, discarding much of the sample data [7].

The isomorphic sensor approach has served humanity well, however with all the

weakness that I have discussed, there is a need for sensors which can operate in low-

SNR conditions, with fewer measurement time, fewer measurements, or at lower

SWAP-C while still producing useful information relavent to the sensor task. I will

now begin to discuss some of major techniques in computational sensing that can

be used to address some or all of the issues that I just stated.

1.2 Development of Multiplexing in Sensing

Multiplexing in sensing is the idea that each measurement sample is a physical com-

bination of various parts of the analog signal-of-interest. Multiplexing is a powerful

tool that can be exploited by the sensor designer to eliminate or relax SNR related

trade-offs.

A simple example which illustrates the usefulness of multiplex sensing is weighing

24

objects. In this example, one needs to weigh 100 sheets of paper. Assume that the

measurement error of the scale is insignificant. Isomorphic sensing means one would

need to measure each sheet of paper individually, requiring 100 measurements.

If the measurement error of the scale is on the order of the weight of a single sheet,

measuring each sheet individually produces a large measurement error. In order to

reduce the error to an acceptable SNR one needs to make several measurements per

sheet.

However, one can measure all 100 sheets at the same time. Since the weight

of all 100 sheets is much larger than the measurement error of the scale, one can

dramatically increase the precision of the measurement. If each sheet is the same

weight, then the measurement process is finished.

The weighing problem is analogous to the spectroscopy example. As discussed

earlier in section 1.1, there is trade-off between light collection and spectral reso-

lution. Increasing the slit-width to increase the amount of light has the effect of

degrading the spectral resolution δλ. Around the late 1940’s and early 1950’s, sev-

eral important papers and inventions demonstrated the effectiveness of multiplexing

in spectroscopy. At the time the FPA was non-existant, so in the slit spectrometer

shown in Figure 1.4, where the FPA is pictured, there was actually another slit. To

record the intensity at each spectral channel, either the dispersive element or the

exit slit had to be mechanically translated, making the measurements even slower

by a factor of Nλ, the number of spectral channels of interest.

Golay was the first to propose multiplexing the slit spectrometer by creating a

pattern of binary (1’s and 0’s) entrance and exit slits [8]. In the Golay multi-slit

spectrometer, the patterns of entrance and exit slits are matched based on math-

ematically useful properties. Intuitively, the ability to use multiple entrance and

exit slits increases the optical throughput of the spectrometer. In communications

theory, the process of structuring the data from the source to the receiver is referred

to as coding. Similarly, in computational sensing, the transmission of information

between an object signal-of-interest and the sensor is considered a coding problem

[1]. In the multi-slit spectrometer, the entrance slits act to code the spectrum while

the exit slits decode the coded spectrum. Golay’s idea dramatically increased the

optical throughput without degrading the spectral resolution.

Another example that is pertinent to this dissertation is coded aperture imag-

25

ing. Coded aperture imaging can be thought of as the multiplexed version of a

pinhole camera. As mentioned earlier in section 1.1, there is a trade-off between

the throughput and spatial resolution. However in many fields, such as high-energy

particle imaging, refractive lenses and reflective mirrors are non-existant or underde-

veloped. By using multiple pinholes the throughput is increased without sacrificing

spatial resolution. However, the pattern of the pinholes (which is the code) must be

carefully designed in order for the reconstruction to be feasible. Fenimore, Canon,

and Gottesman were among the first to create an elegant solution to coded aperture

design called uniformly redundant arrays [9, 10]. The uniformly redundant array

increases throughput without significantly degrading the spatial resolution.

In summary, multiplexing has the ability to eliminate classic trade-offs in iso-

morphic sensors: signal strength or resolution. Modern researchers are still actively

developing novel ways to implement multiplexing to increase resolution and sensi-

tivity in the spatial domain [11, 12], spectral domain [13, 14], and temporal domain

[15, 16]. However, multiplexing is not without its own set of challenges. As I men-

tioned, the coding must often be designed to obtain feasible signal reconstruction.

I now discuss inverse problems in computational sensing.

1.3 Forward Models and Inverse Problems

In the computational sensing community, a model that explains the mapping of the

signal-of-interest to the measurement data is called the forward model . The problem

of taking the observed data and calculating a reconstruction of the signal-of-interst

or task-specific parameters is called the inverse problem.

As you can imagine, solving inverse problems of isomorphic measurements, when

one is concerned with reconstruction of the signal-of-interest, tend to be straightfor-

ward. In the weighing problem, the measurement is also the reconstruction. In the

slit spectrometer, where the forward model can be simply the continuous to discrete

mapping of the spectrum. The spectrum is the interpolated measurement.

Of course, one can begin to add levels of complexity to the forward model to

account for various physical aspects of the sensor, such as the fact the FPA cannot

measure certain wavelength regions or the noise in our measurements. But again,

assuming proper sampling and enough SNR, the reconstruction of the isomorphic

26

signal is the measurement. This simplicity is one reason why isomorphic sensing

still dominates at the consumer level despite all of the drawbacks I discussed earlier

in section 1.1.

However, the multiplexing of signal information forces one to develop computa-

tional steps to solving the inverse problem. In the multiplexed weighing problem,

a significant complication occurs when each sheet of paper has a different weight.

Now solving the inverse problem is not as straightforward. In algebra, given only

1 equation and 100 unknowns, the problem is underdetermined. Similarly given a

1 measurement of all 100 sheets is also an underdetermined problem. What one

can do is try measuring different combinations of the 100 sheets, each new combi-

nation provides a new equation to work with reducing the error. Naively, one might

assume that randomly choosing 100 unique combinations and solve 100 equations

using algebra. This works fine when there is no measurement error. However, in

the presence of noise, in many applications including the weighing problem, random

combinations are not the best way to conduct the coding. They are sub-optimal in

terms of reconstruction error. This lead many to begin working on optimal coding

strategies of signals for sensing and is major topic in this disseration.

In summary, the forward model of a sensor is essentially accounting for the

physics which govern the measurement. While the solving the inverse problem is

a mathematical problem which attempts to either reconstruct the object or to cal-

culate task-specific data from the measurement data. Unfortunately, not all multi-

plexing forward models codes have mathematically elegant inversion steps. Often

the physics of the situation force non-isomorphic measurements which require a

computational step to solve the inverse problem.

1.4 Indirect Imaging

While Golay, Fennimore, and others were leveraging multiplexing to eliminate trade-

offs in traditional sensors, an entirely disparate group of researchers were work-

ing on imaging techniques for which there was no isomorphic analog. In these

cases the physics of the sensing modality prevents a point-by-point sampling of

the signal-of-interest. Indirect imaging refers to sensing schemes which include X-

ray Computed Tomography (CT), Single-Photon Emission Computed Tomography

27

(SPECT), Positron Emission Tomography (PET), Magnetic Resonance Imaging

(MRI) and certain forms of sonic and radio wave imaging. All require a data-

processing or reconstruction step to solve an inverse problem [17].

Perhaps one of the most successful early examples of indirect imaging which led

to the rise of inverse problems in sensing is the development of radar. While early

radar was concerned with the detection and distance of an object, development of

imaging radar began after World War II. Imaging radar and specifically Synthetic

Aperture Radar (SAR) can use time delay information combined with the Doppler

effect and interference of coherent radio waves to create high resolution images of

terrain and buildings.

In medicine, a common imaging modality is X-Ray CT. In X-Ray CT, compu-

tational inversion is required to reconstruct a 2 or 3-dimensional function from 1 or

2-dimensional measurement data. The forward model can be simple: In a collimated

beam architecture with a 1-dimensional detector array, each sample from each pixel

on the array is proportional to the total number of x-ray photons that have not been

absorbed by the object [18]. The inversion relies on computing the inverse Radon

transform [19].

Indirect imaging is a subfield of computational sensing. Due to the medical and

military applications of these computational sensors, there has been an intense push

to reduce measurement time and improve task-specific and reconstruction results.

Many of the techniques from other subfields of computational sensing have been

brought to bear for indirect imaging [20, 21].

I have discussed the development of multiplex sensing and indirect imaging and

how the ideas from both subfields are analogous in terms of producing a non-

isomorphic measurement. However a major step in practical implementation of

computational sensing is being able to obtain the measurements in a quick, reliable

and efficient manner. Computational sensing as a field would not exist without the

most important invention in optics and photonics of the 20th century, the digital

image sensor2.

2 staring array, staring-plane array, focal-plane array (FPA), focal-plane, and image sensor are

all synonymous

28

1.5 The Digital Imaging Revolution

The invention of the Charge-Coupled Device (CCD) FPA by Boyle and Smith in

1969 was a major breakthrough for entire fields and industries who depended on

the reliable sampling, storage and transmission of optical signals [22]. The CCD is

the first integrated circuit device that could reliably convert an optical image to a

digital signal. Until then one either had to use film or bulky tubes that required an

electron beam to be scanned across an image scene, such as the Image orthicon [23].

The invention of the digital camera by Sasson followed shortly after [24]. Several

years later the first digital spectrometer was invented. In the digital spectrometer the

exit slit of the monochromator was replaced by the CCD, which allowed for instant

and simultaneous measurement of the entire spectrum in a compact architecture

[25].

The development of the Complementary Metal–Oxide–Semiconductor (CMOS)

FPA was also important. While in scientific settings, it could not rival the quality

of the CCD, its cheaper cost brought digital imaging to the consumer level. Other

technology like the digital computer and computer networking also provided major

contributions to the democratization of imaging and optical sensing. While scientific

grade optical instrumentation was and is still expensive, the researcher could at least

capture, process, and share measurement data with significantly less effort. Without

it, the field of computational sensing would not exist.

Algorithms for efficient and reliable storage and transmission of digital images be-

came more important. Over time the pixel count continued to increase and the sheer

volume of digital image and video data being generated and transmitted over net-

works began to outpace improvements in storage and transmission capacity. While

many engineers developed new technology to combat the hardware limitations of

storage and transmission. This also led to a renewed effort by researchers to de-

velop more efficient image and video compression algorithms [26, 27].

Compression techniques all follow the same basic process, see Figure 1.5. Once

the CCD samples the optical signal and produces the measurement data, the encoder

uses the compression algorithm to look for redundancies in the data and produce

a compact representation of the signal-of-interest. The compressed data can then

either be stored or transmitted or both. The decoder solves the inverse problem of

29

Digital Image Encoder Compressed
Data

Storage/
Transmission

Reconstructed
Image Decoder

Figure 1.5: A general flowchart for image and data compression techniques. The digital
image is analyzed by the encoder and compressed into a compressed form where it can be
efficiently stored or transmitted. The decoder takes the compressed image and converts it
back into an image that resembles the original digital image.

reconstructing the image.

In the next section I will discuss how many of the techniques and algorithms used

in computational sensing are inspired by the techniques used by the image processing

and digital communications community. This is because one of the major efforts of

computational sensing is to make resource efficient measurements to reduce the

total amount of measurements, whereas in image processing and communications,

measurement data is often corrupted, missing, or too large for efficient storage and

transmission.

1.6 Compressive Sensing

Traditionally, in order to increase the resolution of a sensor, one had to increase

the number of measurements. This means that the SWAP-C must also increase.

A camera with just a few megapixels FPA costs less than one with hundreds of

megapixels. The cost of designing the optics will also need to scale to provide

enough optical resolution. In a perfect world, one could capture all the information

one needs from just a few measurements.

With a discrete signal one needs at least as many measurements as there are

signal elements to solve the inverse problem. If the number of measurements is

fewer, then the inverse problem is underdetermined. Conventional signal processing

dictates that accurate reconstruction of the signal-of-interest is highly improbable.

Fortunately, a signal acquisition technique called compressive sensing allows one to

30

design sensors that solve these types of highly underdetermined inverse problems.

As discussed earlier, much of the data being generated by sensors are redundant.

Images, spectra, video, and audio data of real-world signals tend to exhibit patterns

or redundancies that can be exploited. This allows a compression algorithm to

significantly reduce the amount of data needed to represent the signal.

There is a class of compression algorithms called lossy [28]. In lossy compression,

not only are redundancies exploited but data that is deemed insignificant to the

signal quality is discarded. Only the most important part of the signal is kept as

part of the compressed representation of the original signal. When the signal is

uncompressed, the amount of data is less than the original measured data. The

difference in quality is often unnoticeable to a human observer. In both lossless and

lossy compression, the goal is to obtain a sparse representation of the signal. A

sparse representation means that the signal can be well approximated with only a

few non-zero elements in a representation basis. A representation basis is a basis in

which the signal-of-interest is sparse. For example, most natural images are sparse

in the Fourier basis. The representation basis is typically not the native basis of the

signal-of-interest, i.e. pixel number or spectral channel.

Researchers pointed out that traditional sensors tend to produce vast amounts

of measurement data, but often the majority of data is redundant and discarded in

the compression step [29, 30, 31]. This led to the idea that sensors can be designed

to directly measure the most relavent data in a signal, suggesting a measurement

scheme that can measure a compressed form of the signal. This is the idea behind

compressive sensing sometimes known as compressive sampling . If the measurements

are compressive then it should be possible to significantly reduce the number of

measurements to accurately reconstruct the signal.

Note that there is a distinction between compressive sensing and the traditional

approach of sensing and then compressing. In the traditional approach, compression

algorithms operate as a post-processing step. Therefore, a traditional compression

algorithm will have access to the entire signal to look for redundancies and convert it

into a sparse representation. In compressive sensing, one attempts the compression

directly and therefore do not have access to the entire uncompressed signal. The

algorithms must assume that the signal has a sparse representation.

The question of how to actually measure or code the analog signal to directly

31

obtain compressed data is also important. Fortunately, random coding tends to

work well in many instances when the signal has a sparse representation. However

in many cases, designed codes can significantly outperform random coding. I will

discuss other types of coding schemes that can be used to outperform random codes.

The idea of compressive sensing seems to be similar to the concept of multiplex

sensing. However, there is an important distinction to be made. In compressive

sensing, the aim is to obtain the relavent information in as few measurements as

possible. In multiplexing, the goal is to overcome limitations mainly due to lack of

SNR. Many compressive sensing schemes also employ multiplexing.

One useful example of compressive sensing versus traditional sensing is the single

pixel camera [11]. The single pixel camera is a multiplexing camera architecture that

uses time sequential random measurements and recovers the image in significantly

fewer measurements (equal to number of exposures × pixels) than the conventional

camera, see Figure 1.6. Another example is the Coded Aperture Snapshot Spectral

Imaging (CASSI) architecture [32], which can reconstruct a spectral data cube in

significantly fewer FPA exposures than a traditional spectral imaging architecture.

Another important distinction is between reconstruction and task-specific sens-

ing. Task-specific sensing tends to refer to measurement techniques that attempt

to directly perform tasks such as detection, classification, and estimation without

the intermediate step of reconstructing the high-dimensional signal. Compressive

sensing is useful not just of overcoming resolution limitations in reconstruction but

for task-specific sensing. For example, in facial recognition the goal is detection of

an individual person. Reconstruction of the face image is simply an intermediate

step, therefore, one can develop a compressive sensing scheme that is optimal for

direct facial detection, skipping the step of image reconstruction [33].

Computational sensors can overcome classic engineering trade-offs in sensor de-

sign. However, there is a unique set of challenges related to computational sensing.

32

Object Scene

Photodiode

Imaging Lens DMD

Condenser Lens

Figure 1.6: A single pixel camera architecture. The object scene (or intermediate image)
is imaged onto a Digital Micro-Mirror Display (DMD). The each micro-mirror of DMD
reflects light towards the photodiode or to another direction. This acts as a point-by-point
multiplication of the discrete image with the DMD pattern. The condenser lens sums any
light reflected by the DMD and focuses it onto the photodiode. This can be described
mathematically as a vector multiplication of the image with the DMD pattern.

33

1.7 Practical Considerations in Computational

Sensing

So far I have discussed the development of computational sensing techniques and

how they are used to ameliorate trade-offs in traditional sensor design. Compu-

tational sensing as a field is continuing to grow at a rapid pace. The number of

journal publications related to computational sensing has steadily increased every

year since 2008 [34]. There is now a major Optical Society of America (OSA) meet-

ing dedicated to computational sensing [35] and textbooks dedicated to its study

and development [1, 36]. While it is a powerful approach to radically new sensor

architectures, textbooks and papers tend to focus on architecture concepts and pos-

itive results. Little attention is given towards the practical issues one faces when

implementing computational sensors. For example, calibration is a major topic in

this dissertation. In many talks and papers on computational sensing, calibration is

barely mentioned or relegated to a minor paragraph.

Calibration is the process of quantifying the response of a sensor in order to

produce an accurate forward model. While many traditional sensors also require

calibration, computational sensors tend to be more sensitive to calibration error.

There are two main reasons for this. The first reason is simply due to the

fact that non-isomorphic measurements require a computational step to solve an

inverse problem. The algorithms rely on accurate knowledge of the forward model

to separate measurement data due to the instrument and data due to the signal-of-

interest.

The second reason is due to the lack of redundancy of measurement data in com-

pressive sensing. The redundancies that are typically deemed wasteful in traditional

sensing, can also be used by post-processing algorithms to solve the inverse prob-

lem in a robust fashion to correct for missing or corrupted data [37]. In compressive

sensing, only a few numbers are used to represent many. If the few numbers are mis-

interrepted due to poor calibration, it can have a drastic impact on the performance

of the estimation algorithm. I will illustrate in this dissertation the calibration

challenges in several computational sensors.

Calibration has become a major drawback in compressive sensing. A consumer

34

cannot be expected to spend time calibrating every time the instrument is physically

bumped, the air temperature or pressure changes. In high dimensional compressive

sensors like hyperspectral imagers, the calibration time can last hours.

One issue that is encountered in multiplexed sensing is lack of dynamic range. As

the amount of light is sensed by the detector increases, it becomes more difficult to

discern differences between signals. For example, in a single sinusoidally amplitude

modulated signal, there is a DC offset and then the modulation itself. The pertinant

information is encoded in the modulation so being able to resolve the peak to peak

difference is important. Now imagine another amplitude signal with a different

frequency. Physically, the amount of electrons in each pixel well is increased and the

total modulation will tend to “average” out. The situation gets worse as the number

of signals increases per measurement. This is one of the potential issues faced by

single-pixel compressive sensing architectures. The SCOUT architecture attempts

to alleviate this by “spreading” the photons onto more pixels for a compressive

measurement.

Another hurdle in the implementation of practical computational sensing is the

need for prior knowledge. For example, in compressive imaging one must assume the

signal is sparse in some basis. Fortunately most realistic objects can be treated as

such with many commonly known bases, such as a type of wavelet basis. However,

sometimes one needs to image something that is difficult to represent in any known

basis. One needs to resort to generating training data. Training requires one to gen-

erate many different examples of the signal. This becomes time and computationally

expensive. Another example for the need of prior knowledge is the AFSSI-C, a com-

putational spectral classifier which requires knowledge of the standard deviation of

the probability density function of the noise to perform spectral classification in the

least number of measurements as possible.

Reducing the number of detector elements is often the goal in computational

sensing. A notable example is the single pixel camera is an architecture. How-

ever, the single pixel camera requires several time sequential measurements. Each

measurement displays a different DMD pattern to create a randomly encoded mea-

surements [11]. The drawback to this architecture is that one must point the camera

at the object scene until enough measurements have been collected for proper recon-

struction. A complication arises when this architecture is used to image temporally

35

varying object scenes. One must display the DMD patterns even faster and reduce

the exposure time to keep up. As a result the SNR may begin to degrade.

A possible way to mitigate this issue is to do all the encoding in parallel. However,

a completely parallel approach would require a lens, a DMD (or coded aperture),

and a detector pixel for each measurement. Since each lens uses a different entrance

pupil, this means that each detector pixel will have a different view of the object

scene. This drastically scales the complexity of the architecture and algorithms.

In this dissertation, I will discuss a compromise to parallel coding, in two different

computational sensors, by using a common entrance pupil and a CCD.

Much of the optimal measurement codes contain simultaneously positive and

negative measurement weights. In reality, with incoherent light one is unable to

make negative measurements. One is often forced into situations where one must

record two sets of measurements and subtract one set of measurements from the

positive set of measurements. This means an additional noise term is added to each

effective measurement.

Algorithms engineered to solve inverse problems often do not account for the non-

negativity of many physical situations. For example, in spectral unmixing where the

problem is to solve for the concentration of each material given a mixed spectrum.

A non-negative fractional abundance that sums to one is a physical requirement.

However, there is a lack of sparsity promotting algorithms that are able to enforce

both the non-negativity and the sum to one constraint.

A major issue in both the theoretical and experimental compressive sensing

community is a lack of code design schemes. For the most part random measure-

ments techniques are dominant because they obey well known theoretical results

which guarantee reconstruction with high probability [31, 38, 39]. However, de-

signed codes have been shown to outperform random codes in various applications

[3, 33, 40, 41, 42]. Intuitively, designed codes which can take into account prior

knowledge of the physical limitations of the sensing task and additional statistical

assumptions of the signal-of-interest should be able to outperform random measure-

ments. For example, I will demonstrate in the AFSSI-C that adaptively designed

Principal Component Analysis (PCA) codes dramatically outperform random codes

in low SNR environments.

These issues and others will be discussed in a case study manner throughout this

36

dissertation. I will now discuss the organization of this dissertation and the three

separate computational sensors I have built and how I have tried to mitigate and

resolve some of the practical issues associated with computational sensing.

1.8 Dissertation Overview

I used this chapter to cover the major concepts of computational sensing. More

importantly, I provided the major topic of discussion for this dissertation, the chal-

lenges that remain towards developing practical computational sensors. I will use

Chapter 2 as an opportunity to provide a more detailed and mathematically rigorous

look at the various coding schemes that are popular in computational sensing, as

well as the ones I have used. This includes a discussion of the mathematical meth-

ods that I and my collaborators developed and deployed in the AFSSI-C: Bayes

rule, Log-Likelihood Ratios, and the Maximum a Posteriori decision technique. A

more rigorous treatment of compressive sensing will also be provided which includes

several important results from the compressive sensing community. I will also dis-

cuss several estimation and task-specific sensing algorithms that I used during the

development of the three computational sensors in my work.

Chapter 3 will introduce a new system architecture for compressive target

tracking—the Static Computational Optical Undersampled Tracker (SCOUT). This

system is designed to overcome a variety of challenges that typically arise in tra-

ditional optical sensing approaches. It provides several advantages over the single-

pixel camera architecture, notably it can capture many simultaneous encodings of

the field-of-view with a single camera exposure. I will present experimental results

that validate the performance of the proposed architecture.

Chapter 4 will discuss an important experimental prototype which demonstrates

adaptive spectral image classification. The system is a major experimental advance-

ment compared to current computational spectral imaging architectures which fo-

cus on reconstruction. Furthermore, the ability to perform adaptive measurements,

where each code is designed based on the history of prior measurement data allows

this instrument to outperform traditional spectral imaging architectures by a factor

of 100 in low SNR scenarios.

Chapter 5 will discuss current efforts to experimentally demonstrate compressive

37

spectral unmixing. Often in spectral imaging, the spectra present in the field-of-view

of each pixel is actually a mixture of several spectra, a mixed spectrum. Spectral

unmixing is the task of inferring the fraction of each constituent spectrum in the

mixed spectrum. I employ a unique architecture for computational spectral sensing

which uses no diffraction gratings or refracting prisms but relies on the wavelength

dependent nature of the birefringence in an Liquid Crystal on Silicon (LCOS). I will

demonstrate the effectiveness of various compressive sensing measurement schemes

to outperform a traditional sensor in significantly fewer measurements.

Chapter 6 will summarize the dissertation and provide my perspective on how

the field should the approach the issues in practical computational optical sensing.

38

Chapter 2

Formalism

I will use this chapter to cover several important mathematical concepts which are

required for the reader to understand the advantages and disadvantages of compu-

tational sensing. I will first discuss the advantages that Hadamard and S-Matrix

multiplexing provide compared to the isomorphic sensing to create a context for

the discussion of the Fellgett advantage. Then I will discuss Principal Component

Analysis (PCA), a dimensionality reduction technique. I will also cover the basics

of Bayesian statistics and how it can be used to update one’s belief in a hypothesis

given new data. Then will I cover important topics in compressive sensing: sparsity,

incoherence, and the restricted isometry property (RIP) and discuss an optimization

problem that allows one to reconstruct sparse signals from compressively sampled

data.

To simplify the math and notation, I shall try to work with discrete represen-

tations of signals when possible. Any discrete linear measurement process can be

written as a matrix multiplication

g = Hf + e (2.1)

where g is a vector of measurement data and f is a discrete representation of the

object signal-of-interest and H is the matrix which describes the measurement pro-

cess and e is additive noise. For brevity I will refer to f as the object and H as

either the sensing matrix or the measurement matrix. Equation (2.1) represents the

forward model in a wide variety of computational sensors. The object f is a vector

in N dimensional vector space and the measurement g is a vector in Nm dimensional

vector space. In general Nm 6= N .

39

Equation (2.1) is an extremely useful way to represent optical phenomena, since

it allows one to take advantage of many attractive numerical techniques which are

dedicated to linear systems. The ray and wave description of light can described

using the mathematics of linear systems. The solutions to the paraxial wave equation

are linear in free space and in most dielectrics. Similarly, paraxial optics can be

modeled using a sequence of matrix multiplications. While just an approximation,

tracing the paraxial chief and marginal ray is enough to calculate the third-order

Seidel aberrations.

2.1 Isomorphic Sensing

In an isomorphic measurement, where the goal is a one-to-one mapping of object

points to measurement points, the measurement matrix is represented with the

identity matrix

H = I (2.2)

One can get an idea of how much error exists in an isomorphic measurement by in-

voking the weighing example [43]. Say there are 4 objects with true unknown weights

f1, f2, f3, f4. The measured weights are g1, g2, g3, g4 with additive noise e1, e2, e3, e4.
g1

g2

g3

g4

 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

f1

f2

f3

f4

+

e1

e2

e3

e4

 (2.3)

Since this is isomorphic sensing, the estimated weights f̂ are the measurements g

f̂ = g. (2.4)

Where the error between the estimated weights and the actual weights is ε = f̂ − f .

For simplicity, I assume a zero mean distribution for the noise. Therefore, the iso-

morphic measurements are unbiased.1 For an unbiased estimator, the Mean Squared

Error (MSE) of

E[ε2] = E[(f̂m − fm)2] = σ2. (2.5)

This puts a lower bound on the MSE for an isomorphic measurement.

1In statistics, the bias of an estimator is the difference between this estimator’s expected value

and the true value of the parameter being estimated. An estimator with zero bias is called unbiased.

40

2.2 Multiplexing

As I discussed in Chapter 1, multiplexing is a technique for overcoming SNR related

trade-offs in isomorphic sensing. In a multiplexed measurement, each element in the

measurement vector g is a weighted linear combination of the elements in the object

vector. Therefore the measurement matrix H is no longer an identity matrix.

2.2.1 Coding Schemes

A Hadamard matrix of order N is defined as a matrix HN as the N × N matrix

whose elements consist of +1’s and −1’s and satisfies the following property:

HT
NHN = HNHT

N = NIN (2.6)

where IN is an N ×N identity matrix.

In computational spectroscopy and imaging, Hadamard codes are extremely pop-

ular. Hadamard codes are provably optimal in the case where one is allowed to take

a full set of measurements with additive noise, meaning that f and g from Equa-

tion (2.1) are both vectors in N dimensional space [43]. Even in the presences of

additive noise, e

A Hadamard multiplexed measurement is written as
g1

g2

g3

g4

 =

+1 + 1 + 1 + 1

+1− 1 + 1 + 1

+1− 1− 1 + 1

+1− 1− 1 + 1

f1

f2

f3

f4

 (2.7)

In the weighing example, negative measurements are realized by using a balancing

scale instead of a spring scale. This means that in the first measurement all 4 items

are placed in the same pan. In the second measurement items 1 and 3 are in the

same pan while items 2 and 4 are in the opposite pan, and so on [43]. With four

equations and four unknowns, one can solve for the estimates using basic algebra.

The MSE of the mth measurement

E[(f̂m − fm)2] =
1

4
σ2. (2.8)

41

which is 4 times lower than using an isomorphic measurement scheme. In general,

the MSE of a Hadamard measurement is

MSE =
σ2

N
(2.9)

where N is the dimension of the object vector f , which is equal to the number of

measurements Nm. Hotelling proved in 1944 that for a measurement matrix with

elements hmn ∈ {−1,+1}, the lowest possible MSE for the case of a full set of

measurements with a linear unbiased estimator is MSE = σ2/N [1]. Therefore, one

cannot possibly do better than Hadamard coding in this case.

In many practical cases in computational sensing, making a code with simul-

taneous positive and negative modulation of the signal is not possible. While this

may be possible using coherent light where a phase delay maybe used to produce a

negative electric field. For incoherent light, the system response is linear in intensity

[44].

In the case where one has the ability to make a full set of measurements but is

limited to elements of +1’s and 0’s, an S-Matrix code minimizes the MSE [43]. In

the weighing example, a spring balance rather than a two pan scale is analogous to

this situation.
g1

g2

g3

g4

 =

0 +1 +1 +1

+1 +1 0 0

+1 0 +1 0

+1 0 0 +1

f1

f2

f3

f4

 (2.10)

So items 2, 3, and 4 are weighed together, then 1 and 2, and so on. Solving the

system of equations in a silimar fashion as before in the Hadamard weighing example

we find that the mean square error for the mth measurement when weighing 4 items

is

MSE = E[(f̂m − fm)2] =
7

9
σ2. (2.11)

Which reduced the MSE compared to the isomorphic measurement scheme but has

higher MSE compared to the Hadamard measurement scheme. The MSE of the

S-Matrix is approximately a factor of 4 increase compared to the Hadamard matrix

coding scheme.

In the case when the full set of measurements are available (Nm = N), I have

just shown that Hadamard codes are optimal. It would seem as if random coding

42

would have no use if one is able to utilize Hadamard codes. However, they should

not be ignored because in compressive sensing, certain theoretical guarantees exist

for random coding that do not exist for Hadamard and S-Matrix codes. Sometimes,

the physics of the situation forces a random coding scheme.

2.2.2 The Fellgett Advantage

The Fellgett advantage is the improvement in SNR that occurs when an instrument

takes multiplexed measurements compared to isomorphic measurements [45, 46].

Physically the Fellgett advantage occurs because a single detector element produces

a noise contribution whether it is sampling a single element of the signal or the sum

of multiple elements of the signal. Maximizing the signal-to-noise ratio (SNR) of

the estimated object signal-of-interest for a given system throughput and detector

noise is major design consideration in computational optical sensing particularly in

the area of spectroscopy. There are two notable ways to accomplish multiplexing

in spectroscopy: Hadamard multiplexing in dispersive spectrometers and interfero-

metric based multiplexing such as the Fourier Transform Spectrometer (FTS).

The FTS architecture is a similar to the Michelson interferometer, see Figure 2.1.

The FTS operates by taking the autocorrelation of the complex electric field as a

function of time delay by moving one of the mirrors in the interferometer [46]. The

Wiener-Khinchin theorem says that for a wide-sense stationary random process, the

Fourier transform of the autocorrelation is the power spectral density [47]. Thus a

computational post-processing step is required to reconstruct the spectrum from the

measured autocorrelation data. Since the FTS measures combinations of multiple

wavelengths at each detector readout, it also exhibits the Fellgett advantage. It turns

out that in a FTS the MSE obtained is a factor of two greater than the Hadamard

multiplexing spectrometer [48].

MSE = 2
σ2

Nλ

(2.12)

where Nλ is the number of spectral channels.

43

Source

Collimating
Lens

Detector

Translating Mirror

Fixed Mirror

Beam
Splitter

Condenser
Lens

Figure 2.1: The architecture of the Fourier Transform Spectrometer resembles the
Michelson interferometer. One of the mirrors is translated back and forth. The interfero-
gram is the detected intensity versus mirror delay which is related to the autocorrelation
of signal. The Fourier transform of the autocorrelation provides the spectrum.

2.3 Principal Component Analysis

Principal component analysis (PCA) is a dimensionality reduction technique that

attempts to recast a dataset in a manner that finds correlations in data that may not

be evident in their native basis and creates a set of basis vectors in which the data

has a low dimensional representation. PCA works by producing a set of vectors

that point along the direction of maximum variance while being simultaneously

orthogonal to each other. These are called the principal components. The first

principal component vector is parallel to the direction of maximum variance. The

second principal component points in the direction of maximum variance that is not

explained by the first principal component. And so on.

Imagine one has a dataset S which consists of N spectra with Nλ spectral chan-

nels. Instead of looking at the data as just intensity versus spectral channel, PCA

attempts to construct a set of new vectors (also called features) that show as much

variation in the spectra as possible. In other words, first direction (principal com-

ponent) is used to recast the data to look as different (uncorrelated) as possible.

44

This allows us to discriminate the data, as best we can with just one direction. The

second principal component is the direction that provides the second most ability

to discriminate the data, and so on.

Now I will discuss some of the math behind PCA. The covariance matrix is

defined as

CS =
1

N
SST . (2.13)

Each element in the covariance matrix Csmn is the covariance of the mth spectrum

sm and the nth spectrum sn.

Csmn =
1

N
smsTn . (2.14)

A large covariance means they look alike and therefore are difficult to disambiguate.

Geometrically, it means that sm and sn tend to point in the same direction (assum-

ing their length is approximately the same). If the entire collection of spectra S were

mutually orthogonal, being able to tell one spectrum apart from another would be

easy. You would just have a collection of spikes at different spectral channels. The

covariance matrix in this case would be a diagonal matrix. Therefore, it is desirable

to have covariance matrices that are diagonal matrices since they indicate low cor-

relation between the datasets and improves one’s ability to distinguish between the

data.

Since there is typically some redundancy between spectra, the off-diagonal ele-

ments of the covariance matrix will be non-zero. PCA finds a basis in which the

covariance matrix is diagonalized. In this basis, the data is uncorrelated.

Y = PS (2.15)

where Y is the data projected onto the principal component basis P. The rows of

matrix P are the principal components. The covariance of the projected data

CY =
1

N
YYT (2.16)

is a now diagonal matrix. Indeed, the principal components are the optimal way to

discriminate the spectra in the dataset [49]. It turns out the principal components

are the eigenvectors of the covariance matrix CS are the principal components [50].

Note that each eigenvector has an associated eigenvalue. The eigenvalues are

also informative because the relative magnitude of the eigenvalue can tell us how

45

many principal components are really needed to discriminate all of the spectra [51].

The magnitude of the eigenvalue tells us how well useful the associated eigenvector

is at discriminating the data.

Since the full set of principal components forms a basis, each spectra s in S can

be written as a superposition of principal components without any error

s =

Nλ∑
n=1

αnpλ (2.17)

Where αn is a scalar coefficient value associated with eigenvector pn. In many

cases, only a few of the first principal components are needed in the summation to

approximate the original data well, M � Nλ.

This is another reason why PCA is so useful. It can be used as a way to perform

dimensionality reduction. In other words, seemingly complicated data can be sum-

marized by only a few principal components by exploiting the correlations between

the data. This concept is analogous to lossy compression in signal processing. Sim-

ply project the data onto the first several principal components associated with the

largest M eigenvalues. The data now has an approximately sparse representation.

I will show in Chapter 4, that the AFSSI-C relies on a variation of Principal

Component Analysis (PCA) for discriminating between spectra. In addition to

PCA, the AFSSI-C uses a Bayesian technique to create adaptive codes. I will now

discuss some of fundamentals of Bayesian statistics.

2.4 Bayesian Statistics

A hypothesis is nothing more than a claim or premise that one is interested in

verifying. In imaging and spectroscopy, one example is that at a certain location in

the field of view, the hypothesis is that a spectrum is present. Another hypothesis

is that the mean value of the signal is some value. Often times one is interested in

estimating parameters of stochastic processes, which we denote θ.

Bayesian statistics allows one to treat the hypothesis or parameters as random

variables rather than deterministic constants. At the heart of Bayesian approaches

is Bayes’ theorem, which is a way of computing probabilities of a hypothesis given

some evidence which are related to the hypothesis. The idea is that one can make

46

Event	A	 Event	B	

Figure 2.2: Graphical demonstration of joint probability. The probability of event A is
P (A) = 3/4. The probability of event B is P (B) = 3/4. The joint probability of events
A and B is P (A ∩B) = 1/4. The probability of event A occuring given that event B has
occured is P (A |B) = 1/3. This is consistent with the equation P (A∩B) = P (A |B)P (B)

a more informed calculation of probability if one is able to update the probability

given some new piece of evidence that one may have not had at the beginning.

The derivation of Bayes’ theorem follows from the definition of conditional prob-

ability. The conditional probability of event A occurring given that B occurred

is:

P
(
A
∣∣B) =

P (A ∩B)

P (B)
(2.18)

this can be seen graphically in Figure 2.2. Solving for the joint probability P (A ∩B)

gives

P (A ∩B) = P
(
A
∣∣B)P (B) (2.19)

since the joint probability commutes P (A ∩B) = P (B ∩ A), we can also write

P (A ∩B) = P
(
B
∣∣ A)P (A) (2.20)

equating the right hand sides of Equation 2.19 and Equation 2.20 gives use Bayes’

theorem (also called Bayes’ rule)

P
(
A
∣∣B) =

P (A)P
(
B
∣∣ A)

P (B)
(2.21)

47

10	pieces	of	cherry,	C	
30	pieces	of	strawberry,	S	

20	pieces	of	cherry,	C	
20	pieces	of	strawberry,	S	

Bag	1,	B1	 Bag	2,	B2	

Figure 2.3: Two bags are present: B1 and B2. The probability of choosing either bag
is P (B1) = P (B2) = 1/2. Bag 1 has 40 pieces of candy: 10 pieces of cherry candy so
P (C|B1) = 1/4 and 30 pieces of strawberry so P (S|B1) = 3/4. Bag 2 has 40 pieces
of candy: 20 pieces of cherry candy so P (C|B2) = 2/4 and 20 pieces of strawberry so
P (S|B2) = 2/4. If someone selects one of the bags at random then selects a piece of
candy from that bag. If the candy is identified but the bag is not, then one can use Bayes’
theorem to update the probability of either bag being selected.

One interpretation of Bayes’ theorem is called the Diachronic interpretation, which

says that conditional probability of the hypothesis or parameter given knowledge of

some evidence or measurement data is given by

P
(
θ
∣∣ g) =

P (θ)P
(
g
∣∣ θ)

P (g)
(2.22)

The term P
(
θ
∣∣ g) is called the posterior . It represents the belief in the hy-

pothesis given the data. The term P (θ) is called the prior . P
(
g
∣∣ θ) is called the

likelihood . P (θ) is called the normalizing constant, which is computed to ensure

that the posterior probabilities sum to 1. The normalizing constant can be written

as

P (θ) =
∑
i

P (θi)P
(
gi
∣∣ θi) (2.23)

One can repeatedly apply Bayes’ theorem given new measurement data.

2.4.1 Example: Updating Probabilities with Bayes’ Theo-

rem

I will use a simple example to illustrate how to update probabilities using Bayes’

theorem, see Figure 2.3. Imagine I have two bags of candy, Bag 1, which I denote

B1, and Bag 2, which I denote B2. Bag 1 has 10 pieces of cherry flavored candy,

48

denoted as C, and has 30 pieces of strawberry flavored candy, denoted as S. Bag

2, B2, has 20 pieces of cherry candy and 20 pieces of strawberry candy. At the

beginning, the prior probability of selecting bag 1 or bag 2 is both equal

P (B1) = P (B2) =
1

2
(2.24)

Someone then picks a bag at random and takes out a piece of candy that turns out

to be strawberry flavor. They do not state which bag was selected, only that the

candy they randomly selected from the bag was strawberry. What is the probability

that bag 1 was the one selected given that I know the candy is strawberry? I can

use Bayes’ theorem to compute this

P
(
B1

∣∣ S) =
P (B1)P

(
S
∣∣B1

)
P (S)

(2.25)

P
(
S
∣∣B1

)
is the probability of selecting strawberry given that they pick bag 1,

which is 3/4. P (S) is the probability of selecting a strawberry candy from either

bag 1 or bag 2, which 5/8. Thus

P
(
B1

∣∣ S) =

(
1

2

)(
3

4

)
(

5

8

) =
3

5
(2.26)

Similarly, the probability that the person chose bag 2 is P
(
B2

∣∣ S) = 2/5. Qual-

itatively, this makes sense, since bag 1 contained more strawberry flavored candy,

the probability that bag 1 was chosen should increase since it has more strawberry

candy and the probability that bag 2 was chosen should decrease.

Now to continue the example. Imagine the first piece of candy is put back into the

bag from where it came from. Then another piece of candy is drawn from the same

bag, which turns out to be cherry flavor. Now one must update the probabilities with

this new piece of information. One can keep using Bayes’ theorem. The posteriors

from the last draw m− 1 are now used as the priors for the current update.

P
(
B1

∣∣ C)
m

=
P
(
C
∣∣B1

)
P
(
B1

∣∣ S)
m−1

P (C)
(2.27)

P
(
B2

∣∣ C)
m

=
P
(
C
∣∣B2

)
P
(
B2

∣∣ S)
m−1

P (C)
(2.28)

49

The probability of drawing a cherry flavored candy assuming bag 1 was chosen

remains constant since the ratio of cherry to strawberry did not change for either

bag, so P
(
C
∣∣B1

)
= 1/4 and the probability of drawing a cherry flavored candy

assuming bag 2 was chosen is 1/2. We now must use Equation 2.23 to compute the

normalizing constant, otherwise the posterior probabilities will not sum to 1. In this

case P (C) = 7/20. Plugging these numbers into Equations 2.27 and 2.28 gives the

updated posterior probabilities

P
(
B1

∣∣ C)
m

=
3

7
≈ 0.43 (2.29)

P
(
B2

∣∣ C)
m

=
4

7
≈ 0.57 (2.30)

Intuitively, drawing a cherry flavored candy has reduced our belief that bag 1 was

chosen since bag 1 consist of only 1/4 cherry flavor candy while bag 2 consisted

of 1/2 cherry candy. This sequence can be continued, until a threshold has been

reached for one of the posterior probabilities.

2.4.2 Maximum A Posteriori

Imagine a situation similar to the candy example, where we are given a set of

hypotheses, {h1, h2, · · · , hNR}, and we are interested in finding which hypothesis is

the most likely, after new measurement gm is made. The method of Maximum A

Posteriori (MAP) says the hypothesis hk which maximizes the posterior probability

is the most likely one.

ĥmap = arg min
k

p
(
hk
∣∣ g) (2.31)

Using Bayes’ theorem I can rewrite Equation 2.31 as

ĥmap = arg min
k

p
(
g
∣∣ hk) p (hk)

p (g)
(2.32)

Maximizing the posterior is now equal to maximizing the likelihood and prior. In

certain cases, one needs to decide between two sets of parameters or hypotheses.

One can do an analogous technique of comparing the posteriors by using a ratio

p(hi|g)

p(hj|g)
=
p(g|hi)
p(g|hj)

p(hi)

p(hj)
(2.33)

50

If the ratio is larger than some threshold value then one choses parameter hi and

if the ratio is less than the threshold then one choses hj. Similar to the earlier

example of updating the posterior based on new data, one can update the Maximum

A Posteriori (MAP) decision based on new data. Define the likelihood ratio of the

mth measurement as

Λm =
p(gm|hi)
p(gm|hj)

(2.34)

After each new set of measurement data gm is collected, one can update the pos-

terior ratios by multiplying the likelihood ratio from the old set of data with the

likelihood ratio of the new set of data. The ratio which includes all the updates

from measurement m = 1 to measurement m = Nm is written as

p(hi|{g}Nm)

p(hj|{g}Nm)
=

Nm∏
m=1

Λm
p(hi)

p(hj)
(2.35)

where the notation {g}Nm represents the set of all data from measurement m to Nm.

In summary, Bayesian statistics is a useful way to update one’s belief in a hy-

pothesis or estimate a set of parameters. Bayes’ theorem can be used to merge

new measurement data and the probability of a hypothesis before the data was

known. This is very similar the approach taken by the Adaptive Feature Specific

Spectrometer (AFSS) and the AFSSI-C [3, 40].

2.5 Compressive Sensing

The fundamental approach of compressive sensing is that rather than sampling at

a high rate and then compressing the sampled data, one can dramatically reduce

the number of samples if each sample is in a compressed form. In Chapter 1, I

gave some intuitive understanding of how compressive sensing works, but there are

certain mathematical concepts that the reader should understand in order to have

a full appreciation of the practical challenges in computational sensing. So, I will

now discuss some of the formalism of compressive sensing and some techniques to

compressively sampling signals. In order to understand why compressive sensing is

so powerful I will first discuss the conventional sampling strategy.

51

2.5.1 The Nyquist-Shannon Sampling Theorem

One of the most important results concerning the sampling of continuous signals is

the Nyquist-Shannon sampling theorem (often referred to as the sampling theorem

for short). The sampling theorem says that exact reconstruction of a continuous

bandlimited signal f(x) is possible if the sampling frequency fs is atleast twice the

maximum frequency B of the signal [52]. Assuming that a bandlimited signal f(x)

has been sampled according to the sampling theorem, then exact recovery from the

discrete samples fn is guaranteed.

However, if the sampling frequency is less than twice the maximum bandwidth

fs < 2B, then aliasing may occur in the reconstruction. Aliasing is the effect that

high frequencies in the original signal will be represented as lower frequencies after

reconstruction and information contained in the high frequencies will be potentially

lost [53].

Given a spatial length l, the number of measurement samples is

Nm = fsl (2.36)

Since fs must be at least twice the maximum frequency of the signal there is a

lower bound on the number of samples needed to recover the signal with no loss of

information

Nm ≥ 2l ·max |F {f (x)}| (2.37)

where F {f (x)} is the Fourier Transform of the signal f(x).

It is important to clarify a small but important distinction between the meaning

of sampling and the meaning of a measurement. A measurement is any process that

maps physical phenomena which contains a signal-of-interest into measurement data.

The measurement data may or may not be discrete. Sampling has a more precise

mathematical definition. It is the process of mapping a continuous signal into a

sequence of discrete numbers which are called the samples.

2.5.2 Sparsity, Incoherence, and the Restricted Isometry

Property

There are two definitions of compressive sensing: The definition based on sparsity,

incoherence, and the restricted isometry property (RIP) and the practical definition.

52

The sparsity-incoherence definition asserts that true compressive sensing is when

the number of measurements is much less than the dimensionality of the signal,

Nm � N , and certain properties called sparsity, incoherence, and RIP are satisfied.

Under this definition, in the absence of noise, several theorems guarantee high proba-

bility of exact reconstruction given a specific type of optimization algorithm. Under

this framework, random measurement codes tend to have theoretically attractive

properties that make them ideal for compressive sensing [54, 29, 36, 38].

The practical definition asserts that compressive sensing occurs anytime the num-

ber of elements in the measurement is much less than the dimensionality of the

original signal and the signal is reconstructed with a small amount of error.

At first glance, compressive sensing seems to go against the Nyquist-Shannon

sampling theorem, however the sampling theorem’s guarantee of exact reconstruc-

tion of a continuous signal relies on the assumption of a bandlimited signal and

uniform periodic sampling.

Any continuous signal f(x) can be written as a discrete summation of orthonor-

mal basis functions

f(x) =
N∑
n=1

xnΨn(x), (2.38)

where xn are the coefficients. I will call the vector x = [x1 x2 . . . xN]T the represen-

tation vector of the signal and Ψ the representation basis. This allows us to rewrite

the signal as a matrix multiplication

f = Ψx. (2.39)

As I discussed in Chapter 1, any vector x is sparse when all but a few of its

entries are zero. A vector is called K-sparse when it has at most K non-zero entries.

x : ‖x‖0 ≤ K (2.40)

In real situations, signals with strictly sparse representation vectors are unlikely.

Fortunately, it is possible to have approximately sparse representation vectors, which

are called compressible. In other words, the sorted magnitudes of the coefficients

|xn| quickly decay. When a signal has an expansion in terms of a compressible

representation vector, we can intuitively understand Equation (2.38). Discarding

53

smaller coefficients will not significantly degrade the information in the signal [38].2

The concept of sparsity is important in compressive sensing. Sparsity determines

how efficiently one can acquire the signals. All things being equal, if K decreases,

then the probability of achieving exact recovery increases. Sparse representations of

the signal are not the only important prerequisite for high probability reconstruction.

In practice, the signal is sampled in a different basis than the representation basis.

For example, while many natural signals have a sparse or compressible representation

in various wavelet bases or Fourier bases, sampling using the representation basis

is not practical in many cases. Often a sensing basis H is used to perform the

sampling. In traditional Nyquist-Shannon sampling, the sensing basis is a collection

of delta functions. In many compressive imaging experiments, the sensing basis

is the binary random coded aperture mask [11]. In an LCOS based compressive

sensing spectrometer, the sensing basis is a finite set of spectral filters [55, 56]. In

short, the representation basis allows a signal to be represented as a sparse vector,

while the sensing basis is composed of the functionals that one samples with. The

equation which combines these concepts to model a compressive measurement is

g = HΨx = Hf (2.41)

where g is a Nm × 1 measurement vector, H is a Nm × N measurement vector, Ψ

is a N ×N matrix and x is an N × 1 vector.

One important concept in compressive sensing is coherence. The coherence be-

tween the sensing basis H and the representation basis Ψ is

µ (H,Ψ) =
√
n max

1≤k,1≤n
|〈hk, ψj〉|, (2.42)

which defines coherence as a measure of the largest correlation between any two

columns of H and Ψ.

Ideally, one would like to use as few measurements as possible without degrad-

ing the reconstructed signal. In compressive sensing, the amount of measurements

needed is a function of the sparsity and the coherence. Given a coefficient sequence

x that is K-sparse then one needs

Nm ≥ C · µ2(H,Ψ) ·K · log n (2.43)

2From now on, I will use the words sparse and compressible interchangeably. But it is important

to realize there is a difference.

54

for a high probability of reconstruction, where C is just a constant and N is the

dimensionality of the original signal [38].

Equation (2.43) shows the importance of sparsity and coherence in compressive

sensing. Lower coherence and sparsity allows one to use fewer measurements [11].

The more incoherent, and therefore lower correlation, the two bases are, the higher

the probability of succesful reconstruction of compressive measurements. It turns

out that random matrices have a high probability of being incoherent with any basis

[38].

The isometery constant δK of a matrix A is the smallest number such that

(1− δK) ‖x‖2
`2
≤ ‖Ax‖2

`2
≤ (1 + δK) ‖x‖2

`2
(2.44)

for all K-sparse vectors x. If δK is not too close to one then the matrix A obeys

the restricted isometry property (RIP) of order K [38]. If RIP is satisfied, the

matrix A approximately preserves the Euclidean length of signals. The RIP is an

important theoretical result which allows robust compressive sensing when signals

are corrupted by noise. Sensing matrices which have random entries obey the RIP

with high probability [38, 11, 36].

All of the concepts I have just discussed can be understood at an intuitive level.

Sparsity is the idea that the information content of a signal is relatively small com-

pared to the amount of data which originally described the signal. Coherence extends

the concept of how invertible a matrix is, the more linearly independent the system

of equations, the easier it is to invert the matrix. The restricted isometry property

is basically saying that any matrix with a small isometry constant will keep the

distance between signal vectors the same. Why is this important? Think of a geo-

metric picture, imagine noise as a sphere of uncertainty around the signal vectors.

When the noise is small, two signal vectors can be mapped to a small part of the

measurement space and still fit in that space. When one extracts the signal from

the compressed measurements, one can tell them apart. As the noise increases one

wants the distance between measured signal vectors to at least stay the same and

certainly not dramatically decrease, otherwise it will be difficult to tell the signals

apart. The RIP is basically a way of seeing if a measurement matrix will pack the

signal vectors with the same distance between them. This is important because one

does not want a small amount of noise to result in a large reconstruction error.

55

2.5.3 Solving Inverse Problems For Compressive Sensing

Now that I have discussed what compressive sensing is mathematically, it is time to

address how to actually solve the problem of extracting x from

g = Ax + e (2.45)

where g is the measurement vector, x is the sparse representation of the signal,

A is the linear mapping from x to g, e is the noise vector, and the number of

measurements Nm is much less than the dimensionality of the sparse representation

vector N .

The least squares (LS) estimator attempts to solve this inverse problem by min-

imizing the objective function

N∑
n=1

(g −Ax)2 = ‖g −Ax‖2
2. (2.46)

which is the `2 norm between the given data g and the forward model for the data

Ax. Notice, there are no probabilistic assumptions about the measurement data. It

turns out that a closed form version of the LS estimator exists as

x̂ =
(
ATA

)−1
ATg. (2.47)

where x̂ is the estimated value of x.3

The derivation of the closed form of the least squares estimator is given in Ap-

pendix A. Alternatively, if the vector x is very large, solving the inverse problem

in closed form maybe too computationally intensive. In this case, one may use the

gradient descent algorithm or other types of iterative optimization algorithms to

solve the least squares problem. While the LS estimator may provide a solution

when Nm � N , these solutions tend to overfit the data in these situations, do not

take advantage of the prior knowledge of sparsity to reduce the solution space, and

Ax̂ is not unique. Therefore, an unconstrained LS approach does not work well for

the compressive sensing problem.

3Note that it is important to realize that in practice one should never use the actual inverse

of ATA due to the various numerical computing issues. One should resort to computing the

psuedoinverse.

56

There are a vast number of algorithms that are designed for compressive sensing

and new ones are being published constantly. A full discussion of each algorithm

is not within the context of this dissertation. The fundamental concept of the ones

used by the author will be briefly discussed now and implementation details will be

provided in the relevant chapters.

Many of the algorithms for compressive sensing are optimization algorithms.

Optimization algorithms are problems which serve to minimize (or maximize) an

objective function F0

x̂ = arg min
x ∈ RN

F0 (x) , (2.48)

which is called an unconstrained optimization problem. Similarly, solving the prob-

lem

x̂ = arg min
x ∈ RN

F0 (x) subject to Fn (x) ≤ bn ∀ n (2.49)

is a constrained optimization problem. If Fn ∀ n are convex then the problem is a

convex optimization problem. If Fn ∀ n are linear functions, then it is called a linear

program (program is synonymous with optimization) [36].

Given measurements g and knowledge that x is sparse or compressible, solving

an optimization problem of the form

x̂ = arg min
x

‖x‖0 subject to Ax = g (2.50)

where ‖x‖0 is the `0 norm, which is equal to the number of nonzero entries in vector

x.4 Equation (2.50) returns estimate x̂ that resembles x as long as the measurement

noise is small. This is referred to as `0-minimization. The constraint ensures the

solution agrees with the observed measurement data. In other words, one wants the

sparsest solution possible that agrees with the measurement data.

Unfortunately, `0-minimization is nonconvex which means that iterative methods

may not converge to a solution. This is an important feature for inverse problems. A

convex problem has the property that any local minimum is also a global minimum.

In fact, it has been shown that for a general matrix A, `0 minimization is intractable

[57]. This means that one can do no better than a brute force search for the answer.

Fortunately, one can minimize the `1 norm

x̂ = arg min
x

‖x‖1 subject to Ax = g (2.51)

4The `0 norm is not strictly a norm and is actually a quasi-norm.

57

where ‖x‖1 =
N∑
n

|xn|, and get excellent reconstruction in the case where Equa-

tion (2.43) and the Equation (2.44) are satisfied. Not only is Equation (2.51) convex,

it can be reformulated as a convex quadratic optimization problem which means that

it can be solved by standard optimization methods [31, 29, 36]. Equation (2.51) is

the problem that much of the theoretical framework of compressive sensing provides

guarantees for.

A more practical version of Equation (2.51) is written as

x̂ = arg min
x

‖Ax− g‖2
2 + τ‖x‖1 (2.52)

where τ is a non-negative number. τ is called the regularization parameter and

serves to change the sparsity level of the solution and can be used to account for

noise, by setting small noise contributions to zero, which increases the robustness

of the optimization.5 In this form, the problem is called `1 regularized least squares

(LS). `1 regularization also appears in the context of basis pursuit denoising [58].

In statistics, `1 regularized LS is often referred to as the lasso regression method

or the lasso problem. The original paper for lasso describes both the problem and the

lasso algorithm. However, there are multiple algorithms for solving the `1 regularized

LS problem, such as Least Angle Regression (LAR) [59], truncated Newton interior

point methods [60], and Conjugate Gradients algorithm [54].

A related regression technique which is also used to regularize statistical models

to prevent overfitting called is ridge regression,

x̂ = arg min
x

‖Ax− g‖2
2 + τ‖x‖2. (2.53)

In the context of optimization this is called the Tikhonov regularization problem

[60, 61]. As with least squares, ridge regression seeks coefficient estimates that fit

the data well. In ridge regression the regularization is performed by using an `2

term, which also tends to shrink the coefficients the towards zero as τ increases but

does not set certain elements to zero like in lasso regression.

In Figure 2.4, I show an example of sparse signal recovery using the built-in

MATLAB lasso function. In this case the signal f is sparse in the native basis

5Most papers in compressive sensing use λ to denote the regularization parameter. I choose

to use τ to prevent confusing it with wavelength since I will be discussing spectral compressive

sensing later on.

58

0 10 20 30 40 50
-1

-0.5

0

0.5

1
Ground Truth Sparse Signal

0 10 20 30 40 50
-1

-0.5

0

0.5

1
Estimated Sparse Signal

Figure 2.4: Example of sparse vector recovery using `1 regularized least squares algo-
rithms. SNR = 100. The top plot shows the ground truth signal x. The bottom plot
shows the estimated signal x̂ and τ = 0.02. The number of measurements is Nm = 10.
The dimensionality of the signal is N = 50.

so the representation basis can be written as the identity matrix Ψ = I. The SNR

is the ratio of the variance of the signal to the variance of the noise and is set to

SNR = 10. The top plot shows the ground truth signal f . The bottom plot shows

the estimated signal f̂ . The regularization parameter is set to τ = 0.02. The sensing

matrix H is shown in Figure 2.5. The number of measurements Nm = 10. The

dimensionality of a the signal N = 50.

One can gain some geometric intuition of why the `1 regularized least squares

produces sparse solutions by looking at Figure 2.6(a). The dot indicates the uncon-

strained LS solution. The contours represent equal values of the objective function:

‖Ax = g‖2
2. The solution is when the `1 constraint intersects one of the contours.

Because of the shape of the `1 ball, this tends to occur along one of the coordinate

axes. Figure 2.6(b) represents the situation with `2 regularized LS, ridge regression,

59

5 10 15 20 25 30 35 40 45 50

2
4
6
8
10 -1

0

1

Figure 2.5: The sensing matrix H used for Figure 2.4. Since the signal was already sparse,
the representation basis can be written as the identity matrix Ψ = I. The number of rows
correspond to the number of measurements Nm and the number of columns correspond
to the number of elements in the signal vector f .

(a)	 (b)	

Figure 2.6: (a) `1 regularized least squares which is called lasso regression. (b) `2
regularized least squares which is called ridge regression.

60

because of the shape of the `2 ball the solutions may or may not occur along the

coordinate axes.

The lasso regression technique in statistics is a way to perform variable selection

without overfitting the data [62, 63]. In simple terms, overfitting means that given

some seemingly complicated data, overfitting occurs when the model attempts to fit

all of the data producing a model with very low error with the given data but will

tend to have poor prediction results when new data is obtained. By regularizing

the objective function, the model will tend to have better prediction accuracy by

producing simpler models even though it may have a larger error trying to fit the

current data.

Algorithms for solving the lasso improve the accuracy of the estimate by selecting

only a subset of the columns of the matrix A which we denote as the As. An example

of the LAR algorithm which is often used to solve the lasso problem is provided in

[59]. By forcing the sum of the absolute value to be less than some fixed value,

`1 regularized least squares forces certain values of xn = 0, effectively choosing a

simpler model out of all the possible solutions provided by LS.

2.6 Conclusion

I used this chapter to cover several important mathematical concepts which are

required for the reader to understand the advantages and disadvantages of com-

putational sensing. I first discussed the advantages that Hadamard and S-Matrix

multiplexing provided compared to the isomorphic sensor which provided a context

for the discussion of the Fellgett advantage. Then I discussed Principal Component

Analysis (PCA), a useful technique for finding useful discriminating features from

seemingly complicated data. I also covered the fundamentals of Bayesian statistics

and how it can be used to update estimates of statistical parameters given new data.

Then I covered important topics in compressive sensing: sparsity, coherence, and

the restricted isometry property (RIP) and discussed the `1 regularized LS problem

which is used to promoted sparsity.

61

Chapter 3

Static Computational Optical Un-

dersampled Tracker

3.1 Motivation for the Static Computational Un-

dersampled Tracker

In large-area persistent surveillance, traditional isomorphic sensing systems must

acquire, process, store, and transmit large amounts of data to achieve high spa-

tial and temporal resolution. These sensors are typically on airborne platforms or

orbiting satellites which leads to a large size, weight and power-cost (SWAP-C).

However, if one is interested in estimating the location of moving objects (track-

ing) rather than reconstructing the entire object scene, the information content in

the signal-of-interest is relatively low. One can significantly lower the SWAP-C by

using a task-specific approach. To address the challenges of traditional target track-

ing, several colleagues and I designed, built, and demonstrated such a device called

the Static Computational Optical Undersampled Tracker (SCOUT) [12, 64]. This

chapter will provide details in to how we developed the SCOUT.

Most of the current experimental demonstrations of compressive imaging try to

reconstruct the entire object scene or spatial-temporal datacube. For example, the

Coded Aperture Compressive Temporal Imaging (CACTI) sensor uses a temporally

varying psuedo-random coded aperture during a single FPA exposure and attempts

to reconstruct a spatial-temporal datacube [16]. In another experimental compres-

62

sive imager, a rotating cylindrical lens measures scene data using an optical Radon

transform and then reconstructs a static object scene [65]. While these architectures

demonstrate the rapid progress that researchers have made towards compressive

imaging, they emphasize reconstructing high dimensional data and require another

post-processing step to extract task-specific information. Furthermore, this data

will then need to be compressed again for storage or transmission. If one is con-

cerned with only tasks, then reconstructing the entire scene as an intermediate step

is unnecessary and even wasteful.

Another example of compressive imaging is the single pixel camera, discussed

in Section 1.6. This sensor uses a Digital Micro-Mirror Display (DMD) to measure

in any arbitrary basis, but must do so over many time-sequential measurements

[11]. Each measurement is an integrated point-by-point multiplication of the scene

locations with the DMD array values. For temporally static scenes, this architecture

allows an arbitrarily long exposure time (within the limit of detector saturation) to

increase the SNR for each measurement. However, with temporally varying scenes it

needs to record all the projections for each frame before the object moves. Increasing

the rate at which projections are made is possible, but this reduces exposure time

and SNR. One way to overcome this is by implementing a parallel architecture of

single pixel cameras, each with a different projection, see Figure 3.1. Clearly this

will significantly increase the SWAP-C of the architecture. Another issue with a

fully parallel architecture, is that each camera will have a different entrance pupil

location, producing parallax.

One issue many computational sensor designs must deal with is “over multiplex-

ing”. All real optical ADC devices have a certain amount of dynamic range, in which

linearity is valid. As the amount of light that is recorded increases, the amount of

dynamic range being used fills up. Architectures which only use a single pixel are

at greater risk for over multiplexing.

A computational sensing architecture dedicated to target tracking rather than

full object scene reconstruction, can significantly ameliorate these design trade-offs.

We developed the Static Computational Optical Undersampled Tracker (SCOUT)

with the goal that measurements must be acquired “single-shot” using a conventional

FPA [12, 66]. The SCOUT system is an important step toward practical low-cost

computational sensing for optical imaging. The system enables parallel “single-

63

Scene
Array of

microimaging
optics

Intermediate
images on

micromirrors
or masks

Array of
condensing

lenses

Array of
photodetectors

Figure 3.1: An example of a typical parallel optical CS architecture. Capturing Nm

simultaneous projections requires using Nm spatial light modulators or masks and Nm

detector elements.

shot” acquisition of compressed, task-specific sensing oriented data, using a static

(no moving parts) architecture.

A related static approach uses optical Radon projections [67]. This instrument

relies on a several cylindrical lenses to integrate the optical intensity from the object

plane onto lines on the FPA. The number of detector elements is much less than the

native dimensionality of the object scene. For a single moving point in the field-of-

view, two perpendicular Radon projections is enough to compute the change from

frame to frame. However, the researchers found heuristically that four cylindrical

lens are better for reconstructing the change information for an scene that included

up to ten moving objects, called movers.

A systems level flowchart of the SCOUT is shown in Figure 3.2. Like many

computational sensors, it relies on the coding of the analog signal-of-interest prior

to the ADC step and processes the measurement data using prior information and

calibration data. The analog instrument was optimized using a custom ray-based

simulation which evaluates a metric based on the simulated system matrix. In this

chapter, I will discuss the SCOUT architecture in detail in Section 3.2, which uses

a defocused imaging system with two binary amplitude masks. The FPA samples

at a much lower resolution than the native resolution of the object scene. While

other compressive imaging systems have to reconstruct entire images, the SCOUT

64

Object
Scene

Sampling
Scheme

Solve LASSO
problem

Optics

Simulation
Optimizes Analog

Instrument

Analog
Coding

Calibration:
H

Analog Instrument

Figure 3.2: A systems level flowchart of the SCOUT system. Light from the object
scene propagates to the optical instrument which consists of a coded aperture (mask 1),
an objective lens, and another coded aperture (mask 2), a focal-plane array (FPA) then
undersamples the coded object scene, measurement data is used to solve a lasso problem.
The parameters of the optical instrument is optimized using simulations to minimize the
probability of tracking error. Calibration provides accurate measurement of the system
matrix H to lasso optimization algorithm.

only reconstructs frame-to-frame differences. As a result the SCOUT requires sig-

nificantly less bandwidth to transmit to a base station where the post-processing

step can occur.

3.2 SCOUT Architecture

The goal of the SCOUT was to demonstrate a low SWAP-C compressive target

tracking sensor. The SCOUT architecture is designed to avoid the hardware scaling

issues of the single-pixel camera. The trade-off for the ability to measure parallel

projections is the loss of flexibility to implement arbitrary projections i.e. by using a

Spatial Light Modulator (SLM). However, rather than fully designing the projections

themselves, I describe a process for optimizing the optical instrument in Section 3.3.

Previous prototypes of the SCOUT architecture are described in [64, 68].

The SCOUT system takes measurements that are both compressive and mul-

tiplexed: The number of measurements is less than the number of scene locations

Nm � N , and each measurement must contain information about many scene loca-

tions. In this architecture, the number of measurements is the number of pixels in

the FPA. Intuitively this means that the system matrix must exhibit a many-to-few

65

Object

plane

Image

plane

Imaging

lens

Mask 2Mask 1

Low-resolution

detector array

Figure 3.3: A diagram of the SCOUT architecture. A lens projects light through a
pair of binary occlusion masks onto a low-resolution sensor which is defocused from the
nominal image plane. This creates a spatially multiplexed shift-variant PSF incident on
the FPA.

mapping from scene locations to FPA elements.

The SCOUT architecture is shown in Figure 3.3. In this architecture the multi-

plexing occurs in the spatial domain by mapping multiple object scene locations to

only a few detector pixels. To accomplish this, we created a structured blur. This

blur allows the light from a single object point to be spread to several pixels on the

FPA. The most straightforward way to achieve a blur is by defocusing the image so

that the PSF is broad, spanning many FPA pixels. Since the number of FPA pixels

are less than the object scene resolution, the measurement is compressive.

Like any aberration, defocus significantly reduces contrast of high spatial frequen-

cies, so the measurements will be poorly conditioned for reconstruction. Therefore,

we created high-frequency structure in the PSF by using two pseudo-random binary

occlusion masks. Each mask is placed at different positions between the lens and the

sensor. The separation between masks results in a spatially varying point-spread

function.

As with many linear computational sensing architectures, the forward model is

written in the form

g = Hf + e (3.1)

66

where f is the discrete representation of the object signal-of-interest, g is the mea-

surement, H is the matrix which describes mapping of the object to the measure-

ment, and e is the noise at each measurement. In this situation the signal-of-interest

is actually the difference between two subsequent object scenes (frames) ∆f :

gk = Hfk + ek

gk+1 = Hfk+1 + ek+1

(3.2)

Where the subscripts represent the kth readout from the FPA.

∆g = gk+1 − gk = H(fk+1 − fk) + ek+1 − ek (3.3)

so the forward model can be written as

∆g = H∆f + ∆e (3.4)

In this equation, the 2-dimensional difference frame and object scene have a resolu-

tion of Rx × Ry elements, and are lexicographically reordered into a N × 1 column

vector, ∆f and f . Similarly, the difference measurement and measurement ∆g and g

are Nm× 1 vectors representing a 2-dimensional FPA readout with a rx× ry matrix

which represents the low resolution measurement. The detector noise is represented

by the Nm × 1 vector e. The system matrix H is thus an Nm × N matrix, where

Nm � N in order to the system to be considered compressive. The nth column of

the matrix is the PSF of the nth location in the object scene. The resulting system

matrix H demonstrates that the SCOUT is a spatially variant optical system and

presents a block structure, as seen in the example shown in Figure 3.4.

Referring back to the diagram of the SCOUT architecture shown in Figure 3.3.

The object distance is much larger than the focal length of the lens so image of the

scene occurs approximately one focal length from the lens fE. The FPA is placed

some distance dim from the focal plane thus the total distance from the lens to the

FPA is fE + dim. Two binary occlusion masks, mask 1 and mask 2, are placed at

distances d1 and d2 from the sensor. Mask 1 and 2 have associated fill factors F1

and F2 and pitch p1 and p2, respectively.

67

F
ig

u
re

3
.4

:
A

n
ex

a
m

p
le

o
f

a
n

ex
p

er
im

en
ta

ll
y

m
ea

su
re

d
of

th
e

sy
st

em
m

at
ri

x
of

th
e

S
C

O
U

T
sy

st
em

.
T

h
e

ap
p

ro
x
im

a
te

b
lo

ck
-T

o
ep

li
tz

st
ru

ct
u

re
is

cl
ea

rl
y

ev
id

en
t,

as
is

th
e

d
ev

ia
ti

o
n

fr
o
m

th
e

B
er

n
ou

ll
i

or
G

au
ss

ia
n

en
se

m
b

le
s

ty
p

ic
al

ly
co

n
si

d
er

ed
in

C
S

tr
ea

tm
en

ts
.

68

3.3 Optimizing the SCOUT

While the SCOUT lacks the ability to implement arbitrary measurement codes, we

are able to adjust various physical parameters of the system such as defocus distance

and mask fill factor to minimize reconstruction error. Adjusting each parameter in

the actual prototype requires too much time, a more practical approach is to simulate

the SCOUT architecture. In this section, I will discuss the simulation and define a

metric that we used to evaluate different design parameters of the SCOUT without

the need to reconstruct the difference frames.

3.3.1 Simulating a SCOUT System

We developed a paraxial ray based simulation for the SCOUT. The simulation allows

us to model the effects on the measurement as light travels through the lens and

two masks and onto the detector plane. The lens is modeled as a single thin lens

with transmittance function tf and the two masks have transmittance functions t1

and t2. From calibration measurements, the mask has a transmittances of 0 where

the mask is black and 0.88 where the mask is clear. The lateral magnification of the

scene and the two masks is calculated using similar triangles.

A simulated calibration occurs, in other words the simulation records the rx× ry
PSF from each scene location in order to obtain the system matrix H. Once H

is known, we use it to simulate the low resolution measurements, g, of the higher

resolution scenes, f . Subsequent simulated measurements are subtracted to find ∆g.

We also did not add any noise. I have attached the simulation code in Appendix D.

3.3.2 Quantifying Reconstruction Error

The MSE error metric is not suitable for our application because it weights all errors

equally. For the task of motion tracking we classify errors into three types. A false

positive occurs when the estimate shows an object where there is none. A false

negative occurs when the estimate fails to show an object where one exists. As shift

error occurs when an object is being tracked but appears in the wrong location.

We developed a custom tracking error metric that weighs false negatives and false

positives more than shift errors. This is because false negatives and false positives

69

indicate a serious failure in the motion tracking task, while shift errors are less

serious. We define tracking error as

P =
|a⊗ ε|
2Nmv

(3.5)

where

a =

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

 (3.6)

where the error ε is the difference between the true and reconstructed difference

frames

ε = ∆f −∆f̂ (3.7)

and Nmv is the number of movers in the scene. To reduce the penalty for one-pixel

shift errors, the error frame is convolved with a three pixel averaging kernel a. The

absolute value is taken in order to count positive and negative errors equally, and the

error is divided by 2Nmv to make the metric independent of the number of movers.

3.3.3 Optimizing Optical System Parameters

Now that I have explained the simulation and the custom error metric for tracking,

I can finally begin to discuss how we optimized some of the parameters to reduce the

reconstruction error. Both the simulation and experimental study demonstrates a

relationship between mask position and pitch: the tracking error is very sensitive to

the projected mask pitch on the FPA. Furthermore, increasing the mask seperation

reduced tracking error, generating a highly space-variant PSF. With these observa-

tions in mind, we focus our study on the mask pitches (p1, p2) as well as the defocus

distance dim.

A brute force search, using the lasso solver at each step is computationally inten-

sive. We wanted a simple to compute metric which can predict tracking error. So we

developed a custom metric inspired by the coherence parameter from the compres-

sive sensing community, see Equation (2.42). We created a customized coherence

parameter µ,

µ = max |〈hi, hj〉|; i 6= j (3.8)

70

which is the maximum absolute value of the inner product between unique columns

hi and hj of H. The columns are unnormalized because their relative magnitude is

related to the physical light throughput.

Notice that although system matrices with nearly pairwise orthogonal columns

will result in small coherence values, system matrices with numerically small entries

can accomplish the same. Optimizing H for minimum coherence would drive total

system throughput down. To eliminate this effect we normalized H:

Hnorm =
H∑Nm

m=1

∑N
n=1 hm,n

(3.9)

where Nm and N are the total number of rows and columns in the system matrix.

Physically, this normalization represents division by the sum of each PSF’s light

throughput. The coherence of a system matrix normalized in this way cannot be

biased by reducing throughput. One consequence of this normalization is that mask

fill factor cannot be optimized.

5 10 15 20 25 30 35
 Defocus (mm)

0

0.5

1

1.5

2

 C
oh

er
en

ce
 7

#10-7

0.2

0.25

0.3

0.35

0.4

0.45

 A
vg

. R
ec

on
st

ru
ct

io
n

Er
ro

r P

 Coherence 7
 Avg. Reconstruction Error P

Figure 3.5: The coherence µ (left vertical axis - black) and reconstruction error P (right
vertical axis - dashed gray) plotted as a function of defocus distance dim.

71

0 500 1000 1500 2000 2500 3000
 Mask Pitch (7m)

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

 C
oh

er
en

ce
 7

#10-8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 A
vg

. R
ec

on
st

ru
ct

io
n

Er
ro

r P

 Coherence 7
 Avg. Reconstruction Error P

Figure 3.6: The coherence µ (left vertical axis - black) and the reconstruction error P
(right vertical axis - dashed gray) is plotted as a function of the pitch of mask 2

To demonstrate the effectiveness of the modified coherence parameter as a pre-

dictor of reconstruction error trends, I ran several simulations with complete recon-

structions in order to compare reconstruction error to coherence. Figure 3.5 shows

that reconstruction error and the coherence parameter follow similar trends for dif-

ferent defocus distances when all other parameters are held constant. Figure 3.6

shows similar agreement when varying values of mask pitch p2.

The simulations demonstrate the viability of the architecture and provide an

efficient way to optimize most architecture parameter values using the simulated

system matrix coherence. Mask throughput cannot currently be optimized because

the custom coherence metric is normalized by full system throughput. The problem

of finding optimal mask throughput warrants further investigation.

72

Figure 3.7: The camera captures images of scenes displayed on a plasma television
approximately 2 meters away..

Figure 3.8: The camera disassembled to show the camera body, the optical tube and the
custom fabricated lens holder which goes inside the lens tube.

3.4 Experiment

3.4.1 Experimental Setup

For the experiment, the captured image resolution rx×ry is 8×8, while the ground-

truth and reconstructed frame differences have a resolution Rx ×Ry of 32× 32. To

73

simulate a low-resolution detector, the camera captures the scenes at 128×128 sensor

pixels and the images are binned down to 8× 8 before being used in reconstruction.

We used a SBIG Model ST-7XMEI CCD camera with modified optics. The

object scenes were displayed on a plasma television monitor. Figures 3.7 and 3.8

shows a photograph of the experimental setup. The optical system of the camera

includes a 35 mm focal length lens and two random amplitude binary masks. Each

mask was printed on transparencies using a high resolution laser printer. Mask 1

has pitch p1 = 30 µm and fill factor F1 = 0.4 and is located at a distance dm1 =

14 mm from the sensor. Mask 2 has pitch p2 = 500 µm and fill factor F2 = 0.2

and is located at a distance dm2 = 57 mm from the sensor. These parameters were

chosen based on the aforementioned optimization process. A plasma monitor was

used because it provides a higher contrast compared to the traditional liquid crystal

displays (LCD). However, the black background of the plasma monitor still produced

a small amount of irradiance, which is a source of systematic error and potentially

reduces the usable amount of dynamic range.

3.4.2 Calibration

Instruments based on compressive sensing rely heavily on accurate calibration. Espe-

cially important is the knowledge of the system matrix H to prevent reconstruction

or task-specific sensing errors. The SCOUT architecture is no different. Inaccu-

rate calibration dramatically affects the tracking error. Furthermore, because of the

non-isomorphic nature of compressive sensing, it is difficult to look at the system

matrix and intuitively tell whether it will lead to good results. In this section, I will

describe the calibration procedure for the SCOUT architecture.

Conceptually the calibration procedure is straightforward. The goal is to exper-

imentally determine the system matrix H. Each column of the matrix is the point-

spread function (PSF) due to a “point” at the nth location in the object scene. All

one needs to do is display the point at each location and store the measurement in

the respective column of H.

There are several practical issues in the calibration process for the SCOUT.

Calibration itself is a measurement process, noise is present in each measurement.

To mitigate the effects of noise, we cooled the CCD in the camera to 0 degrees Celsius

74

using the built-in thermoelectric cooler (TEC). We also increased the exposure time

to 1.0 seconds. While it is possible to continue increasing the exposure time, we

found that increasing the exposure time past this did not significantly reduce the

tracking error metric.

To eliminate any systematic error due to light pollution, we constructed a light-

tight box using 80/20 aluminum framing, black poster board, and black gaffer tape.

This box enclosed the entire SCOUT and the plasma monitor. We also found that

the plasma monitor emitted a certain amount of light even though it is set to zero.

To mitigate this, we take several dark frame measurements, which is a measurement

with the plasma monitor set to all zero and then averaged. This averaged dark

frame measurement is subtracted from each PSF measurement.

Another issue with the plamsa is that the intensity varies after a few minutes.

Therefore, every 60 seconds we pause the calibration procedure and set the entire

screen to all white. This resets the intensity levels and a new set of dark frame

measurements is recorded. The calibration sequence is then allowed to continue.

Another issue with the plamsa monitor is that when a particular pixel is illu-

minated, the intensity of the adjacent pixels change. So when the next pixel is

illuminated, that intensity is different compared to the intensity we measure if the

adjacent pixel had not been turned on. In other words, turning on pixel n changes

the intensity at pixel n+ 1 when it is turned on. In order to mitigate this effect, we

created a psuedo-random sequence so that after a certain amount of time, the effect

of a neighboring pixels activity is reduced. The total time to calibrate the SCOUT

is approximately 20 minutes.

Remember that an isomorphic sensor is represented by the identity matrix. In

comparison, in the SCOUT, the spatially varying blurred PSF leads to an approx-

imate block-Toeplitz structure for the system matrix, with approximate Toeplitz

structure within individual blocks due to the shifting PSF. This circulant structure

is modified by random variations corresponding to the differing projections created

by the two masks. Psuedo-code describing the calibration is given in Appendix C.

75

3.4.3 Reconstruction: `1 regularized Least Squares Mini-

mization

Given ∆g and H, reconstructing the difference frame ∆f , is a highly underdeter-

mined problem given no other prior knowledge. As discussed in Section 2.5, several

important theoretical results show that it is possible to accurately recover ∆f if

the sparsity K is low relative to the number of measurements Nm and the RIP is

satisfied. Inspired by these results, we turn to algorithms designed to solve the `1

regularized LS (lasso) problem:

∆f̂ = arg min
∆f

‖H∆f −∆g‖2
2 + τ‖∆f‖1 (3.10)

Given ∆g and H, the reconstruction algorithm finds a solution ∆f̂ that minimizes

this objective function.

We used the l1 ls toolbox for MATLAB which implements an optimization

technique based on Interior-Point methods [60]. The l1 ls function requires several

input arguments: ∆g, H, τ the regularization parameter, and a parameter called the

relative tolerance, rel tol. As I discussed in Section 2.5, τ is a tuning parameter

that is used to tell the optimization algorithm how much to weight the sparsity of

the solution. Large τ tend to drive the solutions towards lower values of sparsity, K.

The rel tol controls how well the solution should agree with the data. Low values

of rel tol tend to force the l1 ls to run many iterations until the a threshold has

been reached. While large values of rel tol tend to produce poorer reconstruction

results but less optimization iterations.

We found that a regularization parameter of τ = (1× 10−9) ‖2 HT
cal ∆g‖∞ works

well for experimental reconstruction. Where Hcal is the system matrix measured

from calibration and ‖ · ‖∞ is the infinity norm. The rel tol is set to 1× 10−4.

Finding the correct regularization parameter is one of the major issues for many

algorithms designed for compressive sensing. In our experiment, we had to run the

reconstruction over many iterations with varying τ in order to find the appropriate

value. Unfortunately this also depends on the sparsity of the signal-of-interest.

Therefore, large numbers of movers may have a different optimal value for τ . The

value of τ , we reported works well from one to ten movers in our experiment.

76

3.4.4 Experimental Results

Experimental results for a ten difference frame sequence is shown in Appendix B. The

object scenes contains two dots (movers) changing position on a black background.

Difference frame 1 of this sequence is shown in Figure 3.9. The top row shows two

consecutive, before and after, f1 and f2, frames of the scene and the ground-truth

difference frame ∆f , all at 32× 32 resolution. The bottom row shows the difference

of corresponding 8× 8 measurement frames, ∆g. Finally, the 32× 32 reconstructed

difference frame is shown at the bottom right, ∆f̂ .

Initially, the amplitude of the movers in the estimated difference frame to did

not agree qualitatively with the amplitude of the ground truth difference frame. We

realized that this was due to the fact that the exposure time during calibration was

not the same as the exposure time during the actual experiment. By normalizing

the system matrix obtained during calibration by the ratio of exposure times, we

were able to demonstrate quantitative agreement with the ground-truth:

Hrecon =
texp
tcal

Hcal (3.11)

where texp and tcal are the experiment and calibration exposure times, respectively.

This scaling accounts for the physical effect of increased photon collection (and hence

photodetector counts) as a function of increased exposure time. The resulting peaks

are easily identified against background noise.

In the reconstruction of the ninth difference frame, the amplitude of one the

movers had a lower amplitude, shown in Figure 3.10. Poor reconstruction tends

to occur when two movers are located adjacent to each other in the ground-truth

difference scene. This is an issue that can be traced to the system response matrix

H, locations next to each other have are more likely to have larger correlations in

their respective PSF.

We also performed a more realistic experiment in which a mover simulates a

vehicle driving on a street. This demonstrates that the SCOUT works well in situa-

tions with non-zero backgrounds. This sequence with the results for a single mover

is also shown in Appendix B. The first difference frame of this sequence is shown in

Figure 3.11. As seen in ground truth difference frame ∆f shown in Figure 3.11(c),

the amplitude of the past and present mover locations in the ground-truth are lower

77

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

−60000

0

60000

 (a) (b) (c)

 (d) (e)
−1

0

1

Figure 3.9: A reconstruction of a 32× 32 scene with two movers of equal amplitude on
a black background. (a) ground-truth scene 1 (b) ground-truth scene 2 (c) ground-truth
frame difference and (d) measured 8 × 8 frame difference, scaled so that it is discernible
(e) reconstructed 32× 32 difference frame

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

−60000

0

60000

 (a) (b) (c)

 (d) (e)
−1

0

1

Figure 3.10: A reconstruction of 32 × 32 scene with two movers of equal amplitude
on a black background. This frame shows the results when the past and present mover
locations are adjacent in the difference frame. (a) ground-truth scene 1 (b) ground-truth
scene 2 (c) ground-truth frame difference and (d) measured 8× 8 frame difference, scaled
so that it is discernible (e) reconstructed 32× 32 difference frame

78

0

0.5

1

0

0.5

1

−1

0

1

−8000

0

8000

 (a) (b) (c)

 (d) (e)
−10

0

10

Figure 3.11: Difference frame 1 of a video demonstration of compressive tracking of a
32 × 32 difference scene with a non-zero background. Scene background ©2012 Google.
(a) ground- truth scene 1 (b) ground-truth scene 2 (c) ground-truth frame difference and
(d) measured 8×8 frame difference, scaled so that it is discernible (e) reconstructed 32×32
difference frame

than the zero background case. Therefore there is also less contrast in ∆g the dif-

ference measurements in Figure 3.11(d), which makes this case more sensitive to

noise.

The most notable feature in the non-zero background results is reduced quanti-

tative agreement with the ground-truth, even when the calibration matrix is scaled

according to Equation (3.11). There are several reasons for this: Nonlinearities in

the overall system response that result from a nonlinear monitor “gamma” (map-

ping from pixel value to output brightness) and inter-pixel interactions that effect

brightness. These effects are not captured during calibration as that is performed

point-by-point (thus reducing inter-pixel effects) and with pixels that are fully-on

or -off (thus avoiding effects from monitor gamma). Another possible reason is

over-multiplexing, since the total light from each frame is increased, there is less

dynamic range in the FPA, and therefore detector non-linearity may be a source of

error. Despite the lack of quantitative agreement, qualitative agreement is excellent

and the movers are clearly identifiable against the background in Figure 3.11(e).

79

3.5 Conclusion

While the SCOUT architecture is well-suited for tracking applications, it does have

limitations which make it less useful for general imaging applications. Without

sparse scene motion, the priors used in reconstruction will lead to incorrect results.

Reconstructions only show the locations of moving objects, and the sensing plat-

form must be stationary relative to the scene so that frame differences are sparse.

However, more sophisticated techniques could potentially estimate platform motion.

Despite the limits of the SCOUT, the architecture is well-suited for applications such

as fixed-camera wide-area surveillance where bandwidth, data volume, and cost are

key concerns.

Many of the theoretical guarantees for compressive sensing are not specialized or

tuned for the block-circulant system matrix. As I mentioned in Chapter 2, random

coding has several theoretical properties that make them useful for compressive

sensing. There has been some research work to investigate system matrices with

Toeplitz and circulant structure [69, 70, 71], however there has been relatively little

work published discussing the approximately block-Toeplitz structure that naturally

arises in optical systems such as SCOUT and theoretical guarantees like the ones

for random coding. Two exceptions are [72, 73], which provide both theoretical

evidence for the viability of CS system matrices with block-Toeplitz structure.

A completely parallel compressive imager would require as many encoding op-

tical elements as simultaneous measurements. The SCOUT architecture eliminates

this scaling issue by giving up the ability to implement arbitrary projections. Us-

ing a pair of masks at different distances to create a block-circulant system matrix,

the system makes compressive measurements and reconstructs frame differences.

The system can be optimized by adjusting system parameters such as mask pitch

and defocus distance. Simulations demonstrated the use of the a modified coher-

ence parameter as an efficient predictor of system matrix performance to optimize

these parameters. An experimental system based on the SCOUT architecture suc-

cessfully performed compressive motion tracking on scenes with zero and nonzero

backgrounds in most instances. However, the reconstruction of difference scenes

with adjacent mover locations caused issues due to the design or calibration of the

system matrix. The system showed promising results using a general `1 regularized

80

least squares minimization algorithm and I believe that further research on sparse

reconstruction with block-circulant system matrices may decrease reconstruction er-

ror. We also believe that non-isomorphic calibration techniques and adding further

degrees of freedom in the design parameters could result in significant performance

gains.

81

Chapter 4

Adaptive Feature Specific Spectral

Imaging-Classifier

4.1 Motivation

Spectral imaging allows for improved discrimination of objects in a scene by mea-

suring both spatial and spectral data [74, 75, 76]. By combining the spectrometer

with the camera, the spectral imager produces a spectral datacube, which consists of

two spatial dimensions and a spectral dimension [77, 78], see Figure 4.1(a). In this

chapter, I will introduce the Adaptive Feature Specific Spectral Imaging-Classifier

(AFSSI-C), a computational spectral imaging system which directly classifies the

spectrum at each spatial location in a scene.

One of the major limitations of isomorphic sensing techniques in spectral imaging

is due to the fact that one must acquire a three-dimensional spectral datacube using

a two-dimensional focal-plane array (FPA) [77]. Traditional isomorphic systems rely

on a point-by-point acquisition technique to acquire the entire spectral datacube.

A whiskbroom technique simultaneously measures the entire spectrum from a single

spatial location. This is repeated for each location until the spectral datacube is

completely acquired, see Figure 4.1(b) [79]. A pushbroom technique measures the

spectrum of an entire spatial row or column at a time, see Figure 4.1(c). This

is repeated until all the rows (or columns) in the spectral datacube is acquired

[80, 79]. A tunable filter technique, such as the Fabry-Perot interferometric filter

[81, 82, 83], simultaneously measures a single spectral channel over the entire field-of-

82

view (FOV), scanning through the spectral dimension, see Figure 4.1(d) [84]. The

λ

y

x

(a)

λ

y

x

λ

y

x

λ

y

x

(b)

(c) (d)

Figure 4.1: (a) A discrete spectral datacube with Rx = 3, Ry = 3, Nλ = 3. (b) The
whiskbroom technique measures the entire spectrum one spatial location at a time. (c)
The pushbroom technique measures the entire spectrum on an entire spatial row or column
at a time. (d) The tunable filter technique measurements an entire monochromatic image
one spectral channel at a time.

problem with the traditional ismorphic technique is that a typical spectral datacube

has a significant amount of measurement samples. The Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS) system, acquires Rx × Ry = 677 spatial locations

(pixels) and Nλ = 224 spectral channels [85], producing a spectral datacube with

N ≈ 109 measurement samples in 10 minutes.

Just like with the traditional spectrometer and camera, researchers have turned

computational sensing for spectral imaging. These architectures use the Fellgett

advantage (multiplexing) and Jacquinot advantage (open aperture) to improve the

signal-to-noise ratio (SNR) and reduce acquisition time and use a computational

step to solve an inverse problem to reconstruct the spectral datacube D from non-

83

isomorphic measurements. Some spectral imaging architectures also leverage com-

pressive sensing.

One of the early examples of computational sensing in spectral imaging is the

Computed Tomography Imaging Spectrometer (CTIS) [86], see Figure 4.2. The

CTIS can reconstruct the spectral datacubeD from a single FPA exposure by record-

ing multiple measurements of the spectral datacube simultaneously. The CTIS uses

several gratings to create two-dimensional projections of the three-dimensional hy-

perspectral datacube, see Figure 4.3. According to the central slice theorem, the

two-dimensional Fourier Transform of each projection is a plane through the three-

dimensional frequency space representation the spectral datacube. Ideally, one must

collect enough projections to fully reconstruct the three dimensional frequency rep-

resentation of the spectral datacube. The three-dimensional real-space distribution

of the spectral datacube is then recovered through an inverse three-dimensional

Fourier transform. This is similar to how computed tomography medical imag-

ing works. However, in practice only a finite subset of projections are recorded

and missing information is must be inferred. In the CTIS, the missing informa-

tion is recovered by maximizing the likelihood of the measurement data using the

expectation-maximization algorithm [87, 88]. According to the practical definition

of compressive sensing, the CTIS maybe considered a compressive sensing technique

since the number of measurement samples is less than the object dimensionality of

the spectral datacube. However, it does not take advantage of sparsity or incoher-

ence in order to reconstruct the spectral datacube.

In another example of computational sensing applied to spectral imaging is the

Coded Aperture Snapshot Spectral Imaging (CASSI) sensor, see Figure 4.4. In the

CASSI, a coded aperture spatially codes the spectral datacubeD. The dispersive ele-

ment then creates a projection of the spectral datacube that maps three-dimensional

information into a two-dimensional image at the FPA. Unlike the CTIS, only one

two-dimensional projection is recorded per FPA image which allows for higher spatial

resolution for the same detector array. Using calibration data and prior knowledge of

sparsity, the post-processing step solves the lasso problem to reconstruct the spectral

datacube [32, 89]. Often a total-variation regularization is also invoked to improve

reconstruction of the spatially varying image [90, 91].

All traditional and computational spectral imaging architectures including the

84

Diffraction
Grating 1,2, &

3 at 60°

f

Intermediate
Image

Lens 1 Lens 2

f

Camera

Figure 4.2: The architecture of the Computed Tomography Imaging Spectrometer
(CTIS) consists of a collimating lens, several diffraction gratings, an imaging lens, and
a focal-plane array (FPA). Each diffraction grating produces three two-dimensional pro-
jections of the three-dimensional spectral datacube (Two first order and one zeroth order).
In this example, gratings are rotationally seperated by 60 degrees to produce multiple pro-
jections. [86]

Field stop

Objective
lens

Figure 4.3: The optical image before being sampled by the FPA in the CTIS. The CTIS
uses multiple gratings to create projections of the spectral datacube at the FPA. Note the
center image is the zeroth order and is simply the undiffracted color image of the object
scene [86].

85

Camera

f

Intermediate Image +
 Coded Aperture

Lens 1 Dispersive
Element

Lens 2

f

λ

Figure 4.4: The architecture of the Coded Aperture Snapshot Spectral Imaging (CASSI)
consists of a collimating lens, a disperive element, an imaging lens, and a focal-plane array
(FPA). The coded aperture spatially codes each wavelength layer in the three-dimensional
spectral datacube. Then the dispersive element creates a wavelenght depedent spatial
shift, shearing the spectral datacube. The monochromatic image of the FPA creates a
coded two-dimensional projection of the three-dimensional spectral datacube.

CTIS and the CASSI only reconstruct the spectral datacube [92]. This produces

a significant amount of data, which is only used as an intermediate step. One is

typically interested in determining the which chemical or material is responsible for

a spectrum at a specific location. This is called spectral classification [74, 93, 94].

Therefore, an additional post-processing step needed. If however, one could directly

classify the spectrum ,one could signficantly reduce the amount of data storage and

communication resources required to operate the instrument.

Previously my colleuges developed a computational spectrometer called the

Adaptive Feature Specific Spectrometer (AFSS) [3]. Shown in Figure 4.5, the AFSS

was the first experimental computational sensor that make use of an adaptive scheme

which uses measurement data to design spectral filters (codes). This allowed the

spectrometer to directly classify the chemical or material responsible for the spec-

trum without the need to perform a reconstruction step. By combining the Fellgett

advantage with an adaptive algorithm to create custom spectral filters, the AFSS

was able to demonstate significant reduction in the number of measurements to clas-

sify a spectrum compared to non-adaptive multiplexed spectrometers in low SNR

scenarios. In this context, the spectral filters act as feature vectors, which are com-

puted using variation of PCA.1

1In the context of the AFSS and AFSSI-C the terms spectral filter, code, and feature vector

86

The Adaptive Feature Specific Spectral Imaging-Classifier (AFSSI-C) extends

the concept first demonstrated by the AFSS to spectral imaging. The AFSSI-C

directly classifies the spectrum at each spatial location without the need to recon-

struct the spectral datacube. By adopting a task-specific sensing approach, the

AFSSI-C greatly improves classification accuracy while simultaneously reduces the

amount of bandwidth and storage for data. Furthermore, the architecture of the

AFSSI-C leverages both the Fellgett and adaptive measurement scheme like the

AFSS, while also adding the Jacquinot advantag to outperform all traditional and

currently known computational spectral imaging instruments in terms of number of

measurements to correct classifcation.

4.2 Architecture

I want to quickly review the architecture of the Adaptive Feature Specific Spectrom-

eter (AFSS) before discussing the architecture of the AFSSI-C. The AFSS, shown in

Figure 4.5, is the earliest known computational spectrometer to use adaptive spec-

tral filters to classify spectra [3]. Unlike the traditional slit spectrometer, the AFSS

images the dispersed slit onto a DMD. The mirrors of the DMD can then be adjusted

to selectively reflect certain wavelengths towards the condensor lens, which then fo-

cuses light onto a single detector element [3]. By reflecting or “turning on” multiple

DMD mirrors and only using a single detector element, we achieved the Fellgett

advantage. By using measurement data to actively design spectral filters, the AFSS

outperforms non-adaptive schemes by eliminating spectra that are improbable and

turns it attention towards trying to classify the remaining high probability spectra.

In order to create an imaging version of the AFSS, one may naively attempt to

extend the AFSS architecture by forming a parallel array of AFSS sensors to achieve

classification across a spatial scene. However, just like in the proposed parallel single-

pixel camera design in Chapter 3, this approach would significantly increase the

SWAP-C of the design. The AFSSI-C provides a similar feature-based measurement

approach and Bayesian framework but with a more compact architecture. Rather

than a fully parallel version of the AFSS, the optical design of the AFSSI-C uses

a single DMD and a single set of lenses and dispersive elements sharing a common

are synonymous.

87

Photodiode

DMD

Condenser Lens

f

Slit Lens Dispersive

Element

Lens

λ

f

Figure 4.5: The slit blocks light from all but one spatial location. A lens collimates
the light passed from the slit and a dispersive element creates monochromatic images of
the slit at different columns on the DMD, corresponding to different spectral channels.
The DMD can then selectively reflectives combinates of each spectral channels into the
condenser lens. The condensor lens focuses all the light onto a single detector element, a
photodiode.

entrance pupil. This approach shares resources across multiple spatial locations.

The design of the AFSSI-C is essentially two 4f open-aperture monochromators

seperated by a Digital Micro-Mirror Display (DMD), shown in Figure 4.6. In our

experiment, we used an objective lens, which is not shown, to create an intermediate

image at the input plane of the instrument. At this point in the system one can

imagine the source spectral datacube as depicted in Figure 4.7(a), where x and y

are the spatial axes, and λ the spectral axis. The first lens of the system collimates

the light from the input plane. The first grating disperses the light. The second

lens then images dispersed copies of the intermediate image on the DMD. Just

prior to being reflected from the DMD, one can imagine the spectral dimension of

the datacube as being sheared at an angle, in the direction of the dispersion, see

Figure 4.7(b). As in the AFSS, each mirror on the DMD either reflects light into

the second arm or reflects light away into a beam dump (not shown). One can

visualize this by looking at Figure 4.7(c), a mirror that reflects light away, towards

the beam dump, deletes columns in the sheared spectal datacube. The light that

reflected into the second arm is then collimated before hitting the second grating,

88

DMD

f

Intermediate
Image

Lens 1 Dispersive
Element 1

Lens 2

f

λ

Lens 3

Lens 4

Dispersive
Element 2

Camera

Figure 4.6: An objective lens forms the intermediate image of the object scene at the
input plane of the instrument. The first lens collimates the light and a diffraction grating
disperses the light. A second lens images spectrally dispersed versions of the image of the
object scene onto the DMD. The DMD directs light to a beam dump or reflects the light
towards the third lens on a mirror-by-mirror basis. Collimated light from third lens is sent
through a second grating, and finally imaged onto the detector by the fourth lens.

89

λ

y

x

(a) (b)

(c) (d)

Figure 4.7: (a) The input cube is (b) sheared by the first grating, (c) encoded at the
DMD, and finally (d) spatially re-registered by the second grating.

which is identical to the first, but with the reverse dispersion direction. This removes

the shear in the encoded spectral datacube, seen in Figure 4.7(d). Lens 4 images

the unsheared spectral datacube onto the FPA. The grayscale image of the FPA

essentially integrates the spectral datacube over the spectral dimension.

We choose to use a dual-disperser architecture rather than the single-disperser

architecture such as the one in the CASSI since the mirror patterns on the DMD acts

as spectral filters for each spatial location. In the dual-disperser design, the spectral

coding of each spatial location is more straightforward and elegant approach for

parallel direct classification: the architectures allows us to write the image of each

FPA pixel as an innner product of the spectrum at the corresponding location at the

source with the spectral filter created by the DMD, allowing for parallel operation of

the Bayesian inference approach. A single-disperser design would entangle both the

spectral and spatial dimension of the spectral datacube, and would require solving

90

a single larger joint inference problem.

4.2.1 Forward Model

Imagine a continuous spectral datacube which we call the source spectral density of

D0 (x, y;λ) at the input aperture. To simplify the forward model analysis, assume

unit magnification and ignore diffraction, aberrations, and vignetting. The spectral

density just before reflection from the DMD is written as:

D1(x, y;λ) =

∫∫
δ(x′ − [x+ α(λ− λc)])δ(y′ − y)D0(x′, y′;λ)dx′dy′

= D0(x+ α(λ− λc), y;λ)

(4.1)

Notice that this can be thought of as a two-dimensional convolution of the spectral

density with an wavelength dependant point-spread function (PSF) that shifts the

spectral density by an amount α(λ− λc), where α is the dispersion and λc is the

center wavelength. If there is no dispersion, when α = 0, then one would get the

original spectral density back. Note, that when λ = λc there is no shift in the x

direction.

After reflecting from the DMD the spectral density can then be written as:

D2(x, y;λ) = T (x, y)D1(x, y;λ) = T (x, y)D0(x+ α(λ− λc), y;λ) (4.2)

where T (x, y) represents the reflection pattern of the DMD. If T = 1 the light is

being reflected into the second arm and if T = 0 the light is being reflected towards

the beam dump.

Propagating through the second arm has the effect of reversing the shear imposed

on the spectral density:

D3(x, y;λ) =

∫∫
δ(x′ − [x− α(λ− λc)])δ(y′ − y)D2(x, y;λ)dx′dy′

= T (x− α(λ− λc), y)D0(x, y;λ)

= H(x, y;λ)D0(x, y;λ)

(4.3)

Notice that the dispersion α has the opposite sign. This equation is represented

in discrete form in Figure 4.7(d). Thus, propagating through the entire optical

system represents multiplying the input spectral density with a spectral density

filter function H(x, y;λ).

91

Since the FPA image is grayscale, ignoring quantization effects, the image can

be written as an integral over the wavelengths

I(x, y) =

∫
H(x, y;λ)D0(x, y;λ)dλ (4.4)

By taking into account the spatially pixelated detector array with pixel size ∆, then

the discrete FPA image is

Γnl =

∫∫∫
rect

(x
∆
− n, y

∆
− l
)
H(x, y;λ)D0(x, y;λ)dx′dy′dλ (4.5)

where Γnl is the image value from the nth and lth location. Now consider that the

DMD pattern T is also pixelated with the same pixel size ∆ as in the detector.

T (x, y) =
∑
n′,l′

Tn′,l′rect
(x

∆
− n′, y

∆
− l′
)

(4.6)

Inserting Equation (4.6) into Equation (4.3) and Equation (4.5) produces a single

equation which describes how the signal-of-interest D0 (x, y;λ) is measured by the

AFSSI-C:

Γnl =
∑
n′l′

∫∫∫
rect

(x
∆
− l, y

∆
− n

)
rect

(
x− α (λ− λc)

∆
− l′, y

∆
− n′

)
× Tn′l′D0 (x, y;λ) dx dy dλ. (4.7)

This equation maybe somewhat difficult to interpret, so to add some additional

intuition I will go through an example of a monochromatic source at the center

wavelength, D0 (x, y, λ) = I0 (x, y) δ (λ− λc), where I0 is the intensity distribution

of the monochromatic scene. In this case, Equation (4.7) simplifies to

Γnl (λ = λc) =
∑
n′l′

∫∫∫
rect

(x
∆
− l, y

∆
− n

)
rect

(x
∆
− l′, y

∆
− n′

)
× Tn′l′I0 (x, y) δ (λ− λc) dx dy dλ

=
∑
n′l′

Tn′l′

∫∫
rect

(x
∆
− l, y

∆
− n

)
rect

(x
∆
− l′, y

∆
− n′

)
× I0 (x, y) dx dy

∫
δ (λ− λc) dλ

=
∑
n′l′

δll′δnn′Tn′l′Inl

= TnlInl, (4.8)

92

where Inl is a spatially pixelated version of the monochromatic source with in-

tensity distribution I0 (x, y). One now sees that in the monochromatic case, the

measurement is point-by-point multiplication of the DMD pattern with the discrete

monochromatic image Inl

In the next example, I consider the case where a monochromatic source is not

at the center wavelength but is shifted in wavelength. The wavelength of the

monochromatic source is shifted from the center wavelength by a single spectral

channel λ = λc + ∆λ, where ∆λ = ∆/α. The spectral density is now written as

D0 (x, y, λ) = I0 (x, y) δ (λ− (λc + ∆λ)). Equation (4.7) simplifies to

Γnl (λ = λc + ∆λ) =
∑
n′l′

∫∫∫
rect

(x
∆
− l, y

∆
− n

)
rect

(x
∆
− (l′ + 1) ,

y

∆
− n′

)
× Tn′l′I0 (x, y) δ (λ− (λc + ∆λ)) dx dy dλ

=
∑
n′l′

Tn′l′

∫∫
rect

(x
∆
− l, y

∆
− n

)
rect

(x
∆
− (l′ + 1) ,

y

∆
− n′

)
× I0 (x, y) dx dy

∫
δ (λ− (λc + ∆λ)) dλ

=
∑
n′l′

δl(l′+1)δnn′Tn′l′Inl

= Tn(l−1)Inl (4.9)

This shows that a shift by one spectral channel results in a shift of one pixel in of

the DMD pattern.

Using the intuition from the last two examples, I will now extend this to a non-

monochromatic case. Consider spectral channel index c out of Nλ total spectral

channels.

We can also define a discretized source spectral datacube Dnlc, and then the

detector signal Γnl as a result of mirror pattern T acting on the pixelated source is

Γnl =

Nλ−1∑
c=0

Tn(l+c)Dnlc, (4.10)

which shows the measurement at each pixel being the inner product of the source

spectrum and the spectral filter which results from the mirror pattern. If one inspects

the adjacent pixel on the detector, Γn(l+1) we find that

Γn(l−1) =

Nλ−1∑
c=0

Tn(l+1+c)Dn(l+1)c. (4.11)

93

The spatial location (n, l) sees the effect of the pattern in mirror locations Tnl to

Tn(l+Nλ−1), while the neighboring spatial location at n, (l + 1) is encoded by the

mirror pattern from Tn(l+1) to Tn(l+Nλ). Notice that given two neighboring spatial

pixels in the input aperture, l and l + 1, mirror pixels Tn(l+1) to Tn(l+Nλ−1) are

common to both locations.

Now the design constraint of the AFSSI-C architecture is clear, while a naively

parallel set of AFSS would have been costly in terms of SWAP-C, using a common

entrance pupil prevents independent spectral filters for each spatial location. The

spectral filters imposed by the DMD pattern maybe unique for every spatial location,

but cannot be implemented independently, requiring the features to be designed

jointly for spatial locations along a row (the l direction).

4.3 Adaptive Classification Algorithm

As mentioned earlier, the AFSSI-C uses adaptive features to directly classify the

spectrum at each spatial location. At each measurement step m, the classification

algorithm computes the probability of each hypothesis spectra in a spectral library.

Building on the discussion of Principal Component Analysis (PCA) and Bayesian

statistics in Chapter 2, I will discuss how the classification algorithm of the AFSSI-C

works.

Since the AFSSI-C feature vectors are not independent for each spatial location,

it is more intuitive to discuss the algorithm when only a single spatial location exists

in the spectral datacube. The reader can then expand the intuition to the entire

scene. For a single pixel architecture, one can write the discrete forward model as

gm = tm · f (4.12)

where gm is the mth measurement of DMD mirror pattern tm and f is the ground

truth spectrum of the source.

The measurement from the detector is compared to the spectral library, subject

to the spectral filter implemented at that spatial location. A probability is assigned

to each hypothesis in the spectral library using Bayes’ theorem. The conditional

probability of the hypothesis, which is spectrum si is present, given the measurement

94

history up to the mth measurement {g}m, can be written as:

P (hi|{g}m) =
P ({g}m|hi) P (hi)

P ({g}m)
. (4.13)

Remember from Chapter 2, that PCA provides the optimal basis to distinguish

between data vectors in a vector space by diagonalizing the covariance matrix. The

covariance matrix (or scatter matrix) is simply the matrix multiplication of the

spectral library (with the mean spectrum subtracted) with the transpose of itself.

Q =

NR∑
r = 1

(sr − s̄) (sr − s̄)T

= X XT . (4.14)

However, since the spectral library is constant with respect to the measurements,

the set of principal components will also remain constant. Intuitively, one can use

the probability of each spectrum that was computed from the last measurement to

weight each of the spectra in the library. Geometrically, one can imagine that the

direction of largest variation is now biased to align in the direction with higher prob-

ability spectra. The geometric depiction of the probabilistically weighted Principal

Component Analysis (PCA) which we call pPCA is shown in Figure 4.8.

I will now go over the formalism for probabilistically weighted Principal Compo-

nent Analysis (pPCA). At each spatial location, we create a covariance matrix with

NR spectral hypotheses, with individual spectrum sr, weighted in relation to the

prior probability associated with each hypothesis given the measurement history.

The individual covariance matrices Q(m) at each spatial location with spectral li-

brary element hypothesis hr take the form

Q(m) =

Nλ∑
r = 1

P (hr|{g}m) (sr − s̄) (sr − s̄)T

= X(m) XT (m). (4.15)

Here X(m) is the matrix of weighted spectral elements, where the row index i is

from 1 to the number of spectral channels Nλ; the columns r from 1 to NR as follows,

xr(m) =
√

P (hr|{g}m) (sr − s̄) , (4.16)

95

(a) (b)

Figure 4.8: Depiction of the pPCA (simple 2D example). (a) First principal component
before a measurement has been made. All of the hypotheses are equiprobable, depicted
here as all points having the same grayscale value. (b) After a measurement has been
made: the darker points are more probable hypotheses, with the less probable hypotheses
taking on lighter shades of gray. The first principal component has now been shifted to
the direction of greatest variation in the weighted data.

and s̄ is the probabilistically-weighted sum of the spectral library:

s̄ =

NR∑
r = 1

P (hr|{g}m) sr. (4.17)

We can then compute the first eigenvector of Q(k), analogous to PCA. We

call this probabilistic-PCA or pPCA, and in the case of the AFSS this eigenvector

becomes the feature for the next measurement. The scatter matrix Q(k) is then

updated with every measurement.

4.3.1 Updating Probabilities

In practice we do not directly compute the posterior probabilities for each hypothesis

using Bayes’ theorem, Equation (4.13), since we have no meaningful way of comput-

ing the probability of the measurement history P ({g}m). Thankfully, the method

of Maximum A Posteriori (MAP) and taking ratios of posterior probabilities that

I discussed in Chapter 2 allows one to compute relative probabilities which will be

used to weight the spectral library after each measurement. For now I will define

the ratio of the posterior probabilities

L
{g}m
ij :=

P(hi|{g}m)

P(hj|{g}m)
=

P({g}m|hi)
P({g}m|hj)

P(hi)

P(hj)
(4.18)

96

where {g}m is the set of all measurements, including the current measurement num-

ber index m.

Note that if we assume that the likelihood probabilities are independent, then

we can write the joint probability as a product of the likelihood of the current

measurement with the likelihoods of all past measurements

P ({g}m|hi) = P (gm|hi)P ({g}m−1|hi)

= P (gm|hi)
m−1∏
m′=1

P (gm′|hi) (4.19)

So we can expand Equation (4.18)

L
{g}m
ij =

P (gm|hi)
∏m−1

m′=1 P (gm′|hi)
P (gm|hi)

∏m−1
m′=1 P (gm′ |hj)

P(hi)

P(hj)
(4.20)

If I define

L
{g}m−1

ij :=

∏m−1
m′=1 P (gm′|hi)∏m−1
m′=1 P (gm′ |hj)

P(hi)

P(hj)
(4.21)

then Equation (4.20) simplifies into

L
{g}m
ij =

P (gm|hi)
P (gm|hj)

L
{g}m−1

ij (4.22)

This equation provides a convenient way to update the ratio of posterior probabilities

after each measurement.

The question now turns to how does one actually compute the likelihoods. For

this step we assumed that the likelihood takes on a Gaussian noise model with

standard deviation of the noise σ. Thus we say the probability of the measurement

gm given that hypothesis hi is true is

P (gm|hi) =
1√

2πσ2
exp

[
−(gm − tm · si)

2σ2

]
(4.23)

where tm is the spectral filter at the measurement step m. This equation means

that when the measurement value gm is close to the inner product of the spectral

filter and the hypothesis spectrum, the probability is large. As the measurement

value deviates from tm · si the probability decreases.

After each measurement we compute Equation (4.22) for all pairs of spectra i, j

using the noise model Equation (4.23). In practice, the exponentials of numbers of

moderate size cause numerical issues. To avoid this, we compute the logarithm of

the likelihood (log-likelihood) ratios to eliminate the exponentials. In Appendix E,

I will discuss the update rule using log-likelihood ratios.

97

4.3.2 Extension to Spectral Imaging

In the case of spectral classification for only a single spatial location, like the AFSS,

the number of DMD mirrors (that are used) is equal to the number of spectral

channels.

Nd = Nλ (4.24)

As we saw before the dimensionality of the feature vectors, produced by taking the

eigenvectors of the covariance matrix, is equal to the number of spectral channels.

In the AFSSI-C architecture, light from spatial pixel l is dispersed onto DMD

pixels l to l+Nλ− 1. While light from the next spatial pixel l+ 1, is dispersed onto

DMD pixels l + 1 to (l +Nλ). Therefore adjacent spatial pixels have Nλ − 1 DMD

pixels in common. Light is not dispersed between rows. This means that one can

treat the design of the features between different rows separately. However, within

a particular row, this dispersion prevents independent features at each spatial pixel

location on the row. This is one of the major design constraints in the AFSSI-C.

It turns out, one can still use pPCA by constructing a very large data matrix

X̃. The individual probabilistically weighted spectral library matrices Xl for each

spatial pixel l is placed inside X̃. The adjacent spatial location will have Xl+1 placed

next to it but one row down. The first row is padded with zeros.

For example, imagine two adjacent spatial pixels l = 1 and l = 2 with five

spectral channels Nλ = 5 and three spectra in the spectral library NR = 3.

X̃ =

x1,1,1 x1,2,1 x1,3,1 0 0 0

x2,1,1 x2,2,1 x2,3,1 x1,1,2 x1,2,2 x1,3,2

x3,1,1 x3,2,1 x3,3,1 x2,1,2 x2,2,2 x2,3,2

x4,1,1 x4,2,1 x4,3,1 x3,1,2 x3,2,2 x3,3,2

x5,1,1 x5,2,1 x5,3,1 x4,1,2 x4,2,2 x4,3,2

0 0 0 s5,1,2 s5,2,2 s5,3,2

(4.25)

The subscripts of element xc,r,l refer to c the spectral channel, the rth spectrum in

the spectral library and l the spatial pixel index. Therefore we see that the first

three columns are just X1, the modified spectral library for spatial pixel l = 1 and

the last three columns is the modified spectral library X2 for spatial pixel l = 2.

Notice that the rows of this matrix have physical meaning. The first row corre-

sponds to the first DMD pixel, since only spectral channel one from all three possible

98

spectra from location l = 1 can be imaged onto the first DMD pixel (mirror). The

second row corresponds to the second spectral channel of the three possible spectra

from location l = 1 and the first spectral channel of the three possible spectra from

location l = 2.

The revised covariance matrix is now

Q̃ = X̃X̃T (4.26)

Where X̃T is the transpose of the matrix X̃. Thus the columns of X̃T have the

same physical interpretation as the rows of X̃. Each element of Q̃ is therefore the

covariance of each of the possible spectral channel from each location onto each

DMD mirror. Thus pPCA is computing the eigenvector of the covariances in the

“DMD mirror space”. This is what we call the joint-pPCA, basically the extension

of pPCA to the imaging problem.

99

4.4 Experiments

A systems level flowchart is shown in Figure 4.9 which shows each of the major steps

in running the AFSSI-C experiment. In this section, I will discuss each step, with

the goal of continuing to concentrate on the practical considerations of the AFSSI-C.

The experimental results in this dissertation are for a 4-class problem, with an input

spectral datacube of 64 × 64 spatial pixels and 38 spectral channels. Figure 4.10

and Figure 4.11 are depictions of the associated 4-class spectral library, with the

spectral source displayed on the LED monitor. While this spectral datacube is

small compared to those used in remote sensing, the implemented size was driven

by practical considerations regarding the source, DMD and detector on hand. The

dual-disperser architecture, in general, places no significant limitation on possible

datacube sizes. Similarly, the processing involved in the Bayesian inference and

feature design are computationally lightweight and do not create a computational

limit on datacube size.

Classification difficulty is quantified as the Task Signal-To-Noise Ratio (TSNR)

which considers the noise in the system relative to the separation distance between

hypotheses spectra. We define Task Signal-To-Noise Ratio (TSNR) as

TSNR = 10 log10

(
dmin
σ

)
(4.27)

For our experiment, the noise is approximately Additive white Gaussian noise

(AWGN) distributed with standard deviation σ. The minimum Euclidean distance

between the hypotheses in the spectral library dmin. When using this definition for

TSNR, a value of 0 dB TSNR is the point where the noise is equal to the minimum

distance between the library elements.

4.4.1 Hardware

I will now discuss the hardware used in the AFSSI-C experiment, shown in Fig-

ure 4.12. Specifically I will describe some of the design decisions and consequences

of those decisions in the AFSSI-C experiment. To avoid expensive and time con-

suming optical design and fabrication, the lenses were restricted to commercial off-

the-shelf achromatic doublets. A compact, fixed focal length, lens (Edmund Optics

100

Perform Spectral Calibration

Perform Noise Calibration

Display Spectral Source

Set m := 1

Compute DMD Pattern (Feature Vectors)

Display DMD Pattern

Record Raw Camera Image

Use Calibration to Recover System Pixel Image

Update Probabilities

Done?

 m := m+1

Save Data

Perform Spatial Calibration

Figure 4.9: Systems Level Flowchart of the AFSSI-C Experiment

Stock No. 58-001, f = 12mm) is used as an objective lens, relaying the object onto

an intermediate image plane. A fast entrance optic is needed to meet the layout

101

5 10 15 20 25 30 35
 Spectral Channel

0

0.2

0.4

0.6

0.8

1
 In

te
ns

ity
 (N

or
m

al
iz

ed
)

 1
 2
 3
 4

Figure 4.10: The spectral library consists of four spectral classes: the white, red, green,
and blue of the LED monitor.

and magnification requirements. Referring to Figure 4.5, lenses 1 and 4 are 75 mm

focal length achromatic doublets with a 50 mm diameter (Edmund Optics Stock No.

49-291), and lenses 2 and 3 are 150 mm focal length achromatic doublets with 25

mm diameter (Edmund Optics Stock No. 47-643).

For a repeatable, programmable synthetic datacube source, we used an LED

display (Dell P2311H LED monitor with 248 µm pixel pitch). Though this limits

the spectra we were able to generate, it still allows for programmable spectra at

every spatial location. The center 1080 × 1080 pixels are used to generate the

source spectral datacubes. Spectra consist of combinations of the RGB monitor

colors.

The AFSSI-C operated at a spectral range of 425-625 nm, which is approximately

the visible wavelength range. We placed thin-film spectral filters in the collimated

space to attenuate light outside of this range. The system is designed for Nλ = 38

102

Figure 4.11: Four class spectral source used for the AFSSI-C experiment.

spectral channels, resulting in roughly 5 nm/spectral channel. The system magni-

fication to the DMD, which then dictates the lateral spread allowed per spectral

channel, requires custom 0.10 lines µm holographic blaze gratings as the dispersive

elements, fabricated by Wasatch Photonics. The gratings are designed to minimize

diffraction in all the orders except the first order.

The DMD used in our experimental prototype was manufactured by Texas In-

struments, it is a DLP Discovery 4100 DMD development kit, with the DLP9500

0.95” 1080p DMD chipset. The DMD has 1080 × 1920 10.8 µm mirrors on the ar-

ray, and the mirrors pivot 12 degrees on a diagonal axis. The DMD is oriented such

that the bottom of the array is parallel to the optical table, which forces the second

arm of the AFSSI-C to rise off the optical table at an angle of 17.5 degrees; this

orientation was chosen so that the mirrors would be oriented as squares rather than

diamonds. While the periodic structure of the DMD can produce strong diffraction

for certain types of illumination, no diffraction effects are observed in the AFSSI-C

as the light incident on the DMD is incoherent.

A Santa Barbara Instrument Group (SBIG) ST-10XME detector with a 2184 ×

103

Figure 4.12: Photo of AFSSI-C.

1472, 6.8 µm pitch CCD as the camera. Due to the angle of the optical axis of the

second arm of the AFSSI-C, a goniometer was constructed using a rapid prototyping

3D printer to facilitate easy alignment of the SBIG camera [95].

Once the optical layout was finalized, the physical system was designed in Solid-

Works. The lens mounts, detector mount, DMD mount, beam dump, and locating

plates were then fabricated on a Eden 350 rapid prototyping 3D printer.

Light baffling is utilized to shield the system from ambient light as well as stray

light within the system. A baffling structure was designed and printed to surround

the detector, with smaller baffling elements to attenuate stray light around the

optical paths.

4.4.2 Implementing Codes

One of the practical considerations of the coding scheme in the AFSSI-C is that the

pPCA algorithm generates both positive and negative elements in the feature vec-

tors. These are analogous to having positive and negative weights in the weighing

problem. Unfortunately, with incoherent light, one is unable to make simultaneous

positive and negative measurements because we cannot easily manipulate the phase

of the electric field. Therefore, in the AFSSI-C we are forced to take two camera

exposures for each measurement step and subtract the negative set of measurements

104

from the positive set of measurements. This means that an additional noise term is

added to each measurement step. For the rest of this chapter, when I say measure-

ment or measurement step, I really mean one measurement step which records two

camera exposures.

Another practical issue is that the DMD we used only allows a binary mode of

operation. Either the mirror reflected the light towards the second arm or it reflected

light towards the beam dump. In practice any positive element is set to 1 and any

negative element is set to −1.

4.4.3 Calibration

One reoccurring topic in this dissertation is calibration. In computational sensing

the measurement may not look anything like the signal-of-interest. Just like in the

Static Computational Optical Undersampled Tracker (SCOUT), the AFSSI-C relies

heavily on several calibration procedures which involves spatial, spectral, and noise

measurements for optimal classification performance.

4.4.3.1 Spatial Calibration

One of the major opto-mechanical issues in the AFSSI-C is caused by the geometry

of the DMD with respect to the second arm. The DMD plane is normal to the

optical axis of the first arm, but it is at an angle (equal to twice the tilt of the

mirrors on the diagonal) to the second arm. One can think of the DMD plane as

the object plane for the second arm of the system. Since the DMD is tilted, this

creates a Scheimpflug distortion: a tilted object plane images to tilted image plane

[96].

Because of Scheimpflug distortion, the image of the monitor physical pixels are

not aligned to the rectangular grid of pixels on the FPA, see Figure 4.13. Even

worse there is not a one-to-one relationship of FPA pixels to object scene pixels

since the magnification is not constant over the FOV. In order to produce optimal

performance we need to know the mapping of monitor to FPA pixel locations. The

goal of spatial calibration is to make a set of measurements in which we can infer

a parameterized affine transform from FPA physical pixel coordinates to monitor

physical pixel coordinates.

105

200 400 600 800 1000
Pixel Coordinate

200

400

600

800

1000

Pi
xe

l C
oo

rd
in

at
e

Figure 4.13: The image produced by the camera without any post-processing.

Due to spatial resolution constraints and other practical issues, we grouped sev-

eral physical pixels together in a system pixel (SP). For example, in our experiment

we have an effective resolution of 64 × 64 system pixels. However, on the monitor

a system pixel (SP) actually consists of 16 × 16 physical pixels on the source. Sim-

ilarly, on the DMD a system pixel (SP) consists of 8 × 8 physical pixels (mirrors)

and on the detector a SP consists of 12 × 12 physical pixels.

A straightforward approach to inferring the relationship between FPA and object

scene pixels would be to energize each physical pixel on the Region of Interest

(ROI) one at a time and record the image on at the physical pixel. We could then

create a look-up table for each FPA pixel to infer where from the LED this came

from. However, energizing each of the 1024 × 1024 physical pixels at 5 seconds

per exposure will take approximately 61 days. We are therefore forced to infer the

spatial transform from a small number of physical pixels images.

At this point we are only concerned with how the the LED monitors appear

on the FPA image. The alignment of the DMD does affect the image quality and

106

location, but the pattern of the DMD only affects the radiance of an image point.

Therefore, we set the entire DMD mirror pattern to reflect towards the second arm.

In this state, the DMD acts like a normal mirror.

First the monitor displays a grid of white dots, Figure 4.14. The number of dots

can be then be increased for better accuracy but increases the calibration time. The

list of monitor physical pixel coordinates where the center of each dot appeared on

the monitor is then saved.

200 400 600 800 1000 1200 1400 1600 1800
Pixel Coordinate

200

400

600

800

1000

Pi
xe

l C
oo

rd
in

at
e

Figure 4.14: An array of white dots is displayed on the monitor as part of the spatial
calibration. The image of this grid is recorded, the centroids are estimated and a spatial
transform is inferred between the physical pixel coordinates of the LED monitor and the
FPA

A raw camera image is captured and stored, see Figure 4.15. To account for hot

pixels and systematic error in the system the camera image of the all black monitor

is subtracted from the camera image of the array of white dots which gives us the

dark subtracted image of white dots. The dark subtracted detector image is then

thresholded to prevent noisy pixels from being counted as one of the images of the

white dots from the monitor. All values above the threshold is set to 1 while all

values below the threshold is set to 0.

Using a built-in MATLAB regionprops function with the optional centroid

argument, we can infer the center pixel, centriod, for each of the white dot images

107

in the thresholded image. This function generates a list of pixel coordinates from

the thresholded image. Each pixel coordinate is associated with the center of each

white dot in the image. Often we get a list of coordinates with a length that does

not match the number of white dots displayed onto the monitor. At this point, we

may need to change the threshold value to return the same number of coordinate

pairs as dots displayed on the monitor. For example if we have an 8 × 8 grid of

dots we expect a list of 64 detector pixel coordinate pairs. As a sanity check, we can

create an image of the where the inferred centriods are and overlay it on thresholded

image of the grid of white dots. The image of the centriods should be approximately

on top of the image of each white dot, see Figure 4.16.

200 400 600 800 1000
Pixel Coordinate

200

400

600

800

1000

Pi
xe

l C
oo

rd
in

at
e

Figure 4.15: The detector image of the array of white dots as part of the spatial cali-
bration

Each dot is added to the monitor scene one at a time to prevent accidentally

associating the wrong dot on the image. Doing this each time the AFSSI-C is

calibrated is time consuming, since we need at least as many FPA exposures as

there are dots in the object scene. In practice, we use MATLAB to look up the

locations from the last spatial calibration and if we believe the instrument has not

been misaligned since then, we look in a neighborhood of pixels around the last dot

108

200 400 600 800 1000
Pixel Coordinate

200

400

600

800

1000

Pi
xe

l C
oo

rd
in

at
e

Figure 4.16: The detector image of the array of white dots as part of the spatial cali-
bration

locations and compute the centroids of the dots, see Figure 4.17.

Now that we have a list of dot centers in the monitor pixel coordinates and

a list of dot centers in the detector pixel coordinates, we use the MATLAB func-

tion cp2tform, which takes the list of control points and uses them to infer the

spatial transform. This transform is a parameterized relationship between every

single physical pixel coordinate on the monitor and physical pixel coordinate on the

detector.

Each SP contains 16× 16 physical pixels, using the spatial transform, we known

which detector pixels these physical pixels will image to. The average value of all

the physical pixels from the FPA image correspond to the SP value. Thus we can

reverse the effects for any image rotation or translation at the FPA plane.

As part of the calibration procedure, an image is saved by turning on the entire

DMD and measuring the intensity at each spatial location with the monitor set to

white at full intensity. One can think of this image as an intensity map, providing

information as to which locations have more throughput than others in the FOV.

During the classification operation, each camera image is normalized by this intensity

109

200 400 600 800 1000
Pixel Coordinate

200

400

600

800

1000

Pi
xe

l C
oo

rd
in

at
e

Figure 4.17: Instead of displaying the dots one at a time, we use the location of the dot
images from the last spatial calibration and search in a rectangular region around those
coordinates for the new dots. This greatly speeds up the spatial calibration since each
exposure is approximately 3-5 seconds.

map, while the spectral library at each location is normalized by the integration of

the white spectrum (which has the system spectral response information folded into

it), allowing the classification decisions to be made.

4.4.3.2 Spectral Calibration

Unfortunately, due to vignetting and imperfections in the gratings the spectral re-

sponse of the AFSSI-C, the combined optical system produces a shift-invariant spec-

tral response. To correct for this we developed a calibration procedure to measure

how the spectral response of the optical system varies over the region-of-interest in

the FOV.

A flowchart of the spectral calibration is shown in Figure 4.19. Remember that

in the AFSSI-C architecture, the first column of mirrors on the DMD reflects light

corresponding to the first spectral channel of the first spatial column. The second

column of mirrors reflects light corresponding to the first spectral channel of the

second spatial column and also reflects the light in spectral channel 2 of the first

110

spatial column, and so on, see Figure 4.18. Also, the dual-disperser architecture of

the AFSSI-C means that light from a single spatial pixel images to a single spatial

pixel on the FPA, regardless on what pattern is being displayed on the DMD. In

other words, in a single camera image we can measure the intensity of different

spectral channels of adjacent spatial locations along a row by turning on only one

DMD mirror. Therefore, we can turn on an entire row of pixels in the monitor and

realize that different FPA images correspond to different spectral channels for each

spatial location.

Also remember that the dispersion is only in the horizontal direction, along the

columns of the DMD. Therefore, we can set the entire ROI to display the same

spectrum. Then sweep the entire column of the DMD. In our experiment, the

number of effective DMD SP columns is equal to the number of monitor SP in a

row plus the number of spectral channels minus one

Ndx = Rx +Nλ − 1 (4.28)

Therefore, we had 101 DMD SP columns. So the first 38 camera images corresponds

to the 38 spectral channels in the first spatial SP column. Then images 2 to 39

correspond to the first 38 spectral channels in the second spatial SP column.

Another way to reduce the spectral calibration time is by realizing that we can

turn on two DMD SP columns at a time. This is because we only have 38 spectral

channels and 101 DMD SP columns. So in our calibration procedure we turn on

two DMD SP columns at a time each 50 SP columns apart. Then for each spectrum

in spectral library we only need 51 exposures. If we assume a 5 second exposure

this only takes about 20 minutes. In practice we use a much longer exposure time

to increase the SNR of each FPA exposure. The total time for a four class spectral

library is approximately 4 hours.

111

Spatial Pixels

DMD Mirrors

FPA Pixels

Figure 4.18: In order to speed up the spectral calibration we turn the entire monitor
ROI to the same spectrum and sweep two DMD columns at a time.

112

Turn Monitor All Black

Take a 130 Second Dark Exposure

Set Entire Monitor To Next Color:
White, Red, Green, Blue

Set d := 1

Turn on DMD Column d and Column 50 + d

Take a 130 Second Exposure

Subtract the Dark Exposure From The Exposure
With This DMD Pattern and Color On

Save The Data To Disk:

If DMD Pattern d == 51

If Done With Colors?

Yes

No

No

Figure 4.19: In order to speed up the spectral calibration we turn the entire monitor
ROI to the same spectrum and sweep two DMD columns at a time.

113

4.4.3.3 Noise Model Calibration

As I discussed in Section 4.3.1, the adaptive algorithm we used to make classification

decisions compares the ratio of posterior probabilities by updating ratios of the

likelihoods after each measurement. The likelihood is defined as the probability of

the measurement given that the hypothesis is true. This probability is given by

the noise model using Equation (4.23). Accurate estimation of the noise standard

deviation, σ̂, is required for optimal classification rates.

If σ̂ is much larger than the actual value, σ, then the probability for different

spectral classes will tend to be similar. However, as I discussed, the pPCA algo-

rithm depends on weighting the probability of some classes higher than others to

outperform non-adaptive systems. This may lead to longer convergence times to the

correct class. If the σ̂ is too small then the algorithm may converge to the wrong

class.

Fortunately estimating the noise of the system is a relatively straightforward.

At each spatial SP location, we randomly choose one the spectra from the spectral

library and display it, then the we display a random pattern on the entire DMD and

record the camera image. We then compare the camera image with the measured

intensity value at each spatial location to what we expected from the simulated

camera image. This is repeated several times until we have sufficient statistics to plot

the distribution of the differences between measured and expected intensities, see

Figure 4.20. Using the MATLAB fit function with the one-dimensional Gaussian

option gauss1, we fit a Gaussian to the data to estimate the standard deviation of

the noise, σ̂.

The value of σ is the intrinsic amount of noise in the instrument. It takes into

account all possible sources of noise in the AFSSI-C. However, we would like to

vary the total amount of noise to see how the experimental classification performs

compared to simulation and how the it performs compared to various other imaging

spectrometers. This is done in post-processing by adding normally distributed noise

with standard deviation σadded to the measurements. Since the intrinsic system noise

is approximately Gaussian, the total variance is thus

σ2
total = σ2 + σ2

added (4.29)

114

-0.1 -0.05 0 0.05 0.1
 Difference From Simulated Value

0

0.5

1

1.5

2

2.5

3

3.5

4
 C

ou
nt

s
Pe

r B
in

#105

 Calibration Data
 Fitted Data

Figure 4.20: Estimating the System Noise: The circles represent the distribution of
difference between the measurement and expected values of randomly chosen spectra with
random spectral filters. The solid line represents a Gaussian fit, which allows us to estimate
the standard deviation of the system noise.

4.5 Experimental Results

Figure 4.21 presents experimental classification results at 0, -3, and -6 dB TSNR

after measurements. Measurements 1 through 30 are presented in Appendix F. As

the classification difficulty increases (lower TSNR), the adaptive algorithm takes

more measurement steps to correctly classify.

The experimental classification rates that we obtained agree well with simula-

tion. Figure 4.22 shows the performance of the AFSSI-C experimental results and

the simulated values. The simulated and experimental data are the average of 30

simulations and 10 experiments, for each of the four TSNR values representing sev-

eral levels of increasing classification difficulty (0, -3, -6, and -9dB TSNR). The

agreement between simulation and experimental results allows us to compare the

115

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure 4.21: Data from after the third measurement step at 0, -3, and -6 dB TSNR.
The left column is a depiction of the DMD code, center is the output from the detector,
and the right is the classification decision at the current measurement.

performance of the AFSSI-C with traditional spectral imaging systems and non-

adaptive computational sensors via simulation, see Figure 4.23. It also compares

different feature design modalities. To test feature designs, the adaptive, joint-pPCA

designed features are compared to static, pseudo-random features which is what is

found many other computational sensing spectral imagers [32]. The traditional sys-

tems that were investigated as simulations are the pushbroom, whiskbroom, and

tunable filter systems. The performance of the simulated traditional systems fol-

lows intuition: a whiskbroom system has to sweep over all 4096 spatial locations,

while the pushbroom and tunable filter system only make 64 and 38 scanning steps,

116

5 10 15 20 25 30
 Total Measurement Duration (Arb. Units)

10-4

10-3

10-2

10-1

100
 C

la
ss

ifi
ca

tio
n

Er
ro

r R
at

e

 0 db Sim
 0 db Exp
 -3 db Sim
 -3 db Exp
 -6 db Sim
 -6 db Exp
 -9 db Sim
 -9 db Exp

Figure 4.22: Comparison of the AFSSI-C experimental system results to the simulation
results for multiple TSNR levels by plotting the classification error versus measurement.
Shown are repeated experiments of a 64× 64× 38 spectral datacube and a 4-class library.

respectively. This explains the greater TSNR and hence greater classification accu-

racy of the tunable filter system, with the whiskbroom system being least accurate

of the three. Note that the sequential nature of the measurements in the AFSSI-C

limits its applicability to those scenes which are slowly varying with respect to the

time needed to achieve a desired classification accuracy.

There are a number of phenomena which give the AFSSI-C an advantage over tra-

ditional systems. When comparing the AFSSI-C system with joint-pPCA designed

features to traditional systems at the 5th measurement in Figure 4.23, we see that

the classification accuracy improves by 250×. This improvement in performance is

attributed to a combination of factors such as the open aperture architecture of the

AFSSI-C design, lack of scanning, and adaptivity.

Figure 4.23 also demonstrates the advantage joint-pPCA. By inspecting the 5th

117

20 40 60 80 100 120
 Total Measurement Duration (Arb. Units)

10-4

10-3

10-2

10-1

100
 C

la
ss

ifi
ca

tio
n

Er
ro

r R
at

e

AFSSI-C
Random
Tunable
Pushbroom
Wiskbroom

Figure 4.23: Simulation comparing the classification performance for different measure-
ments at TSNR = 0 for different systems: the AFSSI-C with designed features (joint
pPCA), the AFSSI-C with random features, the traditional pushbroom imager, the tra-
ditional tunable filter imager, and the traditional whiskbroom imager. The input is a
64× 64× 38 spectral datacube with a 4-class library.

measurement, one can observe a 100× performance gain relative to static, pseudo-

random coding. The performance curve for the random coding case is generated by

directly classifying from the acquired measurements using an identical Bayesian in-

ference framework. The information processing inequality of information theory [4]

guarantees us that the alternative approach of classifying after datacube reconstruc-

tions can do no better than direct classification. Thus, the difference of these two

curves represents the actual classification performance improvement due to adaptiv-

ity, while the separation between the static-coded curve and the traditional systems

represents the performance improvement arising from the increased open aperture.

The simulated results show that the AFSSI-C system to outperform traditional sys-

tems where classification is the desired result of the analysis.

118

4.6 Conclusion

In this chapter, I discussed the Adaptive Feature Specific Spectral Imaging-Classifier

(AFSSI-C), a spectral imager classifier that utilizes adaptive spectral features in a

low size, weight and power-cost (SWAP-C) configuration. My collaborators and I

were able to show multiple order-of-magnitude improvement in classification accu-

racy compared to traditional spectral imaging systems when the noise in the system

is equal to the minimum separation between the library spectra, by employing a sys-

tem simulation corroborated with experimental results. By taking advantage of its

adaptiveness, the AFSSI-C performance with designed features also achieves multi-

ple order-of-magnitude improvement over a random feature implementation. These

adaptive features are designed via Bayesian inference and a novel joint-probabilistic

PCA approach, which drives the measurement decision evolution to boost the dis-

crimination ability between spectral candidates at every spatial location.

Direct classification is a useful modality for many of the applications of spec-

tral imaging. By making measurements of an encoded datacube instead of explicit

measurement of every element, huge performance gains are realized. The AFSSI-

C system can greatly benefit a number of industries that rely on in situ material

classification.

119

Chapter 5

Computational Spectral Unmixing

5.1 Introduction

In Chapter 4, I argued that spectral classification is the goal of spectral imaging in

most cases. However, in certain situations the analyst is interested in quantifying

the presence of several materials in a single spatial location from a mixed spectrum.

Mixed spectra can occur when the sensor is part of a high-altitude platform such

as an unmanned aerial vehicle (UAV) or satellite. The large standoff distances

between the ground and the instrument result in large spatial resolutions. For

example, in the Hyperion Imaging Spectrometer, which is satellite based, the spatial

resolution is 30 meters [97]. One cannot reasonably expect a single material to

always occupy that large of an area. Spectral unmixing is any procedure which

attempts to take the measured spectrum of a mixed pixel and decompose it into a

set of constituent spectra called the endmembers and a set of corresponding fractions

called the fractional abundances .

Traditional spectral unmixing requires several seperate steps to quantify the

fractional abunances. The isomorphic sensor must spatially or spectrally scan the

object scene, building the spectral datacube piece by piece. At each step, the re-

stricted aperture or wavelength range rejects a significant fraction of the availiable

light. A post-processing step is then used to reduce the size of the data to reduce

the computational load. Finally an inversion step is used to compute the fractional

abundances. Intuitively, the advantages of computational sensing discussed through-

out this dissertation should be able to ameliorate some of the design trade-offs in

120

traditional spectral unmixing.

In this chapter, I will talk about my efforts to apply the techniques of compu-

tational sensing to directly estimate the fractional abundance without the need to

reconstruct the spectral datacube. I will introduce a computational spectral imag-

ing architecture called the LCOS Computational Spectral Imager (LCSI). I will then

provide simulation results that demonstate the advantage of computational spectral

unmixing using the AFSS and the LCSI over traditional architectures by leveraging

the Fellgett and Jacquinot advantage with compressive sensing algorithms which

promote sparse solutions. Results from a proof-of-principle experiment demonstrate

the promise of computational spectral unmixing.

5.2 The Linear Mixing Model

There are two main reasons why mixed spectra occur [98, 99]. First, if the spatial

resolution of the sensor is low enough, separate materials can jointly occupy the

instantaneous field-of-view (FOV) of the pixel, the resulting spectral measurement

is a combination of the constituent spectra, see Figure 5.1(a). In this case, one

can imagine the object scene as a checkerboard mixture: light from the illumination

source scatters or reflects from only one of the materials before being observed by

the sensor, multiple scattering between materials are ignored. The second reason

for mixed pixels occurs when different materials are combined into a homogeneous

mixture, see Figure 5.1(b). In this case, mixed spectra are not caused by poor spatial

resolution, they are inherent to the nature of the scene. For the purposes of this

chapter, I will focus on the first case, mixed spectra caused by the spatial resolution

limitations of the sensor.

When mixed spectra occur due to the spatial resolution limitation of the instru-

ment, the fractional abundance is linearly proportional to the relative area of each

material. This is called the Linear Mixing Model (LMM), where the mixed spectrum

can be written as

f =

NR∑
r=1

xrsr + e = Sx + e (5.1)

where f is the mixed spectrum, sr is the rth endmember spectrum, S is a matrix in

which the columns are the endmember spectra, x is the fractional abundance vector,

121

(a) (b)

Sensor Illumination Sensor Illumination

Figure 5.1: (a) Illustration of linear mixing where incident solar radiation reflects from a
surface and the surface consists of distinct materials. (b) Illustration of nonlinear mixing
where incident solar radiation encounters an intimate mixture of materials, reflecting or
scattering multiple times before being reflected toward the spectral image sensor.

and NR is the number of endmembers in the endmember library, each spectra has

Nλ spectral channels. In the Linear Mixing Model (LMM), the interactions between

distinct endmembers are assumed to be neglible [100].

There are two contraints imposed by the physics of the situation. Intuitively we

should expect that the fractional abundance should be equal to or larger than zero.

This is the nonnegativity constraint:

xr ≥ 0. (5.2)

We should also expect that if energy is conserved, i.e. there is no absorption of light,

then the fractional abundance should sum to one. This is the additivty constraint:

NR∑
r=1

xr = 1 (5.3)

5.2.1 Unmixing in Traditional Spectral Imaging

In traditional spectral imaging, the spectral datacube is first isomorphically acquired

by the instrument before any unmixing step is performed. Often a dimensionality

reduction step is used to reduce the computational burden of processing the spectral

datacube [98, 99]. If the endmembers are unknown, an endmember determination

122

step is executed. Finally, the inversion step is used to estimate the fractional abun-

dances.

Notable data reduction algorithms include Principal Component Analysis (PCA)

and Maximum Noise Fraction (MNF). As described in Chapter 2, PCA is applied

to the measured data and finds the basis which decorrelates the data. In PCA

one typically observes a steadily decreasing signal-to-noise ratio as the principal

compenent number increases [101]. However, this is not always the case, since it

equates variance with information and is based on the assumption that the data

structure can be described by a multi-dimensional normal distribution [102]. In

Maximum Noise Fraction (MNF), the algorithm attempts to order the components

in terms of SNR which consists of two seperate PCA rotations and a noise whitening

step. MNF requires estimation of the noise covariance matrix in addition to the

covariance of the data.

The inversion step actually estimates the fractional abundance. There are a

variety of inversion techniques which actually attempt to estimate the fractional

abundance vector. Many are based on minimizing the squared error and attempt to

enforce additivity or non-negativity [99, 103]. There are various algorithms based on

Maximum A Posteriori (MAP), Maximum Likelihood Estimation (MLE), and clus-

tering which can be used for spectral unmxing. Unfortunately, we cannot explore

each inversion technique, however due to their prevalence, I will use least-squares

based inversion technique when comparing computational spectral unmixing tech-

niques to tradiational unmixing techniques.

5.3 Architecture

In this research, two seperate architectures are used for spectral unmixing. The

first architecture is the AFSS, which is the single pixel version of the AFSSI-C

described in depth in Chapter 4. The second architecture is a Liquid Crystal on

Silicon (LCOS) based spectral imager, called the LCSI, which allows for an extremely

compact instrument, see Figure 5.2. The system provides a programmable spectral

filter, which can be independently addressed at each physical pixel of the SLM.

The device consists of an array of micro cells of liquid crystal on a reflecting layer

[104]. Each layer of liquid crystal can be modeled as a thin retarder plate. Since

123

LCOS
SLM

f
Intermediate
Image Plane

Lens Polarizing
Beam Splitter

Imaging
Lens

f

Camera

Imaging
Lens

f

Figure 5.2: The LCOS Spectral Imager. Light from the intermediate image plane is
collimated. A polarizing beam splitter passes p-polarized light and rejects s-polarized
light. Upon reflection of the LCOS SLM, the polarization state is changed to some elliptical
polarization state. Only the s-polarized portion of the elliptical polarization is reflected
toward the upper part where it is imaged onto a scientific camera. The intensity of the
light that is passed depends on birefringence created by the programmable LCOS.

the birefringent phase retarder is sensitive to wavelength, the LCOS combined with

a polarizing beam splitter or a linear polarizer produces a wavelength dependent

transmission pattern, a spectral filter, which modulates the input spectra [56].

Unfortunately, a full discussion of polarization is not appropriate for this disserta-

tion. The important point is that for light of a single wavelength, the LCOS produces

polarization which in general is not linearly polarized. Placing a linear polarizer af-

ter the light has been reflected from the LCOS will then force the transmitted light

to be linearly polarized but at an intensity that depends on the projection of the

output polarization from the LCOS onto the transmission direction of the polar-

izer. Passing non-monochromatic light to an LCOS and then a linear polarizer will

impart a wavelength dependent intensity. In short, the SLM provides polarization

and wavelength dependent transmission patterns to encoded the spectral datacube

[105].

124

5.3.1 Forward Model

The forward model for the LCSI is similar to the forward model for the AFSSI-C

presented in Section 4.2.1, except we do not need to account for the dispersion when

imaging from the input plane to the LCOS and from the LCOS to the FPA of the

camera. I will thus skip the derivation of the forward model and simply present the

final equation for the measurement value at pixel n and l from the camera:

Γnl =
∑
n′l′

∫∫∫
rect

(x
∆
− l, y

∆
− n

)
rect

(x
∆
− l′, y

∆
− n′

)
× Tn′l′(λ)D0 (x, y;λ) dx dy dλ. (5.4)

Notice that there is no dispersion constraint like the one created in the AFSSI-C or a

joint spatial-spectral constraints like in the CASSI. The LCOS creates dispersion by

the very nature of wavelength dependent birefringence. If one so choose to, one can

simply treat each pixel in the image as completely independent from neighboring

pixels. This greatly simplifies the analysis.

Similar to the AFSSI-C we can further simplify this by imagining a discrete

spectral density, the spectral datacube. The discretized source spectral datacube is

D, and then the detector signal Γ is a result of spectral filter created by the Polarizing

Beam Splitter (PBS) and LCOS combination where spectral filter T acting on the

pixelated source is

Γn,l =

Nλ−1∑
c=0

Tn,l,cDn,l,c (5.5)

which shows the measurement at each pixel being the inner product of the source

spectrum and the spectral filter created by the PBS-LCOS combination. In a single

spatial location, this reduces to a simple inner product

gm = hTmf (5.6)

where the subscript m represents the mth measurement step and f the true spectrum

at that pixel. For a sequence of measurements this simplies to

g = Hf (5.7)

where the mth row of H is hTm and g is an Nm×1 vector, f is the ground truth mixed

spectrum

f = Sx (5.8)

125

Thus for a sequence of noisy measurements at a single pixel

g = HSx + e = Ax + e (5.9)

where H is an Nm ×Nλ matrix, S is the endmember library which is an Nλ ×NR

matrix, x is the fractional abundance vector which an NR×1 vector, e is the additive

noise which is a Nm × 1 vector. If I define

A = HS, (5.10)

one can think of H as the sensing matrix and S as the representation matrix as

discussed in Section 2.5.

5.4 Solving the Inverse Problem

For this work I chose to use the least-squares estimator (LSE)

x̂ =
(
ATA

)−1
ATg (5.11)

to demonstrate the advantage provided by multiplexing without using compressive

sensing based algorithms. To demonstrate compressive sensing approaches, I will

used the built-in MATLAB lasso function which attempts to minimize the `1

regularized least-squares objective function

x̂ = arg min
x

‖Ax− g‖2
2 + τ‖x‖1 (5.12)

in order to find fractional abundances that are sparse.

In the traditional spectral imager, the fractional abundance is estimated after

the spectral datacube is acquired. In our work, the fractional abundance can be

estimated after each measurement step. However, since we need a way to compare

our results to traditional spectral imaging, we can use the tunable filter architectures

for a baseline comparision. The tunable filter acquires a single wavelength over the

entire field-of-view and thus allows us to obtain measurements in a time sequential

manner. This means that we can use the LSE to get an idea of how a traditional

spectral imaging architecture would perform.

As I mentioned earlier, in remote sensing the fractional abundance vector x

tends to be sparse: the number of endmembers in the library is much larger than

126

number of endmembers that are actually present in the mixed spectrum NR > ‖x‖0.

Therefore, one can invoke the techniques designed for compressive sensing to find

solutions that are sparse.

5.5 Prior work

5.5.1 Prior Efforts in Computational Spectral Unmixing

Several researchers have shown promising results in applying compressive sensing

to spectral unmixing using a modified single-pixel camera architecture [106]. They

demonstrated the ability to reconstruct the fractional abundance planes without the

need to explicitly reconstruct the spectral datacube. In this approach, the object

scene is imaged onto a DMD and then a condensor lens focuses the reflected light

into a whiskbroom spectrometer. One can think of this architecture as a set of

parallel single-pixel cameras each operating at a different spectral channel, with

the constraint that each DMD must display the same pattern. This architecture

does not code the spectral dimension of the spectral datacube. The researchers

demonstrated compressive unmixing by minimizing the total variation (TV) of the

endmember images while enforcing the nonnegativity constraint.

In another effort, researchers use the Coded Aperture Snapshot Spectral Imag-

ing (CASSI) architecture to perform compressive sensing on the spectral datacube

and solve the `1-regularized least squares problem (lasso in regression) to promote

sparsity in the fractional abundances [107]. Due to the nature of the single-disperser

CASSI architecture, the researchers are forced to solve a larger joint-inference prob-

lem to preform spectral unmixing.

5.5.2 Prior efforts using LCOS Computational Spectral

Imaging

Several groups have previously demonstrated computational spectroscopy and spec-

tral imaging results using variations of liquid crystal technology. The first instance,

in 2012, used a single-pixel liquid crystal device to demonstrate compressive spec-

troscopy and exhibited a 10× reduction in the number of measurements compared

127

to a traditional ismorphic spectrometer [108]. Shortly after in 2013, a demonstra-

tion of a compressive spectral imager using an LCOS SLM was published which

jointly coded spatial and spectral features [109]. In 2015, an LCOS based hyper-

spectral imaging sensor demonstrated blind compressive sensing, using a Bayesian

approach to dictionary learning in situ [56]. That same year, a miniture ultraspec-

tral imaging system based on a custom built liquid crystal cell, which applies the

same spectral filter to each spatial location, demonstrated the ability to reconstruct

gigapixel spectral datacubes with an order of magnitude reduction in measurement

steps compared to isomorphic systems [110]. However, to my knowledge, no one has

ever attempted to perform direct spectral unmixing using an LCOS based device.

5.6 Design and Selection of Spectral Filters for

Unmixing

5.6.1 Adaptive Unmixing Algorithm For the AFSSI-C

The Adaptive Feature Specific Spectrometer (AFSS) has the ability to display

psuedo-arbitrary spectral filters with the restriction of using binary codes {−1,+1}
using the DMD. In the AFSS, one can emulate a tunable filter spectrometer by mea-

suring one spectral channel at time, i.e. turn on one mirror per measurement step.

In this case, the measurement matrix is equal to the identity matrix H = I. Com-

bining the tunable filter approach with the LSE produces what one should expect

from a traditional isomorphic spectrometer to conduct spectral unmixing.

We can also use random binary codes to achieve a multiplexed measurement to

improve the throughput of each measurement to reduce the unmixing error. The

spectrum can then be estimated by processing the measurement with the LSE to

demonstrate the performance gained by collecting more light per measurement step.

However, estimating the fractional abundance using a compressive sensing based

algorithm such as the MATLAB lasso function can produce even better unmixing

results by enforcing sparsity.

As shown in the AFSSI-C, adaptive coding can significantly improve performance

compared to multiplexing alone. We developed an algorithm for adaptively creating

spectral filters which uses a modified version of pPCA to create adaptive spectral

128

filters. This algorithm begins with the spectral library which consist of the each

endmember spectra S. Initially, before any measurements are made, the estimated

fractional abundance of each endmember is assumed to be the same:

âm=0 =

1
NR

1
NR
...

1
NR

 (5.13)

where NR is the number of endmembers. The subscript denotes the mth measure-

ment step. Before any measurement is made, m = 0. Then each endmember in the

spectral library is weighted by the square of their respective estimated fractional

abundance

Sw =
[
â2

1s1 â2
2s2 . . . â2

NR
sNR

]
(5.14)

this is called the weighted spectral library. Then the eigenvectors of the unnormal-

ized covariance matrix of the weighted spectral library are computed to obtain the

principal components

Xm = SwSTw. (5.15)

Where the first principal component corresponds to the direction of largest vari-

ance and so on. Initially, for the first measurement, the algorithm chooses the first

principal component for the spectral filter hm=1 = p1. The measurement is then

recorded

gm=1 = hTm=1f + em (5.16)

A simulated “guess” measurement based on the current estimated fractional abun-

dance âm−1 is also computed:

γm=1 = hTm=1Sâm=0 (5.17)

notice that the guess measurement does not include any simulated noise. Remember

S denotes the original spectral library matrix, not the weighted spectral library

matrix. After the measurement is recorded, the `2 norm of the difference between

of the guess measurement and the actual measurement is recorded:

ξm = ‖γm − gm‖2 (5.18)

129

The fractional abundance is then estimated using the MATLAB lasso function.

In practice, the LSE is used for the first measurement step since the function lasso

requires atleast two rows for A and therefore two measurements, to run.

The spectral library is then reweighted using Equation (5.14). Again the princi-

pal components are recomputed. For the mth measurement step, the mth principal

component is used for the spectral filter. After the measurement has been recorded,

the `2 norm of the difference between the guess measurement and the actual mea-

surement is recomputed ξm.

This continues after each measurement until either two things happen:

1. If the current `2 norm of the difference between the guess and the actual

measurement exceeds the last `2 norm of the difference between guess and

actual measurement by

ξm > ξm−1 −
σ

2
(5.19)

where σ is the standard deviation of the system noise, which is assumed to be

AWGN.

2. Used the sixth principal component.

when either of these two conditions are met, the loop resets to using the first

principal component again. I constrained the algorithm to only use the first six

principal components, because I noticed that the unmixing preformance is optimized

when limited to only the first six principal components. Intuitively, this may be

occuring because higher principal components tend exhibit lower SNR or because

the spectra in the library do not exhibit significant high frequency features. This

algorithm is called Switch Weighted Principal Component Analysis (SWPCA). It

is important to note that as of yet, this algorithm does not consider the dispersion

constraint of the AFSSI-C, and therefore is more appropriate for the single pixel

version, the AFSS. The MATLAB code which simulates Switch Weighted Principal

Component Analysis (SWPCA) is found in Appendix G.

5.6.2 Hybrid Spectral Filters for the LCSI

The spectral filters produced by the LCSI architecture are constrained by the physics

of the birefringence dispersion created by the LCOS. For our particular model, the

130

Holoeye PLUTO LCOS SLM, the spectral filter is changed by sending a different

grayscale value to the green channel of the video input (Holoeye allows their SLM

to be connected like a second monitor). Since there are 256 grayscale values (0-255),

there are 256 different spectral filters, see Figure 5.3.

Since one is not able to design the spectral filters individually, the next best

thing is to choose which spectral filters should be used at each measurement step.

Intuitively, one can imagine that using the same spectral filter over and over again

will lead to a measurement matrix H where the rows are linearly dependent. Instead,

one should strive to construct a measurement that is highly incoherent to satisfy

the restricted isometry property (RIP).

For my experiment, I will compare several methods of choosing the spectral

filters. The first method is simply selecting them at random from a discrete uniform

distribution between 1 and 256, while constraining the selections to prevent using

the same spectral filter from being used more than once. This technique however

does not attempt to incorporate any prior knowledge about the statistics of the

endmembers, besides sparsity.

One attempt to incorporate the statistics of the endmembers is to use PCA to

select the spectral filters. One could imagine an algorithm which computes the

principal components of the endmembers (spectral library) and then selects the

spectral filters which most closely resemble the principal component vector p based

on their angle:

h = arg max
h

{
p

‖p‖
· h

‖h‖

}
. (5.20)

For the mth measurement, the spectral filter whose dot product is largest with the

mth principal component of the endmember matrix is selected. However, using all the

principal components actually increases the unmixing error after a certain amount

of measurement steps, as compared to purely random selections. This occurs for

several reasons: As the PC number increases, they actually become less informative.

Second, principal components tend become more rapidly varying as the PC number

increases, the spectral filters generated by the LCOS are in general smoothly varying

and become more difficult to match with the higher principal components.

Thus, we created a hybrid spectral filter selection technique that uses PCA to

select the first several spectral filters and then uses psuedo-random selections af-

131

ter a certain number of measurement steps. This balances the ability of PCA to

choose spectral filters that improve the unmixing error at the initial measurement

steps while using random selections to ensure the measurement matrix is incoherent

enough to satisfy the RIP.

The hybrid approach to selecting the spectral filters is further extended to use a

more advanced version of PCA called Maximum Noise Fraction (MNF) transform.

MNF was originally developed to remove noise from multispectral satellite images

[101] and attempts to select a basis which orders the signal-to-noise ratio of the MNF

components. However, MNF is also used for Blind Signal Seperation (BSS), which

is the seperation of a set of source signals from a set of mixed signals [111]. Instead

of computing the principal components, I compute the maximum noise fraction

components of the spectral library. I specifically used the noise adjusted principal

component analysis (NAPCA) algorithm to compute the MNF of the spectra library

which is found in [111]. The algorithm associates rapidly varying parts of the spectral

library with noise and assumes the signal is contained in the smoothly varying parts

of the spectral library.

132

50 100 150 200 250
Grayscale Level

450

500

550

600

650

Sp
ec

tra
l C

ha
nn

el
 (n

m
)

Figure 5.3: The spectral filters created by the Holoeye PLUTO SLM and polarizing
beam splitter. Each column is a spectral filter at a particular grayscale level (0-255) sent
to the PLUTO SLM by a custom MATLAB program.

5.7 Results

5.7.1 Simulation Results For the AFSS

Now that I have discussed various coding strategies for spectral unmixing using the

AFSS, it is important quantify them. I performed simulations over five SNR levels

from 10−2 to 102, where the SNR is defined as

SNR =
E
[
VarNλ(s)

]
σ2

, (5.21)

which is the ratio of the average variance of the endmembers over the spectral

channels to the noise variance. The results after 40 measurement steps are shown

in Figure 5.4, which show the average Root Mean Squared Error (RMSE) of the

estimated fractional abundance versus SNR. Root Mean Squared Error (RMSE) is

133

defined as

RMSE =

[
1

NR

NR∑
r=1

(âr − ar)2

] 1
2

(5.22)

The purple dotted line represents the performance of a tunable filter architecture

combined with the least-squares estimator (LSE). With random binary patterns, one

can obtain an improvement of approximately 3× which demonstrates the advantage

of multiplexing, as shown in the mustard dash-dotted line. Further improvement

is also achieved by incorporating the prior knowledge of sparsity of the fractional

abundance, as shown in the orange dashed line. Finally, the blue solid line represents

how adaptively designing the spectral filters and using compressive sensing provides

an even better result than random coding alone.

Figure 5.5 shows the average RMSE as a function of measurement number for

SNR = 0.01, 1, and 100. The blue line represents pseudo-random spectral filters,

the error decreases monotonically with measurement number as one would expect.

The green lines represent what happens if the adaptive algorithm never went back

to the first principal component once either of the two conditions in Section 5.6.1 are

met. Simply using higher principal components does not reduce the RMSE after a

certain point, even when the spectral library is weighted by the fractional abundance.

The red line represents the adaptive algorithm as discussed. This demonstrates

the importance of going back to the first principal component whenever the two

conditions are met in the adaptive algorithm: it breaks the performance plateau

and significantly reduces the unmixing error compared to random coding alone.

5.7.2 Initial Experimental Results of Compressive Unmix-

ing Using the AFSSI-C

I performed an initial proof-of-principle experiment using the AFSSI-C architecture.

Due to the dispersion constraint of the AFSSI-C, I was unable to test the adaptive

algorithm, however the random coding and the use of sparsity promoting algorithms

can still be demonstrated.

For this experiment I had to upgrade the AFSSI-C prototype by adding a second

display, see Figure 5.7. This is because the original prototype used only one LED

computer monitor, so it can only display combinations of the same red, green, and

134

10-2 10-1 100 101 102

SNR

10-2

10-1

100

101

Av
g.

 R
M

SE
 o

f E
st

. F
ra

c.
 A

bu
nd

an
ce Adaptive

Random LASSO
Random LSE
Tunable Filter LSE

Figure 5.4: A comparison of spectral unmixing techniques for the AFSSI-C at five dif-
ferent SNR levels. The y-axis represents the average RMSE of the estimate fractional
abundance. The x-axis represents the signal-to-noise in the measurements. The tun-
able filter LSE refers to the average unmixing performance if one were to use a tunable
filter spectral imaging architectures with least squares estimation to estimate the frac-
tional abundance. The random LSE line refers to the improvement in spectral unmixing
This shows the improvement that multiplexing provides over simple tunable filter spectral
imaging using the least squares estimator (LSE). Then using the multiplex advantage and
algorithms that promote sparsity when the fractional abundance is known to be sparse,
one can significantly outperform

135

5 10 15 20 25 30 35 40
Total Measurement Duration (Arb. Units)

10-2

10-1

100

101

Av
g.

 R
M

SE
 o

f E
st

. F
ra

c.
 A

bu
nd

an
ce

SNR = 100

SNR = 1

SNR = 0.01

Random Non Adaptive LASSO
Weighted PCA Adaptive LASSO
Switch Weighted PCA Adaptive LASSO

Figure 5.5: Comparison of Spectral Unmixing Techniques for the AFSSI-C versus Mea-
surement Duration for SNR = 0.01, 1.0, and 100. Even though the spectral library is
weighted by the fractional abundances from the last measurement, simply using every
principal component underperforms using random spectral filters with `1 regularized least
squares (lasso). Switching the principal components according the algorithm described in
Section 5.6.1 significantly reduces the unmixing error.

136

5 10 15 20 25 30 35
Spectral Channel

0

0.2

0.4

0.6

0.8

1
Ite

ns
ity

 (N
or

m
al

iz
ed

)

Figure 5.6: The six endmember spectra used for the spectral unmixing experiment. The
library consist of the red, green, and blue spectra from an LED Monitor and the red,
green, and blue spectra from the OLED. The LED monitor spectra may look different
from the one shown in Chapter 4 since the spectra have been modified by transmitting
through a pellicle beam splitter.

blue (RGB) spectra, producing only three endmembers. In order to have six end-

members, I added an OLED display which also has red, green, and blue spectra but

are different enough that they are not simply scaled versions of the RGB spectra

from the LED monitor. This is shown in Figure 5.6. Note that the RGB spec-

tra from the LED look different from Figure 4.10 which was used for the AFSSI-C

experiment because the transmission from the pelicle beam splitter also acts as a

spectral filter.

The first-order optical architecture of the unmixing setup was carefully deter-

mined using the ray tracing and optimization software package Zemax. The goal

was to ensure that the intermediate image of the LED monitor and the intermediate

image of the OLED were at the same location with the same image size. The two

images effectively create a single image which has spectrally mixed pixels with six

possible endmembers. The pellicle beam splitter has a clear aperture of 2 inches,

thus it needed to be close enough to the objective lens to minimize vignetting. A

137

LED
Monitor Intermediate

Image Plane

OLED Display

Pellicle Beam
Splitter

Objective
Lens

Achromatic
Doublet

Figure 5.7: Experimental architecture used to superimpose the spectral images from the
LED monitor, which already was in place, and an OLED display. ZEMAX was used to find
the correct location of the achromatic doublet, OLED display, and pellicle beam splitter
to ensure the intermediate image from both displays appeared at the same location and
with the same transverse magnification.

commercial off-the-shelf 120 mm EFL achromatic doublet from Edmund optics was

placed between the OLED and the pellicle beam splitter to move the OLED closer

to the instrument. Once all the optical components were optimized in Zemax, they

were exported to Solidworks, see Figure 5.8, where mounts for the achromatic dou-

blet and the OLED display were designed for 3-D printing.

There were several practical experimental issues that had to be addressed. Once

the setup was constructed, I used a similar spectral calibration procedure from the

AFSSI-C experiment to determine the endmembers from the OLED display. The

spatial calibration procedure was identical. The OLED was much brighter than the

LED monitor, when measured by the SBIG camera. Second, even though the setup

was optimized in Zemax, the actual alignment was imperfect. This caused the right

side of the OLED to have a larger point-spread function than the left side of the

monitor, which caused spatial cross-talk between neighboring pixels. To compensate

for this, only one-fourth of the physical pixels were used in a single system pixel.

Then a neutral density filter was placed front of the OLED to make the system pixel

intensity on the same order-of-magnitude as the intensity from a system pixel from

the monitor. Since the pellicle beam splitter acts as a partially reflecting mirror for

OLED, I had to account for the image flip by writing a custom MATLAB function

which accounts for the left-right flip.

138

Figure 5.8: Computer Aided Design (CAD) drawing of experimental mixing setup. Var-
ious objects have been “hidden” to reduce clutter and emphasize the essential objects: the
OLED, the custom design mount for the OLED, the achromatic doublet and the custom
designed mount for the doublet, the pellicle beam splitter shown in a kinematic mount,
the objective lens also in a custom fabricated C-mount lens.

In order to perform an experiment which demonstrates the ability of the AFSSI-

C to perform unmixing on spectrally mixed images, I displayed a 32 × 32 green ramp

on the monitor, see Figure 5.9(a). The intensity of the green increases from left to

right. The opposite image is displayed on the OLED display, see Figure 5.9(b),

the intensity of the green decreases from left to right. The other four endmembers

which consists of the red and blue of each monitor are set to zero. The fractional

abundance of green from both displays sum to one over the entire region-of-interest.

At each measurement step, the DMD is commanded to display a binary random

pattern. Since the pattern is designed for {−1,+1} values, I had to display the

positive pattern, record the camera measurement, then display the negative pat-

tern, and record another camera measurement, then subtract the negative from the

positive camera images. This unfortunately introduces an additional factor of
√
σ of

measurement noise into each measurement step. Both the LSE and the MATLAB

lasso function are used to estimate the fractional abundance. Figure 5.10 shows

the average RMSE versus measurement number over the 32 × 32 region. Unfortu-

nately, due to time constraints, I was unable to develop a procedure to estimate the

139

(a)
10 20 30

10

20

30

(b)
10 20 30

10

20

30

Figure 5.9: Ground Truth Images for Spectral Unmixing Experiment. (a) A linear green
ramp on the monitor. (b) A linear green ramp on the OLED. Remember that the green
of each display are different.

noise in the experiment, therefore the results cannot be directly compared to the

simulation results. The result after the 40th measurement is shown in Figure 5.11

By looking at an example pixel, see Figure 5.12, one can see that the experiment

properly identified the two endmembers that were actually present out of the six

total endmembers and was able to accurately estimate the fractional abundance

after five measurements.

140

0 10 20 30 40
Total Measurement Duration (Arb. Units)

10-1

100

Av
g.

 R
M

SE
 o

f E
st

. F
ra

c.
 A

bu
nd

an
ce Random LSE

Random LASSO

Figure 5.10: 32 × 32 Experimental Spectral Unmixing Results Using the AFSSI-C with
random binary spectral filters. The MATLAB lasso function outperforms the least
squares estimator as the number of measurements increase. Thus have an opportunity to
beat traditional systems using significantly fewer measurements

(a)
10 20 30

10

20

30

(b)
10 20 30

10

20

30

Figure 5.11: Image of 32 × 32 Experimental Compressive Spectral Unmixing Results
Using the AFSSI-C after the 40th measurement.

141

0 10 20 30 40
Measurement Number

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fr
ac

tio
na

l A
bu

nd
an

ce
Monitor Red
Monitor Green
Monitor Blue
OLED Red
OLED Green
OLED Blue
Monitor Green Ground Truth
OLED Green Ground Truth

Figure 5.12: Single Pixel Spectral Unmixing Results with the AFSSI-C with random
binary spectral filters. The MATLAB lasso function correctly identifies fractional abun-
dance of the two green spectra from each display within five measurement steps. The four
other spectra are estimated to be zero.

5.7.3 Simulation Results For the LCSI

In order to accurately simulate the spectral filters I first performed a calibration

procedure to measure how each grayscale level filters an input spectrum. A high

intensity custom-built white LED lamp was used to illuminate the LCSI. At the

output we placed an Ocean Optics USB 4000 spectrometer. Then the spectrum

of the white light filtered by LCSI at each grayscale level is recorded. Then the

spectrum at each grayscale level is normalized by the maximum intensity at each

wavelength which produces the calibration spectral filters shown in Figure 5.3.

In order to quantify the filter selection techniques discussed in Section 5.6.2, I

also produced several simulations at SNR = 100. Figure 5.13 demonstrates the three

techniques: randomly selecting filters, the hybrid PCA-Random filter selection, and

the hybrid MNF-Random filter selection. Randomly selecting the filters adequately

reduces the unmixing error monotonically with measurement error as expected. By

using PCA to select the first six spectral filters and then using a psuedo-random filter

142

selection technique for the rest, a significant performance gain is obtained within

the first 20 measurements. As the number of measurements increases, the diversity

of filter sets decreases. At measurement 256, when all the spectral filters have been

used, the average RMSE is the same. Using a hybrid MNF-Random filter selection

produces an additional reduction in unmixing error.

5 10 15 20
Total Measurement Duration

10-2

10-1

100

Av
g.

 R
M

SE
 o

f E
st

. F
ra

c.
 A

bu
nd

an
ce

Random
PCA-Random Hybrid
MNF-Random Hybrid

Figure 5.13: Comparing Random and Hybrid Spectral Filter Selections for the LCSI at
SNR = 100. One cannot generate arbitrary spectral filters with the LCSI, therefore one
must decide how to select from a set of 255 possible spectral filters. A hybrid of using the
spectral filters that are closest in angle to the first six principal components and then using
random filter selections outperforms purely random filter selections. Similarly, a hybrid of
using the spectral filters that are closest in angle to the MNF components for the first six
measurement steps and then using random filter selections outperforms the random and
the PCA-random hybrid filter selection.

5.8 Conclusion

Computational spectral unmixing is a computational sensing approach to estimating

the fractional abundances of mixed spectra without the need to directly reconstruct

the hyperspectral datacube. I discussed two separate architectures for spectral un-

mixing, the DMD based AFSS and the LCOS bases LCSI. I developed two separate

143

approaches for coding the mixed spectral measurements for a compressing sensing

approach for unmixing. The first used adaptive spectral filters combined with condi-

tions to prevent the unmixing error from plateauing. The second relies on variation

of Principal Component Analysis (PCA) or Maximum Noise Fraction (MNF) to find

spectral filters provide very informative measurements compared to simply selecting

spectral filters at random. Simulations show the viability these techniques to sig-

nificantly reduce the unmixing error over naively random coding (or filter selection)

alone, demonstrating the importance of incorporation the prior knowledge of the

statistics of the signal-of-interest.

144

Chapter 6

Conclusion

This dissertation discussed several important practical considerations of computa-

tional sensing and how they are addressed in three separate applications: compres-

sive object tracking, adaptive spectral image classification, and compressive spectral

unmixing. As computational sensing continues to make rapid progress in the coming

years many of these issues must be addressed and confronted.

The first chapter introduced the reader to the concepts of isomorphic and com-

putational sensing. Computational sensing was developed from the disparate fields

of multiplexing spectroscopy and indirect imaging. However, the development of the

CCD, the digital computer, and data compression allowed scientists to begin cre-

ating practical and reliable demonstrations of computational sensing. The advent

of the mathematics and algorithms of compressive sensing generated an additional

technological leap which dramatically reduced the number of measurements in order

to reconstruct the signal of interest. Once the history and benefits of computational

sensing was discussed, I then discussed the practical issues of computational sen-

sors: calibration, over multiplexing due to finite dynamic range and quantization

resolution, code design and optimization, and the need for a priori knowledge.

The second chapter formally developed the concepts related to computational

sensing. I discussed the Fellgett advantage, using Hadamard and S-matrix mul-

tiplexing. Then a formal discussion of Principal Component Analysis (PCA) was

developed, which demonstrates how it can be used as a dimensionality reduction

technique which creates a basis that decorrelates the data. Then a formal discussion

on Bayesian statistics was given which justified their use in the AFSSI-C. Sparsity,

145

incoherence, and the restricted isometry property (RIP) were discussed in-depth to

demonstrate why random coding is popular for acquiring sparse signals in compres-

sive sensing. The `1 minimization subject to data agreement constraints and its

equivalent problem minimizing the `1 regularized least squares objective function

were also discussed with some intuition as to why it works well for promoting sparse

solutions to undetermined inverse problems.

The Static Computational Optical Undersampled Tracker (SCOUT) was dis-

cussed in the third chapter. The SCOUT showed how intentionally blurring the

point-spread function (PSF) in a compressive imager can actually help reduce the

effects of overmultiplexing. As the amount of signals being sensed increases the

variations in the sensed signal become more difficult to discern. Overmultiplexing

occurs due to the finite dynamic range and quantization resolution. In the single

pixel camera [11], one is forced to measure a series of projections in a time sequential

manner prior to solving an inverse problem, in the SCOUT the projections occur in

parallel for a single difference scene. The SCOUT introduced the reader to the im-

portance of calibration in a compressive sensor. The measurement matrix must be

carefully measured to produce optimal results. It also demonstrated that optimizing

the measurement matrix can be extremely time consuming by hand. Developing a

heuristic method based on the coherence metric and ray based simulations reduced

the time it took to find optimal design parameters.

The fourth chapter discussed the Adaptive Feature Specific Spectral Imaging-

Classifier (AFSSI-C) which is a computational spectral image sensor designed to

adaptively classify spectra at each location in the field-of-view of the sensor. It used

back-to-back spectrographs with a digital micro-mirror device (DMD) to produce

psuedo-arbitrary spectral filters at each system pixel. After each measurement,

an algorithm updates the probabilities of each spectra and weighted the spectral

library before recomputing principal components. The first principal component

vector is then used as the spectral filter for each measurement. The AFSSI-C is

shown to quickly converge to the correct spectrum significantly outperforming tradi-

tional spectral imaging architectures especially in low TSNR scenarios. The chapter

discussed the development of spatial and spectral calibration procedures, vital for

optimal performance of the AFSSI-C. A procedure for estimating the system noise

was also described in-depth.

146

The fifth chapter discussed an extension of spectral classification called spectral

unmixing. Two architectures were discussed for spectral unmixing: the Adaptive

Feature Specific Spectrometer (AFSS) and the LCOS Computational Spectral Im-

ager (LCSI). The LCSI relies on the wavelength dependent nature of birefringence

to generate multiplex spectral measurements. One of the major constraints of the

LCSI is that psuedo-arbitrary spectral filters are not possible like in the AFSS or

AFSSI-C, therefore I had to develop techniques for selecting spectral filters using

random selections and a hybrid of using PCA or MNF to select spectral filters and

then using the random filter selections.

6.1 Future Outlook

One research project that has been an active area of research in the Laboratory

for Engineering Non-Traditional Sensors (LENS) is the coded memory effect imag-

ing system being developed by my colleague Xiaohan Li. The project combines

the memory effect of speckle with Coded Aperture Compressive Temporal Imag-

ing (CACTI) to temporally code speckle. This allows one to infer dynamic object

information that is not directly observable with the speckle alone.

Computational sensing continues to have an extremely promising future. Large

companies are actively conducting research and developing products which take ad-

vantage of the principles of computational sensing. For example, Microsoft sells a

depth sensor, called the Kinect, which relies on a form computational sensing to in-

fer the distance of objects and their shapes. Meanwhile, a recently announced grant

from NASA will fund the development of snapshot hyperspectral imagers based on

the Computed Tomography Imaging Spectrometer (CTIS) for space-borne applica-

tions [112]. Many university based research groups around the world are actively

conducting research that demonstrate compact spatial, spectral, temporal, and po-

larization computational sensing. Computational sensing will become even more

prevalent as the demand for higher resolutions in resource constrained environments

abound.

147

Appendix A

Derivation of the Least Squares Es-

timator

Suppose

g = Ax (A.1)

Given g and A we want to solve for x. If the matrix is full rank then we can

simply multiply both sides of equation A.1 by A−1

A−1g = A−1Ax = Ix = x (A.2)

where I is the identity matrix.

If A is not full rank then its inverse does not exist. However we can try to

find a solution x̂ that minimizes the squared error. This is called the Least Squares

Solution also known as the Least Squares Estimator, Ordinary Least Squares and by

many other names. We define the squared error as

‖ε‖2 = ‖Ax− g‖2 (A.3)

To minimize the error, we take the derivative of equation A.3 with respect to x and

set it equal to zero and solve for x. Note that the equation A.3 can be expanded in

terms of an inner product

‖ε‖2 = ‖Ax− g‖2 =
N∑
i=1

ε2i = εT ε = (Ax− g)T (Ax− g) (A.4)

148

The transpose is distributive

(Ax− g)T = (Ax)T − gT (A.5)

The transpose of a product of matrices equals the product of their transposes in

reverse order

(Ax)T = xTAT (A.6)

So equation A.4 becomes

‖ε‖2 = (xTAT − gT)(Ax− g)

= xTATAx− xTATg − gTAx + gTg
(A.7)

We can see that the two middle terms xTATx = gTAx because they are just scalars.

‖ε‖2 = xTATAx− 2gTAx + gTg (A.8)

To find the least squares solution, take the gradient with respect to x and set it

equal to zero.

It should be noted that there are two different notations for writing the derivative

of a vector with respect to a vector
∂y
∂x . If the numerator y is of size m and the

denominator x of size n, then the result can be laid out as either an m× n matrix

or n × m matrix, i.e. the elements of y laid out in columns and the elements of

x laid out in rows, or vice versa. They are both correct and equal, which leads to

confusion when switching back in forth. I will write both to reduce confusion.

Clearly the gradient of the third term in equation A.8 w.r.t x is 0, so it goes

away. We first tackle the first term on the right hand side in equation A.8

∂

∂x
xTATAx (A.9)

Let K = ATA. Since K is symmetric, we can use the identity

∂

∂x
xTKx = 2xTK = 2KTx (A.10)

since K = KT then

∂

∂x
xTATAx = 2xTATA = 2ATAx (A.11)

149

and the gradient of the middle term in equation A.8 is simply −2ATg so

∂

∂x
‖ε‖2 = 2ATAx− 2gTA (A.12)

setting it equal to zero and solving for x gives the least squares estimate

x̂ = (ATA)−1ATg (A.13)

150

Appendix B

SCOUT Experimental Results

This appendix contains the experimental reconstruction results of two movers in 10

difference frames from the zero (black) background SCOUT data. It also contains

the experimental reconstruction results of one mover in 10 difference frames from

non-zero (black) background. Each figure is a reconstructed difference frame from a

video. Due to the nature of books, showing video is impossible, the next best thing

is to show several representative frames from the video.

B.1 Zero Background Difference Frames

Figure B.1: Difference frame 1 of a sequence of one mover on a black background.

151

Figure B.2: Difference frame 2 of a sequence of one mover on a black background.

152

Figure B.3: Difference frame 3 of a sequence of one mover on a black background.

Figure B.4: Difference frame 4 of a sequence of one mover on a black background.

Figure B.5: Difference frame 5 of a sequence of one mover on a black background.

153

Figure B.6: Difference frame 6 of a sequence of one mover on a black background.

Figure B.7: Difference frame 7 of a sequence of one mover on a black background.

Figure B.8: Difference frame 8 of a sequence of one mover on a black background.

154

Figure B.9: Difference frame 9 of a sequence of one mover on a black background.

Figure B.10: Difference frame 10 of a sequence of one mover on a black background.

155

B.2 Non-Zero Background Difference Frames

Figure B.11: Difference frame 1 of a sequence of one mover on a non-zero background.

Figure B.12: Difference frame 2 of a sequence of one mover on a non-zero background.

156

Figure B.13: Difference frame 3 of a sequence of one mover on a non-zero background.

157

Figure B.14: Difference frame 4 of a sequence of one mover on a non-zero background.

Figure B.15: Difference frame 5 of a sequence of one mover on a non-zero background.

Figure B.16: Difference frame 6 of a sequence of one mover on a non-zero background.

158

Figure B.17: Difference frame 7 of a sequence of one mover on a non-zero background.

Figure B.18: Difference frame 8 of a sequence of one mover on a non-zero background.

Figure B.19: Difference frame 9 of a sequence of one mover on a non-zero background.

159

Figure B.20: Difference frame 10 of a sequence of one mover on a non-zero background.

160

Appendix C

The Psuedo-Code For SCOUT Ex-

periment

This appendix contains the psuedo-code for running the SCOUT experiment which

is described in Chapter 3.

161

Algorithm 1 Dark Frame Measurement algorithm

1: function getDarkFrame

2: Open Connection to Camera

3: Set camera temperature to 0 degrees Celsius

4: Start a stopwatch timer

5: tv := 60 seconds

6: c := 0

7: for k = 1 to numExp do {Loop takes numExp camera exposures}
8: begin

9: te := Read the stopwatch timer (units of seconds).

10: if te > c ∗ tv then

11: begin

12: Display an all white screen on monitor

13: c := c+ 1

14: end

15: Sets the entire plamsa to 0

16: df(k) := Camera Readout

17: end

18: Close Connection to Camera

19: average dark frame measurements

20: Return averaged dark frame measurements

162

Algorithm 2 SCOUT Calibration algorithm

1: function getHcal

2: df := getDarkFrame {Runs the Dark Frame Measurement Function}
3: Open Connection to Camera

4: Set camera temperature to 0 degrees Celsius

5: Start a stopwatch timer

6: tv := 60 seconds

7: c := 0

8: locList := randomize list of locations n to N

9: for n = 1 to N do

10: begin

11: te := Read the stopwatch timer (units of seconds).

12: if te > c ∗ tv then

13: begin

14: Display an all white screen on monitor

15: c := c+ 1

16: end

17: Sets the entire plamsa to 0

18: Turn on location locList(n)

19: p := Camera Readout

20: Sets the entire plamsa to 0

21: p := p− df {Subtract dark frame from the readout of the nth location}
22: Convert image to vector

23: Store in the nth column of H

24: end

25: Close Connection to Camera

26: Save H

163

Algorithm 3 Take Measurements for SCOUT Zero Background

1: function scoutMeasZeroBg

2: Open Connection to Camera

3: Set camera temperature to 0 degrees Celsius

4: Start a stopwatch timer

5: tv := 60 seconds

6: c := 0

7: for k = 1 to numFrames do

8: begin

9: te := Read the stopwatch timer (units of seconds).

10: if te > c ∗ tv then

11: begin

12: Display an all white screen on monitor

13: c := c+ 1

14: end

15: Sets the entire plamsa to 0

16: movLocList(k) := generate random list of mover locations over all possible

N locations

17: Create image f(k) where all zero except the locations from movLocList(k).

18: Display image f(k) {Display the ground truth frame}
19: r := Camera Readout

20: g(k) := Convert camera readout r to vector

21: Sets the entire plamsa to 0

22: end

23: Close Connection to Camera

24: Save all measurements and ground truth frames g, f

164

Algorithm 4 Reconstruct SCOUT Experiment Data

1: function reconScoutExp

2: Load all measurements g

3: Load H {From the calibration function getHcal}
4: for k = 2 to numFrames do

5: begin

6: ∆g(k − 1) := g(k)− g(k − 1) {Subtract previous measurement from current

one}
7: τ := (1× 10−9)

(
2HT∆g(k − 1)

)
8: reltol := 1× 10−9

9: ∆f̂(k − 1) := l1 ls(H,∆g, τ, reltol, quiet) {Reconstruct the difference frame

using the l1ls MATLAB code. }
10: end

11: Return all reconstructed frame differences ∆f̂

165

Appendix D

SCOUT Simulation Code

Listing D.1: Main Simulation Script

1 % GENERATING SYSTEM MEASUREMENT MATRIX 'H'

2

3 clc; clearvars; close all

4 rand_trials = 5

5 % lens to camera image sensor defocus in mm

6 defocus_value=35;

7 % pitch (in mm)of mask1 (next to image sensor)

8 p1=0.01;

9 % pitch (in mm) of mask2 (next to lens)

10 p2=0.5;

11 %focal length of lens

12 f=35;

13

14 %% comments about image sensor pitch

15 % reading 288 x 288 part on image sensor and binning

16 % (36x36) to obtain 8x8 pixels

17 % sensor pitch is 9 microns. For binnned 8x8, each pixel

18 % is 36*9= 324 microns

19

20 % pitch of image sensor in mm

21 p=0.324;

166

22

23 for i = 1:rand_trials

24

25 % d1 is distance between Mask 1 and image plane of lens

26 % here 2.04 mm is the spacing between camera sensor

27 % image plane and Mask 1

28 d1=defocus_value-2.04;

29

30 % d2 is distance between Mask 2 and image plane of lens

31 % here 6.35 mm is the spacing between

32 d2=f-6.35;

33

34 % calculating pitch and positions relative to detector

35 % for locating Mask1 away from focus

36 pos1 = (defocus_value -d1)/(f+defocus_value);

37

38 % position of Mask 2

39 pos2=(d2+defocus_value)/(f+defocus_value);

40

41 %calculating pitch values of Masks on detector

42 pd1=(p1*defocus_value)/d1; % for mask1

43 pd2=(p2*defocus_value)/d2; % for mask2

44 pitch1=pd1/p;

45 pitch2=pd2/p;

46

47

48 pitch = [pitch1 pitch2];

49 pos=[pos1 pos2];

50

51 % Mask leaakge based on experimental mask transmission

52 % values

53 leakage1=0.12;%masks open part leakage of 12%

54 leakage=0.00;%masks black part no leakage

167

55

56 % fill factor of mask1 and mask2 , 50%

57 through=[0.5 0.5];

58

59 lens_defocus=defocus_value;

60

61 %scaling mask patterns, using smaller values speeds up

code

62 upsamp=0.25;

63

64 directory=pwd;

65

66 date='feb16'; %date for file names

67

68 name = ...

69 sprintf(['%s/pos_%.3g_%.3g_through_%.3g_%.3g_'...

70 'pitch_%.3g_%.3g.mat'],...

71 directory,pos(1),pos(2),through(1),through(2),...

72 pitch(1),pitch(2));

73

74 % choose blur type on masks

75 psfblur='fourierpsf';

76 %psfblur='false' for no blur

77 % for adding blur based on fourier filter

78 %psfblur='fourierpsf'

79

80 varargin={'upsample',upsamp,'mask_pos',...

81 pos,'throughput',through,'maskpitch', ...

82 pitch,'defocus', lens_defocus,'psfblur',...

83 psfblur,'leakage',leakage,'leakage1',leakage1};

84

85 N=32;%size of the scene (NxN)

86 K=8;%size of detector (KxK)

168

87

88 % call function to generate system matrix, with point

89 % by point calibration. Selecting display as 'false'

90 % to prevent figure display while generating matrix

91 H(:,:,i) = struct_projection(N, 'display',false,...

92 'compression', N/K, varargin{:});

93

94

95 save(['condnum_df_' num2str(defocus_value) ...

96 'normalization_on.mat'],'H','rand_trials')

97

98 end

99

100 % use the statement below for locating Mask1 before the

focus (i.e. on the same side of focus as Mask 2)

101 % pos1=(d1+defocus_value)/(f+defocus_value);

102

103 pos2=(d2+defocus_value)/(f+defocus_value); % position

of Mask 2

104

105 %calculating pitch values of Masks on detector

106 pd1=(p1*defocus_value)/d1; % for mask1

107 pd2=(p2*defocus_value)/d2; % for mask2

108 pitch1=pd1/p;

109 pitch2=pd2/p;

110

111

112 pitch = [pitch1 pitch2];

113 pos=[pos1 pos2];

114

115 %Mask leaakge based on experimental mask transmission

values

116 leakage1=0.12;%masks open part leakage of 12%

169

117 leakage=0.00;%masks black part no leakage

118

119

120 through=[0.5 0.5]; % fill factor of mask1 and mask2 ,

50%

121 lens_defocus=defocus_value;

122 upsamp=0.25; %scaling mask patterns, using smaller

values speeds up code

123 directory=pwd;

124 date='feb16'; %date for file names

125

126 name = sprintf('%s/pos_%.3g_%.3g_through_%.3g_%.3

g_pitch_%.3g_%.3g.mat',directory,pos(1),pos(2),

through(1),through(2),pitch(1),pitch(2));

127

128 %%choose blur type on masks

129 psfblur='fourierpsf';

130 %psfblur='false' for no blur

131 %psfblur='fourierpsf' for adding blur based on fourier

filter

132

133

134 varargin={'upsample',upsamp,'mask_pos',pos,'throughput'

,through,'maskpitch', pitch,'defocus', lens_defocus,

'psfblur',psfblur,'leakage',leakage,'leakage1',

leakage1};

135

136 N=32;%size of the scene (NxN)

137 K=8;%size of detector (KxK)

138

139 % call function to generate system matrix, with point

by point calibration.

170

140 %selecting display as 'false' to prevent figure display

while generating matrix

141 H(:,:,i) = struct_projection(N, 'display',false,...

142 'compression', N/K, varargin{:});

143

144 % system_mat_name=sprintf('%s_defocus_%d.mat',date,

lens_defocus);% file

145 % name to save system matrix 'H'

146

147 % system_mat_name = ['trial' num2str(i) '

_default_matrix.mat']

148 save(['condnum_df_' num2str(defocus_value) '

normalization_on.mat'],'H','rand_trials')

149

150 end

Listing D.2: struct projection function

1 function H = struct_projection(N,varargin)

2

3 defopt.mask_pos = [.1 .9];

4 defopt.compression = 4;

5 defopt.throughput = 0.5;

6 defopt.defocus = 2;

7 defopt.display = true;

8 defopt.upsample = 4;

9

10 % Sets pitch equal to reconstruction resolution

11 defopt.maskpitch = 1;

12 defopt.psfblur='false';

13 defopt.leakage1=0;%mask clear part

14 defopt.leakage=0;%mask dark part

15

16 opt = matlab_options(varargin, defopt);

171

17

18 compression = opt.compression;

19 throughput = opt.throughput;

20 dd = opt.defocus;

21 leakage = opt.leakage;

22 leakage1 = opt.leakage1;

23

24 upsample = opt.upsample; % linear upsample factor

25

26 display = opt.display;

27

28 psfblur=opt.psfblur; % read blur type

29

30 % all physical distances are in mm

31

32

33 N=32;% scene size NxN

34

35 % location pitch - desired image-space reconstruction

36 % resolution in mm

37 p = 0.324;

38

39 f = 35; % lens focal length in mm

40 D=25.4; %lens diameter in mm

41

42 maskcount = length(opt.mask_pos);

43

44 %for locating Mask1 away from focus

45 d1 = dd - opt.mask_pos(1)*(f+dd);

46

47 % use the statement below for locating Mask1 before the

48 % focus (i.e. on the same side of focus as Mask 2)

49

172

50 %%% testing for defocus=1, mask1 behind mask2

51

52 if maskcount>1

53 d2 = opt.mask_pos(2)*(f+dd) - dd; %%%edit

54 else

55 d2 = 0;

56 end

57 if maskcount>2

58 d3 = dd+opt.mask_pos(3)*(f+dd); %%edit

59 else

60 d3 = 0;

61 end

62

63 if maskcount>3

64 error('mask_pos is too long, must have length 1-3');

65 end

66

67 throughput = throughput(:);

68 if length(throughput)==1 && maskcount>1

69 throughput=throughputˆ(1/maskcount)*ones(maskcount,1);

70 end

71 if length(throughput) <3

72 throughput = [throughput;ones(3-length(throughput))];

73 end

74

75 if length(opt.maskpitch) == 1 && maskcount > 1

76 maskpitch=opt.maskpitch*ones(maskcount,1);

77 else

78 maskpitch = opt.maskpitch(:);

79 end

80

81 % Code assumes all masks present even if they aren't,

82 % so pad to length 3

173

83 maskpitch = [maskpitch ; ones(3 - length(maskpitch),1)];

84

85 % make mask pitch (pd) equal to reconstruction pitch (p)

86 pd = maskpitch * p; % mask pitch in sensor plane

87

88 %% perform geometrical calculations

89

90 p1 = pd(1)*d1/dd; % physical mask pitch---- mm real mask

91 p2 = pd(2)*d2/dd;

92 p3 = pd(3)*d3/dd;

93

94 % this is the pitch of the points in the aperture,

95 % a larger defocus (dd) gives a smaller pitch

96 pL = p*f/dd;

97

98 fprintf('mask 1: d1 = %.1f, p1 = %.3f\n', d1, p1);

99 fprintf('mask 2: d2 = %.1f, p2 = %.3f\n', d2, p2);

100 fprintf('mask 3: d3 = %.1f, p3 = %.3f\n', d3, p3);

101

102 Sf = p * (N-1) / (1 + dd/f); % full "image" width at focus

(mm)

103 Sd = Sf * (1 + dd/f); % image width at sensor (at z = dd)

104 S1 = Sf * (1 + d1/f); % at mask 1

105 S2 = Sf * (1 + d2/f); % at mask 2

106

107 S3 = Sf * (1 - d3/f); % at mask 3

108

109 Bd = D * dd/f; % blur width at sensor

110 B1 = D * d1/f;

111 B2 = D * d2/f;

112 B3 = D * d3/f;

113

114 %% define mask structures

174

115 m0.z = f; % aperture

116 m0.x = [-D/2:pL:D/2];

117 m0.y = m0.x;

118 [X,Y] = meshgrid(m0.x, m0.y);

119

120 %%## adding gaussian blur to model lens defocus

121

122 % 'blursize' indicates the size of the blur filter which is

123 % computed as per the defocus level above(bigger blur for a

larger defocus).

124 blursize=size(X);

125

126 % the standard deviation of 12 is chosen to model lens

127 % defocus with Gaussian blur

128 m0.v=fspecial('gaussian',blursize(1),12);

129

130 m1.z = d1; % first mask

131 m1.x = [-(B1+S1)/2:p1:(B1+S1)/2];

132 m1.y = m1.x;

133 m1.v = double(rand(length(m1.x)) <= throughput(1));

134

135 % including leakage of dark part

136 leak = leakage*ones(length(m1.v));

137

138 % including leakage of clear part

139 leak1 = leakage1*ones(length(m1.v));

140 m1.v = max(m1.v.*(1-leak1),leak);

141 m2.z = d2; % second mask

142 m2.x = [-(B2+S2)/2:p2:(B2+S2)/2];

143 m2.y = m2.x;

144 m2.v = double(rand(length(m2.x)) <= throughput(2));

145

146 % including leakage of dark part

175

147 leak = leakage*ones(length(m2.v));

148

149 % including leakage of clear part

150 leak1 = leakage1*ones(length(m2.v));

151 m2.v = max(m2.v.*(1-leak1),leak);

152 m3.z = d3; % third mask

153 m3.x = [-(B3+S3)/2:p3:(B3+S3)/2];

154 m3.y = m3.x;

155 m3.v = double(rand(length(m3.x)) <= throughput(3));

156 % including leakage of dark part

157 leak = leakage*ones(length(m3.v));

158 % including leakage of clear part

159 leak1 = leakage1*ones(length(m3.v));

160 m3.v = max(m3.v.*(1-leak1),leak);

161

162 %% perform calculations

163 H = [];Hcrop=[];

164 % range and sampling for masks in sensor plane

165 xx = [-Sd/2:pd/upsample:Sd/2];

166 % range of point locations (mapped to image space)

167 xlist = [-Sd/2:p:Sd/2];

168 progress(1, length(xlist)ˆ2, 1, 1);

169 ind = 1;

170

171 countval=length(xlist);

172

173 for xcount=1:countval

174 for ycount=1:countval

175 x=xlist(xcount);

176 y=xlist(ycount);

177 progress(ind); ind = ind + 1;

178 [mout, ml] = overlay_masks({m0, m1, m2}, ...

179 [x,y], dd, xx, xx,B1,B2,Bd,psfblur,D);

176

180 full_image = mout.v;

181 scalefac = upsample * p / pd;

182 high_res = imresize(full_image, [N,N], 'bilinear');

183 % default compression of 4 for 32x32 scene to

184 % 8x8 detector

185 low_res = bin_image(high_res, compression);

186

187 if display

188 if gcf ˜= 2; figure(2); end

189 subplot(1,2,1);

190 imagesc(high_res); axis image; colormap gray;

191 subplot(1,2,2);

192 imagesc(low_res); axis image; colormap gray;

193 drawnow;

194 end

195

196 H = [H low_res(:)]; % build the system matrix

197

198 end

199 end

200 if display

201 figure(3);

202 imagesc(H);

203 colormap jet;

204 colorbar;

205 end

Listing D.3: overlay masks function

1 function [m_out, ml] = overlay_masks(mask_list, origin, ...

2 z, x, y,B1,B2,Bd,psfblur,D)

3 % project a list of masks to given z plane and overlay them

4 % mask_list - list of mask structures

5 % origin - [x, y] coordinates of projection origin

177

6 % z - z-plane to project to

7 % x, y - x and y coordinate lists to interpolate onto

8

9 if nargin < 4

10 x = ml{1}.x;

11 y = ml{1}.y;

12 end

13

14 % project the masks to common z plane

15 if nargin > 1

16 for ind = 1:length(mask_list)

17 ml{ind} = project_mask(mask_list{ind}, origin, z);

18 end

19 else

20 ml = mask_list;

21 end

22

23 % build the combined mask structure

24 m_out = ml{1};

25 m_out.x = x;

26 m_out.y = y;

27 [X,Y] = meshgrid(x,y); % gridded coordinates for output

mask

28 m_out.v = ones(size(X));

29

30 for ind = 1:length(ml)

31 [Xm, Ym] = meshgrid(ml{ind}.x, ml{ind}.y); % native

projected coordinates

32 if 0

33 fprintf('ind = %i\n', ind);

34 fprintf('size(Xm) = [%i, %i]\n', size(Xm,1), ...

35 size(Xm,2));

36 fprintf('size(Ym) = [%i, %i]\n', size(Ym,1), ...

178

37 size(Ym,2));

38 fprintf('size(v) = [%i, %i]\n', ...

39 size(ml{ind}.v,1), size(ml{ind}.v,2));

40 fprintf('size(X) = [%i, %i]\n', size(X,1), ...

41 size(X,2));

42 fprintf('size(Y) = [%i, %i]\n', size(X,1), ...

43 size(X,2));

44 end

45 % interpolate from the native projected coordinates

46 % onto the common coordinates

47

48 switch (psfblur)

49

50 case 'fourierpsf' % adding blur on masks

51 switch (ind)

52 case 1

53 m_out.v = m_out.v .* interp2(Xm, Ym,

...

54 ml{ind}.v, X, Y, '*linear', 0);

55

56

57 case 2 %blur on mask 1

58 [sz1,sz2]=size((interp2(Xm, Ym, ...

59 ml{ind}.v, X, Y, '*linear', 0)));

60

61 %create filter in fourier domain

62 blur_radius1=(sz1*((D-B1)/D))/2;

63 % compute blur radius at chosen defocus

64 % level

65 [rr cc] = meshgrid(1:sz1);

66 blurpsf1 = fftshift(sqrt((rr-round(sz1

/2)).ˆ2+(cc-round(sz1/2)).ˆ2)<=

blur_radius1);

179

67 blur_filter1 = abs((ifft2(blurpsf1)));

68 %apply filter

69

70 filtered_mask = ...

71 real(ifft2(

blurpsf1

.*fft2(

interp2(

Xm, Ym,

ml{ind}.

v, X, Y,

'*

linear',

0))));

72

73 %normalized the filtered mask to it can

't amplify

74 filtered_mask = filtered_mask / max(

filtered_mask(:));

75

76 m_out.v = m_out.v .* filtered_mask;

77 m_out.v(m_out.v<0)=0;

78

79 case 3 %blur on mask 2

80

81 [sz1,sz2]=size((interp2(Xm, Ym, ml{ind

}.v, X, Y, '*linear', 0)));

82

83 %create filter in fourier domain

84 blur_radius2=(sz1*((D-B2)/D))/2; %

compute blur radius at chosen

defocus level

85 [rr cc] = meshgrid(1:sz1);

180

86 blurpsf2 = fftshift(sqrt((rr-round(sz1

/2)).ˆ2+(cc-round(sz1/2)).ˆ2)<=

blur_radius2);

87 %apply filter

88 blur_filter2 = abs(ifft2(blurpsf2));

89

90 filtered_mask = ...

91 real(ifft2(

blurpsf2

.*fft2(

interp2(

Xm, Ym,

ml{ind}.

v, X, Y,

'*

linear',

0))));

92

93 filtered_mask = filtered_mask / max(

filtered_mask(:));

94 m_out.v = m_out.v .* filtered_mask;

95 m_out.v(m_out.v<0)=0;

96 end

97

98 case 'false' %no blur

99 m_out.v = m_out.v .* interp2(Xm, Ym, ml{ind}.v,

X, Y, '*linear', 0);

100

101 end

102

103 end

Listing D.4: project mask function

181

1

2 function m_out = project_mask(m_in, origin, new_z)

3 % project the input mask to a new z plane. The projection

is performed

4 % via rays emanating from the provided x-y origin in the z

=0 plane

5

6 % mask attributes: z, v, x, y (optional)

7 % if y is provided, v should be 2d, otherwise 1d

8

9 m_out.z = new_z;

10 m_out.v = m_in.v;

11 x0 = origin(1);

12 m_out.x = (m_in.x - x0) * (m_out.z/m_in.z) + x0;

13 if length(origin) > 1

14 y0 = origin(2);

15 m_out.y = (m_in.y - y0) * (m_out.z/m_in.z) + y0;

16 end

17

18 %calling function to locate the center of the aperture at

the point source

19 %co-ordinates

20

21 % call function to center PSF

22 [m_out.x m_out.y]=centering_atlocation(origin,m_out.x,m_out

.y);

23

24 end

Listing D.5: centering atlocation function

1 function [out1, out2]=centering_atlocation(origin,in1,in2)

2

182

3 %function to locate the center of the aperture at the point

source co-ordinates

4

5 m_out.x=in1;

6 m_out.y=in2;

7

8 %####calculations for x-cordinate####

9 len_mx=length(m_out.x);

10

11 test_even_odd=mod(len_mx,2);

12 if test_even_odd==0

13 %even length

14 mid_pt=(len_mx/2);

15 elseif test_even_odd==1

16 %odd length

17 mid_pt=((len_mx+1)/2);

18 end

19 % calculating mid point

20 midval=m_out.x(mid_pt);

21 m_out.x=(m_out.x - midval + origin(1));%center the data

around origin

22

23

24 %####calculations for y-cordinate####

25 len_my=length(m_out.y);

26 test_even_odd=mod(len_my,2);

27 if test_even_odd==0

28 %even length

29 mid_pty=(len_my/2);

30 else

31 %odd length

32 mid_pty=((len_my+1)/2);

33 end

183

34 midvaly=m_out.y(mid_pty);

35 m_out.y=(m_out.y - midvaly + origin(2));%center the data

around origin

36

37 out1=m_out.x;

38 out2=m_out.y;

39 %@@@@@@@@@@@@

Listing D.6: bin image function

1 function imout = bin_image(im, n)

2 % bin images

3 % im - image (or set of images) to be binned

4 % n - number of elements (linearly) to be binned

5 %

6 % n can be a vector of bin sizes in each dimension. If n

is a scalar,

7 % it is interpreted as

8 % [n, n] for 2D images,

9 % [n, n, 1] for 3D images,

10 % [n, n, 1, 1] for 4D images, etc.

11 %

12 % examples:

13 % size(im) n --> size(imout)

14 % [50, 50] 5 --> [10, 10]

15 % [50, 50, 3] 5 --> [10, 10, 3]

16 % [50, 50, 100] [5,5,20] --> [10, 10, 5]

17 %

18 % note: if the dimensions of im are not multiples of the

elements of n,

19 % then the last few values of im will not be used. That is

,

20 % size(im) = [51, 51] and n = 5 --> size(imout) =

[10, 10]

184

21 % and the last row and column of im [im(:,51) and im(51,:)]

are unused.

22

23

24

25 % expand n into vector form if necessary

26 if length(n) == 1

27 ntmp = n;

28 n = ones(1, length(size(im)));

29 n(1) = ntmp;

30 n(2) = ntmp;

31 end

32

33 s = floor(size(im)./n); % target size

34 S.type = '()'; % used in subsref and subsasgn

35 subscell = {}; %

36 for d = 1:length(s)

37 subscell{d} = ':';

38 end

39

40 for d = 1:length(s) % loop over each dimension

41 if n(d) == 1; % no binning along this dimension - move

on

42 continue

43 end

44 S.subs = subscell;

45 ts = size(im);

46 ts(d) = s(d);

47 imout = zeros(ts);

48 for i = 1:s(d)

49 start = (i-1)*n(d)+1;

50 stop = i*n(d);

51 S.subs{d} = [start:stop];

185

52 M = subsref(im, S);

53 S.subs{d} = i;

54 imout = subsasgn(imout, S, sum(M, d));

55 end

56 if d < length(s) % only need to reassign if we're not

done yet

57 im = imout;

58 end

59 end

186

Appendix E

Derivation of the Update Rule for

Log-Likelihood Ratios

In order to update the conditional probability of the ith hypothesis given the full set

of measurements {g}m we can use Bayes’ theorem

P (hi|{g}m) =
P ({g}m|hi) P (hi)

P ({g}m)
. (E.1)

We really have no way of directly calculating P ({g}m). We can avoid the need

to compute this by taking ratios. In our case, the ratio of the probability of the ith

spectrum given the set of all measurements up to the current measurement m {gm}
to the probability of the jth spectrum given the set of all measurements up to the

current measurement m {gm} is

L
{g}m
ij =

P
(
{g}m

∣∣ hi)P (hi)

P
(
{g}m

∣∣ hj)P (hj)
(E.2)

We will assume that the joint probability are independent and can be written as a

product, thus we can rewrite the about equation as:

L
{g}m
ij =

P(gm
∣∣ hi)∏m−1

m′=1 P(gm′
∣∣ hi)P (hi)

P(gm
∣∣ hj)∏m−1

m′=1 P(gm′
∣∣ hi)P (hj)

(E.3)

If we define the ratio of likelihoods up to the last measurement m− 1 as

L
{gm−1}
ij =

∏m−1
m′=1 P(gm′

∣∣ hi)P (hi)∏m−1
m′=1 P(gm′

∣∣ hi)P (hj)
(E.4)

then we can write the equation for the update procedure as

187

L
{g}m
ij =

P(gm
∣∣ hi)

P(gm
∣∣ hj)L{gm−1}

ij (E.5)

At the beginning before any measurements are taken, m = 0, we have no bias

towards any of the hypotheses. At m = 0

Lg0ij =
P(hi)

P(hj)
(E.6)

Since we have no bias we set all of our probabilities at m = 0 to

P(hi) =
1

N
. (E.7)

In other words, each spectra is equiprobable. This is known as a “uniform prior”.

Thus before any measurements are made by definition:

Lg0ij = 1 for all i, j (E.8)

We use a matrix to track the all the possible pairs of ratios. For example with a

3-class library

L{g}m =

L
{g}m
11 L

{g}m
12 L

{g}m
13

L
{g}m
21 L

{g}m
22 L

{g}m
23

L
{g}m
31 L

{g}m
32 L

{g}m
33

 (E.9)

Based on the eq. E.8, the initial likelihood ratio matrix at the measurement step

m = 0 is

Lg1 =

1 1 1

1 1 1

1 1 1

 (E.10)

Now that we have our initial conditions, and our update procedure from eq E.5,

we still haven’t discussed a way to calculate P (gm|hi), the probability of observing

a measurement gm given that the ith spectrum is the true spectrum. This is where

we introduce our noise model. The noise model, gives the probability of the mea-

surement we just made gm, if we assume some Gaussian noise distribution N (0, σ).

P(gm|hi) =
1√

2πσ2
exp

[
−(gm − tm · si)2

2σ2

]
(E.11)

188

Remember gm is the noisy measurement and tm is the spectral code realized by

the DMD pattern. For example, a given measurement number m, in the case of

3 possible spectra the inner products tm · s1, tm · s2, tm · s3 will all have different

values. These inner products are deterministic because tm is something we choose

and sl for m′ = 1, 2, 3 comprise our library and by definition are constant. Plug

these inner products into the equation above assuming a given σ, and we will get

different values of P(gm|h1), P(gm|h2), and P(gm|h3)

In the picture above we see have 3 Gaussian distributions for each of the 3

possible spectra. The measurement g1 = t1 · strue + N (0, σa) ≈ 0.05 as shown

on the horizontal axis. Where this intercepts the functions gives the values of the

probability of the measurement given knowledge of each spectrum.

P(g1|s1) =
1√

2πσ2
exp

[
−(g1 − t1 · s1)2

2σ2

]
≈ 0.30 (E.12)

P(g1|s2) =
1√

2πσ2
exp

[
−(g1 − t1 · s2)2

2σ2

]
≈ 0.40 (E.13)

P(g1|s3) =
1√

2πσ2
exp

[
−(g1 − t1 · s3)2

2σ2

]
≈ 0.26 (E.14)

The likelihood ratios become:

Lg=1
12 =

P(g1|h1)

P(g1|h2)
≈ .13 (E.15)

Lg=1
13 =

P(g1|h1)

P(g1|h3)
≈ 0.25 (E.16)

Lg=1
23 =

P(g1|h2)

P(g1|h3)
≈ 1.9 (E.17)

The diagonal will always be 1 and the elements L
{gm=1}
21 , L

{gm=1}
31 , and L

{gm=1}
32

are just the inverse of the upper right elements in the likelihood ratio matrix.

Lg1 =

1.0 0.7 1.2

1.3 1.0 1.6

0.9 0.6 1.0

 (E.18)

For m = 2 use the update procedure

L
{g2,g1}
ij =

P(g2

∣∣ hi)
P(g2

∣∣ hj)Lg1ij (E.19)

189

then store the data back into the likelihood ratio matrix.

However during computing, exponentials often cause numerical problems. In

MATLAB 2013b, the exponential of a number larger than approximately 709 is so

large that MATLAB simply call them infinity (Inf). If these are in the denominators

of the likelihood ratios then computers will simply call them not a number (NaN).

To avoid, these computational issues use the logserious-likelihood ratio to eliminate

the exponentials

L {gm}
ij = ln

[
L
{gm}
ij

]
= ln

[
P({g}m |hi)P(hi)

P({g}m |hj)P(hj)

]
(E.20)

L {gm}
ij = ln

[
P(gm|hi)
P(gm|hj)

L
{gm−1}
ij

]
(E.21)

We will now derive a simple update procedure. The log of a product is the sum

of the logs and we can rewrite the last term:

L {gm}
ij = ln

[
P(gm|hi)
P(gm|hj)

]
+ L {gm−1}

ij (E.22)

The log of a division is the difference of the logs.

L {gm}
ij = ln [P(gm|hi)]− ln [P(gm|hj)] + L {gm−1}

ij (E.23)

Plug in equation E.11 for the conditional probabilities.

L {gm}
ij = ln

{
1√

2πσ2
exp

[
−(gm − fm · hi)2

2σ2

]}

− ln

{
1√

2πσ2
exp

[
−(gm − fm · hj)2

2σ2

]}
+ L {gm−1}

ij (E.24)

Continue expanding the number of terms in order to find terms that will cancel.

L {gm}
ij = ln

{
1√

2πσ2

}
+ ln

{
exp

[
−(gm − fm · hi)2

2σ2

]}

− ln

{
1√

2πσ2

}
− ln

{
exp

[
−(gm − fm · hi)2

2σ2

]}
+ L {gm−1}

ij (E.25)

190

Two terms cancel. The natural log of an exponential is just the argument of the

exponential.

L {gm}
ij = −(gm − fm · hi)2

2σ2
+

(gm − fm · hj)2

2σ2
+ L {gm−1}

ij (E.26)

L {gm}
ij = L gm

ij + L {gm−1}
ij (E.27)

As you can see we now have a simplified update procedure which only requires

addition to the previous set of log-likelihood ratios. We have completely avoided

the computing the exponential of larger numbers!

Now that we have the newly updated log-likelihood ratios L {gm}
ij , we can calcu-

late the newly updated probabilities of each candidate spectra P(hi|gm).

We will discuss an example that shows how we begin the update procedure after

the first measurement. For m = 1

L g1
ij = −(g1 − fm · hi)2

2σ2
+

(g1 − fm · hj)2

2σ2
+ L g0

ij (E.28)

From equation E.6 and E.7 we know that Lg0ij = 1. The natural log of 1 is 0.

L g0
ij = ln

(
Lg0ij
)

= ln (1) = 0 (E.29)

We now have an equation that we can use to begin our update procedure

L g1
ij = −(g1 − fm · hi)2

2σ2
+

(g1 − fm · hj)2

2σ2
(E.30)

E.1 Calculating the conditional probabilities

from the log-likelihood ratio matrix

Similar to the likelihood ratio matrix, the log-likelihood ratio matrix is used to keep

track of the ratio of the probabilities of each hypothesis.

After each measurement m, each log-likelihood ratio is updated using equation

E.27

Then the conditional probabilities of each hypothesis P(hl| {g}m) can be calcu-

lated using the following algorithm:

191

1. Determine the row of with the maximum element

maxRow := findRow(LLL {g}m)) (E.31)

2. Once you know the row, get the corresponding column

L {gm}
i,maxRow (E.32)

3. Take the exponentials for all the elements in that column. To get the unnor-

malized probabilities.

exp(L {gm}
i,maxRow) (E.33)

4. Normalize probabilities assuming all the denominators are equal to 1 and then

by dividing each element by the sum

P(hl| {g}m) =
exp(L {gm}

i,maxRow)∑NR
i=1 exp(L {gm}

i,maxRow)
(E.34)

5. The true spectrum is the hypothesis with the largest probability.

strue := max [P(sl)] (E.35)

192

Appendix F

AFSSI-C Experimental Results

This appendix contains the examples of experimental classification results of a 64×64

spatial scene with a 4-class spectral library. It shows how the AFSSI-C performs

at TSNR = 0, -3, and -6 dB. Notice that at the first measurement step the DMD

pattern set to all “on”. This is because the first feature vector is simply attempting

to discriminate the spectra based on the total intensity. Each figure is a recon-

structed difference frame from a video. Due to the nature of books, showing video

is impossible, the next best thing is to show several representative frames from the

video.

193

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure F.1: Data from after the first measurement step at 0, -3, and -6 dB TSNR. The
left column is a depiction of the DMD code, center spatially calibrated is the output in
system pixels from the camera, and the right is the classification decision at the current
measurement.

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure F.2: Data from after the second measurement.

194

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure F.3: Data from after the third measurement step.

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure F.4: Data from after the fourth measurement step.

195

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure F.5: Data from after the fifth measurement step.

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure F.6: Data from after the sixth measurement step.

196

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure F.7: Data from after the seventh measurement step.

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure F.8: Data from after the eighth measurement step.

197

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure F.9: Data from after the nineth measurement step.

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure F.10: Data from after the tenth measurement step.

198

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure F.11: Data from after the 15th measurement step.

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure F.12: Data from after the 20th measurement step.

199

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure F.13: Data from after the 25th measurement step.

 Code At DMD

 0
 d

b
 T

S
N

R

 Camera Output
 Classification

 Decision

 -
3

d
b

 T
S

N
R

 -
6

d
b

 T
S

N
R

Figure F.14: Data from after the 30th measurement step.

200

Appendix G

The Psuedo-Code For Single Pixel

Adaptive Spectral Unmixing Using

the AFSSI-C

Listing G.1: Wrapper Script For Launching the Simulations

1

2 function [] = launchUnmixingSim()

3

4 filterType = 'switchPCA'

5

6 snr = 2

7

8 % number of noise iterations

9 numNoiseItr = 200

10

11 load('aList6Endmembers.mat','aList')

12

13 load('monAndOLED_6Endmembers_1.mat','S')

14

15 %T = S(:,4:6)

16

201

17 %S = rand(40,100);

18

19 numSpecChan = 40

20

21

22 %T = circshift(T,[20 0])

23

24 %S = [S T];

25 S = imresize(S,[numSpecChan size(S,2)],'box');

26 figure(152);

27 plot(S)

28

29

30 rmseList = [];

31 rmseListLasso = [];

32

33 for lambda = 0.0175

34

35 for nInd = 1:numNoiseItr

36

37 a = aList(nInd,:);

38

39

40 [rmseLs, rmseLasso, meas, H] = main(snr,a',S,lambda

, filterType);

41

42 rmseList = [rmseList;rmseLs];

43

44 rmseListLasso = [rmseListLasso; rmseLasso];

45

46 end

47

48 rmseListAvg = mean(rmseList,1);

202

49 rmseListLassoAvg = mean(rmseListLasso,1);

50 rmseListLassoAvg = [NaN rmseListLassoAvg]

51

52 figure(352);

53 imagesc(H);

54

55 figure(353);

56 semilogy(rmseListAvg)

57 hold all

58 semilogy(rmseListLassoAvg);

59 hold off

60 legend('LS','LASSO')

61 grid on

62 title(['lambda ' num2str(lambda) ''])

63 drawnow

64

65 save(['lambda_' num2str(lambda) '_.mat'],...

66 'rmseListAvg','rmseListLassoAvg','S','aList','

lambda')

67

68 end

Listing G.2: Main Simulation Script

1 % GENERATING SYSTEM MEASUREMENT MATRIX 'H'

2

3 function [rmseLs, rmseLasso, meas, H] = main(snr, a, S,

lambda, filterType)

4

5 % The number of endmembers in the spectral library

6 numSpecCand = size(S,2);

7

8 % The number of spectral channels in the spectra

9 numSpecChan = size(S,1);

203

10

11 % The number of measurement steps

12 numMeas = 40;

13

14 pcNum = 1;

15

16 % Compute the average variance of the spectral library

17 avgVar = mean(var(S,1));

18

19 noiseStd = sqrt(avgVar/(10ˆsnr));

20

21 %% Ground truth mixed spectrum

22

23 x = S*a;

24

25 %%

26 %

27 H = [];

28 g = [];

29 rmseLs = [];

30 rmseLasso = [];

31 meas = [];

32

33 % Initialize the fractional abundance

34 aEst = (1/numSpecCand) * ones(numSpecCand, 1);

35

36 % Begin the measurement loop

37 for mInd = 1:numMeas

38

39 if mInd == 2

40 aEst = abls;

41 elseif mInd > 2

42 aEst = ablasso;

204

43 end

44

45 % Compute the estimated mixed spectrum

46 xEst = S*aEst;

47

48 switch filterType

49

50 case 'switchPCA'

51 weightedS = repmat(aEst' .* aEst', numSpecChan,

1) .* S;

52

53 % Covariance matrix

54 X = weightedS * weightedS';

55

56 [V,D] = eig(X);

57

58 V = fliplr(V)';

59

60 %pcNum

61 h = V(pcNum,:);

62

63 case 'random'

64

65 h = randn(1,numSpecChan);

66 end

67

68

69 h = double(h>0);

70

71 h(h==0)=-1;

72

73 % Build the measurement matrix

74 H = [H; h];

205

75

76 A = H*S;

77

78 % Simulate Noisey Measurement

79 g_meas = h*x + noiseStd*rand(1,1);

80

81 % Build the measurement vector

82 g = [g; g_meas];

83

84 % The Estimated Measurement

85 g_est = h*S*aEst;

86

87 % Concatenate

88 meas = [meas norm(g_meas - g_est)];

89

90 % Check if we should

91 if mInd > 2

92

93 if meas(mInd) > meas(mInd - 1) - noiseStd/2

94

95 pcNum = pcNum + 1;

96

97 if pcNum == 6

98 pcNum = 1;

99 end

100 else

101 pcNum = 1;

102 end

103 end

104

105 abls = pinv(A'*A)*A'*g;

106

107 if mInd > 1

206

108 ablasso = lasso(A,g,'lambda',lambda);

109 end

110

111 rmseLs = [rmseLs, mse_func(abls,a)];

112

113 if mInd > 1

114 rmseLasso = [rmseLasso, mse_func(ablasso,a)];

115 end

116

117

118 end

119

120 % end function

121 end

207

Glossary

bandlimited signal A bandlimited signal is any signal g(x) that whose Fourier
transform G(fx) is zero and remains zero past a certain frequency |fx| ≥ B.

coding In the context of computational sensing, coding is the process of modifying
or modulating an analog signal during measurement. Coding is often used to
reduce degeneracy in the measurement data. In the context of spectroscopy,
the spectral filters act to code the spectrum.

compressible Signals with strictly sparse representation vectors are unlikely. For-
tunately, it is possible to have approximately sparse representation vectors,
which are called compressible. In other words, the sorted magnitudes of the
coefficients |xn| quickly decay.

compressive imaging compressive sensing applied to imaging. Typically the goal
is to reconstruct the entire object scene. However some compressive imaging
sensors are have a task-specific sensing approach, such as the SCOUT.

compressive sampling See compressive sensing

compressive sensing A sensing technique that attempts to directly a compres-
sive or sparse representation of the signal-of-interest during the measurement.
Compressive sensors attempt to uses significantly less measurements than the
dimensionality of the signal-of-interest. Compressive sensing relies on non-
linear optimization algorithms to perform reconstruction or task-specific sens-
ing from highly underdetermined inverse problems. These algorithms often
rely on sparsity to avoid overfitting.

computational sensing Any sensing technique in which the sensor uses indirect-
imaging , multiplex sensing , compressive sensing, or task-specific sensing .

computational sensor See computational sensing

data processing inequality An theorem from information theory that proves the
information of a signal cannot be increased via a local physical operation.

dimensionality reduction The process of reducing the dimensionality of the data
in the scene. This step is optional and is only invoked by some algorithms to
reduce the computional load of subsequent steps.

208

endmember The constituent spectra in a mixed spectrum is called the endmember

endmember determination The process of reducing the which endmembers are
present in a mixed spectrum.

Fellgett advantage See multiplex advantage

forward model A numerical model, typically an equation, that explains the map-
ping of the analog signal-of-interest to the measurement data.

fractional abundance The relative amount of a spectral endmember in a mixed
spectrum

indirect-imaging An imaging sensor that attempts to reconstruct an image of an
object using non-isomorphic measurements. A computational step is required
to reconstruct the object signal-of-interest. X-Ray CT and SAR are examples
types of indirect-imaging.

inverse problem The problem of taking the measurement data and calculating a
reconstruction of the signal-of-interst or task-specific parameters. In compu-
tational sensing, computer algorithms are used to solve inverse problems.

inversion The of solving an inverse problem.

isomorphic See isomorphic sensing

isomorphic sensing An isomorphic sensor is any sensor that attempts to pro-
duce measurement data that resembles the signal-of-interest. An isomorphic
measurement is a measurement that resembles the signal-of-interest. An iso-
morphic measurement can be described as a one-to-one mapping from the
signal-of-interest to the measurement, and is represented in matrix notation
with an identity matrix. Isomorphic sensing is synonomous with traditional
sensing.

Jacquinot advantage This results from the fact that in a dispersive instrument,
the traditional spectrometer has entrance and exit slits which restrict the
amount of light that passes through it. By removing the slits a spectrom-
eter produces a higher signal-to-noise ratio.

lasso The least absolute shrinkage and selection operator (lasso) is a regression
analysis method that performs both variable selection and regularization. It
is refers to an optimization problem, a regression technique, and an algorithm.
The lasso problem is the

x̂ = arg min
x

‖Ax = g‖2
2 + τ‖x‖1

likelihood The likelihood is the probability of the data g assuming that a hypoth-
esis h or parameter θ is true. P

(
g
∣∣ θ)

209

measurement A process that converts a physical phenomena to single datum or a
set of data. In the context of this dissertation it used synonomously with the
detector readout.

mixed spectrum A mixed spectrum is a measured spectrum that contains spectra
from more than one spectrum.

monochromator An optical instrument that transmits a selectable narrow wave-
length band of light chosen from a wider range of wavelengths available at the
input.

multiplex advantage The improvement in SNR that is due to multiplexed mea-
surements rather than isomorphic measurements. This is often referred to
as the Fellgett advantage since it was first discovered by Peter Fellgett. See
multiplex sensing

multiplex sensing A multiplexing sensor is any sensor that attempts to combine
the physical phenomena of the analog signal-of-interest in to a few or one
analog-to-digital sample to overcome limits due to signal-to-noise ratio. The
measurement data that does resemble the signal-of-interest. A matrix repre-
sentation of a multiplex measurement will not look like an identity matrix

multiplexing See multiplex sensing

pixel pitch The center to center distance between pixels on a focal-plane array
such as a CCD or CMOS image sensor.

posterior The posterior probability is the conditional probability of a hypothesis
h or parameter θ given some data g. P

(
θ
∣∣ g)

prior The priori probability is the probability of a hypothesis h or parameter θ
without any knowledge of the data data g. P (θ)

pushbroom Pushbroom scanning is an isomorphic measurement technique for ac-
quiring a spectral datacube. In the pushbroom technique, the entire spectrum
for an entire spatial row or column is acquired one at a time.

ridge regression Ridge regression is a regression technique that uses `2 regular-
ization to prevent overfitting of the data. Ridge regression seeks coefficient
estimates that fit the data well by making the objective function, the `2 norm
between the data and the linear model small, however the shrinkage penalty
has the effect of shrinking estimates towards zero.

x̂ = arg min
x

‖Ax = g‖2
2 + τ‖x‖2

sample The process of mapping a continuous signal to a discrete signal.

sampling See sample

210

sparse See sparsity

sparsity A set, vector, or matrix which contains an overwhelming majority of zeros
relative to the size of the set, vector, or matrix.

spectral resolution The smallest the smallest difference in wavelength the instru-
ment or sensor can discern.

spectral unmixing The procedure by which the measured spectrum of a mixed
pixel is decomposed into a collection of constituent spectra, or endmembers,
and a set of corresponding fractional abundances.

task-specific sensing A sensor that does not attempt to reconstruct the signal-
of-interest to perform a signal processing task such as detection, estimation,
and classification. The AFSSI-C is an example of a task-specific sensor.

tunable filter Pushbroom scanning is an isomorphic measurement technique for
acquiring a spectral datacube. In the pushbroom technique, the entire spec-
trum for an entire spatial row or column is acquired one at a time.

whiskbroom Whiskbroom scanning is an isomorphic measurement technique for
acquiring a spectral datacube. In the whiskbroom technique, the entire spec-
trum at each spatial location is acquired one at a time.

211

Acronyms

ADC analog-to-digital converter

AFSS Adaptive Feature Specific Spectrometer

AFSSI-C Adaptive Feature Specific Spectral Imaging-Classifier

AVIRIS Airborne Visible/Infrared Imaging Spectrometer

AWGN Additive white Gaussian noise

CACTI Coded Aperture Compressive Temporal Imaging

CASSI Coded Aperture Snapshot Spectral Imaging

CCD Charge-Coupled Device

CMOS Complementary Metal–Oxide–Semiconductor

CT Computed Tomography

CTIS Computed Tomography Imaging Spectrometer

DISP Duke Imaging and Spectroscopy Program

DMD Digital Micro-Mirror Display

FOV field-of-view

FPA focal-plane array

FTS Fourier Transform Spectrometer

LAR Least Angle Regression

LCOS Liquid Crystal on Silicon

LCSI LCOS Computational Spectral Imager

LENS Laboratory for Engineering Non-Traditional Sensors

LMM Linear Mixing Model

212

LS least squares

MAP Maximum A Posteriori

MLE Maximum Likelihood Estimation

MNF Maximum Noise Fraction

MRI Magnetic Resonance Imaging

MSE Mean Squared Error

OSA Optical Society of America

PBS Polarizing Beam Splitter

PCA Principal Component Analysis

PET Positron Emission Tomography

pPCA probabilistically weighted Principal Component Analysis

PSF point-spread function

RIP restricted isometry property

RMSE Root Mean Squared Error

ROI Region of Interest

SAR Synthetic Aperture Radar

SCOUT Static Computational Optical Undersampled Tracker

SLM Spatial Light Modulator

SNR signal-to-noise ratio

SP system pixel

SPECT Single-Photon Emission Computed Tomography

SWAP-C size, weight and power-cost

SWPCA Switch Weighted Principal Component Analysis

TEC thermoelectric cooler

TSNR Task Signal-To-Noise Ratio

213

Symbols

A The product of the sensing matrix and the representation matrix A = HΨ

c Spectral channel index

D Notation for the spectral datacube.

δλ Spectral resolution

e Additive noise vector

f Object signal-of-interest

f̂ Estimated object

g Measurement vector

H The system matrix which captures all of the physical phenomena in a measure-
ment. Also called the measurement matrix and sensing matrix.

HN A Hadamard matrix of size N ×N

K Notation for sparsity which is defined as the number of non-zero entries in a
vector.

Nλ Number of spectral channels

Nm Total number of measurements

NR Number of spectra in the spectral library

τ Notation for a regularization parameter in an objective function for any kind of
optimization

214

Bibliography

[1] D. J. Brady, Optical imaging and spectroscopy. John Wiley & Sons, 2009.

[2] M. A. Neifeld, A. Mahalanobis, and D. J. Brady, “Task-specific sensing-
introduction,” Appl. Opt., vol. 45, no. 13, pp. 2857–2858, May 2006. [Online].
Available: http://ao.osa.org/abstract.cfm?URI=ao-45-13-2857

[3] D. Dinakarababu, D. Golish, and M. Gehm, “Adaptive feature specific spec-
troscopy for rapid chemical identification,” Optics express, vol. 19, no. 5, pp.
4595–4610, 2011.

[4] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley
& Sons, 2012.

[5] C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleas-
man, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive
imaging with metamaterial spatial light modulators,” Nature Photonics, vol. 8,
no. 8, pp. 605–609, 2014.

[6] I. Noor, O. Furxhi, and E. L. Jacobs, “Compressive sensing for a sub-
millimeter-wave single pixel imager,” in SPIE Defense, Security, and Sensing.
International Society for Optics and Photonics, 2011, pp. 80 220K–80 220K.

[7] D. Taubman and M. Marcellin, JPEG2000 Image Compression Fundamentals,
Standards and Practice: Image Compression Fundamentals, Standards and
Practice. Springer Science & Business Media, 2012, vol. 642.

[8] M. J. Golay, “Multi-slit spectrometry,” JOSA, vol. 39, no. 6, pp. 437–444,
1949.

[9] E. E. Fenimore and T. Cannon, “Coded aperture imaging with uniformly
redundant arrays,” Applied optics, vol. 17, no. 3, pp. 337–347, 1978.

[10] S. R. Gottesman and E. Fenimore, “New family of binary arrays for coded
aperture imaging,” Applied optics, vol. 28, no. 20, pp. 4344–4352, 1989.

[11] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. E. Kelly,
R. G. Baraniuk et al., “Single-pixel imaging via compressive sampling,” IEEE
Signal Processing Magazine, vol. 25, no. 2, p. 83, 2008.

http://ao.osa.org/abstract.cfm?URI=ao-45-13-2857

215

[12] D. Townsend, P. Poon, S. Wehrwein, T. Osman, A. Mariano, E. Vera, M. Sten-
ner, and M. Gehm, “Static compressive tracking,” Optics express, vol. 20,
no. 19, pp. 21 160–21 172, 2012.

[13] M. E. Gehm, S. T. McCain, N. P. Pitsianis, D. J. Brady, P. Potuluri, and M. E.
Sullivan, “Static two-dimensional aperture coding for multimodal, multiplex
spectroscopy,” Applied optics, vol. 45, no. 13, pp. 2965–2974, 2006.

[14] T.-H. Tsai and D. J. Brady, “Coded aperture snapshot spectral polarization
imaging,” Applied optics, vol. 52, no. 10, pp. 2153–2161, 2013.

[15] J. Holloway, A. C. Sankaranarayanan, A. Veeraraghavan, and S. Tambe, “Flut-
ter shutter video camera for compressive sensing of videos,” in Computational
Photography (ICCP), 2012 IEEE International Conference on. IEEE, 2012,
pp. 1–9.

[16] P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and
D. J. Brady, “Coded aperture compressive temporal imaging,” Optics express,
vol. 21, no. 9, pp. 10 526–10 545, 2013.

[17] H. H. Barrett and K. J. Myers, Foundations of Image Science. John Wiley
& Sons, 2013.

[18] J. Radon, “1.1 über die bestimmung von funktionen durch ihre integralw-
erte längs gewisser mannigfaltigkeiten,” Classic papers in modern diagnostic
radiology, vol. 5, 2005.

[19] “The Nobel Prize in Physiology or Medicine, 1979,” https://www.nobelprize.
org/nobel prizes/medicine/laureates/1979/perspectives.html, accessed: 2016-
08-22.

[20] X. X. Zhu and R. Bamler, “Tomographic sar inversion by-norm regulariza-
tion—the compressive sensing approach,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 48, no. 10, pp. 3839–3846, 2010.

[21] C. Chen and J. Huang, “Compressive sensing mri with wavelet tree sparsity,”
in Advances in neural information processing systems, 2012, pp. 1115–1123.

[22] W. S. Boyle and G. E. Smith, “Charge coupled semiconductor devices,” Bell
System Technical Journal, vol. 49, no. 4, pp. 587–593, 1970.

[23] H. W, N. L, and S. Joe, “Image orthicon,” Feb. 11 1975, uS Patent 3,866,078.
[Online]. Available: https://www.google.com/patents/US3866078

[24] J. Estrom, “Kodak’s First Digital Moment,” http://lens.blogs.nytimes.com/
2015/08/12/kodaks-first-digital-moment/, August 12 2015, accessed: 2016-
08-24.

[25] K. L. Moore, “Spectrometer with electronic readout,” Mar. 27 1979, uS Patent
4,146,332.

https://www.nobelprize.org/nobel_prizes/medicine/laureates/1979/perspectives.html
https://www.nobelprize.org/nobel_prizes/medicine/laureates/1979/perspectives.html
https://www.google.com/patents/US3866078
http://lens.blogs.nytimes.com/2015/08/12/kodaks-first-digital-moment/
http://lens.blogs.nytimes.com/2015/08/12/kodaks-first-digital-moment/

216

[26] H. Kobayashi and L. R. Bahl, “Image data compression by predictive coding
i: Prediction algorithms,” IBM Journal of Research and Development, vol. 18,
no. 2, pp. 164–171, 1974.

[27] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate
coding,” IEEE transactions on Information Theory, vol. 24, no. 5, pp. 530–
536, 1978.

[28] B. E. Usevitch, “A tutorial on modern lossy wavelet image compression: foun-
dations of jpeg 2000,” IEEE signal processing magazine, vol. 18, no. 5, pp.
22–35, 2001.

[29] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,” IEEE
Transactions on information theory, vol. 52, no. 2, pp. 489–509, 2006.

[30] E. J. Candes and T. Tao, “Near-optimal signal recovery from random pro-
jections: Universal encoding strategies?” IEEE transactions on information
theory, vol. 52, no. 12, pp. 5406–5425, 2006.

[31] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information the-
ory, vol. 52, no. 4, pp. 1289–1306, 2006.

[32] A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design
for coded aperture snapshot spectral imaging,” Applied optics, vol. 47, no. 10,
pp. B44–B51, 2008.

[33] H. S. Pal, D. Ganotra, and M. A. Neifeld, “Face recognition by using feature-
specific imaging,” Applied optics, vol. 44, no. 18, pp. 3784–3794, 2005.

[34] A. Stern, I. Y. August, and Y. Oiknine, “Hurdles in the implementation of
compressive sensing for imaging and ways to overcome them,” in SPIE Com-
mercial+ Scientific Sensing and Imaging. International Society for Optics
and Photonics, 2016, pp. 987 006–987 006.

[35] “The Optical Society of America, Meeting of Computational Optical
Sensing and Imaging (COSI), 2016,” http://www.osa.org/en-us/meetings/
osa meetings/imaging and applied optics/computational optical sensing
and imaging/, accessed: 2016-09-04.

[36] S. Foucart and H. Rauhut, A mathematical introduction to compressive sens-
ing. Springer, 2013, vol. 1, no. 3.

[37] M. Gehm, “Calibration–an open challenge in creating practical computational-
and compressive-sensing systems,” 2013.

[38] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,”
IEEE signal processing magazine, vol. 25, no. 2, pp. 21–30, 2008.

http://www.osa.org/en-us/meetings/osa_meetings/imaging_and_applied_optics/computational_optical_sensing_and_imaging/
http://www.osa.org/en-us/meetings/osa_meetings/imaging_and_applied_optics/computational_optical_sensing_and_imaging/
http://www.osa.org/en-us/meetings/osa_meetings/imaging_and_applied_optics/computational_optical_sensing_and_imaging/

217

[39] J. A. Tropp, “Just relax: Convex programming methods for identifying sparse
signals in noise,” IEEE transactions on information theory, vol. 52, no. 3, pp.
1030–1051, 2006.

[40] M. Dunlop-Gray, P. K. Poon, D. Golish, E. Vera, and M. E. Gehm, “Experi-
mental demonstration of an adaptive architecture for direct spectral imaging
classification,” Optics Express, vol. 24, no. 16, pp. 18 307–18 321, 2016.

[41] A. Ashok and M. A. Neifeld, “Compressive imaging: hybrid measurement
basis design,” JOSA A, vol. 28, no. 6, pp. 1041–1050, 2011.

[42] Y. Li, A. C. Sankaranarayanan, L. Xu, R. Baraniuk, and K. F. Kelly, “Real-
ization of hybrid compressive imaging strategies,” JOSA A, vol. 31, no. 8, pp.
1716–1720, 2014.

[43] M. Harwit and N. J. Sloane, Hadamard transform optics. Elsevier, 2012.

[44] J. W. Goodman, Introduction to Fourier optics. Roberts and Company Pub-
lishers, 2005.

[45] P. Fellgett, “I.—les principes généraux des méthodes nouvelles en spectro-
scopie interférentielle-a propos de la théorie du spectromètre interférentiel
multiplex,” J. phys. radium, vol. 19, no. 3, pp. 187–191, 1958.

[46] S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier transform spectrometry.
Academic Press, 2001.

[47] J. W. Goodman, Statistical optics. John Wiley & Sons, 2015.

[48] M. H. Tai and M. Harwit, “Fourier and hadamard transform spectrometers:
a limited comparison,” Applied optics, vol. 15, no. 11, pp. 2664–2666, 1976.

[49] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.

[50] J. Shlens, “A tutorial on principal component analysis,” arXiv preprint
arXiv:1404.1100, 2014.

[51] P. K. Poon, W.-R. Ng, and V. Sridharan, “Image denoising with singular value
decompositon and principal component analysis,” December 2009.

[52] C. E. Shannon, “Communication in the presence of noise,” Proceedings of the
IRE, vol. 37, no. 1, pp. 10–21, 1949.

[53] J. G. Proakis and D. G. Manolakis, Introduction to digital signal processing.
Prentice Hall Professional Technical Reference, 1988.

[54] E. Candes and J. Romberg, “l1-magic: Recovery of sparse signals via convex
programming,” URL: www. acm. caltech. edu/l1magic/downloads/l1magic.
pdf, vol. 4, p. 14, 2005.

218

[55] Y. Oiknine, I. August, and A. Stern, “Along-track scanning using a liquid
crystal compressive hyperspectral imager,” Optics express, vol. 24, no. 8, pp.
8446–8457, 2016.

[56] X. Yuan, T.-H. Tsai, R. Zhu, P. Llull, D. Brady, and L. Carin, “Compressive
hyperspectral imaging with side information,” IEEE Journal of Selected Topics
in Signal Processing, vol. 9, no. 6, pp. 964–976, 2015.

[57] C. C. Aggarwal, Data streams: models and algorithms. Springer Science &
Business Media, 2007, vol. 31.

[58] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by
basis pursuit,” SIAM review, vol. 43, no. 1, pp. 129–159, 2001.

[59] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani et al., “Least angle regression,”
The Annals of statistics, vol. 32, no. 2, pp. 407–499, 2004.

[60] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point
method for large-scale-regularized least squares,” IEEE journal of selected top-
ics in signal processing, vol. 1, no. 4, pp. 606–617, 2007.

[61] A. Neumaier, “Solving ill-conditioned and singular linear systems: A tutorial
on regularization,” SIAM review, vol. 40, no. 3, pp. 636–666, 1998.

[62] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of
the Royal Statistical Society. Series B (Methodological), pp. 267–288, 1996.

[63] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statis-
tical learning. Springer, 2013, vol. 6.

[64] M. D. Stenner, D. J. Townsend, and M. E. Gehm, “Static architecture for com-
pressive motion detection in persistent, pervasive surveillance applications,”
in Imaging Systems. Optical Society of America, 2010, p. IMB2.

[65] S. Evladov, O. Levi, and A. Stern, “Progressive compressive imaging from
radon projections,” Optics express, vol. 20, no. 4, pp. 4260–4271, 2012.

[66] P. Poon, E. Vera, and M. E. Gehm, “Advances in the design, calibration and
use of a static coded aperture compressive tracking and imaging system,” in
Computational Optical Sensing and Imaging. Optical Society of America,
2012, pp. CTu3B–2.

[67] Y. Kashter, O. Levi, and A. Stern, “Optical compressive change and motion
detection,” Applied optics, vol. 51, no. 13, pp. 2491–2496, 2012.

[68] Y. Rivenson, A. Stern, and B. Javidi, “Single exposure super-resolution com-
pressive imaging by double phase encoding,” Optics Express, vol. 18, no. 14,
pp. 15 094–15 103, 2010.

219

[69] W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak,
“Toeplitz-structured compressed sensing matrices,” in 2007 IEEE/SP 14th
Workshop on Statistical Signal Processing. IEEE, 2007, pp. 294–298.

[70] H. Rauhut, “Circulant and toeplitz matrices in compressed sensing,” arXiv
preprint arXiv:0902.4394, 2009.

[71] J. Romberg, “Compressive sensing by random convolution,” SIAM Journal on
Imaging Sciences, vol. 2, no. 4, pp. 1098–1128, 2009.

[72] F. Sebert, Y. M. Zou, and L. Ying, “Toeplitz block matrices in compressed
sensing and their applications in imaging,” in 2008 International Conference
on Information Technology and Applications in Biomedicine. IEEE, 2008,
pp. 47–50.

[73] B. Liu, F. Sebert, Y. Zou, and L. Ying, “Sparsesense: randomly-sampled
parallel imaging using compressed sensing,” in In: Proceedings of the 16th
Annual Meeting of ISMRM. Citeseer, 2008.

[74] C.-I. Chang, Hyperspectral imaging: techniques for spectral detection and clas-
sification. Springer Science & Business Media, 2003, vol. 1.

[75] A. Ibrahim, S. Tominaga, and T. Horiuchi, “Spectral imaging method for
material classification and inspection of printed circuit boards,” Optical Engi-
neering, vol. 49, no. 5, pp. 057 201–057 201, 2010.

[76] G. A. Shaw and H.-H. K. Burke, “Spectral imaging for remote sensing,” Lin-
coln Laboratory Journal, vol. 14, no. 1, pp. 3–28, 2003.

[77] Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and
applications,” Cytometry Part A, vol. 69, no. 8, pp. 735–747, 2006.

[78] M. T. Eismann, Hyperspectral remote sensing. SPIE Bellingham, 2012.

[79] W. L. Wolfe, Introduction to imaging spectrometers. SPIE Press, 1997, vol. 25.

[80] C. Yang, J. H. Everitt, M. R. Davis, and C. Mao, “A ccd camera-based hyper-
spectral imaging system for stationary and airborne applications,” Geocarto
International, vol. 18, no. 2, pp. 71–80, 2003.

[81] C. Fabry and A. Pérot, “Sur les franges des lames minces argentées et leur
application à la mesure de petites épaisseurs d’air [on the fringes of thin layers
of silver and their application to the measurement of small thicknesses of air],”
Ann. Chim. Phys, vol. 12, pp. 459–501, 1897.

[82] A. Perot and C. Fabry, “On the application of interference phenomena to the
solution of various problems of spectroscopy and metrology,” The Astrophys-
ical Journal, vol. 9, p. 87, 1899.

[83] C. Fabry and A. Perot, “On a new form of interferometer,” The Astrophysical
Journal, vol. 13, p. 265, 1901.

220

[84] N. Gat, “Imaging spectroscopy using tunable filters: a review,” in AeroSense
2000. International Society for Optics and Photonics, 2000, pp. 50–64.

[85] R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J.
Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis et al., “Imaging
spectroscopy and the airborne visible/infrared imaging spectrometer (aviris),”
Remote Sensing of Environment, vol. 65, no. 3, pp. 227–248, 1998.

[86] M. Descour and E. Dereniak, “Computed-tomography imaging spectrometer:
experimental calibration and reconstruction results,” Applied Optics, vol. 34,
no. 22, pp. 4817–4826, 1995.

[87] M. K. Steven, “Fundamentals of statistical signal processing,” PTR Prentice-
Hall, Englewood Cliffs, NJ, 1993.

[88] T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal pro-
cessing magazine, vol. 13, no. 6, pp. 47–60, 1996.

[89] G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compressive
coded aperture spectral imaging: An introduction,” IEEE Signal Processing
Magazine, vol. 31, no. 1, pp. 105–115, 2014.

[90] A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Spectral image
estimation for coded aperture snapshot spectral imagers,” in Optical Engi-
neering+ Applications. International Society for Optics and Photonics, 2008,
pp. 707 602–707 602.

[91] J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: two-step iterative
shrinkage/thresholding algorithms for image restoration,” IEEE Transactions
on Image processing, vol. 16, no. 12, pp. 2992–3004, 2007.

[92] N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging tech-
nologies,” Optical Engineering, vol. 52, no. 9, pp. 090 901–090 901, 2013.

[93] E. M. DuPont, D. Chambers, J. Alexander, and K. Alley, “A spatial-spectral
classification approach of multispectral data for ground perspective materials,”
in Systems, Man, and Cybernetics (SMC), 2011 IEEE International Confer-
ence on. IEEE, 2011, pp. 3125–3129.

[94] C. Liu and J. Gu, “Discriminative illumination: Per-pixel classification of raw
materials based on optimal projections of spectral brdf,” IEEE transactions
on pattern analysis and machine intelligence, vol. 36, no. 1, pp. 86–98, 2014.

[95] M. J. Dunlop-Gray, “Seeing beyond sight: The adaptive, feature-specific, spec-
tral imaging classifier,” Ph.D. dissertation, The University of Arizona, 2015.

[96] W. J. Smith, Modern optical engineering. Tata McGraw-Hill Education, 1966.

221

[97] M. A. Folkman, J. Pearlman, L. B. Liao, and P. J. Jarecke, “Eo-1/hyperion
hyperspectral imager design, development, characterization, and calibration,”
in Second International Asia-Pacific Symposium on Remote Sensing of the
Atmosphere, Environment, and Space. International Society for Optics and
Photonics, 2001, pp. 40–51.

[98] N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE signal processing
magazine, vol. 19, no. 1, pp. 44–57, 2002.

[99] N. Keshava, “A survey of spectral unmixing algorithms,” Lincoln Laboratory
Journal, vol. 14, no. 1, pp. 55–78, 2003.

[100] R. N. Clark and T. L. Roush, “Reflectance spectroscopy: Quantitative analysis
techniques for remote sensing applications,” Journal of Geophysical Research:
Solid Earth, vol. 89, no. B7, pp. 6329–6340, 1984.

[101] A. A. Green, M. Berman, P. Switzer, and M. D. Craig, “A transformation
for ordering multispectral data in terms of image quality with implications for
noise removal,” IEEE Transactions on geoscience and remote sensing, vol. 26,
no. 1, pp. 65–74, 1988.

[102] W. Philpot, “Digital image processing,” 2015.

[103] C. L. Lawson and R. J. Hanson, Solving least squares problems. SIAM, 1995,
vol. 15.

[104] G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “Lcos spatial light
modulators: trends and applications,” pp. 1–30, 2012.

[105] T.-H. Tsai, X. Yuan, and D. J. Brady, “Spatial light modulator based color
polarization imaging,” Optics express, vol. 23, no. 9, pp. 11 912–11 926, 2015.

[106] C. Li, T. Sun, K. F. Kelly, and Y. Zhang, “A compressive sensing and unmix-
ing scheme for hyperspectral data processing,” IEEE Transactions on Image
Processing, vol. 21, no. 3, pp. 1200–1210, 2012.

[107] J. Monsalve, H. Vargas, and H. Arguello, “Spectral raman unmixing from
cassi system compressive measurements,” in Signal Processing, Images and
Computer Vision (STSIVA), 2015 20th Symposium on. IEEE, 2015, pp. 1–6.

[108] Y. August and A. Stern, “Compressive sensing spectrometry based on liquid
crystal devices,” Optics letters, vol. 38, no. 23, pp. 4996–4999, 2013.

[109] R. Zhu, T.-H. Tsai, and D. J. Brady, “Coded aperture snapshot spectral im-
ager based on liquid crystal spatial light modulator,” in Frontiers in Optics.
Optical Society of America, 2013, pp. FW1D–4.

[110] I. August, Y. Oiknine, M. AbuLeil, I. Abdulhalim, and A. Stern, “Minia-
ture compressive ultra-spectral imaging system utilizing a single liquid crystal
phase retarder,” Scientific reports, vol. 6, 2016.

222

[111] D. Hundley, M. Kirby, and M. Anderle, “A solution procedure for blind signal
separation using the maximum noise fraction approach: algorithms and exam-
ples,” in Proceedings of the Conference on Independent Component Analysis,
San Diego, CA, 2001, pp. 337–342.

[112] “Rice’s spectral eyes bound for the skies,” http://news.rice.edu/2016/11/14/
rices-spectral-eyes-bound-for-the-skies-2/, accessed: 2016-11-22.

http://news.rice.edu/2016/11/14/rices-spectral-eyes-bound-for-the-skies-2/
http://news.rice.edu/2016/11/14/rices-spectral-eyes-bound-for-the-skies-2/

	List of Figures
	ABSTRACT
	Chapter Introduction
	Isomorphic Sensing
	Development of Multiplexing in Sensing
	Forward Models and Inverse Problems
	Indirect Imaging
	The Digital Imaging Revolution
	Compressive Sensing
	Practical Considerations in Computational Sensing
	Dissertation Overview

	Chapter Formalism
	Isomorphic Sensing
	Multiplexing
	Coding Schemes
	The Fellgett Advantage

	Principal Component Analysis
	Bayesian Statistics
	Example: Updating Probabilities with Bayes' Theorem
	Maximum A Posteriori

	Compressive Sensing
	The Nyquist-Shannon Sampling Theorem
	Sparsity, Incoherence, and the Restricted Isometry Property
	Solving Inverse Problems For Compressive Sensing

	Conclusion

	Chapter Static Computational Optical Undersampled Tracker
	Motivation for the Static Computational Undersampled Tracker
	SCOUT Architecture
	Optimizing the SCOUT
	Simulating a SCOUT System
	Quantifying Reconstruction Error
	Optimizing Optical System Parameters

	Experiment
	Experimental Setup
	Calibration
	Reconstruction: 1 regularized Least Squares Minimization
	Experimental Results

	Conclusion

	Chapter Adaptive Feature Specific Spectral Imaging-Classifier
	Motivation
	Architecture
	Forward Model

	Adaptive Classification Algorithm
	Updating Probabilities
	Extension to Spectral Imaging

	Experiments
	Hardware
	Implementing Codes
	Calibration
	Spatial Calibration
	Spectral Calibration
	Noise Model Calibration

	Experimental Results
	Conclusion

	Chapter Computational Spectral Unmixing
	Introduction
	The Linear Mixing Model
	Unmixing in Traditional Spectral Imaging

	Architecture
	Forward Model

	Solving the Inverse Problem
	Prior work
	Prior Efforts in Computational Spectral Unmixing
	Prior efforts using LCOS Computational Spectral Imaging

	Design and Selection of Spectral Filters for Unmixing
	Adaptive Unmixing Algorithm For the AFSSI-C
	Hybrid Spectral Filters for the LCSI

	Results
	Simulation Results For the AFSS
	Initial Experimental Results of Compressive Unmixing Using the AFSSI-C
	Simulation Results For the LCSI

	Conclusion

	Chapter Conclusion
	Future Outlook

	Appendix Derivation of the Least Squares Estimator
	Appendix SCOUT Experimental Results
	Zero Background Difference Frames
	Non-Zero Background Difference Frames

	Appendix The Psuedo-Code For SCOUT Experiment
	Appendix SCOUT Simulation Code
	Appendix Derivation of the Update Rule for Log-Likelihood Ratios
	Calculating the conditional probabilities from the log-likelihood ratio matrix

	Appendix AFSSI-C Experimental Results
	Appendix The Psuedo-Code For Single Pixel Adaptive Spectral Unmixing Using the AFSSI-C
	Glossary
	Acronyms
	Symbols

