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Abstract

Abstract

Computational imaging and sensing leverages the joint-design of optics, detectors and
processing to overcome the performance bottlenecks inherent to the traditional imaging
paradigm. This novel imaging and sensing design paradigm essentially allows new trade-offs
between the optics, detector and processing components of an imaging system and enables
broader operational regimes beyond the reach of conventional imaging architectures, which
are constrained by well-known Rayleigh, Strehl and Nyquist rules amongst others. In this
dissertation, we focus on scalability aspects of these novel computational imaging architec-
tures, their design and implementation, which have far-reaching impacts on the potential
and feasibility of realizing task-specific performance gains relative to traditional imager de-
signs. For the extended depth of field (EDoF) computational imager design, which employs
a customized phase mask to achieve defocus immunity, we propose a joint-optimization
framework to simultaneously optimize the parameters of the optical phase mask and the
processing algorithm, with the system design goal of minimizing the noise and artifacts
in the final processed image. Using an experimental prototype, we demonstrate that our
optimized system design achieves higher fidelity output compared to other static designs
from the literature, such as the Cubic and Trefoil phase masks. While traditional imagers
rely on an isomorphic mapping between the scene and the optical measurements to form
images, they do not exploit the inherent compressibility of natural images and thus are
subject to Nyquist sampling. Compressive sensing exploits the inherent redundancy of nat-
ural images, basis of image compression algorithms like JPEG/JPEG2000, to make linear

projection measurements with far fewer samples than Nyquist for the image forming task.
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Abstract

Here, we present a block wise compressive imaging architecture which is scalable to high
space-bandwidth products (i.e. large FOV and high resolution applications) and employs a
parallelizable and non-iterative piecewise linear reconstruction algorithm capable of operat-
ing in real-time. Our compressive imager based on this scalable architecture design is not
limited to the imaging task and can also be used for automatic target recognition (ATR)
without an intermediate image reconstruction. To maximize the detection and classification
performance of this compressive ATR sensor, we have developed a scalable statistical model
of natural scenes, which enables the optimization of the compressive sensor projections with
the Cauchy-Schwarz mutual information metric. We demonstrate the superior performance
of this compressive ATR system using simulation and experiment. Finally, we investigate the
fundamental resolution limit of imaging via the canonical incoherent quasi-monochromatic
two point-sources separation problem. We extend recent results in the literature demon-
strating, with Fisher information and estimator mean square error analysis, that a passive
optical mode-sorting architecture with only two measurements can outperform traditional
intensity-based imagers employing an ideal focal plane array in the sub-Rayleigh range, thus

overcoming the Rayleigh resolution limit.
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Chapter 1

Introduction

1.1 Conventional To Computational Imaging

While humans have engaged in visual depiction of their life environment for millennia,
beginning roughly with prehistoric hunting scenes around 40,000 BCE, imaging techniques
only started to appear with the development of primitive optics. One of the first device built
for that purpose was the camera-obscura, which projected the view seen through a simple
pinhole into a darkened chamber. Many written records of such construct exist in a period
ranging from 500 BCE as it was built for studying light, to the 11th century for its use as
scientific instrument and entertainment. Of course, optics would continue to improve over
the next centuries and take giant leaps at times, with for instance Lord Newton’s design of the
first reflective telescope in 1668. Yet, while these image-forming devices were developing, the
underlying reproduction process was primarily manual. The birth of modern photography
happened at the beginning of the nineteenth century with the pioneering contributions of
Nicéphore Niépce and Louis Daguerre. They used of a photosensitive surface to record light
via a slow chemical process requiring a full day of exposure to imprint. Nearly a century

later, the invention of the camera tube, the first photoelectric image sensor [1, 2, 3|, advanced
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the recording process to the next generation. Combined with Cathode Ray Tube displays,
that system enabled the capture and rendering of video signals which could be transmitted

through radio-waves and gave rise to first television broadcastings in the 1930s.

The most recent image sensor revolution started in 1969 with the invention of the Cou-
pled Charge Device at AT&T Bell Labs by Willard Boyle and George E. Smith [4] which
enabled the digitalization of images and their processing with computers. The democrati-
zation of electronic cameras was further accelerated with the development of Active Pixel
Sensor in the 1990s, with better energy efficiency and lower price points due to the integra-
tion with silicon processes. With these advances, imagers are presently not only employed
for visual communication but also in numerous applications via machine vision, such as au-
tonomous driving, surveillance and security, medical diagnostics and natural user interfaces.
This trend has notably benefited from the exponential growth of computing capabilities, fol-
lowing Moore’s law [5], and enabled the progress of complex algorithms for image processing

and analysis.

However, it is interesting to note that the overall architecture of optical imagers in the
visible and infrared domains has remained essentially unchanged during the last century.
While more complex and precise optical objectives have been developed over the years, for
instance zoom lenses or apo- and super-apochromats, the design and implementation of these
image-forming optics subsystems has been largely isolated from the image sensor and post-
processing stages. Thus, the primary imaging performance criteria still remains an absence
of prominent aberrations and distortions and tend towards diffraction-limited performance.
Nevertheless, this isomorphic approach to imaging, and more broadly sensing, is facing
greater challenges in recent years as the general performance is becoming increasingly limited
by the physical and design constraints rather than technology. This is amply demonstrated
for instance by the integration of high resolution cameras into sub centimeter-scaled packages
to be integrated in smart-phones and other handheld devices, where the field curvature and
the low F-Number effectively limit the final image quality [27]; or for example in hyper-
spectral imaging where the signal readout bandwidth imposes a severe limitation on the

scalability of the system toward higher space-spectral-bandwidth products.
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In contrast to such isomorphic imaging system architectures, other imaging systems
require an algorithm to reconstruct the desired image from the measurement data because
of the indirect (non-isomorphic form) mapping from object to data measurement space.
Such indirect imaging systems are commonly employed for non-invasive medical imaging
techniques based on tomography, such as X-Ray, MRI, PET. In this indirect imaging domain,
an extensive corpus of research presents a multitude of methods to assess of the resulting
image quality and its impact on future exploitation [6, 7, 8]. This approach provides a

relevant example of an end-to-end system performance analysis.

Computational imaging (CI) breaks away from conventional imaging paradigm which
considers optics, detection and processing elements of the system in isolation. The goal of
the CI paradigm is to enable analysis and design of the three elements jointly in order to
potentially achieve a global optimal design and performance, not always achievable by the
traditional imaging approach. The pioneering work on an extended depth of field (EDoF)
imager is an ideal example of the computational imaging design. This system design employs
a mask to induce depth-independent aberrations in the optical domain. However, despite
the reduction in the magnitude of the modulation transfer function, the system becomes
nearly invariant to the scene depth. Therefore, it is possible using a post-measurement
digital filter to boost the modulation function and deliver a nearly ideal in-focus image
over a broader range of object conjugates relative to a traditional imager with the same
F-number and focal length. In order to produce the same depth-of-field extension within
the traditional imaging paradigm one would need to stop down (or apodize) the aperture,
which degrades both the photon throughput and the diffraction limited resolution. Hence
the elegant, and unconventional EDoF imager design can achieve an operating point beyond

the reach traditional imagers.

The EDoF computational imager design illustrates how balancing between optics and
post-processing design degrees of freedom enables improved system performances. Such
a joint-design approach can be used to achieve other system performance and complexity
trade-offs not accessible by traditional isomorphic imaging. Optical compressive sensing

(CS) is another noteworthy computational imaging architecture which relies on the inherent
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sparsity /compressibility of natural scenes to reduce the measurement sampling requirement
below the Nyquist rule. The underlying redundancy and hence the compressibility of nat-
ural images is evident by the widespread success of image compression algorithms, such as
JPEG/JPEG2000. However, conventional imaging approach employs isomorphic measure-
ments and thus ignores the inherent redundancy of natural scenes, leading to the measure-
ment of redundant data. As a result, conventional imagers incur several penalties such as
performing many times more measurements than required, having larger power consump-
tion and higher complexity FPA. In compressive imaging, the measurements correspond to
linear projections of the optical image onto some compact basis, such as the discrete cosine
transform (DCT), discrete wavelet transform (DWT) or random projections, and requires
relatively fewer measurement in proportion to the underlying sparsity of natural images.
Such optical pre-processing (projection) before detection has several inherent advantages
such as : fewer detectors and therefore lower complexity FPA, lower readout bandwidth,
lower power consumption, lower heat and multiplexing gain advantage for thermal-noise
limited detectors. As the compressive imaging measurements are not isomorphic samples
but instead projections of the optical image they need to be processed by a reconstruction

algorithm to form an image.

Another key aspect of computational imaging is its inherent suitability to support spe-
cific tasks, such as target classification, target tracking, e.t.c. The inherent joint-design
nature of computational imaging allows for a logical incorporation of specific tasks in the
post-processing algorithm which in turn determine the form and function of front-end op-
tics, so as to maximize the system-end-to-end performance using an objective task-specific
metric. Machine vision related tasks, such as target recognition is a pertinent example of
task specific imaging, where an intermediate image of the scene is not required, but only
the scene-related data for direct target recognition. For such tests, the appropriate system
performance is the probability of error, while the mean square error metric is commonly

employed for traditional image formation tasks.
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1.2 Main Contributions

While computational imaging paradigm alleviates some of the burdens of imager design
and performance bottlenecks inherent in traditional imaging architectures, it encompasses
its own set of design and implementation challenges. Given the different design approaches
of computational imaging and traditional imaging, the former typically involves higher sys-
tem complexity to achieve performance improvement relative to lower system complexity
and lower threshold of integration between optics, measurements and processing for the
latter. In this body of research we examine the scalability of computational imaging sen-
sor designs. For traditional imagers, simple design properties determine the scalability to
higher space-bandwidth (i.e. to increase the angular resolution and/or the field of view) or
temporal-bandwidth (i.e. to increase the frame-rate). In computational imaging and sensing,
this notion of system scalability extends beyond their system performance parameters, and
include other complex design aspects such as processing, scene models and system optimiza-
tion metrics. More specifically, given the integral nature of post-measurement algorithm,
the computational complexity of algorithm implementations becomes a critical component
in system scalability. Similarly, the underlying scene models that are required for system
optimization and processing need to be scalable with increasing complexity of the exploita-
tion task and to high space-bandwidth products. Thus it becomes imperative that such
challenges be addressed, in part by high-performance computational architectures such as
distributed processors and graphics processing units (GPUs). To address these designs and
implementation challenges, we construct efficient scene models and tractable system design

optimization frameworks, to design, build and test imagers and prototypes.

The main contributions of this dissertation are as follows :

e A joint-optimization framework is described for the design of an EDoF imager. The
system design metric provides a measure of the end-to-end system performance rather
than separately considering the performance of the optics, sensing and processing

stages separately. In our work, we also employ higher order Zernike polynomials
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demonstrating scalability in design complexity that contributes to a significant per-
formance improvement. The resulting phase mask design coupled with image restora-
tion algorithm produces higher fidelity image output due to lower noise amplification
relative to other phase masks design (cubic, trefoil) as well as providing a longer
depth range than a traditional imager. By leveraging a GPU-based implementation of
physics-based system forward modeling and post-measurement restoration algorithm
we were able to explore the full decision space represented by the large optical and
algorithm design degrees of freedom. To validate our joint-design approach, we opti-
mized and constructed a germanium phase mask-based F/1 EDoF long-wave imager
with an infrared camera and quantified its performance via extensive simulations and

lab experiments.

Design and implementation of a programmable compressive imager testbed that is
inherently scalable to large space-bandwidth product. The compressive imager acquires
high-resolution images using a low-resolution focal plane array (FPA) while collecting
4x to 8x fewer measurements relative to a conventional imager sampling at Nyquist
rate. We have developed a fully automated method for system calibration to minimize
deviations between the ideal system design and its imperfect optical implementation.
We have also developed a non-iterative piecewise linear estimation algorithm for image
reconstruction from compressed measurements that is scalable to higher frame-rates by
exploiting parallel implementation. With this testbed we were able to experimentally
verify the superior performance of information optimal projections in comparison to
several common random projection patterns relative to the random projection patterns

widely used in the compressed sensing community.

In addition to the image formation task, we also demonstrate how this programmable
compressive imager testbed can be used to implement automatic target recognition
(ATR), without having to reconstruct an intermediate image. We consider the task of
detecting and classifying specific targets against a cluttered background. We have de-
veloped a scalable scene model that accounts for typical variations in the scene, includ-

ing background and target appearance (rotation, location, scale). Using the scalable
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scene model and a computationally tractable information theoretic measure (CSMI)
we optimize the linear projection basis to maximize the relevant target information. In
contrast to well-known information measures, such as Shannon’s Mutual Information,
we can express both the objective function, ¢.e. CSMI, and its gradient in closed form
for our Gaussian mixture likelihood scene model. Furthermore, we show that CSMI
provides an upper-bound on the probability of misdetection and misclassification for
the system. Using this scalable information theoretic system design framework, we
demonstrate with simulation and experiment that the information optimized compres-
sive projections outperform random projections and other compressive designs as well
as the conventional imager in low SNR (0 to 10dB) and high-compression (between

42x and 64x) regimes.

We analyze the canonical incoherent and quasi-monochromatic point-sources separa-
tion problem from an information theoretic perspective, given its relevance in defining
the incoherent resolution of an optical imager system. Prior work by Tsang et al. has
already demonstrated that a mode decomposition of the optical field in the image plane
capture more of the Fisher Information than a traditional imager employing an ideal
FPA. This is rather a surprising result given that per Rayleigh’s criterion, the estima-
tion error of angular separation degrades quickly below the angular diffraction limit,
while the mode-sorting measurement can achieve constant error performance, includ-
ing in the sub-Rayleigh regime. Our contribution in the analysis and design of mode-
sorting measurement for the two point-sources resolution problem includes extending
the mode-design to hard aperture, as well as generalizing a two-modes measurement
design to any arbitrary aperture, and showing that any known optical aberrations in
the imager pupil can be perfectly compensated by the appropriate mode-basis design.
Finally, we analyze two candidate measurement architectures in the sub-Rayleigh range

and their angular estimation performance in presence of implementation non-idealities.

Page 31



Chapter 1. Introduction

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. In chapter 2 we describe a joint-
optimization framework for the design of an EDoF imager in thermal infrared spectral regime
for a set of system specifications, including the F-Number, depth range and maximum ac-
ceptable noise gain. We employ a system transfer function (STF) to capture the system’s
end-to-end performance. The optical phase mask is parametrized in terms of the Zernike
polynomials, whose coefficients serve as system design parameters and are optimized subject
to system specifications. The final system output for the optimized EDoF phase mask design
is compared to other existing designs in the literature such as the cubic and trefoil profiles.
The EDoF system prototype is constructed and its performance is tested against a conven-
tional imager. A scalable block wise compressive imager testbed is discussed in chapter 3,
which has notable advantages over both conventional and single pixel camera architectures
in terms of scalability with respect to space-bandwidth products. The random and infor-
mation optimal compressive projection designs are tested on this programmable testbed
to assess their respective output image quality. Chapter 4 describes how this compressive
imaging testbed can be used to implement an Automatic Target Recognition task, without
intermediate image reconstruction, by designing appropriate compressed measurements. We
employ the Cauchy-Schwarz mutual information metric coupled with a scalable scene model
to design compressive projection patterns for this specific task. Using simulation and exper-
imental data, we demonstrate the effectiveness of the proposed task-specific imager design.
In chapter 5, we pursue a theoretical analysis of the angular resolution limit to an optical
system with a finite aperture using the canonical two-point resolution problem. We quantify
the performance of an imager with a focal plane array measurement using Fisher information
metric and verify Rayleigh’s resolution limit. We then extend the analysis of an alternate
mode-sorting measurement design by Tsang et al. to a hard aperture and generalize a two-
mode design analysis to any arbitrary aperture. We conclude in chapter 6 with some key

observations of this body of research and directions for future work.

Page 32



Chapter 2. Joint-Design Approach for Extended Depth of Field Imaging

Chapter 2

Joint-Design Approach for Extended
Depth of Field Imaging

While a shallow depth of field is often used to emphasize the subject of a photograph, it
can also be a burden in applications constrained to use fast optics to compensate for low scene
flux and/or low SNR. The computational extended depth of field (EDoF) imager solves this
problem by introducing specific aberrations in the optical train which neutralize the defocus
and can be corrected by digital processing. In this chapter, we propose a joint-design and
optimization framework which optimizes both the parameters of the optical phase mask and
of the digital restoration algorithm to maximize the overall image quality delivered by the

computational imager.

2.1 Introduction

The depth of field of an optical imaging system is an important operational parameter
in many applications such as microscopy and photography. Traditional optical approaches

to control the depth of field rely on changing the f-number (f/#) or numerical aperture (NA)
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and/or aperture apodization, which can potentially degrade the light collection and the reso-
lution of an imager significantly. Such system performance trade-offs inherent in traditional
imaging system designs can be overcome by considering optical and computational design
degrees of freedom jointly within a computational imaging framework. A point in case is
the pioneering computational optical imaging, proposed by Dowski and Cathey [9], which
extends the depth of field (DoF) of an imager by employing a cubic phase mask in con-
junction with linear post-measurement processing. This non-traditional imaging approach
is especially suitable for applications such as microscopy and surveillance where an extended
depth of field (EDoF) is desirable without concomitant signal to noise ratio (SNR) penalty
incurred with traditional optical-only approaches. Since this pioneering EDoF imager design
with the cubic phase mask, numerous improvements with alternate phase masks designs have
been proposed in the literature. Some of the notable EDoF phase mask designs include, the
canonical polynomial basis based phase mask [21], the Log-Asphere phase mask [24], the
exponential phase mask [26], the fractional power and binary amplitude phase mask [25],
the freeform mesh mask [23]. It is noteworthy that nearly all of these phase mask designs
rely on purely optical metrics, such as Strehl ratio, optical point spread function (PSF) or
modulation transfer function (MTF) defocus invariance, ambiguity function, and therefore,
not truly joint designs because they ignore the end-to-end system performance that includes

the computational subsystem.

There have been a few EDoF phase mask designs that have indeed considered the joint
end-to-end system optimization, including the work of [20, 22]. However, such designs only
include relatively few optical design degrees of freedom and as such are unable to leverage
the full potential of the computational imaging paradigm. To our knowledge there has been
no comprehensive phase mask design study for EDoF imaging over a large set of optical
design degrees of freedom examining the inherent trade-off between measurement signal-to-
noise ratio (SNR) and DoF extension. While in Refs. [18], [19], S. Bagheri et al. present a
theoretical framework that yields a bounding expression for the inherent trade-off between
the extension DoF and measurement SNR budget, they do not provide actual phase mask

designs that achieve or even approach these theoretical limits. In this work, we propose a
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framework to jointly optimize a circular phase mask using an end-to-end system modulation
transfer function (STF) based metric to achieve a desired DoF' extension, given a finite SNR
budget. We consider the powerful Zernike parametrization of the optical phase mask over a
large set of polynomial coefficients that allows access to a rich design space. Our choice of
Zernike polynomial representation is based on an efficient mathematical representation of an
optical surface on a circular aperture. Furthermore, the Zernike polynomials are routinely
used in optical design due to its relation to various aberrations (e.g. Seidel aberrations). We
consider the application of this joint design framework to an EDoF imaging system design

and experimental validation in the long wave infrared (LWIR) spectral band.

2.1.1 Limitation of Traditional Approach

The DoF of a traditional imaging system can be maximized by focusing it at the hy-
perfocal distance syp. At this focal distance, all object conjugates between half of the
hyperfocal distance up to infinity are in focus, in the paraxial regime. The hyperfocal dis-
tance syp can be expressed as a function of imaging system’s focal length f, its F-Number
F; and the admissible blur size ¢ : syr = f?/(cF}). Therefore, the DoF at the hyperfocal
distance can be extended by simply decreasing the f/# (i.e. slower f/#) of the imaging sys-
tem. Note that such a DoF extension approach is also applicable for other focus positions as
well. However, as mentioned earlier this traditional approach incurs two performance penal-
ties : (a) reduced light collection leading to lower measurement SNR, and (2) degradation
of diffracted-limited resolution. The relative SNR loss can be quantified per Equation 2.1,
where f/#ref < [/#siow, as illustrated in Figure 2.1. The impact of slower f/# on the
diffraction-limited resolution (at A = 10um) is also evident in Figures Figure 2.2. This
motivates a non-traditional approach to extending depth of field by jointly exploiting the

optical and the computational degrees of freedom, as outlined in the introduction section.
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Figure 2.1: Standard imaging system characteristics : SNR loss and PSF diameter as func-
tions of the F-Number/closest in-focus distance.

2.2 Joint System Design Framework

In this section, we describe our joint imaging system design framework that encompasses
a high-order Zernike phase mask, a linear image restoration algorithm, an end-to-end system
design metric and the system optimization method. We begin by defining our optical system

model.
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Figure 2.2: Comparison of the diffraction limited and defocused MTF's induced by a point
source at the 25m (the hyperfocal distance in this context) and 4m respectively. The mod-
ulation functions are normalized to the largest aperture (F/1) to illustrate the energy lost
while stopping down the aperture.

2.2.1 Optical System Model

The optical component of the computational imaging system is modeled by its thin-lens
equivalent, which yields an accurate optical PSF description in the paraxial regime. Given
this model, we can express the wavefront in the exit-pupil U(z, y, s,) in terms of the aperture

function P(z,y), the phase mask function e, and object/image distance s,/s; :

o, gis) = U Plog) oxp (35 | (545 = 1) @40 = 28aen)] ). 22

So S5 f

The optical path length (OPL) function A,(z,y) associated with the the phase mask

profile S, (z,y) is defined as: Ay (z,y) = (n, —1)Sa(x,y), where n, is the refractive index of
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the phase mask material. This wavefront expression, in the exit-pupil, leads to the following
definition of the (complex) optical transfer function (OTF) in Equation 2.3, where x denotes

the autocorrelation operator.

(U * U] (AEsi, Asis So)

OTF(&m: 50) = =007 (0.0)

(2.3)

The defocus phase ¥(R) is defined as :

q,:;;;(l_i_l), (2.4)

where R = /22 + 3?2 is the radial pupil coordinate.

2.2.2 Zernike Phase Mask Parameterization

We parameterize the phase mask surface in terms of Zernike polynomials, which are
orthonormal over the unit circle and widely used in metrology to describe system aberrations
that arise due to departure from the reference sphere. Thus the phase mask profile Sy (p, )
can be defined in terms of the first N Zernike polynomials Z.{m:ny(p, ) in Equation 2.5,
where ay, denotes the expansion coefficient for the k™ polynomial and p/p are the polar
coordinate variables. The set of parameters {1, ...ay} or parameter vector a represents

the optical design degrees of freedom.

N
k
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The n'® order Zernike polynomials Z™(p, ) are defined as follows :
Vn > 2, |m| <n, (n—m) € {2p;p € Z},

. R™(p) cos(myp), ifm >0
Zy' (p,p) =
R m

(p) sin ), otherwise

R&(p)=(n§2<—1>’“(",}k)((n_”nj)f;“_ Je peal e

The second and third order Zernike polynomials are illustrated in Figure 2.3.

) 0 2
22 ZZ Z2

Figure 2.3: Zernike Polynomials of order n = 2 (top-row) and n = 3 (bottom-row). From
left to right, first row : astigmatism, defocus, astigmatism; second row : trefoil, coma, coma,
trefoil.

It is instructive to note that any radial profile through the center (i.e. optical axis) of
an even order Zernike polynomial is of course an even function. Thus the corresponding
wavefront is locally similar to a defocus wavefront. This indeed also holds for any linear
combination of even order polynomials with arbitrary weights, due to the properties of even
functions. Thus, we can infer that all even order polynomial terms primarily introduce some
order of local focusing of the wavefront. This points to the inherent design redundancy
associated with the parameter o4 of all even order polynomials parameters, as such we set
all such parameter values to zero, except for the main defocus term Z9(p) = 2p* — 1. The
rationale for including the main defocus it that it serves to center the EDoF response within

a desired range of object conjugates.
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Overall, the Zernike parameterization of the phase mask is key to the performance im-
provements that derive from the EDoF imaging system design described in this work. We
believe that this is primarily due to two reasons : (1) Zernike polynomials offer an efficient
representation of functions (i.e. wavefronts) on the unit circle that corresponds to a circular
aperture that is relevant in most optical imaging systems, and (2) such an efficient represen-
tation enables inclusion of a larger number of optical parameters that extends the system
design space. Furthermore, the direct correspondence between the Zernike polynomials and
the Seidel aberrations also provides guidance towards the inclusion or exclusion of particular
order(s) of the Zernike polynomial, as discussed in the preceding paragraph. It is important
that point out that while any description of a phase mask in Zernike polynomials can be
equivalently expressed in any alternative complete bases (e.g. polynomials in the Carte-
sian coordinate), however, such an alternative description likely leads to a larger number
of parameters. This would lead to an inefficient phase mask representation and as a result
thereof increased complexity of phase mask design/optimization. Thus, the efficiency of the
phase mask representation, with respect to the computational complexity of system design,

becomes an important consideration towards the ability to explore a larger design space.

2.2.3 Image Reconstruction Algorithm

To incorporate the optical PSF into the post-measurement image reconstruction stage
of the computational imaging system, we choose the Wiener filter Equation 2.8 that is the
optimal linear filter design in the mean square error (MSE) sense [15]. Moreover, the Wiener
filter enables the inclusion of statistical model of scene variability via its power spectral
density (PSD) and accounts for the finite image sensor noise in terms of the signal to noise
ratio (SNR) Weyg, thereby potentially improving the reconstruction performance. Given a
target or a reference object distance s,, at which we want to achieve perfect restoration of the

optical PSF or OTF, up to the diffraction-limited performance, the Wiener filter W, 5, (£, 1)
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can be expressed as :

W () = OTFa (&1, 50)" Tonyelope (&) 2.8
e |OTFCX(£’ 7, Sw)‘z + Snoise(ﬁ» n)/Smode](fa 77) 7 ‘

where T’ is the target diffraction-limited OTF, S} ige(§; ) is the PSD of the

envelope(£7 )
image sensor noise, and S}, ,q4e1(§57) is the scene PSD model. The scene and image sensor
noise PSD models are defined as follows :

v

Smodel(ga 77) = W and Snoise(f,n) = 10_WSNR,/1O’ (29)

where the scalar parameters 5 and v are obtained by fitting the average PSD of a dataset

of in-focus grayscale images.

In applications where the measurement noise is significant, such as micro-bolometer
based imaging sensor in LWIR, the noise gain G, is an important system performance

metric. It is defined as the integral of the amplification power over the OTF domain P :

G, = 10log,, (//P (Was, (€,0)|* dédn ///P dgdn) . (2.10)

In the Wiener filter design, the parameter Wgyg, defined as the measurement SNR,

determines the trade-off between the OTF restoration and the noise gain.

2.2.4 System Design Metric and Optimization

The system design metric g(a), which is a measure of the system transfer function

(STF) departure from a reference flat (unity) profile, is defined as follows,

max

sle) = [ [ 1= STRuEn s ()] dsacan (2.11)
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where the STF is defined as the product of the OTF and Wiener image reconstruction filter
profile :

STFa(§,1, s0) = OTFo(&,1, So0) - Was, (£, 7). (2.12)

Thus the overall goal of this system design metric is to minimize the STF variations
over a desired depth of field across all spatial frequencies. In other words, achieve defocus
invariance across a depth of field. There are some subtle but important considerations
that motivate the choice of this particular system design metric. First, a design metric
based on the STF captures the end-to-end system performance, which is consistent with
a joint system design approach. Second, it is also important to note that while the ideal
STF profile should take the form of a diffraction-limited OTF, the reference flat profile is
chosen instead to emphasize the restoration of the high spatial frequencies, thus maximizing
the overall system resolution. Furthermore, the choice of the £; distance in the system
design metric formulation, as opposed to say a L, distance, is to measure departure from
flat reference provides a higher sensitivity to OTF amplitude variations across the depth of
field. For example, OTF amplitude variations around a low modulation value can be more
deleterious to the system performance compared to variations around higher modulation
values. This is due to the action of Wiener image reconstruction filter whose gain is inversely
proportional to the OTF amplitude (modulation). Therefore, in effect this system metric
behavior promotes phase mask designs that yield relatively constant OTF amplitude across
the depth of field with higher amplitude, thus simultaneously minimizing the noise gain and
reducing reconstruction artifacts that derive from OTF variations through focus. Finally, we
note that the computation of the system design metric in Equation 2.11, employs numerical
integration over spatial frequencies £/n. More importantly, the remaining outer integral in

min ,max

Equation 2.11 defined over a range of image distances [s/™", s}

; ] instead of equivalent range

of object distances [s™", sMax]

oun sy This choice of integration over image space, compared to

the object space, results in a higher numerical accuracy for a fixed number of integrand
evaluations because it samples the closer (to lens) object conjugates more densely where the

defocus and hence the integrand changes rapidly.
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Given the non-convex nature of the system design metric coupled with the relatively high
dimensionality of the search space (equal to the number of coefficients chosen for the phase
mask description), we employ simulated annealing [16], a global optimization technique, for
system optimization. As simulated annealing does not guarantee global optimal for a finite
number iterations, we repeat the optimization process, each with a random starting point,
a number of times to obtain a set of solutions. Each optimization run involves exploration
of approximately 100,000 candidate systems. As we discuss in depth in the next section, we
find that there is no unique system design with the best performance, but rather a set or

family of system designs with visually similar phase masks.

Focal length 25.0 mm
Fy 1.0
Center wavelength 10.0 pm
Pixel pitch 25.0um
Optical cut-off frequency ~ 100mm !
Sensor cut-off frequency 20mm !
Hyperfocal distance in object space 25.6 m
HF /2 or closest acceptable distance 128 m
Target Closest distance 4.0 m
SN Ry,ss after increassing the F-Number of a standard system 19.7 dB
Maximum tolerable noise gain (SN Ryyss) 3.0 dB

Table 2.1: Characteristics of the targeted optical system

2.3 System Design Results and Analysis

In our design study we pursue optimization of three different EDoF imaging systems
within the proposed joint design framework : (1) a traditional cubic phase mask with a
third-order phase term and a defocus term: Acupic(7,9) = a1(23 + 33) + as(2? + »?), (2) a
trefoil phase mask design, with two trefoil Zernike polynomial terms along with a defocus
term: Ayeroil (0, 9) = a(3,-3)(p° sin(39)) + as,43)(p° cos(39)) + a2,0)(2p° — 1), and (3) our
proposed Zernike-based phase mask, with only the odd orders (up to n = 7) and the main
(n = 2 order) defocus terms : Agzernike(0, ©) = D2 D0 neodd CmnZn (P, @) +20(2p% —1). The
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system design parameters and specification for this study are listed in Table 2.1. We will
use the long wave infrared (LWIR) spectral band (A = 10um) to illustrate the joint design
approach in this work. The desired depth of field for this system design extends from 4m
out to +oo that corresponds to a defocus range of ® = 1.65\. The maximum noise gain
budget is set to 3dB to limit the noise amplification in the image reconstruction. Note that
these design targets are meant to be illustrative, and in principle the proposed joint design
framework and the Zernike phase mask design can be applied to any optical spectral band

and depth of field requirements.

The optimized optical phase mask prescriptions for each of the three designs are tab-
ulated in Table 2.2, Table 2.3, and Table 2.4 and their surface interferograms are shown in
Figure 2.16. It is interesting to note that the optimized defocus term is similar across all the
three phase mask designs. This illustrates that the optimization process effectively adjusts
the original focus point (hyperfocal distance) to a closer object distance to achieve a sym-
metric defocus range across the desired depth of focus. The corresponding two-dimensional
(2D) MTFs of the three optimized EDoF systems are shown in Figures 2.5 and 2.6 for two
different object distances. Figure 2.4 show the one-dimensional profiles of the 2D MTF's
in X (horizontal) and XY (diagonal) directions. Note that even though the cubic phase
mask phase profile is separable in x and y dimensions, the circular aperture renders it non-

separable, as evident in these one-dimensional M'TF profiles.

For the conventional imaging system we observe a significant loss of modulation for
object ranges between 4m and 10m as shown in Figure 2.4. In comparison, the cubic
phase mask design achieves a significant reduction in modulation variance across focus.
However, the modulation across the diagonal direction (XY) is significantly degraded relative
to horizontal direction (X). This leads to a STF that has excess modulation (i.e. greater
than unity) corresponding to the spatial frequencies where the OTF amplitude is relatively
small. Such large variations in the STF across the focus leads to significant artifacts (see
images in Figures 2.10 to 2.15). The optimized trefoil phase mask design improves upon
the cubic phase mask design by implementing a more symmetric phase profile that includes

both elements (i.e. positive and negative orders) and achieves nearly identical OTF along X
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and XY directions. Furthermore, the resulting STF is relatively well behaved compared to
the cubic phase mask. The optimized Zernike phase mask design achieves a higher degree
of OTF invariance, given the additional DoF, which yields a well behaved STF across the
desired DoF.

Note that the reconstructed modulation transfer profiles are embedding prior knowl-
edges of the average power spectrum of natural scenes and noise from the Wiener filter

expression. This tends to affect the high spatial frequency range.

We also tested free optimization of the all the Zernike coefficients up to the 7" order and
the optimization process tends to validate our assumption over the contribution of the even
orders of Zernike polynomials (n = 2). After the optimization process, the coefficients of
the corresponding polynomials are low, in magnitude, compared to other significant weights.
They are usually non-zero because of the random fluctuations introduced by the Simulated
Annealing algorithm. The only coefficient not following this observation is the defocus term
which is always kept at the previously discussed value. However, the stochastic optimization
process does not return here a single solution to the problem but rather solutions belonging
to two different sets depending on if the phase mask is primarily based on coma or trefoil

Zernike components, as shown in Figure 2.17.

ID | Cartesian Coefficient | (in unit of \) | Expression
1 | Defocus (n=2) 0.629 (2% 4+ y?)
Cubic (n=3) 1.934 (23 + %)

Table 2.2: Cubic phase mask coefficients (for the normalized radial coordinate : p

Vvt +y? <1.0).

ID | Zernike Coefficient | (in unit of )\) | Expression
1 | Defocus (n=2, m=0) 0.313 (207 — 1)

6 | Trefoil 1 (n=3, m=-3) 0.700 (p®) sin(3¢)
7 | Trefoil 2 (n=3, m=3) 0.760 (p?) cos(3¢p)

Table 2.3: Trefoil phase mask coefficients.

The reconstruction step is adjusted so that the noise-gain generated by the linear Wiener

filter is equal to 3.0dB for the novel design; this is managed by adjusting the single Wiener
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MTF as a function of the object distance MTF as a function of the object distance

Modulation
Modulation

Modulation
Modulation

—=—11.00m (¥
——12.82m (¥ = -0.30 )
—*—25.64 m (¥ = 0.00 )

=-0.412)

Figure 2.4: Comparison of the MTFs for a standard imager, common designs and the
optimized phase mask. Upper left corner : conventional design (wide opened); Upper
right corner : cubic phase mask design; Lower left corner : trefoil phase mask design;
Lower right corner : optimized phase mask design. Blue MTF's are in X slice, red MTF's

are in XY slice (at 45°).

parameter Wsng. We share the selected value with the two other systems. The cubic phase

mask design has a resulting noise gain of 4.5dB, 1.5dB higher than the optimized design.
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MTF on sensor for an object at 12.820 m (¥ = -0.30 1) MTF on sensor for an object at 12.820 m (¥ = -0.30 A) ,
80t 09 t 09
60} 0.8 t 0.8
40t 07 t 07

06 06
- 05 05

0.4 0.4
H 03 t 03
L 0.2 t 0.2
H 0.1 t 0.1

80 60 40 20 0 20 40 60 80 0 0
- X (mm )
MTF on sensor for an object at 12.820 m (¥ = -0.30 1) MTF on sensor for an object at 12.820 m (¥ = -0.30 A)

L 0.9
r 0.8
L 0.7
0.6
0.5
0.4
L 0.3
r 0.2
r 0.1

Figure 2.5: Comparison of the MTFs for a standard imager, common designs and the
optimized phase mask. The object is at a distance of 12.8m (¥ = —0.30\). Upper left
corner : conventional design (wide opened); Upper right corner : cubic phase mask
design; Lower left corner : trefoil phase mask design; Lower right corner : optimized
phase mask design. The isolines (purple) represents steps of 0.1 in MTF. The green contour
corresponds to the optical cut-off frequency.

The trefoil phase mask design has a resulting noise gain of 4.8dB, 1.8dB higher than the
optimized design. We also test the image quality of these systems by simulating a Siemens
Star pattern (Figure 2.10) and various natural scenes (Figures 2.12 and 2.14) covering the

full OTF support (the virtual sensor is sampling up to the optical cut-off) for a SNR of
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MTF on sensor for an object at 4.000 m (¥ = -1.65 1) MTF on sensor for an object at 4.000 m (¥ = -1.65 1)
20 40 60 80 ‘ ‘ ‘ 0 60 80
X (mm’1) X (mm'1)
MTF on sensor for an object at 4.000 m (¥ = -1.65 A) MTF on sensor for an object at 4.000 m (¥ = -1.65 &)

Q:

Figure 2.6: Comparison of the MTFs for a standard imager, common designs and the
optimized phase mask. The object is at a distance of 4.0m (U = —1.65)\). Upper left
corner : conventional design (wide opened); Upper right corner : cubic phase mask
design; Lower left corner : trefoil phase mask design; Lower right corner : optimized
phase mask design. The isolines (purple) represents steps of 0.1 in MTF. The green contour
corresponds to the optical cut-off frequency.

25.0dB and with previous filters and reconstructions designs. The higher noise gain of cubic

and trefoil-based designs over the optimized Zernike design is evident in these examples.

To highlight the artifacts generated by both the cubic and trefoil phase mask designs,
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ID | Zernike Coefficient | (in unit of \) Expression

1 | Defocus (n=2, m=0) 0.340 (20 — 1)

4 | Coma 1 (n=3, m=-1) 0.101 (3p® — 2p) sin(¢p)

5 | Coma 2 (n=3, m=1) 0.561 (3p® — 2p) cos(p)

6 | Trefoil 1 (n=3, m=-3) -0.283 (p?) sin(3¢)

7 | Trefoil 2 (n=3, m=3) -0.321 (p?) cos(3¢p)

13 | (n=5, m=1) 0.092 (10p° — 12p° + 3p) cos(¢p)

14 | (n=5, m=-1) 0.029 (10p° — 12p + 3p) sin(p)

15 | (n=5, m=3) 0.001 (5p° — 4p?) cos(3p)

16 | (n=5, m=-3) -0.009 (5p° — 4p%) sin(3p)

17 | (n=5, m=5) -0.024 (p° )cos(5<p)

18 | (n=5, m=-5) -0.020 (p°) sin(5y)

26 | (n=7, m=-1) 0.014 (350" — 60p° + 30p> — 4p) sin(y)
27 | (n=7, m=1) 0.065 (35p" — 60p° + 30p° — 4p) cos(p)
28 | (n=7, m=-3) -0.022 (21p" — 30p° + 10p%) sin(3¢p)

29 | (n=7, m=3) -0.021 (21p" — 30p° + 10p?) cos(3p)

30 | (n=7, m=-5) -0.033 (7,07 - 6,0 ) sin(5¢)

31 | (n=7, m=5) 0.003 (7p" — 6p°) cos(5¢)

32 | (n=7, m=-7) -0.027 (p" s1n( ©)

33 | (n=7, m=7) 0.001 (p") cos(T¢p)

Table 2.4: Optimized phase mask coefficients.

due to the over or undercompensation of the System Transfer Function at particular distances
as shown in Figures 2.7, 2.8 and 2.9, we remove the noise randomness from the simulations
while maintaining all other parameters constant (including Wiener filter prior parameters
constant). These synthetic results are shown in Figures 2.11, 2.13 and 2.15. The optimized
design shows again a superior and sustained image quality throughout the range of distances
tested. Note finally that all of the EDoF systems tends to deliver a slightly softer image at
both edges of the specification range, e.¢g. 4.0m and infinity in the current context. This is
due to the change of focus provoked by the only parabola term contained in the phase masks
expression, which centers the imaging performances in the middle of the defocus range of

interest, e.g. at about 12.8m here.

Although the coefficients corresponding to the polynomials of the 5" and 7" orders
are small in magnitude compared to those of the 3'¢ order and the defocus term, their

contribution to the overall system performance is significant. As shown in Figure 2.18,
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Restored MTF as a function of the object distance Restored MTF as a function of the object distance Restored MTF as a function of the object distance
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Figure 2.7: Comparison of the STFs for major designs. Top row : restored amplitude
modulation; Bottom row : restored phase. Blue MTF's are in X slice, red MTFs are in XY
slice (at 45°).

if we truncate these higher order components from the optimized mask the MTF is not
kept constant anymore through the distance range. After reconstruction, this distortion
leads to a large amplitude variation of the transfer function at mid- spatial frequencies.
Thus, this truncated mask design introduces artifacts in the restored images similar to those

encountered for the cubic phase mask.
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STF on sensor for an object at 12.820 m (¥ = -0.30 1) STF on sensor for an object at 12.820 m (¥ = -0.30 1) STF on sensor for an object at 12.820 m (¥ = -0.30 1)
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Figure 2.8: Comparison of the STF's for major designs for an object at a distance of 12.8m
(U = —0.30\). From left to right : cubic phase mask design, trefoil phase mask design,
optimized phase mask design. The isolines (purple) represents steps of 0.1 in MTF. The
green contour corresponds to the optical cut-off frequency.

STF on sensor for an object at 4.000 m (¥ = -1.65 ) STF on sensor for an object at 4.000 m (¥ = -1.65 ) STF on sensor for an object at 4.000 m (¥ = -1.65 )

y (mm™)

80 60 40 -20 0 20 40 60 80

Figure 2.9: Comparison of the STF's for major designs for an object at a distance of 4.0m
(I = —1.65)). From left to right : cubic phase mask design, trefoil phase mask design,
optimized phase mask design. The isolines (purple) represents steps of 0.1 in MTF. The
green contour corresponds to the optical cut-off frequency.

2.4 Experimental results

To validate the performance of the optimized system, we build the prescribed Zernike
optimized phase mask out of a @25mm germanium flat mask (with refractive index n =~ 4.0)
with a freeform diamond turning CNC machine and test that the surface is meeting the
design specifications via interferometric optical testing. To compare the performances of the
computational and conventional designs, we use two identical thermal cameras with each

an uncooled microbolometers array of size 384 x 288 pixels and 25um pitch matching the
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Standard Cubic Design Trefoil Design  Optimized Design
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Figure 2.10: Simulation of images over the full OTF support after reconstruction, for a
SNR of 25dB. The distances are, from the top to bottom row : 4.0m (¥ = —1.65)), 6.0m
(U = —1.00A), 10.0m (¥ = —0.67A), 12.8m (¥ = —0.31\) and 25.6m (¥ = 0, the hyperfocal

distance).
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Standard Cubic Design Trefoil Design  Optimized Design
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Figure 2.11: Simulation of images over the full OTF support after reconstruction, excluding
noise. The distances are, from the top to bottom row : 4.0m (¥ = —1.65)), 6.0m (¥ =
~1.00\), 10.0m (¥ = —0.67)), 12.8m (¥ = —0.31)\) and 25.6m (¥ = 0, the hyperfocal

distance).
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Standard Cubic Design Trefoil Design  Optimized Design
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Figure 2.12: Simulation of images over the full OTF support after reconstruction, for a
SNR of 25dB. The distances are, from the top to bottom row : 4.0m (¥ = —1.65)), 6.0m
(U = —1.00A), 10.0m (¥ = —0.67A), 12.8m (¥ = —0.31\) and 25.6m (¥ = 0, the hyperfocal

distance).
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Standard Cubic Design Trefoil Design  Optimized Design
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Figure 2.13: Simulation of images over the full OTF support after reconstruction, excluding
noise. The distances are, from the top to bottom row : 4.0m (¥ = —1.65)), 6.0m (¥ =
~1.00\), 10.0m (¥ = —0.67)), 12.8m (¥ = —0.31)\) and 25.6m (¥ = 0, the hyperfocal

distance).
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Standard Cubic Design Trefoil Design  Optimized Design
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Figure 2.14: Simulation of images over the full OTF support after reconstruction, for a
SNR of 25dB. The distances are, from the top to bottom row : 4.0m (¥ = —1.65)), 6.0m
(U = —1.00A), 10.0m (¥ = —0.67A), 12.8m (¥ = —0.31\) and 25.6m (¥ = 0, the hyperfocal

distance).

Page 56



Chapter 2. Joint-Design Approach for Extended Depth of Field Imaging

Standard Cubic Design Trefoil Design  Optimized Design
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Figure 2.15: Simulation of images over the full OTF support after reconstruction, excluding
noise. The distances are, from the top to bottom row : 4.0m (¥ = —1.65)), 6.0m (¥ =
~1.00\), 10.0m (¥ = —0.67)), 12.8m (¥ = —0.31)\) and 25.6m (¥ = 0, the hyperfocal

distance).
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Simulated interferogram of Germanium surface at A=0.633 um Simulated interferogram of Germanium surface at A=0.633 um

Zernike Coefficients
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Figure 2.16: Simulated interferograms of the surfaces at A = 0.633um. Upper left corner
cubic phase mask design; Upper right corner : trefoil phase mask design; Lower left
corner : optimized phase mask design; Lower right corner : Zernike Coefficients bar
chart for the optimized Zernike surface.

specifications of Table 2.1. These cameras especially operate with a limited SNR budget of
about 20dB. They also use two identical 25mm F/1 germanium lenses consisting of two
aspherical elements and which are diffraction-limited for the in-focus plane. We secure the

germanium phase mask at the entrance aperture of one of the camera and will apply the
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Figure 2.17: Other surfaces returned by the optimization process for the same operating
characteristics (simulated interferograms at A = 0.633um). Most of the results can be
sorted in one of the two largest sets depending if they are based primarily upon coma (top
row) rather than trefoil (bottom row) Zernike coefficients.

linear digital reconstruction filter described previously to its output images.

To test the performance of both the conventional and the computational system, we
image a calibrated blackbody source with its surface temperature set to 37°C'. We place

different bar chart masks in front of the source to analyze the modulation transfer functions of
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MTF as a function of the object distance Restored MTF as a function of the object distance
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Figure 2.18: Modulation transfer functions after truncation of the 5™ and 7*" orders Zernike
polynomials from the optimized surface. Upper left corner : optical MTF; Upper right
corner : STF; Lower left corner : 2D STF at a distance of 12.8m (¥ = —0.30\); Lower
right corner : 2D STF at a distance of 4.0m (¥ = —1.65)).

the two systems. In Figure 2.19 we show several of the acquired images (after reconstruction
in the case of the computational imager) for distances ranging from 3.0m (which is outside
of the optimization range) to 6.0m. The superior sharpness of the computational imager
is evident at these close ranges by looking at the modulation profile across the images,
as illustrated in Figure 2.20. We especially note that the image quality delivered by the

optimized phase mask decay gracefully for low spatial resolutions as shown for a distance of
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3.0m and a spatial frequency 1 < 14mm~". Finally, Figures 2.21 and 2.22 show respectively

an indoor scene with a person standing at 4.0m of both cameras apertures for the first and

an outdoor scene composed of vegetation in the foreground, at about 5m, and buildings in

the background, at about 350m.
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Standard Design Optimized Design
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10 20 30 40 50 60 10 20 30 40 50 60

10 20 30 40 50 60 10 20 30 40 50 60

Standard Design Optimized Design
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Standard Design Optimized Design

Standard Design Optimized Design

Figure 2.19: Experimental results of several bar charts patterns in front of a blackbody
source at 37°C.
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2.5 Conclusion

We presented a novel optimization framework for the design of computational EDoF
imagers which can deliver a sharp image on a broader range of object distances than a
conventional system. Contrary to the constraining optical image quality criterions related
to the aberrated wavefronts root mean square error by Strehl and others [10, 11, 12, 13],
the aberration induced by a phase mask in this computational imaging system effectively
neutralizes the effect of defocus. The resulting soft optical image can then be restored to
diffraction-limited performance by a digital processing algorithm. In this work, we partic-
ularly focused on maximizing the image quality delivered by the system and, for this, we
proposed an optimization framework which relies on (1) the use of the orthonormal Zernike
polynomials to model the phase mask surface and (2) a metric assessing the overall mod-
ulation transfer function of the system, that is after reconstruction by the optimal linear
filter. We used the simulated annealing algorithm to optimize the parameters of the optical
phase mask to meet specifications in the case of a 25mm F/1 thermal imager. Interestingly,
we have seen that only the odd orders Zernike polynomials (excluding the main defocus
term) provide depth of field insensitivity and that, although the coefficients of the 5™ and
7' orders polynomials are small in magnitude, they contribute significantly to keeping the
MTF constant across the range of distances. We simulated the resulting image quality of
one of the optimized phase mask and showed its superior performance over the (similarly
optimized) cubic and trefoil designs as it generates less artifact and has a lower noise gain, by
more than 1.6dB. Finally, we built, tested and validated the performance of the optimized

design against a conventional imager with real-world scenes.

In the future, we can port this computational imaging approach from the extension
of the depth-of-field to the extension of the depth-of-focus which is particularly valuable
for small form-factor imaging modules suffering from a large field curvature [27]. In the
context of this work, we also only focused on a long-wave infrared application, for which the
dispersion of the refractive materials is limited because the spectral range between 8um and

12pm is relatively narrow when compared to the center wavelength of 10pum. Therefore, we
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were able to approximate all the radiation to a monochromatic profile. However, for visible
applications, i.e. for A from 400nm to 650nm, this approximation is not valid. We can note
the interesting approach chosen by Guichard et al. in [14, 17] as they use axial chromatic
aberrations to extend the depth of field by transporting sharp texture information across
the three RGB sensor channels. This approach could be employed jointly with the optical
phase mask design discussed here in order to further increase the depth range and adapt to

broad spectral range.
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Figure 2.20: Cross-section profiles of the previous experimental data showing the difference
in modulation between the Standard Design and the Optimized Design.
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Figure 2.21: Side by side comparison of a natural scene. On the left is the image produced by
the standard system (a FLIR camera) and on the right, by the EDoF system (an identical
FLIR camera, with the phase mask mounted and after the digital reconstruction of the
stream). For both side, the cameras are focused at 25.0m and the person is standing at
approximately 4.0m. Note that the closest light bulbs on the right side are at a distance of
2.0m.

1251, Liniversity of Arizopa (20124

Standard systemn EDOF system

Figure 2.22: Side by side comparison of a natural scene. On the left is the image produced
by the standard system and on the right by the EDoF system. Note that the foreground
vegetation is at approximately bm of the two systems apertures and the buildings in the
background are at a distance of approximately 350m.
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Chapter 3

Scalable Compressive Imaging System

Design and Implementation

Compressive Imaging is a new design paradigm which notably allows to free the sensor
array from Nyquist’s sampling requirement. While this technique can be implemented to
effectively acquire large images from a single photo-detector, it necessitates to perform a
computationally costly and slow reconstruction. In this chapter, we present a block-wise
parallel acquisition architecture and reconstruction algorithm to record and process high-
resolution images in real-time. We implement it as a programmable testbed which allows us
to verify the superior performance of previously developed Information Optimal projection

patterns versus commonly used random projections.

3.1 Introduction

While all conventional cameras sample densely the field of view, compressed sensing
(CS) exploits the sparsity of natural scenes and allow for a complete image reconstruction

from fewer measurements [28]. This is implemented, in the context of incoherent illumi-
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nation, by a linear measurement model where the scene signal-vector is modulated by a
series of patterns before being integrated onto a few intensity detectors. With this strat-
egy come several gains over traditional devices. First, the number of detectors needed for
high-resolution imaging is considerably less for this architecture than a standard focal plane
array (FPA); this reduction in sensor complexity is welcomed for cameras working in spectral
domains where the per-pixel cost is prohibitive, as it is the case, for instance, in short-, mid-
and long-wave infrared (respectively noted SWIR, MWIR and LWIR) as well as terahertz.
Secondly as the modulation is performed in the optical domain, it escapes the noise cor-
ruption inherent to the detection of the light signal. Thus, the compressive imager benefit
from the multiplexing gain applied to the signal and can therefore operate in a low signal-
to-noise ratio (SNR) regime. Finally, the high-resolution signal is acquired directly into a
compressed representation which translates into a significant reduction of the sensor readout
bandwidth, reducing both its thermal envelope (and decreasing the associated thermal noise)
and its power consumption. In addition, these novel architectures do not require the digital
compression of the high-dimensional image stream at high frame-rate which is otherwise

hindering the autonomy of embedded systems.

The single pixel camera (SPC) [29, 31] was the first implementation of an optical com-
pressive imaging architecture. It utilizes a single photo-detector to integrate the spatially-
modulated full field of view leading to an extreme reduction in the complexity of the detector
from the large arrays used by conventional imaging architectures. However, this particular
architecture comes with two downsides. First, for a constant compression-ratio it requires
to multiply the number of modulation patterns used to adapt for higher space-bandwidth
products (i.e. resolution x field of view). Second, the associated reconstruction complexity
for all specialized algorithms is at least in the order of O(N?) where N is the dimension of
the scene vector. Consequently, the runtimes per frame for these iterative reconstruction
processes are in the order of seconds to minutes and forbid the use of the SPC in a real-time
environment. Therefore, just as traditional imaging systems, the SPC does not scale well to

high space-bandwidth products.

To overcome these limitations, we have proposed in [40, 41] a scalable CS Imaging
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Figure 3.1: Top : Single Pixel Camera architecture, the full field of view is conjugated to
the SLM plane where its is modulated and integrated, from there, onto a single detector.
The patterns to be used for the projection are consecutively displayed. Bottom : Scalable
Compressive Imager, the field of view is conjugated to the spatial modulator which is divided
into blocks. Each block is mapped to a single detector and reconstruction unit and all can
operate in parallel.

architecture relying on a block-wise decomposition of the field of view. Each block is in-
dependently projected against a unique series of patterns and the modulated irradiance is
integrated onto a low resolution sensor. Each of the pixel in the focal plane array (FPA)
thus collects the modulated flux from exactly one block. This parallel architecture can be
represented simply as the concatenation of smaller independent SPCs for both acquisition
and reconstruction, as illustrated in Figure 3.1. It is also thereby positioned within a spec-
trum of CS imager configurations ranging from conventional imagers, which are using large
FPAs only, to the SPCs, which are using a large spatial modulator and combine all the
output flux onto a single photo-detector. They can thus be parametrized by a block size
defined as the number of modulation elements per detector element. Hence, for a traditional
imager architecture, this parameter is virtually equal to one, and it is in the order of several
millions for the SPC (assuming that a megapixel-scale modulator is employed). However, by
appropriately tuning this parameter we can select a configuration performing optimally for

a given spectral band, sensor technology and cost. Finally, besides the acquisition parame-
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ters, this parallel measurement architecture offers the possibility of employing a block-wise

parallel reconstruction algorithm to reconstruct images in near real-time.

Note that similar compressive imager design have been implemented since : in [42], the
authors have presented a one dimensional tiling version of the architecture with a linear
sensor array and fast acquisition rate which is limited by constraints similar to the SPC for
higher resolutions along the direction orthogonal the 1D FPA. The article [43] demonstrates
a similar 2D tessellation approach in the SWIR band, but employing a global reconstruction
algorithm. Finally, [44] focuses on the calibration aspect of such devices, particularly in mea-
suring the distortion between ideal and experimental sensing matrix but without acquiring

compressed measurements per CS definition.

In this chapter we describe the design, technical characteristics and implementation
considerations of such a scalable compressive sensor as a fully programmable testbed. First,
in section 3.2 we describe the components of this optical architecture implementation. We
then present the measurement model in section 3.3, followed by the scalable block-wise PLE-
MMSE reconstruction algorithm in section 3.4. We use those to assess the performance of
Information-Optimal projections compared to random projections via a simulation study, in
section 3.5, as well as experimental measurements with our prototype implementation, in
section 3.6, for which we describe a fully automated calibration method that is critical to

the system performance. Finally, we present our conclusions in section 3.7.

3.2 Scalable Optical Architecture

The structure of the compressive imager shown in Figure 3.2 can be decomposed into
two sections : the first produces an optical image of the scene analogously to the objective
of a traditional camera while the second modulates the image formed and maps it onto a
low resolution sensor. We call the first part the imaging arm, which we designed from an
off-the-shelf objective followed by an optical relay to increase the back-focal distance, both

visible in Figure 3.3. It operates at F'/8 and covers a 40° degrees full-field-of-view. Instead of
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Figure 3.2: Picture of the Scalable CS Prototype and schematic overlay.

recording the image with a sensor as it is the case in the conventional architecture, a passive
spatial modulator is placed in the image plane. This element will ultimately define the
spatial resolution of the compressive imager : for this prototype, we are using a 1920 x 1080
Digital MicroMirror Device (DMD). This affordable component is commonly found in video
projectors and consists in an array of bistable MEMS mirrors, 10.8um in size. Every single
of the two millions facets can be electronically controlled to tilt at an angle of either plus
or minus twelve degrees around the array main diagonal, and effectively steers the normally
incident beam coming from the imaging arm to either plus or minus twenty-four degrees.
To achieve gray-scale modulation, these mirrors are rapidly switched between the two states
(on or off) during the exposure : the ratio of the time spent in the on-state over the
total duration determines the effective intensity reflection coefficient. All the micromirrors
are synchronized to the same electronic control clock signal oscillating at 76.8KHz and can
thus perform 8 bits quantized gray-scale modulation at a maximum refresh-rate of 300Hz.
Therefore, the minimum possible exposure duration for gray-scale projection patterns in this

compressive imager is about 3ms.

The second arm or relay arm is consequently at an angle of 24° from the DMD normal,
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around its main diagonal, and has a F-Number matched to that of the imaging arm. It maps
the modulated image from the DMD plane to the surface of a low resolution sensor array
and consists of custom designed optics to minimize aberrations and distortions affecting this
critical transformation. For the sensor, we use a 1/3” 640 x 480 high-speed mono-CCD with
a pixel size of 7.4um and 12-bits ADC which can capture up to 250 frames per second.
It is electronically synchronized with the DMD to guarantee that both modulation and
exposure are matched. For a 30ms integration, the peak SNR is between 25 and 30dB. Note
that, in the current configuration a portion of the normally incident light onto the DMD is
discarded as it is sent in the direction of a third arm, symmetric of the relay arm (as shown
in Figure 3.2) and currently containing a light trap. It is possible to add a second optical
relay and sensor array down this path to implement a programmable dual-band compressive

imager.

Finally, the full-field-of-view of this prototype contains an area larger than 720 x 720
DMD mirrors which are in turn mapped to roughly 300 x 300 sensor pixels which we can
readout with a 2 x 2 binning. The video stream from the sensor is collected directly by a
laptop computer running a specific control software in charge of keeping track of the high-
speed pattern measurement process and performing the image reconstruction in real-time.
The pixels in the readout frame are then aggregated digitally to synthesize the output of
90 x 90 wvirtual detectors, each one mapped to a block of 8 x 8 micromirrors. Finally, we
developed an automatic calibration method to infer this mapping and is detailed in a later

section.

3.3 Compressive Measurements Design

To write an analytical model of the measurement process, we employ a simple Kronecker
linear measurement model where F' denotes the discretized scene matrix and is arranged into
E blocks (columns) of dimension N (rows) and taking values in [0,1]. The M projection

patterns to be used for the compressive measurements are forming the rows of the M x N
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Figure 3.3: Left : Custom optical layout showing both the imaging arm and the relay
arm. Right : simplified functional architecture of the prototype and the interface between
hardware and software components.

projection matrix P. We define the associated compression ratio p = N/M > 1 for this
projector, for which higher values indicate a higher compression rate. Finally, we note G
the M x E measurements matrix corrupted by additive white Gaussian noise Z of variance

o2. The linear measurement model can thus be written as :
G = PF+ Z, with: vect(Z) ~ N(0,0%Igy), (3.1)

where A denotes the Normal distribution and Igy; is the identity matrix in REM*EM,

Note that the noise variance o2

is related to the peak signal-to-noise ratio (SNR) via :
SNR = —20log;,(c). The parallelism of this compressive measurement architecture is thus
directly encoded into the matrix product between P and F, as all the columns of F' (the
blocks in the field of view) are independently projected onto the rows of P (the projection
patterns). This model hence differs from the traditional global linear measurement model
which is restricted to projecting a single scene vector (i.e. E = 1). By performing all the
scene block projections in parallel, this scene is scalable to large space-bandwidth products :

increasing the field of view does not require to add further projections in order to maintain a

given compression ratio p, only to concatenate more of such blocks. This in turn reduces the
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hardware constraints, particularly on the frequency of the spatial modulator, as the number
of patterns is now independent of the size of the field of view. This whole architecture can

be intuitively understood as a concatenation of small and independent single-pixel cameras.

As mentioned earlier, the modulation patterns are the rows of the projection matrix P
and are successively displayed by the spatial modulator. These patterns must however first
satisfy a mo-gain constraint as the input light signal cannot be amplified. Secondly, the sum
of the maximum exposure (largest modulation coefficients, in absolute value) for each of the
patterns must be equal to the exposure of a single frame in a conventional camera in order
to establish a fair comparison. Finally, a third constraint arises from the readily available
hardware and dictate that the same exposure must be allocated to each and every patterns.
All of these can these requirements can be modelled as the following simple constraint on

the elements of the sensing matrix P : Vi, j |P; ;| < 1/M.

For these patterns, a typical heuristic proposes to pick the modulation values from ran-
dom Gaussian or random signed binary number generators. The restricted isometry property
(RIP) [32, 33] then demonstrates that the operator is, with a high probability, preserving
or at least limiting the distortion applied to sparse signals. However this approach doesn’t
consider neither the noisy nature of the measurements nor that the patterns are subject to
the previous physical constraints. The result also does not guarantee to reach an optimal
compression level. On the contrary, we consider the projections design method presented in
by Huang et al. in [38], which consists in the optimization of the projection matrix within an
information-theoretic framework. The authors use Shannon’s mutual information metric J,
which quantifies the transfer of information from a statistical model describing the natural
scenes to the compressed measurements. They can thus optimize the projection patterns to
be used given a fixed measurement noise o, and subject to the photon-count constraint on

the operator. This optimization task can be expressed as :
M
argmax J(g; ) st Vi, Y|Pyl <1, (3.2)
P i=1

where the photon-count constraint stipulates that the flux, without being amplified, is effi-
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ciently used. This is the case of a CS architecture presented in [30]. In this work, we use a
series of 8 X 8 projection patterns optimized within this information-theoretic framework for
SNR ranging from 20dB to 45dB SNR, and renormalized to fit the equal-exposure constraint

of our hardware platform. These patterns are shown in Figure 3.4.

.... .... .... -
0.6
.... .... .... o

4x @20 dB 4x @30 dB 4x @40 dB

8x @20 dB 8x @30 dB 8x @40 dB

Figure 3.4: 8 x 8 Information Optimal projection patterns for 4x compression (16 patterns)
and 8x compression (8 patterns) for various SNR values. The first four patterns in each (in
the left-most column) target low spatial frequencies in the signal while the remaining patterns
address high spatial frequencies depending on the SNR budget available. All patterns are
normalized to [—1, 1] range for visibility.

As mentioned in the previous section, it is not possible to emulate subtraction in the
context of incoherent imaging and as such, we have to split between patterns containing all-
positive and all-negative modulation factors. This results in an increase of the corresponding

noise variance in Equation 3.1 to at most 202, depending on the number of signed patterns.

3.4 Scalable Block-wise Reconstruction

Most well-known CS reconstruction algorithm such as ¢1-magic [34], Orthogonal Match-
ing Pursuit [36] or Two-steps Iterative Shrinkage/Thresholding [35], perform a global itera-

tive reconstruction of the measurements acquired with the rank-deficient sensing operator.
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Each processes all the data in the field of view at once and sequentially refines the output
image under the assumption that the scene signal is indeed sparse. However, this approach
results in a time-consuming computation, taking from seconds to minutes to complete, and
therefore is not suitable for real-time applications. While these algorithms could be used
with the output measurements of the scalable compressive imaging architecture, they would
not leverage the parallel nature of the acquisition. Instead, we propose to use a block-wise
Bayesian and non-iterative reconstruction algorithm, inspired by the Piecewise Linear Esti-
mator with Maximum A Posteriori (PLE-MAP) presented by Guoshen et al. in [37]. This
algorithm is especially capable of reconstructing streams at near video frame-rate when

running on a common graphics processing units (GPUs).
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Figure 3.5: How various components of the statistical prior model address specific portions
of the image at the block level, and their predominant eigenvectors.

This Bayesian algorithm does not rely on the sparsity property as the previous classical
CS algorithms, but on a statistical prior model describing the complex textures of natural
images at the scale of a single block. Due to the small block size, those textures depict
mostly edges, smooth gradients and a very few complex patterns as illustrated in Figure 3.5.
From this observation, we construct a prior distribution p(x) of the block content & based

on a Gaussian Mixture Model (GMM) for which, each component addresses one edge angle
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pa) = WSk 2 exp (— (@ — 8)7S; (@ — s1)/ 2)/ Var. (3.3)

In this expression, each of the K + 1 multivariate Gaussian components has a weight wy,,
mean vector s and covariance matrix >;. We compute these parameters via a procedure
similar to that presented in the original PLE-MAP article. First, we start by analyzing the
average power spectrum of a dataset of natural images from a standard database, i.e. the
series of eigenvalues obtained from the average covariance matrix of their blocks. Then, we
sample uniformly K angles in the range of [0; (K —1)7 /K], with K an integer between twice
and four times the size of the block (about the size of half to a full perimeter in pixels).
For each, we generate a set of synthetic images depicting a single binary edge at that angle
and for various translations. We then compute the modes/eigenvectors of this ensemble,
i.e. the eigenvectors of the covariance matrix to these images blocks, and order them with
decreasing eigenvalues. To capture more complex patterns, we also add a single component
to the mixture for which the modes/eigenvectors are the vectors of the DCT basis, ordered
from low to high spatial frequencies. Each Gaussian component of the mixture is setup with
a zero mean (s; = 0) and its covariance matrix X; is computed as the product between
the eigenvalues of the natural scenes covariance (the power spectrum) and the eigenvectors
of a synthetic edge covariance (the modes/eigenvectors). The truncated eigenbasis of a few
components are shown in figure 3.6 along with the natural images power spectrum. Finally,
all components of the mixture are uniformly weighted : Vk, wp = 1/(K + 1). Note that this
simplistic prior model is only able to capture structures at small scales, hence it limits the

size of the blocks we could use to less than 16 x 16 pixels approximately.

For the reconstruction algorithm, we adapt the piecewise linear estimator (PLE) from
[37] where we replace the maximum a posteriori (MAP) estimator by a minimum mean square
error (MMSE) estimator. The PLE-MMSE reconstruction estimator, combined with the use
of a GMM prior and the assumption of an additive white Gaussian noise, admits a closed

form expression and thus does not require the implementation of a slow iterative refining
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Figure 3.6: Top : eigenvectors of some of the components of a coarse prior (few angles)
with DCT in the bottom row. They are sorted from left to right in descending order of their
spectral power. Bottom : the power spectral density (PSD) / eigenvalues shared by all the
components of the GMM.

process. This expression can be summarized as follow : first and for each block individually
(indexed by €), we reconstruct from the measurements vector g, one least-square solution

fer per component of the GMM (indexed by &). This is akin to assuming that the current

block does indeed contain the specific type of texture described by a particular mixture
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component. We write :

for=SwPTCrlg,,  with: Gy = PSyPT 4 02y (3.4)

Also, for each block and each mixture component we compute the following coefficient
W, indicating how likely it is for the current block to match the texture description given

by the mixture component £ :

Wer < exp (—g1C;'g./2) |C| 712 (3.5)

Finally for each block, we combine all the reconstructions {}ek} after being weighted

by the corresponding {w, x} to obtain the result :
K+1 K+1
fe = Z we,k'fe,k/ Z we,k- (36)
k=1 k=1

We note that all of the computationally expensive matrix-products, inverses and deter-
minants of all the matrices {Cx} in Equation 3.4 can be calculated in advance as they do
not depend on the input signal. This leaves the algorithm only a handful of matrix-vector
operations to perform, and such that its complexity is in the order of O(EKNM) : it is
linear with respect to the number of blocks FE, prior components K, block size N and num-
ber of measurements M. From a numerical stability perspective, it is however preferable to
compute the natural logarithm of all the weights [. ;, = In(w, ), and then find and subtract

their maximum in order to reduce the overall numerical dynamic range in Equation 3.6.

Nevertheless, as this algorithm reconstructs all the blocks independently from their
neighbors, it produces visually disturbing artifacts at the edges of the blocks because the
textures can appear discontinuous from one block reconstruction to that of its neighbor. To
avoid those, we instead reconstruct all the groups of 2 x 2 adjacent blocks, or super-blocks,

as a single entities. This is achieved by concatenating both operator and measurements to
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form a matrix and a vector of size 4M x 4N and 4M respectively, as follow :

P e 0
g1 : I Z1

gsuper = Psuperfsuper + Ssuper <~ = . ' X + (37)

g4 fa Z4

With this concatenated model, we have to use a prior generated on 16 x 16-pixels block
following the same method as previously described. We eventually merge the reconstruction
results of all these overlapped super-blocks into a smoother final image by averaging the
overlapping portions. In Figure 3.7, we show a comparison between the results of the non-
overlapped and the overlapped reconstruction methods for the same measurements and same
prior mixture. In the overlapped version, the block edges are almost invisible and much
finer texture details are revealed. It must be emphasized that this process can be performed
without changing the underlying measurement strategy, on 8 x 8 blocks, and comes only at

a the cost of a linear complexity increase for the reconstruction algorithm.

Figure 3.7: Comparison of image reconstruction without (left) and with (right) overlapping,
each using the same set of random binary projection patterns at 4x compression.

Regarding the implementation of the reconstruction algorithm and as noted above, it
only requires element-wise and linear algebra operations. It also is natively parallel for all

the blocks (or super-blocks) and all the prior components. Thus, it is perfectly suitable
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for massively parallel computing architectures such as graphic processing units (GPU). Our
CUDA® implementation running on a single NVIDIA™ GTX 580 device (in double pre-
cision) can reconstruct an image of size 512 x 512 (= 0.25 megapixel) in 9 milliseconds,
1024 x 1024 (= 1 megapixel) in 35 milliseconds and 4096 x 2048 (=~ 16 megapixels) in 285
milliseconds in agreement with the analytical linear complexity. This task can also easily
be split across multiple GPUs, each handling a small region of the field of view in order to

obtain a quasi-linear increase in frame-rate.

3.5 System Performance Simulation

As a first evaluation of the algorithm, we simulate the exact analytical expression of the
linear measurement model for various inputs. These gray-scale images, with values in [0, 1]
are first reordered into a set of 8 x 8 pixels blocks and projected with a sensing matrix abiding
by the previous equal-exposure physical constraint. We then add numerically-generated

white Gaussian noise to the projected measurements obtained.

We compare the results generated by random signed binary projections (with values in
{—1;+1}, independently drawn from a Bernoulli process with 50% probability) and Infor-
mation Optimal projections. We simulate the acquisition and reconstruction from these two
operators at 4x and 8x compression ratio (for 16 and 8 patterns, respectively) and while
keeping the prior model and other parameters identical. The figures 3.8 through 3.12 show
the obtained results for both natural scenes and artificial test targets. Naturally, we observe
that for all operators, the quality of the reconstruction is degraded with the increasing com-
pression ratio and decreasing SNR. Nevertheless, the information optimal operators appear
capable of retaining most the image features. Moreover, we find that they capture more
scene details and generates substantially less artifact in the reconstruction than the random
operators. This qualitative observation is supported by the quantitative PSNR values com-
puted between the original object and the reconstructions and presented in Table 3.1. For

these examples, we find a gain of up to 5dB at 20dB SNR and 4x compression in favor of
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the information optimal projector.
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Figure 3.8: Simulations for ” Starchart” target, comparison of the reconstruction with
measurements acquired from binary random {—1,1} and information optimal operators.
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Figure 3.9: Simulations for ” Barbara” target, comparison of the reconstruction with mea-
surements acquired from binary random {—1,1} and information optimal operators.
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Figure 3.10: Simulations for ” Tank” target, comparison of the reconstruction with mea-
surements acquired from binary random {—1,1} and information optimal operators.
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SNR=45dB;

SNR=20dB;
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Figure 3.11: Simulations for ” USAF bar-chart” target, comparison of the reconstruction
with measurements acquired from binary random {—1, 1} and information optimal operators.

SNR=45dB;

SNR=20dB;

Original Bin.Rand. 4x  Optim. 4x Bin.Rand. 8x  Optim. 8x

Figure 3.12: Simulations for ” Building” target, comparison of the reconstruction with
measurements acquired from binary random {—1,1} and information optimal operators.

PSNR (dB) Random Gaussian Random Signed Binary Optimized
Compression : 4x 8x 4x 8x 4x 8x

SNR : | 46dB  20dB  45dB  20dB | 45dB  20dB 45dB  20dB | 45dB  20dB  45dB  20dB

USAF-1951 | 23.31 14.08 20.34 15.27 | 22.99 15.23 20.30 16.87 | 26.55 20.74 22.37 19.64

barbara | 26.89 20.51 24.29 21.46 | 26.68 21.54 24.21 22.25 | 27.08 24.48 24.05 23.25

Building (training) | 23.83 18.08 22.03 19.04 | 23.59 19.09 22.06 20.09 | 25.38 22.73 23.06 21.62

Starchart | 21.21 10.98 16.48 11.33 | 21.00 11.62 16.82 12.34 | 21.92 17.41 17.88 14.67

Tank | 25.06 20.27 23.25 20.98 | 2491 21.01 23.25 21.74 | 27.14 24.05 25.16 23.56

Table 3.1: Reconstruction PSNR from simulation results at 4x and 8x compressions, 45
and 20dB SNR. The building image was used to train the Information-Optimal projections.
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3.6 Experimental Implementation

3.6.1 Supervision Software And Calibration Procedure

In addition to the hardware implementation of the architecture described previously,
we use a custom software to supervise the calibration, acquisition and reconstruction. This
program runs on a single laptop computer and is connected to the DMD, the sensor and
an external display panel acting as the scene and facing the system. This computer is in
charge of uploading a sequence of global projection patterns to the control board of the
spatial modulator. As they are successively displayed on the DMD, a trigger is issued to the
camera to match the pattern exposure to the sensor exposure. The recorded image is then
transferred back to the computer for processing and the reconstruction results are displayed

in a graphical user interface shown in Figure 3.15.

One of the main problem plaguing Compressive Sensing implementations is their acute
sensitivity to miscalibration, i.e. how a small deviation of the physical measurement pro-
cess away from the idealized linear model can negatively impact the output quality of a
reconstruction algorithm. On these optical architectures we can identify numerous sources
of such mismatch. Both mechanical misalignment and optical distortion prevents the
perfect mapping of blocks of modulators to sensors. Blur caused by the extent of the relay
arm Point Spread Function (PSF) induces signal leakage and cross-talk between neighbor-
ing blocks. The physical limitations of the spatial modulators can also pose problem : for
instance, the gray-scale projections patterns cannot be reproduced with an infinite precision
because of quantization of control levels, they also suffer from the non-linear and non-
uniform response of the individual elements (a problem mainly encountered with Liquid
Crystal modulators rather than DMDs). Similarly for the sensor itself, the precision of the
measurements is reduced by non-linearities, non-uniformities and quantization as well
as more complex noise statistics than assumed in our model. Overall, this translates as a

significant, but not insurmountable, complexity increase from traditional cameras.
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Naturally we can deal with those nonidealities in two ways : either by improving the
device and thus the physical measurement model toward the ideal one, or on the contrary
generalize the mathematical model to incorporate realistic features of the physical setup. In
[44], the authors have presented how it is possible to fold knowledge of the optical character-
istics back to the measurement matrix so as to improve the reconstructions. However in the
context of this work, we cannot proceed with the same technique as we wish to compare sets
of random and optimized projections : for this, we would have to pass the calibration data
back to the projections optimization process. Instead, our calibration aims at limiting the
alignment and setup defects of the hardware in order to approach the idealized measurement

model.

To infer the system parameters, we simply point to a known simple scene and interpret
the distortions between the expected and obtained output of the system. In the case of our
prototype, we have to learn the association between blocks of micromirrors on the DMD and
sensor pixels. However, this mapping cannot be made perfect : the surface of the modulator
is indeed seen by the FPA at an angle, with a non-integer scale and is convolved by the PSF

of the relay-arm.

In this prototype, we left the modulator to be orthogonal to the optical axis of the
imaging arm. At the working F-Number, the geometrical depth of focus is approximately
A = 2Fjc, where c is the diameter of the confusion circle : for the DMD we have about
160pum depth, and only 120um for the CCD. However, in the configuration we opted for,
we can tilt the sensor surface with respect to the optical axis of the relay arm in order to
match the image plane conjugated to the modulator surface. While this helps reduce the
optical blur, it amplifies the distortion generated by the relay-arm and, thus, the modulators-
sensors mapping. Although, as we are forced to virtually perform the reconstruction in the

modulation plane, this distortion is not visible in the final reconstructed image.

To setup the system, we first align the optical axis of the first arm and second arm onto
the normal of DMD surface with a laser beam. We then position, rotate and focus the sensor

while looking at a test pattern displayed on the DMD (typically, a binary checkerboard) and
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a uniform white screen is facing the first arm. Finally, we focus the first arm objective
while observing a textured scene. Thus, the image plane of the first arm, DMD surface and
object plane of the second arm, are all coincident, or at least within their respective depth-
of-field /focus. Regarding other sources of deviation, we find that the Digital Micromirror
device exhibits no significant distortions aside from the mandatory quantization of the gray-
scale patterns. We also do not find any significant differences between the acquisition of 8

and 12 bits quantized raw images by the CCD sensor.

Vertical
Blocks Indexi
Localization
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Detection "/

/
\
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Indexing

Figure 3.13: Visualization of the binary patterns sequence to be used for the calibration and
which cover the entire surface of the spatial modulator. During this procedure we put a
uniformly white screen in front of the imaging arm. Hence, as we control the object and the
modulation are known, we can infer the mapping through the relay arm and other calibration
parameter from the corresponding images recorded by the sensor.

At each observation session, we let the software perform an automated calibration to
recognize the mapping data for each of the few thousand blocks composing the field of view.
For that, a uniformly white object or screen is once again positioned near the entrance pupil
of the first arm. Images are recorded by the sensor while a series of identification patterns are
displayed onto the DMD. This sequence is illustrated in Figure 3.13 and composed as follow :
first some uniform on-off patterns, followed by checkerboards, vertical and horizontal bars;
all the same size as that of the block. With this data, the program computes the transition
threshold between the two predominant histogram modes of the the uniformly illuminated
images. Then, it uses this level to binarize all the remaining images and scans them to detect,
localize and index the visible blocks, i.e. it infers which pixels of the sensor are mapped to a
particular block of modulating elements. Finally, it also calibrates the response of the sensor

(bias and linearity) and measures the effective noise standard deviation.
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Despite this careful calibration, we find that the optical distortion induced between
the DMD plane and the sensor, as well as the extent of the optical Point Spread Function
(PSF) of the relay-arm, generates a significant cross-talk between the measurements of these
small blocks. The overlap and misalignment of the block images onto the sensor is shown in
Figure 3.14. In order to mitigate this effect we split the global pattern patchwork into four,
where each block is isolated from its closest active neighbor by at least one fully opaque block.
Thus for each projection pattern, the DMD has to display four sub-patterns to observe all
of the blocks.

Original Projection

N
|
N
n
Quad Projections

Figure 3.14: Left : Visualization of the block segmentation as recorded by the sensor. Right
. splitting a global pattern (the tiling of a single projection pattern) into 4 sub-patterns to
avoid cross-talk from the imperfect mapping onto the focal plane array. The blocks are
separated for the visualization only.

After the calibration, the software is able to start performing the measurements. First,
the user dynamically pairs it with one or multiple reconstruction algorithms and projection
sets. For each, the program builds all the global patterns and upload them to the DMD.
During the acquisition, it extracts the measurements by scanning the raw sensor images

it receives with the previous calibration data : it averages the pixel values mapped to a
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particular block into a single scalar. This way, it progressively fills the appropriate mea-
surement matrix GG of Equation 3.1. Once all of the patterns were displayed, the sequence
is looped back to the first. Thus the system can deliver a continuous video stream with
each of the previous matrix being used as a circular buffer, 7.e. receiving steady updates. In
the meantime, the running reconstruction processes are asynchronous with the acquisition
of the compressed measurements : this allows the software to deliver an output image with

a smaller period than that of filling completely the matrix G.

Figure 3.15: Acquisition and Reconstruction software interface, showing in real-time the
raw compressed measurements stream (top-left), the image captured by the conventional
system with the low-resolution sensor (top-right) and the reconstruction output for the
PLE-MMSE algorithm (bottom-left). Reconstruction and other exploitation algorithms
can be added dynamically to the program.

3.6.2 Experimental Results

For the experimental tests, the compressive camera is recording the display showing
test images previously used for simulation. These gray-scale images are precorrected by
1

the inverse gamma function x +— x22 to compensate for the dynamic range compression

applied by the monitor and so that the output luminance is linear. Note that we also have
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to make sure that the pulse-width modulation of the backlight (for brightness control) does
not produce temporal aliasing artifacts with the fast acquisition. Finally, we ensure to use
the same calibration in order to nullify differences between imaging sessions and to allow for
a fair comparison of the results. The final images are all reconstructed via the PLE-MMSE
block algorithm using the same 64 angle priors, DCT prior, and 2 x 2 super-block overlapping

technique.

In addition to the compressed measurements we also emulate two configurations of the
conventional camera which represents either the highest or lowest performance bounds. The
first imitates a high-resolution sensor in place of the spatial modulator : it is implemented
by measuring the pixel (or canonical) basis. This operator consists of 64 projections, each
with only a single element (pixel) of the 8 x 8 block in the on-state and thus it does not
achieve compression (1x). The second imitates the low-resolution sensor used to acquire the
block projections although put in place of the spatial modulator. This is implemented by
only measuring the block DC component, where all the elements are in the on-state, and is
equivalent to an effective 64x compression from the previous high-resolution. For both, we

perform a simple linear back-projection for the reconstruction.

As for the simulation, we compare the results obtained for random signed binary and
Information Optimal projections. We also add properly normalized random Gaussian pro-
jections (with values drawn independently from a Gaussian process). All these operators
were first normalized with the equal-exposure constraint such that each of their patterns
is contained in [—1;1]**® and quantized to 7 bits in order to be displayed by the DMD
(the least significant bit of the transmission value is removed). The measurements obtained
exhibit a peak-SNR between 25 and 30dB and the reconstructed images are approximately
700 x 600 pixels in size.

The resulting reconstructions for all the operators are shown in figures 3.16 through
3.20 and tend to corroborate the observations reported for the simulation results. From the
resolution test targets, one can verify that the information optimal projections deliver images

of higher effective resolution than both Gaussian and signed binary random projections while
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acquiring only a fraction of the measurements of a conventional camera. This is particularly
visible at a compression rate of 8x where characters and smaller bars of the USAF test chart
are still distinguishable. For natural images, we observe that the small-scale features, such

as the clothes textures in Figure 3.16, are also better preserved by the information optimal

projections.

Conventional Gaussian Random 4x Binary Random 4x Optimized 4x
High Res. (1x)

Conventional Gaussian Random 8x Binary Random 8% Optimized 8x
Low Res. (64x)

Figure 3.16: Experimental results : Barbara image.

Conventional Gaussian Random 4x Binary Random 4x Optimized 4%
High Res. (1x)

Conventional Gaussian Random 8x Binary Random 8% Optimized 8x
Low Res. (64x)

Figure 3.17: Experimental results : Star-chart.
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Conventional Gaussian Random 4x Binary Random 4x Optimized 4%
High Res. (1x)

Conventional Gaussian Random 8x Binary Random 8x Optimized 8x
Low Res. (64x)

Figure 3.18: Experimental results : USAF-1951 test target.

3
Conventional Gaussian Random 4x Binary Random 4x Optimized 4%

High Res. (1x)

Conventional Gaussian Random 8x Binary Random 8x Optimized 8%
Low Res. (64x)

Figure 3.19: Experimental results : Armored vehicle.

3.7 Conclusion

We have described the implementation of a parallel compressive imaging architecture
which is inherently scalable to high space-bandwidth products, and a similarly parallel non-

iterative Bayesian reconstruction algorithm based on a piece-wise statistical model of natural
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1
1
2
3 2
3
Conventional Gaussian Random 4x Binary Random 4x Optimized 4%

High Res. (1x)

Conventional Gaussian Random 8x Binary Random 8% Optimized 8%
Low Res. (64x)

Figure 3.20: Experimental results : Building, image initially used for the optimization of
the projections.

textures. This compressive imager is capable of reconstructing megapixel-size images at near
video frame-rate when other CS architectures, such as the SPC, are constrained to use slow
iterative reconstruction algorithms not suitable for real-time operations. While this platform,
as well as the other CS architectures, are more sensitive to miscalibration than conventional
imagers, they present significant advantages over the latter : as they leverage the sparsity
of natural images, they can operate below Nyquist’s sampling limit and thus can employ
low-resolution sensors. They also perform fewer measurements than a traditional imaging
architecture and thus require a smaller readout bandwidth and benefit from a multiplexing
gain advantage over the direct measurements. Finally, while our device prototype is working
in the visible domain, it is easily adaptable to SWIR/MWIR by swapping the FPAs. It is
also possible to dispose of the second arm, which is unused in our current configuration,
to build a programmable dual-band observation system. In thermal infrared however, the
background radiation is lowering the modulation contrast which affects the resulting image
quality. Hence, a CS camera working in this particular domain faces additional engineering

challenges, such as described in [69].
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As an application of this scalable compressive imager, we have demonstrated that the
information-optimal projections deliver superior image quality when compared to both ran-
dom Gaussian and random signed binary operators in simulations as well as in real-world
conditions with our prototype implementation. This performance gain is particularly re-
markable at high compression (8x) or low SNR (25dB) where mean square error PSNR can

reach a gain of up to 5dB in favor of the optimized measurements.

While we have used our prototype as a testbed for the straightforward imaging config-
uration, it is fully programmable and automated. Therefore, it can be employed to bench-
mark any other projection operators, reconstruction and exploitation algorithms [45, 46].
Among these more advanced capabilities, we can explore adaptive acquisition strategies,
i.e. designing the future projection patterns from the knowledge of the previously acquired
measurements, which can help dramatically increasing the compression ratio. We can also
implement a foveated acquisition strategy by changing the projections used only for some
specific portions of the field of view. This way, we can imagine focusing on a few regions
of interest and allocating minimal resources elsewhere. Finally, in the context of machine
vision, we envision that this system can be used to not only acquire measurements and re-
construct an image of the field of view, but also to acquire direct information about targets

in the scene.
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Chapter 4

Scalable Compressive Target

Detection and Classification Sensor

The programmable implementation of the scalable compressive camera described pre-
viously is not limited to only imaging tasks. In this chapter, we discuss how the same
architecture can be used to perform automatic target detection and recognition without
reconstructing the intermediate scene image. To improve the overall performance of this
system, we develop an optimization framework of the projection patterns based upon the
Cauchy-Schwarz mutual information. We especially prove that this metric provides an upper-

bound to the probability of misclassification.

4.1 Introduction

Recent advances in electro-optic/infrared (EO/IR) based automatic target detection/recognition
(ATD/ATR) have witnessed a significant increase in the field of view and spatial resolution,
especially for airborne platforms [50, 51]. This has lead to increasing image data that in turn

puts severe strains on the design and implementation of conventional imaging optics, focal
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plane sensors and subsequent image exploitation algorithms. This has significant implica-
tions for resource costs associated with the focal plane array (FPA), especially in infrared
spectral regime, in terms of manufacturing complexity, readout bandwidth, power consump-
tion for real-time operation. In parallel, the emergence of compressive imaging architectures
has demonstrated that non-traditional imaging systems offer an alternate imaging paradigm
with favorable system resources scaling compared to traditional imaging architectures [30].
Instead of sampling the scene irradiance field densely, i.e. at Nyquist sampling, compressive
imaging system exploit the compressibility of natural scenes to acquire fewer measurements
leading to reduced FPA density, lower readout power and smaller data stream. One of the
well-known implementation of a compressive imaging architecture is the Single Pixel Cam-
era (SPC) [31], which spatially modulates the scene irradiance field before integrating it
onto a single photodetector. By performing successive linear projections, from a library of
spatial modulation patterns (e.g. random binary patterns), the system can form an image
of the entire scene computationally using nonlinear image reconstruction algorithms. As
this architecture is built around a single photo-detector it represents lower cost alternative
to the more expensive high-resolution FPA employed in a conventional imaging system, es-
pecially in short and mid-wave infrared spectral bands. However, the SPC architecture is
subject to its own scalability limitations. For example, the rate of spatial modulator in-
creases quadratically with the FOV and spatial resolution which limits the total number of
measurements that can be collected within a fixed exposure time. Furthermore, the com-
plexity of the reconstruction algorithm increases exponentially with the image resolution
which limits real-time operation. To overcome this measurement and computational scaling
issue, we have developed a parallel scalable compressive imaging architecture capable of de-
livering megapixel-scale images in near real-time. This scalable architecture exploits a low
resolution sensor array, where each pixel integrates a small region (i.e. a block) of spatially
modulated scene irradiance to implement a single pixel camera. Thus the sensor array effec-
tively implements an array of SPC operating in parallel, each imaging a region of the FOV.
The compressive measurement from the FPA are then processed by a non-iterative (single
shot) reconstruction algorithm with a complexity linear with respect to the resolution. For

image formation applications, we have demonstrated that this compressive imaging system
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can reconstruct the same field of view than a traditional imager but with a lower resolution
FPA that has up to 64x fewer pixels and operating at a compression ratio between 4x to

8.

It is important to note that the aforementioned compressive imaging systems and their
acquisition strategies are optimized for the task of image formation. While it is indeed
possible to use the reconstructed image as an input to an image exploitation algorithm
for the task of ATD/ATR, it does not represent optimal approach to maximizing the task
performance. This is due to the fact that for specific tasks, such as target detection and
recognition, the underlying information of interest in a scene is quantifiably smaller than that
for the image formation task[57, 59, 60]. Thus by carefully designing the linear projections,
incorporating appropriate task and scene priors, it is possible to selectively preserve the
relevant task information with much fewer compressive measurements, and thus achieve
higher compression ratio relative to traditional compressive image formation followed target
detection and recognition. This task-specific compressive measurement design approach has
been explored by several researchers in the literature: Dunlop-Gray et al. have implemented
a simple classifier for a compressed hyper-spectral imager [67]; Baheti et al. [58] and Huang
et al. [68] have designed information optimal adaptive compressive measurements to a face
recognition task against a large face database. In [66] Li et al. demonstrated that a SPC
paired with Principal Component Analysis (PCA) Secants projections, further optimized
via semidefinite programming, can recognize simplistic targets over a uniform background
at a higher rate than performing inference on image estimated from compressive random

projection and also direct inference on random projection measurement.

In this work, we focus on the development and implementation of a scalable compressive
approach to target detection and classification where the target of interest may be embedded
in diverse natural terrains. The inherent variabilities of the target appearance coupled with
the complexity of the background scene suggests that sophisticated statistical models are
required to faithfully model such targets. This presents a two fold challenge in terms of the
design and optimization of the projection patterns for compressive measurements, as well

as formulating and implementing the target detection/recognition algorithm that operates
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on the compressed data directly, without the need for intermediate image reconstruction.
Furthermore, the compressive measurement system design must also scale to wide field
of views if the proposed system is to be of any practical utility. To satisfy these scaling
requirements, we adopt a compressive measurement architecture that is based on a block-
wise decomposition of the scene, similar to our scalable compressive imaging architecture
described in chapter 3. This approach allows us to consider groups of blocks that specify a
minimum region of interest and can measured compressively (in parallel) for direct target

detection and recognition.

This work is organized as follows: in section 4.2 we begin with a description of the
concept of operation of the proposed compressive imager followed by a comprehensive de-
scription of the underlying statistical model of the targets and the background scene in
terms of the Gaussian Mixture Model (GMM). Then we describe the mathematical model
of the scalable compressive imaging system in section 4.3, which acquires the compressed
measurements of the scene. Those are directly used by the classification algorithm, de-
scribed thereafter, to perform the target detection and recognition task. In section 4.4 we
will describe an information-theoretic framework for compressive measurement design along
with the corresponding design metric and how the measurements will be optimized based
on the scene statistical model and other system parameters such as the measurement signal
to noise ratio (SNR) and measurement compression ratio. In section 4.5 we present a simu-
lation analysis of the proposed compressive measurement system performance for the target
detection and recognition task, followed by an experimental validation of the simulation
predictions. Finally we present our conclusions in section 4.6 along with a brief discussion

of future directions of work.
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Figure 4.1: Architecture abstraction : the field of view is divided into contiguous square
block-tiles. The device optics and sensing components measure in parallel a small features
vector for each. Finally, every group of 2 x 2 blocks is then analyzed by a classification
algorithm which determines a decision label for the corresponding location.

4.2 Scalable Scene Model

4.2.1 System Operation Concept

The task of detecting the presence and classifying the type of vehicles visible in a large
field of view has already been thoroughly investigated across multiple direct acquisition
modalities, such as visible and infrared wavelengths or Synthetic Aperture Radar (SAR),
due to its critical importance for surveillance applications. However, the signal acquisition
and processing have been considered as disjoint parts of the system imaging pipeline. They
have therefore been designed separately on the model of traditional imaging architectures
for the first and standard image processing concepts for the second. While this approach
is seemingly flexible, it comes at the cost of having to capture, readout and process images
of large dimensionality in WFOV applications. For example, in the case of an autonomous
aircraft surveilling a wide area, the implementation of a direct acquisition scheme for ATD/R
requires to use a large FPA sensor to record images with a sufficiently fine ground resolution
in order to distinguish the targets of interest. The large images acquired must then be
compressed and transmitted for remote exploitation. Even with specialized hardware, all
of the on-board operations consume a significant amount of power to acquire, process and

compress the data. Once received and decompressed, the image is first passed to a fast
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detection algorithm which marks the portions of the scene containing a target. This first
stage is usually implemented as a correlation filter sweeping the whole FOV, as it is the
case for the matched filters [49]. Those recorded hits are then further examined by a second
algorithm to classify the target type. For high-resolution images, this data processing and
exploitation requires a significant amount of computational power to be performed in real-

time.

While Mahalanobis et al. have show that this two-stage classifier can be adapted to
the output compressive imager [69], we are here interested in bypassing the intermediate
scene reconstruction step which is a resource-intensive and time-consuming operation. The
compressive sensing architecture we use can particularly be designed and optimized from end-
to-end and exclusively for the particular task at hand. In Figure 4.1, we show the abstract
acquisition concept : the field of view is seen as a grid of contiguous blocks by the joint optical
and detection architecture, which acquires a feature vector in parallel for each block. These
measurements are then directly passed to a detection and classification algorithm, without
performing a superfluous image reconstruction. The program independently analyzes the
feature vectors for each patch of 2 x 2 blocks, or chip, and issue a class label simultaneously
determining the presence and the type of the target. As stated previously, it is important to
note that the classification performance of this system is the only metric of interest and that
the projection patterns measuring the feature vectors should be optimized for this particular

purpose only.

For the current demonstration, it is assumed that the scene can contain vehicles among
two known positive classes : either Tank or Armored Projection Vehicle (APV). The natural
environment surrounding these is composed of dense clutter and is considered as a third
negative class. To simplify the context, we assume that the targets are always visible from
open-grounds and never occluded by any natural element. The target vehicles are also small
in comparison to the field of view but slightly larger than the size of a chip which we fix to
64 x 64 pixels (i.e. 32 x 32 pixels blocks). Finally, each chip can be labeled as background
(target absent), tank or APV and we assume that these three cases are equiprobable. In

the remainder of this section, we describe the construction of a statistical model describing
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Figure 4.2: High-Resolution samples for the class #1 : model APV.

0° 60° 120°

160° 240° 300°

Figure 4.3: High-Resolution samples for the class #2 : model T72.

these scenes in order to (a) serve as ancillary data for the classifier and (b) optimize the

projection patterns used via an Information-Theoretic framework.

4.2.2 Target And Background Model

To generate a dataset of the scene chips, we first acquire high-resolution images of minia-
ture vehicles in various orientations as shown in Figures 4.2 and 4.3 and of natural scenes
with different configurations as shown in Figure 4.4. They are used to generate synthetic
chip samples by transforming and overlaying a vehicle masked-image on top of a terrain
image. To produce realistic scenes, the transformations can consist in any combination of
. translation (in 2D, as a uniform grid of 16 x 16 positions in the chip which includes the
vehicle being occluded outside of the chip), in-plane rotation (£15°, in three discrete incre-

ments), out-of-plane rotation (full 360°, in discrete 20° increments) and scaling (30% range
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Figure 4.4: Background scene samples.

in two increments, to emulate the varying distance range). Finally, the target samples are
appropriately blurred in order to match their Power Spectral Density (PSD) to that of the
backgrounds to avoid the presence unnatural and overly-salient artifacts in the composite

image.

Figure 4.5: Simplified visualization of the manifold sampling for a single degree of freedom
(here, the translation of the target vehicle). The Gaussian kernels will partly fill up the
space left between the samples.

In a noiseless measurement environment, a class dataset over a particular terrain can

be pictured as a low-dimensional manifold embedded in a 4096-dimensional space which is
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obtained by continuously varying the parameters of the previous transforms for both the
target and the terrain. It is however impossible to find the exact analytical expression of
this complex surface. Instead, we construct an approximated statistical model of a target
class by sampling points from this manifold and using them as the component means of a
mixture of Gaussians. As illustrated by Figure 4.5, the gap existing between neighboring
components is then filled by the extent of the Gaussian distributions which is governed by
their covariance matrices. In the current context, we setup all the mixture components with
the same weight and the same spherical covariance matrix of scalar variance 0. Therefore,
we can write the likelihood distribution for the class variable C' taking the label-value 7 of a

chip sample f as :
1 &
p(fIC =1i) = o ;N (Fltin, o’ Ien) (4.1)

where O; is the total number of components in the mixture, ¢;; is the k™ sample from
the manifold belonging to the class i. Here, we define the constants F as the number
of blocks in a chip and N as the dimension of a block, e.g. in the the current context
we have £ = 22 = 4 and N = 32? = 1024. We note that the vectors f and {t;;} are in a
EN = 4096 dimensional space, more precisely we constrain the chip images to the normalized
hypercube volume [0, 1]%°% (i.e. the dynamic range of the grayscale values is between zero
and one). Finally, /gy denotes the identity matrix in a space of EN dimensions. For the
mixture corresponding to background scenes, we can employ a similar modeling strategy
and uniformly sample its manifold. However, in order to reduce the number of components
in the mixture for this negative class, we only select 4096 centroids generated by the K-
Means clustering algorithm over a large number of background realizations. It is important
to remark that the total number of components O; of any target mixture and the variance
o? are related : if the manifold is coarsely sampled then this variance must be large enough
to fill the wide gaps between the samples. In that case, the smaller structures of this surface
are lost to the approximation. To avoid this, we can construct large mixtures of Gaussians
with more than one hundred million components for each target class by uniformly sampling

the parameter ranges listed previously. With this fine sampling the standard deviation o
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for our targets is about 0.15. However, those distributions require a large amount of storage
space. To address this situation, we first remark that these mixtures enumerate the pairs
of every possible target attitude and background centroid and we can therefore dissociate
them by storing the masked target samples separately from the background samples. We
then assemble the component means when needed and only have to store mixtures containing
about twenty-six thousand components for the largest. Figure 4.6 shows a few example of
component means found in the statistical likelihood distributions which we are going to use
for the optimization of the projections and as ancillary reference data for the classification
algorithm. For testing purpose, we also create a dataset of realistic scenes by randomly
sampling the target and background manifolds. Note that the test samples thus produced

are not found directly among the means of the class likelihood mixtures.

Class 2 Class 1 Background

Figure 4.6: 64 x 64 Chips examples, as 2 x 2 blocks of 32 x 32 pixels. The attitude (set
of transform parameters) of the targets is kept constant in each column. Left : Training
samples (for pattern optimization and classification reference). Right : Testing samples.

4.3 Compressive System Design

4.3.1 Scalable System Model

Following this description of the chips statistical model, the linear measurement model

must also adapt to the block wise nature of the acquisition. This is the case of our compres-
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sive sensing architecture which can be represented as a concatenation of many smaller SPCs
operating in parallel, and therefore it can be scaled to high space-bandwidth products (i.e.

resolution X field of view) by adding more of these independent units.

This block wise measurement model can be expressed with basic linear algebra opera-
tions : we first define f a R¥Y vector representing the discretized image of a single chip.
The constants E and N are defined similarly to the previous section : E denotes the num-
ber of blocks constituting a chip (= 4) and N the dimension of each block (= 1024). The
blocks are each sequentially projected against a unique series of M modulation patterns
which are included inside the rows of a M x N projection matrix P. The compression
ratio p associated to this projection is equal to the blocks dimensionality divided by the
total number of patterns : i.e. p = N/M, and in order to achieve significant compression
the number of patterns M must remain much lower than the dimension N of the canonical

REM

space. Finally, we note g the vector in representing output measurements obtained

for a chip and we assume that they are corrupted by an additive white Gaussian noise  of

2

2 d.e. z ~ N(0|02Igy). These random fluctuations are affecting the acquisition

variance o.
for uncooled sensors and are in part due to the thermal agitation of the charge carriers. The
peak Signal-to-Noise Ratio (SNR) of this process is directly obtained from the variance as :
SNR = —20log;,(0,,). With these notations, the linear measurement model can be written

as :

g=Up®P)f +z (4.2)

where ® is the Kronecker product and I is the identity matrix in R¥*¥ : the projection
operation onto the rows of the matrix P is thus repeated on each block. One can also
transform the previous expression to avoid computations over many empty matrix-blocks
by folding the terms as follow : we note F' the ¥ x N matrix obtained by appropriately
rearranging the vector f so that each block of the chip occupies a column; similarly, we note

G and Z the E x M matrices associated respectively to the vectors g and z. With these,
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Equation 4.2 can be modified to recall the usual linear measurement model :

G=PF+Z, (4.3)

where P acts on all columns of F' in parallel. While the choice of the projection patterns
is explored in section 4.4, it is important to highlight here the constraints arising from the
physical implementation of this architecture. More precisely as the modulation of the in-
coherent light intensity is passive, the projection matrix P cannot apply gain to the input
signal. Consequently, all of the values for the matrix P, i.e. the patterns modulation coeffi-
cients, must remain smaller than 1 in absolute magnitude. Moreover, the spatial modulator
device to be used in the prototype will display the patterns successively, each with the same
temporal exposure. Thus, in order to establish a fair comparison between operators having
different number of patterns and against a traditional camera using the total available expo-
sure, we must further constrain the coefficients down to the range [—1/M,1/M]. Therefore,
one can remark that increasing the number of patterns leads to a reduction of the amount
of energy allocated to each of them. From this observation we expect to find a compro-
mise over the number of projections M for a fixed block size N, balancing between a too
severe compression (small M /large p) and an inefficient use of the input flux (large M /small
modulation amplitude). In addition, this optimal allocation also depends on sensor noise
variance o2 : in the case of a high o2, it is preferable to use a smaller number of projections
having each binary transmissions (their modulation coefficients are either 1) as they will
help maximize the incident flux on the detectors and increase the effective signal to noise
ratio; on the opposite, for lower o2 it becomes possible to employ many more projections

with more complex gray-scale modulations.

With the measurement model of Equation 4.2, we can now project the statistical like-

lihoods introduced previously, from the canonical space to the compressed space by using
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Bayes’ Theorem :

wolC =i = [ palgl(iC = a*s m
O;

= Ol ZN(9|3i,k =I5 ® P)ti, Six =Ip ® (6°PPT + 0 11y)). (4.5)
b k=1

This transformation can be decomposed into three operations : (1) the means ¢, of each

REM gpace, (2) each of the (spherical) covariances

of the components are projected into the
is squeezed into the image space of P and (3) the overall projected mixture distribution is
blurred by the kernel of the additive noise. Especially, this last operation will erase some of

the smallest details from the compressed mixture.

Similarly to the measurement model, one can derive a folded, or rearranged, version
of Equation 4.5 from the properties of Kronecker product in order to avoid storing and

computing large and empty matrix-blocks :

D> 1 .
P(GIC =1) = oj\/z_j ; exp <—§ Tr [(G — Qix)TPTE ' P(G - Qi,k)]) . (46)

where Q; j is the R¥*Y block-folded matrix corresponding to the vector s;, Tr denotes the
trace operator and ¥ = 02 PPT + 021, is the squeezed covariance. Note that this last term
is common to all the components and is only dependent on fixed parameters of the device :
the projection operator P, the model variance o2 and the noise variance o2. Therefore, the

inverse and determinant of this positive semi-definite matrix can be computed once and for

all.

4.3.2 Target Detection And Classification Algorithm

After the acquisition, the measurements are passed as inputs to a detection and classi-
fication algorithm. This often implemented as a two-stages process over the high-resolution

image for a conventional system : the first perform a fast detection analysis and the sec-

Page 105



Chapter 4. Scalable Compressive ATD/C Sensor

ond classifies the region of interest marked by the first. Applying the same method on
the measurements captured by the compressive architecture requires to first perform a full
reconstruction of the scene from the measurements. However, this operation comes with
a significant computational cost and will not provide more information about the target
than available from the measurements. Therefore, we can bypass this step and perform the
simultaneous detection and classification directly with the acquired features vectors. For
this, we write the analytical Maximum-A-Posteriori (MAP) classifier ¢yjap acting on the

chip measurements vector g (e.g. the concatenated 2 x 2 blocks features measurements) :

cmap(g) = arg max {p(clg) < p(glc)p(c)} (4.7)

This classifier only uses the compressed class likelihoods p(g|c) given by Equation 4.5
and the class priors p(c) = 1/N,. where N, is the number of classes. This estimator is also
of interest as it is guaranteed to minimize the probability of error (or misclassification) P,

which is formally defined for any classifier ¢ as :

1

Pe = p(/C\(g) 7é Cground—truth) <1- F (48)

The inequality given in Equation 4.8 corresponds to the worst possible error-rate and
is attained for a random classifier uniformly picking among the N, possible labels. We add
that the definition of the probability of error P, can also be expanded into Equation B.10 of
the Appendix and relates to an integral over the minority domains of the class likelihoods.
While the probability of error is the main metric for the system performance, it is also useful
to consider the confusion matrix D of the system in order to understand the interferences
between the class labels. The elements of this matrix are defined as the probability for the
classifier to issue the label i for an element of the class j, i.e. : D;; = p(€ = i|Cground-truth = J)-
Note that the sum of the elements along any column is equal to unity : z.e. Vj, > . D;; = 1.
Finally, the error-rate is related to the coefficients outside of the main-diagonal (i.e. the

probabilities of misclassification) via : Po = .. p(C = j)D; ;, where p(C = j) = 1/N, for
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the equiprobable classes in the current context.

The computational complexity of the classification algorithm expressed by Equation 4.8
is linear in the total number of components across the mixtures distributions, i.e. O(3.~ 0;).
Nevertheless, the class likelihood distributions presented previously contains more than two
hundred million components and therefore, this algorithm would be too slow to operate
in real-time. However, we find that the targets only occupy a small portion of the chip
(typically, less than 25%) and consequently, the background contributes to most of the
signal energy. Hence, the previous classifier can be approximated by dividing it into two
stages : the first finds the most likely background component from the chip measurements,
and the second is a MAP classifier which only considers components of the targets mixtures
tied to the previous background. This method reduces the complexity of the algorithm
to O(Oy + Zf\;b 0;/Oy) = O(Zg:b 0;/0y), where Oy is the number of components in the
background mixture and is equal to 4096 in the current context.

4.4 Measurements Design And Optimization

As established previously, the selection of the projection patterns making up the rows
of the projection operator P is critical to the overall system performance in terms of the
probability of error defined in Equation 4.8. Several common strategies can be considered
here. Random Gaussian projections are certainly a recurrent choice in Compressive Sensing
as they benefit from theoretical results, such as the restricted isometry property (RIP) [32,
33] or the Johnson-Lindenstrauss lemma [47, 48], guaranteeing that the linear compression
applied will limit the distortion of the signal to less than some fixed threshold. However, it
also prevents to adequately compress the signal by failing to exploit the prior information

and focusing instead on image reconstruction.

Instead, it is desirable to use the classes prior information to improve the projection
design specifically for the task at hand. For instance, the PCA-Secants algorithm [65, 66]

constructs the most prevalent projection patterns between samples of two classes. To do
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so, it first computes the covariance from all the unit-length vectors directed between any
two elements from different classes; then it diagonalizes the obtained matrix and selects the
eigenvectors corresponding to the largest eigenvalues similarly to the principal component
analysis. More intuitively, these secant vectors capture the distribution of the normals
to the boundary between the classes as illustrated in Figure 4.7. Therefore, they form
good candidates for the projection operator. However the PCA-Secants algorithm misses a
few important properties. Firstly, it does not offer an explicit relationship to the previous
probability of misclassification and secondly, it is not taking the measurement noise (or
acquisition SNR) into account. Finally, it does not support physical constraints of the

projection patterns, such as the equal-exposure requirement described previously.

Figure 4.7: Example of local normals to the boundary between two classes and the compo-
nents of the respective mixtures.

Naturally, the pattern selection process should be cast as an optimization problem which
minimizes the error rate, subject to the appropriate projection constraints. While this P,
metric is ideal, it does not typically admit a closed form expression and its numerical compu-
tation requires to finely sample the class likelihoods distribution for an accurate integration,
which is computationally intractable. This challenge is further supplanted by the lack of
a smooth gradient expression, forcing the optimization to rely on less efficient routines to

search the vast operator space of dimension M x N.
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Instead, it is common to rely on information metrics that provide bounds to the proba-
bility of error. One of the most well-known information-theoretic metric is Shannon’s mutual
information [52], which imposes on P, both a lower bound via Fano’s inequality [53] and
an upper bound via Kovalevskij’s inequality [54]. However, this metric can only be written
in closed form for elementary distributions and not for the statistical mixtures we envision
for the current problem. Furthermore, its gradient also does not have a closed form expres-
sion for the sophisticated statistical model of the scene. While not directly useful for our
optimization process, it is interesting to notice that this particular information score can be
perceived as the limit case & — 1 of Renyi’s Generalized mutual information [55]. The case
a = 2 leads to the Quadratic mutual information (QMI) which measures the £, distance
between the joint distributions of class labels and measurements, and the product of their
marginals [62]. In this case, the metric and its gradient can be developed analytically for
mixtures of Gaussians but only offer a lower-bound to the error rate [61] which has limited

utility in our optimization framework.

We thus need an information-Theoretic metric that can be related to an upper bound of
the probability of misclassification. In the following section we describe one such metric : the
Cauchy-Schwarz mutual information. While this metric has been been studied and employed
to optimize and characterize other measurements problem with Mixtures of Gaussians [63],
Poisson processes [64] and Mixtures of Poisson distributions [70], we present here several

properties justifying regarding the particular classification task at hand.

4.4.1 CSMI Metric

The Cauchy-Schwarz mutual information (CSMI) is directly related to the Cauchy-
Schwarz Divergence D¢g which measures the angle between two probability distributions

which are square integrable. In the current context, let a discrete class variable C' take values
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in the labels set C and vector measurements variable G in R¥M | their CSMI is defined as :

Zcs(G, C) = Des(pa,c(g; ¢), pe(c)palg))

2 ecc f]REM pe.c(g,<)pa(g)po(c) d'g
\/ >cee Jan Pa.0(9,0)? Mg e po()? Jpn pa(g)? Mg

= —1In

, (4.9

where the numerator can be interpreted as the dot product between the joint distribution
pa.c(g,c) and product of marginals po(c)pe(g), while the denominator relates to the prod-
uct of their respective L5 norms. While the angular separation is explicit in the previous
expression, it is possible to further simplify it with the class likelihood distributions. We
can here assume that all the classes are equiprobable (i.e. p(c) = 1/N.) and we define the

X N¢

system overlap class matrix V € R¥M*Ne for which each element is written as an overlap

integral of two likelihoods :

Vii = / p(g|C = i)p(g|C = j) d*Mg. (4.10)
REM

From there, we can draw a parallel between this matrix, made of positive coefficients,
and the confusion matrix previously defined which is related to the probability of error.
Both of them share a similar structure : the goal of the optimization is to increase the
on-diagonal values which are linked to the probability of correct classification events, while
decreasing all the off-diagonal values which represents the likelihood of misclassification (or
overlap between different classes). Hence, both of the matrices are diagonal in the case of
a perfect classifier; and both are proportional to a matrix of ones in the case of a totally
confused classifier (when P, = 1/N,). Note however that their normalizations differ : while
the confusion matrix has the sum of the values along each of its column equal to unity,
the overlap matrix is subject to both the triangular and Cauchy-Schwarz inequalities, i.e.
respectively : Vi, j, 2V;; < Vi; 4+ V;; and V% < V;;V;;. To further illustrate the underlying
function of the CSMI metric, we can highlight that the on-diagonals elements of the overlap
matrix are linked to the within-class tightness, i.e. they represent a measure of how tightly

packed are the mixture components of a single class likelihood. The off-diagonal elements, on

Page 110



Chapter 4. Scalable Compressive ATD/C Sensor

the contrary, are measuring the distance between mixture components belonging to distinct

classes.

Figure 4.8: Example of component pairs in a two-classes problem : the CSMI metric aims
at reducing the distance between components belonging to the same class (either blue or red
links) while increasing the overall separation of the two classes (i.e. increasing the length of
the magenta links).

With this construct, the CSMI expression given by Equation 4.9 can now be simplified

for equiprobable classes to :

(4.11)

2

ICS(G,C)zéln(N)—q( ZZZJ;’ )

Note that Zcg value ranges from 0, if all the V;; are equal, to In(N.)/2 if Vix; = 0.
Within this simplified CSMI expression, the coefficients V; ; can be developed into analytical
expressions when the class likelihoods are mixtures of Gaussians, by observing that the
integral of the product of two multivariate Gaussians can be written in closed form. By
using Equation 4.4 of the projected distributions, we have :

0; Oj

N((Ig ® P) (T —Tjy)| 0,21 @ (6*PPT + 021y)), (4.12)
k=1 =1

oy

1
~ 0,0

which can be interpreted as a sum of the pair-wise overlap between all Gaussians compo-
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nents of two mixtures. The development of this expression as well as the gradient of CSMI
with respect to the projection operator P are detailed in section B.2 of the Appendix. Thus,
we can observe that increasing the magnitude of the main diagonal elements (V;;) or re-
ducing the magnitude of the off-diagonal elements (V;;) in the overlap matrix is equivalent
to increasing Z¢g. Consequently, increasing the CSMI metric is equivalent to pulling to-
gether components belonging to the same class (i.e. increasing all V;;) while pushing away

components of any other classes (i.e. increasing all V).

Finally, the CSMI metric also provides an upper-bound Up, on the probability of er-
ror for the classification task, when the likelihoods are modeled by mixtures of Gaussians.
Specifically, in the current context where all components share the same weights and covari-

ance matrix, we can write the following inequality :

P, < Up, = ™40 /0N 1) o (8 — 2Zes) — 1] (4.13)

A generalized expression of this upper-bound for arbitrary components weights and
covariances is also given in section B.3 of the Appendix. While the value of Up, is likely not
indicative of the true error rate, it is interesting to see that it is equal to zero when CSMI
is equal to its maximum value. Hence, a small increase of the metric can provide a valuable
decrease in P, especially near the vertical asymptote at Zcg = In(N,)/2 as illustrated in
Figure 4.9. Finally, we note that although CSMI, the upper-bound and their respective
gradients can be expressed analytically, the gradient-based optimization is not guaranteed
to converge toward a global optimum as the metric is not necessarily convex given the large

number of classes and components.

4.4.2 Optimization Procedure

For the optimization of a projection operator P with the P, upper bound depending
on the CSMI metric, we can implement a simple gradient ascent algorithm : starting from

an initial operator P, we update the coefficients of the matrix P, at each step k with the
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(considering a single component per class)

NC =2 Classes :
— | Max Pe =~ 0.500
| Max CSMI = 0.347
NC = 3 Classes :
| Max Pe =~ 0.667
| Max CSMI = 0.549
Nc =4 Classes :
| Max P_~0.750
| Max CSMI = 0.693
NC =5 Classes :
— | Max Pe =~ 0.800
| Max CSMI = 0.805
NC =6 Classes :
— | Max Pe =~ 0.833

| Max CSMI = 0.896

Pe

Upperbound to the Probability of Error : U

0.4 - 06 0.8 1
CSMI : Ics

Figure 4.9: Upper bound Up, on the probability of error versus the CSMI metric Z¢g for
different number of classes N.. Here, we consider only a single component per mixture. The
graph also shows the maximum values possible for both CSMI (Z¢s < In(N,.)/2) and P,
(Pe <1- 1/Nc)

gradient of Upe(P) (depending directly on the CSMI gradient V (Zcg(P;)) and given by
Equation B.21 in section B.3 of the Appendix) : Piy1 = Py + 7V (Upe(Ps)), where 7 is
an appropriate scalar step size. Note we also trim, at each step, the components of the
gradient V (Upe(Py)) which would cause Py, to step out of the physical operator space
[—1/M;1/M]M*N justified previously. To implement this optimization algorithm we need

to compute the CSMI metric and its gradient at each step of the optimization process.

From the previous expressions, one can verify that the complexity of the CSMI compu-
tation grows linearly with the dimensions of the direct space N and of the compressed space
M, and quadratically with the total number of components across all classes K = Zf\[z‘l O;,

i.e. the computational complexity of CSMI is in the order of O(M N K?). The computational
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complexity for the expression of the gradient follows a similar trend except for the quadratic
increase with the number of dimensions of the direct space, i.e. the complexity is in the
order of O(MN?K?). While the total computational cost is dominated by the latter, it is
important to note that the search space is of dimension M x N, that is several thousand di-
mensions in the current context, which is impractical for gradient-free optimization methods

such as Simulated Annealing.

With the large mixtures being considered for this problem (on the order of one mil-
lion components, each), the calculation of CSMI is computationally intractable on a single
processor. It can naturally be split across multiple processors and benefits from a straight-
forward parallelization. Moreover, we also obtained satisfying results by implementing a
procedure akin to the stochastic gradient ascent [71, 72] : at each step, the CSMI metric
and its gradient are approximated by only computing the metric over a small subset of all
the possible component pairs forming the previous potentials. In this subset we only include
pairs of components which are narrowly separated. At each step k of the gradient ascent
optimization, we select a new suitable subset at random and we compute the approximation
of the metric Zcgj, and its gradient V (Zcg);. To retain a short-term memory of the previous
steps, we implement a simple decay function for the global estimate of CSMI Z¢g;, (and its

gradient V (Zcg),) as follow :

Tesk = (Zesy, +BZosk-1) (4.14)
= (Zesp +B8Zcsp_y +5° Tesf_a + - - )
And similarly VvV (Ics)k = (V (ICS)Z + BV (Ics)kil) (4.15)

where the coefficient [ is strictly smaller than one. Note that smaller 8 values are

equivalent to faster memory loss.

The validity of the restriction to a particular subset can be illustrated by considering the
distance separating the targets manifold : as the background accounts for a large portion of

the chip signal, it is very likely that two targets with the same attitude but against different
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terrains are separated by a great L, distance in the direct space. This remains true after
the projection, most of the time. Hence, we can deduce that most of the Gaussian pairs
component based on two different backgrounds do not contribute significantly to CSMI and
their computation can be omitted. Each subset considered is therefore including targets (as
means of the mixture components) sharing the same background. With this simplification,
we obtained speedups of about two orders of magnitude when compared to the exhaustive
approach. In addition, a software implementation tailored for the parallel architecture of
Graphics Processing Units (GPUs) will be able to optimize a 24 x 1024 operator in about
three hundred GPU-hours (on NVIDIA™ K20x), e.g. about 10 hours on 30 devices.

4.4.3 Optimization Results

_ -

QP E 9 QW e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 4.10: 32 x 32 modulation patterns. A : PCA-Secants, up to 24 projections ordered
from left to right by decreasing prevalence; CSMI optimized operators, for M = 12 projec-
tions (B,C,D) and M = 24 projections (E,F,G). B,E are optimized for SNR=0dB, C,F
are optimized for SNR=5dB; D,G are optimized for SNR=10dB. While all the modulation
values are constrained to the [—1/M,1/M] range, all of the projections are here normalized
to the [—1, 1] interval for visualization.

The optimization procedure is repeated several time, for different number of projections,
SNR values and initialized at different random Gaussian operators starting-points. A few of
the patterns set obtained are shown in Figure 4.10 along with a PCA-Secants operator com-

puted from the same data. As expected the optimized operators adopt different modulation
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strategies for different noise regimes. Firstly, the transmission is almost entirely saturated
at low SNR when compared to PCAs. Secondly, the range of spatial frequencies addressed
by each operator is increasing with SNR as the receding noise variance level uncovers more
of the object Power Spectral Density (PSD). We can thus observe that most of the class in-
formation resides in the high spatial frequencies domain although it might not be interesting

to perform measurements there when dealing with very noisy measurements.

Although less noticeable, one can remark that for high SNR, the operators with 12
projections present more gray-scale transmission values than those with 24 projections (sim-
ilar to binary patterns). This can be justified as the formers are slightly information-starved
while the latter are slightly energy-starved. This difference will be highlighted again with the
results presented from the P, performance curves. Finally, the optimized patterns exhibit a
slight preference toward the vertical components of the targets spatial frequency spectrum :
this is understandable as the vehicles in the current database are more horizontally elongated

and therefore leak more energy along the vertical spatial frequencies.

4.5 System Performance Analysis

4.5.1 Simulation Study

To assess the performance of various operators, measurements are taken of numerous
synthetic samples from the previously described realistic test set, as shown in Figure 4.6.
They then serve as inputs to the staged classifier. This test dataset is entirely disjoint from
the training samples and contains eight thousand chips, uniformly sampled across the two
vehicles and the negative background classes. For the projection patterns, we include several
common operators to be compared : signed random binary, random Gaussian, PCA-Secants
(constructed from the secants between the means of the mixture components) and CSMI-
Optimized patterns. For completeness, we also acquire measurements in the canonical space

to simulate the performance of a standard imager using a complete exposure, i.e. the same
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flux as all the projections of a single operator. Those direct measurements are processed
with the same two-stages classifier but which operates with the uncompressed statistical

model as ancillary data rather than the compressed model.

----- Direct Space
—6— CSMI Optimized
: AN - : Dol = V¥V - PCA Secants
10 b AN e A | = w = Rand. Bin. Signed
CUITTITTTON o ... | = # = Rand. Gaussian

: con i N ; el AR SNR = 0dB
""""" A\ o e - SNR = 5dB
""""" T TN g T e | —— SNR=10dB

Probability of Error

--------- Cwometon 7 ow
- Starved - - : .- . . Starved
) f_'_i‘_f_i‘_i',_ff;_'_‘_f_‘_,'_f_i'_i',_ffi‘_‘
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Number of Projections (=M)

10

Figure 4.11: P, performance in a simulated environment, averaged over the classification re-
sults of more than 8,000 realistic test samples. The horizontal lines indicates the performance
of a direct imager and are independent of the number of projections M.

The results shown in Figure 4.11 demonstrates that optimum performances can be
reached for compression rates between 64x and 42x (respectively between 16 and 24 projec-
tions for 32 x 32 blocks). For comparison, these are eight to ten times better than traditional
rates for a compressive imaging application. At these compression rates, the probability of
error for CSMI-Optimized operators obtained by simulation is between 3% (at 5dB) and 6%
(at 0dB), and 1.7x to 3 times lower than for PCA-Secants.

In parallel, the performance gain (decreased P,.) of the structured operators over ran-
dom projections is clearly illustrated. Here, the energy normalization imposed to all these
operators from the physical constraints of the system is indeed particularly detrimental to

the random operators. This is because, their prior-less structure forces them to perform
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more projections in order to capture the image information, and thus the embedded class
information, which is incompatible with the finite flux constraint. This normalization is also
the reason for the valley-shaped curves : the operators cannot successfully acquire the target
information from a small number of patterns projections (information-starved), while they
inefficiently spread the incoming flux across too many inherently-noisy measurements for a

large number of patterns projections (SNR-starved).

Finally, the P, curves also highlight the benefit of compressive sensing : a significant
multiplexing gain over direct measurements is visible at low SNR with an error rate 5 times
smaller at 0dB. At 10dB however, we notice that the performance of the Information Optimal
projections does not reach that of a conventional imager. This can be partially imputed to
a failure of the optimization framework : as the SNR increases, the blur imposed to the
statistical model by the noise kernel is reduced and it reveals more complex regions in the
CSMI surface. These particular regions are non-convex and cannot be efficiently explored

solely with a traditional gradient ascent approach.

4.5.2 Experimental Validation

For the experimental qualification of the operators, we perform all the measurements
with our prototype described in chapter 3 and pictured in Figure 4.12. For this acquisition,
each test sample is shown on a screen facing the main objective and imaged onto a Digital
Micromirror Device (DMD). After the optical modulation, the signal is integrated by a cus-
tom relay optics onto a low-resolution CCD sensor and the measurements are transferred
to a computer for processing. In order to minimize distortions between the ideal measure-
ment model presented in Equation 4.2 and the physical measurement model implemented,
an automated calibration is performed once before the acquisition session, as described in
the previous chapter. It consists in analyzing the mapping between the 2 x 2 blocks of
32 x 32 micromirrors (or modulation elements) and the pixels of the sensor array. The bias
and linearity of the measurements are also evaluated by displaying a few uniform grayscale

images on the screen. The experiment tests set is composed of one thousand 64 x 64 pixels
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chips randomly selected from the realistic tests dataset. Before being shown, they are pre-
corrected to neutralize the dynamic range compression applied by the display panel (with a
constant v & 2.2). Finally, for each of the operators to be tested, we acquire and average ten
consecutive measurements from the prototype in order to reach a SNR exceeding 30dB. This
way, we can add simulated white Gaussian noise of a given variance in order to adjust the
measurement SNR before the classification, and up to 20dB at most. For this last step, we
use the same algorithm as for the simulation study and we repeat the process with several

noise realizations.

CCD Sensor

"""""""""""" _'"""""'_'b
Imaging Arm-

-
'4

P arded\ DMD

e
\d‘g Spatial Modulation

Figure 4.12: Structure of the Scalable Compressive Camera prototype used to acquire the
experimental data. The scenes are shown onto a display at the left of the imaging arm.
The modulation patterns are implemented successively by a DMD and the resulting signal
is integrated by the relay arm onto a low resolution CCD sensor.

The experimental results are reported in Figure 4.13 for 12 and 24 projections opera-
tors, along with the corresponding entirely simulated measurements for reference. We can
remark analogous trends between the the experiment and the simulation with varying SNR
values. Especially, one can notice that for M = 24, the operator optimized for SNR = 0dB
outperform the operator optimized for SNR = 10dB until SNR ~ 5dB (=~ 6dB from the
simulation). For M = 12, all the operators are in an information-starved regime : the num-

ber of projections performed is not sufficient to accurately discriminate the class label. As
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demonstrated in the previous simulation analysis, the PCA-Secants operator underperforms
the Information Optimal patterns in this low SNR regime, with P, improvement factors

between 2x at 10dB, and 6x at 0dB for 24 projections.

Despite the careful calibration, we note that it is however not possible to exactly reach
the performance predicted by simulations as illustrated by the previous averaged results : we
find an increase between 2 and 5% of the probability of error for the tested operators. Those
differences are mainly caused to several imperfections in the experimental acquisition setup.
For instance, the display used does not reproduce the linear intensity controls with a high
fidelity : hence the targets shown are still suffering from a slight dynamic range compression.

The PSF of the imaging arm will also slightly blur some of the smallest scene details.

12 Projections 24 Projections

Probability of Error
Probability of Error

-2 I I I I I} -2
10 2 8 10 10 0

10

= = = Simulation

Experiment

= PCA-Secants
RANDN

= RANDBIN

CSMIOpt-0dB

CSMIOpt-10dB

Figure 4.13: Comparison of between the simulated and experimental performance averaged
over various realization of the noise. The error bars indicate the minimum and maximum
P. found across these realizations.
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4.6 Conclusion And Future Work

We have presented a scalable optical compressive sensing architecture to perform an
Automated Target Detection and Recognition task. This platform optically decomposes the
field of view into contiguous blocks and acquire for each a feature vector that an algorithm
then classifies without performing any intermediate image reconstruction. This piecewise
method allows for the parallel acquisition and processing of the measurements taken with
a low resolution sensor. In the context of this study, we have developed a large statistical
model of the target vehicles within cluttered natural environments, and with it we optimized
the projection patterns of the sensing matrix by maximizing the Cauchy-Schwarz mutual
information which measures the separation between the classes after projection. We have
especially demonstrated that this metric and its gradient can be computed in closed-form
even for our complex statistical mixture model, and that it provides an upper bound on
the overall probability of misclassification of the system. The projection operators thus
constructed are tuned for a fixed number of projections and acquisition SNR. We analyze
their performances and demonstrated that they outperform conventional cameras as well as

random and PCA-secants operators in both simulated and experimental setups, reaching

accuracy rates of about 90% at 0dB SNR above 95% at 10dB SNR.

In future developments, we plan on adding to the complexity of the statistical models
in order to handle, for instance, occlusions and change in lighting conditions. We can also
now add sensing capabilities to the system, such as estimating the motion parameters and
tracking the targets. Finally with a programmable compressive architecture, it is possible to
switch on demand between an autonomous target detection and recognition task described
here and an imaging task described in the previous chapter, for only a few marked regions

of interest.
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Chapter 5

Two Point-Sources Resolution

Measurement Design and Analysis

In this final chapter, we consider the canonical problem of estimating the angular sepa-
ration between two incoherent and quasi-monochromatic point-sources in order to investigate
the resolution limit of optical instruments. We expand on recent developments showing that
there exists a passive and linear optical architecture which outperforms the conventional
direct imager in the sub-Rayleigh regime. We especially provide a generalization of this
two-measurements architecture to match arbitrary pupil functions and show that it remains

insensitive to diffraction and phase aberrations.

5.1 Introduction

The Rayleigh Criterion [73] provides an intuitive qualitative limit to the resolution of a
traditional diffraction-limited imager employing a focal plane array, as depicted in Figure 5.1.
It reasonably states that two incoherent point-sources are resolvable if their separation is

greater than the extent of the Point Spread Function (PSF) due to the diffraction from the
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finite size of the pupil. Consequently, attempting to estimate smaller separation angles is
infeasible because the smeared images of the points in the observation plane overlap with
each other rendering the two point-sources visually indistinguishable. Increasing the reso-
lution of the focal plane does not fundamentally change the resolution as this limit appears
to derive solely from the physical angular size of the PSF which is in the order of \/D for
a A\-wavelength field passing through a pupil of scale D. Modern techniques have been de-
veloped to overcome this resolution limit such as near-field scanning microscope, stimulated
emission depletion (STED) microscopy [79, 80] or photoactivated localization microscopy
[81]. However, these methods cannot be adapted to long standoff imaging or remote sensing
applications as they require either close proximity to exploit the short distance propagation
of evanescent waves or elaborate control of the object illumination to restrict the excitation

pattern of fluorescent markers.

However in recent work by Tsang et al. [83, 84] have shown that the common perception
of Rayleigh’s curse is merely a limitation of the direct sampling strategy that conventional
imagers employ rather than a fundamental physical limit of all instruments. To demon-
strate their argument, they have computed the quantum Fisher information (QFI), and
the associated quantum Cramer-Rao lower bound (QCRLB) to find the ultimate achievable
precision of any optical measurement for the task of measuring the angular separation be-
tween two quasi-monochromatic incoherent point-sources. Contrary to the performance of
a traditional imaging architecture, this information bound remains constant throughout the
whole range of angular separations, 7.e. from zero to large separations in the image plane.
More surprisingly, the authors have proposed a passive linear optical system which attains
this bound and thus outperforms any conventional imager given an optical aperture shape.
In this alternate architecture, depicted in Figure 5.2, the focal plane array is replaced with
an optical preprocessing device which performs the decomposition of the incident diffracted
fields onto the Hermite-Gauss spatial modes and counts the number of photons in each mode
using shot-noise limited photodetectors. The linear projections onto the mode basis allows
extract the phase information embedded in the optical fields, while this same phase informa-

tion is not captured by the traditional focal plane array measurements. The measurements
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quantum optimality was further investigated by Lupo [85].
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Figure 5.1: Direct imaging architecture : the focal plane array records the sum of the
intensity of the two PSF's.
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Figure 5.2: Mode-sorting measurement architecture : a passive optical element linearly
decomposes the incident fields onto a spatial modes basis. For each mode, a shot-noise
limited photodetector integrates the flux at the output port.

In this work, we extend Tsang’s et al. architecture for a Gaussian aperture first to
a hard aperture, before generalizing to an arbitrary pupil function. We explore several
key properties of the proposed non-traditional system : (1) energy and (2) information
distribution across the optical modes via an analysis of the classical Fisher information and
(3) the mean square error performance of the Maximum Likelihood Estimator (MLE). We
especially analyze aspects of this novel imaging system that will impact its performance

subject to non-idealities inevitable in a practical implementation of the system.

This chapter is organized as follow. In section 5.2, we begin by reviewing the measure-
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ment statistics governing the angular accuracy of a direct, or conventional, imager employing
an idealized detector array with infinite resolution. The Fisher information and the estima-
tion error for this conventional imager will serve as a baseline for comparison with alternative
architectures. We then describe the measurements strategy of the spatial mode demultiplexer
for Gaussian-apodized and hard apertures in section 5.3. We show that the Sinc-Bessel spa-
tial modes basis is the optimal measurement for a hard aperture. We highlight the duality
between energy and information content of the spatial modes for the mode-sorting archi-
tecture and demonstrate that a binary mode measurement can outperform a conventional
imager recording thousands of incident photons in the sub-Rayleigh range. In section 5.4,
we complement the Fisher information analysis of the normalized root mean square error
(NRMSE) performance of measurements by the mode-sorter and the conventional imager
for different source fluxes. In section 5.5, we generalize the mode-sorting architecture to an
arbitrary aperture and we highlight its advantages over conventional imaging. Finally in
section 5.6, we discuss two candidate implementations of the mode-sorting measurements :
(1) a Mach-Zehnder interferometer architecture and (2) a self-referencing volume hologram

architecture.

5.2 Fundamental Performance Analysis of A

Conventional Imager

While Lord Rayleigh’s criterion describes a qualitative visual limit to the resolution of
an incoherent imaging system, we develop a quantitative analysis of its fundamental perfor-
mance limit via the Fisher information. Such a quantitative analysis is essential to establish a
baseline for comparison of alternate imaging architectures. In this one-dimensional problem,
two incoherent, indistinguishable and quasi-monochromatic (A) point-sources are considered,
each respectively at an angle 46 from the optical axis, small enough to permit the use of
the scalar diffraction theory. A conventional imager with an aperture scale D and a linear

shift-invariant impulse response, maps the incident optical field onto its focal plane array as
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the superposition of two shifted Amplitude Spread Function (ASF) : A,(z) = A(x/0)/\/o
where z is an angular coordinate and o is a normalization constant proportional to \/D. As
dictated by the scalar theory of wave optics, this characteristic function (ASF) of the sys-
tem is directly proportional, in amplitude and physical size, to the Fourier transform of the
complex aperture function. However in our current analysis only the intensity point spread
function (PSF) is of interest for incoherent imaging. The PSF is given by the intensity of
the ASF : P,(z) = |A,(z)]?>. Note that throughout the remainder of this work, both the
ASFs and the PSFs will refer to the normalized version in energy : i.e. ffooo P,(x) dz = 1.
For example, a Gaussian-apodized aperture T'(x') = exp (22/2D?) yields a Gaussian ASF
Ay(z) = exp(—a2/40?)/(2702)7, and a PSF P,(z) = exp(—22/20%)/v/270. For a hard
aperture of size D, i.e. T'(z') = rect(2’/D), the ASF is given by the cardinal-sine function
Ay (z) = sinc(x /o) /+/o, whereas the PSF can be expressed as P,(z) = sinc(z/0)?/o.

For the task at hand, we assume that only the 260-separated point-sources compose
the field of view, each emitting a flux of N/2 photons on average, incident on the exit
pupil. Therefore, the incoherent image in the focal plane of the imager can be written
as I,(z,0) = N(P,(z + 60) + P,(x — 0))/2. Naturally, this irradiance function describes
the average distribution of photons over the observation plane and solely depend on the
separation angle 6. Given a thermal model of object radiance, an ideal shot-noise limited
photodetector of size € centered at the coordinate xy with 100% quantum efficiency measures
a random flux W that follows a Poisson statistical distribution with mean parameter equal

(x,0) dx). Note

zo—€/2 7O

to the integrated irradiance above its surface : i.e. W ~ P (Ae =/ rote/2 1
that a contiguous tiling of such pixels forms an infinite sensor array which collects a random

total number of photon W; which also follows a Poisson distribution with mean NV, that is :

+0o ke+e/2
Wy~ > P (/ I,(x,0) da;>
k

k=—o0 e—e/2
+oo ke+e/2

~ P < Z / I,(z,0) da:) ~P(N). (5.1)
ke —oo ¥ ke—€/2

Moreover, in the limit € — 0, the detector array approaches a continuum detector such

Page 126



Chapter 5. Two Point-Sources Resolution Measurement Design

that flux statistics for each of the infinitely small detector tends to a Bernoulli distribution of
probability A, = ::26//22 I,(x,0) der — 0. Hence, the distribution of the photon counts for
such a continuum spatial detector is defined by an inhomogeneous Poisson point process with
density given by the irradiance function I, (z,6). In other words, such a detector measures a
random number (W, ~ P (N)) of photons during the exposure, where each photons detection
is independent of each other and has a probability that it is detected in the interval [z, x]

given by f;ib I,(x,0) dz as symbolically illustrated in Figures 5.3 and 5.4.
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~~ —”— | g
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Figure 5.3: Direct imaging architecture for two incoherent and well separated point-sources.
Green dots depict the photon detection events.
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Figure 5.4: Direct imaging architecture for two incoherent point-sources at Rayleigh’s limit.
Green dots depict the photon detection events.
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Therefore, the likelihood Lpiect of detecting N* independent photons {xy, ...,z y+} can

be expressed as the product of the irradiance densities at each detected location :

0,N*) =[] Lo (xx/0). (5.2)

EDirect(xla ce oy TN*

Given this likelihood model, one can calculate the Fisher information Zpiec [74] for

estimating the variable 6 (angular separation) which can be expressed as :

9]

IDirect(9|]\[*) = E

a'CDireM;(xlu co s TN 97N*) ?
06

L1,y L N*
+o0 I/($ 9)2
= N* S S .
/oo I(z,0) “* (53)

where I'(z,6) denotes the first derivative of the irradiance function with respect to 6, i.e.

I'(x,0) = 01(x,0)/00; and thus on average :

+oo[/ l’ 0)

I 1rec E I 1rec N* N
bt (6) = B [T (0 | e

dz, (5.4)

This #—differential FI metric assigns a score of the system performance for a given
separation (6) : higher values of the metric indicate better performances. One can observe
several interesting properties of the FI expression in Equation 5.4 and as plotted in Fig-
ure 5.5 as a function of point-sources separation. Firstly, the FI is linearly dependent on the
number of photons. Secondly, the FI value also approaches zero when the separation angle
6 tends to zero, and regardless of the underlying PSF profile (see Proof 4 in the Appendix).
This is consistent with Rayleigh’s criterion and establishes the insensitivity of any direct
measurement device to angular separations below the Rayleigh limit. Thirdly, the amount
of information depends on the pupil function. For instance an imaging system with a hard
aperture (i.e. T'(z") = rect(2’/D)) collects more information than a system with a Gaussian
aperture. Moreover, any optical aberrations in the exit pupil of the optics increases the PSF
blur and consequently lower Zp;..t for all values of the separation 6. Finally, FI saturates

close to a maximum value when 6 becomes much larger than the physical extent of the PSF.
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This is to be expected as the performance of the imaging system is nearly independent of the
separation when the two source images are easily distinguishable (i.e. well above Rayleigh

limit).

Fisher Information — Direct Measurements
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Figure 5.5: Fisher information of idealized direct imagers for Gaussian and hard apertures.
Note that the y-axis is normalized to the average number of photons N and divided by the
square of the PSF scale o. The ringing in the hard aperture curve is due to the features in
the sinc® PSF.

The Fisher information also provides a lower bound to the mean square error (MSE)

of any unbiased estimator also known as the Cramer-Rao Lower Bound (CRLB) [75, 76].

-~

Thus for an estimator 6(xy,...) using the detected photon locations {z1, ...}, we can state

~

. MSE;(0) = E | (@(a1,...) — 0)?

0} < 1/Z(#). However, it is important to emphasize that
this bound is not necessarily achievable. In order to test the direct imager output perfor-
mance, we first construct the maximum likelihood estimator (MLE) @\MLEﬁDirect(xl, e TN

from Equation 5.2 as :

0)}, (5.5)

eMLE,Direct(xla <. ,SEN*) = argmax {ﬁDirect(ﬂh, ceoy TN*
0

Page 129



Chapter 5. Two Point-Sources Resolution Measurement Design

and then we compare its MSE performance against the CRLB. However for this angular
estimation task, it is more appropriate to consider a normalized version of the MSE defined
as the normalized root mean square error (NRMSE) as : NRMSE;(#) = /MSE;(6)/0,
and equivalently the normalized Cramer-Rao lower bound (NCRLB) as : NCRLB(f#) =
CRLB(6)/6.

10°
o
N
=
o
Z . 4
— 10
o
i ‘.
- , )
I : : _ : : : : : 02 04 06
210_2 ““““ DR S SR N RMSE (Monte-Carlo)
S {0 R il = = = Cramer-Rao Lower Bound
> : : : : : . R ? O Gaussian Aperture
..................... ‘ O Hard Aperture
. , T 10 Photons
107 ; ; ; ; n | , 300 Photons
0 0.5 1 1.5 2 2.5 3 3.5 4 10000 Photons

Half-Separation : 6/c (c=A/D)

Figure 5.6: Normalized error plot (NRMSEp;.) for idealized direct imagers for Gaussian
and hard apertures. The normalized CRLB (NCRLBpj,ect) is also included for reference.

To implement a near optimal MLE estimator performance we use Nelder-Mead search
algorithm [77] initialized in the close proximity of the ground-truth value of € so as to
avoid possible local maxima. In Figure 5.6, we show the estimation performance of the ML
estimator obtained using a Monte Carlo sampling of the NRMSE metric. The ML estimator
is exposed over more than 16,000 sets of photons realizations for every sample value of 6
and average incident flux N. From this plot we can observe that the NRMSE performance
of the ML estimator is nearly in perfect agreement with the corresponding NCRLB for large
mean-number of photons. However the MLE breaches the NCRLB for small number of
photons (=~ 10) and separations (< 0.5), as it becomes biased (and super-efficient) in that
regime. Finally, while the overall estimation performance increases with the square-root of

the number of photons, the vertical asymptote in # = 0 indicates the inherent inefficiency
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described previously. For instance, in order to perform a measurement with an relative
precision of 1% at a separation of about 4\/D (4 times Rayleigh’s limit), only 300 photons
are needed on average for an imaging system with a hard aperture. However, this number is
increased to 10,000 photons to achieve the same relative precision at a separation of about
0.8)\/D (20% smaller than Rayleigh’s limit). In other words, reducing the angular separation

by a factor of 5 requires an increase in the number of photon budget by over a factor of 30.

5.3 Analysis of Mode-Sorting Imager Design :

Gaussian and Hard Apertures

An alternate approach to measuring the angular separation of two quasi-monochromatic
incoherent point-sources proposed by Tsang et al. in [83, 84] involves projecting the superpo-
sition of the incoherent image optical fields A,(x+6) and A, (z —0) of the two point-sources
onto a Ly complex-valued spatial mode f(x) of unit magnitude, z.e. [~ |f(z)]* dz = 1.
The resulting measurement function m(6), parametrized by the separation angle 6 can be

analytically written as :

2

m(0) = % ’/:OWAU(:C Loy e 4 % ‘/:OWAJ@ —0)dz| . (56)

where f(z) denotes the mode complex conjugate. The normalized output of this measure-
ment process is thus a single scalar equal to the sum of the two modulated intensities as
defined in Equation 5.6 and is illustrated in Figures 5.7 and 5.8. Furthermore, this mea-
surement strategy can be extended to multiple mode measurements simultaneously, which
would lead to a linear decomposition of the image plane optical field onto any set of modes

forming an orthonormal basis.
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5.3.1 Energy Distribution Across Mode Basis

Given such a mode decomposition measurement architecture one can effectively count
the number of photons populating an arbitrary spatial mode f(x). Thus, if N denotes the
total photon flux through the exit pupil, a single shot-noise limited bucket photodetector
will measure samples from a Poisson distribution with mean Nm(#). If multiple mode mea-
surements are acquired, note that their statistics remain independent because the underlying

orthogonal spatial modes do not interact.
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Figure 5.7: Single mode-sorting architecture : well separated point-sources. The fields are
not coherent and cannot be summed.

In [83], the authors propose to use the Hermite-Gauss (HG) basis to decompose the
Gaussian ASF's deriving from a Gaussian apodized aperture. For this particular case, {h,(z)}
denotes the spatial mode set indexed by ¢, and {m,(#)} denote the associated normalized
measurement functions defined in Equation 5.6. Mathematically, the mode h,(z) and the

corresponding mode measurement m,(#) can be expressed as :

Vg €N, hy(x) = %Hq (ﬁ) exp (_%) (5.7)
my(0) = % (%;)qexp (—40722) (5.8)

where H,(x) denotes the ¢"* Hermite polynomial and hg(x) is simply a Gaussian mode
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Figure 5.8: Single mode-sorting architecture : point-sources at Rayleigh’s limit. The fields
are not coherent and cannot be summed.

identical to the Gaussian ASF of the imaging system. For a system with a hard aperture,
we find that the Sinc-Bessel (SB) orthonormal basis {s,(z)} is the optimal choice for the
mode decomposition of the cardinal-sine ASF's. Thus for the hard aperture, we can express

the ¢"" mode s,(x) and the corresponding mode measurement as :

Vg eN, s,(z) =+/1+2q j,(mx) (5.9)
mq(0) = s, (g) (5.10)

g

where j,(x) is the ¢ spherical Bessel function of the first kind (note especially that jo(mz) =
sinc(x)). The HG and SB modes are plotted in Figure 5.9. Note that both of the proposed
basis are also complete in the £y vector space and consequently, the Parseval-Plancherel the-
orem ensures the conservation of energy in the measurements space. In other words, one we

can assert that measuring all of the modes capture all of the incident energy, mathematically

V9 € RY, <§p (qu(e))> - meq(e) — N. (5.11)

Another key aspect shared by the two modes basis is that the projection onto the 0"
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Modes of the Hermite—Gauss basis. Modes of the Sinc-Bessel basis.
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Figure 5.9: Left : first modes of the Hermite-Gauss basis. Right : first modes of the
Sinc-Bessel basis.

mode captures all of the energy available at # = 0 : i.e. mp(0) = 1, and all the other modes
capture, of course, no photons at zero separation. This is illustrated in Figure 5.10, where
we plot the cumulative energy collection by measuring the modes 0 to (). Note also that the
incident energy from the sources is almost entirely captured by low order modes at small
angular separations : for instance, in the case of the HG modes and a Gaussian-apodized
aperture, cumulating the measurements of the modes ¢ = 0 and ¢ = 1 is sufficient to acquire
more than 99% of the available energy at § = ¢ /2. In the case of the SB modes and a hard
aperture, cumulating the measurements of the modes ¢ = 0,1 and 2 is sufficient to acquire

more than 97% of the available energy at 6 = o/2.

5.3.2 Fisher information Distribution Across Modes Basis

As we have shown, all the spatial mode measurements are statistically independent and
follow shot-noise statistics with mean m,(#). If we begin with a single mode measurement
denoted by m¢(f) for a total average photon flux N, then the measurement likelihood of the
associated measurement variable Y7 is given simply by a Poisson distribution conditioned on

the angle 6 : Y; ~ P (Nmy(0)). For such a measurement we can express the corresponding
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Cumulative Energy Collection : Gaussian aperture, HG Modes Cumulative Energy Collection : Hard aperture, SB Modes
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Figure 5.10: Fraction of the energy collected over the cumulative measurements O, ..., q.
Left : for a Gaussian aperture and HG modes. Right : for a hard aperture and SB modes.
The lowest order modes allow to integrate most of the energy available at small separation
angles 6.

Fisher information as :

T;(0)=N (5.12)

mg(0)
where m’;(0) denotes the first derivative of m; with respect to 6 : m/,(6) = dmy(0)/00 (see
Proof 1 for the derivation of Equation 5.12). It is interesting to note the underlying structure
of the expression which is proportional to the square of the measurement sensitivity to 6
(i.e. m’(#)) and inversely proportional to the measurement itself (m(6)). In particular, the
FI structure matches that of the Fisher information for a scalar measurement function g(0)

corrupted by an additive Gaussian noise of variance v? : ¢'(6)? /2.

Despite this analogy, we must highlight that the variance of the Poisson distribution is
signal dependent, which is not the case for Gaussian noise corrupted measurement. The FI
of the Poisson distributed mode measurement exhibits a counter-intuitive property : if the
measurement function approaches 0 (i.e. no energy is collected), while its sensitivity also
approaches 0 near a critical point 6., furthermore if the measurement function is equivalent

to the square of its sensitivity, then the Fisher information itself can have a non zero value
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at 0., mathematically :

3C >0, Cmg(d) ~ mi(0)? = ZI;0) - C (5.13)

66 6—06F

Such a measurement property suggests that every single detected photon, for an un-
known parameter 6 in the vicinity of 6., carries a lot of information about the parameter and
thus mitigates its decaying sensitivity (m/;(¢)). Interpreting this result for the two point-
sources separation problem suggests that if a mode measurement has this inherent property
(Equation 5.13) then it provides some information around 6., even though its sensitivity is
near zero and it collects near zero energy. However, an important practical implication of
this property is that around the critical point 6. the information collection represent the
equivalent of an unstable mechanical equilibrium, that is any corruption of the measure-
ment, such as a background signal, will immediately degrade the Fisher information content
to zero around .. Thus, such an information rich measurement would be extremely sensitive

to implementation errors.

From the general FI expression in Equation 5.12, we write the Fisher information for a

mode-sorting system with a Gaussian aperture and the HG modes measurements as :
N 62 2 62 q—1 62

Similarly, we write the Fisher information for a mode-sorting system with a hard aper-

ture and the SB modes measurements as :

472N qo . (m0 _ 0\ \ >
Tspq(0) = = (1+2¢q) <ﬁjq (;) — Jg+1 (7» : (5.15)

In a similar fashion to our analysis of the energy distribution across the modes, we
now analyze the distribution of information across all the spatial modes. It is particularly
interesting to consider the behavior of the information content for each mode in the limit

of very small separation angles : § — 0%. Both the HG and SB mode basis follow similar
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trends :
Vq#1, T @) — 0 d: T 0 — N (5.16)
nd : — .
a7 L tucelv) = U@ naall) = =
A2 N
ISB,q(9> 6j+ O, and : ISBJ(Q) 9_;)>+ 352 (517)

We observe that only the 15 mode captures all the available information at zero sepa-
ration (0 = 0) and remains the largest contributor in the sub-Rayleigh range (# < A/D) as
shown in Figure 5.11. It is worth highlighting that the information rich first mode effectively
implements a differentiation between the two ASF superpositions on the left and the right
side of the optical axis. Such a differential measurement provide optimal sensitivity in the
6 — 0 regime as quantified in Equation 5.13. In contrast, the 0*® mode implements an
average or summation of the left and right portions. It is also interesting to note the duality
between the 0" modes which capture the majority of the energy in the incident optical field

while the 15 modes capture the majority of the information in the narrow separations.

Beyond the 0 and 1% modes, we can extend the information analysis to the mea-
surements of the @) first modes {my(f),...,mg(f)} using the information expression in

Equation 5.12 as :

Q Q m! (0)2
To. q(0) =) T,0) =) N (5.18)

we observe that the total information captured increases monotonically with the number of

modes ) as shown in Figure 5.11.

Tsang et al. have shown that for the Gaussian ASF, measuring all of the HG modes yield
a constant information value with respect to the separation (#) which is linearly dependent

to the total average number of photons (N) :

+oo
N
VO ERT, Y Tucyd) == (5.19)
q=0

o2
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Similarly, we have shown that a similar result exists for the Sinc-Bessel modes (see

Lemma 1 and Proof 3 in the Appendix). For a finite interval U of RT, we can write :

+oo
ANT?
VOEU, Y Tspg0) = o (5.20)
q=0

These information sums mirror the conservation of energy property in Equation 5.11 but
for the information content. This is in stark contrast to the diminishing Fisher information
for & — 07 of a direct conventional imager employing an ideal detector array. Also, it should
be noticed that for both measurement basis, collecting information at larger separation
angles 0 requires the collection of more higher order modes, as evident in Figure 5.11. This
is expected as higher g-modes in the spatial HG and SB basis extend further away from the

optical axis.

Cumulative Information Collection : Gaussian aperture, HG Modes Cumulative Information Collection : Hard aperture, SB Modes

0.9 -,

N m=? ==

0.8 ’ 0.8 o z

0.7( 0.7 -~ /
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! =0 g=1 q=2 \g= q=4 \g=5' \g=6

0.4F ! 041
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= = = Direct Measurement
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Figure 5.11: Fraction of the Fisher information collected over the cumulative measurements
0,...,q. Left : for a Gaussian aperture and HG modes. Right : for a hard aperture and
SB modes. Similarly to the energy, the lowest order modes allow to acquire most of the
information available at small separation angles 6.
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5.3.3 BinSPADE Mode Measurement Design And Analysis

The alternate imaging architecture employing linear mode projections requires all the
countably infinite modes comprising the mode basis to achieve the optimal constant per-
formance over the entire range of angular separations. However, in the sub-Rayleigh range
that is of practical interest here, because the conventional imager is optimal for larger sep-
arations, one only needs a relatively few mode measurements to overcome the performance

limitation of the conventional imager and achieve optimal performance.

With this goal, Tsang et al. have proposed a straightforward Binary SPAtial-mode
DEmultiplexing (BinSPADE) architecture [83] which measures any given single mode and
its complement. Thus the first measurement m(6) is the projection onto a single spatial

mode f(z) and the second is its residual m, ;(0) =1 —m(6).

A good choice for the spatial mode measurement is dictated by the energy and informa-
tion duality of the basis. In other words, one must choose a spatial mode which is efficient
in energy collection or information collection. Thus we may choose either the 0'" mode, i.e.
f = hg or sg, which collects the energy and its residual collects the information, or the 15
mode, i.e. f = hy or sy, which collects the information and its residual collects the energy.
We will refer to these two measurement designs as 0-BinSPADE when using the 0" mode,

or 1-BinSPADE when using the 1% mode.

The Fisher information for a 0/1-BinSPADE can again be expressed analytically as the
sum of the respective information for the mode and its residual. For a Gaussian aperture and
HG mode basis we write the following expressions respectively for the 0 and 1-BinSPADES :
N_ i

Tuc,0-BinspaDE(0) = ;m
402

62 2
N (1 - m)

o2exp (&) — &

, (5.21)

Tnc,1-BinspaDE (0) = (5.22)
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Similarly, for a hard aperture and SB mode basis, we get :

av (o () — gmsin ()

ZsB.0-Bin 0) = — , 5.23

$B,0-BinsPADE (0) 2 o (2)° (5.23)
12N o2 [sin (%) — 2, ()]

Zsp,1-BinsPADE(0) = S (5.24)

As we can observe from the plot of Fisher information for these two BinSPADE measure-
ment designs in Figure 5.12, they will have a higher information content than a conventional
imager for small angular separations (i.e. the sub-Rayleigh range § < o). The location of
the performance crossover between BinSPADEs and conventional imager occurs at separa-
tion angles equal to 250% and 170% of o = A/ D respectively for the 0 and 1-BinSPADEs of
the HG mode basis and 120% and 80% of o = A/D respectively for the 0 and 1-BinSPADEs
of the SB mode basis. For larger separation angles, the information capacity of these archi-
tectures degrades to zero, as expected. It must also be noted that 0-BinSPADE significantly
outperforms 1-BinSPADE for both Gaussian and hard aperture cases.

However, in a physical implementation of a BinSPADE measurement it is to be expected
that non-idealities of physical components and /or imprecise opto-mechanics will degrade the
performance from the performance predicted for an ideal BInSPADE measurement. Espe-
cially, given the energy-information duality of the 0*® and 1% modes, one can expect to see a
leakage from the direct measurement of a given mode over its residual because of an imperfect
photon sorting implementation. This leakage effect can be modeled as the first measurement
function mg4(6) (either mg or my) being scaled by (1 — €) as it loses a small fraction € > 0
of the flux to its residual measurement (either m,o or m,1) : m,(0) = 1 — (1 — €)mq(0).
For simplicity, we define the efficiency p = 1 — € and derive the following expressions for the

Fisher information of both 0- and 1-BinSPADE conditioned on this leakage parameter. For
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Figure 5.12: Performance comparison of Direct Measurements versus 0 and 1-BinSPADE
receivers for Gaussian (top) and hard (bottom) apertures. The y-axes are normalized to
the respective Quantum Fisher information bounds.

a Gaussian aperture we write :

T1G.,0-BinsPADE,p(60) = —#_; (5.25)

Th1-BinspADE p(60) = Fexp (%) % (5.26)
Similarly, for a hard aperture and SB modes, we write :
o 70 o2 i (x0y )’
ZsB,0-BinsPADE,p(0) = 4J\;p <§ s (%) _‘ 7 SH; (?)> , (5.27)
g L — pjo (%0)
Tenmmsoansy(0) = 2220 sin () — 2, (P)]° (5.28)

P =30 ()
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Despite the superior information performance of the ideal 0-BinSPADE over the 1-
BinSPADE, we find that the information of the former collapses immediately to zero at
0 = 0 and for any leakage € > 0 (any efficiency p < 1). On the contrary, the latter only

degrades linearly with the efficiency p and thus more resilient to this particular defect.

5.4 Mean Square Error Analysis of Mode

Measurements

While a Fisher information analysis of mode measurements provide a lower bound on the
error in estimating the separation angle via the Cramer-Rao bound, the actual performance
of an estimator is equally important to analyze. For such an analysis , we have to choose an
estimator of the separation # from a set of mode measurements. Naturally, the maximum
likelihood estimator (MLE) is a good choice given that it is an asymptotically efficient. The
generalized definition of the MLE in the case of ()+1 statistically independent measurements

{Y0,...,yq} can be expressed as :

Q
aMLE(yO, oY) = arg;nax {HP(yq|qu(0))} : (5.29)

q=0

This expression is based on the fact that each modal measurement Y, follows a Poisson
distribution, i.e. Y, ~ P (Nmgy(f)) assuming that the total average photon flux N is known.

The MLE can be expressed in terms of the log-likelihood for a single mode measurement as

Oriwe(y,) = arg max {y, In(Nmq(9)) — Nm,(6)}

= m; o Ry (%) , (5.30)

where m;l denotes the inverse of m,, which exists over some fixed interval of interest U

containing ¢ = 0. Ry is a simple restriction operator to the image V' of U by m,, it clamps
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overflowing values of the quotient y,/N to the closest extrema of V' in order to avoid indefinite

portions of m,'. And o denotes the composition operator, i.e. m;" o Ry(-) = m_ ' (Ry(-)).

Additionally, we can also express the estimator analytically in case of a BinSPADE
architecture : we note y, and vy, , the respective outputs of m,(#) and its residual 1 —m,(6),

we write :

é\MLE(yqa yr,q) = arggnax {P (yq| qu(é)) P (yr,q| N — qu(G))}

—m. "o Ry (L) , (5.31)

Yq + Yr,q

Note that this estimator is similar to the one for a single Q-mode (Equation 5.30) in

the limit of large N where y, + v, , becomes a good approximation of the total flux (i.e.

Yg + Yrg ~ P (N)).

Given the ML estimator definition, we can now compute the normalized RMSE (NRMSE)
performance of a BinSPADE measurement via Monte Carlo simulations. For this measure-
ment architecture we have noted that only small angular separations (below Rayleigh limit)
are of interest when compared to a direct imager, we thus restrict 6 to a range extending
only slightly beyond Rayleigh’s limit (o/2) and where the measurement function is invert-
ible. We repeat the NRMSE performance analysis for several values of the total flux N.
Ranging from 10 to 10,000 photons. Note that while the Fisher information only scales
linearly with the parameter (f), we expect a more complex behavior of the ML estimator

which becomes strongly biased in the small photon number regime.

The MLE performance results are summarized in Figures 5.13 and 5.14 for 0 and 1-
BinSPADE measurements with a Gaussian aperture and a hard aperture respectively. In
each figure we include the NCRLB to provide a reference for the evaluation of NRMSE
performance. We also include the NRMSEp;...t and NCRLBpject of the direct imager em-
ploying an ideal continuum FPA. One can immediately note that in a high flux regime (high

N), the performance of the BinSPADE measurement is nearly identical to the Cramer-Rao
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Point Sources, Gaussian PSF, 0-BinSPADE Point Sources, Gaussian PSF, 1-BinSPADE
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Figure 5.13: Normalized RMSE plots from Monte Carlo-Estimation estimated performance
of MLE. Left : 0-BinSPADE for Gaussian aperture. Right : 1-BinSPADE for Gaussian
aperture. The estimators for both can be written analytically (with Lambert-W function for
the 1-BinSPADE) over the range of # shown, where the associated measurement function is
invertible.

lower bound. On the other hand, the estimator performance deviates from the NCRLB
in the photon-starved regime (low N). In this case, it is interesting to note that NRMSE
can actually become better than the NCRLB due to bias. This is particularly visible for
1-BinSPADES in the large angular separation (6) limit. However, it is important to note
that the MLE enters this super-efficient regime because we constrain its output value to be

within the fixed range U as written in Equation 5.31.

Furthermore, one can observe that the BinSPADESs measurements can significantly out-
perform the conventional direct imager design. To quantify the improvement with reference

to the the direct imager we can define the gain G as :

G = 201og,,(NCRLBpiee; / NRMSE), (5.32)

where positive values indicate superior performance. At N = 10,000 photons, for the

Gaussian aperture and both 0,1-BinSPADESs achieve a performance gain of approximately
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Point Sources, Sinc® PSF, 0-BinSPADE Point Sources, Sinc® PSF, 1-BinSPADE
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Figure 5.14: Normalized RMSE plots from Monte-Carlo Estimation. Left : 0-BinSPADE for
hard aperture. Right : 1-BinSPADE for hard aperture. Note that the /¢ range restriction
for 1-BinSPADE corresponds to the presence of the first zero in the Fisher information.

+4dB at 8 = 0.20 and +8dB at 8 = 0.10 respectively. Similarly, for the hard aperture we
observe a gain of nearly +3dB at § = 0.20 and +5dB at § = 0.1¢. Finally, it is important to
point out that the BinSPADEs measurement, while gathering finite information near 6 = 0,
do not achieve a constant relative accuracy for all small angles as evident from the NRMSE
plot, but achieve a performance that scales as O(1/ 0v'N ). In comparison, the direct imager
with a Gaussian aperture achieves a performance scaling of O(1/6%/N) and O(1/02v/N)

in the case of a hard aperture, which are fundamentally inferior to the BinSPADE.

5.5 Efficient Binary SPADE For Arbitrary ASF

In the previous sections, we have limited our discussion and analysis to Gaussian and
hard apertures, that produce Gaussian and cardinal sine ASFs respectively. We have al-
ready commented on the common themes among performance of these two apertures for

direct imager and BinSPADE measurements. Nonetheless, we have noted that the system
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performance does depend on the actual pupil function and the BinSPADE design needs
to be adapted to the optimal choice of mode basis given an aperture function. To bet-
ter understand how the aperture shape impacts the characteristics and performance of the
BinSPADESs, we need to generalize this measurement scheme to arbitrary ASF and the

associated optimal mode basis.

We begin by noting the fact that, for both of the aperture functions considered earlier,
the 0" spatial mode matches the ASF. From this observation, we can develop a general
measurement expression for a properly normalized complex-valued ASF A, (x) in terms of

its autocorrelation function I'4 defined as :

La(a') = /_+oo A(z)A(z + ') da. (5.33)

[e.9]

Thus we can modify the measurement function in Equation 5.6 where the spatial mode

is the ASF itself :

(5.34)

One can particularly verify that in the limit § — 0 we have mao(f) = 1, i.e. this
ASF mode measurement collects all of the available energy at § = 0. The corresponding
generalized residual measurement function takes the obvious form : m,0(0) = 1 —ma0(0).
Similarly to previous BinSPADE measurement designs, two shot-noise limited detectors are
placed at the output of each mode projection and measure Poisson-distributed data with
mean values Nmo(0) and Nmy,.o(0) respectively. From Equation 5.12, we can infer that

the Fisher information of this generalized 0-BinSPADE receiver is :

g - r%” o (%)}: ) (5.35)
A (@ (1[04 (9)F)

TGen,0-BinspaDE(f) =

where FS) is the first derivative of I' 4. If we now assume that the autocorrelation I' 4 admits
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the following second order expansion around 6 = 0, constrained by its Hermitian symmetry
and maximum property :

Ta(z) = 1+ifx — %:ﬁ +O(z%), (5.36)

6—0

with @ > 0 and § € R, then we can derive the limiting value of the Fisher information

expression in Equation 5.35 in the narrow angular separation regime (6 — 0) :

AN

Zen,0-BinsPADE(0) 9:>0 ?(a — B%). (5.37)

One can immediately note that this limiting value is again linearly proportional to
the average number of photons N and that for purely real ASFs (f = 0) the limit is
improved. It is also reassuring to observe that Equation 5.37 reduces to known values for
the Gaussian ASF (o =1/4, 8 =0,Z = N/o?) and the cardinal sine ASF (o = 72/3, 8 = 0,
T = 47?N/30?).

More interestingly, note that an ASF with high spatial variability will have its autocor-
relation function I'4(x) quickly decreasing to zero for small shift x. This indicates that the
autocorrelation function has a sharp curvature in # = 0, and thus a large a coefficient in
the expansion of Equation 5.36. Consequently, a mode-sorting measurement device with an
ASF having pronounced spatial features is more sensitive to small shifts of the point-sources
ASFs and therefore, it collects a large amount of information about the angular separation
as a result of Equation 5.37. For example, the cardinal sine ASF has more spatial features
than the smooth Gaussian ASF and this leads to the difference in Fisher information content
between Gaussian and hard apertures written in Equations 5.19 and 5.20 and also shown

for conventional direct imager in Figure 5.5.

A second property of the mode-sorting measurement device can be obtained from the
properties of the autocorrelation. Namely, the Wiener—Khinchin theorem states that the

Fourier Transform of the autocorrelation I'4 is equal to the absolute square of the Fourier

Transform of A(z), i.e. F [Ca(x)] = |F [A(z)] |*. Hence, as the ASF is related to the Fourier
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transform of the aperture function the ASF autocorrelation function is equal to the absolute
square of the (spatially inverted) aperture function : i.e. Ta(z) = |T(—z)|*. Therefore
this system is insensitive to the phase component of the pupil function and thus, to any
phase-induced optical aberrations known in the system (for example : defocusing, spherical
aberration, coma, e.t.c.). This is in contrast to the traditional direct imager for which the
Fisher information is decreasing in the presence of optical aberrations. More generally, we
know that the optical field in the image plane is related to the optical field in the pupil
plane via the Fourier transform, which is a change of basis in the Ly vector space. As
the spatial mode demultiplexer is only performing linear projections optically in the image
plane, it can be adapted to work directly in the pupil plane by inverting this linear field
propagation transform. For instance in the case of a hard aperture, the system is performing
projections against the Sinc-Bessel spatial modes in the image plane which is equivalent to
performing projections against the Legendre spatial modes directly in the pupil plane as the
two basis are Fourier conjugates. With this modification, we can emphasize that the mode
measurements can be performed directly from the entrance pupil of the system objective,
which is thus irrelevant for this imaging task. Therefore, we should expect that the inherent
angular resolution (/= A/D) and optical aberrations are also irrelevant to the measurements

performance.

After having described the 0 generalized mode measurement in Equation 5.34, it is
now possible to construct an orthonormal basis to perform generalized parallel mode decom-
position by using the derivatives of the ASF A(x), assuming it is infinitely differentiable.
To develop such a mode basis, it is useful to consider the following identity for successive

derivatives of the autocorrelation function :

/ W (2)A(z + ') do = (—1)T (2 (5.38)

o0

where AW (z) is the ¢™ order derivative of A(x). While the set of the ASF and its
successive derivatives is not necessarily orthogonal, we can use Gram-Schmidt orthonormal-

ization to select complex weights wy , and to construct an orthonormal set of modes {M,(z)}
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which can be expressed, with the explicit spatial normalization of scale o, as :

Ly (£) = S (). (539

k=0

Note that we may have to remove any zero-functions in this set as necessary. We also
always have wg o = 1 because of the normalization of A(z). Given this mode basis design, we
find back the 0*® generalized mode, i.e. the ASF, and subsequently develop the 1 generalized

mode with the appropriate spatial normalization :

) (£> (5.40)
—AD (2) 1 7P (0)A (2)
/2o - o

: (5.41)

where AW (x) is the first derivative of the ASF, F(Al) and Ff) are respectively the first and
second derivatives of the autocorrelation function. As the autocorrelation is Hermitian, it
implies that FS)(O) is purely imaginary. Thus in the case of a purely real ASF this term
is equal to zero and the first mode can be constructed with only the first derivative of the

ASF, as it is indeed the case for both the Gaussian and cardinal sine examples.

With these modes and the property given in Equation 5.38, the mode projection function

of Equation 5.6 can be generalized to :

q 2

Diea () (0
> T (;)

k=0

Mag(0) = = (5.42)

2

The Fisher information of such mode measurement can be computed using Equa-
tion 5.12. Of course, for the 0" mode we arrive at the same expression as in Equation 5.34 for

the measurement and Equation 5.35 for the 0-BinSPADE information. More interestingly,
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for the generalized 1%* mode we obtain :

() - rPor @)
ma.(0) = 2 T (5.43)
-rP(0) - |1 (0)

and :

Re | f () f (2 i
ZGen 1-BinsPADE(0) = g 5 [ @)/ )] o (5.44)
P (~ro =17 ()

with: f (g) =y (g) — TV 0)T4 (g) . (5.45)

Given that the autocorrelation admits an expansion as Equation 5.36, we can show that

the Fisher information of this 1-BinSPADE also tends toward the same limit value achieved

by the 0-BinSPADE in Equation 5.37 :

ZGen,1-BinsPADE(0) i —(a—p?%). (5.46)

Finally, to complete the analysis of imperfect BinSPADE measurements we can intro-
duce the previously described leakage term € > 0, or equivalently the efficiency p < 1, to
test the resilience of both generalized architectures. By transforming the modes output to
take into account this imperfection, we obtain for the Fisher information of the generalized

leaky 0-BinSPADE and 1-BinSPADE respectively :

IGen,O—BinSPADE,p(Q) = 3 B 2\ (547)
7 ra (@) (1= ot (D))
Re [70 (25 (2)]
ZGen,1-BinSPADEp(0) = 4]\2'0 N [ ( ) ( )} PNE (5.48)
RO CRIOEIONY

From the properties of the autocorrelation (particularly that I'4(0) = 1 and Ffj)(O) is purely
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imaginary), we can infer that the numerator of Equation 5.47 always tends to zero as § — 0,
but that the denominator only does so if the efficiency p is exactly equal to unity. Thus,
for any sub-unity efficiency implementation (p < 1), the 0-BinSPADE is not able to capture
any information for small separation angle : Zy ginspapE,p<1(6) — 0 near § = 0. On the other

hand, one can develop the limit value of FI in Equation 5.48 as :

(a0 — ?). (5.49)

4Np
L Gen 1.Bi 0) —
Gen,1 BmSPADEJ)( ) 050 o2

Thus, the generalized 1-BinSPADE is resilient to this particular leakage modeled in the deep

sub-Rayleigh limit, as its performance only decrease linearly with the efficiency (p).

5.6 Candidate Architectures : Performance Analysis

In this section we consider two candidate mode-decomposition implementations and
analyze their performance in terms of the two point-sources separation problem. The first
architecture describes an interferometric setup proposed by Tsang et al. and which has been
implemented by several research teams. For this architecture, we analyze its performance for
an arbitrary ASF and identify its inherent strengths and limitations. The second architecture
implements a single-mode measurement along with a flux measurement using a beam splitter

and a volume hologram. We analyze its binary mode design and performance as well.

5.6.1 Architecture : Mach-Zehnder Interferometer

In [87], Tsang et al. proposed an interesting architecture that implements two-modes
decomposition based on a Mach-Zehnder interferometer. This architecture has been since
implemented and its performance quantified by Tang et al. [88] and Tham et al. [89], both
for a Gaussian aperture. In this mode decomposition architecture, instead of decomposing
the optical field in the image plane directly into a series of modes, the two incoherent electric

fields are first split between the two balanced arms of the interferometer. In the first arm,

Page 151



Chapter 5. Two Point-Sources Resolution Measurement Design
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Figure 5.15: SLIVER/Interferometric implementation layout.

the optical field is first inverted spatially, using a 2f system, then a phase-retarder is used
to invert its amplitude before being recombined with the components of the original field

from the second arm, as shown in Figure 5.15.

Let us denote the two measurements as m, (f) and m_ () at the two output ports of
the interferometer. If we employ ideal 50/50 beam splitters, shot-noise limited photodetec-
tors and ignore any phase mismatch or spatial distortions that may arise from a non-ideal

component we obtain the following mathematical description of m and m_ :

i Az —0) Ay (—x —0)]?

_(0) = — d

mo= [ | i | “
Sou?ce 1

N /+°° iAs(z+0) A, (—z+0)| 0

J o 22 22 .
Sou}rce 2

1 1 +oo -
1k [ A7 =0 A~z — 0) + Ay@ T O)Ay(—z +0) dz| .  (5.50)
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In the case where the ASF is real and symmetric (i.e. A(—x) = A(z)), one can verify

that m_(0) = 0. Similarly, we can write the second as :

2

dz

R B e e

-~
Source 1

o0

+oo _ 2
+/ ‘Aa(x—i—e) Ay (—x+0) i
e | 2V2 2v/2 )
Source 2
1 1 too -
— 4R / A, — DA (—x—0) + A (2t DA, (~x+0)| do.  (5.51)

Again, if the ASF is real and symmetric, one can verify that m, (0) = 1. This approach
hence offers an elegant self-referencing mechanism to generate measurements of the gener-
alized 0" mode but only if the ASF is real and symmetric. The two output are considered
to be independent and Poisson-distributed with means Nm_(6) and Nm, () respectively,
for a total average photons flux N. Their respective Fisher information can therefore be

expressed as (similarly to Equation 5.12) :

T (0)= ﬁw)fie _/_O:o Al (x —0)As(—x — 0) + Ay (z — 0) AL (—z — 0)
A ) Ag(— +0) — A (o T )AL (~x +0) da] C (5.52)
7.(0) = 16mLM)Re _ _: Az~ 0)A(—z — 0) + A, (@ — O AL(—z — )

A O A~ +0) ~ A T DA (~x +0)dz| . (5.53)

The total information provided by the two measurements is the sum of each : Zyz(6) =
Z_(0) +Z.(0). For Gaussian and hard apertures, the FI performance is similar to that
of a 1-BinSPADE, as shown in Figure 5.16, in that it degrades quickly for angles larger
than Rayleigh’s limit. Owverall, this implementation is a suitable approach for two-modes
measurement as long as the pupil function is purely real and symmetric (i.e. an even function)

which yields an ASF that is real and symmetric as well. Any deviation from a symmetric
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ASF will incur a performance penalty, especially near 6 = 0.
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Figure 5.16: Fisher information for the interferometric measurements. The curves for the 0
and 1-BinSPADE offer a comparison to the two-outputs mode-sorting receiver.

5.6.2 Unimodal Architecture : Volume Hologram

In order to reduce the complexity of the BinSPADE mode decomposition measurement,
we consider an implementation of a single-mode projection through a self-referencing mech-
anism such as a volume hologram (VH) as shown in Figure 5.16. The VH can be designed
so as to direct certain components of the optical field in a given direction and with a very
high transmission efficiency (> 99%). Following our descriptions of the mode properties in
the previous discussion, we can design the VH to either selectively propagate the 15 mode
or the residual of the 0*® mode as we have shown that they are the only two measurements
that contribute to the majority of available information in the sub-Rayleigh regime. In this

discussion we will choose the 1% mode (m;(f)) and consider a hard aperture.

Beyond the first mode we also need to measure the average total flux N incident on
the imager aperture to be able to estimate the actual separation via the MLE defined in
Equation 5.30. To perform this flux estimation in parallel to the mode measurement, we
distribute the total flux available between the two paths of a beam splitter, positioned near

the exit pupil, as shown in Figure 5.17. This will of course degrade the system performance
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Figure 5.17: Proposed single-mode measurement architecture.

as some fraction of the total photons that would have contributed to the single mode mea-
surement of interest are now diverted toward the measurement of total photon flux N. Thus,
in order to optimize the information throughput of such a measurement design we must find

the optimal beam splitter ratio a.

For this analysis, a denotes the fraction of the intensity allocated to the flux measure-
ment, i.e. the beam splitter ratio is a:1 — a. The flux measurement yy is thereby obtained
at the Poisson-corrupted output of mean awN. The mode measurement y,; is independent
and Poisson distributed of mean (1 —«)Nm;(6). Now we can define the MLE given the two

measurements v, and yy as :

—~ o
QSingle,MLE,a<yN7 Ym) = mfl o Ry (%) (5.54)
- N

To optimize the beam splitter ratio «, we assume no prior knowledge of the angular
separation and thus can seek an optimal agpy which minimizes the normalized error across

a range [0, Omax, for a given average flux N, i.e. :

GIIlaX
aopt (V) = arg min {/ NRMSEgingle (6, a, N) dQ} , (5.55)
0

a€e(0,1)

where NRMSEgg1(6, &, N) denotes the NRMSE of the MLE in Equation 5.54. We pursue a

numerical optimization and find that aqy is relatively insensitive to the incident flux N, as
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shown in Figure 5.18. Especially, we find that the optimal « is 0.29, 0.27 and 0.28 for N = 50,
N = 300 and N = 10,000 photons respectively. We also compare the normalized estimate
error performance for this design against an ideal design in which all the photons would be
available for the single mode measurement and the flux N is known a priori. We observe
that this single mode measurement maintains a significant performance improvement over
the conventional direct imager for < 0.2\/D. For example at N = 10,000 photons, the
relative error for the single mode measurement is half of the direct imager at 6 ~ 0.1\/D;
and about 35% smaller at N = 50 photons. At N = 10,000 photons, the relative error
for the single mode measurement is almost a quarter of direct imager at 6 ~ 0.05A/D; and

about 30% smaller at N = 50 photons.

Optimal Allocation, Normalized RMSE

Mode Sorter Measurements
Direct Measurements

= = = Cramer-Rao Lower Bound
= Full Allocation

Optimal Allocation

— 50 Photons (aBes':O.ZQ)

— 300 Photons (aBesl:0.27)

— 10000 Photons (e =0.28)

Normalized RMSE

1 | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6
6/c (Separation, normalized to A/D)

Figure 5.18: Comparison of the normalized RMSE performance with the optimum allocation
strategy. The input fields are projected against the 15* mode

5.7 Conclusion and Future Work

Rayleigh’s two point-sources resolution criterion describes a visual limit to the imaging

resolution of a traditional imager employing a focal plane array. This visual limit is indeed
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not fundamental and arises in part due to the specific choice of optical measurement with
a FPA in the image plane. Given the specific task of estimating the angular separation be-
tween two indistinguishable, incoherent, quasi-monochromatic point-sources, we have shown
quantitatively, using Fisher’s information measure that a conventional imager will perform

poorly at narrow angles below Rayleigh’s limit.

However as discussed earlier, Tsang et al. and others have firmly demonstrated that
while the conventional imager is indeed subject to Rayleigh’s limit for this mission, it is
possible to devise an alternate linear field preprocessing (projection) passive measurement
strategy which does not suffer from Rayleigh’s curse. This alternate measurement performs a
linear decomposition of an incident optical field in the image plane onto an orthonormal basis
of spatial modes, collecting a few modal measurements with shot-noise limited detectors. Our
analysis has demonstrated that the proposed architecture can outperform the traditional
imager, especially in the sub-Rayleigh regime which can greatly impact many applications

such as long standoff imaging, microscopy, astronomy and high-precision metrology.

Our specific contribution in this area include the extension of the original work for a
Gaussian apodized pupil to a hard aperture more relevant to optical systems. We have also
generalized the BinSPADE measurement design to an arbitrary aperture function, including
complex-valued and asymmetrical ones. This generalization has shown that any known opti-
cal phase aberrations can be perfectly compensated by such a modal measurement approach
and that greater spatial variability in the system PSF increases the amount of relevant infor-
mation. Beyond the Fisher information and Cramer-Rao bound analysis, we also analyzed
the RMSE performance via Monte-Carlo simulations. Finally, we discussed the performance
of two candidate measurement architectures of the mode-decomposition approach for future

experimental implementations.

Beyond the current work, several challenges remain in translating this alternate mea-
surement method to real-world applications. Notably, some of the main challenges include
. (@) sensitivity to centroid misalignment, (b) unequal point-source strength and (c¢) gaps

between the ideal physical forward model and the actual ASF. Future work in this area
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would include adding hypothesis testing so that the device can determine if there are two
sources or only one point-source, such as separately investigated by Helstrom [82] and Krovi

et al. [86], and the ability to image coherent and incoherent extended objects.
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Chapter 6

Conclusions And Future Work

In this dissertation, we have investigated the design, optimization and implementation of
several computational imaging systems. In all cases, these novel imaging systems outperform
conventional imaging system designs for a given specific task. We began with a joint-design
approach to the extended the depth of field imaging of a camera operating at a fast f/#.
Then we described a scalable compressive imaging architecture for image formation and tar-
get detection/classification tasks. Finally, we analyzed a mode-sorter imaging architecture
for the task of estimating the angular separation of two incoherent quasi-monochromatic
point-sources and extended the binary mode design to arbitrary aperture. We observed that
these non-traditional system architectures often reveal counter-intuitive aspects of these
particular imaging tasks. For instance, the EDoF architecture shows that by introducing
aberration in the optical train, and thus lowering Strehl’s ratio, we can render the system
modulation transfer function insensitive to defocus albeit at the cost of lower modulation
magnitude, which can be compensated by processing. The compressive imaging architec-
ture demonstrates that Nyquist sampling requirement is overly restrictive when considering
sparse/compressible image (such as natural scenes) and therefore it is possible to acquire
high resolution images or to perform target detection/classification from a small number

of measurements, e.g. 4x to 8x fewer than Nyquist sampling rate. Finally, the analysis
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of a mode-sorter imaging architecture shows that Rayleigh’s limit to the resolution of an
incoherent imaging system derives solely from the choice of measurement (i.e. focal plane
array). While we observed that these computational imaging architectures have significant
advantages over traditional imaging system designs, they are subject to set of unique chal-
lenges with respect to design and implementation. In this work, we have addressed several
system designs relating to scalability aspects of computational imaging architectures. While
scalability of traditional imagers typically refers to their capability at handling larger spatial-
spectral-temporal bandwidth products, in the case of computational imaging architectures
the scalability extends to their ability to manage more complex scene models, system design,
optimization framework capable of exploring vast parameter spaces (optics and processing
parameters) and to implement systems, including algorithms, which can perform robust

image or measurements exploitation in real-time.

In chapter 2, we proposed a joint design framework for the EDoF computational imaging
architecture. The system design metric provides a measure of the overall system modulation
transfer function which includes both the optical and processing transfer functions. Hence,
the optimization framework can simultaneously optimize the optical and processing system
design parameters. We implemented this joint-design framework to optimize the parameters
of an optical phase mask (Zernike polynomials coefficients) and a post-processing algorithm
for a F/1 long-wave infrared imaging system operating at room temperature. We demon-
strated that our optimized EDoF design achieves a larger depth of field than the traditional
imaging design with minimum artifacts and has lower reconstruction noise-gain (< —1dB)
than other state-of-the-art EDoF imager designs such as cubic and trefoil phase masks. To
verify the pertinence of our EDoF imager design we fabricated the optimized Zernike phase
mask (a free-form surface) and implemented it in an EDoF imager prototype that generated
high fidelity images. In the future, we can adapt this framework and the computational
imaging architecture to incorporate field aberrations and increase the constrained depth-of-

focus in small form-factor camera modules (e.g. to compensate the field curvature).

In chapter 3, we described the implementation of a scalable and programmable com-

pressive imager testbed which leverages the sparsity of natural images to acquire 4x to 8x
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fewer measurements than a traditional imager operating at Nyquist sampling. To achieve
this measurement count reduction, the imaging system modulates the optical image with
a passive spatial light modulator and measures the integral optical signal. Specifically, our
proposed scalable architecture decomposes the field-of-view into contiguous blocks, where
each is projected, measured and reconstructed in parallel so that this implementation scales
to wide FOV at high spatial resolution. For the reconstruction algorithm, we have designed
a piecewise-linear and non-iterative algorithm which minimizes the mean square error of the
reconstructed image. This parallelizable algorithm is implemented on graphics processing
units and is capable of reconstructing megapixel-scale images in real-time. Furthermore, we
have implemented mitigation techniques and an automated calibration procedure for this
compressive imaging testbed so as to minimize errors between the ideal forward model and
the actual physical measurement implementation. Using this imaging testbed we were able
to demonstrate the superior imaging performance of information-optimal projection pat-
terns over several random projection patterns typically employed in compressive imaging
systems. Specifically, we have shown that the former provides a reconstruction PSNR gain
of about 6dB over the latter at 4x compression and 20dB peak measurement SNR, and up
to 3dB at 8x compression. In the future, we can replace the static measurement design by
an adaptive strategy which benefits greatly the measurement compression ratio. With this
programmable testbed we can also imagine implementing a foveated imager with on-demand

high-resolution streams from selected regions of interest.

We subsequently described in chapter 4 how this scalable programmable imaging archi-
tecture can be adapted to an automatic target detection and classification task. We showed
that using appropriately designed compressive measurements we can avoid the need for in-
termediate image reconstruction and that we can implement the exploitation algorithm that
operates directly on compressed measurements. We have used this compressive measurement
strategy in conjunction to the block wise measurements design to detect target vehicles em-
bedded in a natural cluttered scene. Similarly to the image formation task, this compressive
measurement approach is naturally scalable to high space-bandwidth product (i.e. a wide

field of view and high-resolution). Due to lower measurement count this approach requires a
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fraction of the readout bandwidth and power consumption budget of a conventional imaging
system which employs a high-resolution FPA. To develop a statistical model of the underly-
ing manifold describing real-world scenes, we have employed large Gaussian mixtures that
incorporate the target and background variability. Using this scene model, we have de-
veloped a compressive measurement design employing Cauchy-Schwarz mutual information
(CSMI). This information-theoretic metric provides a measure of the separation between
the different target and background classes which ultimately determines the target detec-
tion/classification performance. Furthermore, we were able to derive an analytical upper
bound to the probability of error based on CSMI. Using the compressive testbed, we veri-
fied the experimental performance of our information optimized projection patterns which
achieve better target classification accuracy relative to random and PCA-secants projection
designs. For example, our design achieved an accuracy of 95% correct target detection and
classification at 0dB measurement SNR and a compression rate of 64x, and an accuracy
greater than 97% correct target detection and classification at 10dB measurement SNR and
a compression rate of 42x. In the future, we will extend our scene models to cover more scene
variability, including for example occlusions and change in lighting conditions. We can also
imagine adding to this compressive target recognition sensor the capability of autonomously

acquiring images of the regions of interests marked as containing targets.

Finally in chapter 5, we have first quantified the performance of a conventional incoher-
ent and diffraction-limited imager with respect to the angular separation of two incoherent
and quasi-monochromatic point sources. Consistently with Rayleigh’s two point-sources re-
solvability criterion, we have found that the conventional imaging architecture employing an
ideal FPA is essentially insensitive to small angle values, i.e. below Rayleigh’s limit. However,
motivated by prior work by Tsang et al., we were able to prove that the spatial mode-sorting
imaging architecture, which performs a linear decomposition the optical field in the image
plane, is not subject to the same Rayleigh limit by deriving the underlying Fisher Informa-
tion, and the associated Cramer-Rao lower bound of the mode measurement. In particular,
we were able to show that the optimal mode basis is matched to the aperture of the imaging

system. For example, the Hermite-Gauss spatial mode basis for a Gaussian-apodized pupil
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and the Sinc-Bessel mode basis for a hard aperture. Given this observation, we were able to
construct a generalized mode measurement basis for an arbitrary pupil function. We have
analyzed the energy and information content of this mode-sorter architecture and showed
that, for small angular separations the 0*® mode of the basis collects nearly all the energy
and the 1% mode collects nearly all information. Consequently, we devised a simple binary
mode measurement architecture and proved that it significantly outperforms a traditional
imaging system with FPA measurements. In a high flux regime, we found a gain of about
+4dB at 10% separation and +8dB at 5% separation on the scale of the Rayleigh limit
(i.e. A/D). Finally, we described and analyzed the theoretical performance of two candidate
implementations of the mode-sorting architecture : (a) a two-mode projections based on a
Mach-Zehnder interferometer and (b) a single-mode projection based on a self-referencing
volume hologram. In the future, we will improve this general mode measurement approach
to test if one or two sources are visible. We will also increase the resilience of the architecture
against the varying location of the point-sources pair centroid. And finally, we will adapt it

so as to measure physical characteristics of small extended objects.
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MTF and Sensor Supports in Fourier's Space
A=10.0um; F/1 Objective; Pixel Pitch=25.0um

Figure A.1: Visual comparison between the optical cut-off frequency (100mm™!, black circle)
for the considered lens, and the sensor Nyquist frequency (20mm™!, blue square).
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Figure A.2: Point spread functions for the standard, cubic, trefoil and optimized designs at
the edge of the depth range (4.0m) and the hyperfocal distance (25.6m). We assume a perfect
25mm F/1 objective operating at a wavelength A = 10pm. The figures are independently
normalized to a unit peak intensity for visibility.
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Figure A.3: Simulation of images over the Sensor OTF support and after reconstruction,
for a SNR of 25dB. The distances are, from the top to bottom row : 4.0m (¥ = —1.65),
6.0m (U = —1.00)), 10.0m (¥ = —0.67)), 12.8m (¥ = —0.31)) and 25.6m (¥ = 0, the
hyperfocal distance).
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Figure A.4: Simulation of images over the Sensor OTF support and after reconstruction,
for a SNR of 25dB. The distances are, from the top to bottom row : 4.0m (¥ = —1.65),
6.0m (U = —1.00)), 10.0m (¥ = —0.67)), 12.8m (¥ = —0.31)) and 25.6m (¥ = 0, the
hyperfocal distance).
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Figure A.5: Simulation of images over the Sensor OTF support and after reconstruction,
for a SNR of 25dB. The distances are, from the top to bottom row : 4.0m (¥ = —1.65),
6.0m (U = —1.00)), 10.0m (¥ = —0.67)), 12.8m (¥ = —0.31)) and 25.6m (¥ = 0, the
hyperfocal distance).
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Appendix B

Scalable Compressive Target
Detection and Classification Sensor :

Additional Derivations

B.1 Derivation of the CSMI Expression

First, the definition of Cauchy-Schwarz mutual information is recalled in the case of
two random variables associated by the measurement process : C' denotes the N, class label
(C e C=1[1;N.]) and G a real valued vector in REM representing the measurements made

by the system. As one of the variable is discrete, we write with pc ¢ their joint distribution
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and pcpg the product of their marginals, and using Bayes rule :

> eee Jurv Pec(c, g)pe(c)pa(g)d®™g

Zos(C,G) = —1n
\/(ZCEC REM pealc, Q)QdEMQ) (ZCEC REM pC(C)QPG(g)szMQ>

(B.1)

> Zi,jec pe(i)*pe(§)Vi;
\/(Ziec pC(i)z) (Ziec PC(Z')QVM) <Z Zi,jec pC(Ci)pC(Cj)Vi,j>

=—1In

. (B2)

Where the symmetric matrix V € R*M*Ne ig directly indexed by the class labels
and results from the likelihoods overlap integrals, i.e. : the overlap coefficients are V;; =
Jarn 2(g|C = i)p(g|C = j)d®Mg. One can also remark that these coefficients are obtained
as the results of dot-products between the likelihoods and, as such, obey both the triangular

and Cauchy-Schwarz inequalities.

In this work, all the likelihoods p(g|C) are expressed as mixtures of Gaussians : for
instance, the mixture for the class label ¢; contains O; components, each with a weight w; j

(with the normalization : > ;" w;x = 1), a mean s;; (in R¥M) and a covariance S, (in

REMXEM) .

O;
p(g|C =c) = Zwi,k/\[(g‘si,ka Sik)

k=1

—Z - v (o srsile-sw) . B3

With those likelihoods, the overlap coefficients can be written in closed form using a
simple relation on the integral of a product of multivariate Gaussians : given two multivariate
Gaussians of respective means a, b, and covariances A, B, one can verify the following :
Jaeu N (z|a, AN (z|b, B) dfMx = N (a —bl0, A+ B). Using this property, the CSMI

expression can be expanded analytically into three main terms, detailing the components
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interactions within and between the classes, by developing the overlap coefficients :

‘/ij = whkwj,l/\/' (Si,k — Sj,l|0, Si,k + S'J) . (B4)

Thus, the value of CSMI is directly related to the sum of the overlap matrix V.

Until now, the expression given in Equation B.2 is purely generic and we can continue
by injecting our specific statistical model and our linear measurement models. The first
is developed from data acquired in the direct domain (from conventional cameras, noted
f € REM) and must be transformed by the second, consisting of a linear projection operator
P and additive white Gaussian noise z of variance o2. The compression of the likelihoods

from the direct space is expressed as follow :

O;
p(fIC =1i) = Zwi,kN(g|ti,ka Tir)
k=1

0;

9:(1E®P)f+zp<g| ) ; .k (g| ikl E ) k &

In order to both limit the computational complexity and produce and upper-bound
on the probability of error, all the direct-space covariances T; ; are set to be spherical, i.e.
Vi, k, T;x = 0*Ipy where the scalar variance o is obtained after training the statistical
model. Using the properties of the Kronecker product for matrices of matching size, the
generic overlap coefficients given in Equation B.4 become :

0; O
‘/;7' = Z Zwi,kwj,l./\/ (8“C — sj,l\(), (IE (029 2(02PPT + Ui[M))) s (BG)

k=1 I=1

0; 0Oj
1
Vi =) wikwjiexp (_Z Tr (Ui — Uj)TPT(0*PPT + 021n) ' P(Ui — Ujy)]

k=1 =1

N—
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Where V*; is the denormalized overlap coefficient obtained after removing the superflu-
ous distribution normalization (for the computation of CSMI) and replacing the direct-space
samples t; 5, by their matrix folded (or re-arranged) counterparts : U, € RNXE " consisting

of F blocks of dimensions N.

B.2 Derivation of the Gradient Expression

It is now simple, from this expression, to device the gradient of the CSMI metric with
respect to the projection matrix P. For this, we will rely extensively on the chain rule as well
as matrix and Jacobian identities. One can write for the denormalized overlap coefficients,

with the definition of the compressed covariance 3 = 2P PT + 021 :

1A 1
v (Vi =3 Z Wi kWj1 €XP (_Z Tr [(Uig — Uj))TPTE " P(Uiy — Ujl)]>
k=1 =1

l\D

x S P(Usy, — Upy) (Ui — Uyy) — 0> PTS ™ P (U — Uj,l)]T . (B.8)

Finally, the gradient of the overlap coefficients is used to develop the expression of

interest :

1 EeccPelePV (VeelP)) | 103 jecpe(Dpeli)V (Viy(P))
2 > e P2V, 2 > i jee pe(@pc(i)Vi
B > Zi,jec pC<i)2pC(j>V (VZ*J(P))
> 2 ijecbe()?pe(Vy

V (Zes(P)) =
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B.3 Derivation of the Upper-Bound on the
Probability of Error

First, the probability of error is defined as the integral of the likelihoods over the regions
where the ideal (MAP) classifier would not output their label and is written :

P.=1- /R max {p(g|C =1)} d"Mg. (B.10)

EMm 1€C

Here, it is assumed that the N, classes are equiprobable (pc(c) = 1/N.) and also that
all the likelihoods are mixtures of Gaussians, as defined in Equation B.3. This expression is
then developed by using the positivity of both weights and statistical distributions, in order

to access simple pairwise interactions at the cost of producing an upper-bound. We have :

Pe < —ZZZZmax{wmwﬂ}/ min{N (g|s, Six), N(g|s;1. S50)} d¥'g

N i>jeC k=1 I=1 _
*2P€1k]l

0; Oj

S Nomnfo 1 N mln{wl k} Z Z Z Wi,kijPe:i,k;;j,l- (B.ll)

i>jeC k=1 I=1

From Equation B.11, a generalized Bhattacharyya bound Up, . can be expressed as :

Fe N mln{w k) ZZZZ% kWjiBeikji = UpeBe (B.12)

1,j€C,5>1 k=1 =1
Besssi = [ y/N(glsun SN lglsin. S,0) d°g
REM

= (87) % |Siu S| AN (8ik — 5,10, 2(Sik + 5;1)). (B.13)

This inequality can be quadratically curved to relate the Bhattacharyya pairwise coef-
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ficients to the overlap coefficients used in CSMI

[ 15:45,1]
B2 g ISuSial yeg a0, Sk + S, B.14
cii kgl T (87T) |Szk+sgl|N(S k Sj7l| ) ,k+ 371)7 ( )

4min{w; k} 2% lcwy z
(N—l e —Z Z czk]l (B15)

i>jeC k=1 I=1

For the expression of CSMI, Equation B.2 can be adapted to the case of equiprobable

classes as :

Z Zi>jec V;J

1 1
Ics(C,G):éh’l(NC)—§hl 1+2 Z V.
i€C "t

(B.16)

It immediately appears that the following upper and lower bounds apply : 0 < Z¢g <
In(N,)/2. And, from the definition of the overlap coefficients :

max {|sz,k + Si,l|‘%}, (B.17)

0, O;
[3 J S,L S
Vij= Wi (8T) % MBEM - (B.18)
’ rrirri |Si kSl v

Thus, the probability of error is related to the overlap coefficients expression via the

inequality :

ZZi>jeC Vi S 2min{w?} min{|S; . + S;|}

> P.?. (B.19)
>iec Vi (Ne = 1) 2N /max {[S; 1.5;,[}
Finally, we conclude :
1
P. < Upe = ———+——/(N. — 1)Kg, In(N,.) — 2Z¢s) — 1], B.20
S Upe = g VN D oMV —2Zc) 1), (B20)

\/max{|5i7k5j7l|}
min {|(Six + Sj0)/2}

with 1 Kgu =
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One can remark immediately that in the particular case where all the covariances S;
are identical, the saturation factor is then Kg,, = 1. Consequently, CSMI only depends on

the projector P in the upper-bound expression. Its gradient can simply be written as :

V (Un(P) = gt f lexp(n(N) — 2Tes(P)] ¥ Tes(P). (B21)
With: f:2— 7

Vi1

As a final note, we remark that Equation B.12 on the Bhattacharyya information (and
such as presented in [56, 70]) provides a tighter upper bound on the probability of error
than CSMI : ¢.e. Pe < Upepe < Upe. However, this metric only consider the distance
separating components of different classes and not the distance between components of the
same class, as previously illustrated for the CSMI metric in Figure 4.8. Hence, optimizing
the Bhattacharyya information is similar to pushing away components belonging to different

class likelihoods but not pulling together components belonging to the same class such as it

is the case for CSMI.

Page 176



Appendix C. Two Point-Sources Resolution : Additional Derivations

Appendix C

Two Point-Sources Resolution
Measurement Design : Additional

Derivations

Proof 1 : Fisher Information for a Poisson corrupted process. Let f be a function

R — R* modeling the output of a process on a variable 6 that is corrupted by Poisson noise

pr(yl) = ] 7

such that In(ps(y|€)) is twice differentiable with respect to 6. We note f” and f”, respectively

its first and second derivatives. Then we can write the corresponding Fisher Information as
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2

00

' 9} (C.2)
_ (f o) - L0 )+ o (©3)

_Eyy|f]
f0) f0)
l 0 2
_ 1) (C.4)
f(0)
Proof 2 : Fisher Information For Multiple Independent Measurements. If we
consider the output of multiple independent measurement functions (fy(f),..., fo(9)), all
twice differentiable with respect to 6, and their respective outputs vy, ..., yg, we have for

the Fisher Information :

9] (C.5)

Q  rrip\2 Q
= “’;gq((ee)) =3 "7, (C.6)

Lemma 1 : Uniform Convergence Of Series Based On Spherical Bessel Functions
Of The First Kind. We consider the two following series of functions over a finite interval

I of R containing zero, for some fixed positive integer b :
¢, 0
I, A = b —j,(z)? :
VQEN, z €1, Aq(z) qz%q o -Ja(®) (C.7)
Byq(x Zq (@) Jq+1(2) (C.8)

We have the following loose upper bound on the Spherical Bessel Functions, from their series

definition :

, T o~ —1)* X\ 2k
Vge N, z eR, j,(z) = ixq; T (E@ —l—)q+ Y (5) (C.9)

ol <7 (1) e (1) (.10
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We can pick X such that, Vo € I, |z| < X and we can test that, for the first series in

Equation C.7 we have the convergence bound :

VP,Q e N,Q > P,

Q b1

q . . .
[Ano(@) = App(@)l = | 3 25—3g(@)* = 20"jo () g1 () (C.11)
g=P+1
XQ 0o b+1
< 7m(1+ X?)exp (—) L 21, (C.12)
2 244!
g=P+1

As the underlying series is positive, monotonic and converges (by the ratio test), we
can choose a P large enough to reduce the remainder, and subsequently the bound, to any

small € we wish. In other words :

Ve >0,3P e N\Vp,q > Pz € I, |Ap,(x) — Apg(2)] < e (C.13)

We can thus conclude that the function series is uniformly Cauchy and converges uniformly

over I.

For the second series in Equation C.8 we have:

YP,Q €N,Q > P,

Q
: 2 5., 0. :
Buo() — Bup@) = | S ¢ a(0)* — Za%5y(@)jgir (1) = g ()’ (C.14)
¢=P+1 t
X2 X2 0 b
<7 <1 + 7) exp <7> %X%, (C.15)
q=P+1 T

where the same conclusion applies.

Finally, we consider the new set of series of functions, related respectively to A, ¢ and
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Bb7Q
Q
VQ,b eNVr € I, Cho(z) = Y _ ¢'jy(x)’ (C.16)
q=0
Q
Dyo(®) = ¢"jg(x)jg(x). (C.17)
q=0

We note that their pointwise convergence can easily be established at x = 0, as Vg >
0, j4(0) =0, jo(x) = 1 and, considering the previous results, we can apply the Differentiation

Theorem to obtain their respective uniform convergence as well as the relations :

0

O}LQ(ZL‘) = 8_$Ab’Q(x)7 and (018)
0

D}LQ(ZL’) = %BILQ(JZ). (019)

Proof 3 : Series of Spherical Bessel Function Of The First Kind. We will use the
following two results from [78] (Equations 1.10.50 and 1.10.52), where Si(x) denotes the Sine

Integral.

S Gyla)? = Siéi‘”), and (C.20)

> (1 +2g)j,(2)* =1 (C.21)

q=0
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By combining them, we obtain:

gqjq(xf = % (1 = Si;ix)) (C.22)
iojq+1($)2 = Si;ix) — Jol@)* (C.23)
f;qm(x)? =B e (C24)

i(l +20)jg1 (@)’ =1 - Si2c) + jo(z)? (C.25)

q=0

Thanks to the Differentiation results of the previous lemma (C.18), we can write from

the derivative of (C.20):

S dalw g (@) = 5 (1 = jol21)). (C.26)

We then find the following as the solution of a first order linear differential equation
involving Equation C.22 and Equation C.24 as well as the property (C.19) and the constraint
that the series is equal to 0 at x =0 :

> dig(@)jg (@) = Si(jx) j 3sinr) 1 cos(2z) (C.27)

1622 2x 8z

With this result, we can compute the derivative of Equation C.22 to express the following

series and its respective shifted version :

S Phy(a) = éSi(Zm) (i + 2x> + Cosé(fx) + j0(82x) - % (C.28)
> ) = £ si2r) (g i Qx) B BB e (o)

The next series is also found as the solution of another differential equation involving
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Equation C.28 and Equation C.29, with the same value constraint at x = 0 than previously:

o Si(2z) sin(2z) 1 cos(22)
2 — _ — -~ 7
;:o ¢ Ja(@)jgr1(2) = —— i T3t ” (C.30)

And after deriving Equation C.28 we obtain:

= 3. 6%+ 1 . 3sin(2x) + 6z cos(2z) 2?1
> (x)? = - Si(2z) — — 4= C.31
el Jal) T6r l20) 322 T3 (G:31)
Finally, we can combine the results of Equations C.24 to C.31 to get:
> (1+ 24)5Ja(@)" = 2(1 +24)Jo(2)Jg1(2) + (1 + 20)jg1(2)” = 3. (C.32)

q=0

Proof 4 : ASF Insensitivity Property. Considering any continuous and differentiable
ASF A(z) as well as mode g(z), the measurement function m, for two point sources separated

by 26 can be written as:

0= [ oG (50) of < gl [ oG (559 o - e
b0 =y e[ o) () ar[ o () () ]
“nel [TAC) () o] Ta()AC) o]

= 0. (C.34)

We can proceed similarly for the Fisher Information in the case of direct detection. We
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recall the expression:

0I(z,0)
a0

oo 7/ 2
IDirect(e) :/ ! (37) d.T, with Il<l’,9) =

T (C.35)

In the case of two point sources, the normalized intensity profile can be written with the

previous ASF as : I(x) = (JA(z+0)|? + |A(x — 0)]?)/2. One can write for its first derivative:

Vo € R, lim ['(z,0) = lim Re [A’(x TOA(z+0)— Aw — DA —0)| =0  (C.36)

= 1im Tpjrea (6) = 0. (C.37)

Proof 5 : Fisher Information Inequality On Aggregated Measurements. Let mg be
an aggregated measurement over a collection S of measurement functions from orthogonal
modes, i.e. mg(0) = > gmq(0), all corrupted by Poisson noise. At a location ¢ where

Vg, my() > 0, we have the following measurement function and Fisher Information:

(Zyesmif®)
qus mq(0)

Ts(0) = (C.38)

!/

We can simplify the notations for the current location into sets (m,) and (mg,

) and observe

that:

(Z mq) (Z %) - (Z mé) = Z Z %mf + %mf — 2m;m;, (C.39)

qeS q€eS q q€eS qES rES;r>q

Here, if mj, or m; are equal to zero or their product is negative, and with the previous

positivity constraint, the sum is clearly positive. Otherwise, one can write:

/ /

1 m, m m, m My M
—— [ —m?+ —m? —2mim] | = L2 4 2L _2>0 (C.40)
mgmy. \ My m, mgm,  mymy

As we have, m,m; /mgm; > 0 and Vz > 0, x+1/z > 2. Thus, (C.39) is always positive
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and we can conclude with the inequality:

(Spesmyf®)) ! (0)?
> qes Mq(0) =Ts(0) < ng; e (0) = ZIq(G) (C.41)
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