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Abstract 

Laparoscopy has been a vital tool to enable minimally-invasive abdominal surgery. While it is desirable to integrate high-

quality optics and surgical instruments into a single endoscope tube, the achievable diameter of the tube is limited by the 

need to minimize incision length as well as by manufacturing constraints. This imposes exacting requirements on the 

image-forming and illumination optics. It is especially important that the surgeon be able to see a clear image with a wide 

field of view in order for the endoscope to be useful. It is also desirable for the surgeon to be able to see stereoscopically, 

though this is not without its tradeoffs. Early stereoendoscope designs replicated the binocular layout of the human 

visual system by using a pair of laterally-displaced cameras. Although this provides basic stereoscopy, its field of view is 

generally limited in comparison to single-view cameras. Therefore, novel methods to achieve stereoscopy have been 

proposed. Many proposals divide an aperture in two halves based on a property such as wavelength or polarization. 

However, such approaches often encounter difficulties such as illumination efficiency and confounding effects with the 

spectral or polarization properties of the tissue. Therefore, one desires a method by which one can capture depth 

information over a wide field of view without degrading the quality of visible imaging over the same field of view. One 

promising method is time-of-flight sensing, which uses the speed-of-light definition to determine distance from the 

sensor to the target. Another potential method is to use more than two cameras to cover the desired wide field of view, 

which then allows conventional image-stitching and stereo-calibration algorithms to be applied to derive stereoscopic 

information. This report will explore the theoretical and practical justification for both methods as well as their 

advantages and disadvantages. It will also cover its author's preliminary study regarding the time-of-flight and multi-

camera sensing approaches. 

 

Background: Requirements for Laparoscopy 

Endoscopic imaging produces demanding requirements on many aspects of image quality as well as significant physical 

constraints on the design of the imaging system. Resolution, distortion, and field of view are all important, but the 

specifications one normally imposes on visual or astronomical optics are impractical to satisfy in a system that is confined 

to the endoscope tube and uses few lens elements. The main concern is that the small length scale complicates the 

selection of individual lens-element profiles as well as the arrangement of elements. As a result, it is difficult to minimize 

distortion, especially in conjunction with the other criteria. To be useful for further processing, the image from each 

individual camera must be undistorted in accord with a calibration process. This means that the field of view achievable 

from a single camera is especially limited. A common method to achieve stereoscopy involves a pair of cameras that look 

toward the scene on axes parallel to each other and to the mechanical axis of the endoscope tube. The field of view 
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achievable by this method is relatively limited compared to that achievable by a single camera. Theoretically, a single 

camera could make use of a wide-angle or fish-eye lens to widen the field of view, but the necessary undistortion 

procedure would pose difficulty. The calibration must be very accurate in order to provide sufficient quality for multiple 

images to be aligned. Also, it is desirable for alignment to have the best resolution possible, the most uniform resolution 

possible across the field, and as much uniformity in image brightness and other features as possible. These properties are 

difficult to achieve in a miniaturized camera of endoscopic dimensions, so postprocessing of the captured images for 

undistortion and sharpening is generally required. Resolution in particular is harmed by image interpolation; the stronger 

the camera distortion, the greater the factor by which some pixels must be up- or downsampled. Therefore, endoscopic 

cameras are conventionally designed to provide low distortion, potentially sacrificing field of view. 

The principle of stereoscopic vision in endoscopy is necessarily based on the operation of stereoscopy in the human 

visual system. The viewer's two eyes converge such that their optical axes intersect, and they accommodate such that 

they are optimally focused at said point of intersection. The difference in object position on the left and right retinas is 

known as disparity. For the human brain to interpret such lateral disparity as depth information, the features must fall 

upon a small portion of the fovea, known as the Panum region. The range of distances over which depth information can 

successfully be perceived is limited by the size of the Panum region. The human visual system varies the region of depth 

sensitivity by changing the angle of convergence. This effect can be replicated with a binocular display system but not 

with a display that uses a single planar reproduction screen. In monocular endoscopy, the entire scene is perceived to be 

located at a depth corresponding to the focal distance of the endoscope optics, and the field of view is limited to that 

from a single camera.
[11]

 

 

Fig. 1. Schematic of laparoscopic abdominal surgery setup.
[9]

 

 

In addition to considerations of optical performance, there are practical requirements on the design of the laparoscope. 

The system should require as few incisions into the patient as possible. The diameter of each tube should be as small as 

possible. The system, especially its illumination components, must not consume excessive power, as thermal dissipation 

could injure the bodily tissue or damage the endoscope itself. Surgical instruments integrated with electrical or optical 

parts must be reasonably small in terms of tube cross-sectional area. Although some commercial endoscopes integrate 
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imaging optics, illumination, and endo-therapy instruments into the same tube, this is not necessarily practical for all 

situations, especially where novel optical configurations and features are desired. Commonly, the cameras are placed in 

one tube and the instruments in another. This poses a challenge for the practical operation of the laparoscopic system, 

especially where stereoscopy is desired, as the spatial separation between the camera and instruments requires a wide 

field of view. 

A rigid endoscope tube (or at least tip) is currently preferred to a flexible tube in terms of optical quality. One reason is 

that a flexible tube typically requires a fiberscope design, which limits the effective resolution (pixel count) to the number 

of fibers in the bundle. Another reason is that a rigid tube allows for constraint of multiple optical elements, as needed 

for high optical performance; by comparison, fiberscopes typically have a single imaging lens at the tip in front of the 

fibers. This consideration is mentioned by R. Korniski et al. in "3D imaging with a single-aperture 3-mm objective lens: 

concept, fabrication and test." (The system specifically proposed in this paper will be discussed later.
[5]

)  

 

Comparison of 2D and 3D Endoscope Field of View 

Existing 2D endoscopes typically achieve a field of view about twice that of 3D endoscopes, as discussed in the paper 

"Field of View Comparison Between Two-Dimensional and Three-Dimensional Endoscopy" by J. Van Gompel et al. The 

paper compares two examples of existing commercial endoscopes, using a Karl Storz 0° endoscope as the example 2D 

system and a Visionsense, Ltd. 3.3 mm, 0° rigid endoscope as the 3D system. The authors found a 52% reduction in field 

of view from the 2D system to the 3D system, from 8.3 cm visible diameter in 2D to 4.0 cm in 3D.
[10]

 

The measurements were based on a working distance of 6 cm from a standardized bulls-eye target as shown in Fig. 2. An 

additional demonstration is as given in Fig. 3. 

 

Fig. 2. Field-of-view demonstration for 2D and 3D endoscopes, from Fig. 1 in 
[10]

. 

 

The systems were also clinically tested for use in sinus surgery, where a 55% reduction in FOV was seen in simultaneous 

use of the two endoscopes.
[10]

 The authors propose that the reduction in field of view resulting from the inclusion of 
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stereoscopy is due to limited interpupillary distance and limited aperture diameter. In particular, current 2D endoscopes 

typically use the full 4 mm aperture diameter allowed by the tube, while the 3D endoscope tube tested here provides an 

aperture diameter of 3.3 mm despite using a tube of 4 mm diameter. The authors believe that the primary benefit of 3D 

endoscopy is that it makes it more efficient for the surgeon to learn and carry out a procedure. They also mention that 

the higher magnification inherent in existing 3D endoscopes, corresponding to a working distance of 3-4 cm, may be an 

advantage since it reduces the chance that surgical instruments will interfere with the view. Finally, the authors suggest 

that further work should generally be done to establish a practice for the surgical use of 3D endoscopy. 

 

 

Fig. 3. Field-of-view demonstration for 2D and 3D endoscopes, from Fig. 2 in 
[10]

. 

 

The authors attribute the difference primarily to the limited interpupillary distance and aperture diameter imposed by a 

practical endoscope tube. 

This paper's conclusions about sinus surgery must be interpreted with caution when considering abdominal surgery; the 

latter is fundamentally different in that it requires laparotomy and a greater angular separation between the endoscope 

and instrument tubes. 

 

Effect of Stereoscopy on Surgical Speed and Reliability 

The conventional approach to stereoscopy involves the use of two cameras to provide separate views to each eye of the 

operator. In a typical endoscope, the cameras are laterally displaced; although some systems tilt the camera optical axes 

relative to the tube mechanical axes, such an arrangement is difficult to provide without additional optical parts. One 

implementation of two-camera stereoscopy is evaluated in "Autostereoscopic three-dimensional viewer evaluation 

through comparison with conventional interfaces in laparoscopic surgery" by Silvestri et al.
[7]

 The authors acknowledge 

that the "image quality, detail, and color sharpness" provided by existing 2D endoscopes are often compromised in the 
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implementation of 3D, but a surgeon not accustomed to laparoscopy must exert greater relearning effort to adapt to 2D 

than 3D laparoscopic  surgery. The gold standard for 3D visualization of the surgical field is the da Vinci robotic system, 

which uses a binocular-visor display to show the image captured by two 4mm-aperture cameras in a tube of 12mm 

diameter. A binocular-visor display consists of two separate video displays, one for each eye of the viewer. The most 

common alternative is an autostereoscopic monitor, which has not yet found significant medical applications. Although 

autostereoscopic displays can be viewed by multiple people, other technologies such as polarized glasses currently offer 

superior performance for the surgeon. 

The camera system built and tested by these authors consists of two VGA-resolution CMOS color sensors, measuring 8 

mm x 8 mm x 9 mm. Each sensor has a corresponding pinhole lens, and the pupil centers are separated by 8.7 mm. Each 

system (2D, 3D with autostereoscopic monitor, and 3D with binocular visor) was tested with surgeons who had no 

previous experience with 3D endoscopy, performing the following tasks using laparoscopic tools (Fig. 4): a visual task, 

counting the squares in a checkerboard target; a pick-and-place task, placing rings over pins; a peg-in-hole task, inserting 

needles into holes; a cutting task, cutting a rubber surface between pre-marked lines; and a suturing task, performing a 

single suture on a tissue-simulator surface. Each task was evaluated objectively on execution time (except for the visual 

task) and number of errors (except for the suturing task). The procedures were also evaluated subjectively via a 

questionnaire. 

 

Fig. 4. Photographs of test tasks, from Fig. 4 in 
[7]

 

 

Statistical testing consisted of a one-way ANOVA followed by post-hoc analysis of individual pairwise relationships. No 

surgeons made any errors on the visual task or the pick-and-place task, so there was no statistical analysis to perform for 

the visual task. For the other tasks, the following results were obtained: For the pick-and-place task, the autostereoscopic 

monitor and the binocular visor produced statistically-significant improvements in execution time over the  2D display, 

but the two 3D displays did not have statistically-significant differences with each other. For the peg-in-hole task, no 

statistically-significant differences were obtained for execution time or error rate; this was attributed to the limited 

resolution of the camera. For the cutting task, the autostereoscopic and 2D systems were significantly better than the 

binocular-visor system in terms of speed, while no statistically-significant differences were found in error rate. For the 

suturing task, both 3D systems were significantly faster than the 2D system, while the 3D systems did not have 
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statistically-significant differences with each other.
[7]

 

The results from the questionnaire indicated general satisfaction with the depth and relative-motion perception provided 

by the 3D systems, with the binocular visor being typically preferred to the autostereoscopic monitor due to the fatigue 

caused by the latter. 

 

Table 1. Quantitative results of the test tasks described above.
[7]

 

 

Overall, 3D endoscopy with either type of display produced an improvement in task execution time. The authors suggest 

that, despite the viewing-angle limitations and associated training demands associated with an autostereoscopic 

monitor, the performance of autostereoscopic displays has improved over past studies to the point where surgical results 

would not significantly differ from other display methods. Since autostereoscopic monitors and binocular visors put 

different stresses on the surgeon (eyestrain for the former and poor posture for the latter), future improvements in AMs 

may further stimulate their adoption for stereoendoscopic surgery. Implicit in this discussion is the assumption that the 

display device, rather than the image sensor, is the limiter of final image quality. As mentioned above, this assumption 

does not always hold. Where it does not, such as with the aforementioned peg-in-hole task, the advantages of 3D 

endoscopy may be less evident. The remainder of this report will thus focus on image capture. 
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Fig. 5. Endoscope head from Fig. 2 in
[7]

 

 

The potential benefits of stereoscopic viewing to the surgeon are also discussed in "Design of the computerized 3D 

endoscopic imaging system for delicate endoscopic surgery" by C.G.Song et al. This paper mentions the polarization and 

shutter-glass methods of 3D display operation. It considers the effect of each type of 3D viewing on performance of 

simulated surgical tasks, finding that the polarized glasses produce a more consistent performance benefit (Table 2). 

 

Table 2. Task completion times from Table 1 in 
[8]

 

 

The paper also discusses stereoscopic displays (in particular a polarized display and glasses), video 

multiplexing/demultiplexing, and computerized storage. These are beyond the scope of the present report. 

 

Split-Aperture Image-Capture Methods 

 

Fig. 6. Example of binocular stereoendoscope, from "Insertable stereoscopic 3D surgical imaging device with pan and tilt" 

by Hu et al.
[4]

 Although pan-tilt capability may be a desirable workaround for the field-of-view limitations, it involves 

significant tradeoffs in mechanical complexity and is not frequently implemented in commercial endoscopes. The tube 

diameter is 15mm, which is the practical limit imposed by the surgical tools used to create and maintain the incision.  

 

Polarization division 

Alternatives to the two-camera image-capture approach often involve the division of a single aperture into two halves. 

One proposed scheme divides the aperture based on polarization, as described by T. Hattori et al. in "Disparity and 

distortion free stereoscopic fiberscope."
[3]

 The article describes an endoscope tube design which produces a binocular 
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image pair compatible with an autostereoscopic monitor. The tip of the tube contains a GRIN lens, followed by an 

aperture mask in which each half is filled with a linear polarizer. The two polarizers are each at 45 degrees to the split line 

and 90 degrees to each other. Behind the polarizers lies another GRIN lens and the fiber bundle that carries the image. 

The imaging light then passes through the fibers to additional focusing optics and a polarizing beamsplitter, which splits 

the polarization components to two CCD sensors. Around the periphery of the tube is an additional fiber bundle to 

provide illumination. 

The system achieves an equivalent pixel size of 24um in the composited image and satisfies the 30 fps frame rate 

required for real-time video. The primary limitation is that carrying the image light via fiber bundles significantly limits the 

achievable resolution. As discussed previously, modern commercial endoscopes deprecate the fiberscope concept in 

favor of fully-electronic image transmission.
[3]

 

The authors suggest that future work could focus on simplifying the design of the system via the use of polarization-

maintaining fibers in the bundles. It does not appear that this change is sufficiently economical to be worthwhile, as even 

if fiberscopes were still comparable to the optical state of the art, one would need to overcome the expense of 

commercially selecting and bundling polarization-maintaining fibers that have consistent polarization-dispersion 

properties across the visible wavelength range. 

 

Fig. 7. Schematic of stereoscopic system with polarization-divided aperture. From Fig. 3 in 
[3]

 

 

Wavelength division – Complementary multi-bandpass filter 

An alternative method to divide a single aperture into two halves is to use color filters such that each filter passes a 

different set of wavelength bands, each of which is sufficient to reconstruct a full-color image. This complementary multi-

bandpass filter (CMBF) method was described by R. Korniski et al. in "3D imaging with a single-aperture 3-mm objective 
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lens: concept, fabrication and test."
[5]

 The endoscope design in this paper focused on the minimally-invasive surgery 

(MIS) subtype of neurosurgery. A 4 mm tube diameter is the existing state of the art for this application, which is a tighter 

restriction than the aforementioned 12-15 mm for abdominal surgery. The CMBF approach was chosen because of its 

suitability for the small aperture diameter. The general CMBF principle is that the filter in one half of the aperture passes 

three wavelength bands corresponding roughly to red, green, and blue, while the other, complementary filter passes a 

different set of three bands such that the combined transmission covers the entire visible spectrum. A tunable 

illumination source selects one of the bands for imaging at a time. The initial lab test setup used a xenon lamp with a 

tunable filter to generate the illumination, with two full-scale laboratory cameras provided with COTS achromatic imaging 

lenses. Due to the small dimensions required, the mounting hardware required custom rapid prototyping. 

 

Fig. 8. Schematic of aperture with divided CMBF, from Fig. 3 in 
[5]

 

 

Fig. 9. Schematic of CMBF band choices, labeled with measured passbands, adapted from Fig. 1 and 2 in 
[5]
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After this successful demonstration of the principle, the setup was redesigned to the diameter scale appropriate for the 

actual endoscope, giving effectively two apertures that were each about 0.8 mm in diameter and with centers separated 

by 1.2 mm. The designed total field of view was 52 degrees. The frame rate achieved was about 0.5 fps, which the 

authors recognized as grossly insufficient and in particular far below the standard 30 fps. The authors attributed this to 

the 10% overall visible-light transmission of the tunable filter, which required correspondingly long exposure times. The 

effective disparity corresponded to an effective scene distance of 1740 mm (5.7 ft), which was considered by the authors 

to be within a useful range despite being longer than arm's length. Finally, the authors noted that the different filter 

bands resulted in some noticeable color differences between the two views. Although this was considered acceptable for 

a human operator given the fusion processing done by the brain, the authors suggest that postprocessing color 

correction could be pursued later to further improve color perception.
[5]

 

The primary obstacle that prevents this system's performance from reaching the commercial state of the art is the 

illumination issue. Although this would be less severe in an endoscope of greater diameter, such as that possible for 

abdominal use, the illumination and filtering are still of concern. In principle, the situation could be improved by 

providing three light sources to allow all three wavelength bands for one eye to be illuminated at a time. However, such 

an implementation would likely be impractical. 

 

Liquid-crystal deflection 

Another approach uses a liquid-crystal device to provide two separate deflected optical paths from the aperture to the 

image sensor. This method was described by M. Fenske et al. in "A Design of a Liquid Crystal Based Single-Lens Stereo 

Endoscope."
[1]

 

 

Fig. 10. Schematic of liquid-crystal deflection device, from Fig. 3 in 
[1]

 

 

The primary disadvantages of this system are those related to the limitations of liquid-crystal technology. Specifically, 

polarization properties of the tissue being imaged are possible as a confounding factor, a disadvantage shared with the 

dual-polarizer method. Also, the switching speed of the liquid crystals may be an issue; although signal frequencies up to 
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1 kHz successfully produced a detectable LC response, the actual time response of the LC device is necessarily non-ideal 

and may introduce some crosstalk between the views. Finally, the authors acknowledge that illumination efficiency as 

well as field of view are of concern due to the limited angle of acceptance of the LC device. They suggest that the former 

may be tolerable with a sufficiently bright light source, though they do not describe the illumination issue quantitatively 

nor suggest a specific design change to resolve it.
[1]

 

 

Other Sensing Approaches 

Shape-from-Polarization 

Another use of polarized light is the shape-from-polarization principle, described in "Shape-from-Polarization in 

Laparoscopy" by Sergio E. Martinez Herrera et al.
[6]

 The shape-from-polarization principle is proposed as an alternative to 

shape-from-shading, which attempts to recover depth information from a single monocular image. Shape-from-shading 

is obviously unsuitable for endoscopy due to nonuniformities in tissue and the possibility of specular reflections. Shape-

from-polarization instead operates based on the polarization properties of reflection at a dielectric interface, specifically 

the water film on the body tissue. By taking images with three states of a linear polarizer (0, 45, and 90°), the surface 

normal vector relative to the camera at each pixel can be calculated. 

The authors' implementation used a mechanically-rotated polarizer.
[6]

 This is undesirable for the manufacturing and 

operation of a commercial device, since it would be expensive and impractical to incorporate a suitable motor for 

electromechanical rotation. Instead, the polarization state should be varied by a liquid-crystal device or other electro-

optical means.  

 

Fig. 11. Camera assembly and example images captured, from Fig. 2 and 4 in 
[6]

 

 

The authors demonstrate that their method is clearly superior to shape-from-shading, which is mentioned only for 

comparison and not seriously proposed for practical use. However, the shape-from-polarization method appears not to 

be sufficiently general to achieve adequate accuracy across many types of endoscopy. It depends on the water film to be 

of sufficient, consistent thickness. This assumption is not sufficiently general to cover all tissue types, and it fails especially 

in any area where a large amount of liquid is accumulated. In milder cases, the smoothness of the water film may cause 

the loss of some depth details present in the underlying tissue. 
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The present report's author proposes that the preferable use of a liquid-crystal element in an endoscope tube would be 

to vary the polarization state of a linear polarizer or the focusing power of a lens. Neither of these uses overcome the 

assumption that the polarization properties of tissue are negligible, which would itself need testing for each organ on 

which the endoscope is to be applied. 

 

Time-of-Flight Sensing 

The stereoscopic methods described thus far have used multiple visible-light images. An alternative is to capture 

simultaneously a monocular visible-light image and out-of-band depth information. One approach is to use a time-of-

flight sensor to acquire the depth information. Time-of-flight sensing uses the principle of the speed of light to measure 

distance, either by timing a pulsed signal or by interferometry of continuous illumination. A paper that describes this is 

"Development of a real-time image-guided surgery system for stereo-endoscopic sinus surgery" by A. Hattori et al.
[2]

 As 

mentioned in the paper, a depth image is aligned to a visible-light image and used to render a 3D model of the surgical 

field, which is then output to a stereoscopic monitor. The system was tested on phantoms and in actual sinus surgery. The 

frame rate achieved was 8-10 fps; the authors did not propose specific suggestions for improvement. The authors noted 

the importance of field of view: For endoscopy in general, "because of the narrow field of view, it is not easy to recognize 

the internal structures of the nasal cavity ... even if the surgeon can refer to the patient's MRI or CT images."
[2]

 It was not 

stated what specific field of view was achieved for a single frame in this experiment. A schematic of the system is as given 

in Fig. 12. 

 

Fig. 12. Schematic of endoscope system with time-of-flight depth sensing, from Fig. 1 in 
[2]

 

 

A comparison of the approaches described above is as given in Table 3. 

Description Pros Cons Frame rate Field of view (° total) 

Conventional two-

camera stereoscopy
[7,10]

 

Proven technique which 

approximates design of 

Limited field of view; 

wasted tube space 

≥30 fps sensor 

capability; typically 

37° (calculated from 

4±0.1 cm viewing area 
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human visual system; 

little computation 

required for 

stereoscopic displays 

limited by display at 6 cm working 

distance given for 3D 

endoscope in 
[10]

) 

Liquid-crystal deflector
[1]

 Simple lens optics Limited field of view; 

inefficient illumination 

1 kHz switching speed; 

usable frame rate 

uncertain 

N/A 

Polarization-divided 

aperture
[3]

 

Low distortion, simple 

optical design 

Inefficient illumination; 

misbehaves if tissue 

significantly polarizing 

30 fps N/A 

Wavelength-divided 

aperture
[5]

 

Low distortion, simple 

optical design 

Inefficient illumination; 

may require processing 

to correct color 

0.5 fps 

 

52° 

Shape-from-

polarization
[6]

 

Simple optical design 

with requirements 

comparable to single-

vision endoscope 

Electro-optic 

implementation needs 

to be designed (to 

replace mechanical 

rotation of polarizer); 

misbehaves with dry or 

polarizing tissue 

N/A (video not possible 

in experiment due to 

mechanically-rotated 

polarizer) 

N/A 

Time-of-flight sensing
[2]

 Monoscopic visible-light 

image simplifies design 

of visible-light optics (to 

allow low distortion, 

wide field of view, 

and/or good 

illumination efficiency) 

Image alignment and 3D 

rendering sometimes 

computationally 

intensive; depth image 

may have lower 

resolution than visible 

image due to sensor 

limitations; further 

attention needed to 

manufacturability in 

commercial form factor 

8-10 fps N/A 

Table 3. Comparison of previously-discussed stereoscopic sensing approaches. 

 

Common Problems in Stereoscopy 

As mentioned previously, common problems with the working principles proposed so far for stereoendoscopy include 

field of view, image resolution, illumination, and optomechanical manufacturing considerations. There are several 

limiting factors to usable field of view, including lateral displacement, aperture size, and distortion. The more radial 

distortion present in a single-camera image, the more post-processing is necessary to correct that distortion, causing the 

corners of the image to lose sharpness relative to the center. (When barrel distortion is corrected, the image content 

must be resampled to larger dimensions in the corners. This creates a loss of sharpness because the resolution 

information can derive only from the original image rather than the finer pixel scale of the output. When pincushion 

distortion is corrected, the image information in the corners is downsampled, throwing away resolution information.) 

This can be a complication if any image alignment and/or stitching is required; multi-camera stereoscopy and time-of-
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flight imaging are both affected. The latter is especially an issue since many existing time-of-flight cameras have lower 

pixel count than comparable visible-light cameras. 

Illumination efficiency is another significant objection to several proposed methods. The light-collecting ability of a 

system is determined by its aperture size and acceptance angle; the former in particular is often limited by the practical 

size of the endoscope tube, and any filter in the aperture directly attenuates the light. An ideal polarizer transmits 50% of 

the irradiance upon it; a color filter may cause arbitrary losses and may require additional computation to recover 

accurate color information for the displayed image. Any loss of illumination requires a proportionally longer exposure to 

achieve the same number of photons collected by the sensor. A longer exposure (slower shutter speed) directly slows 

down the achievable frame rate; generally at least 30 fps is required, and 60 is desirable, for real-time video. Many of the 

existing approaches reviewed earlier fail this criterion. 

As for mechanical considerations, it is obviously desirable to avoid unnecessary moving parts, especially at the tip of the 

endoscope tube. This is a problem with schemes whose current implementations require a polarizer or other part to be 

mechanically rotated. 

 

Preliminary Study 

Time-of-Flight Sensing 

A preliminary study was conducted to explore the possibility of a novel design approach or improvement of an existing 

design to achieve stereoscopy in an endoscope.  

The testing setup for time-of-flight image capture was planned as a proof of concept using commercial off-the-shelf 

parts. The time-of-flight camera chosen was a PMDTechnologies pmd[vision] CamBoard picoS 71.19k (Fig. 13), primarily 

based on cost considerations. The specifications are as given in Table 4. 

 

Table 4. Specifications for time-of-flight camera used in preliminary study. 
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Fig. 13. Photo of time-of-flight camera unit. Illumination port on left; detection lens on right. 

 

The testing setup used gauge blocks adhered to a cardboard surface to provide direct control of the depth relationships 

in the scene (Fig. 14). 

 

Fig. 14. Example setup with ToF camera viewing gauge blocks. 

 

The initial goal was to achieve an absolute depth resolution of 0.5 mm or better under typical laboratory conditions of 

working distance. The specifications indicated that the chosen sensor had a reasonable chance to be capable of this: The 

indicated depth resolution is "<3 mm @ 50 cm, <6 mm @ 100 cm" implying a percentage error of 0.6%. At the typical 

laboratory working distance of 15 cm, this would imply a depth error of 0.9 mm. However, practical results indicated 

difficulty achieving any consistent depth resolution over the full field. The sensor was able to distinguish gauge blocks of 

0.5 mm difference in thickness, both through air and through standard uncoated glass lenses, but in light of the errors to 

be mentioned, it is unclear how much real depth resolution was exhibited and how much the effect can be attributed to 

variations in surface finish and cleanliness. Also, specular reflections off the lenses as well as the gauge blocks themselves 

produced spurious depth information (Fig. 15-18). 
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Fig. 15. Example time-of-flight image showing data dropouts due to sensor saturation. Distances on left (color scale uses 

red for near to violet for far); conventional IR image on right. Amplitude units are arbitrarily assigned by the sensor. This 

convention applies to the other time-of-flight images shown below, except where noted. 

 

Fig. 16. Example time-of-flight image showing confusion of depth relationships due to illumination variation. Although the 

gauge blocks were set up in a progression from left to right, the center one is claimed by the sensor to be at a noticeably 

farther depth than the others. Also note the dimple caused by the illumination hot spot at the upper left. 

 

Fig. 17. Example time-of-flight image showing ability to see through a lens. Note the reversed depth relationships on the 

hands holding the lens and the hot spot on the lens itself. Right image consists of calculated distances (hue) overlaid on 

the standard IR image (brightness). 
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Fig. 18. False depression in depth readings created by overillumination. 

 

Fig. 19. Result with plastic holographic diffuser rated for 80° diffusion angle applied to illumination port. Note that there is 

still an erroneous depression near the top of the gauge blocks. 

 

The results were unsatisfactory due primarily to nonuniformity of the infrared illumination. In some areas that were 

overilluminated but not so much as to saturate the sensor, the depth relationships appeared reversed . The working 

distances used were typically around 15 cm, which was somewhat shorter than the minimum 20 cm recommended in 

the spec sheet but still a very long distance on endoscopic scales. Attempts to attenuate the illumination with neutral-

density filters or to apply diffusers had little effect (Fig. 19). 

 

Due to the difficulties that were encountered with this method, no registration to a visible image was attempted. 

However, such a process could have been accomplished by detecting edges in the visible and ToF images and using the 

edge information to register the images by any common method. If the visible camera were of sufficiently low distortion 

and otherwise good optical quality, a simple perspective transformation (homography) could satisfactorily align the 

images. Otherwise, an optical-flow method (as discussed later) could be used to account for arbitrary nonlinear relative 

distortions between the ToF and visible images. 

 

Image Stitching of Multiple Views 
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Overview 

It was decided to proceed with an alternative approach, using multiple views from which a ring of images could be 

stitched. 

The multiple-camera stitching approach was chosen for the second phase of this preliminary study due to its proven 

technological basis. On the surface, it is a logical extension of the two-camera stereoscopy approach. The images from 

the multiple cameras can be laid out so as to directly augment the field of view. Conventionally, an endoscope with this 

design incorporates a ring of cameras pointing laterally around the tip of the endoscope tube; ideally an additional 

camera is provided looking axially out from the tip, to close the ring field of view into a hemisphere. 

For this application, it is important to remember the limitations of optical quality for visible-light cameras small enough to 

incorporate into an endoscope tube, due to the lens-design constraints imposed by the small size. 

 

No actual stereoscopy was implemented in this study, due to a multitude of image-quality limitations that will be 

discussed. 

 

Testing Setup 

Due to equipment limitations, only one camera was used, and the multiple views were acquired with the use of a 

rotation stage (Fig. 20). The camera was as specified in Fig. 21. 

 

Fig. 20 (Left). Camera attached to rotation stage. Note that the camera is oriented such that the image produced is 

upside-down (rotated 180°) relative to its natural orientation. 

Fig. 21 (Right). Specifications for camera. 
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Fig. 22. Block diagram of MATLAB code for preprocessing of each image. 
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Fig. 23. Block diagram of MATLAB code for feature-detection/linear-transformation stitching approach. 
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Fig. 24. Block diagram of MATLAB code for optical-flow stitching approach. 

 

The MATLAB code that was written for this project followed the structure shown in Fig. 22-24. 

 

Background on Image Processing 

Features in an image may be detected by the SIFT (Scale-Invariant Feature Transform) or SURF (Speeded-Up Robust 

Features) methods. The former is implemented as an external binary blob, while the latter is built in to MATLAB's 
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Computer Vision System Toolbox.
[12][15]

 The SIFT method obtains a multi-scale representation of the image information 

via Gaussian filters, determines the locations of likely feature points based on the maxima and minima of the difference 

of these Gaussians, and samples additional information (especially the gradient) around each point.
[16]

 These methods 

detect blob-like features, that is, regions of a value clearly distinguishable from the surrounding background. This 

definition of a feature may not be ideal in our context, since it may not accommodate all combinations of errors such as 

perspective, lighting, noise, and sharpness differences between images. These limitations may thus frustrate the 

detection and comparison of legitimate features. It may be preferable to detect edges and/or corners, as such features 

are intuitively less likely to be vulnerable to variations in lighting and are more critical for the quality of a stitched image. 

This aspect could be approached in future work. 

Since the feature detectors were intended to operate on grayscale images, they were run on the luminance as well as the 

individual RGB channels of each image, and the resulting feature points were pooled together. 

RANSAC (Random Sample Consensus) is a method by which the best transformation is chosen to correspond to a set of 

matched point pairs. It operates by calculating transformations based on a limited number of random subsets of the 

input points, keeping the transformation that acceptably replicates the largest number of matches. The assumption is 

that any points which fail to match acceptably in this manner are likely outliers.
[13]

 The standard implementation uses a 

hard (go/no-go) threshold to decide whether each point is acceptable; after some experimentation, the present author 

replaced this with a Gaussian function. In an effort to ensure determinism, the present author also replaced the random 

search with a full brute-force search of subsets whose size was chosen to allow a reasonable limit on the iteration count. 

 

Preprocessing of Images 

The preprocessing script first converts the images from the original RGB to a YIQ color representation. In order to provide 

some level of color correction, this involves a partial normalization in RGB space. Then, each channel of the YIQ 

representation is denoised and processed additionally: The luma undergoes denoising, normalization, and sharpening, 

while the chroma channels are solely denoised. The denoising process was chosen on an ad-hoc basis to consist of 

several differently-sized kernels of Wiener filters and median filters averaged together. The purpose of the Wiener filters 

was to attenuate noise in smooth areas of the image, while the median filters were intended to remove speckle noise, 

both avoiding loss of sharpness on simple edges. The fine-tuning of this process was worked on at the same time as the 

tuning of the feature detection and matching. Originally the process was iterated until the RMS change in the image 

values was less than a threshold, but it was soon discovered that no one threshold worked acceptably for all images. 

Sometimes, certain images in an acquisition set would have their details completely destroyed, while others might not be 

effectively denoised at all. Therefore, the process was changed to run for a fixed number of iterations. The images are 

then undistorted using the calibration previously obtained from the MATLAB Single Camera Calibrator widget. Next, the 

image is upsampled by a factor of two in order to provide anti-aliasing for the subsequent cylindrical-warp step. The 

cylindrical warp was implemented using naive nearest-neighbor interpolation; if time had allowed, a later 

reimplementation would have used a proper resampling method in this step in order to obviate the pre-scaling. The 
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purpose of the cylindrical warp is to provide a coordinate transformation that maps the assumed cylindrical angle of each 

input image column to the corresponding rectangular coordinates in the output.
[13]

 Next, perspective correction is done 

as needed, using a simple keystone effect. The images are then downsampled back to the original size and saved. In this 

implementation, the files must be manually moved to a chosen subfolder before the actual stitching can be run. This 

could of course be addressed in future work. 

 

Test of Camera Field of View 

After a few preliminary tests of the stitching process, the raw field of view of the camera was tested as a sanity check. 

This was performed via imaging of a grid target as shown in Fig. 25. The grid was placed close enough to the camera to fill 

the entire field of view. 

 

Fig. 25. Image taken during field-of-view test. 

 

In this figure, the camera was measured to be 4.4 cm from the target. The upper-left and lower-right corners of the 

image were separated by 3.4 in (8.6 cm) in the horizontal direction and 3.6 in (9.1 cm) in the vertical direction as shown. 

This gives a full-field-of-view angle of 110 degrees, which is reasonably close to the manufacturer's specification of 120 

degrees and suggests that the camera's raw field of view should not be a significant limitation on stitching performance. 

The field of view after undistortion is necessarily less, since the undistortion process introduces a relative pincushion 

distortion to correct the camera's barrel distortion; this discards image information especially at the corners. This effect 

was not measured accurately in my work, due in part to multiple trials being made on the camera calibration. The 

measurement of field of view of a stitched image collection was also explored via the same method, but no reasonable 

values were obtained, because the image quality was limited and the pitch-angle adjustment of the camera (bending the 

metal plate shown in Fig. 20) had no numerical ruling. The corner-to-corner field of view is not directly relevant for 

stitching anyway, since the views are offset horizontally. These issues would need to be explored in future work. 

 

Feature-Detection Stitching: Problems and Workarounds 

Upon implementing the stitching, the most commonly-seen failure mode was that one or more images were compressed 

into a narrow line. This logically results from the least-squares nature of the linear algebra involved, with the possibility 
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for poorly-conditioned matrices and accompanying stability issues. The offending images were often stretched very long 

and thin, forcing a large padding area to be allocated in the output canvas. This sometimes caused the script to abort 

when it detected insufficient memory. 

Originally, the code considered the combination of already-stitched images as one of two inputs to the stitching 

algorithm at each step. There were occasional artifacts in whichan image that matched poorly with the ones previously 

stitched was placed improperly into the black padding space in the upper-left corner. This appeared to be the result of 

SIFT misdetecting the padding space as a feature. The solution was to keep track of the images by explicitly composing 

the transformations. 

Even when that was addressed, the images in each stitched combination only subtended about a half circle within the 

stitched view. A contributing factor was that the algorithm was intended to be fully general and was not explicitly given 

prior knowledge of the images forming a closed circle. Accuracy limitations of the undistortion, cylindrical warping, and 

perspective correction may also have contributed to this. 

Although affine transformations typically had better worst-case behavior than homographies, homographies were 

generally necessary in order to achieve reasonable accuracy with tricky perspective cases in sets with smaller numbers of 

images. 

 

To provide the full degrees of freedom of a homography while avoiding obviously unreasonable perspectives, a method 

of biasing a homography toward an affine transformation was devised. This method, here referred to as a "weakened 

homography," calculates the best homography and the best affine transformation, transforms some key points according 

to each, averages the results by point, and computes a new homography based on said points. (Since a homography is 

not "linear" in the same sense as an affine transformation, the compromise cannot be performed simply by averaging 

matrix coefficients.) Although this method saw some initial success in improving the results, further testing revealed that 

it did not solve the fundamental problem that unreasonable transformations could be generated. 

  

 Fig. 26. Schematic of feature points and their bounding box, as used for the weak-homography method and for 

transformation reasonableness scoring. 

 

Another attempt to work around this issue involved the addition of a reasonableness heuristic to the scoring used to 

select the best transformation. The sum of the the point distance metrics was multiplied by a value representing the 

similarity of the prospective transformation to a rigid motion. The chosen method to calculate this was based on the 
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change in length of lines running corner-to-corner as well as vertically and horizontally through the middle of the 

bounding rectangle of the input feature points, as shown in Fig. 26. (It was deemed impractical to give the RANSAC or 

deterministic-search function an understanding of overall image size, since this would require additional parameters to 

be passed. Therefore the bounding box was based solely on the detected feature points of each image. In retrospect, this 

may have hampered the effectiveness of this reasonableness check. Similarly, the weakened-homography computation 

described above should also have accepted parameters representing the bounds of the entire original image, but this 

would also have complicated the code.) 

For affine transformations, such glitches often manifested themselves as the script aborting due to internal NaNs or 

infinities that were unacceptable in the transformation methods. For pure and weakened homographies, the script 

would sometimes freeze or abort when the bad transformation exhausted available memory in stitching. 

It was at this point that the idea of perspective-correcting the images prior to stitching was implemented. This did give 

slightly more consistent results, but the problem remained that the images formed neither a closed circle nor a horizontal 

strip. 

 

Fig. 27. Stitched image set with example of unreasonable transformation. 
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Fig. 28. Stitched image set with example of misalignment to empty space 

 

Fig. 29. Example of a better-quality, but still far from ideal, stitch of the same image set 

 

Fig. 30. A rough hand-stitched approximation, using only rigid rotations and translations, for the sole purpose of showing 

the intended arrangement of the images 

 

An implementation decision was made to adjust the perspective of each input image as part of the pre-processing phase, 

prior to the actual stitching. Recall that the physical arrangement of the camera put the images in an inverted orientation, 

such that the top of the image corresponded to the bottom of the scene, and that the camera was tilted downward such 

that the tops of the images overlapped more closely than the bottoms. Therefore, it is the case that the top of each raw 

image represents a greater angular subtense in the stitched panorama than does the bottom. It was thus decided to 

expand each image at the top and shrink it at the bottom. To avoid complications with the naively-centered cropping and 

to minimize interpolation artifacts, it was decided to perform this transformation on a simple line-by-line basis rather 

than defining it as a true homography.  
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Optical Flow-based Stitching: Overview of Implementation 

For good results, a nonrigid alignment is required for two reasons. First, the scene may contain depth variations that 

create parallax differences. Second, it may be difficult to correct all distortion in a low-quality camera via the calibration 

procedure. Note that Image Alignment Toolbox (a third-party MATLAB toolbox) uses the word "rigid" to refer to any 

transformation type that can be described in terms of linear algebra, as opposed to optical flow.
[14]

 This is in contrast to 

the strictly correct sense of a "rigid transformation" referring to simple translations and rotations. The optical-flow 

methods implemented in MATLAB's Computer Vision System Toolbox are intended primarily to detect subpixel motions; 

the Lucas-Kanade and Lucas-Kanade/difference-of-Gaussians (LK-DoG) methods are restricted as such. The latter requires 

more than two frames in order to perform the difference-of-Gaussians competition, so it is unsuitable for this purpose. 

The Farneback method operates over multiple scales and so is in principle able to detect multi-pixel motions, but it would 

be difficult to configure to handle the large motions required in this situation. There is a more serious implementation 

problem: The result of the optical flow is returned in a special object type that has diverse uses in Simulink but can only 

be plotted from within a standard MATLAB script. Therefore, an alternative implementation of optical flow was required. 

The primary requirements were that the implementation support arbitrarily large flow distances, require only two input 

images at a time, and output the flow vectors in ordinary MATLAB arrays. These factors led to the choice of the SIFTflow 

algorithm implementation from Image Alignment Toolbox. 

 

The chosen approach for optical flow was to stitch the images together as a horizontal strip and then warp this strip into 

the desired circular form. First, a naive horizontal-translational alignment is performed on each pair of consecutive 

images. Then, the optical flow is applied to align the features.  

The implementation requires generating forward and reverse motion vectors that map the nth image to the (n+1)st and 

vice versa, respectively. An initial implementation performed simple unweighted averaging of the vectors and of the 

warped images. This produced obvious sharp boundaries between the overlapping and non-overlapping segments of the 

image, where the features would not exactly align. This issue was addressed initially by interpolating the flow vectors 

linearly based on horizontal position within each overlap. Although this maintained basic continuity of position, the angle 

of long straight features continued to show discontinuity. This was resolved by  the use of a sinusoidal function (peak to 

peak) for the position dependence of interpolation. (A cubic spline would have been preferable in order to avoid 

discontinuities with higher-order derivatives,but the effect would not likely be noticeable in light of other image-quality 

issues.) Finally, to reduce the visibility of some artifacts resulting from inaccuracy in the optical flow itself, the 

interpolation of the image content was weighted in terms of horizontal position. 

It would have been preferable for both methods to be combined: a pre-alignment by linearly transforming the images in 

accord with detected features, followed by a fine non-rigid alignment by optical flow. However, this would require 

overcoming the problem of non-rectangular images, which are not well-supported by existing feature-detection 

implementations. 
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Stitching Problems and Future Work 

One major limitation regarding the current testing setup is the limited resolution. The main limitation to resolution in this 

setup is the camera used to capture the images. The camera is of relatively low pixel count (400x400). The lens quality is 

limited by the small package size, and the depth of field is accordingly limited. Also, the significant amount of 

undistortion and denoising processing required further limit the clarity of the image. A better-quality camera would 

produce inherently sharper images while permitting the image alignment to be tuned more easily. In practice, the 

camera choice is limited by the form factor imposed by the endoscope tube. 

Additionally, the repeatability of positioning is an issue, especially the height of the rotation stage relative to the table, 

where the post stage provided no built-in ruling for the height axis. In order to avoid the need for external measurement 

with a ruler or calipers, such a stage should have been provided. 

Further limitations to image quality may result from the naive method by which the pre-alignment was performed. The 

initial assumption was that it would suffice to perform a keystone perspective correction followed by translational 

alignment in a simple horizontal strip. One problem was that each image needed to be cropped to a rectangle to prevent 

the feature-detection or optical-flow algorithms from mis-recognizing the padding area as a feature. This means that a 

satisfactory amount of perspective correction for the horizontal-strip situation would have required a significant amount 

of image information at the upper left and right corners to be cropped away. The perspective correction was thus hand-

tuned primarily to provide a reliable stitch result in the context of the linear-transformation method, but it was not 

optimal for either that or the optical-flow method. With this in mind, it was far from ideal to use a naive translational 

alignment and expect the optical flow to absorb any residual errors. With either feature detection/linear transformation 

alone or optical flow alone, there were often errors and inconsistencies especially in the handling of periodic patterns in 

the scene. Such patterns resulted from the screw holes on the optical lab table as well as the checkerboard pattern of the 

calibration target (which we often included in the scene even after the initial calibration was completed). The errors in 

question generally took one of two forms: In the feature detection/linear transformation method, a given feature point in 

one image would sometimes be matched to a point in the next image that was one period off from the correct feature, 

causing an inaccurate perspective to be chosen. In the optical-flow method, the holes in two consecutive images would 

simply fail to be aligned with each other adequately. Errors may result from noise, interpolation artifacts, and variations 

in specular-reflection angle between camera positions. These may outweigh the legitimate cues of feature shape and 

therefore trigger misalignment. Again, the previously-mentioned proposal to combine the two alignment methods could 

improve the situation. 

 

Regardless of the specific stitching algorithm used, one would not want to run a fully-general stitching procedure on 

every frame of a video signal obtained from an endoscope. This would be an inefficient use of computing power, since 

the spatial relationships of the cameras do not change significantly from frame to frame. Instead, the designer should 

provide a means to stitch a single reference image set as a means to obtain a calibration for the camera positions in the 
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assembled endoscope. This saved calibration is then used to align the video frames obtained from each camera. 

 

In addition to the issues mentioned above, future work should focus on verifying the distortion calibration of the camera; 

choosing a better method of pre-alignment, which may include reworking the stitching procedure to combine feature 

detection/linear transformation with optical flow; choosing a better implementation of optical flow; and optimizing the 

preprocessing of the images so as to ensure that subsequent algorithms correctly detect the features. Such fundamental 

problems with the image-stitching procedure would need to be resolved before one could consider the implementation 

of stereoscopy or the measurement of resolution and MTF. 

 

Conclusions 

It is generally beneficial in laparoscopic surgery for the endoscope to provide stereoscopic vision. The benefits include 

faster and more reliable completion of the surgical task, both while learning the procedure and for experienced surgeons. 

In addition to this justification for stereoscopy, this report has reviewed several methods by which it can be achieved. 

These include the simple two-camera approach, polarization division, complementary multiple bandpass filters, liquid-

crystal deflection, and time-of-flight sensing. A preliminary study was conducted with time-of-flight sensing chosen as the 

initial approach, because it appeared to have the least difficulty with illumination efficiency and overall visible-image 

quality. As it was found that a commercial time-of-flight sensor encountered issues with over-illumination at short 

working distances, a decision was made to abandon this approach in favor of stitching multiple image views. This 

approach was chosen because of its proven physical-mathematical basis in augmenting the field of view. Although the 

fundamental principle was demonstrated to be feasible, this also encountered difficulty, due in part to the choice of 

stitching algorithms and in part to the low resolution of the camera. Future work should consider other algorithmic 

variations, tested with a better-quality camera that still meets the size requirements for endoscopy. 
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Appendix A: Comparison of Image Stitching Results 

Condition Image Notes 
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Feature detection/linear 

transformation – 

standard homography 

(different image set from 

all other figures for this 

stitching method) 

 

Example of grossly 

unreasonable 

transformation – perhaps 

due to misbehavior on 

periodic pattern 

Feature detection/linear 

transformation method – 

affine transformation 

 

Example of inadequate 

feature-point matches 

leading to incomplete 

stitching 

 

Same input images as 

above – initial 

implementation of 

weakened homography 

method (not fully tuned) 

 

A superior result for this 

configuration after some 

tuning is as shown in Fig. 

## 

RANSAC replaced with 

deterministic search, 

after some tuning – all 

images from here on use 

weakened homography 

 

RANSAC tends to match 

some features very well 

while leaving others in 

bad condition; the 

deterministic search 

tends to make more 

tradeoffs and leave 

everything in a mediocre 

condition 
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SIFT feature detector 

replaced with SURF, after 

some tuning 

 

A common error in all 

versions of the stitching 

procedure was the "c" in 

"Discover" being matched 

to the "o" in the adjacent 

shot 

Spherical warp instead of 

cylindrical 

 

Reverted this change 

(back to cylindrical warp) 

as all results were 

similarly poor 

Optical flow introduced here 

Initial implementation of 

optical flow 

 

 

Smooth blend of flow 

vectors instead of simple 

average; parameter 

tuning 
 

 

Use sinusoidal curve for 

flow-vector blending in 

each overlap region 
 

 

Smoothly blend image 

content 

 

Note "Disccover" and 

other matching 

difficulties for the near 
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depths at the top of the 

image, due in part to 

incomplete perspective 

pre-correction 

Final parameter tuning 

 

 

 

 

 

Appendix B: MATLAB Source Code 

coneundistortfolder.m (a manually-run script, not a function; older versions were named cylundistortfolder.m before the 

keystone correction was implemented, as mentioned in comments of the other script files) 

%  

% Before running, make sure: 

% 1. needsConeUndistort folder exists and contains images from the camera 

% 2. cameraParams has been loaded into the workspace somehow 

% 3. Undistorted images from any previous run have been moved elsewhere 

 

%  

% averaged from several calibration trials 

focLen = 377.803; 

 

tempScaleFactor = 2; 

scaledFocLen = focLen * tempScaleFactor; 

 

tempInterpMethod = 'lanczos3'; 

 

midGray = 0.5; 

 

% hand-tuned values, just sufficient to crop away all padding 

targetHeight = 486; 

targetWidth  = 414; 

 

% positive values make the "top" of each image wider than the "bottom" 

perspectiveStrength = 0.52; % hand-tuned value 
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origFNames = dir(fullfile('needsConeUndistort','*.bmp')); 

numImgs = size(origFNames, 1); 

fprintf('Found %i images\n', numImgs); 

for i=1:numImgs 

 disp(strcat(num2str(i),': loading from disk')); 

 

 curImg = imread(fullfile('needsConeUndistort',origFNames(i).name)); 

 

 disp(strcat(num2str(i),': initial cleanup')); 

 curYIQ = custom_rgb2ntsc(curImg); 

  

 disp('Working on luma...'); 

 curY = curYIQ(:,:,1); 

 curY = 

custom_usm(xx_denoise_luma(custom_ahe(curY)).*.75+custom_ahe(xx_denoise_luma(curY)).*.25); 

 %  

 disp('Working on chroma I...'); 

 curI = curYIQ(:,:,2); 

 curI = xx_denoise_chroma(curI); 

 %  

 disp('Working on chroma Q...'); 

 curQ = curYIQ(:,:,3); 

 curQ = xx_denoise_chroma(curQ); 

 %  

 curCleanupResult = ntsc2rgb(cat(3, curY, curI, curQ)); 

 

  

 disp(strcat(num2str(i), ': undistorting')); 

 [curUndResult, ~] = undistortImage(curCleanupResult, cameraParams, 'cubic', 

'OutputView', 'full', 'FillValues', midGray); 

 % XXX: We throw away the focal-point location for convenience, but this is technically 

inaccurate 

 % Instead, should crop the undistortion result to bring the focal point to the image 

center 

 %  

 % Rationale for parameters: 

 % 'cubic': Make output as sharp as possible 

 % 'full': Avoid throwing away any image data before the cylindrical warp, which will 

itself require some cropping 

 % ('valid' doesn't work for this calibration) 

 % Use middle gray instead of default black for padding, to make sure flaws in the 

cropping 

 % are distinguishable from later flaws in stitching 

  

 disp(strcat(num2str(i), ': temp enlarging')); 

 curEnlarged = imresize(curUndResult, tempScaleFactor, tempInterpMethod); 
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 disp(strcat(num2str(i), ': cylindrically warping')); 

 tempHgt = size(curEnlarged, 1); 

 tempWth = size(curEnlarged, 2); 

 curBigCyl = curEnlarged; 

 % We crop away unfilled space on the left/right side, 

 % for reasons of performance and accuracy with the perspective transform 

 % in the next step: 

 cylLeftPos  = round(tempWth/2); 

 cylRightPos = round(tempWth/2); 

 % Initializing curBigCyl to a copy of curEnlarged is just in order to make sure it is 

of the same class 

 % (to prevent misinterpretation of 0-255 vs. 0-1 scales). We crop away the bad parts 

anyway... 

 for imageYIndex = 1:tempHgt 

  for imageXIndex = 1:tempWth 

   cylinderPoint = [(imageXIndex - tempWth/2)/scaledFocLen; (imageYIndex 

- tempHgt/2)/scaledFocLen; 1]; 

   cylinderPoint = cylinderPoint ./ sqrt(cylinderPoint(1)^2 + 

cylinderPoint(3)^2); 

 

            % XXX: should use interp2 instead of this nearest-neighbor method 

   % and do away with the pre-enlarge/re-shrink steps 

   warpedImageTheta = 

round(scaledFocLen*real(asin(cylinderPoint(1)))+tempWth/2); 

   warpedImageH = round(scaledFocLen*cylinderPoint(2)+tempHgt/2); 

 

   if warpedImageH > 0 && warpedImageH <= tempHgt && warpedImageTheta > 0 

&& warpedImageTheta <= tempWth 

    curBigCyl(warpedImageH, warpedImageTheta, 1) = 

curEnlarged(imageYIndex, imageXIndex, 1); 

    curBigCyl(warpedImageH, warpedImageTheta, 2) = 

curEnlarged(imageYIndex, imageXIndex, 2); 

    curBigCyl(warpedImageH, warpedImageTheta, 3) = 

curEnlarged(imageYIndex, imageXIndex, 3); 

 

    cylLeftPos  = min(cylLeftPos,  warpedImageTheta); 

    cylRightPos = max(cylRightPos, warpedImageTheta); 

   end 

  end 

 end 

 disp('DEBUG: cropping unused space on left/right'); 

 curBigCyl = curBigCyl(:, cylLeftPos:cylRightPos, :); 

 tempWth = size(curBigCyl, 2); 

 

 disp(strcat(num2str(i), ': adjusting perspective')); 

 refAngle = pi/numImgs; 

 perspOffset = perspectiveStrength*tan(refAngle)*tempHgt/2; 

 if i==1 % better to display at the end (i==numImgs)? 
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  fprintf('DEBUG: perspOffset is %.4f (compare tempWth %i)\n', perspOffset, 

tempWth); 

 end 

 curBigCylr = curBigCyl(:,:,1); 

 curBigCylg = curBigCyl(:,:,2); 

 curBigCylb = curBigCyl(:,:,3); 

 curBigCylPr = simple_keystone(curBigCylr, perspOffset); 

 curBigCylPg = simple_keystone(curBigCylg, perspOffset); 

 curBigCylPb = simple_keystone(curBigCylb, perspOffset); 

 curBigCylP = cat(3, curBigCylPr, curBigCylPg, curBigCylPb); 

  

 disp(strcat(num2str(i), ': re-shrinking')); 

 curSmallCyl = imresize(curBigCylP, 1/tempScaleFactor, tempInterpMethod); 

 

 disp(strcat(num2str(i), ': cropping to final size')); 

 smallCylHgt = size(curSmallCyl, 1); 

 smallCylWth = size(curSmallCyl, 2); 

 if smallCylHgt > targetHeight && smallCylWth > targetWidth 

  yOrigin = round((smallCylHgt-targetHeight)/2); 

  xOrigin = round((smallCylWth-targetWidth)/2); 

  curCylResult = imcrop(curSmallCyl, [xOrigin yOrigin targetWidth-1 

targetHeight-1]); 

 else 

  disp('intermediate image too small to crop!'); 

  disp('Manual attention required - check crop settings in this script'); 

  curCylResult = curSmallCyl; 

 end 

 

 disp(strcat(num2str(i), ': saving to disk')); 

 imwrite(curCylResult, strcat('coneUndistorted', num2str(i), '.png')); 

 

end 

 

custom_rgb2ntsc.m 

%  

% Luma information is taken verbatim from the unprocessed image, because we 

% normalize it ourselves later. 

% Chroma information is taken after some contrast stretching in RGB space. 

function [ im_ntsc ] = custom_rgb2ntsc( im_rgb ) 

 

raw_result = rgb2ntsc(im_rgb); 

 

adj_separate = rgb2ntsc(cat(3, imadjust(im_rgb(:,:,1)), imadjust(im_rgb(:,:,2)), 

imadjust(im_rgb(:,:,3)))); 

 

im_ntsc = cat(3, raw_result(:,:,1), (raw_result(:,:,2)+adj_separate(:,:,2))./2, 

(raw_result(:,:,3)+adj_separate(:,:,3))./2); 
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end %function 

 

custom_usm.m 

%  

% input image must be grayscale and of class double 

% (we call rgb2ntsc and extract individual channels in cylundistortfolder.m) 

function [ im_sharpened ] = custom_usm( img ) 

 

% Configuration constants 

amo = 4.8; % tuned visually for optical-flow method; SIFT/RANSAC needs lower 

thr = 1.0/32.0; 

 

% based on the "octave sharpening" technique sometimes used for photos 

usm1 = imsharpen(img, 'Radius', 1/sqrt(2), 'Amount', amo, 'Threshold', thr); 

usm2 = imsharpen(img, 'Radius',   sqrt(2), 'Amount', amo, 'Threshold', thr); 

usm3 = imsharpen(img, 'Radius', 2*sqrt(2), 'Amount', amo, 'Threshold', thr); 

usm4 = imsharpen(img, 'Radius', 4*sqrt(2), 'Amount', amo, 'Threshold', thr); 

%  

im_sharpened = (invmedsharp(img, amo) .* 16 + usm1 .* 8 + usm2 .* 4 + usm3 .* 2 + usm4) ./ 31; 

 

end %function 

 

invmedsharp.m 

% An ad-hoc sharpening method intended to enhance small blob features while avoiding edges 

% input image must be grayscale(?) 

% (we call rgb2ntsc and extract individual channels in cylundistortfolder.m) 

function [ im_sharpened ] = invmedsharp( img, amount ) 

 

mf_small = medfilt2(img, [3 3], 'symmetric'); 

mf_wide  = medfilt2(img, [3 5], 'symmetric'); 

mf_tall  = medfilt2(img, [5 3], 'symmetric'); 

mf_big   = medfilt2(img, [5 5], 'symmetric'); 

 

mf = (mf_small .* 25 + mf_wide .* 15 + mf_tall .* 15 + mf_big .* 9) ./ 64; 

 

im_sharpened = img + (img-mf).*amount; 

 

end %function 

 

xx_denoise_luma.m 

%  

% input image must be grayscale and of class double 

% (we call rgb2ntsc in cylundistortfolder.m) 

function [ im_denoised ] = xx_denoise_luma( img ) 
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onestep    = cleanup_denoise_step(img); 

 

twosteps   = cleanup_denoise_step((img+onestep)./2); 

 

threesteps = cleanup_denoise_step((onestep+twosteps)./2); 

 

im_denoised = (0.45*twosteps+0.55*threesteps); 

 

end %function 

 

cleanup_denoise_step.m 

%  

% input image must be grayscale and of class double 

% (we call rgb2ntsc in cylundistortfolder.m) 

function [ im_denoised ] = cleanup_denoise_step( img ) 

 

[imwie1, ~] = wiener2(img, [5 11]); 

[imwie2, ~] = wiener2(img, [7  9]); 

[imwie3, ~] = wiener2(img, [9  7]); 

[imwie4, ~] = wiener2(img, [11 5]); 

 

immed1 = medfilt2(img, [3 5], 'symmetric'); 

immed2 = medfilt2(img, [5 3], 'symmetric'); 

 

% subtle cleanup for fine specks 

cross_nhood = [0 1 0; 1 1 1; 0 1 0]; 

weak_lo = ordfilt2(img, 2, cross_nhood, 'symmetric'); 

weak_hi = ordfilt2(img, 4, cross_nhood, 'symmetric'); 

 

im_denoised = ( imwie1 + imwie2 + imwie3 + imwie4 + immed1 + immed2 + weak_lo + weak_hi ) ./ 8; 

 

end %function 

 

custom_ahe.m 

%  

% input image must be grayscale and of class double 

% (we call rgb2ntsc in cylundistortfolder.m) 

function [ im_contrasted ] = custom_ahe( img ) 

 

simple_adjust = imadjust(img); 

ahe_56_uni = adapthisteq(img, 'NumTiles', [5 6], 'ClipLimit', 0.02, 'Distribution', 'uniform'); 

ahe_56_exp = adapthisteq(img, 'NumTiles', [5 6], 'ClipLimit', 0.02, 'Distribution', 'exponential'); 

ahe_56_ray = adapthisteq(img, 'NumTiles', [5 6], 'ClipLimit', 0.02, 'Distribution', 'rayleigh'); 

ahe_65_uni = adapthisteq(img, 'NumTiles', [6 5], 'ClipLimit', 0.02, 'Distribution', 'uniform'); 

ahe_65_exp = adapthisteq(img, 'NumTiles', [6 5], 'ClipLimit', 0.02, 'Distribution', 'exponential'); 

ahe_65_ray = adapthisteq(img, 'NumTiles', [6 5], 'ClipLimit', 0.02, 'Distribution', 'rayleigh'); 
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% We want to have an even number of inputs to the median, so that two of them 

% will be averaged. Thus, get the above 7 things down to 6 by averaging the 

% CLAHE results for each distribution and each grid size 

ahe_avg_uni = (ahe_56_uni + ahe_65_uni) ./ 2; 

ahe_avg_exp = (ahe_56_exp + ahe_65_exp) ./ 2; 

ahe_avg_ray = (ahe_56_ray + ahe_65_ray) ./ 2; 

ahe_avg_56  = (ahe_56_uni + ahe_56_exp + ahe_56_ray) ./ 3; 

ahe_avg_65  = (ahe_65_uni + ahe_65_exp + ahe_65_ray) ./ 3; 

 

im_contrasted = median(cat(3, simple_adjust, ahe_avg_uni, ahe_avg_exp, ahe_avg_ray, ahe_avg_56, 

ahe_avg_65), 3); 

 

end %function 

 

xx_denoise_chroma.m 

%  

% input image must be grayscale and of class double 

% (we call rgb2ntsc in cylundistortfolder.m) 

function [ im_denoised ] = xx_denoise_chroma( img ) 

 

tempA  = cleanup_denoise_step(img); 

tempB  = imgaussfilt(img, 0.6); 

tempC  = (tempA+tempB)./2; 

 

tempAA = cleanup_denoise_step(tempC); 

tempBB = imgaussfilt(tempC, 0.6); 

tempCC = (tempAA+tempBB)./2; 

 

tempA  = cleanup_denoise_step(tempCC); 

tempB  = imgaussfilt(tempCC, 0.6); 

im_denoised = (tempA + tempB) ./ 2; 

 

end %function 

 

simple_keystone.m 

% Applies a keystone distortion effect 

% This is NOT a homography; it is a naive line-by-line effect 

% (similar to the keystone adjustment on a CRT monitor). 

%  

% For simplicity we assume that img is grayscale and of class double. 

function [ im_persp ] = simple_keystone( img, pOffs ) 

 

wdth_i = size(img, 2); 

hght   = size(img, 1); 

 

wdth_o = round(wdth_i+2*abs(pOffs)); 
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im_persp = zeros(hght, wdth_o); 

for i_row = 1:hght 

 begOfRow =      1+(2*pOffs)*(i_row-1)/(hght-1); 

 endOfRow = wdth_o-(2*pOffs)*(i_row-1)/(hght-1); 

 if pOffs < 0 

  begOfRow = begOfRow-2*pOffs; % i.e. +2*abs(pOffs) 

  endOfRow = endOfRow+2*pOffs; % i.e. -2*abs(pOffs) 

 end 

 for i_col = 1:wdth_o 

  if i_col >= begOfRow && i_col <= endOfRow 

   % Pixel inside the valid image area 

   srcCol = 1+(wdth_i-1)*(i_col-begOfRow)/(endOfRow-begOfRow); 

   if srcCol == floor(srcCol) 

    % Pixel read from an exact integer location 

    im_persp(i_row, i_col) = img(i_row, srcCol); 

   else 

    % Naive linear interpolation within the row 

    pixLft = img(i_row, floor(srcCol)); 

    pixRgt = img(i_row, ceil(srcCol)); 

    interp_factor = srcCol-floor(srcCol); 

    im_persp(i_row, i_col) = interp_factor * pixRgt + (1-interp_factor) * 

pixLft; 

   end 

  else 

   % Pixel outside the valid image area - fill w/ medium gray 

   im_persp(i_row, i_col) = 0.5; 

  end 

 end 

end 

 

end %function 

 

performFolderMod.m (invoked from the MATLAB command line to start the actual stitching process for the feature-

detection/linear-transformation approach) 

% Make a panorama, using images from a folder 

% Based very loosely on 

http://www.tobw.net/index.php?cat_id=2&project=Panorama+Stitching+Demo+in+Matlab (link now dead) 

% filename lexicographical order MUST represent the linear progression in which the images were taken 

function [ im_stitched ] = performFolderMod( folder ) 

 

% undistort script will read BMPs and write PNGs 

images = dir(fullfile(folder,'*.png')); 

n_images = size(images, 1); 

fprintf('Found %i images\n', n_images); 

if n_images < 3 

 % not worthwhile to support the case of only 2 images 

    error('Need at least three images (in PNG format)'); 
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end 

 

central_idx = floor((n_images+1)/2); 

 

isFirstStitch = true; 

 

min_pts_needed = 5; % manually adjust for chosen transformation method 

 

% This approach is inefficient in that we read and feature-detect each image twice. 

% However, the obvious solution would require logic currently in CVTBmatch to be duplicated here... 

for idx = central_idx:n_images-1 

 

 fprintf('About to begin stitching images %i and %i\n', idx, idx+1); 

 

 im1 = imread(fullfile(folder, images(idx).name)); 

 if isFirstStitch 

  % Ensure that im_stitched is initialized, so that if we fail to match the 

  % image pairs on either side, the function will return something sane instead of 

erroring out 

  im_stitched = im1; 

 end 

 im2 = imread(fullfile(folder, images(idx+1).name)); 

 

 try 

  [pts1 pts2] = CVTBmatch( im1, im2 ); 

 catch siftExcpt 

  % The name "sift" for the exception variable is a historical artifact; 

  % this code is for SURF. 

  disp('Failed to obtain matched pairs of feature points.'); 

  disp('Giving up and switching to other side. Error description was:'); 

  disp(siftExcpt.message); 

 

  break 

 end 

 

 n_pts_matched = length(pts1); 

 if n_pts_matched < min_pts_needed 

  fprintf('Insufficient matches between images %i and %i (have %i, need %i).\n', idx, 

idx+1, n_pts_matched, min_pts_needed); 

  disp('Make sure files are named in proper sequence. Giving up and switching to other 

side.'); 

 

  break 

 end 

 

 try 

  [T_curr_im2, ~] = determ_search( pts2, pts1, 'proj_mix' ); 

 catch calcXformExcpt 
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  disp('Failed to create transformation; this probably means that determ_search'); 

  disp('or a transformation method has a fatal implementation mistake.'); 

  disp('Giving up and switching to other side. Error description was:'); 

  disp(calcXformExcpt.message); 

 

  break 

 end 

 

 % T_prev_pos tracks the extent to which the first (central) image has been pushed 

 % down and/or to the right by im_stitched growing at the top and/or left. 

 % Such information is kept separate from T_prev_im2, the composition of generated transforms. 

 if isFirstStitch 

  [im_stitched, stitched_mask, ~, ~, T_prev_pos] = stitch_a(im1, im2, T_curr_im2); 

 

  T_prev_im2 = T_curr_im2; 

 

  isFirstStitch = false; 

 else 

  T_im2_unshifted = maketform('composite', T_curr_im2, T_prev_im2); 

  T_im2 = maketform('composite', T_prev_pos, T_im2_unshifted); 

 

  [im_stitched, stitched_mask, ~, ~, T_next_pos] = stitch_a(im_stitched, im2, T_im2, 

stitched_mask); 

 

  T_prev_pos = maketform('composite', T_next_pos, T_prev_pos); 

  T_prev_im2 = T_im2_unshifted; 

 end 

 

 warning off all % for size warning 

  imshow(im_stitched); 

 warning on all 

end %for (1st side) 

 

isFirstStitchOn2ndSide = true; 

 

 

for idx = central_idx:-1:2 

 

 fprintf('About to begin stitching images %i and %i\n', idx-1, idx); 

 

 im1 = imread(fullfile(folder, images(idx).name)); 

 im2 = imread(fullfile(folder, images(idx-1).name)); 

 

 try 

  [pts1 pts2] = CVTBmatch( im1, im2 ); 

 catch siftExcpt 

  disp('Failed to obtain matched pairs of feature points.'); 

  disp('Giving up. Error description was:'); 
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  disp(siftExcpt.message); 

 

  break 

 end 

 

 n_pts_matched = length(pts1); 

 if n_pts_matched < min_pts_needed 

  fprintf('Insufficient matches between images %i and %i (have %i, need %i).\n', idx-1, 

idx, n_pts_matched, min_pts_needed); 

  disp('Make sure files are named in proper sequence. Giving up.'); 

 

  break 

 end 

 

 try 

  [T_curr_im2, ~] = determ_search( pts2, pts1, 'proj_mix' ); 

 catch calcXformExcpt 

  disp('Failed to create transformation; this probably means that determ_search'); 

  disp('or a transformation method has a fatal implementation mistake.'); 

  disp('Giving up. Error description was:'); 

  disp(calcXformExcpt.message); 

 

  break 

 end 

 

 if isFirstStitchOn2ndSide 

  if isFirstStitch 

   % Uh oh, the very first pair on the other side failed to match - 

   % that is the only way we could have gotten here. We need this special 

   % case because otherwise stitched_mask would not be defined. 

   [im_stitched, stitched_mask, ~, ~, T_prev_pos] = stitch_a(im1, im2, 

T_curr_im2); 

 

   T_prev_im2 = T_curr_im2; 

 

   isFirstStitch = false; 

  else 

   % we need to keep the previously-calculated T_prev_pos and stitched_mask, 

   % but as we are starting again at the central image, we do not want to 

preserve T_prev_im2 

   T_im2 = maketform('composite', T_prev_pos, T_curr_im2); 

 

   [im_stitched, stitched_mask, ~, ~, T_next_pos] = stitch_a(im_stitched, im2, 

T_im2, stitched_mask); 

 

   T_prev_pos = maketform('composite', T_next_pos, T_prev_pos); 

   T_prev_im2 = T_curr_im2; 

  end 
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  isFirstStitchOn2ndSide = false; 

 else 

  T_im2_unshifted = maketform('composite', T_curr_im2, T_prev_im2); 

  T_im2 = maketform('composite', T_prev_pos, T_im2_unshifted); 

 

  [im_stitched, stitched_mask, ~, ~, T_next_pos] = stitch_a(im_stitched, im2, T_im2, 

stitched_mask); 

 

  T_prev_pos = maketform('composite', T_next_pos, T_prev_pos); 

  T_prev_im2 = T_im2_unshifted; 

 end 

 

 warning off all % for size warning 

  imshow(im_stitched); 

 warning on all 

end %for (2nd side) 

 

imwrite(im_stitched, strcat('stitchResult-', folder, '.png')); 

 

% make sure we show the last state in case we broke out of the 2nd loop 

warning off all % for size warning 

 imshow(im_stitched); 

warning on all 

 

end %function 

 

CVTBmatch.m 

% Generate matched pairs of features between im1 and im2 

% using MATLAB's (C)omputer (V)ision System (T)ool(b)ox. 

% (should probably have called this SURFmatch...) 

% 

% Returns the lists of matched points for both images (always nonempty). 

% Currently, error is thrown if no matches are found. 

% 

function [points1, points2] = CVTBmatch(im1, im2) 

  

 % Config constants 

 dsf_mt = 983; % lower = more lenient 

 dsf_nsl = 5; % (don't touch it) 

 mf_mt = 1.07; % higher = more lenient matching 

 mf_mr = 0.56; % higher = more lenient matching 

  

 im1red   = im1(:,:,1); 

 im1green = im1(:,:,2); 

 im1blue  = im1(:,:,3); 

 im1gray  = rgb2gray(im1); 

 im2red   = im2(:,:,1); 
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 im2green = im2(:,:,2); 

 im2blue  = im2(:,:,3); 

 im2gray  = rgb2gray(im2); 

  

 disp('DEBUG: channel split done'); 

  

 % Get lists of raw points 

 rawpts1red   = detectSURFFeatures(im1red,   'MetricThreshold', dsf_mt, 'NumScaleLevels', 

dsf_nsl); 

 rawpts1green = detectSURFFeatures(im1green, 'MetricThreshold', dsf_mt, 'NumScaleLevels', 

dsf_nsl); 

 rawpts1blue  = detectSURFFeatures(im1blue,  'MetricThreshold', dsf_mt, 'NumScaleLevels', 

dsf_nsl); 

 rawpts1gray  = detectSURFFeatures(im1gray,  'MetricThreshold', dsf_mt, 'NumScaleLevels', 

dsf_nsl); 

 rawpts2red   = detectSURFFeatures(im2red,   'MetricThreshold', dsf_mt, 'NumScaleLevels', 

dsf_nsl); 

 rawpts2green = detectSURFFeatures(im2green, 'MetricThreshold', dsf_mt, 'NumScaleLevels', 

dsf_nsl); 

 rawpts2blue  = detectSURFFeatures(im2blue,  'MetricThreshold', dsf_mt, 'NumScaleLevels', 

dsf_nsl); 

 rawpts2gray  = detectSURFFeatures(im2gray,  'MetricThreshold', dsf_mt, 'NumScaleLevels', 

dsf_nsl); 

  

 disp('DEBUG: detectSURFFeatures done'); 

  

 % Get features corresponding to raw points 

 % SURFSize of 128 makes this really finicky (i.e. fewer matches)?? 

 [feats1red,   rawpts1red]   = extractFeatures(im1red,   rawpts1red); 

 [feats1green, rawpts1green] = extractFeatures(im1green, rawpts1green); 

 [feats1blue,  rawpts1blue]  = extractFeatures(im1blue,  rawpts1blue); 

 [feats1gray,  rawpts1gray]  = extractFeatures(im1gray,  rawpts1gray); 

 [feats2red,   rawpts2red]   = extractFeatures(im2red,   rawpts2red); 

 [feats2green, rawpts2green] = extractFeatures(im2green, rawpts2green); 

 [feats2blue,  rawpts2blue]  = extractFeatures(im2blue,  rawpts2blue); 

 [feats2gray,  rawpts2gray]  = extractFeatures(im2gray,  rawpts2gray); 

  

 disp('DEBUG: extractFeatures done'); 

 

    % Match up the features 

 idxsRed   = matchFeatures(feats1red,   feats2red,   'Unique', true, 'MatchThreshold', mf_mt, 

'MaxRatio', mf_mr); 

 idxsGreen = matchFeatures(feats1green, feats2green, 'Unique', true, 'MatchThreshold', mf_mt, 

'MaxRatio', mf_mr); 

 idxsBlue  = matchFeatures(feats1blue,  feats2blue,  'Unique', true, 'MatchThreshold', mf_mt, 

'MaxRatio', mf_mr); 

 idxsGray  = matchFeatures(feats1gray,  feats2gray,  'Unique', true, 'MatchThreshold', mf_mt, 

'MaxRatio', mf_mr); 
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 disp('DEBUG: matchFeatures done'); 

 

 if isempty(idxsRed) 

  anyRedMatches   = false; 

  disp('No matches on red!'); 

 else 

  mpts1red   = rawpts1red(  idxsRed(:,1),   :); 

  mpts2red   = rawpts2red(  idxsRed(:,2),   :); 

  anyRedMatches   = true; 

 end 

 if isempty(idxsGreen) 

  anyGreenMatches = false; 

  disp('No matches on green!'); 

 else 

  mpts1green = rawpts1green(idxsGreen(:,1), :); 

  mpts2green = rawpts2green(idxsGreen(:,2), :); 

  anyGreenMatches = true; 

 end 

 if isempty(idxsBlue) 

  anyBlueMatches  = false; 

  disp('No matches on blue!'); 

 else 

  mpts1blue  = rawpts1blue( idxsBlue(:,1),  :); 

  mpts2blue  = rawpts2blue( idxsBlue(:,2),  :); 

  anyBlueMatches  = true; 

 end 

 if isempty(idxsGray) 

  anyGrayMatches  = false; 

  disp('No matches on luma!'); 

 else 

  mpts1gray  = rawpts1gray( idxsGray(:,1),  :); 

  mpts2gray  = rawpts2gray( idxsGray(:,2),  :); 

  anyGrayMatches  = true; 

 end 

 

 disp('DEBUG: indexing done'); 

 

 % Pull the plain arrays out of the SURFPoints objects 

 if anyRedMatches 

  ppts1red   = mpts1red.Location; 

  ppts2red   = mpts2red.Location; 

 else 

  ppts1red   = [-1 -1]; % sentinel value 

  ppts2red   = [-1 -1]; % real points will always be nonnegative 

 end 

 if anyGreenMatches 

  ppts1green = mpts1green.Location; 
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  ppts2green = mpts2green.Location; 

 end 

 if anyBlueMatches 

  ppts1blue  = mpts1blue.Location; 

  ppts2blue  = mpts2blue.Location; 

 end 

 if anyGrayMatches 

  ppts1gray  = mpts1gray.Location; 

  ppts2gray  = mpts2gray.Location; 

 end 

  

 disp('DEBUG: .Location done'); 

 

 % Pool together the point pairs from each color channel 

 points1 = ppts1red; 

 points2 = ppts2red; 

 if anyGreenMatches 

  points1 = [points1; ppts1green]; 

  points2 = [points2; ppts2green]; 

 end 

 if anyBlueMatches 

  points1 = [points1; ppts1blue]; 

  points2 = [points2; ppts2blue]; 

 end 

 if anyGrayMatches 

  points1 = [points1; ppts1gray]; 

  points2 = [points2; ppts2gray]; 

 end 

  

 disp('DEBUG: ; done'); 

  

 % Although we used the 'Unique' parameter above, uniqueness is ensured only 

 % within each channel; pooling the channels may have created duplication, 

 % which we need to remove here 

 if anyRedMatches || anyGreenMatches || anyBlueMatches || anyGrayMatches 

  pts=unique([points1 points2], 'rows'); 

 

  % If red channel failed to match, we have to remove the sentinel value. 

  % We can only get here if at least one other channel *has* matches, so 

  % we know that 2:end should be valid. 

  if pts(1,1)==-1 

   pts=pts(2:end, :); 

  end 

   

  fprintf('Found %i matches in total\n',size(pts,1)); 

   

  % CV toolbox methods return single, but t'form methods require double 

  points1 = double(pts(:,[1 2])); 
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  points2 = double(pts(:,[3 4])); 

 else 

  % XXX: does this need to be fatal, or should we return empty arrays 

  % and let the caller handle the situation? 

  error('No matches found'); 

 end %if 

end %function 

 

determ_search.m 

% Calculates a transformation that aligns the points points1 and points2  

% using a deterministic search (eliminating one point at a time) to avoid 

% outliers. 

% transMode: aff_lsq  - Affine mapping 

%            proj_svd - Homography 

% n_pts:     size of point sample 

% Return values: 

% T_im1:     a tform object encalpsulating the transformation from image1 

%            (points1) onto image2 (points2) 

% best_pts:  points used to estimate best transformation (Dim: arbitrary x 4) 

% 

% This function, and the subroutines for specific transformation modes, are 

% based on the RANSAC implementation from 

% http://www.tobw.net/index.php?cat_id=2&project=Panorama+Stitching+Demo+in+Matlab 

% (link now dead) 

function [ T_im1, best_pts ] = determ_search( points1, points2, transMode ) 

 

disp('Performing deterministic search'); 

t = tic(); 

 

best_score = -99; 

it_improv={}; % saves the inlier score per improvment 

 

switch transMode 

 case 'aff_lsq' 

  min_n_pts = 4; 

 case 'proj_svd' 

  min_n_pts = 5; 

 case 'proj_mix' 

  min_n_pts = 5; 

 otherwise 

  error('transmode not known'); 

end 

 

n_pts_provided = length(points2(:,1)); 

if n_pts_provided < min_n_pts 

 error('You must provide enough points to overdetermine the chosen transformation type'); 

end 
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% Special case: There were just enough points provided, so no "search" is needed 

if n_pts_provided == min_n_pts 

 disp('Have just enough points - calculating transformation without searching subsets'); 

 disp('(poor results likely!)'); 

 

 best_pts = [points1 points2]; 

 

 warning off all 

 switch transMode 

  case 'aff_lsq' 

   T_im1 = affine_leastsquare(points1, points2); 

  case 'proj_svd' 

   T_im1 = homography_svd(points1, points2); 

  case 'proj_mix' 

   T_im1 = weak_homography(points1, points2); 

  otherwise 

   % should not get here - should already have errored out above! 

   error('transmode not known'); 

 end 

 warning on all 

 

 return 

end 

 

% Configuration constants 

scoring_sigma = 2.35; 

it_improv_max_print_len = 50; 

%  

 

% Choose some key points with which to check the sanity of the transformation. 

% The more it looks like a rigid motion, the more reasonable we consider it to 

% be. We draw a few lines across the bounding box of the input points; the more 

% their lengths change, the lower our figure of merit (more logic in loops below) 

pts1mins = min(points1); 

pts1maxs = max(points1); 

pts1mids = (mean(points1) + median(points1) + pts1mins + pts1maxs) ./ 4; 

 

pts1lft = pts1mins(1); 

pts1rgt = pts1maxs(1); 

pts1top = pts1mins(2); 

pts1bot = pts1maxs(2); 

 

pts1mdx = pts1mids(1); 

pts1mdy = pts1mids(2); 

 

bboxwdth = pts1rgt - pts1lft; 

bboxhght = pts1bot - pts1top; 

bboxdiag = sqrt(bboxwdth*bboxwdth + bboxhght*bboxhght); 
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refpt1 = [pts1lft pts1top 1]; 

refpt2 = [pts1lft pts1mdy 1]; 

refpt3 = [pts1lft pts1bot 1]; 

refpt4 = [pts1mdx pts1bot 1]; 

refpt5 = [pts1rgt pts1bot 1]; 

refpt6 = [pts1rgt pts1mdy 1]; 

refpt7 = [pts1rgt pts1top 1]; 

refpt8 = [pts1mdx pts1top 1]; 

 

if n_pts_provided > 16 

 disp('More than 16 matches; using median cut'); 

 [temppts1 temppts2] = medcut_to_16pts(points1, points2); 

 n_pts_searchspace = 16; 

else 

 disp('No median cut needed'); 

 temppts1 = points1; 

 temppts2 = points2; 

 n_pts_searchspace = n_pts_provided; 

end 

 

% DIRTY HACK to work around class problems 

all_idxs = zeros(n_pts_searchspace, 1); 

for i_setup = 1:n_pts_searchspace 

 all_idxs(i_setup)=i_setup; 

end 

 

bf_n_subsets = nchoosek(n_pts_searchspace, min_n_pts); 

fprintf('Brute-force-testing %i subsets of size %i (please be patient)\n', bf_n_subsets, min_n_pts); 

 

bf_subsets = nchoosek(all_idxs, min_n_pts); 

for i_bf = 1:bf_n_subsets 

 bf_idxs = bf_subsets(i_bf,:); 

 

 warning off all % XXX: why? (this was in TobW's original code) 

 switch transMode 

  case 'aff_lsq' 

   M = affine_leastsquare_mat(temppts1(bf_idxs,:), temppts2(bf_idxs,:)); 

   T = maketform('affine', M); 

  case 'proj_svd' 

   M = homography_svd_mat(temppts1(bf_idxs,:), temppts2(bf_idxs,:)); 

   T = maketform('projective', M); 

  case 'proj_mix' 

   M = weak_homography_mat(temppts1(bf_idxs,:), temppts2(bf_idxs,:)); 

   T = maketform('projective', M); 

  otherwise 

   % should not get here - should already have errored out above! 

   error('transmode not known'); 



51 

 end 

 warning on all 

 % transformation check 

 if max(max(isnan(T.tdata.T)))==1 

  error('Unexpected NaN in transformation'); % XXX: does this really need to be fatal? 

  % or can we simply "continue"? (can this ever happen in current MATLAB vers.?) 

 end 

 

 % NB: We *evalute the quality* of the transformation against ALL points, 

 % not just the 16 returned by the median cut. 

 

 % Apply the transformation ... 

 [A_X A_Y] = tformfwd(T,points1(:,1),points1(:,2)); 

 dXsq = (A_X - points2(:,1)).^2; 

 dYsq = (A_Y - points2(:,2)).^2; 

  

 % ... tally up the inlier score ... 

 inlier_score=0; 

 for i=1:length(dXsq) 

  esq = dXsq(i)+dYsq(i); 

  inlier_score = inlier_score + exp(-esq/(2*scoring_sigma*scoring_sigma)); 

 end 

 

 % ... transform the reference points, check sanity ... 

 trnpt1 = M.' * refpt1.'; 

 trnpt2 = M.' * refpt2.'; 

 trnpt3 = M.' * refpt3.'; 

 trnpt4 = M.' * refpt4.'; 

 trnpt5 = M.' * refpt5.'; 

 trnpt6 = M.' * refpt6.'; 

 trnpt7 = M.' * refpt7.'; 

 trnpt8 = M.' * refpt8.'; 

  

 % - normalize the vectors... 

 trnpt1 = trnpt1 ./ trnpt1(3); 

 trnpt2 = trnpt2 ./ trnpt2(3); 

 trnpt3 = trnpt3 ./ trnpt3(3); 

 trnpt4 = trnpt4 ./ trnpt4(3); 

 trnpt5 = trnpt5 ./ trnpt5(3); 

 trnpt6 = trnpt6 ./ trnpt6(3); 

 trnpt7 = trnpt7 ./ trnpt7(3); 

 trnpt8 = trnpt8 ./ trnpt8(3); 

 % - ...and the 3rd component will subtract away 

 diag1dist = norm(trnpt5-trnpt1); 

 horizdist = norm(trnpt6-trnpt2); 

 diag2dist = norm(trnpt7-trnpt3); 

 vert_dist = norm(trnpt8-trnpt4); 
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 diag1ratio = diag1dist/bboxdiag; 

 horizratio = horizdist/bboxwdth; 

 diag2ratio = diag2dist/bboxdiag; 

 vert_ratio = vert_dist/bboxhght; 

 

 diag1invrat = bboxdiag/diag1dist; 

 horizinvrat = bboxwdth/horizdist; 

 diag2invrat = bboxdiag/diag2dist; 

 vert_invrat = bboxhght/vert_dist; 

 

 diag1log = log(diag1ratio); 

 horizlog = log(horizratio); 

 diag2log = log(diag2ratio); 

 vert_log = log(vert_ratio); 

 

 % -empirical: geo.mean of Lorentzian-curve-of-log with SQRT of whichever ratio is <=1 

 diag1merit = sqrt( (1/(diag1log*diag1log+1)) * sqrt(min(diag1ratio, diag1invrat)) ); 

 horizmerit = sqrt( (1/(horizlog*horizlog+1)) * sqrt(min(horizratio, horizinvrat)) ); 

 diag2merit = sqrt( (1/(diag2log*diag2log+1)) * sqrt(min(diag2ratio, diag2invrat)) ); 

 vert_merit = sqrt( (1/(vert_log*vert_log+1)) * sqrt(min(vert_ratio, vert_invrat)) ); 

  

 rigidity_factor = min([diag1merit horizmerit diag2merit vert_merit]); 

 

 % ...and multiply to obtain the final score 

 adjusted_score = inlier_score * rigidity_factor; 

 

 % improvement check 

 if adjusted_score > best_score 

  best_score = adjusted_score; 

  T_im1 = T; 

  it_improv{end+1} = best_score; 

  best_idxs = bf_idxs; 

 end 

end % for i_bf 

 

 

if numel(it_improv) <= it_improv_max_print_len 

 disp('High scores:'); 

 disp(it_improv); 

else 

 disp('Too many high-score updates to display'); 

end 

 

best_pts=zeros(length(best_idxs),4); 

best_pts(:,[1 2])=points1(best_idxs,:); 

best_pts(:,[3 4])=points2(best_idxs,:); 

 

disp('done.') 
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toc(t) 

 

end % function 

 

affine_leastsquare.m 

function [ T ] = affine_leastsquare( pts1, pts2 ) 

 

% ... create a object used by 'imtransform' 

T = maketform('affine', affine_leastsquare_mat(pts1, pts2)); 

 

end 

 

affine_leastsquare_mat.m 

function [ X ] = affine_leastsquare_mat( pts1, pts2 ) 

 

% for more details, please see: Lecture 12, page 51, 

http://www.vision.ee.ethz.ch/~bleibe/multimedia/teaching/cv-ws08/cv08-part12-local-features2.pdf  

% prepare matrix A with pts1 

A = zeros(size(pts1,1)*2,6); 

A(1:2:end,5) = 1; 

A(2:2:end,6) = 1; 

 

A(1:2:end,1:2) = pts1; 

A(2:2:end,3:4) = pts1; 

 

% prepare matrix B with pts2 

B = zeros(size(pts2,1)*2,1); 

B(1:2:end)=pts2(:,1); 

B(2:2:end)=pts2(:,2); 

 

% solve A*x = B for x using least square error 

x = A\B; 

 

% reorder elements of x 

X(1,1)=x(1);  

X(1,2)=x(3);  

X(2,1)=x(2);  

X(2,2)=x(4);  

X(3,1)=x(5);  

X(3,2)=x(6); 

X(1,3)=0; 

X(2,3)=0; 

X(3,3)=1; 

 

 

end 
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homography_svd.m 

% Calculate a homography that maps im1 to im2 

function T = homography_svd(points1, points2) 

 

T = maketform('projective', homography_svd_mat(points1, points2)); 

 

% The Matlab way: 

% (only works with 4 points) 

%T = maketform('projective', points2, points1); 

 

homography_svd_mat.m 

% Calculate a homography that maps im1 to im2 

function x = homography_svd_mat(points1, points2) 

 

% for more details, please see: Lecture 12, page 60, 

http://www.vision.ee.ethz.ch/~bleibe/multimedia/teaching/cv-ws08/cv08-part12-local-features2.pdf  

% Build matrix 

xaxb = points2(:,1) .* points1(:,1); 

xayb = points2(:,1) .* points1(:,2); 

yaxb = points2(:,2) .* points1(:,1); 

yayb = points2(:,2) .* points1(:,2); 

 

A = zeros(size(points1, 1)*2, 9); 

A(1:2:end,3) = 1; 

A(2:2:end,6) = 1; 

A(1:2:end,1:2) = points1; 

A(2:2:end,4:5) = points1; 

A(1:2:end,7) = -xaxb; 

A(1:2:end,8) = -xayb; 

A(2:2:end,7) = -yaxb; 

A(2:2:end,8) = -yayb; 

A(1:2:end,9) = -points2(:,1); 

A(2:2:end,9) = -points2(:,2); 

 

% Solve using smallest eigenvector 

[U,S,V] = svd(A); 

h = V(:,9) ./ V(9,9); 

x = reshape(h,3,3); 

 

weak_homography.m 

% Calculate a homography that maps im1 to im2 

% (biased toward an affine transform to limit perspective blowup) 

function T = weak_homography(points1, points2) 

 

T=maketform('projective', weak_homography_mat(points1, points2)); 
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weak_homography_mat.m 

% Calculate a homography that maps im1 to im2 

% (biased toward an affine transform to limit perspective blowup) 

function M = weak_homography_mat(points1, points2) 

 

% compute the affine xform and homography the usual way 

ma = affine_leastsquare_mat(points1, points2); 

mh = homography_svd_mat(points1, points2); 

 

% pick some reference points 

pts1mins = min(points1); 

pts1mids = (mean(points1)+median(points1))./2; 

pts1maxs = max(points1); 

 

refpt1 = [pts1mins(1) pts1mins(2) 1]; 

refpt2 = [pts1mins(1) pts1mids(2) 1]; 

refpt3 = [pts1mins(1) pts1maxs(2) 1]; 

refpt4 = [pts1mids(1) pts1mins(2) 1]; 

refpt5 = [pts1mids(1) pts1mids(2) 1]; 

refpt6 = [pts1mids(1) pts1maxs(2) 1]; 

refpt7 = [pts1maxs(1) pts1mins(2) 1]; 

refpt8 = [pts1maxs(1) pts1mids(2) 1]; 

refpt9 = [pts1maxs(1) pts1maxs(2) 1]; 

 

% transform the reference points per the transformations calculated above 

affpt1 = ma.' * refpt1.'; 

affpt2 = ma.' * refpt2.'; 

affpt3 = ma.' * refpt3.'; 

affpt4 = ma.' * refpt4.'; 

affpt5 = ma.' * refpt5.'; 

affpt6 = ma.' * refpt6.'; 

affpt7 = ma.' * refpt7.'; 

affpt8 = ma.' * refpt8.'; 

affpt9 = ma.' * refpt9.'; 

 

hompt1 = mh.' * refpt1.'; 

hompt2 = mh.' * refpt2.'; 

hompt3 = mh.' * refpt3.'; 

hompt4 = mh.' * refpt4.'; 

hompt5 = mh.' * refpt5.'; 

hompt6 = mh.' * refpt6.'; 

hompt7 = mh.' * refpt7.'; 

hompt8 = mh.' * refpt8.'; 

hompt9 = mh.' * refpt9.'; 

 

hompt1 = hompt1 ./ hompt1(3); 



56 

hompt2 = hompt2 ./ hompt2(3); 

hompt3 = hompt3 ./ hompt3(3); 

hompt4 = hompt4 ./ hompt4(3); 

hompt5 = hompt5 ./ hompt5(3); 

hompt6 = hompt6 ./ hompt6(3); 

hompt7 = hompt7 ./ hompt7(3); 

hompt8 = hompt8 ./ hompt8(3); 

hompt9 = hompt9 ./ hompt9(3); 

 

% average the transformed points and assemble lists 

avgpt1 = (affpt1+hompt1) ./ 2; 

avgpt2 = (affpt2+hompt2) ./ 2; 

avgpt3 = (affpt3+hompt3) ./ 2; 

avgpt4 = (affpt4+hompt4) ./ 2; 

avgpt5 = (affpt5+hompt5) ./ 2; 

avgpt6 = (affpt6+hompt6) ./ 2; 

avgpt7 = (affpt7+hompt7) ./ 2; 

avgpt8 = (affpt8+hompt8) ./ 2; 

avgpt9 = (affpt9+hompt9) ./ 2; 

 

refpts = [refpt1(1) refpt1(2); refpt2(1) refpt2(2); refpt3(1) refpt3(2); refpt4(1) refpt4(2); 

refpt5(1) refpt5(2); refpt6(1) refpt6(2); refpt7(1) refpt7(2); refpt8(1) refpt8(2); refpt9(1) 

refpt9(2)]; 

avgpts = [avgpt1(1) avgpt1(2); avgpt2(1) avgpt2(2); avgpt3(1) avgpt3(2); avgpt4(1) avgpt4(2); 

avgpt5(1) avgpt5(2); avgpt6(1) avgpt6(2); avgpt7(1) avgpt7(2); avgpt8(1) avgpt8(2); avgpt9(1) 

avgpt9(2)]; 

 

% finally compute the new, weakened homography 

M = homography_svd_mat(refpts, avgpts); 

 

medcut_to_16pts.m 

function [simppts1, simppts2] = medcut_to_16pts(points1, points2) 

  

 n_pts_input = size(points1, 1); 

 

 rects = zeros(16, 4); 

 avgpts = (points1 + points2) ./ 2; 

 apmins = min(avgpts); 

 apmaxs = max(avgpts); 

 rects(1, 1) = apmins(1); 

 rects(1, 2) = apmins(2); 

 rects(1, 3) = apmaxs(1); 

 rects(1, 4) = apmaxs(2); 

 

 % Scan the rectangles and perform the cuts 

 for rect_bit_level = 0:3 

  rect_bit_value = 2^rect_bit_level; 
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  for i_rect = 1:rect_bit_value 

   cur_rect_min_x = rects(i_rect, 1); 

   cur_rect_min_y = rects(i_rect, 2); 

   cur_rect_max_x = rects(i_rect, 3); 

   cur_rect_max_y = rects(i_rect, 4); 

   pt_in_cur_rect_flags = zeros(n_pts_input, 1); 

   for i_point = 1:n_pts_input 

    % We consider boundaries as inclusive, to avoid the situation of a 

rectangle containing no points 

    if cur_rect_min_x <= avgpts(i_point, 1) && avgpts(i_point, 1) <= 

cur_rect_max_x && cur_rect_min_y <= avgpts(i_point, 2) && avgpts(i_point, 2) <= cur_rect_max_y 

     pt_in_cur_rect_flags(i_point) = 1; 

    end 

   end 

   idxs_in_cur_rect = find(pt_in_cur_rect_flags); 

   pts_in_cur_rect = avgpts(idxs_in_cur_rect, :); 

   cur_meds = median(pts_in_cur_rect); 

   cut_x_axis_flag = ((cur_rect_max_x - cur_rect_min_x) > (cur_rect_max_y - 

cur_rect_min_y)); 

   if (cur_rect_max_x - cur_rect_min_x) == (cur_rect_max_y - cur_rect_min_y) 

    % alternate between horizontal and vertical cuts in the event of a tie 

    cut_x_axis_flag = (mod(rect_bit_level, 2) == 1); 

   end 

 

   % The rectangle of lower coordinate value overwrites rects(i_rect, :), 

   % while the rectangle of higher value is placed in 

rects(i_rect+rect_bit_value, :). 

   % Each pass doubles the number of rectangles stored in rects, until it is 

full. 

   if cut_x_axis_flag 

    rects(i_rect,                3) = cur_meds(1); 

 

    rects(i_rect+rect_bit_value, 1) = cur_meds(1); 

    rects(i_rect+rect_bit_value, 2) = cur_rect_min_y; 

   else 

    rects(i_rect,                4) = cur_meds(2); 

 

    rects(i_rect+rect_bit_value, 1) = cur_rect_min_x; 

    rects(i_rect+rect_bit_value, 2) = cur_meds(2); 

   end 

   rects(i_rect+rect_bit_value, 3) = cur_rect_max_x; 

   rects(i_rect+rect_bit_value, 4) = cur_rect_max_y; 

  end 

 end 

 

 % Rescan the final rectangles and assign bucket flags 

 pt_in_bucket_flags = zeros(n_pts_input, 16); 

 for i_rect = 1:16 
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  cur_rect_min_x = rects(i_rect, 1); 

  cur_rect_min_y = rects(i_rect, 2); 

  cur_rect_max_x = rects(i_rect, 3); 

  cur_rect_max_y = rects(i_rect, 4); 

 

  for i_point = 1:n_pts_input 

   if cur_rect_min_x <= avgpts(i_point, 1) && avgpts(i_point, 1) <= 

cur_rect_max_x && cur_rect_min_y <= avgpts(i_point, 2) && avgpts(i_point, 2) <= cur_rect_max_y 

    pt_in_bucket_flags(i_point, i_rect) = 1; 

   end 

  end 

 end 

 % If a point lies on a boundary between buckets, split its weight accordingly 

 dupchk = sum(pt_in_bucket_flags, 2); 

 for i_point = 1:n_pts_input 

  pt_in_bucket_flags(i_point, :) = pt_in_bucket_flags(i_point, :) ./ dupchk(i_point); 

 end 

 

 % Average the original points within each bucket 

 simppts1 = zeros(16, 2); 

 simppts2 = zeros(16, 2); 

 for i_rect = 1:16 

  simppts1(i_rect, 1) = sum(points1(:,1) .* pt_in_bucket_flags(:, i_rect)) / 

sum(pt_in_bucket_flags(:, i_rect)); 

  simppts1(i_rect, 2) = sum(points1(:,2) .* pt_in_bucket_flags(:, i_rect)) / 

sum(pt_in_bucket_flags(:, i_rect)); 

  simppts2(i_rect, 1) = sum(points2(:,1) .* pt_in_bucket_flags(:, i_rect)) / 

sum(pt_in_bucket_flags(:, i_rect)); 

  simppts2(i_rect, 2) = sum(points2(:,2) .* pt_in_bucket_flags(:, i_rect)) / 

sum(pt_in_bucket_flags(:, i_rect)); 

 end 

end % function 

 

performFlowStitching.m (invoked from the MATLAB command line) 

% Make a panorama, using images from a folder IMPORTANT: 

% Image files must be named so that their lexicographical order 

% represents a left-to-right progression. 

function [ unwrapped_stitch ] = performFlowStitching( folder ) 

% - START OF FUNCTION - % 

 

disp('** Part 0: Initial reading of images **'); 

 

imgfiles = dir(fullfile(folder,'*.png')); 

n_images = size(imgfiles, 1); 

fprintf('Found %i images\n', n_images); 

if n_images < 3 

 % XXX: copied from performFolderMod.m 
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 % This script could be made to work with only two images, 

 % but we don't have a camera with sufficient FOV. 

 error('Need at least three images (in PNG format)'); 

end 

 

% Obtain the heights and widths, and create a cell array that holds the images 

images = cell(n_images, 1); % could initialize empty and then use end+1 below... 

heights = zeros(n_images,1); 

widths  = zeros(n_images,1); 

for i = 1:n_images 

 tmp_img = imread(fullfile(folder, imgfiles(i).name)); 

 

 if ndims(tmp_img) < 3 

  fprintf('Problem with image no. %i: ', i); 

  error('One or more images are grayscale; current implementation requires RGB'); 

 end 

 

 heights(i) = size(tmp_img, 1); 

 widths(i)  = size(tmp_img, 2); 

 

 images{i} = double(tmp_img)./255; 

end 

 

if max(heights)>min(heights) 

 error('All images must have same height'); 

end 

if max(widths)>min(widths) 

 error('Current implementation requires all images to have same width'); 

end 

 

hght = heights(1); 

wdth = widths(1); 

 

% High-pass-filter the images 

disp('** Part 1: High-pass filtering temp copy **') 

%  

ims_hp = images; 

midGray = 0.5; 

for i = 1:n_images 

 % custom_imgaussfilt computes a blur radius on its own 

 % we add midGray to prevent potential domain problems with rgb2gray 

 ims_hp{i} = ims_hp{i} - custom_imgaussfilt(ims_hp{i}) + midGray; 

 

 fprintf('* finished with image %i\n', i); 

end 

 

% Compute brute-force horizontal alignment (on the high-passed images) 

disp('** Part 2: Brute-force pre-alignment **'); 
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% min_overlap needs to be larger than patchsize and 

% (more restrictively) topwsize, below 

min_overlap = 30; 

max_overlap = floor(wdth/2); 

best_overlaps = zeros(n_images,1); 

for i = 1:n_images 

 cur_best_overlap = min_overlap; 

 cur_best_rmsdiff = inf; 

 for ov = min_overlap:max_overlap 

  curr_right = ims_hp{i}; 

  curr_right = curr_right(:,wdth-ov+1:wdth,:); 

  if i == n_images 

   next_left = ims_hp{1}; 

  else 

   next_left = ims_hp{i+1}; 

  end 

  next_left = next_left(:,1:ov,:); 

 

  curr_right_red = curr_right(:,:,1); 

  curr_right_grn = curr_right(:,:,2); 

  curr_right_blu = curr_right(:,:,3); 

  curr_right_lum = rgb2gray(curr_right); 

  next_left_red = next_left(:,:,1); 

  next_left_grn = next_left(:,:,2); 

  next_left_blu = next_left(:,:,3); 

  next_left_lum = rgb2gray(next_left); 

 

  rmsdiff_red = norm(curr_right_red-next_left_red, 'fro')/sqrt(ov*hght); 

  rmsdiff_grn = norm(curr_right_grn-next_left_grn, 'fro')/sqrt(ov*hght); 

  rmsdiff_blu = norm(curr_right_blu-next_left_blu, 'fro')/sqrt(ov*hght); 

  rmsdiff_lum = norm(curr_right_lum-next_left_lum, 'fro')/sqrt(ov*hght); 

 

  cur_rmsdiff = rmsdiff_red + rmsdiff_grn + rmsdiff_blu + rmsdiff_lum; 

  % XXX: should exclude blue from the max here? Or does incorporating 

  % luma make this a non-issue? (also need to check RGB vs. BGR order) 

  cur_rmsdiff = cur_rmsdiff + max([rmsdiff_red rmsdiff_grn rmsdiff_blu rmsdiff_lum]); 

 

  if cur_rmsdiff < cur_best_rmsdiff 

   cur_best_overlap = ov; 

   cur_best_rmsdiff = cur_rmsdiff; 

  end 

 end 

  

 best_overlaps(i) = cur_best_overlap; 

 

 fprintf('* chose raw overlap of %ipx between image %i and next\n', cur_best_overlap, i); 

end 

 



61 

disp('** Part 2.5: Harmonizing overlap values **'); 

best_overlaps_temp = best_overlaps; 

% better to err in favor of more overlap rather than less 

%fudge_target = max(best_overlaps); 

fudge_target = (mean(best_overlaps)+median(best_overlaps)+2*max(best_overlaps)+max_overlap)/5; 

for i = 1:n_images 

 best_overlaps_temp(i) = round(0.435*best_overlaps_temp(i)+0.565*fudge_target); 

  

 fprintf('* adjusted overlap of %ipx between image %i and next\n', best_overlaps_temp(i), i); 

end 

best_overlaps = best_overlaps_temp; 

 

% Compute optical flow on the overlapping regions 

disp('** Part 3: Optical flow and warping ** (be patient!) **'); 

%  

overlap_regions = images; 

for i = 1:n_images 

 curr_right = images{i}; 

 curr_right = curr_right(:,wdth-best_overlaps(i)+1:wdth,:); 

 if i == n_images 

  next_left = images{1}; 

 else 

  next_left = images{i+1}; 

 end 

 next_left = next_left(:,1:best_overlaps(i),:); 

 

 % iat_dense_sift internally converts RGB images to grayscale 

 % by averaging the channels.  We can do better... 

 curr_right_red = curr_right(:,:,1); 

 next_left_red  =  next_left(:,:,1); 

 curr_right_grn = curr_right(:,:,2); 

 next_left_grn  =  next_left(:,:,2); 

 curr_right_blu = curr_right(:,:,3); 

 next_left_blu  =  next_left(:,:,3);  

 curr_right_gray = rgb2gray(curr_right); 

 next_left_gray  = rgb2gray(next_left); 

 

 % actual I.A.T. stuff begins here 

 % NB: patchsize must be less than min_overlap above 

 % this patchsize matches that in the tutorial 

 patchsize = 8; 

 % full resolution 

 gridspacing = 1; 

 

 fprintf('(image %i) about to do iat_dense_sift...\n', i); 

 disp('...on curr_right_red'); 

 curr_right_red_sift = iat_dense_sift(curr_right_red,  patchsize, gridspacing); 

 disp('...on next_left_red'); 
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 next_left_red_sift  = iat_dense_sift(next_left_red,   patchsize, gridspacing); 

 disp('...on curr_right_grn'); 

 curr_right_grn_sift = iat_dense_sift(curr_right_grn,  patchsize, gridspacing); 

 disp('...on next_left_grn'); 

 next_left_grn_sift  = iat_dense_sift(next_left_grn,   patchsize, gridspacing); 

 disp('...on curr_right_blu'); 

 curr_right_blu_sift = iat_dense_sift(curr_right_blu,  patchsize, gridspacing); 

 disp('...on next_left_blu'); 

 next_left_blu_sift  = iat_dense_sift(next_left_blu,   patchsize, gridspacing); 

 disp('...on curr_right_gray'); 

 curr_right_lum_sift = iat_dense_sift(curr_right_gray, patchsize, gridspacing); 

 disp('...on next_left_gray'); 

 next_left_lum_sift  = iat_dense_sift(next_left_gray,  patchsize, gridspacing); 

 

 %  

 SIFTflowpara.alpha = 2.23; 

 SIFTflowpara.d = 63; 

 SIFTflowpara.gamma = 0.00415; 

 SIFTflowpara.nlevels = 5; 

 SIFTflowpara.wsize = 7; 

 SIFTflowpara.topwsize = 26; 

 SIFTflowpara.nIterations = 56; 

 SIFTflowpara.nTopIterations = 150; 

 % XXX: Are both forward & reverse computations necessary (or is one flow 

 % guaranteed to be the inverse of the other? - in practice not true) 

 fprintf('(image %i) iat_SIFTflow working on rev red:\n', i); 

 [vx_rev_red, vy_rev_red, ~] = iat_SIFTflow(curr_right_red_sift, next_left_red_sift, 

SIFTflowpara); 

 fprintf('(image %i) iat_SIFTflow working on fwd red:\n', i); 

 [vx_fwd_red, vy_fwd_red, ~] = iat_SIFTflow(next_left_red_sift, curr_right_red_sift, 

SIFTflowpara); 

 fprintf('(image %i) iat_SIFTflow working on rev green:\n', i); 

 [vx_rev_grn, vy_rev_grn, ~] = iat_SIFTflow(curr_right_grn_sift, next_left_grn_sift, 

SIFTflowpara); 

 fprintf('(image %i) iat_SIFTflow working on fwd green:\n', i); 

 [vx_fwd_grn, vy_fwd_grn, ~] = iat_SIFTflow(next_left_grn_sift, curr_right_grn_sift, 

SIFTflowpara); 

 fprintf('(image %i) iat_SIFTflow working on rev blue:\n', i); 

 [vx_rev_blu, vy_rev_blu, ~] = iat_SIFTflow(curr_right_blu_sift, next_left_blu_sift, 

SIFTflowpara); 

 fprintf('(image %i) iat_SIFTflow working on fwd blue:\n', i); 

 [vx_fwd_blu, vy_fwd_blu, ~] = iat_SIFTflow(next_left_blu_sift, curr_right_blu_sift, 

SIFTflowpara); 

 fprintf('(image %i) iat_SIFTflow working on rev luma:\n', i); 

 [vx_rev_lum, vy_rev_lum, ~] = iat_SIFTflow(curr_right_lum_sift, next_left_lum_sift, 

SIFTflowpara); 

 fprintf('(image %i) iat_SIFTflow working on fwd luma:\n', i); 

 [vx_fwd_lum, vy_fwd_lum, ~] = iat_SIFTflow(next_left_lum_sift, curr_right_lum_sift, 
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SIFTflowpara); 

 

 vx_rev = median(cat(3, vx_rev_red, vx_rev_grn, vx_rev_blu, vx_rev_lum), 3); 

 vx_fwd = median(cat(3, vx_fwd_red, vx_fwd_grn, vx_fwd_blu, vx_fwd_lum), 3); 

 vy_rev = median(cat(3, vy_rev_red, vy_rev_grn, vy_rev_blu, vy_rev_lum), 3); 

 vy_fwd = median(cat(3, vy_fwd_red, vy_fwd_grn, vy_fwd_blu, vy_fwd_lum), 3); 

 

 % Pad vector fields to the size of the original image. (todo explain more) 

 vx_rev_padded = padarray(vx_rev, [patchsize/2 patchsize/2], 'replicate'); 

 vy_rev_padded = padarray(vy_rev, [patchsize/2 patchsize/2], 'replicate'); 

 vx_fwd_padded = padarray(vx_fwd, [patchsize/2 patchsize/2], 'replicate'); 

 vy_fwd_padded = padarray(vy_fwd, [patchsize/2 patchsize/2], 'replicate'); 

 

 % At the left edge of each overlap, warp the next image all the way back to meet the current. 

 % At the right edge, warp the current image all the way forward to meet the next. 

 % Smooth transition in between. 

 blend_weight_rev = zeros(1, best_overlaps(i)); 

 blend_weight_fwd = zeros(1, best_overlaps(i)); 

 for j_col = 2:best_overlaps(i) 

  cur_weight = (j_col-1)/(best_overlaps(i)-1); 

  cur_weight = sin(cur_weight*pi/2); 

  cur_weight = cur_weight * cur_weight; 

 

  blend_weight_fwd(j_col)                    = cur_weight; 

  blend_weight_rev(best_overlaps(i)-j_col+1) = cur_weight; 

 end 

 blend_weight_rev = repmat(blend_weight_rev, hght, 1); 

 blend_weight_fwd = repmat(blend_weight_fwd, hght, 1); 

 

 vx_rev_wtd = vx_rev_padded .* blend_weight_rev; 

 vy_rev_wtd = vy_rev_padded .* blend_weight_rev; 

 vx_fwd_wtd = vx_fwd_padded .* blend_weight_fwd; 

 vy_fwd_wtd = vy_fwd_padded .* blend_weight_fwd; 

 

 [warpedINL, suppINL] = iat_pixel_warping( next_left,  vx_rev_wtd, vy_rev_wtd ); 

 [warpedICR, suppICR] = iat_pixel_warping( curr_right, vx_fwd_wtd, vy_fwd_wtd ); 

 

 overlap_regions{i} = average_by_support(warpedINL, suppINL, warpedICR, suppICR); 

 

 fprintf('* finished with image %i\n', i); 

end 

 

% Build a cell array that contains the non-overlapping regions of each image 

disp('** Part 4: Selecting non-overlapping regions ** (almost done...) **'); 

%  

nonoverlap_regions = images; 

has_nonoverlapping_cols = ones(n_images,1); 

for i=1:n_images 
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 overlap_right = best_overlaps(i); 

 if i==1 

  overlap_left = best_overlaps(n_images); 

 else 

  overlap_left = best_overlaps(i-1); 

 end 

 

 if overlap_right+overlap_left < wdth 

  im_cur = images{i}; 

  nonoverlap_regions{i} = im_cur(:,overlap_left+1:wdth-overlap_right,:); 

 else 

  fprintf('Uh-oh, no non-overlapping columns from image %i!\n', i); 

  has_nonoverlapping_cols(i) = 0; 

 end 

 

 fprintf('* finished with image %i\n', i); 

end 

 

% Assemble the overlap and non-overlap regions 

disp('** Part 5: Assembling regions **'); 

%  

unwrapped_stitch = overlap_regions{n_images}; 

for i=1:n_images 

 if i > 1 

  unwrapped_stitch = cat(2, unwrapped_stitch, overlap_regions{i-1}); 

 end 

 if has_nonoverlapping_cols(i) == 1 

  unwrapped_stitch = cat(2, unwrapped_stitch, nonoverlap_regions{i}); 

 end 

 

 fprintf('* finished with image %i\n', i); 

end 

% swdth = size(unwrapped_stitch, 2); 

% todo later: circle warp (in a separate function?) 

 

 

disp('done: About to save image'); 

imwrite(unwrapped_stitch, strcat('flowStitchResult-', folder, '.png')); 

 

% - END OF FUNCTION - % 

end 

 

custom_imgaussfilt.m 

% Wrapper for the Gaussian blur from Image Processing Toolbox 

% Automatically computes a blur radius that is useful for high-pass filtering 

% and makes some compromises with respect to boundary conditions 

% 
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% img must be of class double, 

% but both grayscale and RGB are supported 

function [ im_blurred ] = custom_imgaussfilt( img ) 

 

nd = ndims(img); 

 

hght = size(img, 1); 

wdth = size(img, 2); 

 

% empirically-chosen formula: geometric-harmonic mean 

hm = 8; 

gm = max(hght,wdth); 

if gm <= hm 

 error('custom_imgaussfilt: Image must be larger than 8px'); 

end 

for i_safety = 1:32 

 if gm-hm < 0.7 

  break; 

 else 

  newhm = 2/(1/hm+1/gm); 

  newgm = sqrt(hm*gm); 

  hm = newhm; 

  gm = newgm; 

 end 

end 

 

blur_rad = hm; 

 

% XXX: In principle, the circular BC does not make sense for this application. 

% However, it best satisfies the def'n of a freq-domain low-pass filter... 

cblur = imgaussfilt(img, blur_rad, 'Padding', 'circular'); 

rblur = imgaussfilt(img, blur_rad, 'Padding', 'replicate'); 

sblur = imgaussfilt(img, blur_rad, 'Padding', 'symmetric'); 

 

medstk = median(cat(nd+1, cblur, rblur, sblur), nd+1); 

 

im_blurred = (0.19*cblur + 0.38*rblur + 0.38*sblur + 0.05*medstk); 

 

end %function 


