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Abstract

Abstract

Computational imaging and sensing leverages the joint-design of optics, detectors and

processing to overcome the performance bottlenecks inherent to the traditional imaging

paradigm. This novel imaging and sensing design paradigm essentially allows new trade-offs

between the optics, detector and processing components of an imaging system and enables

broader operational regimes beyond the reach of conventional imaging architectures, which

are constrained by well-known Rayleigh, Strehl and Nyquist rules amongst others. In this

dissertation, we focus on scalability aspects of these novel computational imaging architec-

tures, their design and implementation, which have far-reaching impacts on the potential

and feasibility of realizing task-specific performance gains relative to traditional imager de-

signs. For the extended depth of field (EDoF) computational imager design, which employs

a customized phase mask to achieve defocus immunity, we propose a joint-optimization

framework to simultaneously optimize the parameters of the optical phase mask and the

processing algorithm, with the system design goal of minimizing the noise and artifacts

in the final processed image. Using an experimental prototype, we demonstrate that our

optimized system design achieves higher fidelity output compared to other static designs

from the literature, such as the Cubic and Trefoil phase masks. While traditional imagers

rely on an isomorphic mapping between the scene and the optical measurements to form

images, they do not exploit the inherent compressibility of natural images and thus are

subject to Nyquist sampling. Compressive sensing exploits the inherent redundancy of nat-

ural images, basis of image compression algorithms like JPEG/JPEG2000, to make linear

projection measurements with far fewer samples than Nyquist for the image forming task.
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Abstract

Here, we present a block wise compressive imaging architecture which is scalable to high

space-bandwidth products (i.e. large FOV and high resolution applications) and employs a

parallelizable and non-iterative piecewise linear reconstruction algorithm capable of operat-

ing in real-time. Our compressive imager based on this scalable architecture design is not

limited to the imaging task and can also be used for automatic target recognition (ATR)

without an intermediate image reconstruction. To maximize the detection and classification

performance of this compressive ATR sensor, we have developed a scalable statistical model

of natural scenes, which enables the optimization of the compressive sensor projections with

the Cauchy-Schwarz mutual information metric. We demonstrate the superior performance

of this compressive ATR system using simulation and experiment. Finally, we investigate the

fundamental resolution limit of imaging via the canonical incoherent quasi-monochromatic

two point-sources separation problem. We extend recent results in the literature demon-

strating, with Fisher information and estimator mean square error analysis, that a passive

optical mode-sorting architecture with only two measurements can outperform traditional

intensity-based imagers employing an ideal focal plane array in the sub-Rayleigh range, thus

overcoming the Rayleigh resolution limit.
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Chapter 1

Introduction

1.1 Conventional To Computational Imaging

While humans have engaged in visual depiction of their life environment for millennia,

beginning roughly with prehistoric hunting scenes around 40,000 BCE, imaging techniques

only started to appear with the development of primitive optics. One of the first device built

for that purpose was the camera-obscura, which projected the view seen through a simple

pinhole into a darkened chamber. Many written records of such construct exist in a period

ranging from 500 BCE as it was built for studying light, to the 11th century for its use as

scientific instrument and entertainment. Of course, optics would continue to improve over

the next centuries and take giant leaps at times, with for instance Lord Newton’s design of the

first reflective telescope in 1668. Yet, while these image-forming devices were developing, the

underlying reproduction process was primarily manual. The birth of modern photography

happened at the beginning of the nineteenth century with the pioneering contributions of

Nicéphore Niépce and Louis Daguerre. They used of a photosensitive surface to record light

via a slow chemical process requiring a full day of exposure to imprint. Nearly a century

later, the invention of the camera tube, the first photoelectric image sensor [1, 2, 3], advanced
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the recording process to the next generation. Combined with Cathode Ray Tube displays,

that system enabled the capture and rendering of video signals which could be transmitted

through radio-waves and gave rise to first television broadcastings in the 1930s.

The most recent image sensor revolution started in 1969 with the invention of the Cou-

pled Charge Device at AT&T Bell Labs by Willard Boyle and George E. Smith [4] which

enabled the digitalization of images and their processing with computers. The democrati-

zation of electronic cameras was further accelerated with the development of Active Pixel

Sensor in the 1990s, with better energy efficiency and lower price points due to the integra-

tion with silicon processes. With these advances, imagers are presently not only employed

for visual communication but also in numerous applications via machine vision, such as au-

tonomous driving, surveillance and security, medical diagnostics and natural user interfaces.

This trend has notably benefited from the exponential growth of computing capabilities, fol-

lowing Moore’s law [5], and enabled the progress of complex algorithms for image processing

and analysis.

However, it is interesting to note that the overall architecture of optical imagers in the

visible and infrared domains has remained essentially unchanged during the last century.

While more complex and precise optical objectives have been developed over the years, for

instance zoom lenses or apo- and super-apochromats, the design and implementation of these

image-forming optics subsystems has been largely isolated from the image sensor and post-

processing stages. Thus, the primary imaging performance criteria still remains an absence

of prominent aberrations and distortions and tend towards diffraction-limited performance.

Nevertheless, this isomorphic approach to imaging, and more broadly sensing, is facing

greater challenges in recent years as the general performance is becoming increasingly limited

by the physical and design constraints rather than technology. This is amply demonstrated

for instance by the integration of high resolution cameras into sub centimeter-scaled packages

to be integrated in smart-phones and other handheld devices, where the field curvature and

the low F-Number effectively limit the final image quality [27]; or for example in hyper-

spectral imaging where the signal readout bandwidth imposes a severe limitation on the

scalability of the system toward higher space-spectral-bandwidth products.
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In contrast to such isomorphic imaging system architectures, other imaging systems

require an algorithm to reconstruct the desired image from the measurement data because

of the indirect (non-isomorphic form) mapping from object to data measurement space.

Such indirect imaging systems are commonly employed for non-invasive medical imaging

techniques based on tomography, such as X-Ray, MRI, PET. In this indirect imaging domain,

an extensive corpus of research presents a multitude of methods to assess of the resulting

image quality and its impact on future exploitation [6, 7, 8]. This approach provides a

relevant example of an end-to-end system performance analysis.

Computational imaging (CI) breaks away from conventional imaging paradigm which

considers optics, detection and processing elements of the system in isolation. The goal of

the CI paradigm is to enable analysis and design of the three elements jointly in order to

potentially achieve a global optimal design and performance, not always achievable by the

traditional imaging approach. The pioneering work on an extended depth of field (EDoF)

imager is an ideal example of the computational imaging design. This system design employs

a mask to induce depth-independent aberrations in the optical domain. However, despite

the reduction in the magnitude of the modulation transfer function, the system becomes

nearly invariant to the scene depth. Therefore, it is possible using a post-measurement

digital filter to boost the modulation function and deliver a nearly ideal in-focus image

over a broader range of object conjugates relative to a traditional imager with the same

F-number and focal length. In order to produce the same depth-of-field extension within

the traditional imaging paradigm one would need to stop down (or apodize) the aperture,

which degrades both the photon throughput and the diffraction limited resolution. Hence

the elegant, and unconventional EDoF imager design can achieve an operating point beyond

the reach traditional imagers.

The EDoF computational imager design illustrates how balancing between optics and

post-processing design degrees of freedom enables improved system performances. Such

a joint-design approach can be used to achieve other system performance and complexity

trade-offs not accessible by traditional isomorphic imaging. Optical compressive sensing

(CS) is another noteworthy computational imaging architecture which relies on the inherent
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sparsity/compressibility of natural scenes to reduce the measurement sampling requirement

below the Nyquist rule. The underlying redundancy and hence the compressibility of nat-

ural images is evident by the widespread success of image compression algorithms, such as

JPEG/JPEG2000. However, conventional imaging approach employs isomorphic measure-

ments and thus ignores the inherent redundancy of natural scenes, leading to the measure-

ment of redundant data. As a result, conventional imagers incur several penalties such as

performing many times more measurements than required, having larger power consump-

tion and higher complexity FPA. In compressive imaging, the measurements correspond to

linear projections of the optical image onto some compact basis, such as the discrete cosine

transform (DCT), discrete wavelet transform (DWT) or random projections, and requires

relatively fewer measurement in proportion to the underlying sparsity of natural images.

Such optical pre-processing (projection) before detection has several inherent advantages

such as : fewer detectors and therefore lower complexity FPA, lower readout bandwidth,

lower power consumption, lower heat and multiplexing gain advantage for thermal-noise

limited detectors. As the compressive imaging measurements are not isomorphic samples

but instead projections of the optical image they need to be processed by a reconstruction

algorithm to form an image.

Another key aspect of computational imaging is its inherent suitability to support spe-

cific tasks, such as target classification, target tracking, e.t.c. The inherent joint-design

nature of computational imaging allows for a logical incorporation of specific tasks in the

post-processing algorithm which in turn determine the form and function of front-end op-

tics, so as to maximize the system-end-to-end performance using an objective task-specific

metric. Machine vision related tasks, such as target recognition is a pertinent example of

task specific imaging, where an intermediate image of the scene is not required, but only

the scene-related data for direct target recognition. For such tests, the appropriate system

performance is the probability of error, while the mean square error metric is commonly

employed for traditional image formation tasks.
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1.2 Main Contributions

While computational imaging paradigm alleviates some of the burdens of imager design

and performance bottlenecks inherent in traditional imaging architectures, it encompasses

its own set of design and implementation challenges. Given the different design approaches

of computational imaging and traditional imaging, the former typically involves higher sys-

tem complexity to achieve performance improvement relative to lower system complexity

and lower threshold of integration between optics, measurements and processing for the

latter. In this body of research we examine the scalability of computational imaging sen-

sor designs. For traditional imagers, simple design properties determine the scalability to

higher space-bandwidth (i.e. to increase the angular resolution and/or the field of view) or

temporal-bandwidth (i.e. to increase the frame-rate). In computational imaging and sensing,

this notion of system scalability extends beyond their system performance parameters, and

include other complex design aspects such as processing, scene models and system optimiza-

tion metrics. More specifically, given the integral nature of post-measurement algorithm,

the computational complexity of algorithm implementations becomes a critical component

in system scalability. Similarly, the underlying scene models that are required for system

optimization and processing need to be scalable with increasing complexity of the exploita-

tion task and to high space-bandwidth products. Thus it becomes imperative that such

challenges be addressed, in part by high-performance computational architectures such as

distributed processors and graphics processing units (GPUs). To address these designs and

implementation challenges, we construct efficient scene models and tractable system design

optimization frameworks, to design, build and test imagers and prototypes.

The main contributions of this dissertation are as follows :

• A joint-optimization framework is described for the design of an EDoF imager. The

system design metric provides a measure of the end-to-end system performance rather

than separately considering the performance of the optics, sensing and processing

stages separately. In our work, we also employ higher order Zernike polynomials
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demonstrating scalability in design complexity that contributes to a significant per-

formance improvement. The resulting phase mask design coupled with image restora-

tion algorithm produces higher fidelity image output due to lower noise amplification

relative to other phase masks design (cubic, trefoil) as well as providing a longer

depth range than a traditional imager. By leveraging a GPU-based implementation of

physics-based system forward modeling and post-measurement restoration algorithm

we were able to explore the full decision space represented by the large optical and

algorithm design degrees of freedom. To validate our joint-design approach, we opti-

mized and constructed a germanium phase mask-based F/1 EDoF long-wave imager

with an infrared camera and quantified its performance via extensive simulations and

lab experiments.

• Design and implementation of a programmable compressive imager testbed that is

inherently scalable to large space-bandwidth product. The compressive imager acquires

high-resolution images using a low-resolution focal plane array (FPA) while collecting

4x to 8x fewer measurements relative to a conventional imager sampling at Nyquist

rate. We have developed a fully automated method for system calibration to minimize

deviations between the ideal system design and its imperfect optical implementation.

We have also developed a non-iterative piecewise linear estimation algorithm for image

reconstruction from compressed measurements that is scalable to higher frame-rates by

exploiting parallel implementation. With this testbed we were able to experimentally

verify the superior performance of information optimal projections in comparison to

several common random projection patterns relative to the random projection patterns

widely used in the compressed sensing community.

• In addition to the image formation task, we also demonstrate how this programmable

compressive imager testbed can be used to implement automatic target recognition

(ATR), without having to reconstruct an intermediate image. We consider the task of

detecting and classifying specific targets against a cluttered background. We have de-

veloped a scalable scene model that accounts for typical variations in the scene, includ-

ing background and target appearance (rotation, location, scale). Using the scalable
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scene model and a computationally tractable information theoretic measure (CSMI)

we optimize the linear projection basis to maximize the relevant target information. In

contrast to well-known information measures, such as Shannon’s Mutual Information,

we can express both the objective function, i.e. CSMI, and its gradient in closed form

for our Gaussian mixture likelihood scene model. Furthermore, we show that CSMI

provides an upper-bound on the probability of misdetection and misclassification for

the system. Using this scalable information theoretic system design framework, we

demonstrate with simulation and experiment that the information optimized compres-

sive projections outperform random projections and other compressive designs as well

as the conventional imager in low SNR (0 to 10dB) and high-compression (between

42x and 64x) regimes.

• We analyze the canonical incoherent and quasi-monochromatic point-sources separa-

tion problem from an information theoretic perspective, given its relevance in defining

the incoherent resolution of an optical imager system. Prior work by Tsang et al. has

already demonstrated that a mode decomposition of the optical field in the image plane

capture more of the Fisher Information than a traditional imager employing an ideal

FPA. This is rather a surprising result given that per Rayleigh’s criterion, the estima-

tion error of angular separation degrades quickly below the angular diffraction limit,

while the mode-sorting measurement can achieve constant error performance, includ-

ing in the sub-Rayleigh regime. Our contribution in the analysis and design of mode-

sorting measurement for the two point-sources resolution problem includes extending

the mode-design to hard aperture, as well as generalizing a two-modes measurement

design to any arbitrary aperture, and showing that any known optical aberrations in

the imager pupil can be perfectly compensated by the appropriate mode-basis design.

Finally, we analyze two candidate measurement architectures in the sub-Rayleigh range

and their angular estimation performance in presence of implementation non-idealities.
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1.3 Dissertation Organization

The rest of this dissertation is organized as follows. In chapter 2 we describe a joint-

optimization framework for the design of an EDoF imager in thermal infrared spectral regime

for a set of system specifications, including the F-Number, depth range and maximum ac-

ceptable noise gain. We employ a system transfer function (STF) to capture the system’s

end-to-end performance. The optical phase mask is parametrized in terms of the Zernike

polynomials, whose coefficients serve as system design parameters and are optimized subject

to system specifications. The final system output for the optimized EDoF phase mask design

is compared to other existing designs in the literature such as the cubic and trefoil profiles.

The EDoF system prototype is constructed and its performance is tested against a conven-

tional imager. A scalable block wise compressive imager testbed is discussed in chapter 3,

which has notable advantages over both conventional and single pixel camera architectures

in terms of scalability with respect to space-bandwidth products. The random and infor-

mation optimal compressive projection designs are tested on this programmable testbed

to assess their respective output image quality. Chapter 4 describes how this compressive

imaging testbed can be used to implement an Automatic Target Recognition task, without

intermediate image reconstruction, by designing appropriate compressed measurements. We

employ the Cauchy-Schwarz mutual information metric coupled with a scalable scene model

to design compressive projection patterns for this specific task. Using simulation and exper-

imental data, we demonstrate the effectiveness of the proposed task-specific imager design.

In chapter 5, we pursue a theoretical analysis of the angular resolution limit to an optical

system with a finite aperture using the canonical two-point resolution problem. We quantify

the performance of an imager with a focal plane array measurement using Fisher information

metric and verify Rayleigh’s resolution limit. We then extend the analysis of an alternate

mode-sorting measurement design by Tsang et al. to a hard aperture and generalize a two-

mode design analysis to any arbitrary aperture. We conclude in chapter 6 with some key

observations of this body of research and directions for future work.

Page 32



Chapter 2. Joint-Design Approach for Extended Depth of Field Imaging

Chapter 2

Joint-Design Approach for Extended

Depth of Field Imaging

While a shallow depth of field is often used to emphasize the subject of a photograph, it

can also be a burden in applications constrained to use fast optics to compensate for low scene

flux and/or low SNR. The computational extended depth of field (EDoF) imager solves this

problem by introducing specific aberrations in the optical train which neutralize the defocus

and can be corrected by digital processing. In this chapter, we propose a joint-design and

optimization framework which optimizes both the parameters of the optical phase mask and

of the digital restoration algorithm to maximize the overall image quality delivered by the

computational imager.

2.1 Introduction

The depth of field of an optical imaging system is an important operational parameter

in many applications such as microscopy and photography. Traditional optical approaches

to control the depth of field rely on changing the f-number (f/#) or numerical aperture (NA)
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and/or aperture apodization, which can potentially degrade the light collection and the reso-

lution of an imager significantly. Such system performance trade-offs inherent in traditional

imaging system designs can be overcome by considering optical and computational design

degrees of freedom jointly within a computational imaging framework. A point in case is

the pioneering computational optical imaging, proposed by Dowski and Cathey [9], which

extends the depth of field (DoF) of an imager by employing a cubic phase mask in con-

junction with linear post-measurement processing. This non-traditional imaging approach

is especially suitable for applications such as microscopy and surveillance where an extended

depth of field (EDoF) is desirable without concomitant signal to noise ratio (SNR) penalty

incurred with traditional optical-only approaches. Since this pioneering EDoF imager design

with the cubic phase mask, numerous improvements with alternate phase masks designs have

been proposed in the literature. Some of the notable EDoF phase mask designs include, the

canonical polynomial basis based phase mask [21], the Log-Asphere phase mask [24], the

exponential phase mask [26], the fractional power and binary amplitude phase mask [25],

the freeform mesh mask [23]. It is noteworthy that nearly all of these phase mask designs

rely on purely optical metrics, such as Strehl ratio, optical point spread function (PSF) or

modulation transfer function (MTF) defocus invariance, ambiguity function, and therefore,

not truly joint designs because they ignore the end-to-end system performance that includes

the computational subsystem.

There have been a few EDoF phase mask designs that have indeed considered the joint

end-to-end system optimization, including the work of [20, 22]. However, such designs only

include relatively few optical design degrees of freedom and as such are unable to leverage

the full potential of the computational imaging paradigm. To our knowledge there has been

no comprehensive phase mask design study for EDoF imaging over a large set of optical

design degrees of freedom examining the inherent trade-off between measurement signal-to-

noise ratio (SNR) and DoF extension. While in Refs. [18], [19], S. Bagheri et al. present a

theoretical framework that yields a bounding expression for the inherent trade-off between

the extension DoF and measurement SNR budget, they do not provide actual phase mask

designs that achieve or even approach these theoretical limits. In this work, we propose a
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framework to jointly optimize a circular phase mask using an end-to-end system modulation

transfer function (STF) based metric to achieve a desired DoF extension, given a finite SNR

budget. We consider the powerful Zernike parametrization of the optical phase mask over a

large set of polynomial coefficients that allows access to a rich design space. Our choice of

Zernike polynomial representation is based on an efficient mathematical representation of an

optical surface on a circular aperture. Furthermore, the Zernike polynomials are routinely

used in optical design due to its relation to various aberrations (e.g. Seidel aberrations). We

consider the application of this joint design framework to an EDoF imaging system design

and experimental validation in the long wave infrared (LWIR) spectral band.

2.1.1 Limitation of Traditional Approach

The DoF of a traditional imaging system can be maximized by focusing it at the hy-

perfocal distance sHF . At this focal distance, all object conjugates between half of the

hyperfocal distance up to infinity are in focus, in the paraxial regime. The hyperfocal dis-

tance sHF can be expressed as a function of imaging system’s focal length f , its F-Number

F] and the admissible blur size c : sHF ≈ f 2/(cF]). Therefore, the DoF at the hyperfocal

distance can be extended by simply decreasing the f/# (i.e. slower f/#) of the imaging sys-

tem. Note that such a DoF extension approach is also applicable for other focus positions as

well. However, as mentioned earlier this traditional approach incurs two performance penal-

ties : (a) reduced light collection leading to lower measurement SNR, and (2) degradation

of diffracted-limited resolution. The relative SNR loss can be quantified per Equation 2.1,

where f/#ref < f/#slow, as illustrated in Figure 2.1. The impact of slower f/# on the

diffraction-limited resolution (at λ = 10µm) is also evident in Figures Figure 2.2. This

motivates a non-traditional approach to extending depth of field by jointly exploiting the

optical and the computational degrees of freedom, as outlined in the introduction section.
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SNRloss = 10 log10

(
f/#slow

f/#ref

)4

(2.1)
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Figure 2.1: Standard imaging system characteristics : SNR loss and PSF diameter as func-
tions of the F-Number/closest in-focus distance.

2.2 Joint System Design Framework

In this section, we describe our joint imaging system design framework that encompasses

a high-order Zernike phase mask, a linear image restoration algorithm, an end-to-end system

design metric and the system optimization method. We begin by defining our optical system

model.
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Figure 2.2: Comparison of the diffraction limited and defocused MTFs induced by a point
source at the 25m (the hyperfocal distance in this context) and 4m respectively. The mod-
ulation functions are normalized to the largest aperture (F/1) to illustrate the energy lost
while stopping down the aperture.

2.2.1 Optical System Model

The optical component of the computational imaging system is modeled by its thin-lens

equivalent, which yields an accurate optical PSF description in the paraxial regime. Given

this model, we can express the wavefront in the exit-pupil U(x, y, so) in terms of the aperture

function P (x, y), the phase mask function α, and object/image distance so/si :

U(x, y; so) = U0 P (x, y) exp

(
j
π

λ

[(
1

so
+

1

si
− 1

f

)
(x2 + y2)− 2∆α(x, y)

])
. (2.2)

The optical path length (OPL) function ∆α(x, y) associated with the the phase mask

profile Sα(x, y) is defined as: ∆α(x, y) = (no−1)Sα(x, y), where no is the refractive index of
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the phase mask material. This wavefront expression, in the exit-pupil, leads to the following

definition of the (complex) optical transfer function (OTF) in Equation 2.3, where ? denotes

the autocorrelation operator.

OTF (ξ, η; so) =
[U ? U ] (λξsi, ληsi; so)

[U ? U ] (0, 0)
. (2.3)

The defocus phase Ψ(R) is defined as :

Ψ =
R2

2λ

(
1

f
− 1

so
− 1

si

)
, (2.4)

where R =
√
x2 + y2 is the radial pupil coordinate.

2.2.2 Zernike Phase Mask Parameterization

We parameterize the phase mask surface in terms of Zernike polynomials, which are

orthonormal over the unit circle and widely used in metrology to describe system aberrations

that arise due to departure from the reference sphere. Thus the phase mask profile Sα(ρ, ϕ)

can be defined in terms of the first N Zernike polynomials Zk:{m;n}(ρ, ϕ) in Equation 2.5,

where αk denotes the expansion coefficient for the kth polynomial and ρ/ϕ are the polar

coordinate variables. The set of parameters {α1, . . . αN} or parameter vector α represents

the optical design degrees of freedom.

∆α(ρ, ϕ) =
N∑
k

αkZk:{m;n}(ρ, ϕ). (2.5)
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The nth order Zernike polynomials Zm
n (ρ, ϕ) are defined as follows :

∀n ≥ 2, |m| < n, (n−m) ∈ {2p; p ∈ Z},

Zm
n (ρ, ϕ) =

 Rm
n (ρ) cos(mϕ), if m > 0

Rm
n (ρ) sin(mϕ), otherwise

(2.6)

Rn
m(ρ) =

(n−m)/2∑
k=0

(−1)k
(
n− k
K

)(
n− 2k

(n−m)/2− k

)
ρn−2k, ρ ∈ [0; 1]. (2.7)

The second and third order Zernike polynomials are illustrated in Figure 2.3.
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Figure 2.3: Zernike Polynomials of order n = 2 (top-row) and n = 3 (bottom-row). From
left to right, first row : astigmatism, defocus, astigmatism; second row : trefoil, coma, coma,
trefoil.

It is instructive to note that any radial profile through the center (i.e. optical axis) of

an even order Zernike polynomial is of course an even function. Thus the corresponding

wavefront is locally similar to a defocus wavefront. This indeed also holds for any linear

combination of even order polynomials with arbitrary weights, due to the properties of even

functions. Thus, we can infer that all even order polynomial terms primarily introduce some

order of local focusing of the wavefront. This points to the inherent design redundancy

associated with the parameter αk of all even order polynomials parameters, as such we set

all such parameter values to zero, except for the main defocus term Z0
2(ρ) = 2ρ2 − 1. The

rationale for including the main defocus it that it serves to center the EDoF response within

a desired range of object conjugates.
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Overall, the Zernike parameterization of the phase mask is key to the performance im-

provements that derive from the EDoF imaging system design described in this work. We

believe that this is primarily due to two reasons : (1) Zernike polynomials offer an efficient

representation of functions (i.e. wavefronts) on the unit circle that corresponds to a circular

aperture that is relevant in most optical imaging systems, and (2) such an efficient represen-

tation enables inclusion of a larger number of optical parameters that extends the system

design space. Furthermore, the direct correspondence between the Zernike polynomials and

the Seidel aberrations also provides guidance towards the inclusion or exclusion of particular

order(s) of the Zernike polynomial, as discussed in the preceding paragraph. It is important

that point out that while any description of a phase mask in Zernike polynomials can be

equivalently expressed in any alternative complete bases (e.g. polynomials in the Carte-

sian coordinate), however, such an alternative description likely leads to a larger number

of parameters. This would lead to an inefficient phase mask representation and as a result

thereof increased complexity of phase mask design/optimization. Thus, the efficiency of the

phase mask representation, with respect to the computational complexity of system design,

becomes an important consideration towards the ability to explore a larger design space.

2.2.3 Image Reconstruction Algorithm

To incorporate the optical PSF into the post-measurement image reconstruction stage

of the computational imaging system, we choose the Wiener filter Equation 2.8 that is the

optimal linear filter design in the mean square error (MSE) sense [15]. Moreover, the Wiener

filter enables the inclusion of statistical model of scene variability via its power spectral

density (PSD) and accounts for the finite image sensor noise in terms of the signal to noise

ratio (SNR) WSNR, thereby potentially improving the reconstruction performance. Given a

target or a reference object distance sw at which we want to achieve perfect restoration of the

optical PSF or OTF, up to the diffraction-limited performance, the Wiener filter Wα,sw(ξ, η)
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can be expressed as :

Wα,sw(ξ, η) =
OTFα(ξ, η, sw)∗ Γenvelope(ξ, η)

|OTFα(ξ, η, sw)|2 + Snoise(ξ, η)/Smodel(ξ, η)
, (2.8)

where Γenvelope(ξ, η) is the target diffraction-limited OTF, Snoise(ξ, η) is the PSD of the

image sensor noise, and Smodel(ξ, η) is the scene PSD model. The scene and image sensor

noise PSD models are defined as follows :

Smodel(ξ, η) =
γ

(ξ2 + η2)β/2
and Snoise(ξ, η) = 10−WSNR/10, (2.9)

where the scalar parameters β and γ are obtained by fitting the average PSD of a dataset

of in-focus grayscale images.

In applications where the measurement noise is significant, such as micro-bolometer

based imaging sensor in LWIR, the noise gain Gn is an important system performance

metric. It is defined as the integral of the amplification power over the OTF domain P :

Gn = 10 log10

(¨
P

|Wα,sw(ξ, η)|2 dξdη
/¨

P

dξdη

)
. (2.10)

In the Wiener filter design, the parameter WSNR, defined as the measurement SNR,

determines the trade-off between the OTF restoration and the noise gain.

2.2.4 System Design Metric and Optimization

The system design metric g(α), which is a measure of the system transfer function

(STF) departure from a reference flat (unity) profile, is defined as follows,

g(α) =

ˆ smax
i

smin
i

¨
P

|1− STFα(ξ, η, so(si))| dsidξdη, (2.11)
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where the STF is defined as the product of the OTF and Wiener image reconstruction filter

profile :

STFα(ξ, η, so) = OTFα(ξ, η, so) ·Wα,sw(ξ, η). (2.12)

Thus the overall goal of this system design metric is to minimize the STF variations

over a desired depth of field across all spatial frequencies. In other words, achieve defocus

invariance across a depth of field. There are some subtle but important considerations

that motivate the choice of this particular system design metric. First, a design metric

based on the STF captures the end-to-end system performance, which is consistent with

a joint system design approach. Second, it is also important to note that while the ideal

STF profile should take the form of a diffraction-limited OTF, the reference flat profile is

chosen instead to emphasize the restoration of the high spatial frequencies, thus maximizing

the overall system resolution. Furthermore, the choice of the L1 distance in the system

design metric formulation, as opposed to say a L2 distance, is to measure departure from

flat reference provides a higher sensitivity to OTF amplitude variations across the depth of

field. For example, OTF amplitude variations around a low modulation value can be more

deleterious to the system performance compared to variations around higher modulation

values. This is due to the action of Wiener image reconstruction filter whose gain is inversely

proportional to the OTF amplitude (modulation). Therefore, in effect this system metric

behavior promotes phase mask designs that yield relatively constant OTF amplitude across

the depth of field with higher amplitude, thus simultaneously minimizing the noise gain and

reducing reconstruction artifacts that derive from OTF variations through focus. Finally, we

note that the computation of the system design metric in Equation 2.11, employs numerical

integration over spatial frequencies ξ/η. More importantly, the remaining outer integral in

Equation 2.11 defined over a range of image distances [smin
i , smax

i ] instead of equivalent range

of object distances [smin
o , smax

o ]. This choice of integration over image space, compared to

the object space, results in a higher numerical accuracy for a fixed number of integrand

evaluations because it samples the closer (to lens) object conjugates more densely where the

defocus and hence the integrand changes rapidly.
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Given the non-convex nature of the system design metric coupled with the relatively high

dimensionality of the search space (equal to the number of coefficients chosen for the phase

mask description), we employ simulated annealing [16], a global optimization technique, for

system optimization. As simulated annealing does not guarantee global optimal for a finite

number iterations, we repeat the optimization process, each with a random starting point,

a number of times to obtain a set of solutions. Each optimization run involves exploration

of approximately 100,000 candidate systems. As we discuss in depth in the next section, we

find that there is no unique system design with the best performance, but rather a set or

family of system designs with visually similar phase masks.

Focal length 25.0 mm
F] 1.0
Center wavelength 10.0 µm
Pixel pitch 25.0µm
Optical cut-off frequency ≈ 100mm−1

Sensor cut-off frequency 20mm−1

Hyperfocal distance in object space 25.6 m
HF/2 or closest acceptable distance 12.8 m
Target Closest distance 4.0 m
SNRloss after increassing the F-Number of a standard system 19.7 dB
Maximum tolerable noise gain (SNRloss) 3.0 dB

Table 2.1: Characteristics of the targeted optical system

2.3 System Design Results and Analysis

In our design study we pursue optimization of three different EDoF imaging systems

within the proposed joint design framework : (1) a traditional cubic phase mask with a

third-order phase term and a defocus term: ∆cubic(x, y) = α1(x
3 + y3) + α2(x

2 + y2), (2) a

trefoil phase mask design, with two trefoil Zernike polynomial terms along with a defocus

term: ∆trefoil(ρ, ϕ) = α(3,−3)(ρ
3 sin(3ϕ)) + α(3,+3)(ρ

3 cos(3ϕ)) + α(2,0)(2ρ
2 − 1), and (3) our

proposed Zernike-based phase mask, with only the odd orders (up to n = 7) and the main

(n = 2 order) defocus terms : ∆Zernike(ρ, ϕ) =
∑∑

m,n=odd αm,nZ
m
n (ρ, ϕ)+α2,0(2ρ

2−1). The
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system design parameters and specification for this study are listed in Table 2.1. We will

use the long wave infrared (LWIR) spectral band (λ = 10µm) to illustrate the joint design

approach in this work. The desired depth of field for this system design extends from 4m

out to +∞ that corresponds to a defocus range of Φ = 1.65λ. The maximum noise gain

budget is set to 3dB to limit the noise amplification in the image reconstruction. Note that

these design targets are meant to be illustrative, and in principle the proposed joint design

framework and the Zernike phase mask design can be applied to any optical spectral band

and depth of field requirements.

The optimized optical phase mask prescriptions for each of the three designs are tab-

ulated in Table 2.2, Table 2.3, and Table 2.4 and their surface interferograms are shown in

Figure 2.16. It is interesting to note that the optimized defocus term is similar across all the

three phase mask designs. This illustrates that the optimization process effectively adjusts

the original focus point (hyperfocal distance) to a closer object distance to achieve a sym-

metric defocus range across the desired depth of focus. The corresponding two-dimensional

(2D) MTFs of the three optimized EDoF systems are shown in Figures 2.5 and 2.6 for two

different object distances. Figure 2.4 show the one-dimensional profiles of the 2D MTFs

in X (horizontal) and XY (diagonal) directions. Note that even though the cubic phase

mask phase profile is separable in x and y dimensions, the circular aperture renders it non-

separable, as evident in these one-dimensional MTF profiles.

For the conventional imaging system we observe a significant loss of modulation for

object ranges between 4m and 10m as shown in Figure 2.4. In comparison, the cubic

phase mask design achieves a significant reduction in modulation variance across focus.

However, the modulation across the diagonal direction (XY) is significantly degraded relative

to horizontal direction (X). This leads to a STF that has excess modulation (i.e. greater

than unity) corresponding to the spatial frequencies where the OTF amplitude is relatively

small. Such large variations in the STF across the focus leads to significant artifacts (see

images in Figures 2.10 to 2.15). The optimized trefoil phase mask design improves upon

the cubic phase mask design by implementing a more symmetric phase profile that includes

both elements (i.e. positive and negative orders) and achieves nearly identical OTF along X
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and XY directions. Furthermore, the resulting STF is relatively well behaved compared to

the cubic phase mask. The optimized Zernike phase mask design achieves a higher degree

of OTF invariance, given the additional DoF, which yields a well behaved STF across the

desired DoF.

Note that the reconstructed modulation transfer profiles are embedding prior knowl-

edges of the average power spectrum of natural scenes and noise from the Wiener filter

expression. This tends to affect the high spatial frequency range.

We also tested free optimization of the all the Zernike coefficients up to the 7th order and

the optimization process tends to validate our assumption over the contribution of the even

orders of Zernike polynomials (n = 2). After the optimization process, the coefficients of

the corresponding polynomials are low, in magnitude, compared to other significant weights.

They are usually non-zero because of the random fluctuations introduced by the Simulated

Annealing algorithm. The only coefficient not following this observation is the defocus term

which is always kept at the previously discussed value. However, the stochastic optimization

process does not return here a single solution to the problem but rather solutions belonging

to two different sets depending on if the phase mask is primarily based on coma or trefoil

Zernike components, as shown in Figure 2.17.

ID Cartesian Coefficient (in unit of λ) Expression
1 Defocus (n=2) 0.629 (x2 + y2)
2 Cubic (n=3) 1.934 (x3 + y3)

Table 2.2: Cubic phase mask coefficients (for the normalized radial coordinate : ρ =√
x2 + y2 ≤ 1.0).

ID Zernike Coefficient (in unit of λ) Expression
1 Defocus (n=2, m=0) 0.313 (2ρ2 − 1)
6 Trefoil 1 (n=3, m=-3) 0.700 (ρ3) sin(3ϕ)
7 Trefoil 2 (n=3, m=3) 0.760 (ρ3) cos(3ϕ)

Table 2.3: Trefoil phase mask coefficients.

The reconstruction step is adjusted so that the noise-gain generated by the linear Wiener

filter is equal to 3.0dB for the novel design; this is managed by adjusting the single Wiener
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Figure 2.4: Comparison of the MTFs for a standard imager, common designs and the
optimized phase mask. Upper left corner : conventional design (wide opened); Upper
right corner : cubic phase mask design; Lower left corner : trefoil phase mask design;
Lower right corner : optimized phase mask design. Blue MTFs are in X slice, red MTFs
are in XY slice (at 45◦).

parameter WSNR. We share the selected value with the two other systems. The cubic phase

mask design has a resulting noise gain of 4.5dB, 1.5dB higher than the optimized design.
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Figure 2.5: Comparison of the MTFs for a standard imager, common designs and the
optimized phase mask. The object is at a distance of 12.8m (Ψ = −0.30λ). Upper left
corner : conventional design (wide opened); Upper right corner : cubic phase mask
design; Lower left corner : trefoil phase mask design; Lower right corner : optimized
phase mask design. The isolines (purple) represents steps of 0.1 in MTF. The green contour
corresponds to the optical cut-off frequency.

The trefoil phase mask design has a resulting noise gain of 4.8dB, 1.8dB higher than the

optimized design. We also test the image quality of these systems by simulating a Siemens

Star pattern (Figure 2.10) and various natural scenes (Figures 2.12 and 2.14) covering the

full OTF support (the virtual sensor is sampling up to the optical cut-off) for a SNR of
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Figure 2.6: Comparison of the MTFs for a standard imager, common designs and the
optimized phase mask. The object is at a distance of 4.0m (Ψ = −1.65λ). Upper left
corner : conventional design (wide opened); Upper right corner : cubic phase mask
design; Lower left corner : trefoil phase mask design; Lower right corner : optimized
phase mask design. The isolines (purple) represents steps of 0.1 in MTF. The green contour
corresponds to the optical cut-off frequency.

25.0dB and with previous filters and reconstructions designs. The higher noise gain of cubic

and trefoil-based designs over the optimized Zernike design is evident in these examples.

To highlight the artifacts generated by both the cubic and trefoil phase mask designs,
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ID Zernike Coefficient (in unit of λ) Expression
1 Defocus (n=2, m=0) 0.340 (2ρ2 − 1)
4 Coma 1 (n=3, m=-1) 0.101 (3ρ3 − 2ρ) sin(ϕ)
5 Coma 2 (n=3, m=1) 0.561 (3ρ3 − 2ρ) cos(ϕ)
6 Trefoil 1 (n=3, m=-3) -0.283 (ρ3) sin(3ϕ)
7 Trefoil 2 (n=3, m=3) -0.321 (ρ3) cos(3ϕ)
13 (n=5, m=1) 0.092 (10ρ5 − 12ρ3 + 3ρ) cos(ϕ)
14 (n=5, m=-1) 0.029 (10ρ5 − 12ρ3 + 3ρ) sin(ϕ)
15 (n=5, m=3) 0.001 (5ρ5 − 4ρ3) cos(3ϕ)
16 (n=5, m=-3) -0.009 (5ρ5 − 4ρ3) sin(3ϕ)
17 (n=5, m=5) -0.024 (ρ5) cos(5ϕ)
18 (n=5, m=-5) -0.020 (ρ5) sin(5ϕ)
26 (n=7, m=-1) 0.014 (35ρ7 − 60ρ5 + 30ρ3 − 4ρ) sin(ϕ)
27 (n=7, m=1) 0.065 (35ρ7 − 60ρ5 + 30ρ3 − 4ρ) cos(ϕ)
28 (n=7, m=-3) -0.022 (21ρ7 − 30ρ5 + 10ρ3) sin(3ϕ)
29 (n=7, m=3) -0.021 (21ρ7 − 30ρ5 + 10ρ3) cos(3ϕ)
30 (n=7, m=-5) -0.033 (7ρ7 − 6ρ5) sin(5ϕ)
31 (n=7, m=5) 0.003 (7ρ7 − 6ρ5) cos(5ϕ)
32 (n=7, m=-7) -0.027 (ρ7) sin(7ϕ)
33 (n=7, m=7) 0.001 (ρ7) cos(7ϕ)

Table 2.4: Optimized phase mask coefficients.

due to the over or undercompensation of the System Transfer Function at particular distances

as shown in Figures 2.7, 2.8 and 2.9, we remove the noise randomness from the simulations

while maintaining all other parameters constant (including Wiener filter prior parameters

constant). These synthetic results are shown in Figures 2.11, 2.13 and 2.15. The optimized

design shows again a superior and sustained image quality throughout the range of distances

tested. Note finally that all of the EDoF systems tends to deliver a slightly softer image at

both edges of the specification range, e.g. 4.0m and infinity in the current context. This is

due to the change of focus provoked by the only parabola term contained in the phase masks

expression, which centers the imaging performances in the middle of the defocus range of

interest, e.g. at about 12.8m here.

Although the coefficients corresponding to the polynomials of the 5th and 7th orders

are small in magnitude compared to those of the 3rd order and the defocus term, their

contribution to the overall system performance is significant. As shown in Figure 2.18,
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4.00 m (Ψ = −1.65 λ)
6.00 m (Ψ = −1.00 λ)
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Figure 2.7: Comparison of the STFs for major designs. Top row : restored amplitude
modulation; Bottom row : restored phase. Blue MTFs are in X slice, red MTFs are in XY
slice (at 45◦).

if we truncate these higher order components from the optimized mask the MTF is not

kept constant anymore through the distance range. After reconstruction, this distortion

leads to a large amplitude variation of the transfer function at mid- spatial frequencies.

Thus, this truncated mask design introduces artifacts in the restored images similar to those

encountered for the cubic phase mask.
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Figure 2.8: Comparison of the STFs for major designs for an object at a distance of 12.8m
(Ψ = −0.30λ). From left to right : cubic phase mask design, trefoil phase mask design,
optimized phase mask design. The isolines (purple) represents steps of 0.1 in MTF. The
green contour corresponds to the optical cut-off frequency.
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Figure 2.9: Comparison of the STFs for major designs for an object at a distance of 4.0m
(Ψ = −1.65λ). From left to right : cubic phase mask design, trefoil phase mask design,
optimized phase mask design. The isolines (purple) represents steps of 0.1 in MTF. The
green contour corresponds to the optical cut-off frequency.

2.4 Experimental results

To validate the performance of the optimized system, we build the prescribed Zernike

optimized phase mask out of a �25mm germanium flat mask (with refractive index n ≈ 4.0)

with a freeform diamond turning CNC machine and test that the surface is meeting the

design specifications via interferometric optical testing. To compare the performances of the

computational and conventional designs, we use two identical thermal cameras with each

an uncooled microbolometers array of size 384 × 288 pixels and 25µm pitch matching the
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Figure 2.10: Simulation of images over the full OTF support after reconstruction, for a
SNR of 25dB. The distances are, from the top to bottom row : 4.0m (Ψ = −1.65λ), 6.0m
(Ψ = −1.00λ), 10.0m (Ψ = −0.67λ), 12.8m (Ψ = −0.31λ) and 25.6m (Ψ = 0, the hyperfocal
distance).
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Figure 2.11: Simulation of images over the full OTF support after reconstruction, excluding
noise. The distances are, from the top to bottom row : 4.0m (Ψ = −1.65λ), 6.0m (Ψ =
−1.00λ), 10.0m (Ψ = −0.67λ), 12.8m (Ψ = −0.31λ) and 25.6m (Ψ = 0, the hyperfocal
distance).
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Figure 2.12: Simulation of images over the full OTF support after reconstruction, for a
SNR of 25dB. The distances are, from the top to bottom row : 4.0m (Ψ = −1.65λ), 6.0m
(Ψ = −1.00λ), 10.0m (Ψ = −0.67λ), 12.8m (Ψ = −0.31λ) and 25.6m (Ψ = 0, the hyperfocal
distance).
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Figure 2.13: Simulation of images over the full OTF support after reconstruction, excluding
noise. The distances are, from the top to bottom row : 4.0m (Ψ = −1.65λ), 6.0m (Ψ =
−1.00λ), 10.0m (Ψ = −0.67λ), 12.8m (Ψ = −0.31λ) and 25.6m (Ψ = 0, the hyperfocal
distance).
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Figure 2.14: Simulation of images over the full OTF support after reconstruction, for a
SNR of 25dB. The distances are, from the top to bottom row : 4.0m (Ψ = −1.65λ), 6.0m
(Ψ = −1.00λ), 10.0m (Ψ = −0.67λ), 12.8m (Ψ = −0.31λ) and 25.6m (Ψ = 0, the hyperfocal
distance).
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Figure 2.15: Simulation of images over the full OTF support after reconstruction, excluding
noise. The distances are, from the top to bottom row : 4.0m (Ψ = −1.65λ), 6.0m (Ψ =
−1.00λ), 10.0m (Ψ = −0.67λ), 12.8m (Ψ = −0.31λ) and 25.6m (Ψ = 0, the hyperfocal
distance).
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Figure 2.16: Simulated interferograms of the surfaces at λ = 0.633µm. Upper left corner
cubic phase mask design; Upper right corner : trefoil phase mask design; Lower left
corner : optimized phase mask design; Lower right corner : Zernike Coefficients bar
chart for the optimized Zernike surface.

specifications of Table 2.1. These cameras especially operate with a limited SNR budget of

about 20dB. They also use two identical 25mm F/1 germanium lenses consisting of two

aspherical elements and which are diffraction-limited for the in-focus plane. We secure the

germanium phase mask at the entrance aperture of one of the camera and will apply the
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Figure 2.17: Other surfaces returned by the optimization process for the same operating
characteristics (simulated interferograms at λ = 0.633µm). Most of the results can be
sorted in one of the two largest sets depending if they are based primarily upon coma (top
row) rather than trefoil (bottom row) Zernike coefficients.

linear digital reconstruction filter described previously to its output images.

To test the performance of both the conventional and the computational system, we

image a calibrated blackbody source with its surface temperature set to 37◦C. We place

different bar chart masks in front of the source to analyze the modulation transfer functions of
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Figure 2.18: Modulation transfer functions after truncation of the 5th and 7th orders Zernike
polynomials from the optimized surface. Upper left corner : optical MTF; Upper right
corner : STF; Lower left corner : 2D STF at a distance of 12.8m (Ψ = −0.30λ); Lower
right corner : 2D STF at a distance of 4.0m (Ψ = −1.65λ).

the two systems. In Figure 2.19 we show several of the acquired images (after reconstruction

in the case of the computational imager) for distances ranging from 3.0m (which is outside

of the optimization range) to 6.0m. The superior sharpness of the computational imager

is evident at these close ranges by looking at the modulation profile across the images,

as illustrated in Figure 2.20. We especially note that the image quality delivered by the

optimized phase mask decay gracefully for low spatial resolutions as shown for a distance of
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3.0m and a spatial frequency η ≤ 14mm−1. Finally, Figures 2.21 and 2.22 show respectively

an indoor scene with a person standing at 4.0m of both cameras apertures for the first and

an outdoor scene composed of vegetation in the foreground, at about 5m, and buildings in

the background, at about 350m.
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Figure 2.19: Experimental results of several bar charts patterns in front of a blackbody
source at 37◦C.
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2.5 Conclusion

We presented a novel optimization framework for the design of computational EDoF

imagers which can deliver a sharp image on a broader range of object distances than a

conventional system. Contrary to the constraining optical image quality criterions related

to the aberrated wavefronts root mean square error by Strehl and others [10, 11, 12, 13],

the aberration induced by a phase mask in this computational imaging system effectively

neutralizes the effect of defocus. The resulting soft optical image can then be restored to

diffraction-limited performance by a digital processing algorithm. In this work, we partic-

ularly focused on maximizing the image quality delivered by the system and, for this, we

proposed an optimization framework which relies on (1 ) the use of the orthonormal Zernike

polynomials to model the phase mask surface and (2 ) a metric assessing the overall mod-

ulation transfer function of the system, that is after reconstruction by the optimal linear

filter. We used the simulated annealing algorithm to optimize the parameters of the optical

phase mask to meet specifications in the case of a 25mm F/1 thermal imager. Interestingly,

we have seen that only the odd orders Zernike polynomials (excluding the main defocus

term) provide depth of field insensitivity and that, although the coefficients of the 5th and

7th orders polynomials are small in magnitude, they contribute significantly to keeping the

MTF constant across the range of distances. We simulated the resulting image quality of

one of the optimized phase mask and showed its superior performance over the (similarly

optimized) cubic and trefoil designs as it generates less artifact and has a lower noise gain, by

more than 1.6dB. Finally, we built, tested and validated the performance of the optimized

design against a conventional imager with real-world scenes.

In the future, we can port this computational imaging approach from the extension

of the depth-of-field to the extension of the depth-of-focus which is particularly valuable

for small form-factor imaging modules suffering from a large field curvature [27]. In the

context of this work, we also only focused on a long-wave infrared application, for which the

dispersion of the refractive materials is limited because the spectral range between 8µm and

12µm is relatively narrow when compared to the center wavelength of 10µm. Therefore, we
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were able to approximate all the radiation to a monochromatic profile. However, for visible

applications, i.e. for λ from 400nm to 650nm, this approximation is not valid. We can note

the interesting approach chosen by Guichard et al. in [14, 17] as they use axial chromatic

aberrations to extend the depth of field by transporting sharp texture information across

the three RGB sensor channels. This approach could be employed jointly with the optical

phase mask design discussed here in order to further increase the depth range and adapt to

broad spectral range.
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Figure 2.20: Cross-section profiles of the previous experimental data showing the difference
in modulation between the Standard Design and the Optimized Design.
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Figure 2.21: Side by side comparison of a natural scene. On the left is the image produced by
the standard system (a FLIR camera) and on the right, by the EDoF system (an identical
FLIR camera, with the phase mask mounted and after the digital reconstruction of the
stream). For both side, the cameras are focused at 25.0m and the person is standing at
approximately 4.0m. Note that the closest light bulbs on the right side are at a distance of
2.0m.

Figure 2.22: Side by side comparison of a natural scene. On the left is the image produced
by the standard system and on the right by the EDoF system. Note that the foreground
vegetation is at approximately 5m of the two systems apertures and the buildings in the
background are at a distance of approximately 350m.
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Chapter 3

Scalable Compressive Imaging System

Design and Implementation

Compressive Imaging is a new design paradigm which notably allows to free the sensor

array from Nyquist’s sampling requirement. While this technique can be implemented to

effectively acquire large images from a single photo-detector, it necessitates to perform a

computationally costly and slow reconstruction. In this chapter, we present a block-wise

parallel acquisition architecture and reconstruction algorithm to record and process high-

resolution images in real-time. We implement it as a programmable testbed which allows us

to verify the superior performance of previously developed Information Optimal projection

patterns versus commonly used random projections.

3.1 Introduction

While all conventional cameras sample densely the field of view, compressed sensing

(CS) exploits the sparsity of natural scenes and allow for a complete image reconstruction

from fewer measurements [28]. This is implemented, in the context of incoherent illumi-
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nation, by a linear measurement model where the scene signal-vector is modulated by a

series of patterns before being integrated onto a few intensity detectors. With this strat-

egy come several gains over traditional devices. First, the number of detectors needed for

high-resolution imaging is considerably less for this architecture than a standard focal plane

array (FPA); this reduction in sensor complexity is welcomed for cameras working in spectral

domains where the per-pixel cost is prohibitive, as it is the case, for instance, in short-, mid-

and long-wave infrared (respectively noted SWIR, MWIR and LWIR) as well as terahertz.

Secondly as the modulation is performed in the optical domain, it escapes the noise cor-

ruption inherent to the detection of the light signal. Thus, the compressive imager benefit

from the multiplexing gain applied to the signal and can therefore operate in a low signal-

to-noise ratio (SNR) regime. Finally, the high-resolution signal is acquired directly into a

compressed representation which translates into a significant reduction of the sensor readout

bandwidth, reducing both its thermal envelope (and decreasing the associated thermal noise)

and its power consumption. In addition, these novel architectures do not require the digital

compression of the high-dimensional image stream at high frame-rate which is otherwise

hindering the autonomy of embedded systems.

The single pixel camera (SPC) [29, 31] was the first implementation of an optical com-

pressive imaging architecture. It utilizes a single photo-detector to integrate the spatially-

modulated full field of view leading to an extreme reduction in the complexity of the detector

from the large arrays used by conventional imaging architectures. However, this particular

architecture comes with two downsides. First, for a constant compression-ratio it requires

to multiply the number of modulation patterns used to adapt for higher space-bandwidth

products (i.e. resolution × field of view). Second, the associated reconstruction complexity

for all specialized algorithms is at least in the order of O(N2) where N is the dimension of

the scene vector. Consequently, the runtimes per frame for these iterative reconstruction

processes are in the order of seconds to minutes and forbid the use of the SPC in a real-time

environment. Therefore, just as traditional imaging systems, the SPC does not scale well to

high space-bandwidth products.

To overcome these limitations, we have proposed in [40, 41] a scalable CS Imaging
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Figure 3.1: Top : Single Pixel Camera architecture, the full field of view is conjugated to
the SLM plane where its is modulated and integrated, from there, onto a single detector.
The patterns to be used for the projection are consecutively displayed. Bottom : Scalable
Compressive Imager, the field of view is conjugated to the spatial modulator which is divided
into blocks. Each block is mapped to a single detector and reconstruction unit and all can
operate in parallel.

architecture relying on a block-wise decomposition of the field of view. Each block is in-

dependently projected against a unique series of patterns and the modulated irradiance is

integrated onto a low resolution sensor. Each of the pixel in the focal plane array (FPA)

thus collects the modulated flux from exactly one block. This parallel architecture can be

represented simply as the concatenation of smaller independent SPCs for both acquisition

and reconstruction, as illustrated in Figure 3.1. It is also thereby positioned within a spec-

trum of CS imager configurations ranging from conventional imagers, which are using large

FPAs only, to the SPCs, which are using a large spatial modulator and combine all the

output flux onto a single photo-detector. They can thus be parametrized by a block size

defined as the number of modulation elements per detector element. Hence, for a traditional

imager architecture, this parameter is virtually equal to one, and it is in the order of several

millions for the SPC (assuming that a megapixel-scale modulator is employed). However, by

appropriately tuning this parameter we can select a configuration performing optimally for

a given spectral band, sensor technology and cost. Finally, besides the acquisition parame-
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ters, this parallel measurement architecture offers the possibility of employing a block-wise

parallel reconstruction algorithm to reconstruct images in near real-time.

Note that similar compressive imager design have been implemented since : in [42], the

authors have presented a one dimensional tiling version of the architecture with a linear

sensor array and fast acquisition rate which is limited by constraints similar to the SPC for

higher resolutions along the direction orthogonal the 1D FPA. The article [43] demonstrates

a similar 2D tessellation approach in the SWIR band, but employing a global reconstruction

algorithm. Finally, [44] focuses on the calibration aspect of such devices, particularly in mea-

suring the distortion between ideal and experimental sensing matrix but without acquiring

compressed measurements per CS definition.

In this chapter we describe the design, technical characteristics and implementation

considerations of such a scalable compressive sensor as a fully programmable testbed. First,

in section 3.2 we describe the components of this optical architecture implementation. We

then present the measurement model in section 3.3, followed by the scalable block-wise PLE-

MMSE reconstruction algorithm in section 3.4. We use those to assess the performance of

Information-Optimal projections compared to random projections via a simulation study, in

section 3.5, as well as experimental measurements with our prototype implementation, in

section 3.6, for which we describe a fully automated calibration method that is critical to

the system performance. Finally, we present our conclusions in section 3.7.

3.2 Scalable Optical Architecture

The structure of the compressive imager shown in Figure 3.2 can be decomposed into

two sections : the first produces an optical image of the scene analogously to the objective

of a traditional camera while the second modulates the image formed and maps it onto a

low resolution sensor. We call the first part the imaging arm, which we designed from an

off-the-shelf objective followed by an optical relay to increase the back-focal distance, both

visible in Figure 3.3. It operates at F/8 and covers a 40◦ degrees full-field-of-view. Instead of

Page 69



Chapter 3. Scalable Compressive Imaging System Design and Implementation

Relay Arm

Imaging Arm

CCD Sensor

DMD
Spatial Modulation

< Object

(discard
ed)

Figure 3.2: Picture of the Scalable CS Prototype and schematic overlay.

recording the image with a sensor as it is the case in the conventional architecture, a passive

spatial modulator is placed in the image plane. This element will ultimately define the

spatial resolution of the compressive imager : for this prototype, we are using a 1920× 1080

Digital MicroMirror Device (DMD). This affordable component is commonly found in video

projectors and consists in an array of bistable MEMS mirrors, 10.8µm in size. Every single

of the two millions facets can be electronically controlled to tilt at an angle of either plus

or minus twelve degrees around the array main diagonal, and effectively steers the normally

incident beam coming from the imaging arm to either plus or minus twenty-four degrees.

To achieve gray-scale modulation, these mirrors are rapidly switched between the two states

(on or off ) during the exposure : the ratio of the time spent in the on-state over the

total duration determines the effective intensity reflection coefficient. All the micromirrors

are synchronized to the same electronic control clock signal oscillating at 76.8KHz and can

thus perform 8 bits quantized gray-scale modulation at a maximum refresh-rate of 300Hz.

Therefore, the minimum possible exposure duration for gray-scale projection patterns in this

compressive imager is about 3ms.

The second arm or relay arm is consequently at an angle of 24◦ from the DMD normal,
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around its main diagonal, and has a F-Number matched to that of the imaging arm. It maps

the modulated image from the DMD plane to the surface of a low resolution sensor array

and consists of custom designed optics to minimize aberrations and distortions affecting this

critical transformation. For the sensor, we use a 1/3” 640×480 high-speed mono-CCD with

a pixel size of 7.4µm and 12-bits ADC which can capture up to 250 frames per second.

It is electronically synchronized with the DMD to guarantee that both modulation and

exposure are matched. For a 30ms integration, the peak SNR is between 25 and 30dB. Note

that, in the current configuration a portion of the normally incident light onto the DMD is

discarded as it is sent in the direction of a third arm, symmetric of the relay arm (as shown

in Figure 3.2) and currently containing a light trap. It is possible to add a second optical

relay and sensor array down this path to implement a programmable dual-band compressive

imager.

Finally, the full-field-of-view of this prototype contains an area larger than 720 × 720

DMD mirrors which are in turn mapped to roughly 300 × 300 sensor pixels which we can

readout with a 2 × 2 binning. The video stream from the sensor is collected directly by a

laptop computer running a specific control software in charge of keeping track of the high-

speed pattern measurement process and performing the image reconstruction in real-time.

The pixels in the readout frame are then aggregated digitally to synthesize the output of

90 × 90 virtual detectors, each one mapped to a block of 8 × 8 micromirrors. Finally, we

developed an automatic calibration method to infer this mapping and is detailed in a later

section.

3.3 Compressive Measurements Design

To write an analytical model of the measurement process, we employ a simple Kronecker

linear measurement model where F denotes the discretized scene matrix and is arranged into

E blocks (columns) of dimension N (rows) and taking values in [0, 1]. The M projection

patterns to be used for the compressive measurements are forming the rows of the M × N
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Figure 3.3: Left : Custom optical layout showing both the imaging arm and the relay
arm. Right : simplified functional architecture of the prototype and the interface between
hardware and software components.

projection matrix P . We define the associated compression ratio ρ = N/M > 1 for this

projector, for which higher values indicate a higher compression rate. Finally, we note G

the M ×E measurements matrix corrupted by additive white Gaussian noise Z of variance

σ2. The linear measurement model can thus be written as :

G = PF + Z, with : vect(Z) ∼ N (0, σ2IEM), (3.1)

where N denotes the Normal distribution and IEM is the identity matrix in REM×EM .

Note that the noise variance σ2 is related to the peak signal-to-noise ratio (SNR) via :

SNR = −20 log10(σ). The parallelism of this compressive measurement architecture is thus

directly encoded into the matrix product between P and F , as all the columns of F (the

blocks in the field of view) are independently projected onto the rows of P (the projection

patterns). This model hence differs from the traditional global linear measurement model

which is restricted to projecting a single scene vector (i.e. E = 1). By performing all the

scene block projections in parallel, this scene is scalable to large space-bandwidth products :

increasing the field of view does not require to add further projections in order to maintain a

given compression ratio ρ, only to concatenate more of such blocks. This in turn reduces the
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hardware constraints, particularly on the frequency of the spatial modulator, as the number

of patterns is now independent of the size of the field of view. This whole architecture can

be intuitively understood as a concatenation of small and independent single-pixel cameras.

As mentioned earlier, the modulation patterns are the rows of the projection matrix P

and are successively displayed by the spatial modulator. These patterns must however first

satisfy a no-gain constraint as the input light signal cannot be amplified. Secondly, the sum

of the maximum exposure (largest modulation coefficients, in absolute value) for each of the

patterns must be equal to the exposure of a single frame in a conventional camera in order

to establish a fair comparison. Finally, a third constraint arises from the readily available

hardware and dictate that the same exposure must be allocated to each and every patterns.

All of these can these requirements can be modelled as the following simple constraint on

the elements of the sensing matrix P : ∀i, j |Pi,j| ≤ 1/M .

For these patterns, a typical heuristic proposes to pick the modulation values from ran-

dom Gaussian or random signed binary number generators. The restricted isometry property

(RIP) [32, 33] then demonstrates that the operator is, with a high probability, preserving

or at least limiting the distortion applied to sparse signals. However this approach doesn’t

consider neither the noisy nature of the measurements nor that the patterns are subject to

the previous physical constraints. The result also does not guarantee to reach an optimal

compression level. On the contrary, we consider the projections design method presented in

by Huang et al. in [38], which consists in the optimization of the projection matrix within an

information-theoretic framework. The authors use Shannon’s mutual information metric J ,

which quantifies the transfer of information from a statistical model describing the natural

scenes to the compressed measurements. They can thus optimize the projection patterns to

be used given a fixed measurement noise σn and subject to the photon-count constraint on

the operator. This optimization task can be expressed as :

arg max
P

J(g; f) s.t. ∀j,
M∑
i=1

|Pij| ≤ 1, (3.2)

where the photon-count constraint stipulates that the flux, without being amplified, is effi-
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ciently used. This is the case of a CS architecture presented in [30]. In this work, we use a

series of 8×8 projection patterns optimized within this information-theoretic framework for

SNR ranging from 20dB to 45dB SNR, and renormalized to fit the equal-exposure constraint

of our hardware platform. These patterns are shown in Figure 3.4.
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Figure 3.4: 8× 8 Information Optimal projection patterns for 4x compression (16 patterns)
and 8x compression (8 patterns) for various SNR values. The first four patterns in each (in
the left-most column) target low spatial frequencies in the signal while the remaining patterns
address high spatial frequencies depending on the SNR budget available. All patterns are
normalized to [−1, 1] range for visibility.

As mentioned in the previous section, it is not possible to emulate subtraction in the

context of incoherent imaging and as such, we have to split between patterns containing all-

positive and all-negative modulation factors. This results in an increase of the corresponding

noise variance in Equation 3.1 to at most 2σ2, depending on the number of signed patterns.

3.4 Scalable Block-wise Reconstruction

Most well-known CS reconstruction algorithm such as `1-magic [34], Orthogonal Match-

ing Pursuit [36] or Two-steps Iterative Shrinkage/Thresholding [35], perform a global itera-

tive reconstruction of the measurements acquired with the rank-deficient sensing operator.
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Each processes all the data in the field of view at once and sequentially refines the output

image under the assumption that the scene signal is indeed sparse. However, this approach

results in a time-consuming computation, taking from seconds to minutes to complete, and

therefore is not suitable for real-time applications. While these algorithms could be used

with the output measurements of the scalable compressive imaging architecture, they would

not leverage the parallel nature of the acquisition. Instead, we propose to use a block-wise

Bayesian and non-iterative reconstruction algorithm, inspired by the Piecewise Linear Esti-

mator with Maximum A Posteriori (PLE-MAP) presented by Guoshen et al. in [37]. This

algorithm is especially capable of reconstructing streams at near video frame-rate when

running on a common graphics processing units (GPUs).

0o Edge - Component 1

90o Edge - Component 5

45o Edge - Component 3

135o Edge - Component 7

157o Edge - Component 8

112o Edge - Component 6

DCT - Component 9

Figure 3.5: How various components of the statistical prior model address specific portions
of the image at the block level, and their predominant eigenvectors.

This Bayesian algorithm does not rely on the sparsity property as the previous classical

CS algorithms, but on a statistical prior model describing the complex textures of natural

images at the scale of a single block. Due to the small block size, those textures depict

mostly edges, smooth gradients and a very few complex patterns as illustrated in Figure 3.5.

From this observation, we construct a prior distribution p(x) of the block content x based

on a Gaussian Mixture Model (GMM) for which, each component addresses one edge angle
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:

p(x) =
K+1∑
k=1

ωk|Σk|−
1
2 exp

(
− (x− sk)ᵀΣ−1k (x− sk)

/
2
)/√

2π
N
. (3.3)

In this expression, each of the K+1 multivariate Gaussian components has a weight ωk,

mean vector sk and covariance matrix Σk. We compute these parameters via a procedure

similar to that presented in the original PLE-MAP article. First, we start by analyzing the

average power spectrum of a dataset of natural images from a standard database, i.e. the

series of eigenvalues obtained from the average covariance matrix of their blocks. Then, we

sample uniformly K angles in the range of [0; (K−1)π/K], with K an integer between twice

and four times the size of the block (about the size of half to a full perimeter in pixels).

For each, we generate a set of synthetic images depicting a single binary edge at that angle

and for various translations. We then compute the modes/eigenvectors of this ensemble,

i.e. the eigenvectors of the covariance matrix to these images blocks, and order them with

decreasing eigenvalues. To capture more complex patterns, we also add a single component

to the mixture for which the modes/eigenvectors are the vectors of the DCT basis, ordered

from low to high spatial frequencies. Each Gaussian component of the mixture is setup with

a zero mean (sk = 0) and its covariance matrix Σk is computed as the product between

the eigenvalues of the natural scenes covariance (the power spectrum) and the eigenvectors

of a synthetic edge covariance (the modes/eigenvectors). The truncated eigenbasis of a few

components are shown in figure 3.6 along with the natural images power spectrum. Finally,

all components of the mixture are uniformly weighted : ∀k, ωk = 1/(K + 1). Note that this

simplistic prior model is only able to capture structures at small scales, hence it limits the

size of the blocks we could use to less than 16× 16 pixels approximately.

For the reconstruction algorithm, we adapt the piecewise linear estimator (PLE) from

[37] where we replace the maximum a posteriori (MAP) estimator by a minimum mean square

error (MMSE) estimator. The PLE-MMSE reconstruction estimator, combined with the use

of a GMM prior and the assumption of an additive white Gaussian noise, admits a closed

form expression and thus does not require the implementation of a slow iterative refining
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Figure 3.6: Top : eigenvectors of some of the components of a coarse prior (few angles)
with DCT in the bottom row. They are sorted from left to right in descending order of their
spectral power. Bottom : the power spectral density (PSD) / eigenvalues shared by all the
components of the GMM.

process. This expression can be summarized as follow : first and for each block individually

(indexed by e), we reconstruct from the measurements vector ge one least-square solution

f̂ e,k per component of the GMM (indexed by k). This is akin to assuming that the current

block does indeed contain the specific type of texture described by a particular mixture
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component. We write :

f̂ e,k = ΣkP
ᵀC−1k ge, with : Ck = PΣkP

ᵀ + σ2IM . (3.4)

Also, for each block and each mixture component we compute the following coefficient

we,k indicating how likely it is for the current block to match the texture description given

by the mixture component k :

we,k ∝ exp
(
−gᵀeC−1k ge/2

)
|Ck|−1/2. (3.5)

Finally for each block, we combine all the reconstructions {f̂ e,k} after being weighted

by the corresponding {we,k} to obtain the result :

f̂ e =
K+1∑
k=1

we,kf̂ e,k

/
K+1∑
k=1

we,k. (3.6)

We note that all of the computationally expensive matrix-products, inverses and deter-

minants of all the matrices {Ck} in Equation 3.4 can be calculated in advance as they do

not depend on the input signal. This leaves the algorithm only a handful of matrix-vector

operations to perform, and such that its complexity is in the order of O(EKNM) : it is

linear with respect to the number of blocks E, prior components K, block size N and num-

ber of measurements M . From a numerical stability perspective, it is however preferable to

compute the natural logarithm of all the weights le,k = ln(we,k), and then find and subtract

their maximum in order to reduce the overall numerical dynamic range in Equation 3.6.

Nevertheless, as this algorithm reconstructs all the blocks independently from their

neighbors, it produces visually disturbing artifacts at the edges of the blocks because the

textures can appear discontinuous from one block reconstruction to that of its neighbor. To

avoid those, we instead reconstruct all the groups of 2× 2 adjacent blocks, or super-blocks,

as a single entities. This is achieved by concatenating both operator and measurements to
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form a matrix and a vector of size 4M × 4N and 4M respectively, as follow :

gsuper = Psuperf super + ssuper ⇔


g1
...

g4

 =


P · · · 0

P
...

... P

0 · · · P

×

f 1

...

f 4

+


z1
...

z4

 (3.7)

With this concatenated model, we have to use a prior generated on 16× 16-pixels block

following the same method as previously described. We eventually merge the reconstruction

results of all these overlapped super-blocks into a smoother final image by averaging the

overlapping portions. In Figure 3.7, we show a comparison between the results of the non-

overlapped and the overlapped reconstruction methods for the same measurements and same

prior mixture. In the overlapped version, the block edges are almost invisible and much

finer texture details are revealed. It must be emphasized that this process can be performed

without changing the underlying measurement strategy, on 8× 8 blocks, and comes only at

a the cost of a linear complexity increase for the reconstruction algorithm.

Figure 3.7: Comparison of image reconstruction without (left) and with (right) overlapping,
each using the same set of random binary projection patterns at 4x compression.

Regarding the implementation of the reconstruction algorithm and as noted above, it

only requires element-wise and linear algebra operations. It also is natively parallel for all

the blocks (or super-blocks) and all the prior components. Thus, it is perfectly suitable
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for massively parallel computing architectures such as graphic processing units (GPU). Our

CUDA R© implementation running on a single NVIDIATM GTX 580 device (in double pre-

cision) can reconstruct an image of size 512 × 512 (≈ 0.25 megapixel) in 9 milliseconds,

1024 × 1024 (≈ 1 megapixel) in 35 milliseconds and 4096 × 2048 (≈ 16 megapixels) in 285

milliseconds in agreement with the analytical linear complexity. This task can also easily

be split across multiple GPUs, each handling a small region of the field of view in order to

obtain a quasi-linear increase in frame-rate.

3.5 System Performance Simulation

As a first evaluation of the algorithm, we simulate the exact analytical expression of the

linear measurement model for various inputs. These gray-scale images, with values in [0, 1]

are first reordered into a set of 8×8 pixels blocks and projected with a sensing matrix abiding

by the previous equal-exposure physical constraint. We then add numerically-generated

white Gaussian noise to the projected measurements obtained.

We compare the results generated by random signed binary projections (with values in

{−1; +1}, independently drawn from a Bernoulli process with 50% probability) and Infor-

mation Optimal projections. We simulate the acquisition and reconstruction from these two

operators at 4x and 8x compression ratio (for 16 and 8 patterns, respectively) and while

keeping the prior model and other parameters identical. The figures 3.8 through 3.12 show

the obtained results for both natural scenes and artificial test targets. Naturally, we observe

that for all operators, the quality of the reconstruction is degraded with the increasing com-

pression ratio and decreasing SNR. Nevertheless, the information optimal operators appear

capable of retaining most the image features. Moreover, we find that they capture more

scene details and generates substantially less artifact in the reconstruction than the random

operators. This qualitative observation is supported by the quantitative PSNR values com-

puted between the original object and the reconstructions and presented in Table 3.1. For

these examples, we find a gain of up to 5dB at 20dB SNR and 4x compression in favor of
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the information optimal projector.

1

2

3

1

2 3

S
N

R
=

45
d
B

;
S
N

R
=

20
d
B

;

Original Bin.Rand. 4× Optim. 4× Bin.Rand. 8× Optim. 8×

Figure 3.8: Simulations for ”Starchart” target, comparison of the reconstruction with
measurements acquired from binary random {−1, 1} and information optimal operators.
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Figure 3.9: Simulations for ”Barbara” target, comparison of the reconstruction with mea-
surements acquired from binary random {−1, 1} and information optimal operators.
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Figure 3.10: Simulations for ”Tank” target, comparison of the reconstruction with mea-
surements acquired from binary random {−1, 1} and information optimal operators.
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Figure 3.11: Simulations for ”USAF bar-chart” target, comparison of the reconstruction
with measurements acquired from binary random {−1, 1} and information optimal operators.
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Figure 3.12: Simulations for ”Building” target, comparison of the reconstruction with
measurements acquired from binary random {−1, 1} and information optimal operators.

PSNR (dB) Random Gaussian Random Signed Binary Optimized
Compression : 4x 8x 4x 8x 4x 8x

SNR : 45dB 20dB 45dB 20dB 45dB 20dB 45dB 20dB 45dB 20dB 45dB 20dB
USAF-1951 23.31 14.08 20.34 15.27 22.99 15.23 20.30 16.87 26.55 20.74 22.37 19.64

barbara 26.89 20.51 24.29 21.46 26.68 21.54 24.21 22.25 27.08 24.48 24.05 23.25
Building (training) 23.83 18.08 22.03 19.04 23.59 19.09 22.06 20.09 25.38 22.73 23.06 21.62

Starchart 21.21 10.98 16.48 11.33 21.00 11.62 16.82 12.34 21.92 17.41 17.88 14.67
Tank 25.06 20.27 23.25 20.98 24.91 21.01 23.25 21.74 27.14 24.05 25.16 23.56

Table 3.1: Reconstruction PSNR from simulation results at 4x and 8x compressions, 45
and 20dB SNR. The building image was used to train the Information-Optimal projections.
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3.6 Experimental Implementation

3.6.1 Supervision Software And Calibration Procedure

In addition to the hardware implementation of the architecture described previously,

we use a custom software to supervise the calibration, acquisition and reconstruction. This

program runs on a single laptop computer and is connected to the DMD, the sensor and

an external display panel acting as the scene and facing the system. This computer is in

charge of uploading a sequence of global projection patterns to the control board of the

spatial modulator. As they are successively displayed on the DMD, a trigger is issued to the

camera to match the pattern exposure to the sensor exposure. The recorded image is then

transferred back to the computer for processing and the reconstruction results are displayed

in a graphical user interface shown in Figure 3.15.

One of the main problem plaguing Compressive Sensing implementations is their acute

sensitivity to miscalibration, i.e. how a small deviation of the physical measurement pro-

cess away from the idealized linear model can negatively impact the output quality of a

reconstruction algorithm. On these optical architectures we can identify numerous sources

of such mismatch. Both mechanical misalignment and optical distortion prevents the

perfect mapping of blocks of modulators to sensors. Blur caused by the extent of the relay

arm Point Spread Function (PSF) induces signal leakage and cross-talk between neighbor-

ing blocks. The physical limitations of the spatial modulators can also pose problem : for

instance, the gray-scale projections patterns cannot be reproduced with an infinite precision

because of quantization of control levels, they also suffer from the non-linear and non-

uniform response of the individual elements (a problem mainly encountered with Liquid

Crystal modulators rather than DMDs). Similarly for the sensor itself, the precision of the

measurements is reduced by non-linearities, non-uniformities and quantization as well

as more complex noise statistics than assumed in our model. Overall, this translates as a

significant, but not insurmountable, complexity increase from traditional cameras.
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Naturally we can deal with those nonidealities in two ways : either by improving the

device and thus the physical measurement model toward the ideal one, or on the contrary

generalize the mathematical model to incorporate realistic features of the physical setup. In

[44], the authors have presented how it is possible to fold knowledge of the optical character-

istics back to the measurement matrix so as to improve the reconstructions. However in the

context of this work, we cannot proceed with the same technique as we wish to compare sets

of random and optimized projections : for this, we would have to pass the calibration data

back to the projections optimization process. Instead, our calibration aims at limiting the

alignment and setup defects of the hardware in order to approach the idealized measurement

model.

To infer the system parameters, we simply point to a known simple scene and interpret

the distortions between the expected and obtained output of the system. In the case of our

prototype, we have to learn the association between blocks of micromirrors on the DMD and

sensor pixels. However, this mapping cannot be made perfect : the surface of the modulator

is indeed seen by the FPA at an angle, with a non-integer scale and is convolved by the PSF

of the relay-arm.

In this prototype, we left the modulator to be orthogonal to the optical axis of the

imaging arm. At the working F-Number, the geometrical depth of focus is approximately

∆ ≈ 2F]c, where c is the diameter of the confusion circle : for the DMD we have about

160µm depth, and only 120µm for the CCD. However, in the configuration we opted for,

we can tilt the sensor surface with respect to the optical axis of the relay arm in order to

match the image plane conjugated to the modulator surface. While this helps reduce the

optical blur, it amplifies the distortion generated by the relay-arm and, thus, the modulators-

sensors mapping. Although, as we are forced to virtually perform the reconstruction in the

modulation plane, this distortion is not visible in the final reconstructed image.

To setup the system, we first align the optical axis of the first arm and second arm onto

the normal of DMD surface with a laser beam. We then position, rotate and focus the sensor

while looking at a test pattern displayed on the DMD (typically, a binary checkerboard) and
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a uniform white screen is facing the first arm. Finally, we focus the first arm objective

while observing a textured scene. Thus, the image plane of the first arm, DMD surface and

object plane of the second arm, are all coincident, or at least within their respective depth-

of-field/focus. Regarding other sources of deviation, we find that the Digital Micromirror

device exhibits no significant distortions aside from the mandatory quantization of the gray-

scale patterns. We also do not find any significant differences between the acquisition of 8

and 12 bits quantized raw images by the CCD sensor.

Sequence of calibration patterns
Threshold
Detection

Blocks
Localization

Vertical
Indexing

Horizontal
Indexing

Figure 3.13: Visualization of the binary patterns sequence to be used for the calibration and
which cover the entire surface of the spatial modulator. During this procedure we put a
uniformly white screen in front of the imaging arm. Hence, as we control the object and the
modulation are known, we can infer the mapping through the relay arm and other calibration
parameter from the corresponding images recorded by the sensor.

At each observation session, we let the software perform an automated calibration to

recognize the mapping data for each of the few thousand blocks composing the field of view.

For that, a uniformly white object or screen is once again positioned near the entrance pupil

of the first arm. Images are recorded by the sensor while a series of identification patterns are

displayed onto the DMD. This sequence is illustrated in Figure 3.13 and composed as follow :

first some uniform on-off patterns, followed by checkerboards, vertical and horizontal bars;

all the same size as that of the block. With this data, the program computes the transition

threshold between the two predominant histogram modes of the the uniformly illuminated

images. Then, it uses this level to binarize all the remaining images and scans them to detect,

localize and index the visible blocks, i.e. it infers which pixels of the sensor are mapped to a

particular block of modulating elements. Finally, it also calibrates the response of the sensor

(bias and linearity) and measures the effective noise standard deviation.
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Despite this careful calibration, we find that the optical distortion induced between

the DMD plane and the sensor, as well as the extent of the optical Point Spread Function

(PSF) of the relay-arm, generates a significant cross-talk between the measurements of these

small blocks. The overlap and misalignment of the block images onto the sensor is shown in

Figure 3.14. In order to mitigate this effect we split the global pattern patchwork into four,

where each block is isolated from its closest active neighbor by at least one fully opaque block.

Thus for each projection pattern, the DMD has to display four sub-patterns to observe all

of the blocks.

{
Original Projection

Quad Projections

Figure 3.14: Left : Visualization of the block segmentation as recorded by the sensor. Right
: splitting a global pattern (the tiling of a single projection pattern) into 4 sub-patterns to
avoid cross-talk from the imperfect mapping onto the focal plane array. The blocks are
separated for the visualization only.

After the calibration, the software is able to start performing the measurements. First,

the user dynamically pairs it with one or multiple reconstruction algorithms and projection

sets. For each, the program builds all the global patterns and upload them to the DMD.

During the acquisition, it extracts the measurements by scanning the raw sensor images

it receives with the previous calibration data : it averages the pixel values mapped to a
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particular block into a single scalar. This way, it progressively fills the appropriate mea-

surement matrix G of Equation 3.1. Once all of the patterns were displayed, the sequence

is looped back to the first. Thus the system can deliver a continuous video stream with

each of the previous matrix being used as a circular buffer, i.e. receiving steady updates. In

the meantime, the running reconstruction processes are asynchronous with the acquisition

of the compressed measurements : this allows the software to deliver an output image with

a smaller period than that of filling completely the matrix G.

Figure 3.15: Acquisition and Reconstruction software interface, showing in real-time the
raw compressed measurements stream (top-left), the image captured by the conventional
system with the low-resolution sensor (top-right) and the reconstruction output for the
PLE-MMSE algorithm (bottom-left). Reconstruction and other exploitation algorithms
can be added dynamically to the program.

3.6.2 Experimental Results

For the experimental tests, the compressive camera is recording the display showing

test images previously used for simulation. These gray-scale images are precorrected by

the inverse gamma function x 7→ x
1
2.2 to compensate for the dynamic range compression

applied by the monitor and so that the output luminance is linear. Note that we also have
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to make sure that the pulse-width modulation of the backlight (for brightness control) does

not produce temporal aliasing artifacts with the fast acquisition. Finally, we ensure to use

the same calibration in order to nullify differences between imaging sessions and to allow for

a fair comparison of the results. The final images are all reconstructed via the PLE-MMSE

block algorithm using the same 64 angle priors, DCT prior, and 2×2 super-block overlapping

technique.

In addition to the compressed measurements we also emulate two configurations of the

conventional camera which represents either the highest or lowest performance bounds. The

first imitates a high-resolution sensor in place of the spatial modulator : it is implemented

by measuring the pixel (or canonical) basis. This operator consists of 64 projections, each

with only a single element (pixel) of the 8 × 8 block in the on-state and thus it does not

achieve compression (1x). The second imitates the low-resolution sensor used to acquire the

block projections although put in place of the spatial modulator. This is implemented by

only measuring the block DC component, where all the elements are in the on-state, and is

equivalent to an effective 64x compression from the previous high-resolution. For both, we

perform a simple linear back-projection for the reconstruction.

As for the simulation, we compare the results obtained for random signed binary and

Information Optimal projections. We also add properly normalized random Gaussian pro-

jections (with values drawn independently from a Gaussian process). All these operators

were first normalized with the equal-exposure constraint such that each of their patterns

is contained in [−1; 1]8×8 and quantized to 7 bits in order to be displayed by the DMD

(the least significant bit of the transmission value is removed). The measurements obtained

exhibit a peak-SNR between 25 and 30dB and the reconstructed images are approximately

700× 600 pixels in size.

The resulting reconstructions for all the operators are shown in figures 3.16 through

3.20 and tend to corroborate the observations reported for the simulation results. From the

resolution test targets, one can verify that the information optimal projections deliver images

of higher effective resolution than both Gaussian and signed binary random projections while
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acquiring only a fraction of the measurements of a conventional camera. This is particularly

visible at a compression rate of 8x where characters and smaller bars of the USAF test chart

are still distinguishable. For natural images, we observe that the small-scale features, such

as the clothes textures in Figure 3.16, are also better preserved by the information optimal

projections.
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Figure 3.16: Experimental results : Barbara image.
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Figure 3.17: Experimental results : Star-chart.
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Figure 3.18: Experimental results : USAF-1951 test target.
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Figure 3.19: Experimental results : Armored vehicle.

3.7 Conclusion

We have described the implementation of a parallel compressive imaging architecture

which is inherently scalable to high space-bandwidth products, and a similarly parallel non-

iterative Bayesian reconstruction algorithm based on a piece-wise statistical model of natural
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Figure 3.20: Experimental results : Building, image initially used for the optimization of
the projections.

textures. This compressive imager is capable of reconstructing megapixel-size images at near

video frame-rate when other CS architectures, such as the SPC, are constrained to use slow

iterative reconstruction algorithms not suitable for real-time operations. While this platform,

as well as the other CS architectures, are more sensitive to miscalibration than conventional

imagers, they present significant advantages over the latter : as they leverage the sparsity

of natural images, they can operate below Nyquist’s sampling limit and thus can employ

low-resolution sensors. They also perform fewer measurements than a traditional imaging

architecture and thus require a smaller readout bandwidth and benefit from a multiplexing

gain advantage over the direct measurements. Finally, while our device prototype is working

in the visible domain, it is easily adaptable to SWIR/MWIR by swapping the FPAs. It is

also possible to dispose of the second arm, which is unused in our current configuration,

to build a programmable dual-band observation system. In thermal infrared however, the

background radiation is lowering the modulation contrast which affects the resulting image

quality. Hence, a CS camera working in this particular domain faces additional engineering

challenges, such as described in [69].
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As an application of this scalable compressive imager, we have demonstrated that the

information-optimal projections deliver superior image quality when compared to both ran-

dom Gaussian and random signed binary operators in simulations as well as in real-world

conditions with our prototype implementation. This performance gain is particularly re-

markable at high compression (8x) or low SNR (25dB) where mean square error PSNR can

reach a gain of up to 5dB in favor of the optimized measurements.

While we have used our prototype as a testbed for the straightforward imaging config-

uration, it is fully programmable and automated. Therefore, it can be employed to bench-

mark any other projection operators, reconstruction and exploitation algorithms [45, 46].

Among these more advanced capabilities, we can explore adaptive acquisition strategies,

i.e. designing the future projection patterns from the knowledge of the previously acquired

measurements, which can help dramatically increasing the compression ratio. We can also

implement a foveated acquisition strategy by changing the projections used only for some

specific portions of the field of view. This way, we can imagine focusing on a few regions

of interest and allocating minimal resources elsewhere. Finally, in the context of machine

vision, we envision that this system can be used to not only acquire measurements and re-

construct an image of the field of view, but also to acquire direct information about targets

in the scene.
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Chapter 4

Scalable Compressive Target

Detection and Classification Sensor

The programmable implementation of the scalable compressive camera described pre-

viously is not limited to only imaging tasks. In this chapter, we discuss how the same

architecture can be used to perform automatic target detection and recognition without

reconstructing the intermediate scene image. To improve the overall performance of this

system, we develop an optimization framework of the projection patterns based upon the

Cauchy-Schwarz mutual information. We especially prove that this metric provides an upper-

bound to the probability of misclassification.

4.1 Introduction

Recent advances in electro-optic/infrared (EO/IR) based automatic target detection/recognition

(ATD/ATR) have witnessed a significant increase in the field of view and spatial resolution,

especially for airborne platforms [50, 51]. This has lead to increasing image data that in turn

puts severe strains on the design and implementation of conventional imaging optics, focal
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plane sensors and subsequent image exploitation algorithms. This has significant implica-

tions for resource costs associated with the focal plane array (FPA), especially in infrared

spectral regime, in terms of manufacturing complexity, readout bandwidth, power consump-

tion for real-time operation. In parallel, the emergence of compressive imaging architectures

has demonstrated that non-traditional imaging systems offer an alternate imaging paradigm

with favorable system resources scaling compared to traditional imaging architectures [30].

Instead of sampling the scene irradiance field densely, i.e. at Nyquist sampling, compressive

imaging system exploit the compressibility of natural scenes to acquire fewer measurements

leading to reduced FPA density, lower readout power and smaller data stream. One of the

well-known implementation of a compressive imaging architecture is the Single Pixel Cam-

era (SPC) [31], which spatially modulates the scene irradiance field before integrating it

onto a single photodetector. By performing successive linear projections, from a library of

spatial modulation patterns (e.g. random binary patterns), the system can form an image

of the entire scene computationally using nonlinear image reconstruction algorithms. As

this architecture is built around a single photo-detector it represents lower cost alternative

to the more expensive high-resolution FPA employed in a conventional imaging system, es-

pecially in short and mid-wave infrared spectral bands. However, the SPC architecture is

subject to its own scalability limitations. For example, the rate of spatial modulator in-

creases quadratically with the FOV and spatial resolution which limits the total number of

measurements that can be collected within a fixed exposure time. Furthermore, the com-

plexity of the reconstruction algorithm increases exponentially with the image resolution

which limits real-time operation. To overcome this measurement and computational scaling

issue, we have developed a parallel scalable compressive imaging architecture capable of de-

livering megapixel-scale images in near real-time. This scalable architecture exploits a low

resolution sensor array, where each pixel integrates a small region (i.e. a block) of spatially

modulated scene irradiance to implement a single pixel camera. Thus the sensor array effec-

tively implements an array of SPC operating in parallel, each imaging a region of the FOV.

The compressive measurement from the FPA are then processed by a non-iterative (single

shot) reconstruction algorithm with a complexity linear with respect to the resolution. For

image formation applications, we have demonstrated that this compressive imaging system
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can reconstruct the same field of view than a traditional imager but with a lower resolution

FPA that has up to 64× fewer pixels and operating at a compression ratio between 4× to

8×.

It is important to note that the aforementioned compressive imaging systems and their

acquisition strategies are optimized for the task of image formation. While it is indeed

possible to use the reconstructed image as an input to an image exploitation algorithm

for the task of ATD/ATR, it does not represent optimal approach to maximizing the task

performance. This is due to the fact that for specific tasks, such as target detection and

recognition, the underlying information of interest in a scene is quantifiably smaller than that

for the image formation task[57, 59, 60]. Thus by carefully designing the linear projections,

incorporating appropriate task and scene priors, it is possible to selectively preserve the

relevant task information with much fewer compressive measurements, and thus achieve

higher compression ratio relative to traditional compressive image formation followed target

detection and recognition. This task-specific compressive measurement design approach has

been explored by several researchers in the literature: Dunlop-Gray et al. have implemented

a simple classifier for a compressed hyper-spectral imager [67]; Baheti et al. [58] and Huang

et al. [68] have designed information optimal adaptive compressive measurements to a face

recognition task against a large face database. In [66] Li et al. demonstrated that a SPC

paired with Principal Component Analysis (PCA) Secants projections, further optimized

via semidefinite programming, can recognize simplistic targets over a uniform background

at a higher rate than performing inference on image estimated from compressive random

projection and also direct inference on random projection measurement.

In this work, we focus on the development and implementation of a scalable compressive

approach to target detection and classification where the target of interest may be embedded

in diverse natural terrains. The inherent variabilities of the target appearance coupled with

the complexity of the background scene suggests that sophisticated statistical models are

required to faithfully model such targets. This presents a two fold challenge in terms of the

design and optimization of the projection patterns for compressive measurements, as well

as formulating and implementing the target detection/recognition algorithm that operates
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on the compressed data directly, without the need for intermediate image reconstruction.

Furthermore, the compressive measurement system design must also scale to wide field

of views if the proposed system is to be of any practical utility. To satisfy these scaling

requirements, we adopt a compressive measurement architecture that is based on a block-

wise decomposition of the scene, similar to our scalable compressive imaging architecture

described in chapter 3. This approach allows us to consider groups of blocks that specify a

minimum region of interest and can measured compressively (in parallel) for direct target

detection and recognition.

This work is organized as follows: in section 4.2 we begin with a description of the

concept of operation of the proposed compressive imager followed by a comprehensive de-

scription of the underlying statistical model of the targets and the background scene in

terms of the Gaussian Mixture Model (GMM). Then we describe the mathematical model

of the scalable compressive imaging system in section 4.3, which acquires the compressed

measurements of the scene. Those are directly used by the classification algorithm, de-

scribed thereafter, to perform the target detection and recognition task. In section 4.4 we

will describe an information-theoretic framework for compressive measurement design along

with the corresponding design metric and how the measurements will be optimized based

on the scene statistical model and other system parameters such as the measurement signal

to noise ratio (SNR) and measurement compression ratio. In section 4.5 we present a simu-

lation analysis of the proposed compressive measurement system performance for the target

detection and recognition task, followed by an experimental validation of the simulation

predictions. Finally we present our conclusions in section 4.6 along with a brief discussion

of future directions of work.
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Figure 4.1: Architecture abstraction : the field of view is divided into contiguous square
block-tiles. The device optics and sensing components measure in parallel a small features
vector for each. Finally, every group of 2 × 2 blocks is then analyzed by a classification
algorithm which determines a decision label for the corresponding location.

4.2 Scalable Scene Model

4.2.1 System Operation Concept

The task of detecting the presence and classifying the type of vehicles visible in a large

field of view has already been thoroughly investigated across multiple direct acquisition

modalities, such as visible and infrared wavelengths or Synthetic Aperture Radar (SAR),

due to its critical importance for surveillance applications. However, the signal acquisition

and processing have been considered as disjoint parts of the system imaging pipeline. They

have therefore been designed separately on the model of traditional imaging architectures

for the first and standard image processing concepts for the second. While this approach

is seemingly flexible, it comes at the cost of having to capture, readout and process images

of large dimensionality in WFOV applications. For example, in the case of an autonomous

aircraft surveilling a wide area, the implementation of a direct acquisition scheme for ATD/R

requires to use a large FPA sensor to record images with a sufficiently fine ground resolution

in order to distinguish the targets of interest. The large images acquired must then be

compressed and transmitted for remote exploitation. Even with specialized hardware, all

of the on-board operations consume a significant amount of power to acquire, process and

compress the data. Once received and decompressed, the image is first passed to a fast
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detection algorithm which marks the portions of the scene containing a target. This first

stage is usually implemented as a correlation filter sweeping the whole FOV, as it is the

case for the matched filters [49]. Those recorded hits are then further examined by a second

algorithm to classify the target type. For high-resolution images, this data processing and

exploitation requires a significant amount of computational power to be performed in real-

time.

While Mahalanobis et al. have show that this two-stage classifier can be adapted to

the output compressive imager [69], we are here interested in bypassing the intermediate

scene reconstruction step which is a resource-intensive and time-consuming operation. The

compressive sensing architecture we use can particularly be designed and optimized from end-

to-end and exclusively for the particular task at hand. In Figure 4.1, we show the abstract

acquisition concept : the field of view is seen as a grid of contiguous blocks by the joint optical

and detection architecture, which acquires a feature vector in parallel for each block. These

measurements are then directly passed to a detection and classification algorithm, without

performing a superfluous image reconstruction. The program independently analyzes the

feature vectors for each patch of 2× 2 blocks, or chip, and issue a class label simultaneously

determining the presence and the type of the target. As stated previously, it is important to

note that the classification performance of this system is the only metric of interest and that

the projection patterns measuring the feature vectors should be optimized for this particular

purpose only.

For the current demonstration, it is assumed that the scene can contain vehicles among

two known positive classes : either Tank or Armored Projection Vehicle (APV). The natural

environment surrounding these is composed of dense clutter and is considered as a third

negative class. To simplify the context, we assume that the targets are always visible from

open-grounds and never occluded by any natural element. The target vehicles are also small

in comparison to the field of view but slightly larger than the size of a chip which we fix to

64 × 64 pixels (i.e. 32 × 32 pixels blocks). Finally, each chip can be labeled as background

(target absent), tank or APV and we assume that these three cases are equiprobable. In

the remainder of this section, we describe the construction of a statistical model describing
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0◦ 60◦ 120◦

160◦ 240◦ 300◦

Figure 4.2: High-Resolution samples for the class #1 : model APV.

0◦ 60◦ 120◦

160◦ 240◦ 300◦

Figure 4.3: High-Resolution samples for the class #2 : model T72.

these scenes in order to (a) serve as ancillary data for the classifier and (b) optimize the

projection patterns used via an Information-Theoretic framework.

4.2.2 Target And Background Model

To generate a dataset of the scene chips, we first acquire high-resolution images of minia-

ture vehicles in various orientations as shown in Figures 4.2 and 4.3 and of natural scenes

with different configurations as shown in Figure 4.4. They are used to generate synthetic

chip samples by transforming and overlaying a vehicle masked-image on top of a terrain

image. To produce realistic scenes, the transformations can consist in any combination of

: translation (in 2D, as a uniform grid of 16 × 16 positions in the chip which includes the

vehicle being occluded outside of the chip), in-plane rotation (±15◦, in three discrete incre-

ments), out-of-plane rotation (full 360◦, in discrete 20◦ increments) and scaling (30% range
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Figure 4.4: Background scene samples.

in two increments, to emulate the varying distance range). Finally, the target samples are

appropriately blurred in order to match their Power Spectral Density (PSD) to that of the

backgrounds to avoid the presence unnatural and overly-salient artifacts in the composite

image.

64x64 = 4096 Dimensions

Figure 4.5: Simplified visualization of the manifold sampling for a single degree of freedom
(here, the translation of the target vehicle). The Gaussian kernels will partly fill up the
space left between the samples.

In a noiseless measurement environment, a class dataset over a particular terrain can

be pictured as a low-dimensional manifold embedded in a 4096-dimensional space which is
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obtained by continuously varying the parameters of the previous transforms for both the

target and the terrain. It is however impossible to find the exact analytical expression of

this complex surface. Instead, we construct an approximated statistical model of a target

class by sampling points from this manifold and using them as the component means of a

mixture of Gaussians. As illustrated by Figure 4.5, the gap existing between neighboring

components is then filled by the extent of the Gaussian distributions which is governed by

their covariance matrices. In the current context, we setup all the mixture components with

the same weight and the same spherical covariance matrix of scalar variance σ2. Therefore,

we can write the likelihood distribution for the class variable C taking the label-value i of a

chip sample f as :

p(f |C = i) =
1

Oi

Oi∑
k=1

N
(
f |ti,k, σ2IEN

)
, (4.1)

where Oi is the total number of components in the mixture, ti,k is the kth sample from

the manifold belonging to the class i. Here, we define the constants E as the number

of blocks in a chip and N as the dimension of a block, e.g. in the the current context

we have E = 22 = 4 and N = 322 = 1024. We note that the vectors f and {ti,k} are in a

EN = 4096 dimensional space, more precisely we constrain the chip images to the normalized

hypercube volume [0, 1]4096 (i.e. the dynamic range of the grayscale values is between zero

and one). Finally, IEN denotes the identity matrix in a space of EN dimensions. For the

mixture corresponding to background scenes, we can employ a similar modeling strategy

and uniformly sample its manifold. However, in order to reduce the number of components

in the mixture for this negative class, we only select 4096 centroids generated by the K-

Means clustering algorithm over a large number of background realizations. It is important

to remark that the total number of components Oi of any target mixture and the variance

σ2 are related : if the manifold is coarsely sampled then this variance must be large enough

to fill the wide gaps between the samples. In that case, the smaller structures of this surface

are lost to the approximation. To avoid this, we can construct large mixtures of Gaussians

with more than one hundred million components for each target class by uniformly sampling

the parameter ranges listed previously. With this fine sampling the standard deviation σ
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for our targets is about 0.15. However, those distributions require a large amount of storage

space. To address this situation, we first remark that these mixtures enumerate the pairs

of every possible target attitude and background centroid and we can therefore dissociate

them by storing the masked target samples separately from the background samples. We

then assemble the component means when needed and only have to store mixtures containing

about twenty-six thousand components for the largest. Figure 4.6 shows a few example of

component means found in the statistical likelihood distributions which we are going to use

for the optimization of the projections and as ancillary reference data for the classification

algorithm. For testing purpose, we also create a dataset of realistic scenes by randomly

sampling the target and background manifolds. Note that the test samples thus produced

are not found directly among the means of the class likelihood mixtures.
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Figure 4.6: 64 × 64 Chips examples, as 2 × 2 blocks of 32 × 32 pixels. The attitude (set
of transform parameters) of the targets is kept constant in each column. Left : Training
samples (for pattern optimization and classification reference). Right : Testing samples.

4.3 Compressive System Design

4.3.1 Scalable System Model

Following this description of the chips statistical model, the linear measurement model

must also adapt to the block wise nature of the acquisition. This is the case of our compres-
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sive sensing architecture which can be represented as a concatenation of many smaller SPCs

operating in parallel, and therefore it can be scaled to high space-bandwidth products (i.e.

resolution × field of view) by adding more of these independent units.

This block wise measurement model can be expressed with basic linear algebra opera-

tions : we first define f a REN vector representing the discretized image of a single chip.

The constants E and N are defined similarly to the previous section : E denotes the num-

ber of blocks constituting a chip (= 4) and N the dimension of each block (= 1024). The

blocks are each sequentially projected against a unique series of M modulation patterns

which are included inside the rows of a M × N projection matrix P . The compression

ratio ρ associated to this projection is equal to the blocks dimensionality divided by the

total number of patterns : i.e. ρ = N/M , and in order to achieve significant compression

the number of patterns M must remain much lower than the dimension N of the canonical

space. Finally, we note g the vector in REM representing output measurements obtained

for a chip and we assume that they are corrupted by an additive white Gaussian noise x of

variance σ2
n : i.e. z ∼ N (0|σ2

nIEM). These random fluctuations are affecting the acquisition

for uncooled sensors and are in part due to the thermal agitation of the charge carriers. The

peak Signal-to-Noise Ratio (SNR) of this process is directly obtained from the variance as :

SNR = −20 log10(σn). With these notations, the linear measurement model can be written

as :

g = (IE ⊗ P )f + z, (4.2)

where ⊗ is the Kronecker product and IE is the identity matrix in RE×E : the projection

operation onto the rows of the matrix P is thus repeated on each block. One can also

transform the previous expression to avoid computations over many empty matrix-blocks

by folding the terms as follow : we note F the E × N matrix obtained by appropriately

rearranging the vector f so that each block of the chip occupies a column; similarly, we note

G and Z the E ×M matrices associated respectively to the vectors g and z. With these,
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Equation 4.2 can be modified to recall the usual linear measurement model :

G = PF + Z, (4.3)

where P acts on all columns of F in parallel. While the choice of the projection patterns

is explored in section 4.4, it is important to highlight here the constraints arising from the

physical implementation of this architecture. More precisely as the modulation of the in-

coherent light intensity is passive, the projection matrix P cannot apply gain to the input

signal. Consequently, all of the values for the matrix P , i.e. the patterns modulation coeffi-

cients, must remain smaller than 1 in absolute magnitude. Moreover, the spatial modulator

device to be used in the prototype will display the patterns successively, each with the same

temporal exposure. Thus, in order to establish a fair comparison between operators having

different number of patterns and against a traditional camera using the total available expo-

sure, we must further constrain the coefficients down to the range [−1/M, 1/M ]. Therefore,

one can remark that increasing the number of patterns leads to a reduction of the amount

of energy allocated to each of them. From this observation we expect to find a compro-

mise over the number of projections M for a fixed block size N , balancing between a too

severe compression (small M/large ρ) and an inefficient use of the input flux (large M/small

modulation amplitude). In addition, this optimal allocation also depends on sensor noise

variance σ2
n : in the case of a high σ2

n, it is preferable to use a smaller number of projections

having each binary transmissions (their modulation coefficients are either ±1) as they will

help maximize the incident flux on the detectors and increase the effective signal to noise

ratio; on the opposite, for lower σ2
n it becomes possible to employ many more projections

with more complex gray-scale modulations.

With the measurement model of Equation 4.2, we can now project the statistical like-

lihoods introduced previously, from the canonical space to the compressed space by using
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Bayes’ Theorem :

p(g|C = i) =

ˆ
RE×N

pZ(g|f)p(f |C = i)dENf (4.4)

=
1

Oi

Oi∑
k=1

N (g|si,k = (IE ⊗ P )ti,k, Si,k = IE ⊗ (σ2PP ᵀ + σ2
nIM)). (4.5)

This transformation can be decomposed into three operations : (1 ) the means ti,k of each

of the components are projected into the REM space, (2 ) each of the (spherical) covariances

is squeezed into the image space of P and (3 ) the overall projected mixture distribution is

blurred by the kernel of the additive noise. Especially, this last operation will erase some of

the smallest details from the compressed mixture.

Similarly to the measurement model, one can derive a folded, or rearranged, version

of Equation 4.5 from the properties of Kronecker product in order to avoid storing and

computing large and empty matrix-blocks :

p(G|C = i) =
|Σ|−

E
2

Oi

√
2π

EM

Oi∑
k=1

exp

(
−1

2
Tr
[
(G−Qi,k)

ᵀP ᵀΣ−1P (G−Qi,k)
])

, (4.6)

where Qi,k is the RE×N block-folded matrix corresponding to the vector si,k, Tr denotes the

trace operator and Σ = σ2PP ᵀ + σ2
nIM is the squeezed covariance. Note that this last term

is common to all the components and is only dependent on fixed parameters of the device :

the projection operator P , the model variance σ2 and the noise variance σ2
n. Therefore, the

inverse and determinant of this positive semi-definite matrix can be computed once and for

all.

4.3.2 Target Detection And Classification Algorithm

After the acquisition, the measurements are passed as inputs to a detection and classi-

fication algorithm. This often implemented as a two-stages process over the high-resolution

image for a conventional system : the first perform a fast detection analysis and the sec-
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ond classifies the region of interest marked by the first. Applying the same method on

the measurements captured by the compressive architecture requires to first perform a full

reconstruction of the scene from the measurements. However, this operation comes with

a significant computational cost and will not provide more information about the target

than available from the measurements. Therefore, we can bypass this step and perform the

simultaneous detection and classification directly with the acquired features vectors. For

this, we write the analytical Maximum-A-Posteriori (MAP) classifier ĉMAP acting on the

chip measurements vector g (e.g. the concatenated 2× 2 blocks features measurements) :

ĉMAP(g) = arg max
c

{p(c|g) ∝ p(g|c)p(c)} . (4.7)

This classifier only uses the compressed class likelihoods p(g|c) given by Equation 4.5

and the class priors p(c) = 1/Nc where Nc is the number of classes. This estimator is also

of interest as it is guaranteed to minimize the probability of error (or misclassification) Pe

which is formally defined for any classifier ĉ as :

Pe = p(ĉ(g) 6= cground-truth) ≤ 1− 1

Nc

. (4.8)

The inequality given in Equation 4.8 corresponds to the worst possible error-rate and

is attained for a random classifier uniformly picking among the Nc possible labels. We add

that the definition of the probability of error Pe can also be expanded into Equation B.10 of

the Appendix and relates to an integral over the minority domains of the class likelihoods.

While the probability of error is the main metric for the system performance, it is also useful

to consider the confusion matrix D of the system in order to understand the interferences

between the class labels. The elements of this matrix are defined as the probability for the

classifier to issue the label i for an element of the class j, i.e. : Di,j = p(ĉ = i|cground-truth = j).

Note that the sum of the elements along any column is equal to unity : i.e. ∀j,
∑

iDi,j = 1.

Finally, the error-rate is related to the coefficients outside of the main-diagonal (i.e. the

probabilities of misclassification) via : Pe =
∑

i6=j p(C = j)Di,j, where p(C = j) = 1/Nc for
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the equiprobable classes in the current context.

The computational complexity of the classification algorithm expressed by Equation 4.8

is linear in the total number of components across the mixtures distributions, i.e.O(
∑Nc

i Oi).

Nevertheless, the class likelihood distributions presented previously contains more than two

hundred million components and therefore, this algorithm would be too slow to operate

in real-time. However, we find that the targets only occupy a small portion of the chip

(typically, less than 25%) and consequently, the background contributes to most of the

signal energy. Hence, the previous classifier can be approximated by dividing it into two

stages : the first finds the most likely background component from the chip measurements,

and the second is a MAP classifier which only considers components of the targets mixtures

tied to the previous background. This method reduces the complexity of the algorithm

to O(Ob +
∑Nc

i6=bOi/Ob) = O(
∑Nc

i6=bOi/Ob), where Ob is the number of components in the

background mixture and is equal to 4096 in the current context.

4.4 Measurements Design And Optimization

As established previously, the selection of the projection patterns making up the rows

of the projection operator P is critical to the overall system performance in terms of the

probability of error defined in Equation 4.8. Several common strategies can be considered

here. Random Gaussian projections are certainly a recurrent choice in Compressive Sensing

as they benefit from theoretical results, such as the restricted isometry property (RIP) [32,

33] or the Johnson-Lindenstrauss lemma [47, 48], guaranteeing that the linear compression

applied will limit the distortion of the signal to less than some fixed threshold. However, it

also prevents to adequately compress the signal by failing to exploit the prior information

and focusing instead on image reconstruction.

Instead, it is desirable to use the classes prior information to improve the projection

design specifically for the task at hand. For instance, the PCA-Secants algorithm [65, 66]

constructs the most prevalent projection patterns between samples of two classes. To do
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so, it first computes the covariance from all the unit-length vectors directed between any

two elements from different classes; then it diagonalizes the obtained matrix and selects the

eigenvectors corresponding to the largest eigenvalues similarly to the principal component

analysis. More intuitively, these secant vectors capture the distribution of the normals

to the boundary between the classes as illustrated in Figure 4.7. Therefore, they form

good candidates for the projection operator. However the PCA-Secants algorithm misses a

few important properties. Firstly, it does not offer an explicit relationship to the previous

probability of misclassification and secondly, it is not taking the measurement noise (or

acquisition SNR) into account. Finally, it does not support physical constraints of the

projection patterns, such as the equal-exposure requirement described previously.

Class 2

Class 1

Figure 4.7: Example of local normals to the boundary between two classes and the compo-
nents of the respective mixtures.

Naturally, the pattern selection process should be cast as an optimization problem which

minimizes the error rate, subject to the appropriate projection constraints. While this Pe

metric is ideal, it does not typically admit a closed form expression and its numerical compu-

tation requires to finely sample the class likelihoods distribution for an accurate integration,

which is computationally intractable. This challenge is further supplanted by the lack of

a smooth gradient expression, forcing the optimization to rely on less efficient routines to

search the vast operator space of dimension M ×N .
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Instead, it is common to rely on information metrics that provide bounds to the proba-

bility of error. One of the most well-known information-theoretic metric is Shannon’s mutual

information [52], which imposes on Pe both a lower bound via Fano’s inequality [53] and

an upper bound via Kovalevskij’s inequality [54]. However, this metric can only be written

in closed form for elementary distributions and not for the statistical mixtures we envision

for the current problem. Furthermore, its gradient also does not have a closed form expres-

sion for the sophisticated statistical model of the scene. While not directly useful for our

optimization process, it is interesting to notice that this particular information score can be

perceived as the limit case α→ 1 of Renyi’s Generalized mutual information [55]. The case

α = 2 leads to the Quadratic mutual information (QMI) which measures the L2 distance

between the joint distributions of class labels and measurements, and the product of their

marginals [62]. In this case, the metric and its gradient can be developed analytically for

mixtures of Gaussians but only offer a lower-bound to the error rate [61] which has limited

utility in our optimization framework.

We thus need an information-Theoretic metric that can be related to an upper bound of

the probability of misclassification. In the following section we describe one such metric : the

Cauchy-Schwarz mutual information. While this metric has been been studied and employed

to optimize and characterize other measurements problem with Mixtures of Gaussians [63],

Poisson processes [64] and Mixtures of Poisson distributions [70], we present here several

properties justifying regarding the particular classification task at hand.

4.4.1 CSMI Metric

The Cauchy-Schwarz mutual information (CSMI) is directly related to the Cauchy-

Schwarz Divergence DCS which measures the angle between two probability distributions

which are square integrable. In the current context, let a discrete class variable C take values
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in the labels set C and vector measurements variable G in REM , their CSMI is defined as :

ICS(G, C) = DCS(pG,C(g, c), pC(c)pG(g))

= − ln

 ∑
c∈C
´
REM pG,C(g, c)pG(g)pC(c) dMg√∑

c∈C
´
RN pG,C(g, c)2 dMg

∑
c∈C pC(c)2

´
RN pG(g)2 dEMg

 , (4.9)

where the numerator can be interpreted as the dot product between the joint distribution

pG,C(g, c) and product of marginals pC(c)pG(g), while the denominator relates to the prod-

uct of their respective L2 norms. While the angular separation is explicit in the previous

expression, it is possible to further simplify it with the class likelihood distributions. We

can here assume that all the classes are equiprobable (i.e. p(c) = 1/Nc) and we define the

system overlap class matrix V ∈ R+Nc×Nc , for which each element is written as an overlap

integral of two likelihoods :

Vi,j =

ˆ
REM

p(g|C = i)p(g|C = j) dEMg. (4.10)

From there, we can draw a parallel between this matrix, made of positive coefficients,

and the confusion matrix previously defined which is related to the probability of error.

Both of them share a similar structure : the goal of the optimization is to increase the

on-diagonal values which are linked to the probability of correct classification events, while

decreasing all the off-diagonal values which represents the likelihood of misclassification (or

overlap between different classes). Hence, both of the matrices are diagonal in the case of

a perfect classifier; and both are proportional to a matrix of ones in the case of a totally

confused classifier (when Pe = 1/Nc). Note however that their normalizations differ : while

the confusion matrix has the sum of the values along each of its column equal to unity,

the overlap matrix is subject to both the triangular and Cauchy-Schwarz inequalities, i.e.

respectively : ∀i, j, 2Vi,j ≤ Vi,i + Vj,j and V 2
i,j ≤ Vi,iVj,j. To further illustrate the underlying

function of the CSMI metric, we can highlight that the on-diagonals elements of the overlap

matrix are linked to the within-class tightness, i.e. they represent a measure of how tightly

packed are the mixture components of a single class likelihood. The off-diagonal elements, on
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the contrary, are measuring the distance between mixture components belonging to distinct

classes.

Class 2

Class 1

Figure 4.8: Example of component pairs in a two-classes problem : the CSMI metric aims
at reducing the distance between components belonging to the same class (either blue or red
links) while increasing the overall separation of the two classes (i.e. increasing the length of
the magenta links).

With this construct, the CSMI expression given by Equation 4.9 can now be simplified

for equiprobable classes to :

ICS(G, C) =
1

2
ln(Nc)−

1

2
ln

(
1 +

∑Nc

i=1

∑Nc

j 6=i Vi,j∑Nc

i=1 Vi,i

)
. (4.11)

Note that ICS value ranges from 0, if all the Vi,j are equal, to ln(Nc)/2 if Vi6=j = 0.

Within this simplified CSMI expression, the coefficients Vi,j can be developed into analytical

expressions when the class likelihoods are mixtures of Gaussians, by observing that the

integral of the product of two multivariate Gaussians can be written in closed form. By

using Equation 4.4 of the projected distributions, we have :

Vi,j =
1

OiOj

Oi∑
k=1

Oj∑
l=1

N ((IE ⊗ P )(Ti,k − Tj,l)| 0, 2IE ⊗ (σ2PP ᵀ + σ2
nIM)), (4.12)

which can be interpreted as a sum of the pair-wise overlap between all Gaussians compo-
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nents of two mixtures. The development of this expression as well as the gradient of CSMI

with respect to the projection operator P are detailed in section B.2 of the Appendix. Thus,

we can observe that increasing the magnitude of the main diagonal elements (Vi,i) or re-

ducing the magnitude of the off-diagonal elements (Vi6=j) in the overlap matrix is equivalent

to increasing ICS. Consequently, increasing the CSMI metric is equivalent to pulling to-

gether components belonging to the same class (i.e. increasing all Vi,i) while pushing away

components of any other classes (i.e. increasing all Vi6=j).

Finally, the CSMI metric also provides an upper-bound UPe on the probability of er-

ror for the classification task, when the likelihoods are modeled by mixtures of Gaussians.

Specifically, in the current context where all components share the same weights and covari-

ance matrix, we can write the following inequality :

Pe ≤ UPe =
max{Oi}

2

√
(Nc − 1) [exp(ln(Nc)− 2 ICS)− 1]. (4.13)

A generalized expression of this upper-bound for arbitrary components weights and

covariances is also given in section B.3 of the Appendix. While the value of UPe is likely not

indicative of the true error rate, it is interesting to see that it is equal to zero when CSMI

is equal to its maximum value. Hence, a small increase of the metric can provide a valuable

decrease in Pe especially near the vertical asymptote at ICS = ln(Nc)/2 as illustrated in

Figure 4.9. Finally, we note that although CSMI, the upper-bound and their respective

gradients can be expressed analytically, the gradient-based optimization is not guaranteed

to converge toward a global optimum as the metric is not necessarily convex given the large

number of classes and components.

4.4.2 Optimization Procedure

For the optimization of a projection operator P with the Pe upper bound depending

on the CSMI metric, we can implement a simple gradient ascent algorithm : starting from

an initial operator P0 we update the coefficients of the matrix Pk at each step k with the

Page 112



Chapter 4. Scalable Compressive ATD/C Sensor

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CSMI : I
CS

U
p

p
e
rb

o
u

n
d
 t
o

 t
h
e
 P

ro
b
a

b
ili

ty
 o

f 
E

rr
o
r 

: 
U

P
e

(considering a single component per class)

 

 

N
c
 = 2 Classes :

  | Max P
e
 ≈ 0.500

  | Max CSMI ≈ 0.347

N
c
 = 3 Classes :

  | Max P
e
 ≈ 0.667

  | Max CSMI ≈ 0.549

N
c
 = 4 Classes :

  | Max P
e
 ≈ 0.750

  | Max CSMI ≈ 0.693

N
c
 = 5 Classes :

  | Max P
e
 ≈ 0.800

  | Max CSMI ≈ 0.805

N
c
 = 6 Classes :

  | Max P
e
 ≈ 0.833

  | Max CSMI ≈ 0.896

Figure 4.9: Upper bound UPe on the probability of error versus the CSMI metric ICS for
different number of classes Nc. Here, we consider only a single component per mixture. The
graph also shows the maximum values possible for both CSMI (ICS ≤ ln(Nc)/2) and Pe

(Pe ≤ 1− 1/Nc).

gradient of UPe(P ) (depending directly on the CSMI gradient ∇ (ICS(Pk)) and given by

Equation B.21 in section B.3 of the Appendix) : Pk+1 = Pk + η∇ (UPe(Pk)), where η is

an appropriate scalar step size. Note we also trim, at each step, the components of the

gradient ∇ (UPe(Pk)) which would cause Pk+1 to step out of the physical operator space

[−1/M ; 1/M ]M×N justified previously. To implement this optimization algorithm we need

to compute the CSMI metric and its gradient at each step of the optimization process.

From the previous expressions, one can verify that the complexity of the CSMI compu-

tation grows linearly with the dimensions of the direct space N and of the compressed space

M , and quadratically with the total number of components across all classes K =
∑Nc

i=1Oi,

i.e. the computational complexity of CSMI is in the order of O(MNK2). The computational
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complexity for the expression of the gradient follows a similar trend except for the quadratic

increase with the number of dimensions of the direct space, i.e. the complexity is in the

order of O(MN2K2). While the total computational cost is dominated by the latter, it is

important to note that the search space is of dimension M ×N , that is several thousand di-

mensions in the current context, which is impractical for gradient-free optimization methods

such as Simulated Annealing.

With the large mixtures being considered for this problem (on the order of one mil-

lion components, each), the calculation of CSMI is computationally intractable on a single

processor. It can naturally be split across multiple processors and benefits from a straight-

forward parallelization. Moreover, we also obtained satisfying results by implementing a

procedure akin to the stochastic gradient ascent [71, 72] : at each step, the CSMI metric

and its gradient are approximated by only computing the metric over a small subset of all

the possible component pairs forming the previous potentials. In this subset we only include

pairs of components which are narrowly separated. At each step k of the gradient ascent

optimization, we select a new suitable subset at random and we compute the approximation

of the metric ICS
∗
k and its gradient ∇ (ICS)∗k. To retain a short-term memory of the previous

steps, we implement a simple decay function for the global estimate of CSMI ICSk (and its

gradient ∇ (ICS)k) as follow :

ICSk = (ICS
∗
k +β ICSk−1) (4.14)

=
(
ICS

∗
k +β ICS

∗
k−1 +β2 ICS

∗
k−2 + . . .

)
And similarly : ∇ (ICS)k =

(
∇ (ICS)∗k + β∇ (ICS)k−1

)
(4.15)

where the coefficient β is strictly smaller than one. Note that smaller β values are

equivalent to faster memory loss.

The validity of the restriction to a particular subset can be illustrated by considering the

distance separating the targets manifold : as the background accounts for a large portion of

the chip signal, it is very likely that two targets with the same attitude but against different
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terrains are separated by a great L2 distance in the direct space. This remains true after

the projection, most of the time. Hence, we can deduce that most of the Gaussian pairs

component based on two different backgrounds do not contribute significantly to CSMI and

their computation can be omitted. Each subset considered is therefore including targets (as

means of the mixture components) sharing the same background. With this simplification,

we obtained speedups of about two orders of magnitude when compared to the exhaustive

approach. In addition, a software implementation tailored for the parallel architecture of

Graphics Processing Units (GPUs) will be able to optimize a 24 × 1024 operator in about

three hundred GPU-hours (on NVIDIATM K20x), e.g. about 10 hours on 30 devices.

4.4.3 Optimization Results
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Figure 4.10: 32 × 32 modulation patterns. A : PCA-Secants, up to 24 projections ordered
from left to right by decreasing prevalence; CSMI optimized operators, for M = 12 projec-
tions (B,C,D) and M = 24 projections (E,F,G). B,E are optimized for SNR=0dB, C,F
are optimized for SNR=5dB; D,G are optimized for SNR=10dB. While all the modulation
values are constrained to the [−1/M, 1/M ] range, all of the projections are here normalized
to the [−1, 1] interval for visualization.

The optimization procedure is repeated several time, for different number of projections,

SNR values and initialized at different random Gaussian operators starting-points. A few of

the patterns set obtained are shown in Figure 4.10 along with a PCA-Secants operator com-

puted from the same data. As expected the optimized operators adopt different modulation
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strategies for different noise regimes. Firstly, the transmission is almost entirely saturated

at low SNR when compared to PCAs. Secondly, the range of spatial frequencies addressed

by each operator is increasing with SNR as the receding noise variance level uncovers more

of the object Power Spectral Density (PSD). We can thus observe that most of the class in-

formation resides in the high spatial frequencies domain although it might not be interesting

to perform measurements there when dealing with very noisy measurements.

Although less noticeable, one can remark that for high SNR, the operators with 12

projections present more gray-scale transmission values than those with 24 projections (sim-

ilar to binary patterns). This can be justified as the formers are slightly information-starved

while the latter are slightly energy-starved. This difference will be highlighted again with the

results presented from the Pe performance curves. Finally, the optimized patterns exhibit a

slight preference toward the vertical components of the targets spatial frequency spectrum :

this is understandable as the vehicles in the current database are more horizontally elongated

and therefore leak more energy along the vertical spatial frequencies.

4.5 System Performance Analysis

4.5.1 Simulation Study

To assess the performance of various operators, measurements are taken of numerous

synthetic samples from the previously described realistic test set, as shown in Figure 4.6.

They then serve as inputs to the staged classifier. This test dataset is entirely disjoint from

the training samples and contains eight thousand chips, uniformly sampled across the two

vehicles and the negative background classes. For the projection patterns, we include several

common operators to be compared : signed random binary, random Gaussian, PCA-Secants

(constructed from the secants between the means of the mixture components) and CSMI-

Optimized patterns. For completeness, we also acquire measurements in the canonical space

to simulate the performance of a standard imager using a complete exposure, i.e. the same
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flux as all the projections of a single operator. Those direct measurements are processed

with the same two-stages classifier but which operates with the uncompressed statistical

model as ancillary data rather than the compressed model.
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Figure 4.11: Pe performance in a simulated environment, averaged over the classification re-
sults of more than 8,000 realistic test samples. The horizontal lines indicates the performance
of a direct imager and are independent of the number of projections M .

The results shown in Figure 4.11 demonstrates that optimum performances can be

reached for compression rates between 64x and 42x (respectively between 16 and 24 projec-

tions for 32×32 blocks). For comparison, these are eight to ten times better than traditional

rates for a compressive imaging application. At these compression rates, the probability of

error for CSMI-Optimized operators obtained by simulation is between 3% (at 5dB) and 6%

(at 0dB), and 1.7x to 3 times lower than for PCA-Secants.

In parallel, the performance gain (decreased Pe) of the structured operators over ran-

dom projections is clearly illustrated. Here, the energy normalization imposed to all these

operators from the physical constraints of the system is indeed particularly detrimental to

the random operators. This is because, their prior-less structure forces them to perform
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more projections in order to capture the image information, and thus the embedded class

information, which is incompatible with the finite flux constraint. This normalization is also

the reason for the valley-shaped curves : the operators cannot successfully acquire the target

information from a small number of patterns projections (information-starved), while they

inefficiently spread the incoming flux across too many inherently-noisy measurements for a

large number of patterns projections (SNR-starved).

Finally, the Pe curves also highlight the benefit of compressive sensing : a significant

multiplexing gain over direct measurements is visible at low SNR with an error rate 5 times

smaller at 0dB. At 10dB however, we notice that the performance of the Information Optimal

projections does not reach that of a conventional imager. This can be partially imputed to

a failure of the optimization framework : as the SNR increases, the blur imposed to the

statistical model by the noise kernel is reduced and it reveals more complex regions in the

CSMI surface. These particular regions are non-convex and cannot be efficiently explored

solely with a traditional gradient ascent approach.

4.5.2 Experimental Validation

For the experimental qualification of the operators, we perform all the measurements

with our prototype described in chapter 3 and pictured in Figure 4.12. For this acquisition,

each test sample is shown on a screen facing the main objective and imaged onto a Digital

Micromirror Device (DMD). After the optical modulation, the signal is integrated by a cus-

tom relay optics onto a low-resolution CCD sensor and the measurements are transferred

to a computer for processing. In order to minimize distortions between the ideal measure-

ment model presented in Equation 4.2 and the physical measurement model implemented,

an automated calibration is performed once before the acquisition session, as described in

the previous chapter. It consists in analyzing the mapping between the 2 × 2 blocks of

32× 32 micromirrors (or modulation elements) and the pixels of the sensor array. The bias

and linearity of the measurements are also evaluated by displaying a few uniform grayscale

images on the screen. The experiment tests set is composed of one thousand 64× 64 pixels
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chips randomly selected from the realistic tests dataset. Before being shown, they are pre-

corrected to neutralize the dynamic range compression applied by the display panel (with a

constant γ ≈ 2.2). Finally, for each of the operators to be tested, we acquire and average ten

consecutive measurements from the prototype in order to reach a SNR exceeding 30dB. This

way, we can add simulated white Gaussian noise of a given variance in order to adjust the

measurement SNR before the classification, and up to 20dB at most. For this last step, we

use the same algorithm as for the simulation study and we repeat the process with several

noise realizations.

Relay Arm

Imaging Arm

CCD Sensor

DMD
Spatial Modulation

< Object

(discard
ed)

Figure 4.12: Structure of the Scalable Compressive Camera prototype used to acquire the
experimental data. The scenes are shown onto a display at the left of the imaging arm.
The modulation patterns are implemented successively by a DMD and the resulting signal
is integrated by the relay arm onto a low resolution CCD sensor.

The experimental results are reported in Figure 4.13 for 12 and 24 projections opera-

tors, along with the corresponding entirely simulated measurements for reference. We can

remark analogous trends between the the experiment and the simulation with varying SNR

values. Especially, one can notice that for M = 24, the operator optimized for SNR = 0dB

outperform the operator optimized for SNR = 10dB until SNR ≈ 5dB (≈ 6dB from the

simulation). For M = 12, all the operators are in an information-starved regime : the num-

ber of projections performed is not sufficient to accurately discriminate the class label. As
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demonstrated in the previous simulation analysis, the PCA-Secants operator underperforms

the Information Optimal patterns in this low SNR regime, with Pe improvement factors

between 2x at 10dB, and 6x at 0dB for 24 projections.

Despite the careful calibration, we note that it is however not possible to exactly reach

the performance predicted by simulations as illustrated by the previous averaged results : we

find an increase between 2 and 5% of the probability of error for the tested operators. Those

differences are mainly caused to several imperfections in the experimental acquisition setup.

For instance, the display used does not reproduce the linear intensity controls with a high

fidelity : hence the targets shown are still suffering from a slight dynamic range compression.

The PSF of the imaging arm will also slightly blur some of the smallest scene details.
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Figure 4.13: Comparison of between the simulated and experimental performance averaged
over various realization of the noise. The error bars indicate the minimum and maximum
Pe found across these realizations.
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4.6 Conclusion And Future Work

We have presented a scalable optical compressive sensing architecture to perform an

Automated Target Detection and Recognition task. This platform optically decomposes the

field of view into contiguous blocks and acquire for each a feature vector that an algorithm

then classifies without performing any intermediate image reconstruction. This piecewise

method allows for the parallel acquisition and processing of the measurements taken with

a low resolution sensor. In the context of this study, we have developed a large statistical

model of the target vehicles within cluttered natural environments, and with it we optimized

the projection patterns of the sensing matrix by maximizing the Cauchy-Schwarz mutual

information which measures the separation between the classes after projection. We have

especially demonstrated that this metric and its gradient can be computed in closed-form

even for our complex statistical mixture model, and that it provides an upper bound on

the overall probability of misclassification of the system. The projection operators thus

constructed are tuned for a fixed number of projections and acquisition SNR. We analyze

their performances and demonstrated that they outperform conventional cameras as well as

random and PCA-secants operators in both simulated and experimental setups, reaching

accuracy rates of about 90% at 0dB SNR above 95% at 10dB SNR.

In future developments, we plan on adding to the complexity of the statistical models

in order to handle, for instance, occlusions and change in lighting conditions. We can also

now add sensing capabilities to the system, such as estimating the motion parameters and

tracking the targets. Finally with a programmable compressive architecture, it is possible to

switch on demand between an autonomous target detection and recognition task described

here and an imaging task described in the previous chapter, for only a few marked regions

of interest.
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Chapter 5

Two Point-Sources Resolution

Measurement Design and Analysis

In this final chapter, we consider the canonical problem of estimating the angular sepa-

ration between two incoherent and quasi-monochromatic point-sources in order to investigate

the resolution limit of optical instruments. We expand on recent developments showing that

there exists a passive and linear optical architecture which outperforms the conventional

direct imager in the sub-Rayleigh regime. We especially provide a generalization of this

two-measurements architecture to match arbitrary pupil functions and show that it remains

insensitive to diffraction and phase aberrations.

5.1 Introduction

The Rayleigh Criterion [73] provides an intuitive qualitative limit to the resolution of a

traditional diffraction-limited imager employing a focal plane array, as depicted in Figure 5.1.

It reasonably states that two incoherent point-sources are resolvable if their separation is

greater than the extent of the Point Spread Function (PSF) due to the diffraction from the
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finite size of the pupil. Consequently, attempting to estimate smaller separation angles is

infeasible because the smeared images of the points in the observation plane overlap with

each other rendering the two point-sources visually indistinguishable. Increasing the reso-

lution of the focal plane does not fundamentally change the resolution as this limit appears

to derive solely from the physical angular size of the PSF which is in the order of λ/D for

a λ-wavelength field passing through a pupil of scale D. Modern techniques have been de-

veloped to overcome this resolution limit such as near-field scanning microscope, stimulated

emission depletion (STED) microscopy [79, 80] or photoactivated localization microscopy

[81]. However, these methods cannot be adapted to long standoff imaging or remote sensing

applications as they require either close proximity to exploit the short distance propagation

of evanescent waves or elaborate control of the object illumination to restrict the excitation

pattern of fluorescent markers.

However in recent work by Tsang et al. [83, 84] have shown that the common perception

of Rayleigh’s curse is merely a limitation of the direct sampling strategy that conventional

imagers employ rather than a fundamental physical limit of all instruments. To demon-

strate their argument, they have computed the quantum Fisher information (QFI), and

the associated quantum Cramer-Rao lower bound (QCRLB) to find the ultimate achievable

precision of any optical measurement for the task of measuring the angular separation be-

tween two quasi-monochromatic incoherent point-sources. Contrary to the performance of

a traditional imaging architecture, this information bound remains constant throughout the

whole range of angular separations, i.e. from zero to large separations in the image plane.

More surprisingly, the authors have proposed a passive linear optical system which attains

this bound and thus outperforms any conventional imager given an optical aperture shape.

In this alternate architecture, depicted in Figure 5.2, the focal plane array is replaced with

an optical preprocessing device which performs the decomposition of the incident diffracted

fields onto the Hermite-Gauss spatial modes and counts the number of photons in each mode

using shot-noise limited photodetectors. The linear projections onto the mode basis allows

extract the phase information embedded in the optical fields, while this same phase informa-

tion is not captured by the traditional focal plane array measurements. The measurements
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quantum optimality was further investigated by Lupo [85].

Focal Plane Array

Source 1

Source 1

PSF 1

PSF 2

Figure 5.1: Direct imaging architecture : the focal plane array records the sum of the
intensity of the two PSFs.
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Figure 5.2: Mode-sorting measurement architecture : a passive optical element linearly
decomposes the incident fields onto a spatial modes basis. For each mode, a shot-noise
limited photodetector integrates the flux at the output port.

In this work, we extend Tsang’s et al. architecture for a Gaussian aperture first to

a hard aperture, before generalizing to an arbitrary pupil function. We explore several

key properties of the proposed non-traditional system : (1) energy and (2) information

distribution across the optical modes via an analysis of the classical Fisher information and

(3) the mean square error performance of the Maximum Likelihood Estimator (MLE). We

especially analyze aspects of this novel imaging system that will impact its performance

subject to non-idealities inevitable in a practical implementation of the system.

This chapter is organized as follow. In section 5.2, we begin by reviewing the measure-
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ment statistics governing the angular accuracy of a direct, or conventional, imager employing

an idealized detector array with infinite resolution. The Fisher information and the estima-

tion error for this conventional imager will serve as a baseline for comparison with alternative

architectures. We then describe the measurements strategy of the spatial mode demultiplexer

for Gaussian-apodized and hard apertures in section 5.3. We show that the Sinc-Bessel spa-

tial modes basis is the optimal measurement for a hard aperture. We highlight the duality

between energy and information content of the spatial modes for the mode-sorting archi-

tecture and demonstrate that a binary mode measurement can outperform a conventional

imager recording thousands of incident photons in the sub-Rayleigh range. In section 5.4,

we complement the Fisher information analysis of the normalized root mean square error

(NRMSE) performance of measurements by the mode-sorter and the conventional imager

for different source fluxes. In section 5.5, we generalize the mode-sorting architecture to an

arbitrary aperture and we highlight its advantages over conventional imaging. Finally in

section 5.6, we discuss two candidate implementations of the mode-sorting measurements :

(1) a Mach-Zehnder interferometer architecture and (2) a self-referencing volume hologram

architecture.

5.2 Fundamental Performance Analysis of A

Conventional Imager

While Lord Rayleigh’s criterion describes a qualitative visual limit to the resolution of

an incoherent imaging system, we develop a quantitative analysis of its fundamental perfor-

mance limit via the Fisher information. Such a quantitative analysis is essential to establish a

baseline for comparison of alternate imaging architectures. In this one-dimensional problem,

two incoherent, indistinguishable and quasi-monochromatic (λ) point-sources are considered,

each respectively at an angle ±θ from the optical axis, small enough to permit the use of

the scalar diffraction theory. A conventional imager with an aperture scale D and a linear

shift-invariant impulse response, maps the incident optical field onto its focal plane array as
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the superposition of two shifted Amplitude Spread Function (ASF) : Aσ(x) = A(x/σ)/
√
σ

where x is an angular coordinate and σ is a normalization constant proportional to λ/D. As

dictated by the scalar theory of wave optics, this characteristic function (ASF) of the sys-

tem is directly proportional, in amplitude and physical size, to the Fourier transform of the

complex aperture function. However in our current analysis only the intensity point spread

function (PSF) is of interest for incoherent imaging. The PSF is given by the intensity of

the ASF : Pσ(x) = |Aσ(x)|2. Note that throughout the remainder of this work, both the

ASFs and the PSFs will refer to the normalized version in energy : i.e.
´∞
−∞ Pσ(x) dx = 1.

For example, a Gaussian-apodized aperture T (x′) = exp (x′2/2D2) yields a Gaussian ASF

Aσ(x) = exp(−x2/4σ2)/(2πσ2)
1
4 , and a PSF Pσ(x) = exp(−x2/2σ2)/

√
2πσ. For a hard

aperture of size D, i.e. T (x′) = rect(x′/D), the ASF is given by the cardinal-sine function

Aσ(x) = sinc(x/σ)/
√
σ, whereas the PSF can be expressed as Pσ(x) = sinc(x/σ)2/σ.

For the task at hand, we assume that only the 2θ-separated point-sources compose

the field of view, each emitting a flux of N/2 photons on average, incident on the exit

pupil. Therefore, the incoherent image in the focal plane of the imager can be written

as Iσ(x, θ) = N(Pσ(x + θ) + Pσ(x − θ))/2. Naturally, this irradiance function describes

the average distribution of photons over the observation plane and solely depend on the

separation angle θ. Given a thermal model of object radiance, an ideal shot-noise limited

photodetector of size ε centered at the coordinate x0 with 100% quantum efficiency measures

a random flux W that follows a Poisson statistical distribution with mean parameter equal

to the integrated irradiance above its surface : i.e. W ∼ P
(

Λε =
´ x0+ε/2
x0−ε/2 Iσ(x, θ) dx

)
. Note

that a contiguous tiling of such pixels forms an infinite sensor array which collects a random

total number of photon Wt which also follows a Poisson distribution with mean N , that is :

Wt ∼
+∞∑

k=−∞

P

(ˆ kε+ε/2

kε−ε/2
Iσ(x, θ) dx

)

∼ P

(
+∞∑

k=−∞

ˆ kε+ε/2

kε−ε/2
Iσ(x, θ) dx

)
∼ P (N) . (5.1)

Moreover, in the limit ε→ 0, the detector array approaches a continuum detector such

Page 126



Chapter 5. Two Point-Sources Resolution Measurement Design

that flux statistics for each of the infinitely small detector tends to a Bernoulli distribution of

probability Λε,k =
´ kε+ε/2
kε−ε/2 Iσ(x, θ) dx→ 0. Hence, the distribution of the photon counts for

such a continuum spatial detector is defined by an inhomogeneous Poisson point process with

density given by the irradiance function Iσ(x, θ). In other words, such a detector measures a

random number (Wt ∼ P (N)) of photons during the exposure, where each photons detection

is independent of each other and has a probability that it is detected in the interval [xa, xb]

given by
´ xb
xa
Iσ(x, θ) dx as symbolically illustrated in Figures 5.3 and 5.4.
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Figure 5.3: Direct imaging architecture for two incoherent and well separated point-sources.
Green dots depict the photon detection events.
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Figure 5.4: Direct imaging architecture for two incoherent point-sources at Rayleigh’s limit.
Green dots depict the photon detection events.
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Therefore, the likelihood LDirect of detecting N∗ independent photons {x1, . . . , xN∗} can

be expressed as the product of the irradiance densities at each detected location :

LDirect(x1, . . . , xN∗|θ,N∗) =
N∗∏
k=1

Iσ(xk|θ). (5.2)

Given this likelihood model, one can calculate the Fisher information IDirect [74] for

estimating the variable θ (angular separation) which can be expressed as :

IDirect(θ|N∗) = E
x1,...,xN∗

[(
∂ LDirect(x1, . . . , xN∗|θ,N∗)

∂θ

)2
∣∣∣∣∣ θ
]

= N∗
ˆ +∞

−∞

I ′(x, θ)2

I(x, θ)
dx, (5.3)

where I ′(x, θ) denotes the first derivative of the irradiance function with respect to θ, i.e.

I ′(x, θ) = ∂I(x, θ)/∂θ; and thus on average :

IDirect(θ) = E
N∗

[IDirect(θ|N∗)] = N

ˆ +∞

−∞

I ′σ(x, θ)2

Iσ(x, θ)
dx, (5.4)

This θ−differential FI metric assigns a score of the system performance for a given

separation (θ) : higher values of the metric indicate better performances. One can observe

several interesting properties of the FI expression in Equation 5.4 and as plotted in Fig-

ure 5.5 as a function of point-sources separation. Firstly, the FI is linearly dependent on the

number of photons. Secondly, the FI value also approaches zero when the separation angle

θ tends to zero, and regardless of the underlying PSF profile (see Proof 4 in the Appendix).

This is consistent with Rayleigh’s criterion and establishes the insensitivity of any direct

measurement device to angular separations below the Rayleigh limit. Thirdly, the amount

of information depends on the pupil function. For instance an imaging system with a hard

aperture (i.e. T (x′) = rect(x′/D)) collects more information than a system with a Gaussian

aperture. Moreover, any optical aberrations in the exit pupil of the optics increases the PSF

blur and consequently lower IDirect for all values of the separation θ. Finally, FI saturates

close to a maximum value when θ becomes much larger than the physical extent of the PSF.
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This is to be expected as the performance of the imaging system is nearly independent of the

separation when the two source images are easily distinguishable (i.e. well above Rayleigh

limit).
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Figure 5.5: Fisher information of idealized direct imagers for Gaussian and hard apertures.
Note that the y-axis is normalized to the average number of photons N and divided by the
square of the PSF scale σ. The ringing in the hard aperture curve is due to the features in
the sinc2 PSF.

The Fisher information also provides a lower bound to the mean square error (MSE)

of any unbiased estimator also known as the Cramer-Rao Lower Bound (CRLB) [75, 76].

Thus for an estimator θ̂(x1, . . .) using the detected photon locations {x1, . . .}, we can state

: MSEθ̂(θ) = E
[

(θ̂(x1, . . .)− θ)2
∣∣∣ θ] ≤ 1/ I(θ). However, it is important to emphasize that

this bound is not necessarily achievable. In order to test the direct imager output perfor-

mance, we first construct the maximum likelihood estimator (MLE) θ̂MLE,Direct(x1, . . . , xN∗)

from Equation 5.2 as :

θ̂MLE,Direct(x1, . . . , xN∗) = arg max
θ

{LDirect(x1, . . . , xN∗|θ)} , (5.5)

Page 129



Chapter 5. Two Point-Sources Resolution Measurement Design

and then we compare its MSE performance against the CRLB. However for this angular

estimation task, it is more appropriate to consider a normalized version of the MSE defined

as the normalized root mean square error (NRMSE) as : NRMSEθ̂(θ) =
√

MSEθ̂(θ)/θ,

and equivalently the normalized Cramer-Rao lower bound (NCRLB) as : NCRLB(θ) =

CRLB(θ)/θ.
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Figure 5.6: Normalized error plot (NRMSEDirect) for idealized direct imagers for Gaussian
and hard apertures. The normalized CRLB (NCRLBDirect) is also included for reference.

To implement a near optimal MLE estimator performance we use Nelder-Mead search

algorithm [77] initialized in the close proximity of the ground-truth value of θ so as to

avoid possible local maxima. In Figure 5.6, we show the estimation performance of the ML

estimator obtained using a Monte Carlo sampling of the NRMSE metric. The ML estimator

is exposed over more than 16,000 sets of photons realizations for every sample value of θ

and average incident flux N . From this plot we can observe that the NRMSE performance

of the ML estimator is nearly in perfect agreement with the corresponding NCRLB for large

mean-number of photons. However the MLE breaches the NCRLB for small number of

photons (≈ 10) and separations (≤ 0.5), as it becomes biased (and super-efficient) in that

regime. Finally, while the overall estimation performance increases with the square-root of

the number of photons, the vertical asymptote in θ = 0 indicates the inherent inefficiency
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described previously. For instance, in order to perform a measurement with an relative

precision of 1% at a separation of about 4λ/D (4 times Rayleigh’s limit), only 300 photons

are needed on average for an imaging system with a hard aperture. However, this number is

increased to 10,000 photons to achieve the same relative precision at a separation of about

0.8λ/D (20% smaller than Rayleigh’s limit). In other words, reducing the angular separation

by a factor of 5 requires an increase in the number of photon budget by over a factor of 30.

5.3 Analysis of Mode-Sorting Imager Design :

Gaussian and Hard Apertures

An alternate approach to measuring the angular separation of two quasi-monochromatic

incoherent point-sources proposed by Tsang et al. in [83, 84] involves projecting the superpo-

sition of the incoherent image optical fields Aσ(x+θ) and Aσ(x−θ) of the two point-sources

onto a L2 complex-valued spatial mode f(x) of unit magnitude, i.e.
´∞
−∞ |f(x)|2 dx = 1.

The resulting measurement function mf (θ), parametrized by the separation angle θ can be

analytically written as :

mf (θ) =
1

2

∣∣∣∣ˆ +∞

−∞
f(x)Aσ(x+ θ) dx

∣∣∣∣2 +
1

2

∣∣∣∣ˆ +∞

−∞
f(x)Aσ(x− θ) dx

∣∣∣∣2 , (5.6)

where f(x) denotes the mode complex conjugate. The normalized output of this measure-

ment process is thus a single scalar equal to the sum of the two modulated intensities as

defined in Equation 5.6 and is illustrated in Figures 5.7 and 5.8. Furthermore, this mea-

surement strategy can be extended to multiple mode measurements simultaneously, which

would lead to a linear decomposition of the image plane optical field onto any set of modes

forming an orthonormal basis.
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5.3.1 Energy Distribution Across Mode Basis

Given such a mode decomposition measurement architecture one can effectively count

the number of photons populating an arbitrary spatial mode f(x). Thus, if N denotes the

total photon flux through the exit pupil, a single shot-noise limited bucket photodetector

will measure samples from a Poisson distribution with mean Nmf (θ). If multiple mode mea-

surements are acquired, note that their statistics remain independent because the underlying

orthogonal spatial modes do not interact.
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Figure 5.7: Single mode-sorting architecture : well separated point-sources. The fields are
not coherent and cannot be summed.

In [83], the authors propose to use the Hermite-Gauss (HG) basis to decompose the

Gaussian ASFs deriving from a Gaussian apodized aperture. For this particular case, {hq(x)}

denotes the spatial mode set indexed by q, and {mq(θ)} denote the associated normalized

measurement functions defined in Equation 5.6. Mathematically, the mode hq(x) and the

corresponding mode measurement mq(θ) can be expressed as :

∀q ∈ N, hq(x) =
(2πσ2)−

1
4

√
2qq!

Hq

(
x√
2σ

)
exp

(
− x2

4σ2

)
(5.7)

mq(θ) =
1

q!

(
θ2

4σ2

)q
exp

(
− θ2

4σ2

)
(5.8)

where Hq(x) denotes the qth Hermite polynomial and h0(x) is simply a Gaussian mode
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Figure 5.8: Single mode-sorting architecture : point-sources at Rayleigh’s limit. The fields
are not coherent and cannot be summed.

identical to the Gaussian ASF of the imaging system. For a system with a hard aperture,

we find that the Sinc-Bessel (SB) orthonormal basis {sq(x)} is the optimal choice for the

mode decomposition of the cardinal-sine ASFs. Thus for the hard aperture, we can express

the qth mode sq(x) and the corresponding mode measurement as :

∀q ∈ N, sq(x) =
√

1 + 2q jq(πx) (5.9)

mq(θ) = sq

(
θ

σ

)2

(5.10)

where jq(x) is the qth spherical Bessel function of the first kind (note especially that j0(πx) =

sinc(x)). The HG and SB modes are plotted in Figure 5.9. Note that both of the proposed

basis are also complete in the L2 vector space and consequently, the Parseval-Plancherel the-

orem ensures the conservation of energy in the measurements space. In other words, one we

can assert that measuring all of the modes capture all of the incident energy, mathematically

:

∀θ ∈ R+,

〈
+∞∑
q=0

P (Nmq(θ))

〉
= N

+∞∑
q=0

mq(θ) = N. (5.11)

Another key aspect shared by the two modes basis is that the projection onto the 0th
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Figure 5.9: Left : first modes of the Hermite-Gauss basis. Right : first modes of the
Sinc-Bessel basis.

mode captures all of the energy available at θ = 0 : i.e. m0(0) = 1, and all the other modes

capture, of course, no photons at zero separation. This is illustrated in Figure 5.10, where

we plot the cumulative energy collection by measuring the modes 0 to Q. Note also that the

incident energy from the sources is almost entirely captured by low order modes at small

angular separations : for instance, in the case of the HG modes and a Gaussian-apodized

aperture, cumulating the measurements of the modes q = 0 and q = 1 is sufficient to acquire

more than 99% of the available energy at θ = σ/2. In the case of the SB modes and a hard

aperture, cumulating the measurements of the modes q = 0, 1 and 2 is sufficient to acquire

more than 97% of the available energy at θ = σ/2.

5.3.2 Fisher information Distribution Across Modes Basis

As we have shown, all the spatial mode measurements are statistically independent and

follow shot-noise statistics with mean mq(θ). If we begin with a single mode measurement

denoted by mf (θ) for a total average photon flux N , then the measurement likelihood of the

associated measurement variable Yf is given simply by a Poisson distribution conditioned on

the angle θ : Yf ∼ P (Nmf (θ)). For such a measurement we can express the corresponding
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Figure 5.10: Fraction of the energy collected over the cumulative measurements 0, . . . , q.
Left : for a Gaussian aperture and HG modes. Right : for a hard aperture and SB modes.
The lowest order modes allow to integrate most of the energy available at small separation
angles θ.

Fisher information as :

If (θ) = N
m′f (θ)

2

mf (θ)
, (5.12)

where m′f (θ) denotes the first derivative of mf with respect to θ : m′f (θ) = ∂mf (θ)/∂θ (see

Proof 1 for the derivation of Equation 5.12). It is interesting to note the underlying structure

of the expression which is proportional to the square of the measurement sensitivity to θ

(i.e. m′f (θ)) and inversely proportional to the measurement itself (mf (θ)). In particular, the

FI structure matches that of the Fisher information for a scalar measurement function g(θ)

corrupted by an additive Gaussian noise of variance ν2 : g′(θ)2/ν2.

Despite this analogy, we must highlight that the variance of the Poisson distribution is

signal dependent, which is not the case for Gaussian noise corrupted measurement. The FI

of the Poisson distributed mode measurement exhibits a counter-intuitive property : if the

measurement function approaches 0 (i.e. no energy is collected), while its sensitivity also

approaches 0 near a critical point θc, furthermore if the measurement function is equivalent

to the square of its sensitivity, then the Fisher information itself can have a non zero value
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at θc, mathematically :

∃C > 0, Cmf (θ) ∼
θ→θ±c

m′f (θ)
2 ⇒ If (θ) →

θ→θ±c
C (5.13)

Such a measurement property suggests that every single detected photon, for an un-

known parameter θ in the vicinity of θc, carries a lot of information about the parameter and

thus mitigates its decaying sensitivity (m′f (θ)). Interpreting this result for the two point-

sources separation problem suggests that if a mode measurement has this inherent property

(Equation 5.13) then it provides some information around θc, even though its sensitivity is

near zero and it collects near zero energy. However, an important practical implication of

this property is that around the critical point θc the information collection represent the

equivalent of an unstable mechanical equilibrium, that is any corruption of the measure-

ment, such as a background signal, will immediately degrade the Fisher information content

to zero around θc. Thus, such an information rich measurement would be extremely sensitive

to implementation errors.

From the general FI expression in Equation 5.12, we write the Fisher information for a

mode-sorting system with a Gaussian aperture and the HG modes measurements as :

IHG,q(θ) =
N

σ2q!

(
q − θ2

4σ2

)2(
θ2

4σ2

)q−1
exp

(
− θ2

4σ2

)
, (5.14)

Similarly, we write the Fisher information for a mode-sorting system with a hard aper-

ture and the SB modes measurements as :

ISB,q(θ) =
4π2N

σ2
(1 + 2q)

(
qσ

πθ
jq

(
πθ

σ

)
− jq+1

(
πθ

σ

))2

. (5.15)

In a similar fashion to our analysis of the energy distribution across the modes, we

now analyze the distribution of information across all the spatial modes. It is particularly

interesting to consider the behavior of the information content for each mode in the limit

of very small separation angles : θ → 0+. Both the HG and SB mode basis follow similar
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trends :

∀q 6= 1, IHG,q(θ) →
θ→0+

0, and : IHG,1(θ) →
θ→0+

N

σ2
(5.16)

ISB,q(θ) →
θ→0+

0, and : ISB,1(θ) →
θ→0+

4π2N

3σ2
(5.17)

We observe that only the 1st mode captures all the available information at zero sepa-

ration (θ = 0) and remains the largest contributor in the sub-Rayleigh range (θ < λ/D) as

shown in Figure 5.11. It is worth highlighting that the information rich first mode effectively

implements a differentiation between the two ASF superpositions on the left and the right

side of the optical axis. Such a differential measurement provide optimal sensitivity in the

θ → 0 regime as quantified in Equation 5.13. In contrast, the 0th mode implements an

average or summation of the left and right portions. It is also interesting to note the duality

between the 0th modes which capture the majority of the energy in the incident optical field

while the 1st modes capture the majority of the information in the narrow separations.

Beyond the 0th and 1st modes, we can extend the information analysis to the mea-

surements of the Q first modes {m0(θ), . . . ,mQ(θ)} using the information expression in

Equation 5.12 as :

I0,...,Q(θ) =

Q∑
q=0

Iq(θ) =

Q∑
q=0

N
m′q(θ)

2

mq(θ)
, (5.18)

we observe that the total information captured increases monotonically with the number of

modes Q as shown in Figure 5.11.

Tsang et al. have shown that for the Gaussian ASF, measuring all of the HG modes yield

a constant information value with respect to the separation (θ) which is linearly dependent

to the total average number of photons (N) :

∀θ ∈ R+,

+∞∑
q=0

IHG,q(θ) =
N

σ2
(5.19)
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Similarly, we have shown that a similar result exists for the Sinc-Bessel modes (see

Lemma 1 and Proof 3 in the Appendix). For a finite interval U of R+, we can write :

∀θ ∈ U,
+∞∑
q=0

ISB,q(θ) =
4Nπ2

3σ2
(5.20)

These information sums mirror the conservation of energy property in Equation 5.11 but

for the information content. This is in stark contrast to the diminishing Fisher information

for θ → 0+ of a direct conventional imager employing an ideal detector array. Also, it should

be noticed that for both measurement basis, collecting information at larger separation

angles θ requires the collection of more higher order modes, as evident in Figure 5.11. This

is expected as higher q-modes in the spatial HG and SB basis extend further away from the

optical axis.
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5.3.3 BinSPADE Mode Measurement Design And Analysis

The alternate imaging architecture employing linear mode projections requires all the

countably infinite modes comprising the mode basis to achieve the optimal constant per-

formance over the entire range of angular separations. However, in the sub-Rayleigh range

that is of practical interest here, because the conventional imager is optimal for larger sep-

arations, one only needs a relatively few mode measurements to overcome the performance

limitation of the conventional imager and achieve optimal performance.

With this goal, Tsang et al. have proposed a straightforward Binary SPAtial-mode

DEmultiplexing (BinSPADE) architecture [83] which measures any given single mode and

its complement. Thus the first measurement mf (θ) is the projection onto a single spatial

mode f(x) and the second is its residual mr,f (θ) = 1−mf (θ).

A good choice for the spatial mode measurement is dictated by the energy and informa-

tion duality of the basis. In other words, one must choose a spatial mode which is efficient

in energy collection or information collection. Thus we may choose either the 0th mode, i.e.

f = h0 or s0, which collects the energy and its residual collects the information, or the 1st

mode, i.e. f = h1 or s1, which collects the information and its residual collects the energy.

We will refer to these two measurement designs as 0-BinSPADE when using the 0th mode,

or 1-BinSPADE when using the 1st mode.

The Fisher information for a 0/1-BinSPADE can again be expressed analytically as the

sum of the respective information for the mode and its residual. For a Gaussian aperture and

HG mode basis we write the following expressions respectively for the 0 and 1-BinSPADEs :

IHG,0-BinSPADE(θ) =
N

σ2

θ2

4σ2

exp
(
θ2

4σ2

)
− 1

, (5.21)

IHG,1-BinSPADE(θ) =
N

σ2

(
1− θ2

4σ2

)2
exp

(
θ2

4σ2

)
− θ2

4σ2

. (5.22)
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Similarly, for a hard aperture and SB mode basis, we get :

ISB,0-BinSPADE(θ) =
4N

σ2

(
σ
θ

cos
(
πθ
σ

)
− σ2

πθ2
sin
(
πθ
σ

))2
1− j0

(
πθ
σ

)2 , (5.23)

ISB,1-BinSPADE(θ) =
12N

σ2

σ2

θ2

[
sin
(
πθ
σ

)
− 2j1

(
πθ
σ

)]2
1− 3j1

(
πθ
σ

)2 . (5.24)

As we can observe from the plot of Fisher information for these two BinSPADE measure-

ment designs in Figure 5.12, they will have a higher information content than a conventional

imager for small angular separations (i.e. the sub-Rayleigh range θ � σ). The location of

the performance crossover between BinSPADEs and conventional imager occurs at separa-

tion angles equal to 250% and 170% of σ = λ/D respectively for the 0 and 1-BinSPADEs of

the HG mode basis and 120% and 80% of σ = λ/D respectively for the 0 and 1-BinSPADEs

of the SB mode basis. For larger separation angles, the information capacity of these archi-

tectures degrades to zero, as expected. It must also be noted that 0-BinSPADE significantly

outperforms 1-BinSPADE for both Gaussian and hard aperture cases.

However, in a physical implementation of a BinSPADE measurement it is to be expected

that non-idealities of physical components and/or imprecise opto-mechanics will degrade the

performance from the performance predicted for an ideal BinSPADE measurement. Espe-

cially, given the energy-information duality of the 0th and 1st modes, one can expect to see a

leakage from the direct measurement of a given mode over its residual because of an imperfect

photon sorting implementation. This leakage effect can be modeled as the first measurement

function md(θ) (either m0 or m1) being scaled by (1 − ε) as it loses a small fraction ε > 0

of the flux to its residual measurement (either mr,0 or mr,1) : mr(θ) = 1 − (1 − ε)md(θ).

For simplicity, we define the efficiency ρ = 1− ε and derive the following expressions for the

Fisher information of both 0- and 1-BinSPADE conditioned on this leakage parameter. For
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Figure 5.12: Performance comparison of Direct Measurements versus 0 and 1-BinSPADE
receivers for Gaussian (top) and hard (bottom) apertures. The y-axes are normalized to
the respective Quantum Fisher information bounds.

a Gaussian aperture we write :

IHG,0-BinSPADE,ρ(θ) =
Nρ

σ2

θ2

4σ2

exp
(
θ2

4σ2

)
− ρ

, (5.25)

IHG,1-BinSPADE,ρ(θ) =
Nρ

σ2

[
1− θ2

4σ2

]2
exp

(
θ2

4σ2

)
− ρ θ2

4σ2

. (5.26)

Similarly, for a hard aperture and SB modes, we write :

ISB,0-BinSPADE,ρ(θ) =
4Nρ

σ2

(
σ
θ

cos
(
πθ
σ

)
− σ2

πθ2
sin
(
πθ
σ

))2
1− ρj0

(
πθ
σ

)2 , (5.27)

ISB,1-BinSPADE,ρ(θ) =
12Nρ

σ2

σ2

θ2

[
sin
(
πθ
σ

)
− 2j1

(
πθ
σ

)]2
1− 3ρj1

(
πθ
σ

)2 . (5.28)
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Despite the superior information performance of the ideal 0-BinSPADE over the 1-

BinSPADE, we find that the information of the former collapses immediately to zero at

θ = 0 and for any leakage ε > 0 (any efficiency ρ < 1). On the contrary, the latter only

degrades linearly with the efficiency ρ and thus more resilient to this particular defect.

5.4 Mean Square Error Analysis of Mode

Measurements

While a Fisher information analysis of mode measurements provide a lower bound on the

error in estimating the separation angle via the Cramer-Rao bound, the actual performance

of an estimator is equally important to analyze. For such an analysis , we have to choose an

estimator of the separation θ from a set of mode measurements. Naturally, the maximum

likelihood estimator (MLE) is a good choice given that it is an asymptotically efficient. The

generalized definition of the MLE in the case of Q+1 statistically independent measurements

{y0, . . . , yQ} can be expressed as :

θ̂MLE(y0, . . . , yQ) = arg max
θ

{
Q∏
q=0

P(yq|Nmq(θ))

}
. (5.29)

This expression is based on the fact that each modal measurement Yq follows a Poisson

distribution, i.e. Yq ∼ P (Nmq(θ)) assuming that the total average photon flux N is known.

The MLE can be expressed in terms of the log-likelihood for a single mode measurement as

:

θ̂MLE(yq) = arg max
θ

{yq ln(Nmq(θ))−Nmq(θ)}

= m−1q ◦RU

(yq
N

)
, (5.30)

where m−1q denotes the inverse of mq, which exists over some fixed interval of interest U

containing θ = 0. RU is a simple restriction operator to the image V of U by mq, it clamps
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overflowing values of the quotient yq/N to the closest extrema of V in order to avoid indefinite

portions of m−1q . And ◦ denotes the composition operator, i.e. m−1q ◦RU(·) = m−1q (RU(·)).

Additionally, we can also express the estimator analytically in case of a BinSPADE

architecture : we note yq and yr,q the respective outputs of mq(θ) and its residual 1−mq(θ),

we write :

θ̂MLE(yq, yr,q) = arg max
θ

{P (yq|Nmq(θ))P (yr,q|N −Nmq(θ))}

= m−1q ◦RU

(
yq

yq + yr,q

)
, (5.31)

Note that this estimator is similar to the one for a single Q-mode (Equation 5.30) in

the limit of large N where yq + yr,q becomes a good approximation of the total flux (i.e.

yq + yr,q ∼ P (N)).

Given the ML estimator definition, we can now compute the normalized RMSE (NRMSE)

performance of a BinSPADE measurement via Monte Carlo simulations. For this measure-

ment architecture we have noted that only small angular separations (below Rayleigh limit)

are of interest when compared to a direct imager, we thus restrict θ to a range extending

only slightly beyond Rayleigh’s limit (σ/2) and where the measurement function is invert-

ible. We repeat the NRMSE performance analysis for several values of the total flux N .

Ranging from 10 to 10, 000 photons. Note that while the Fisher information only scales

linearly with the parameter (θ), we expect a more complex behavior of the ML estimator

which becomes strongly biased in the small photon number regime.

The MLE performance results are summarized in Figures 5.13 and 5.14 for 0 and 1-

BinSPADE measurements with a Gaussian aperture and a hard aperture respectively. In

each figure we include the NCRLB to provide a reference for the evaluation of NRMSE

performance. We also include the NRMSEDirect and NCRLBDirect of the direct imager em-

ploying an ideal continuum FPA. One can immediately note that in a high flux regime (high

N), the performance of the BinSPADE measurement is nearly identical to the Cramer-Rao
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Figure 5.13: Normalized RMSE plots from Monte Carlo-Estimation estimated performance
of MLE. Left : 0-BinSPADE for Gaussian aperture. Right : 1-BinSPADE for Gaussian
aperture. The estimators for both can be written analytically (with Lambert-W function for
the 1-BinSPADE) over the range of θ shown, where the associated measurement function is
invertible.

lower bound. On the other hand, the estimator performance deviates from the NCRLB

in the photon-starved regime (low N). In this case, it is interesting to note that NRMSE

can actually become better than the NCRLB due to bias. This is particularly visible for

1-BinSPADEs in the large angular separation (θ) limit. However, it is important to note

that the MLE enters this super-efficient regime because we constrain its output value to be

within the fixed range U as written in Equation 5.31.

Furthermore, one can observe that the BinSPADEs measurements can significantly out-

perform the conventional direct imager design. To quantify the improvement with reference

to the the direct imager we can define the gain G as :

G = 20 log10(NCRLBDirect /NRMSE), (5.32)

where positive values indicate superior performance. At N = 10, 000 photons, for the

Gaussian aperture and both 0,1-BinSPADEs achieve a performance gain of approximately
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Figure 5.14: Normalized RMSE plots from Monte-Carlo Estimation. Left : 0-BinSPADE for
hard aperture. Right : 1-BinSPADE for hard aperture. Note that the θ/σ range restriction
for 1-BinSPADE corresponds to the presence of the first zero in the Fisher information.

+4dB at θ = 0.2σ and +8dB at θ = 0.1σ respectively. Similarly, for the hard aperture we

observe a gain of nearly +3dB at θ = 0.2σ and +5dB at θ = 0.1σ. Finally, it is important to

point out that the BinSPADEs measurement, while gathering finite information near θ = 0,

do not achieve a constant relative accuracy for all small angles as evident from the NRMSE

plot, but achieve a performance that scales as O(1/θ
√
N). In comparison, the direct imager

with a Gaussian aperture achieves a performance scaling of O(1/θ2
√
N) and O(1/θ

3
2

√
N)

in the case of a hard aperture, which are fundamentally inferior to the BinSPADE.

5.5 Efficient Binary SPADE For Arbitrary ASF

In the previous sections, we have limited our discussion and analysis to Gaussian and

hard apertures, that produce Gaussian and cardinal sine ASFs respectively. We have al-

ready commented on the common themes among performance of these two apertures for

direct imager and BinSPADE measurements. Nonetheless, we have noted that the system
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performance does depend on the actual pupil function and the BinSPADE design needs

to be adapted to the optimal choice of mode basis given an aperture function. To bet-

ter understand how the aperture shape impacts the characteristics and performance of the

BinSPADEs, we need to generalize this measurement scheme to arbitrary ASF and the

associated optimal mode basis.

We begin by noting the fact that, for both of the aperture functions considered earlier,

the 0th spatial mode matches the ASF. From this observation, we can develop a general

measurement expression for a properly normalized complex-valued ASF Aσ(x) in terms of

its autocorrelation function ΓA defined as :

ΓA(x′) =

ˆ +∞

−∞
A(x)A(x+ x′) dx. (5.33)

Thus we can modify the measurement function in Equation 5.6 where the spatial mode

is the ASF itself :

mA,0(θ) =

∣∣∣∣ΓA( θσ
)∣∣∣∣2 . (5.34)

One can particularly verify that in the limit θ → 0 we have mA,0(θ) = 1, i.e. this

ASF mode measurement collects all of the available energy at θ = 0. The corresponding

generalized residual measurement function takes the obvious form : mA,r,0(θ) = 1−mA,0(θ).

Similarly to previous BinSPADE measurement designs, two shot-noise limited detectors are

placed at the output of each mode projection and measure Poisson-distributed data with

mean values NmA,0(θ) and NmA,r,0(θ) respectively. From Equation 5.12, we can infer that

the Fisher information of this generalized 0-BinSPADE receiver is :

IGen,0-BinSPADE(θ) =
4N

σ2

Re
[
Γ
(1)
A

(
θ
σ

)
ΓA
(
θ
σ

)]2
∣∣ΓA ( θσ)∣∣2 (1−

∣∣ΓA ( θσ)∣∣2) , (5.35)

where Γ
(1)
A is the first derivative of ΓA. If we now assume that the autocorrelation ΓA admits
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the following second order expansion around θ = 0, constrained by its Hermitian symmetry

and maximum property :

ΓA(x) =
θ→0

1 + iβx− α

2
x2 +O(x3), (5.36)

with α ≥ 0 and β ∈ R, then we can derive the limiting value of the Fisher information

expression in Equation 5.35 in the narrow angular separation regime (θ → 0) :

IGen,0-BinSPADE(θ) →
θ→0

4N

σ2
(α− β2). (5.37)

One can immediately note that this limiting value is again linearly proportional to

the average number of photons N and that for purely real ASFs (β = 0) the limit is

improved. It is also reassuring to observe that Equation 5.37 reduces to known values for

the Gaussian ASF (α = 1/4, β = 0, I = N/σ2) and the cardinal sine ASF (α = π2/3, β = 0,

I = 4π2N/3σ2).

More interestingly, note that an ASF with high spatial variability will have its autocor-

relation function ΓA(x) quickly decreasing to zero for small shift x. This indicates that the

autocorrelation function has a sharp curvature in θ = 0, and thus a large α coefficient in

the expansion of Equation 5.36. Consequently, a mode-sorting measurement device with an

ASF having pronounced spatial features is more sensitive to small shifts of the point-sources

ASFs and therefore, it collects a large amount of information about the angular separation

as a result of Equation 5.37. For example, the cardinal sine ASF has more spatial features

than the smooth Gaussian ASF and this leads to the difference in Fisher information content

between Gaussian and hard apertures written in Equations 5.19 and 5.20 and also shown

for conventional direct imager in Figure 5.5.

A second property of the mode-sorting measurement device can be obtained from the

properties of the autocorrelation. Namely, the Wiener–Khinchin theorem states that the

Fourier Transform of the autocorrelation ΓA is equal to the absolute square of the Fourier

Transform of A(x), i.e. F [ΓA(x)] = |F [A(x)] |2. Hence, as the ASF is related to the Fourier
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transform of the aperture function the ASF autocorrelation function is equal to the absolute

square of the (spatially inverted) aperture function : i.e. ΓA(x) = |T (−x)|2. Therefore

this system is insensitive to the phase component of the pupil function and thus, to any

phase-induced optical aberrations known in the system (for example : defocusing, spherical

aberration, coma, e.t.c.). This is in contrast to the traditional direct imager for which the

Fisher information is decreasing in the presence of optical aberrations. More generally, we

know that the optical field in the image plane is related to the optical field in the pupil

plane via the Fourier transform, which is a change of basis in the L2 vector space. As

the spatial mode demultiplexer is only performing linear projections optically in the image

plane, it can be adapted to work directly in the pupil plane by inverting this linear field

propagation transform. For instance in the case of a hard aperture, the system is performing

projections against the Sinc-Bessel spatial modes in the image plane which is equivalent to

performing projections against the Legendre spatial modes directly in the pupil plane as the

two basis are Fourier conjugates. With this modification, we can emphasize that the mode

measurements can be performed directly from the entrance pupil of the system objective,

which is thus irrelevant for this imaging task. Therefore, we should expect that the inherent

angular resolution (≈ λ/D) and optical aberrations are also irrelevant to the measurements

performance.

After having described the 0th generalized mode measurement in Equation 5.34, it is

now possible to construct an orthonormal basis to perform generalized parallel mode decom-

position by using the derivatives of the ASF A(x), assuming it is infinitely differentiable.

To develop such a mode basis, it is useful to consider the following identity for successive

derivatives of the autocorrelation function :

ˆ +∞

−∞
A(q)(x)A(x+ x′) dx = (−1)qΓ

(q)
A (x′) (5.38)

where A(q)(x) is the qth order derivative of A(x). While the set of the ASF and its

successive derivatives is not necessarily orthogonal, we can use Gram-Schmidt orthonormal-

ization to select complex weights ωk,q and to construct an orthonormal set of modes {Mq(x)}
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which can be expressed, with the explicit spatial normalization of scale σ, as :

1√
σ
Mq

(x
σ

)
=

q∑
k=0

(−1)k
ωk,q

σq+
1
2

A(q)
(x
σ

)
. (5.39)

Note that we may have to remove any zero-functions in this set as necessary. We also

always have ω0,0 = 1 because of the normalization of A(x). Given this mode basis design, we

find back the 0th generalized mode, i.e. the ASF, and subsequently develop the 1st generalized

mode with the appropriate spatial normalization :

1√
σ
M0

(x
σ

)
=

1√
σ
A
(x
σ

)
(5.40)

1√
σ
M1

(x
σ

)
=

1√
σ

−A(1)
(
x
σ

)
+ Γ

(1)
A (0)A

(
x
σ

)√
−Γ

(2)
A (0)−

∣∣∣Γ(1)
A (0)

∣∣∣2 , (5.41)

where A(1)(x) is the first derivative of the ASF, Γ
(1)
A and Γ

(2)
A are respectively the first and

second derivatives of the autocorrelation function. As the autocorrelation is Hermitian, it

implies that Γ
(1)
A (0) is purely imaginary. Thus in the case of a purely real ASF this term

is equal to zero and the first mode can be constructed with only the first derivative of the

ASF, as it is indeed the case for both the Gaussian and cardinal sine examples.

With these modes and the property given in Equation 5.38, the mode projection function

of Equation 5.6 can be generalized to :

mA,q(θ) =
1

2

∣∣∣∣∣
q∑

k=0

ωk,q
σk

Γ
(k)
A

(
θ

σ

)∣∣∣∣∣
2

+
1

2

∣∣∣∣∣
q∑

k=0

ωk,q
σk

Γ
(k)
A

(
− θ
σ

)∣∣∣∣∣
2

. (5.42)

The Fisher information of such mode measurement can be computed using Equa-

tion 5.12. Of course, for the 0th mode we arrive at the same expression as in Equation 5.34 for

the measurement and Equation 5.35 for the 0-BinSPADE information. More interestingly,

Page 149



Chapter 5. Two Point-Sources Resolution Measurement Design

for the generalized 1st mode we obtain :

mA,1(θ) =

∣∣∣Γ(1)
A

(
θ
σ

)
− Γ

(1)
A (0)ΓA

(
θ
σ

)∣∣∣2
−Γ

(2)
A (0)−

∣∣∣Γ(1)
A (0)

∣∣∣2 , (5.43)

and :

IGen,1-BinSPADE(θ) =
4N

σ2

Re
[
f (1)

(
θ
σ

)
f
(
θ
σ

)]2
∣∣f ( θ

σ

)∣∣2 (−f (1)(0)−
∣∣f ( θ

σ

)∣∣2) , (5.44)

with: f

(
θ

σ

)
= Γ

(1)
A

(
θ

σ

)
− Γ

(1)
A (0)ΓA

(
θ

σ

)
. (5.45)

Given that the autocorrelation admits an expansion as Equation 5.36, we can show that

the Fisher information of this 1-BinSPADE also tends toward the same limit value achieved

by the 0-BinSPADE in Equation 5.37 :

IGen,1-BinSPADE(θ) →
θ→0

4N

σ2
(α− β2). (5.46)

Finally, to complete the analysis of imperfect BinSPADE measurements we can intro-

duce the previously described leakage term ε > 0, or equivalently the efficiency ρ < 1, to

test the resilience of both generalized architectures. By transforming the modes output to

take into account this imperfection, we obtain for the Fisher information of the generalized

leaky 0-BinSPADE and 1-BinSPADE respectively :

IGen,0-BinSPADE,ρ(θ) =
4Nρ

σ2

Re
[
Γ
(1)
A

(
θ
σ

)
ΓA
(
θ
σ

)]2
∣∣ΓA ( θσ)∣∣2 (1− ρ

∣∣ΓA ( θσ)∣∣2) , (5.47)

IGen,1-BinSPADE,ρ(θ) =
4Nρ

σ2

Re
[
f (1)

(
θ
σ

)
f
(
θ
σ

)]2
∣∣f ( θ

σ

)∣∣2 (−f (1)(0)− ρ
∣∣f ( θ

σ

)∣∣2) . (5.48)

From the properties of the autocorrelation (particularly that ΓA(0) = 1 and Γ
(1)
A (0) is purely
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imaginary), we can infer that the numerator of Equation 5.47 always tends to zero as θ → 0,

but that the denominator only does so if the efficiency ρ is exactly equal to unity. Thus,

for any sub-unity efficiency implementation (ρ < 1), the 0-BinSPADE is not able to capture

any information for small separation angle : I0-BinSPADE,ρ<1(θ)→ 0 near θ = 0. On the other

hand, one can develop the limit value of FI in Equation 5.48 as :

IGen,1-BinSPADE,ρ(θ) →
θ→0

4Nρ

σ2
(α− β2). (5.49)

Thus, the generalized 1-BinSPADE is resilient to this particular leakage modeled in the deep

sub-Rayleigh limit, as its performance only decrease linearly with the efficiency (ρ).

5.6 Candidate Architectures : Performance Analysis

In this section we consider two candidate mode-decomposition implementations and

analyze their performance in terms of the two point-sources separation problem. The first

architecture describes an interferometric setup proposed by Tsang et al. and which has been

implemented by several research teams. For this architecture, we analyze its performance for

an arbitrary ASF and identify its inherent strengths and limitations. The second architecture

implements a single-mode measurement along with a flux measurement using a beam splitter

and a volume hologram. We analyze its binary mode design and performance as well.

5.6.1 Architecture : Mach-Zehnder Interferometer

In [87], Tsang et al. proposed an interesting architecture that implements two-modes

decomposition based on a Mach-Zehnder interferometer. This architecture has been since

implemented and its performance quantified by Tang et al. [88] and Tham et al. [89], both

for a Gaussian aperture. In this mode decomposition architecture, instead of decomposing

the optical field in the image plane directly into a series of modes, the two incoherent electric

fields are first split between the two balanced arms of the interferometer. In the first arm,
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Figure 5.15: SLIVER/Interferometric implementation layout.

the optical field is first inverted spatially, using a 2f system, then a phase-retarder is used

to invert its amplitude before being recombined with the components of the original field

from the second arm, as shown in Figure 5.15.

Let us denote the two measurements as m+(θ) and m−(θ) at the two output ports of

the interferometer. If we employ ideal 50/50 beam splitters, shot-noise limited photodetec-

tors and ignore any phase mismatch or spatial distortions that may arise from a non-ideal

component we obtain the following mathematical description of m+ and m− :

m−(θ) =

ˆ +∞

−∞

∣∣∣∣iAσ(x− θ)
2
√

2
− iAσ(−x− θ)

2
√

2

∣∣∣∣2 dx︸ ︷︷ ︸
Source 1

+

ˆ +∞

−∞

∣∣∣∣iAσ(x+ θ)

2
√

2
− iAσ(−x+ θ)

2
√

2

∣∣∣∣2 dx︸ ︷︷ ︸
Source 2

=
1

2
− 1

4
Re

[ˆ +∞

−∞
Aσ(x− θ)Aσ(−x− θ) + Aσ(x+ θ)Aσ(−x+ θ) dx

]
. (5.50)
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In the case where the ASF is real and symmetric (i.e. A(−x) = A(x)), one can verify

that m−(0) = 0. Similarly, we can write the second as :

m+(θ) =

ˆ +∞

−∞

∣∣∣∣Aσ(x− θ)
2
√

2

Aσ(−x− θ)
2
√

2

∣∣∣∣2 dx︸ ︷︷ ︸
Source 1

+

ˆ +∞

−∞

∣∣∣∣Aσ(x+ θ)

2
√

2
+
Aσ(−x+ θ)

2
√

2

∣∣∣∣2 dx︸ ︷︷ ︸
Source 2

=
1

2
+

1

4
Re

[ˆ +∞

−∞
Aσ(x− θ)Aσ(−x− θ) + Aσ(x+ θ)Aσ(−x+ θ)

]
dx. (5.51)

Again, if the ASF is real and symmetric, one can verify that m+(0) = 1. This approach

hence offers an elegant self-referencing mechanism to generate measurements of the gener-

alized 0th mode but only if the ASF is real and symmetric. The two output are considered

to be independent and Poisson-distributed with means Nm−(θ) and Nm+(θ) respectively,

for a total average photons flux N . Their respective Fisher information can therefore be

expressed as (similarly to Equation 5.12) :

I−(θ) =
N

16m−(θ)
Re

[ˆ +∞

−∞
A′σ(x− θ)Aσ(−x− θ) + Aσ(x− θ)A′σ(−x− θ)

−A′σ(x+ θ)Aσ(−x+ θ)− Aσ(x+ θ)A′σ(−x+ θ) dx
]2
, (5.52)

I+(θ) =
N

16m+(θ)
Re

[ˆ +∞

−∞
A′σ(x− θ)A(−x− θ) + Aσ(x− θ)A′σ(−x− θ)

−A′σ(x+ θ)Aσ(−x+ θ)− Aσ(x+ θ)A′σ(−x+ θ) dx
]2
. (5.53)

The total information provided by the two measurements is the sum of each : IMZ(θ) =

I−(θ) + I+(θ). For Gaussian and hard apertures, the FI performance is similar to that

of a 1-BinSPADE, as shown in Figure 5.16, in that it degrades quickly for angles larger

than Rayleigh’s limit. Overall, this implementation is a suitable approach for two-modes

measurement as long as the pupil function is purely real and symmetric (i.e. an even function)

which yields an ASF that is real and symmetric as well. Any deviation from a symmetric
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ASF will incur a performance penalty, especially near θ = 0.
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Figure 5.16: Fisher information for the interferometric measurements. The curves for the 0
and 1-BinSPADE offer a comparison to the two-outputs mode-sorting receiver.

5.6.2 Unimodal Architecture : Volume Hologram

In order to reduce the complexity of the BinSPADE mode decomposition measurement,

we consider an implementation of a single-mode projection through a self-referencing mech-

anism such as a volume hologram (VH) as shown in Figure 5.16. The VH can be designed

so as to direct certain components of the optical field in a given direction and with a very

high transmission efficiency (> 99%). Following our descriptions of the mode properties in

the previous discussion, we can design the VH to either selectively propagate the 1st mode

or the residual of the 0th mode as we have shown that they are the only two measurements

that contribute to the majority of available information in the sub-Rayleigh regime. In this

discussion we will choose the 1st mode (m1(θ)) and consider a hard aperture.

Beyond the first mode we also need to measure the average total flux N incident on

the imager aperture to be able to estimate the actual separation via the MLE defined in

Equation 5.30. To perform this flux estimation in parallel to the mode measurement, we

distribute the total flux available between the two paths of a beam splitter, positioned near

the exit pupil, as shown in Figure 5.17. This will of course degrade the system performance
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Figure 5.17: Proposed single-mode measurement architecture.

as some fraction of the total photons that would have contributed to the single mode mea-

surement of interest are now diverted toward the measurement of total photon flux N . Thus,

in order to optimize the information throughput of such a measurement design we must find

the optimal beam splitter ratio α.

For this analysis, α denotes the fraction of the intensity allocated to the flux measure-

ment, i.e. the beam splitter ratio is α:1− α. The flux measurement yN is thereby obtained

at the Poisson-corrupted output of mean αN . The mode measurement yM is independent

and Poisson distributed of mean (1−α)Nm1(θ). Now we can define the MLE given the two

measurements yM and yN as :

θ̂Single,MLE,α(yN , yM) = m−11 ◦RU

(
αyM

(1− α)yN

)
(5.54)

To optimize the beam splitter ratio α, we assume no prior knowledge of the angular

separation and thus can seek an optimal αOpt which minimizes the normalized error across

a range [0, θmax], for a given average flux N , i.e. :

αOpt(N) = arg min
α∈(0,1)

{ˆ θmax

0

NRMSEsingle(θ, α,N) dθ

}
, (5.55)

where NRMSEsingle(θ, α,N) denotes the NRMSE of the MLE in Equation 5.54. We pursue a

numerical optimization and find that αOpt is relatively insensitive to the incident flux N , as
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shown in Figure 5.18. Especially, we find that the optimal α is 0.29, 0.27 and 0.28 for N = 50,

N = 300 and N = 10, 000 photons respectively. We also compare the normalized estimate

error performance for this design against an ideal design in which all the photons would be

available for the single mode measurement and the flux N is known a priori. We observe

that this single mode measurement maintains a significant performance improvement over

the conventional direct imager for θ < 0.2λ/D. For example at N = 10, 000 photons, the

relative error for the single mode measurement is half of the direct imager at θ ≈ 0.1λ/D;

and about 35% smaller at N = 50 photons. At N = 10, 000 photons, the relative error

for the single mode measurement is almost a quarter of direct imager at θ ≈ 0.05λ/D; and

about 30% smaller at N = 50 photons.
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Figure 5.18: Comparison of the normalized RMSE performance with the optimum allocation
strategy. The input fields are projected against the 1st mode

5.7 Conclusion and Future Work

Rayleigh’s two point-sources resolution criterion describes a visual limit to the imaging

resolution of a traditional imager employing a focal plane array. This visual limit is indeed
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not fundamental and arises in part due to the specific choice of optical measurement with

a FPA in the image plane. Given the specific task of estimating the angular separation be-

tween two indistinguishable, incoherent, quasi-monochromatic point-sources, we have shown

quantitatively, using Fisher’s information measure that a conventional imager will perform

poorly at narrow angles below Rayleigh’s limit.

However as discussed earlier, Tsang et al. and others have firmly demonstrated that

while the conventional imager is indeed subject to Rayleigh’s limit for this mission, it is

possible to devise an alternate linear field preprocessing (projection) passive measurement

strategy which does not suffer from Rayleigh’s curse. This alternate measurement performs a

linear decomposition of an incident optical field in the image plane onto an orthonormal basis

of spatial modes, collecting a few modal measurements with shot-noise limited detectors. Our

analysis has demonstrated that the proposed architecture can outperform the traditional

imager, especially in the sub-Rayleigh regime which can greatly impact many applications

such as long standoff imaging, microscopy, astronomy and high-precision metrology.

Our specific contribution in this area include the extension of the original work for a

Gaussian apodized pupil to a hard aperture more relevant to optical systems. We have also

generalized the BinSPADE measurement design to an arbitrary aperture function, including

complex-valued and asymmetrical ones. This generalization has shown that any known opti-

cal phase aberrations can be perfectly compensated by such a modal measurement approach

and that greater spatial variability in the system PSF increases the amount of relevant infor-

mation. Beyond the Fisher information and Cramer-Rao bound analysis, we also analyzed

the RMSE performance via Monte-Carlo simulations. Finally, we discussed the performance

of two candidate measurement architectures of the mode-decomposition approach for future

experimental implementations.

Beyond the current work, several challenges remain in translating this alternate mea-

surement method to real-world applications. Notably, some of the main challenges include

: (a) sensitivity to centroid misalignment, (b) unequal point-source strength and (c) gaps

between the ideal physical forward model and the actual ASF. Future work in this area
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would include adding hypothesis testing so that the device can determine if there are two

sources or only one point-source, such as separately investigated by Helstrom [82] and Krovi

et al. [86], and the ability to image coherent and incoherent extended objects.
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Chapter 6

Conclusions And Future Work

In this dissertation, we have investigated the design, optimization and implementation of

several computational imaging systems. In all cases, these novel imaging systems outperform

conventional imaging system designs for a given specific task. We began with a joint-design

approach to the extended the depth of field imaging of a camera operating at a fast f/#.

Then we described a scalable compressive imaging architecture for image formation and tar-

get detection/classification tasks. Finally, we analyzed a mode-sorter imaging architecture

for the task of estimating the angular separation of two incoherent quasi-monochromatic

point-sources and extended the binary mode design to arbitrary aperture. We observed that

these non-traditional system architectures often reveal counter-intuitive aspects of these

particular imaging tasks. For instance, the EDoF architecture shows that by introducing

aberration in the optical train, and thus lowering Strehl’s ratio, we can render the system

modulation transfer function insensitive to defocus albeit at the cost of lower modulation

magnitude, which can be compensated by processing. The compressive imaging architec-

ture demonstrates that Nyquist sampling requirement is overly restrictive when considering

sparse/compressible image (such as natural scenes) and therefore it is possible to acquire

high resolution images or to perform target detection/classification from a small number

of measurements, e.g. 4x to 8x fewer than Nyquist sampling rate. Finally, the analysis

Page 159



Chapter 6. Conclusions And Future Work

of a mode-sorter imaging architecture shows that Rayleigh’s limit to the resolution of an

incoherent imaging system derives solely from the choice of measurement (i.e. focal plane

array). While we observed that these computational imaging architectures have significant

advantages over traditional imaging system designs, they are subject to set of unique chal-

lenges with respect to design and implementation. In this work, we have addressed several

system designs relating to scalability aspects of computational imaging architectures. While

scalability of traditional imagers typically refers to their capability at handling larger spatial-

spectral-temporal bandwidth products, in the case of computational imaging architectures

the scalability extends to their ability to manage more complex scene models, system design,

optimization framework capable of exploring vast parameter spaces (optics and processing

parameters) and to implement systems, including algorithms, which can perform robust

image or measurements exploitation in real-time.

In chapter 2, we proposed a joint design framework for the EDoF computational imaging

architecture. The system design metric provides a measure of the overall system modulation

transfer function which includes both the optical and processing transfer functions. Hence,

the optimization framework can simultaneously optimize the optical and processing system

design parameters. We implemented this joint-design framework to optimize the parameters

of an optical phase mask (Zernike polynomials coefficients) and a post-processing algorithm

for a F/1 long-wave infrared imaging system operating at room temperature. We demon-

strated that our optimized EDoF design achieves a larger depth of field than the traditional

imaging design with minimum artifacts and has lower reconstruction noise-gain (< −1dB)

than other state-of-the-art EDoF imager designs such as cubic and trefoil phase masks. To

verify the pertinence of our EDoF imager design we fabricated the optimized Zernike phase

mask (a free-form surface) and implemented it in an EDoF imager prototype that generated

high fidelity images. In the future, we can adapt this framework and the computational

imaging architecture to incorporate field aberrations and increase the constrained depth-of-

focus in small form-factor camera modules (e.g. to compensate the field curvature).

In chapter 3, we described the implementation of a scalable and programmable com-

pressive imager testbed which leverages the sparsity of natural images to acquire 4x to 8x
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fewer measurements than a traditional imager operating at Nyquist sampling. To achieve

this measurement count reduction, the imaging system modulates the optical image with

a passive spatial light modulator and measures the integral optical signal. Specifically, our

proposed scalable architecture decomposes the field-of-view into contiguous blocks, where

each is projected, measured and reconstructed in parallel so that this implementation scales

to wide FOV at high spatial resolution. For the reconstruction algorithm, we have designed

a piecewise-linear and non-iterative algorithm which minimizes the mean square error of the

reconstructed image. This parallelizable algorithm is implemented on graphics processing

units and is capable of reconstructing megapixel-scale images in real-time. Furthermore, we

have implemented mitigation techniques and an automated calibration procedure for this

compressive imaging testbed so as to minimize errors between the ideal forward model and

the actual physical measurement implementation. Using this imaging testbed we were able

to demonstrate the superior imaging performance of information-optimal projection pat-

terns over several random projection patterns typically employed in compressive imaging

systems. Specifically, we have shown that the former provides a reconstruction PSNR gain

of about 6dB over the latter at 4x compression and 20dB peak measurement SNR, and up

to 3dB at 8x compression. In the future, we can replace the static measurement design by

an adaptive strategy which benefits greatly the measurement compression ratio. With this

programmable testbed we can also imagine implementing a foveated imager with on-demand

high-resolution streams from selected regions of interest.

We subsequently described in chapter 4 how this scalable programmable imaging archi-

tecture can be adapted to an automatic target detection and classification task. We showed

that using appropriately designed compressive measurements we can avoid the need for in-

termediate image reconstruction and that we can implement the exploitation algorithm that

operates directly on compressed measurements. We have used this compressive measurement

strategy in conjunction to the block wise measurements design to detect target vehicles em-

bedded in a natural cluttered scene. Similarly to the image formation task, this compressive

measurement approach is naturally scalable to high space-bandwidth product (i.e. a wide

field of view and high-resolution). Due to lower measurement count this approach requires a
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fraction of the readout bandwidth and power consumption budget of a conventional imaging

system which employs a high-resolution FPA. To develop a statistical model of the underly-

ing manifold describing real-world scenes, we have employed large Gaussian mixtures that

incorporate the target and background variability. Using this scene model, we have de-

veloped a compressive measurement design employing Cauchy-Schwarz mutual information

(CSMI). This information-theoretic metric provides a measure of the separation between

the different target and background classes which ultimately determines the target detec-

tion/classification performance. Furthermore, we were able to derive an analytical upper

bound to the probability of error based on CSMI. Using the compressive testbed, we veri-

fied the experimental performance of our information optimized projection patterns which

achieve better target classification accuracy relative to random and PCA-secants projection

designs. For example, our design achieved an accuracy of 95% correct target detection and

classification at 0dB measurement SNR and a compression rate of 64x, and an accuracy

greater than 97% correct target detection and classification at 10dB measurement SNR and

a compression rate of 42x. In the future, we will extend our scene models to cover more scene

variability, including for example occlusions and change in lighting conditions. We can also

imagine adding to this compressive target recognition sensor the capability of autonomously

acquiring images of the regions of interests marked as containing targets.

Finally in chapter 5, we have first quantified the performance of a conventional incoher-

ent and diffraction-limited imager with respect to the angular separation of two incoherent

and quasi-monochromatic point sources. Consistently with Rayleigh’s two point-sources re-

solvability criterion, we have found that the conventional imaging architecture employing an

ideal FPA is essentially insensitive to small angle values, i.e. below Rayleigh’s limit. However,

motivated by prior work by Tsang et al., we were able to prove that the spatial mode-sorting

imaging architecture, which performs a linear decomposition the optical field in the image

plane, is not subject to the same Rayleigh limit by deriving the underlying Fisher Informa-

tion, and the associated Cramer-Rao lower bound of the mode measurement. In particular,

we were able to show that the optimal mode basis is matched to the aperture of the imaging

system. For example, the Hermite-Gauss spatial mode basis for a Gaussian-apodized pupil

Page 162



Chapter 6. Conclusions And Future Work

and the Sinc-Bessel mode basis for a hard aperture. Given this observation, we were able to

construct a generalized mode measurement basis for an arbitrary pupil function. We have

analyzed the energy and information content of this mode-sorter architecture and showed

that, for small angular separations the 0th mode of the basis collects nearly all the energy

and the 1st mode collects nearly all information. Consequently, we devised a simple binary

mode measurement architecture and proved that it significantly outperforms a traditional

imaging system with FPA measurements. In a high flux regime, we found a gain of about

+4dB at 10% separation and +8dB at 5% separation on the scale of the Rayleigh limit

(i.e. λ/D). Finally, we described and analyzed the theoretical performance of two candidate

implementations of the mode-sorting architecture : (a) a two-mode projections based on a

Mach-Zehnder interferometer and (b) a single-mode projection based on a self-referencing

volume hologram. In the future, we will improve this general mode measurement approach

to test if one or two sources are visible. We will also increase the resilience of the architecture

against the varying location of the point-sources pair centroid. And finally, we will adapt it

so as to measure physical characteristics of small extended objects.
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Appendix A

Extended Depth of Field Imaging :

Supplementary Figures
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Figure A.1: Visual comparison between the optical cut-off frequency (100mm−1, black circle)
for the considered lens, and the sensor Nyquist frequency (20mm−1, blue square).
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Figure A.2: Point spread functions for the standard, cubic, trefoil and optimized designs at
the edge of the depth range (4.0m) and the hyperfocal distance (25.6m). We assume a perfect
25mm F/1 objective operating at a wavelength λ = 10µm. The figures are independently
normalized to a unit peak intensity for visibility.
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Figure A.3: Simulation of images over the Sensor OTF support and after reconstruction,
for a SNR of 25dB. The distances are, from the top to bottom row : 4.0m (Ψ = −1.65λ),
6.0m (Ψ = −1.00λ), 10.0m (Ψ = −0.67λ), 12.8m (Ψ = −0.31λ) and 25.6m (Ψ = 0, the
hyperfocal distance).

Page 167



Appendix A. EDoF : Complimentary Figures

Standard Cubic Design Trefoil Design Optimized Design
Z

=
4.

0m
Z

=
6.

0m
Z

=
10
.0

m
Z

=
12
.8
.0

m
Z

=
25
.6

m

Figure A.4: Simulation of images over the Sensor OTF support and after reconstruction,
for a SNR of 25dB. The distances are, from the top to bottom row : 4.0m (Ψ = −1.65λ),
6.0m (Ψ = −1.00λ), 10.0m (Ψ = −0.67λ), 12.8m (Ψ = −0.31λ) and 25.6m (Ψ = 0, the
hyperfocal distance).

Page 168



Appendix A. EDoF : Complimentary Figures

Standard Cubic Design Trefoil Design Optimized Design
Z

=
4.

0m
Z

=
6.

0m
Z

=
10
.0

m
Z

=
12
.8
.0

m
Z

=
25
.6

m

Figure A.5: Simulation of images over the Sensor OTF support and after reconstruction,
for a SNR of 25dB. The distances are, from the top to bottom row : 4.0m (Ψ = −1.65λ),
6.0m (Ψ = −1.00λ), 10.0m (Ψ = −0.67λ), 12.8m (Ψ = −0.31λ) and 25.6m (Ψ = 0, the
hyperfocal distance).
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Appendix B

Scalable Compressive Target

Detection and Classification Sensor :

Additional Derivations

B.1 Derivation of the CSMI Expression

First, the definition of Cauchy-Schwarz mutual information is recalled in the case of

two random variables associated by the measurement process : C denotes the Nc class label

(C ∈ C = J1;NcK) and G a real valued vector in REM representing the measurements made

by the system. As one of the variable is discrete, we write with pC,G their joint distribution
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and pCpG the product of their marginals, and using Bayes rule :

ICS(C,G) = − ln

 ∑
c∈C
´
REM pC,G(c, g)pC(c)pG(g)dEMg√(∑

c∈C
´
REM pC,G(c, g)2dEMg

) (∑
c∈C
´
REM pC(c)2pG(g)2dEMg

)

(B.1)

= − ln


∑∑

i,j∈C pC(i)2pC(j)Vi,j√(∑
i∈C pC(i)2

) (∑
i∈C pC(i)2Vi,i

) (∑∑
i,j∈C pC(ci)pC(cj)Vi,j

)
 . (B.2)

Where the symmetric matrix V ∈ R+Nc×Nc is directly indexed by the class labels

and results from the likelihoods overlap integrals, i.e. : the overlap coefficients are Vi,j =´
REM p(g|C = i)p(g|C = j)dEMg. One can also remark that these coefficients are obtained

as the results of dot-products between the likelihoods and, as such, obey both the triangular

and Cauchy-Schwarz inequalities.

In this work, all the likelihoods p(g|C) are expressed as mixtures of Gaussians : for

instance, the mixture for the class label ci contains Oi components, each with a weight ωi,k

(with the normalization :
∑Oi

k=1 ωi,k = 1), a mean si,k (in REM) and a covariance Si,k (in

REM×EM) :

p(g|C = ci) =

Oi∑
k=1

ωi,kN (g|si,k, Si,k)

=

Oi∑
k=1

ωi,k
|Si,k|−

1
2

√
2π

EM
exp

(
−1

2
(g − si,k)ᵀS−1i,k (g − si,k)

)
. (B.3)

With those likelihoods, the overlap coefficients can be written in closed form using a

simple relation on the integral of a product of multivariate Gaussians : given two multivariate

Gaussians of respective means a, b, and covariances A, B, one can verify the following :´
REM N (x|a, A)N (x|b, B) dEMx = N (a− b|0, A+B). Using this property, the CSMI

expression can be expanded analytically into three main terms, detailing the components
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interactions within and between the classes, by developing the overlap coefficients :

Vi,j =

Oi∑
k=1

Oj∑
l=1

ωi,kωj,lN (si,k − sj,l|0, Si,k + Sj,l) . (B.4)

Thus, the value of CSMI is directly related to the sum of the overlap matrix V .

Until now, the expression given in Equation B.2 is purely generic and we can continue

by injecting our specific statistical model and our linear measurement models. The first

is developed from data acquired in the direct domain (from conventional cameras, noted

f ∈ REM) and must be transformed by the second, consisting of a linear projection operator

P and additive white Gaussian noise z of variance σ2
n. The compression of the likelihoods

from the direct space is expressed as follow :

p(f |C = i) =

Oi∑
k=1

ωi,kN (g|ti,k, Ti,k)

⇒
g=(IE⊗P )f+z

p(g|C = i) =

Oi∑
k=1

ωi,kN (g|si,kIE ⊗ P )ti,k, Si,k =

((IE ⊗ P )Ti,k(IE ⊗ P )ᵀ + σ2
nIEM

)
. (B.5)

In order to both limit the computational complexity and produce and upper-bound

on the probability of error, all the direct-space covariances Ti,j are set to be spherical, i.e.

∀i, k, Ti,k = σ2IEN where the scalar variance σ2 is obtained after training the statistical

model. Using the properties of the Kronecker product for matrices of matching size, the

generic overlap coefficients given in Equation B.4 become :

Vi,j =

Oi∑
k=1

Oj∑
l=1

ωi,kωj,lN
(
si,k − sj,l|0,

(
IE ⊗ 2(σ2PP ᵀ + σ2

nIM)
))
, (B.6)

V ∗i,j =

Oi∑
k=1

Oj∑
l=1

ωi,kωj,l exp

(
−1

4
Tr
[
(Ui,k − Uj,l)ᵀP ᵀ(σ2PP ᵀ + σ2

nIM)−1P (Ui,k − Uj,l)
])

.

(B.7)
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Where V ∗i,j is the denormalized overlap coefficient obtained after removing the superflu-

ous distribution normalization (for the computation of CSMI) and replacing the direct-space

samples ti,k by their matrix folded (or re-arranged) counterparts : Ui,k ∈ RN×E, consisting

of E blocks of dimensions N .

B.2 Derivation of the Gradient Expression

It is now simple, from this expression, to device the gradient of the CSMI metric with

respect to the projection matrix P . For this, we will rely extensively on the chain rule as well

as matrix and Jacobian identities. One can write for the denormalized overlap coefficients,

with the definition of the compressed covariance Σ = σ2PP ᵀ + σ2
nIM :

∇
(
V ∗i,j(P )

)
= −1

2

Oi∑
k=1

Oj∑
l=1

ωi,kωj,l exp

(
−1

4
Tr
[
(Ui,k − Uj,l)ᵀP ᵀΣ−1P (Ui,k − Uj,l)

])
× Σ−1P (Ui,k − Uj,l)

[
(Ui,k − Uj,l)− σ2P ᵀΣ−1P (Ui,k − Uj,l)

]ᵀ
. (B.8)

Finally, the gradient of the overlap coefficients is used to develop the expression of

interest :

∇ (ICS(P )) =
1

2

∑
c∈C pC(c)2∇

(
V ∗c,c(P )

)∑
c∈C pC(c)2V ∗c,c

+
1

2

∑∑
i,j∈C pC(i)pC(j)∇

(
V ∗i,j(P )

)∑∑
i,j∈C pC(i)pC(j)V ∗i,j

−
∑∑

i,j∈C pC(i)2pC(j)∇
(
V ∗i,j(P )

)∑∑
i,j∈C pC(i)2pC(j)V ∗i,j

. (B.9)
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B.3 Derivation of the Upper-Bound on the

Probability of Error

First, the probability of error is defined as the integral of the likelihoods over the regions

where the ideal (MAP) classifier would not output their label and is written :

Pe = 1−
ˆ
REM

max
i∈C
{p(g|C = i)} dEMg. (B.10)

Here, it is assumed that the Nc classes are equiprobable (pC(c) = 1/Nc) and also that

all the likelihoods are mixtures of Gaussians, as defined in Equation B.3. This expression is

then developed by using the positivity of both weights and statistical distributions, in order

to access simple pairwise interactions at the cost of producing an upper-bound. We have :

Pe ≤
1

Nc

∑∑
i>j∈C

Oi∑
k=1

Oj∑
l=1

max{ωi,k, ωj,l}
ˆ
RM

min{N (g|si,k, Si,k),N (g|sj,l, Sj,l)} dMg︸ ︷︷ ︸
=2Pe:i,k,j,l

≤ 2

Nc min{ωi,k}
∑∑
i>j∈C

Oi∑
k=1

Oj∑
l=1

ωi,kωj,lPe:i,k;j,l. (B.11)

From Equation B.11, a generalized Bhattacharyya bound UPe,Bc can be expressed as :

Pe ≤
1

Nc min{ωi,k}
∑∑
i,j∈C,j>i

Oi∑
k=1

Oj∑
l=1

ωi,kωj,lBc:i,k;j,l = UPe,Bc (B.12)

Bc:i,k;j,l =

ˆ
REM

√
N (g|si,k, Si,k)N (g|sj,l, Sj,l) dEMg

= (8π)
M
2 |Si,kSj,l|

1
4N (si,k − sj,l|0, 2(Si,k + Sj,l)). (B.13)

This inequality can be quadratically curved to relate the Bhattacharyya pairwise coef-
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ficients to the overlap coefficients used in CSMI :

B2
c:i,k;j,l = (8π)

M
2

√
|Si,kSj,l|
|Si,k + Sj,l|

N (si,k − sj,l|0, Si,k + Sj,l), (B.14)

4 min{ω2
i,k}

(Nc − 1)2
Pe

2 ≤
∑∑
i>j∈C

Oi∑
k=1

Oj∑
l=1

2ωi,kωj,l
Nc(Nc − 1)

B2
c:i,k;j,l. (B.15)

For the expression of CSMI, Equation B.2 can be adapted to the case of equiprobable

classes as :

ICS(C,G) =
1

2
ln(Nc)−

1

2
ln

[
1 + 2

∑∑
i>j∈C Vi,j∑
i∈C Vi,i

]
. (B.16)

It immediately appears that the following upper and lower bounds apply : 0 ≤ ICS ≤

ln(Nc)/2. And, from the definition of the overlap coefficients :

Vi,i ≤ (2π)−
M
2 max
k,l≤Oi

{
|Si,k + Si,l|−

1
2

}
, (B.17)

Vi,j =

Oi∑
k=1

Oj∑
l=1

ωi,kωj,l(8π)−
M
2

√
|Si,k + Sj,l|
|Si,kSj,l|

B2
c:i,k;j,l. (B.18)

Thus, the probability of error is related to the overlap coefficients expression via the

inequality : ∑∑
i>j∈C Vi,j∑
i∈C Vi,i

≥ 2 min{ω2}
(Nc − 1)

min {|Si,k + Sj,l|}
2N
√

max {|Si,kSj,l|}
Pe

2 . (B.19)

Finally, we conclude :

Pe ≤ UPe =
1

2 min{ωi,k}
√

(Nc − 1)KSat [exp(ln(Nc)− 2 ICS)− 1], (B.20)

with : KSat =

√
max {|Si,kSj,l|}

min {|(Si,k + Sj,l)/2|}
.
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One can remark immediately that in the particular case where all the covariances Si,k

are identical, the saturation factor is then KSat = 1. Consequently, CSMI only depends on

the projector P in the upper-bound expression. Its gradient can simply be written as :

∇ (UPe(P )) =

√
Nc − 1

2 min{ωi,k}
f [exp(ln(Nc)− 2 ICS(P ))]∇ (ICS(P )) , (B.21)

With : f : x 7→ −x√
x− 1

.

As a final note, we remark that Equation B.12 on the Bhattacharyya information (and

such as presented in [56, 70]) provides a tighter upper bound on the probability of error

than CSMI : i.e. Pe ≤ UPe,Bc ≤ UPe. However, this metric only consider the distance

separating components of different classes and not the distance between components of the

same class, as previously illustrated for the CSMI metric in Figure 4.8. Hence, optimizing

the Bhattacharyya information is similar to pushing away components belonging to different

class likelihoods but not pulling together components belonging to the same class such as it

is the case for CSMI.
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Appendix C

Two Point-Sources Resolution

Measurement Design : Additional

Derivations

Proof 1 : Fisher Information for a Poisson corrupted process. Let f be a function

R→ R+ modeling the output of a process on a variable θ that is corrupted by Poisson noise

:

pf (y|θ) =
f(θ)y exp(−f(θ))

y!
, (C.1)

such that ln(pf (y|θ)) is twice differentiable with respect to θ. We note f ′ and f ′′, respectively

its first and second derivatives. Then we can write the corresponding Fisher Information as
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:

I(θ) = −Ey

[
∂2

∂θ2
ln(pf (y|θ))

∣∣∣∣ θ] (C.2)

= −Ey[y|θ]
f(θ)

(
f ′′(θ)− f ′(θ)2

f(θ)

)
+ f ′′(θ) (C.3)

=
f ′(θ)2

f(θ)
(C.4)

Proof 2 : Fisher Information For Multiple Independent Measurements. If we

consider the output of multiple independent measurement functions (f0(θ), . . . , fQ(θ)), all

twice differentiable with respect to θ, and their respective outputs y0, . . . , yQ, we have for

the Fisher Information :

I(θ) = −Ey0,...,yQ

[
∂2

∂θ2
ln

(
Q∏
q=0

pq(yq|θ)

)∣∣∣∣∣ θ
]

(C.5)

=

Q∑
q=0

f ′q(θ)
2

fq(θ)
=

Q∑
q=0

Iq(θ) (C.6)

Lemma 1 : Uniform Convergence Of Series Based On Spherical Bessel Functions

Of The First Kind. We consider the two following series of functions over a finite interval

I of R containing zero, for some fixed positive integer b :

∀Q ∈ N, x ∈ I, Ab,Q(x) =

Q∑
q=0

qb
∂

∂x
jq(x)2 (C.7)

Bb,Q(x) =

Q∑
q=0

qb
∂

∂x
jq(x)jq+1(x) (C.8)

We have the following loose upper bound on the Spherical Bessel Functions, from their series

definition :

∀q ∈ N, x ∈ R, jq(x) =

√
π

2q+1
xq

∞∑
k=0

(−1)k

k!Γ
(
k + q + 3

2

) (x
2

)2k
(C.9)

|jq(x)| ≤
√
π

2q!

(
|x|
2

)q
exp

(
x2

4

)
(C.10)
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We can pick X such that, ∀x ∈ I, |x| ≤ X and we can test that, for the first series in

Equation C.7 we have the convergence bound :

∀P,Q ∈ N, Q > P,

|Ab,Q(x)− Ab,P (x)| =

∣∣∣∣∣
Q∑

q=P+1

2
qb+1

x
jq(x)2 − 2qbjq(x)jq+1(x)

∣∣∣∣∣ (C.11)

≤ π(1 +X2) exp

(
X2

2

) ∞∑
q=P+1

qb+1

2qq!
X2q−1. (C.12)

As the underlying series is positive, monotonic and converges (by the ratio test), we

can choose a P large enough to reduce the remainder, and subsequently the bound, to any

small ε we wish. In other words :

∀ε > 0,∃P ∈ N, ∀p, q ≥ P, x ∈ I, |Ab,p(x)− Ab,q(x)| < ε. (C.13)

We can thus conclude that the function series is uniformly Cauchy and converges uniformly

over I.

For the second series in Equation C.8 we have:

∀P,Q ∈ N, Q > P,

|Bb,Q(x)−Bb,P (x)| =

∣∣∣∣∣
Q∑

q=P+1

qbjq(x)2 − 2

x
qbjq(x)jq+1(x)− qbjq+1(x)2

∣∣∣∣∣ (C.14)

≤ π

(
1 +

X2

2

)
exp

(
X2

2

) ∞∑
q=P+1

qb

2qq!
X2q, (C.15)

where the same conclusion applies.

Finally, we consider the new set of series of functions, related respectively to Ab,Q and

Page 179



Appendix C. Two Point-Sources Resolution : Additional Derivations

Bb,Q:

∀Q, b ∈ N, ∀x ∈ I, Cb,Q(x) =

Q∑
q=0

qbjq(x)2 (C.16)

Db,Q(x) =

Q∑
q=0

qbjq(x)jq+1(x). (C.17)

We note that their pointwise convergence can easily be established at x = 0, as ∀q >

0, jq(0) = 0, j0(x) = 1 and, considering the previous results, we can apply the Differentiation

Theorem to obtain their respective uniform convergence as well as the relations :

Cb,Q(x) =
∂

∂x
Ab,Q(x), and (C.18)

Db,Q(x) =
∂

∂x
Bb,Q(x). (C.19)

Proof 3 : Series of Spherical Bessel Function Of The First Kind. We will use the

following two results from [78] (Equations 1.10.50 and 1.10.52), where Si(x) denotes the Sine

Integral.

∞∑
q=0

jq(x)2 =
Si(2x)

2x
, and (C.20)

∞∑
q=0

(1 + 2q)jq(x)2 = 1 (C.21)
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By combining them, we obtain:

∞∑
q=0

qjq(x)2 =
1

2

(
1− Si(2x)

2x

)
(C.22)

∞∑
q=0

jq+1(x)2 =
Si(2x)

2x
− j0(x)2 (C.23)

∞∑
q=0

qjq+1(x)2 =
1

2
− 3 Si(2x)

4x
+ j0(x)2 (C.24)

∞∑
q=0

(1 + 2q)jq+1(x)2 = 1− Si(2x)

x
+ j0(x)2 (C.25)

Thanks to the Differentiation results of the previous lemma (C.18), we can write from

the derivative of (C.20):

∞∑
q=0

jq(x)jq+1(x) =
1

2x
(1− j0(2x)) . (C.26)

We then find the following as the solution of a first order linear differential equation

involving Equation C.22 and Equation C.24 as well as the property (C.19) and the constraint

that the series is equal to 0 at x = 0 :

∞∑
q=0

qjq(x)jq+1(x) =
Si(2x)

4
+

3 sin(2x)

16x2
− 1

2x
+

cos(2x)

8x
(C.27)

With this result, we can compute the derivative of Equation C.22 to express the following

series and its respective shifted version :

∞∑
q=0

q2jq(x)2 =
1

8
Si(2x)

(
1

x
+ 2x

)
+

cos(2x)

8
+
j0(2x)

8
− 1

2
(C.28)

∞∑
q=0

q2jq+1(x)2 =
1

8
Si(2x)

(
9

x
+ 2x

)
+

cos(2x)

8
+
j0(2x)

8
− j0(x)2 − 3

2
(C.29)

The next series is also found as the solution of another differential equation involving
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Equation C.28 and Equation C.29, with the same value constraint at x = 0 than previously:

∞∑
q=0

q2jq(x)jq+1(x) = −Si(2x)

2
− sin(2x)

8x2
+
x

3
+

1

2x
− cos(2x)

4x
(C.30)

And after deriving Equation C.28 we obtain:

∞∑
q=0

q3jq(x)2 = −6x2 + 1

16x
Si(2x)− 3 sin(2x) + 6x cos(2x)

32x
+
x2

3
+

1

2
(C.31)

Finally, we can combine the results of Equations C.24 to C.31 to get:

∞∑
q=0

(1 + 2q)
q2

x2
jq(x)2 − 2(1 + 2q)

q

x
jq(x)jq+1(x) + (1 + 2q)jq+1(x)2 =

1

3
. (C.32)

Proof 4 : ASF Insensitivity Property. Considering any continuous and differentiable

ASF A(x) as well as mode g(x), the measurement function mg for two point sources separated

by 2θ can be written as:

mg(θ) =
1

2σ2

∣∣∣∣ˆ +∞

−∞
g
(x
σ

)
A

(
x+ θ

σ

)
dx

∣∣∣∣2 +
1

2σ2

∣∣∣∣ˆ +∞

−∞
g
(x
σ

)
A

(
x− θ
σ

)
dx

∣∣∣∣2 . (C.33)

We have for the limit of its first derivative:

lim
θ→0

∂

∂θ
mg(θ) = lim

θ→0

1

σ3
Re

[ˆ +∞

−∞
g
(x
σ

)
A′
(x
σ

)
dx

ˆ +∞

−∞
g
(x
σ

)
A
(x
σ

)
dx

]

− 1

σ3
Re

[ˆ +∞

−∞
g
(x
σ

)
A′
(x
σ

)
dx

ˆ +∞

−∞
g
(x
σ

)
A
(x
σ

)
dx

]
= 0. (C.34)

We can proceed similarly for the Fisher Information in the case of direct detection. We

Page 182



Appendix C. Two Point-Sources Resolution : Additional Derivations

recall the expression:

IDirect(θ) =

ˆ ∞
−∞

I ′(x)2

I(x)
dx, with I ′(x, θ) =

∂I(x, θ)

∂θ
(C.35)

In the case of two point sources, the normalized intensity profile can be written with the

previous ASF as : I(x) = (|A(x+ θ)|2 + |A(x− θ)|2)/2. One can write for its first derivative:

∀x ∈ R, lim
θ→0

I ′(x, θ) = lim
θ→0

Re
[
A′(x+ θ)A(x+ θ)− A′(x− θ)A(x− θ)

]
= 0 (C.36)

⇒ lim
θ→0
IDirect(θ) = 0. (C.37)

Proof 5 : Fisher Information Inequality On Aggregated Measurements. Let mS be

an aggregated measurement over a collection S of measurement functions from orthogonal

modes, i.e. mS(θ) =
∑

q∈Smq(θ), all corrupted by Poisson noise. At a location θ where

∀q, mq(θ) > 0, we have the following measurement function and Fisher Information:

IS(θ) =

(∑
q∈Sm

′
q(θ)

)2∑
q∈Smq(θ)

(C.38)

We can simplify the notations for the current location into sets (mq) and (m′q) and observe

that:(∑
q∈S

mq

)(∑
q∈S

m′2q
mq

)
−

(∑
q∈S

m′q

)2

=
∑
q∈S

∑
r∈S,r>q

mr

mq

m′2q +
mq

mr

m′2r − 2m′qm
′
r (C.39)

Here, if m′q or m′r are equal to zero or their product is negative, and with the previous

positivity constraint, the sum is clearly positive. Otherwise, one can write:

1

m′qm
′
r

(
mr

mq

m′2q +
mq

mr

m′2r − 2m′qm
′
r

)
=
mr

mq

m′q
m′r

+
mq

mr

m′r
m′q
− 2 ≥ 0 (C.40)

As we have, mrm
′
q/mqm

′
r > 0 and ∀x > 0, x+ 1/x ≥ 2. Thus, (C.39) is always positive
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and we can conclude with the inequality:

(∑
q∈Sm

′
q(θ)

)2∑
q∈Smq(θ)

= IS(θ) ≤
∑
q∈S

m′q(θ)
2

mq(θ)
=
∑
q∈S

Iq(θ) (C.41)
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