
1

Exploration of Design Approaches in Stereoendoscopy

Christopher Liu
1,*

1
College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721, USA

*cliu@email.arizona.edu

Abstract

Laparoscopy has been a vital tool to enable minimally-invasive abdominal surgery. While it is desirable to integrate high-

quality optics and surgical instruments into a single endoscope tube, the achievable diameter of the tube is limited by the

need to minimize incision length as well as by manufacturing constraints. This imposes exacting requirements on the

image-forming and illumination optics. It is especially important that the surgeon be able to see a clear image with a wide

field of view in order for the endoscope to be useful. It is also desirable for the surgeon to be able to see stereoscopically,

though this is not without its tradeoffs. Early stereoendoscope designs replicated the binocular layout of the human

visual system by using a pair of laterally-displaced cameras. Although this provides basic stereoscopy, its field of view is

generally limited in comparison to single-view cameras. Therefore, novel methods to achieve stereoscopy have been

proposed. Many proposals divide an aperture in two halves based on a property such as wavelength or polarization.

However, such approaches often encounter difficulties such as illumination efficiency and confounding effects with the

spectral or polarization properties of the tissue. Therefore, one desires a method by which one can capture depth

information over a wide field of view without degrading the quality of visible imaging over the same field of view. One

promising method is time-of-flight sensing, which uses the speed-of-light definition to determine distance from the

sensor to the target. Another potential method is to use more than two cameras to cover the desired wide field of view,

which then allows conventional image-stitching and stereo-calibration algorithms to be applied to derive stereoscopic

information. This report will explore the theoretical and practical justification for both methods as well as their

advantages and disadvantages. It will also cover its author's preliminary study regarding the time-of-flight and multi-

camera sensing approaches.

Background: Requirements for Laparoscopy

Endoscopic imaging produces demanding requirements on many aspects of image quality as well as significant physical

constraints on the design of the imaging system. Resolution, distortion, and field of view are all important, but the

specifications one normally imposes on visual or astronomical optics are impractical to satisfy in a system that is confined

to the endoscope tube and uses few lens elements. The main concern is that the small length scale complicates the

selection of individual lens-element profiles as well as the arrangement of elements. As a result, it is difficult to minimize

distortion, especially in conjunction with the other criteria. To be useful for further processing, the image from each

individual camera must be undistorted in accord with a calibration process. This means that the field of view achievable

from a single camera is especially limited. A common method to achieve stereoscopy involves a pair of cameras that look

toward the scene on axes parallel to each other and to the mechanical axis of the endoscope tube. The field of view

2

achievable by this method is relatively limited compared to that achievable by a single camera. Theoretically, a single

camera could make use of a wide-angle or fish-eye lens to widen the field of view, but the necessary undistortion

procedure would pose difficulty. The calibration must be very accurate in order to provide sufficient quality for multiple

images to be aligned. Also, it is desirable for alignment to have the best resolution possible, the most uniform resolution

possible across the field, and as much uniformity in image brightness and other features as possible. These properties are

difficult to achieve in a miniaturized camera of endoscopic dimensions, so postprocessing of the captured images for

undistortion and sharpening is generally required. Resolution in particular is harmed by image interpolation; the stronger

the camera distortion, the greater the factor by which some pixels must be up- or downsampled. Therefore, endoscopic

cameras are conventionally designed to provide low distortion, potentially sacrificing field of view.

The principle of stereoscopic vision in endoscopy is necessarily based on the operation of stereoscopy in the human

visual system. The viewer's two eyes converge such that their optical axes intersect, and they accommodate such that

they are optimally focused at said point of intersection. The difference in object position on the left and right retinas is

known as disparity. For the human brain to interpret such lateral disparity as depth information, the features must fall

upon a small portion of the fovea, known as the Panum region. The range of distances over which depth information can

successfully be perceived is limited by the size of the Panum region. The human visual system varies the region of depth

sensitivity by changing the angle of convergence. This effect can be replicated with a binocular display system but not

with a display that uses a single planar reproduction screen. In monocular endoscopy, the entire scene is perceived to be

located at a depth corresponding to the focal distance of the endoscope optics, and the field of view is limited to that

from a single camera.
[11]

Fig. 1. Schematic of laparoscopic abdominal surgery setup.
[9]

In addition to considerations of optical performance, there are practical requirements on the design of the laparoscope.

The system should require as few incisions into the patient as possible. The diameter of each tube should be as small as

possible. The system, especially its illumination components, must not consume excessive power, as thermal dissipation

could injure the bodily tissue or damage the endoscope itself. Surgical instruments integrated with electrical or optical

parts must be reasonably small in terms of tube cross-sectional area. Although some commercial endoscopes integrate

3

imaging optics, illumination, and endo-therapy instruments into the same tube, this is not necessarily practical for all

situations, especially where novel optical configurations and features are desired. Commonly, the cameras are placed in

one tube and the instruments in another. This poses a challenge for the practical operation of the laparoscopic system,

especially where stereoscopy is desired, as the spatial separation between the camera and instruments requires a wide

field of view.

A rigid endoscope tube (or at least tip) is currently preferred to a flexible tube in terms of optical quality. One reason is

that a flexible tube typically requires a fiberscope design, which limits the effective resolution (pixel count) to the number

of fibers in the bundle. Another reason is that a rigid tube allows for constraint of multiple optical elements, as needed

for high optical performance; by comparison, fiberscopes typically have a single imaging lens at the tip in front of the

fibers. This consideration is mentioned by R. Korniski et al. in "3D imaging with a single-aperture 3-mm objective lens:

concept, fabrication and test." (The system specifically proposed in this paper will be discussed later.
[5]

)

Comparison of 2D and 3D Endoscope Field of View

Existing 2D endoscopes typically achieve a field of view about twice that of 3D endoscopes, as discussed in the paper

"Field of View Comparison Between Two-Dimensional and Three-Dimensional Endoscopy" by J. Van Gompel et al. The

paper compares two examples of existing commercial endoscopes, using a Karl Storz 0° endoscope as the example 2D

system and a Visionsense, Ltd. 3.3 mm, 0° rigid endoscope as the 3D system. The authors found a 52% reduction in field

of view from the 2D system to the 3D system, from 8.3 cm visible diameter in 2D to 4.0 cm in 3D.
[10]

The measurements were based on a working distance of 6 cm from a standardized bulls-eye target as shown in Fig. 2. An

additional demonstration is as given in Fig. 3.

Fig. 2. Field-of-view demonstration for 2D and 3D endoscopes, from Fig. 1 in
[10]

.

The systems were also clinically tested for use in sinus surgery, where a 55% reduction in FOV was seen in simultaneous

use of the two endoscopes.
[10]

 The authors propose that the reduction in field of view resulting from the inclusion of

4

stereoscopy is due to limited interpupillary distance and limited aperture diameter. In particular, current 2D endoscopes

typically use the full 4 mm aperture diameter allowed by the tube, while the 3D endoscope tube tested here provides an

aperture diameter of 3.3 mm despite using a tube of 4 mm diameter. The authors believe that the primary benefit of 3D

endoscopy is that it makes it more efficient for the surgeon to learn and carry out a procedure. They also mention that

the higher magnification inherent in existing 3D endoscopes, corresponding to a working distance of 3-4 cm, may be an

advantage since it reduces the chance that surgical instruments will interfere with the view. Finally, the authors suggest

that further work should generally be done to establish a practice for the surgical use of 3D endoscopy.

Fig. 3. Field-of-view demonstration for 2D and 3D endoscopes, from Fig. 2 in
[10]

.

The authors attribute the difference primarily to the limited interpupillary distance and aperture diameter imposed by a

practical endoscope tube.

This paper's conclusions about sinus surgery must be interpreted with caution when considering abdominal surgery; the

latter is fundamentally different in that it requires laparotomy and a greater angular separation between the endoscope

and instrument tubes.

Effect of Stereoscopy on Surgical Speed and Reliability

The conventional approach to stereoscopy involves the use of two cameras to provide separate views to each eye of the

operator. In a typical endoscope, the cameras are laterally displaced; although some systems tilt the camera optical axes

relative to the tube mechanical axes, such an arrangement is difficult to provide without additional optical parts. One

implementation of two-camera stereoscopy is evaluated in "Autostereoscopic three-dimensional viewer evaluation

through comparison with conventional interfaces in laparoscopic surgery" by Silvestri et al.
[7]

 The authors acknowledge

that the "image quality, detail, and color sharpness" provided by existing 2D endoscopes are often compromised in the

5

implementation of 3D, but a surgeon not accustomed to laparoscopy must exert greater relearning effort to adapt to 2D

than 3D laparoscopic surgery. The gold standard for 3D visualization of the surgical field is the da Vinci robotic system,

which uses a binocular-visor display to show the image captured by two 4mm-aperture cameras in a tube of 12mm

diameter. A binocular-visor display consists of two separate video displays, one for each eye of the viewer. The most

common alternative is an autostereoscopic monitor, which has not yet found significant medical applications. Although

autostereoscopic displays can be viewed by multiple people, other technologies such as polarized glasses currently offer

superior performance for the surgeon.

The camera system built and tested by these authors consists of two VGA-resolution CMOS color sensors, measuring 8

mm x 8 mm x 9 mm. Each sensor has a corresponding pinhole lens, and the pupil centers are separated by 8.7 mm. Each

system (2D, 3D with autostereoscopic monitor, and 3D with binocular visor) was tested with surgeons who had no

previous experience with 3D endoscopy, performing the following tasks using laparoscopic tools (Fig. 4): a visual task,

counting the squares in a checkerboard target; a pick-and-place task, placing rings over pins; a peg-in-hole task, inserting

needles into holes; a cutting task, cutting a rubber surface between pre-marked lines; and a suturing task, performing a

single suture on a tissue-simulator surface. Each task was evaluated objectively on execution time (except for the visual

task) and number of errors (except for the suturing task). The procedures were also evaluated subjectively via a

questionnaire.

Fig. 4. Photographs of test tasks, from Fig. 4 in
[7]

Statistical testing consisted of a one-way ANOVA followed by post-hoc analysis of individual pairwise relationships. No

surgeons made any errors on the visual task or the pick-and-place task, so there was no statistical analysis to perform for

the visual task. For the other tasks, the following results were obtained: For the pick-and-place task, the autostereoscopic

monitor and the binocular visor produced statistically-significant improvements in execution time over the 2D display,

but the two 3D displays did not have statistically-significant differences with each other. For the peg-in-hole task, no

statistically-significant differences were obtained for execution time or error rate; this was attributed to the limited

resolution of the camera. For the cutting task, the autostereoscopic and 2D systems were significantly better than the

binocular-visor system in terms of speed, while no statistically-significant differences were found in error rate. For the

suturing task, both 3D systems were significantly faster than the 2D system, while the 3D systems did not have

6

statistically-significant differences with each other.
[7]

The results from the questionnaire indicated general satisfaction with the depth and relative-motion perception provided

by the 3D systems, with the binocular visor being typically preferred to the autostereoscopic monitor due to the fatigue

caused by the latter.

Table 1. Quantitative results of the test tasks described above.
[7]

Overall, 3D endoscopy with either type of display produced an improvement in task execution time. The authors suggest

that, despite the viewing-angle limitations and associated training demands associated with an autostereoscopic

monitor, the performance of autostereoscopic displays has improved over past studies to the point where surgical results

would not significantly differ from other display methods. Since autostereoscopic monitors and binocular visors put

different stresses on the surgeon (eyestrain for the former and poor posture for the latter), future improvements in AMs

may further stimulate their adoption for stereoendoscopic surgery. Implicit in this discussion is the assumption that the

display device, rather than the image sensor, is the limiter of final image quality. As mentioned above, this assumption

does not always hold. Where it does not, such as with the aforementioned peg-in-hole task, the advantages of 3D

endoscopy may be less evident. The remainder of this report will thus focus on image capture.

7

Fig. 5. Endoscope head from Fig. 2 in
[7]

The potential benefits of stereoscopic viewing to the surgeon are also discussed in "Design of the computerized 3D

endoscopic imaging system for delicate endoscopic surgery" by C.G.Song et al. This paper mentions the polarization and

shutter-glass methods of 3D display operation. It considers the effect of each type of 3D viewing on performance of

simulated surgical tasks, finding that the polarized glasses produce a more consistent performance benefit (Table 2).

Table 2. Task completion times from Table 1 in
[8]

The paper also discusses stereoscopic displays (in particular a polarized display and glasses), video

multiplexing/demultiplexing, and computerized storage. These are beyond the scope of the present report.

Split-Aperture Image-Capture Methods

Fig. 6. Example of binocular stereoendoscope, from "Insertable stereoscopic 3D surgical imaging device with pan and tilt"

by Hu et al.
[4]

 Although pan-tilt capability may be a desirable workaround for the field-of-view limitations, it involves

significant tradeoffs in mechanical complexity and is not frequently implemented in commercial endoscopes. The tube

diameter is 15mm, which is the practical limit imposed by the surgical tools used to create and maintain the incision.

Polarization division

Alternatives to the two-camera image-capture approach often involve the division of a single aperture into two halves.

One proposed scheme divides the aperture based on polarization, as described by T. Hattori et al. in "Disparity and

distortion free stereoscopic fiberscope."
[3]

 The article describes an endoscope tube design which produces a binocular

8

image pair compatible with an autostereoscopic monitor. The tip of the tube contains a GRIN lens, followed by an

aperture mask in which each half is filled with a linear polarizer. The two polarizers are each at 45 degrees to the split line

and 90 degrees to each other. Behind the polarizers lies another GRIN lens and the fiber bundle that carries the image.

The imaging light then passes through the fibers to additional focusing optics and a polarizing beamsplitter, which splits

the polarization components to two CCD sensors. Around the periphery of the tube is an additional fiber bundle to

provide illumination.

The system achieves an equivalent pixel size of 24um in the composited image and satisfies the 30 fps frame rate

required for real-time video. The primary limitation is that carrying the image light via fiber bundles significantly limits the

achievable resolution. As discussed previously, modern commercial endoscopes deprecate the fiberscope concept in

favor of fully-electronic image transmission.
[3]

The authors suggest that future work could focus on simplifying the design of the system via the use of polarization-

maintaining fibers in the bundles. It does not appear that this change is sufficiently economical to be worthwhile, as even

if fiberscopes were still comparable to the optical state of the art, one would need to overcome the expense of

commercially selecting and bundling polarization-maintaining fibers that have consistent polarization-dispersion

properties across the visible wavelength range.

Fig. 7. Schematic of stereoscopic system with polarization-divided aperture. From Fig. 3 in
[3]

Wavelength division – Complementary multi-bandpass filter

An alternative method to divide a single aperture into two halves is to use color filters such that each filter passes a

different set of wavelength bands, each of which is sufficient to reconstruct a full-color image. This complementary multi-

bandpass filter (CMBF) method was described by R. Korniski et al. in "3D imaging with a single-aperture 3-mm objective

9

lens: concept, fabrication and test."
[5]

 The endoscope design in this paper focused on the minimally-invasive surgery

(MIS) subtype of neurosurgery. A 4 mm tube diameter is the existing state of the art for this application, which is a tighter

restriction than the aforementioned 12-15 mm for abdominal surgery. The CMBF approach was chosen because of its

suitability for the small aperture diameter. The general CMBF principle is that the filter in one half of the aperture passes

three wavelength bands corresponding roughly to red, green, and blue, while the other, complementary filter passes a

different set of three bands such that the combined transmission covers the entire visible spectrum. A tunable

illumination source selects one of the bands for imaging at a time. The initial lab test setup used a xenon lamp with a

tunable filter to generate the illumination, with two full-scale laboratory cameras provided with COTS achromatic imaging

lenses. Due to the small dimensions required, the mounting hardware required custom rapid prototyping.

Fig. 8. Schematic of aperture with divided CMBF, from Fig. 3 in
[5]

Fig. 9. Schematic of CMBF band choices, labeled with measured passbands, adapted from Fig. 1 and 2 in
[5]

10

After this successful demonstration of the principle, the setup was redesigned to the diameter scale appropriate for the

actual endoscope, giving effectively two apertures that were each about 0.8 mm in diameter and with centers separated

by 1.2 mm. The designed total field of view was 52 degrees. The frame rate achieved was about 0.5 fps, which the

authors recognized as grossly insufficient and in particular far below the standard 30 fps. The authors attributed this to

the 10% overall visible-light transmission of the tunable filter, which required correspondingly long exposure times. The

effective disparity corresponded to an effective scene distance of 1740 mm (5.7 ft), which was considered by the authors

to be within a useful range despite being longer than arm's length. Finally, the authors noted that the different filter

bands resulted in some noticeable color differences between the two views. Although this was considered acceptable for

a human operator given the fusion processing done by the brain, the authors suggest that postprocessing color

correction could be pursued later to further improve color perception.
[5]

The primary obstacle that prevents this system's performance from reaching the commercial state of the art is the

illumination issue. Although this would be less severe in an endoscope of greater diameter, such as that possible for

abdominal use, the illumination and filtering are still of concern. In principle, the situation could be improved by

providing three light sources to allow all three wavelength bands for one eye to be illuminated at a time. However, such

an implementation would likely be impractical.

Liquid-crystal deflection

Another approach uses a liquid-crystal device to provide two separate deflected optical paths from the aperture to the

image sensor. This method was described by M. Fenske et al. in "A Design of a Liquid Crystal Based Single-Lens Stereo

Endoscope."
[1]

Fig. 10. Schematic of liquid-crystal deflection device, from Fig. 3 in
[1]

The primary disadvantages of this system are those related to the limitations of liquid-crystal technology. Specifically,

polarization properties of the tissue being imaged are possible as a confounding factor, a disadvantage shared with the

dual-polarizer method. Also, the switching speed of the liquid crystals may be an issue; although signal frequencies up to

11

1 kHz successfully produced a detectable LC response, the actual time response of the LC device is necessarily non-ideal

and may introduce some crosstalk between the views. Finally, the authors acknowledge that illumination efficiency as

well as field of view are of concern due to the limited angle of acceptance of the LC device. They suggest that the former

may be tolerable with a sufficiently bright light source, though they do not describe the illumination issue quantitatively

nor suggest a specific design change to resolve it.
[1]

Other Sensing Approaches

Shape-from-Polarization

Another use of polarized light is the shape-from-polarization principle, described in "Shape-from-Polarization in

Laparoscopy" by Sergio E. Martinez Herrera et al.
[6]

 The shape-from-polarization principle is proposed as an alternative to

shape-from-shading, which attempts to recover depth information from a single monocular image. Shape-from-shading

is obviously unsuitable for endoscopy due to nonuniformities in tissue and the possibility of specular reflections. Shape-

from-polarization instead operates based on the polarization properties of reflection at a dielectric interface, specifically

the water film on the body tissue. By taking images with three states of a linear polarizer (0, 45, and 90°), the surface

normal vector relative to the camera at each pixel can be calculated.

The authors' implementation used a mechanically-rotated polarizer.
[6]

 This is undesirable for the manufacturing and

operation of a commercial device, since it would be expensive and impractical to incorporate a suitable motor for

electromechanical rotation. Instead, the polarization state should be varied by a liquid-crystal device or other electro-

optical means.

Fig. 11. Camera assembly and example images captured, from Fig. 2 and 4 in
[6]

The authors demonstrate that their method is clearly superior to shape-from-shading, which is mentioned only for

comparison and not seriously proposed for practical use. However, the shape-from-polarization method appears not to

be sufficiently general to achieve adequate accuracy across many types of endoscopy. It depends on the water film to be

of sufficient, consistent thickness. This assumption is not sufficiently general to cover all tissue types, and it fails especially

in any area where a large amount of liquid is accumulated. In milder cases, the smoothness of the water film may cause

the loss of some depth details present in the underlying tissue.

12

The present report's author proposes that the preferable use of a liquid-crystal element in an endoscope tube would be

to vary the polarization state of a linear polarizer or the focusing power of a lens. Neither of these uses overcome the

assumption that the polarization properties of tissue are negligible, which would itself need testing for each organ on

which the endoscope is to be applied.

Time-of-Flight Sensing

The stereoscopic methods described thus far have used multiple visible-light images. An alternative is to capture

simultaneously a monocular visible-light image and out-of-band depth information. One approach is to use a time-of-

flight sensor to acquire the depth information. Time-of-flight sensing uses the principle of the speed of light to measure

distance, either by timing a pulsed signal or by interferometry of continuous illumination. A paper that describes this is

"Development of a real-time image-guided surgery system for stereo-endoscopic sinus surgery" by A. Hattori et al.
[2]

 As

mentioned in the paper, a depth image is aligned to a visible-light image and used to render a 3D model of the surgical

field, which is then output to a stereoscopic monitor. The system was tested on phantoms and in actual sinus surgery. The

frame rate achieved was 8-10 fps; the authors did not propose specific suggestions for improvement. The authors noted

the importance of field of view: For endoscopy in general, "because of the narrow field of view, it is not easy to recognize

the internal structures of the nasal cavity ... even if the surgeon can refer to the patient's MRI or CT images."
[2]

 It was not

stated what specific field of view was achieved for a single frame in this experiment. A schematic of the system is as given

in Fig. 12.

Fig. 12. Schematic of endoscope system with time-of-flight depth sensing, from Fig. 1 in
[2]

A comparison of the approaches described above is as given in Table 3.

Description Pros Cons Frame rate Field of view (° total)

Conventional two-

camera stereoscopy
[7,10]

Proven technique which

approximates design of

Limited field of view;

wasted tube space

≥30 fps sensor

capability; typically

37° (calculated from

4±0.1 cm viewing area

13

human visual system;

little computation

required for

stereoscopic displays

limited by display at 6 cm working

distance given for 3D

endoscope in
[10]

)

Liquid-crystal deflector
[1]

 Simple lens optics Limited field of view;

inefficient illumination

1 kHz switching speed;

usable frame rate

uncertain

N/A

Polarization-divided

aperture
[3]

Low distortion, simple

optical design

Inefficient illumination;

misbehaves if tissue

significantly polarizing

30 fps N/A

Wavelength-divided

aperture
[5]

Low distortion, simple

optical design

Inefficient illumination;

may require processing

to correct color

0.5 fps

52°

Shape-from-

polarization
[6]

Simple optical design

with requirements

comparable to single-

vision endoscope

Electro-optic

implementation needs

to be designed (to

replace mechanical

rotation of polarizer);

misbehaves with dry or

polarizing tissue

N/A (video not possible

in experiment due to

mechanically-rotated

polarizer)

N/A

Time-of-flight sensing
[2]

 Monoscopic visible-light

image simplifies design

of visible-light optics (to

allow low distortion,

wide field of view,

and/or good

illumination efficiency)

Image alignment and 3D

rendering sometimes

computationally

intensive; depth image

may have lower

resolution than visible

image due to sensor

limitations; further

attention needed to

manufacturability in

commercial form factor

8-10 fps N/A

Table 3. Comparison of previously-discussed stereoscopic sensing approaches.

Common Problems in Stereoscopy

As mentioned previously, common problems with the working principles proposed so far for stereoendoscopy include

field of view, image resolution, illumination, and optomechanical manufacturing considerations. There are several

limiting factors to usable field of view, including lateral displacement, aperture size, and distortion. The more radial

distortion present in a single-camera image, the more post-processing is necessary to correct that distortion, causing the

corners of the image to lose sharpness relative to the center. (When barrel distortion is corrected, the image content

must be resampled to larger dimensions in the corners. This creates a loss of sharpness because the resolution

information can derive only from the original image rather than the finer pixel scale of the output. When pincushion

distortion is corrected, the image information in the corners is downsampled, throwing away resolution information.)

This can be a complication if any image alignment and/or stitching is required; multi-camera stereoscopy and time-of-

14

flight imaging are both affected. The latter is especially an issue since many existing time-of-flight cameras have lower

pixel count than comparable visible-light cameras.

Illumination efficiency is another significant objection to several proposed methods. The light-collecting ability of a

system is determined by its aperture size and acceptance angle; the former in particular is often limited by the practical

size of the endoscope tube, and any filter in the aperture directly attenuates the light. An ideal polarizer transmits 50% of

the irradiance upon it; a color filter may cause arbitrary losses and may require additional computation to recover

accurate color information for the displayed image. Any loss of illumination requires a proportionally longer exposure to

achieve the same number of photons collected by the sensor. A longer exposure (slower shutter speed) directly slows

down the achievable frame rate; generally at least 30 fps is required, and 60 is desirable, for real-time video. Many of the

existing approaches reviewed earlier fail this criterion.

As for mechanical considerations, it is obviously desirable to avoid unnecessary moving parts, especially at the tip of the

endoscope tube. This is a problem with schemes whose current implementations require a polarizer or other part to be

mechanically rotated.

Preliminary Study

Time-of-Flight Sensing

A preliminary study was conducted to explore the possibility of a novel design approach or improvement of an existing

design to achieve stereoscopy in an endoscope.

The testing setup for time-of-flight image capture was planned as a proof of concept using commercial off-the-shelf

parts. The time-of-flight camera chosen was a PMDTechnologies pmd[vision] CamBoard picoS 71.19k (Fig. 13), primarily

based on cost considerations. The specifications are as given in Table 4.

Table 4. Specifications for time-of-flight camera used in preliminary study.

15

Fig. 13. Photo of time-of-flight camera unit. Illumination port on left; detection lens on right.

The testing setup used gauge blocks adhered to a cardboard surface to provide direct control of the depth relationships

in the scene (Fig. 14).

Fig. 14. Example setup with ToF camera viewing gauge blocks.

The initial goal was to achieve an absolute depth resolution of 0.5 mm or better under typical laboratory conditions of

working distance. The specifications indicated that the chosen sensor had a reasonable chance to be capable of this: The

indicated depth resolution is "<3 mm @ 50 cm, <6 mm @ 100 cm" implying a percentage error of 0.6%. At the typical

laboratory working distance of 15 cm, this would imply a depth error of 0.9 mm. However, practical results indicated

difficulty achieving any consistent depth resolution over the full field. The sensor was able to distinguish gauge blocks of

0.5 mm difference in thickness, both through air and through standard uncoated glass lenses, but in light of the errors to

be mentioned, it is unclear how much real depth resolution was exhibited and how much the effect can be attributed to

variations in surface finish and cleanliness. Also, specular reflections off the lenses as well as the gauge blocks themselves

produced spurious depth information (Fig. 15-18).

16

Fig. 15. Example time-of-flight image showing data dropouts due to sensor saturation. Distances on left (color scale uses

red for near to violet for far); conventional IR image on right. Amplitude units are arbitrarily assigned by the sensor. This

convention applies to the other time-of-flight images shown below, except where noted.

Fig. 16. Example time-of-flight image showing confusion of depth relationships due to illumination variation. Although the

gauge blocks were set up in a progression from left to right, the center one is claimed by the sensor to be at a noticeably

farther depth than the others. Also note the dimple caused by the illumination hot spot at the upper left.

Fig. 17. Example time-of-flight image showing ability to see through a lens. Note the reversed depth relationships on the

hands holding the lens and the hot spot on the lens itself. Right image consists of calculated distances (hue) overlaid on

the standard IR image (brightness).

17

Fig. 18. False depression in depth readings created by overillumination.

Fig. 19. Result with plastic holographic diffuser rated for 80° diffusion angle applied to illumination port. Note that there is

still an erroneous depression near the top of the gauge blocks.

The results were unsatisfactory due primarily to nonuniformity of the infrared illumination. In some areas that were

overilluminated but not so much as to saturate the sensor, the depth relationships appeared reversed . The working

distances used were typically around 15 cm, which was somewhat shorter than the minimum 20 cm recommended in

the spec sheet but still a very long distance on endoscopic scales. Attempts to attenuate the illumination with neutral-

density filters or to apply diffusers had little effect (Fig. 19).

Due to the difficulties that were encountered with this method, no registration to a visible image was attempted.

However, such a process could have been accomplished by detecting edges in the visible and ToF images and using the

edge information to register the images by any common method. If the visible camera were of sufficiently low distortion

and otherwise good optical quality, a simple perspective transformation (homography) could satisfactorily align the

images. Otherwise, an optical-flow method (as discussed later) could be used to account for arbitrary nonlinear relative

distortions between the ToF and visible images.

Image Stitching of Multiple Views

18

Overview

It was decided to proceed with an alternative approach, using multiple views from which a ring of images could be

stitched.

The multiple-camera stitching approach was chosen for the second phase of this preliminary study due to its proven

technological basis. On the surface, it is a logical extension of the two-camera stereoscopy approach. The images from

the multiple cameras can be laid out so as to directly augment the field of view. Conventionally, an endoscope with this

design incorporates a ring of cameras pointing laterally around the tip of the endoscope tube; ideally an additional

camera is provided looking axially out from the tip, to close the ring field of view into a hemisphere.

For this application, it is important to remember the limitations of optical quality for visible-light cameras small enough to

incorporate into an endoscope tube, due to the lens-design constraints imposed by the small size.

No actual stereoscopy was implemented in this study, due to a multitude of image-quality limitations that will be

discussed.

Testing Setup

Due to equipment limitations, only one camera was used, and the multiple views were acquired with the use of a

rotation stage (Fig. 20). The camera was as specified in Fig. 21.

Fig. 20 (Left). Camera attached to rotation stage. Note that the camera is oriented such that the image produced is

upside-down (rotated 180°) relative to its natural orientation.

Fig. 21 (Right). Specifications for camera.

19

Fig. 22. Block diagram of MATLAB code for preprocessing of each image.

20

Fig. 23. Block diagram of MATLAB code for feature-detection/linear-transformation stitching approach.

21

Fig. 24. Block diagram of MATLAB code for optical-flow stitching approach.

The MATLAB code that was written for this project followed the structure shown in Fig. 22-24.

Background on Image Processing

Features in an image may be detected by the SIFT (Scale-Invariant Feature Transform) or SURF (Speeded-Up Robust

Features) methods. The former is implemented as an external binary blob, while the latter is built in to MATLAB's

22

Computer Vision System Toolbox.
[12][15]

 The SIFT method obtains a multi-scale representation of the image information

via Gaussian filters, determines the locations of likely feature points based on the maxima and minima of the difference

of these Gaussians, and samples additional information (especially the gradient) around each point.
[16]

 These methods

detect blob-like features, that is, regions of a value clearly distinguishable from the surrounding background. This

definition of a feature may not be ideal in our context, since it may not accommodate all combinations of errors such as

perspective, lighting, noise, and sharpness differences between images. These limitations may thus frustrate the

detection and comparison of legitimate features. It may be preferable to detect edges and/or corners, as such features

are intuitively less likely to be vulnerable to variations in lighting and are more critical for the quality of a stitched image.

This aspect could be approached in future work.

Since the feature detectors were intended to operate on grayscale images, they were run on the luminance as well as the

individual RGB channels of each image, and the resulting feature points were pooled together.

RANSAC (Random Sample Consensus) is a method by which the best transformation is chosen to correspond to a set of

matched point pairs. It operates by calculating transformations based on a limited number of random subsets of the

input points, keeping the transformation that acceptably replicates the largest number of matches. The assumption is

that any points which fail to match acceptably in this manner are likely outliers.
[13]

 The standard implementation uses a

hard (go/no-go) threshold to decide whether each point is acceptable; after some experimentation, the present author

replaced this with a Gaussian function. In an effort to ensure determinism, the present author also replaced the random

search with a full brute-force search of subsets whose size was chosen to allow a reasonable limit on the iteration count.

Preprocessing of Images

The preprocessing script first converts the images from the original RGB to a YIQ color representation. In order to provide

some level of color correction, this involves a partial normalization in RGB space. Then, each channel of the YIQ

representation is denoised and processed additionally: The luma undergoes denoising, normalization, and sharpening,

while the chroma channels are solely denoised. The denoising process was chosen on an ad-hoc basis to consist of

several differently-sized kernels of Wiener filters and median filters averaged together. The purpose of the Wiener filters

was to attenuate noise in smooth areas of the image, while the median filters were intended to remove speckle noise,

both avoiding loss of sharpness on simple edges. The fine-tuning of this process was worked on at the same time as the

tuning of the feature detection and matching. Originally the process was iterated until the RMS change in the image

values was less than a threshold, but it was soon discovered that no one threshold worked acceptably for all images.

Sometimes, certain images in an acquisition set would have their details completely destroyed, while others might not be

effectively denoised at all. Therefore, the process was changed to run for a fixed number of iterations. The images are

then undistorted using the calibration previously obtained from the MATLAB Single Camera Calibrator widget. Next, the

image is upsampled by a factor of two in order to provide anti-aliasing for the subsequent cylindrical-warp step. The

cylindrical warp was implemented using naive nearest-neighbor interpolation; if time had allowed, a later

reimplementation would have used a proper resampling method in this step in order to obviate the pre-scaling. The

23

purpose of the cylindrical warp is to provide a coordinate transformation that maps the assumed cylindrical angle of each

input image column to the corresponding rectangular coordinates in the output.
[13]

 Next, perspective correction is done

as needed, using a simple keystone effect. The images are then downsampled back to the original size and saved. In this

implementation, the files must be manually moved to a chosen subfolder before the actual stitching can be run. This

could of course be addressed in future work.

Test of Camera Field of View

After a few preliminary tests of the stitching process, the raw field of view of the camera was tested as a sanity check.

This was performed via imaging of a grid target as shown in Fig. 25. The grid was placed close enough to the camera to fill

the entire field of view.

Fig. 25. Image taken during field-of-view test.

In this figure, the camera was measured to be 4.4 cm from the target. The upper-left and lower-right corners of the

image were separated by 3.4 in (8.6 cm) in the horizontal direction and 3.6 in (9.1 cm) in the vertical direction as shown.

This gives a full-field-of-view angle of 110 degrees, which is reasonably close to the manufacturer's specification of 120

degrees and suggests that the camera's raw field of view should not be a significant limitation on stitching performance.

The field of view after undistortion is necessarily less, since the undistortion process introduces a relative pincushion

distortion to correct the camera's barrel distortion; this discards image information especially at the corners. This effect

was not measured accurately in my work, due in part to multiple trials being made on the camera calibration. The

measurement of field of view of a stitched image collection was also explored via the same method, but no reasonable

values were obtained, because the image quality was limited and the pitch-angle adjustment of the camera (bending the

metal plate shown in Fig. 20) had no numerical ruling. The corner-to-corner field of view is not directly relevant for

stitching anyway, since the views are offset horizontally. These issues would need to be explored in future work.

Feature-Detection Stitching: Problems and Workarounds

Upon implementing the stitching, the most commonly-seen failure mode was that one or more images were compressed

into a narrow line. This logically results from the least-squares nature of the linear algebra involved, with the possibility

24

for poorly-conditioned matrices and accompanying stability issues. The offending images were often stretched very long

and thin, forcing a large padding area to be allocated in the output canvas. This sometimes caused the script to abort

when it detected insufficient memory.

Originally, the code considered the combination of already-stitched images as one of two inputs to the stitching

algorithm at each step. There were occasional artifacts in whichan image that matched poorly with the ones previously

stitched was placed improperly into the black padding space in the upper-left corner. This appeared to be the result of

SIFT misdetecting the padding space as a feature. The solution was to keep track of the images by explicitly composing

the transformations.

Even when that was addressed, the images in each stitched combination only subtended about a half circle within the

stitched view. A contributing factor was that the algorithm was intended to be fully general and was not explicitly given

prior knowledge of the images forming a closed circle. Accuracy limitations of the undistortion, cylindrical warping, and

perspective correction may also have contributed to this.

Although affine transformations typically had better worst-case behavior than homographies, homographies were

generally necessary in order to achieve reasonable accuracy with tricky perspective cases in sets with smaller numbers of

images.

To provide the full degrees of freedom of a homography while avoiding obviously unreasonable perspectives, a method

of biasing a homography toward an affine transformation was devised. This method, here referred to as a "weakened

homography," calculates the best homography and the best affine transformation, transforms some key points according

to each, averages the results by point, and computes a new homography based on said points. (Since a homography is

not "linear" in the same sense as an affine transformation, the compromise cannot be performed simply by averaging

matrix coefficients.) Although this method saw some initial success in improving the results, further testing revealed that

it did not solve the fundamental problem that unreasonable transformations could be generated.

 Fig. 26. Schematic of feature points and their bounding box, as used for the weak-homography method and for

transformation reasonableness scoring.

Another attempt to work around this issue involved the addition of a reasonableness heuristic to the scoring used to

select the best transformation. The sum of the the point distance metrics was multiplied by a value representing the

similarity of the prospective transformation to a rigid motion. The chosen method to calculate this was based on the

25

change in length of lines running corner-to-corner as well as vertically and horizontally through the middle of the

bounding rectangle of the input feature points, as shown in Fig. 26. (It was deemed impractical to give the RANSAC or

deterministic-search function an understanding of overall image size, since this would require additional parameters to

be passed. Therefore the bounding box was based solely on the detected feature points of each image. In retrospect, this

may have hampered the effectiveness of this reasonableness check. Similarly, the weakened-homography computation

described above should also have accepted parameters representing the bounds of the entire original image, but this

would also have complicated the code.)

For affine transformations, such glitches often manifested themselves as the script aborting due to internal NaNs or

infinities that were unacceptable in the transformation methods. For pure and weakened homographies, the script

would sometimes freeze or abort when the bad transformation exhausted available memory in stitching.

It was at this point that the idea of perspective-correcting the images prior to stitching was implemented. This did give

slightly more consistent results, but the problem remained that the images formed neither a closed circle nor a horizontal

strip.

Fig. 27. Stitched image set with example of unreasonable transformation.

26

Fig. 28. Stitched image set with example of misalignment to empty space

Fig. 29. Example of a better-quality, but still far from ideal, stitch of the same image set

Fig. 30. A rough hand-stitched approximation, using only rigid rotations and translations, for the sole purpose of showing

the intended arrangement of the images

An implementation decision was made to adjust the perspective of each input image as part of the pre-processing phase,

prior to the actual stitching. Recall that the physical arrangement of the camera put the images in an inverted orientation,

such that the top of the image corresponded to the bottom of the scene, and that the camera was tilted downward such

that the tops of the images overlapped more closely than the bottoms. Therefore, it is the case that the top of each raw

image represents a greater angular subtense in the stitched panorama than does the bottom. It was thus decided to

expand each image at the top and shrink it at the bottom. To avoid complications with the naively-centered cropping and

to minimize interpolation artifacts, it was decided to perform this transformation on a simple line-by-line basis rather

than defining it as a true homography.

27

Optical Flow-based Stitching: Overview of Implementation

For good results, a nonrigid alignment is required for two reasons. First, the scene may contain depth variations that

create parallax differences. Second, it may be difficult to correct all distortion in a low-quality camera via the calibration

procedure. Note that Image Alignment Toolbox (a third-party MATLAB toolbox) uses the word "rigid" to refer to any

transformation type that can be described in terms of linear algebra, as opposed to optical flow.
[14]

 This is in contrast to

the strictly correct sense of a "rigid transformation" referring to simple translations and rotations. The optical-flow

methods implemented in MATLAB's Computer Vision System Toolbox are intended primarily to detect subpixel motions;

the Lucas-Kanade and Lucas-Kanade/difference-of-Gaussians (LK-DoG) methods are restricted as such. The latter requires

more than two frames in order to perform the difference-of-Gaussians competition, so it is unsuitable for this purpose.

The Farneback method operates over multiple scales and so is in principle able to detect multi-pixel motions, but it would

be difficult to configure to handle the large motions required in this situation. There is a more serious implementation

problem: The result of the optical flow is returned in a special object type that has diverse uses in Simulink but can only

be plotted from within a standard MATLAB script. Therefore, an alternative implementation of optical flow was required.

The primary requirements were that the implementation support arbitrarily large flow distances, require only two input

images at a time, and output the flow vectors in ordinary MATLAB arrays. These factors led to the choice of the SIFTflow

algorithm implementation from Image Alignment Toolbox.

The chosen approach for optical flow was to stitch the images together as a horizontal strip and then warp this strip into

the desired circular form. First, a naive horizontal-translational alignment is performed on each pair of consecutive

images. Then, the optical flow is applied to align the features.

The implementation requires generating forward and reverse motion vectors that map the nth image to the (n+1)st and

vice versa, respectively. An initial implementation performed simple unweighted averaging of the vectors and of the

warped images. This produced obvious sharp boundaries between the overlapping and non-overlapping segments of the

image, where the features would not exactly align. This issue was addressed initially by interpolating the flow vectors

linearly based on horizontal position within each overlap. Although this maintained basic continuity of position, the angle

of long straight features continued to show discontinuity. This was resolved by the use of a sinusoidal function (peak to

peak) for the position dependence of interpolation. (A cubic spline would have been preferable in order to avoid

discontinuities with higher-order derivatives,but the effect would not likely be noticeable in light of other image-quality

issues.) Finally, to reduce the visibility of some artifacts resulting from inaccuracy in the optical flow itself, the

interpolation of the image content was weighted in terms of horizontal position.

It would have been preferable for both methods to be combined: a pre-alignment by linearly transforming the images in

accord with detected features, followed by a fine non-rigid alignment by optical flow. However, this would require

overcoming the problem of non-rectangular images, which are not well-supported by existing feature-detection

implementations.

28

Stitching Problems and Future Work

One major limitation regarding the current testing setup is the limited resolution. The main limitation to resolution in this

setup is the camera used to capture the images. The camera is of relatively low pixel count (400x400). The lens quality is

limited by the small package size, and the depth of field is accordingly limited. Also, the significant amount of

undistortion and denoising processing required further limit the clarity of the image. A better-quality camera would

produce inherently sharper images while permitting the image alignment to be tuned more easily. In practice, the

camera choice is limited by the form factor imposed by the endoscope tube.

Additionally, the repeatability of positioning is an issue, especially the height of the rotation stage relative to the table,

where the post stage provided no built-in ruling for the height axis. In order to avoid the need for external measurement

with a ruler or calipers, such a stage should have been provided.

Further limitations to image quality may result from the naive method by which the pre-alignment was performed. The

initial assumption was that it would suffice to perform a keystone perspective correction followed by translational

alignment in a simple horizontal strip. One problem was that each image needed to be cropped to a rectangle to prevent

the feature-detection or optical-flow algorithms from mis-recognizing the padding area as a feature. This means that a

satisfactory amount of perspective correction for the horizontal-strip situation would have required a significant amount

of image information at the upper left and right corners to be cropped away. The perspective correction was thus hand-

tuned primarily to provide a reliable stitch result in the context of the linear-transformation method, but it was not

optimal for either that or the optical-flow method. With this in mind, it was far from ideal to use a naive translational

alignment and expect the optical flow to absorb any residual errors. With either feature detection/linear transformation

alone or optical flow alone, there were often errors and inconsistencies especially in the handling of periodic patterns in

the scene. Such patterns resulted from the screw holes on the optical lab table as well as the checkerboard pattern of the

calibration target (which we often included in the scene even after the initial calibration was completed). The errors in

question generally took one of two forms: In the feature detection/linear transformation method, a given feature point in

one image would sometimes be matched to a point in the next image that was one period off from the correct feature,

causing an inaccurate perspective to be chosen. In the optical-flow method, the holes in two consecutive images would

simply fail to be aligned with each other adequately. Errors may result from noise, interpolation artifacts, and variations

in specular-reflection angle between camera positions. These may outweigh the legitimate cues of feature shape and

therefore trigger misalignment. Again, the previously-mentioned proposal to combine the two alignment methods could

improve the situation.

Regardless of the specific stitching algorithm used, one would not want to run a fully-general stitching procedure on

every frame of a video signal obtained from an endoscope. This would be an inefficient use of computing power, since

the spatial relationships of the cameras do not change significantly from frame to frame. Instead, the designer should

provide a means to stitch a single reference image set as a means to obtain a calibration for the camera positions in the

29

assembled endoscope. This saved calibration is then used to align the video frames obtained from each camera.

In addition to the issues mentioned above, future work should focus on verifying the distortion calibration of the camera;

choosing a better method of pre-alignment, which may include reworking the stitching procedure to combine feature

detection/linear transformation with optical flow; choosing a better implementation of optical flow; and optimizing the

preprocessing of the images so as to ensure that subsequent algorithms correctly detect the features. Such fundamental

problems with the image-stitching procedure would need to be resolved before one could consider the implementation

of stereoscopy or the measurement of resolution and MTF.

Conclusions

It is generally beneficial in laparoscopic surgery for the endoscope to provide stereoscopic vision. The benefits include

faster and more reliable completion of the surgical task, both while learning the procedure and for experienced surgeons.

In addition to this justification for stereoscopy, this report has reviewed several methods by which it can be achieved.

These include the simple two-camera approach, polarization division, complementary multiple bandpass filters, liquid-

crystal deflection, and time-of-flight sensing. A preliminary study was conducted with time-of-flight sensing chosen as the

initial approach, because it appeared to have the least difficulty with illumination efficiency and overall visible-image

quality. As it was found that a commercial time-of-flight sensor encountered issues with over-illumination at short

working distances, a decision was made to abandon this approach in favor of stitching multiple image views. This

approach was chosen because of its proven physical-mathematical basis in augmenting the field of view. Although the

fundamental principle was demonstrated to be feasible, this also encountered difficulty, due in part to the choice of

stitching algorithms and in part to the low resolution of the camera. Future work should consider other algorithmic

variations, tested with a better-quality camera that still meets the size requirements for endoscopy.

30

References

Used in theoretical-review sections

[1] Fenske, M., et al. "A Design of a Liquid Crystal Based Single-Lens Stereo Endoscope." IEEE Xplore p. 43-44 (2006). DOI:

10.1109/NEBC.2006.1629743

[2] Hattori, A., et al. "Development of a real-time image-guided system for stereo-endoscopic sinus surgery." Studies in

Health Technology and Informatics 142 p. 112-116 (2009).

[3] Hattori, T., et al. "Disparity and distortion free stereoscopic fiberscope." Proc. of SPIE 2653 p. 80-84 (1996).

[4] Hu, T., et al. "Insertable Stereoscopic 3D Surgical Imaging Device with Pan and Tilt." IEEE / RAS-EMBS International

Conference on Biomedical Robotics and Biomechatronics (BIOROB) p. 311-316 (2008). DOI: 10.1.1.160.8134

[5] Korniski, R., et al. "3D imaging with a single-aperture 3-mm objective lens: concept, fabrication, and test." Proc. of

SPIE 8129 (812904) p. 1-11 (2011).

[6] Martinez Herrera, S., et al. "Shape-from-Polarization in Laparoscopy." Proceedings / IEEE International Symposium on

Biomedical Imaging: from nano to macro. IEEE International Symposium on Biomedical Imaging. (2013). DOI:

10.1109/ISBI.2013.6556798

[7] Silvestri, M., et al. "Autostereoscopic Three-Dimensional Viewer Evaluation Through Comparison With Conventional

Interfaces in Laparoscopic Surgery." Surgical Innovation XX(X) 1-8 (2011). DOI: 10.1177/1553350611411491

[8] Song, C.-G., and Jin U. Kang. "Design of the Computerized 3D Endoscopic Imaging System for Delicate Endoscopic

Surgery." J Med Syst 35:135-141 (2011). DOI 10.1007/s10916-009-9350-1

[9] Tamadazte, B., et al. "Multi-view vision system for laparoscopy surgery." Int J CARS, published online (2014). DOI

10.1007/s11548-014-1064-2

[10] Van Gompel, J., et al. "Field of View Comparison Between Two-Dimensional and Three-Dimensional Endoscopy." The

Laryngoscope 00:000-000 p. 1-4 (2013). DOI: 10.1002/lary.24222

[11] Zobel, J. "Basics of Three-Dimensional Endoscopic Vision." Minimally Invasive Therapy, 1 (1) p.36-9 (1993).

Used in preliminary-study sections

[12] "Detect SURF features and return SURFPoints object - MATLAB detectSURFFeatures." The MathWorks, Inc.

https://www.mathworks.com/help/vision/ref/detectsurffeatures.html. 2016. Accessed September 11, 2016.

[13] Hoiem, D., and Russ Hewett. "Image Stitching – Computational Photography." University of Illinois.

https://courses.engr.illinois.edu/cs498dwh/fa2010/lectures/Lecture%2017%20-%20Photo%20Stitching.pdf.

October 19, 2010. Accessed September 11, 2016.

[14] "iat_SIFTflow – Image Alignment Toolbox (IAT)." http://iatool.net/iat_SIFTflow/. 2016. Accessed September 11, 2016.

[15] Lowe, D. "Demo Software: SIFT Keypoint Detector." University of British Columbia.

https://www.cs.ubc.ca/~lowe/keypoints/. July 2005. Accessed September 11, 2016.

[16] Lowe, D. "Object Recognition from Local Scale-Invariant Features." Proc. of the International Conference on

Computer Vision, Corfu (Sept. 1999):1-8. https://www.cs.ubc.ca/~lowe/papers/iccv99.pdf. Accessed September

11, 2016.

Appendix A: Comparison of Image Stitching Results

Condition Image Notes

31

Feature detection/linear

transformation –

standard homography

(different image set from

all other figures for this

stitching method)

Example of grossly

unreasonable

transformation – perhaps

due to misbehavior on

periodic pattern

Feature detection/linear

transformation method –

affine transformation

Example of inadequate

feature-point matches

leading to incomplete

stitching

Same input images as

above – initial

implementation of

weakened homography

method (not fully tuned)

A superior result for this

configuration after some

tuning is as shown in Fig.

RANSAC replaced with

deterministic search,

after some tuning – all

images from here on use

weakened homography

RANSAC tends to match

some features very well

while leaving others in

bad condition; the

deterministic search

tends to make more

tradeoffs and leave

everything in a mediocre

condition

32

SIFT feature detector

replaced with SURF, after

some tuning

A common error in all

versions of the stitching

procedure was the "c" in

"Discover" being matched

to the "o" in the adjacent

shot

Spherical warp instead of

cylindrical

Reverted this change

(back to cylindrical warp)

as all results were

similarly poor

Optical flow introduced here

Initial implementation of

optical flow

Smooth blend of flow

vectors instead of simple

average; parameter

tuning

Use sinusoidal curve for

flow-vector blending in

each overlap region

Smoothly blend image

content

Note "Disccover" and

other matching

difficulties for the near

33

depths at the top of the

image, due in part to

incomplete perspective

pre-correction

Final parameter tuning

Appendix B: MATLAB Source Code

coneundistortfolder.m (a manually-run script, not a function; older versions were named cylundistortfolder.m before the

keystone correction was implemented, as mentioned in comments of the other script files)

%

% Before running, make sure:

% 1. needsConeUndistort folder exists and contains images from the camera

% 2. cameraParams has been loaded into the workspace somehow

% 3. Undistorted images from any previous run have been moved elsewhere

%

% averaged from several calibration trials

focLen = 377.803;

tempScaleFactor = 2;

scaledFocLen = focLen * tempScaleFactor;

tempInterpMethod = 'lanczos3';

midGray = 0.5;

% hand-tuned values, just sufficient to crop away all padding

targetHeight = 486;

targetWidth = 414;

% positive values make the "top" of each image wider than the "bottom"

perspectiveStrength = 0.52; % hand-tuned value

34

origFNames = dir(fullfile('needsConeUndistort','*.bmp'));

numImgs = size(origFNames, 1);

fprintf('Found %i images\n', numImgs);

for i=1:numImgs

 disp(strcat(num2str(i),': loading from disk'));

 curImg = imread(fullfile('needsConeUndistort',origFNames(i).name));

 disp(strcat(num2str(i),': initial cleanup'));

 curYIQ = custom_rgb2ntsc(curImg);

 disp('Working on luma...');

 curY = curYIQ(:,:,1);

 curY =

custom_usm(xx_denoise_luma(custom_ahe(curY)).*.75+custom_ahe(xx_denoise_luma(curY)).*.25);

 %

 disp('Working on chroma I...');

 curI = curYIQ(:,:,2);

 curI = xx_denoise_chroma(curI);

 %

 disp('Working on chroma Q...');

 curQ = curYIQ(:,:,3);

 curQ = xx_denoise_chroma(curQ);

 %

 curCleanupResult = ntsc2rgb(cat(3, curY, curI, curQ));

 disp(strcat(num2str(i), ': undistorting'));

 [curUndResult, ~] = undistortImage(curCleanupResult, cameraParams, 'cubic',

'OutputView', 'full', 'FillValues', midGray);

 % XXX: We throw away the focal-point location for convenience, but this is technically

inaccurate

 % Instead, should crop the undistortion result to bring the focal point to the image

center

 %

 % Rationale for parameters:

 % 'cubic': Make output as sharp as possible

 % 'full': Avoid throwing away any image data before the cylindrical warp, which will

itself require some cropping

 % ('valid' doesn't work for this calibration)

 % Use middle gray instead of default black for padding, to make sure flaws in the

cropping

 % are distinguishable from later flaws in stitching

 disp(strcat(num2str(i), ': temp enlarging'));

 curEnlarged = imresize(curUndResult, tempScaleFactor, tempInterpMethod);

35

 disp(strcat(num2str(i), ': cylindrically warping'));

 tempHgt = size(curEnlarged, 1);

 tempWth = size(curEnlarged, 2);

 curBigCyl = curEnlarged;

 % We crop away unfilled space on the left/right side,

 % for reasons of performance and accuracy with the perspective transform

 % in the next step:

 cylLeftPos = round(tempWth/2);

 cylRightPos = round(tempWth/2);

 % Initializing curBigCyl to a copy of curEnlarged is just in order to make sure it is

of the same class

 % (to prevent misinterpretation of 0-255 vs. 0-1 scales). We crop away the bad parts

anyway...

 for imageYIndex = 1:tempHgt

 for imageXIndex = 1:tempWth

 cylinderPoint = [(imageXIndex - tempWth/2)/scaledFocLen; (imageYIndex

- tempHgt/2)/scaledFocLen; 1];

 cylinderPoint = cylinderPoint ./ sqrt(cylinderPoint(1)^2 +

cylinderPoint(3)^2);

 % XXX: should use interp2 instead of this nearest-neighbor method

 % and do away with the pre-enlarge/re-shrink steps

 warpedImageTheta =

round(scaledFocLen*real(asin(cylinderPoint(1)))+tempWth/2);

 warpedImageH = round(scaledFocLen*cylinderPoint(2)+tempHgt/2);

 if warpedImageH > 0 && warpedImageH <= tempHgt && warpedImageTheta > 0

&& warpedImageTheta <= tempWth

 curBigCyl(warpedImageH, warpedImageTheta, 1) =

curEnlarged(imageYIndex, imageXIndex, 1);

 curBigCyl(warpedImageH, warpedImageTheta, 2) =

curEnlarged(imageYIndex, imageXIndex, 2);

 curBigCyl(warpedImageH, warpedImageTheta, 3) =

curEnlarged(imageYIndex, imageXIndex, 3);

 cylLeftPos = min(cylLeftPos, warpedImageTheta);

 cylRightPos = max(cylRightPos, warpedImageTheta);

 end

 end

 end

 disp('DEBUG: cropping unused space on left/right');

 curBigCyl = curBigCyl(:, cylLeftPos:cylRightPos, :);

 tempWth = size(curBigCyl, 2);

 disp(strcat(num2str(i), ': adjusting perspective'));

 refAngle = pi/numImgs;

 perspOffset = perspectiveStrength*tan(refAngle)*tempHgt/2;

 if i==1 % better to display at the end (i==numImgs)?

36

 fprintf('DEBUG: perspOffset is %.4f (compare tempWth %i)\n', perspOffset,

tempWth);

 end

 curBigCylr = curBigCyl(:,:,1);

 curBigCylg = curBigCyl(:,:,2);

 curBigCylb = curBigCyl(:,:,3);

 curBigCylPr = simple_keystone(curBigCylr, perspOffset);

 curBigCylPg = simple_keystone(curBigCylg, perspOffset);

 curBigCylPb = simple_keystone(curBigCylb, perspOffset);

 curBigCylP = cat(3, curBigCylPr, curBigCylPg, curBigCylPb);

 disp(strcat(num2str(i), ': re-shrinking'));

 curSmallCyl = imresize(curBigCylP, 1/tempScaleFactor, tempInterpMethod);

 disp(strcat(num2str(i), ': cropping to final size'));

 smallCylHgt = size(curSmallCyl, 1);

 smallCylWth = size(curSmallCyl, 2);

 if smallCylHgt > targetHeight && smallCylWth > targetWidth

 yOrigin = round((smallCylHgt-targetHeight)/2);

 xOrigin = round((smallCylWth-targetWidth)/2);

 curCylResult = imcrop(curSmallCyl, [xOrigin yOrigin targetWidth-1

targetHeight-1]);

 else

 disp('intermediate image too small to crop!');

 disp('Manual attention required - check crop settings in this script');

 curCylResult = curSmallCyl;

 end

 disp(strcat(num2str(i), ': saving to disk'));

 imwrite(curCylResult, strcat('coneUndistorted', num2str(i), '.png'));

end

custom_rgb2ntsc.m

%

% Luma information is taken verbatim from the unprocessed image, because we

% normalize it ourselves later.

% Chroma information is taken after some contrast stretching in RGB space.

function [im_ntsc] = custom_rgb2ntsc(im_rgb)

raw_result = rgb2ntsc(im_rgb);

adj_separate = rgb2ntsc(cat(3, imadjust(im_rgb(:,:,1)), imadjust(im_rgb(:,:,2)),

imadjust(im_rgb(:,:,3))));

im_ntsc = cat(3, raw_result(:,:,1), (raw_result(:,:,2)+adj_separate(:,:,2))./2,

(raw_result(:,:,3)+adj_separate(:,:,3))./2);

37

end %function

custom_usm.m

%

% input image must be grayscale and of class double

% (we call rgb2ntsc and extract individual channels in cylundistortfolder.m)

function [im_sharpened] = custom_usm(img)

% Configuration constants

amo = 4.8; % tuned visually for optical-flow method; SIFT/RANSAC needs lower

thr = 1.0/32.0;

% based on the "octave sharpening" technique sometimes used for photos

usm1 = imsharpen(img, 'Radius', 1/sqrt(2), 'Amount', amo, 'Threshold', thr);

usm2 = imsharpen(img, 'Radius', sqrt(2), 'Amount', amo, 'Threshold', thr);

usm3 = imsharpen(img, 'Radius', 2*sqrt(2), 'Amount', amo, 'Threshold', thr);

usm4 = imsharpen(img, 'Radius', 4*sqrt(2), 'Amount', amo, 'Threshold', thr);

%

im_sharpened = (invmedsharp(img, amo) .* 16 + usm1 .* 8 + usm2 .* 4 + usm3 .* 2 + usm4) ./ 31;

end %function

invmedsharp.m

% An ad-hoc sharpening method intended to enhance small blob features while avoiding edges

% input image must be grayscale(?)

% (we call rgb2ntsc and extract individual channels in cylundistortfolder.m)

function [im_sharpened] = invmedsharp(img, amount)

mf_small = medfilt2(img, [3 3], 'symmetric');

mf_wide = medfilt2(img, [3 5], 'symmetric');

mf_tall = medfilt2(img, [5 3], 'symmetric');

mf_big = medfilt2(img, [5 5], 'symmetric');

mf = (mf_small .* 25 + mf_wide .* 15 + mf_tall .* 15 + mf_big .* 9) ./ 64;

im_sharpened = img + (img-mf).*amount;

end %function

xx_denoise_luma.m

%

% input image must be grayscale and of class double

% (we call rgb2ntsc in cylundistortfolder.m)

function [im_denoised] = xx_denoise_luma(img)

38

onestep = cleanup_denoise_step(img);

twosteps = cleanup_denoise_step((img+onestep)./2);

threesteps = cleanup_denoise_step((onestep+twosteps)./2);

im_denoised = (0.45*twosteps+0.55*threesteps);

end %function

cleanup_denoise_step.m

%

% input image must be grayscale and of class double

% (we call rgb2ntsc in cylundistortfolder.m)

function [im_denoised] = cleanup_denoise_step(img)

[imwie1, ~] = wiener2(img, [5 11]);

[imwie2, ~] = wiener2(img, [7 9]);

[imwie3, ~] = wiener2(img, [9 7]);

[imwie4, ~] = wiener2(img, [11 5]);

immed1 = medfilt2(img, [3 5], 'symmetric');

immed2 = medfilt2(img, [5 3], 'symmetric');

% subtle cleanup for fine specks

cross_nhood = [0 1 0; 1 1 1; 0 1 0];

weak_lo = ordfilt2(img, 2, cross_nhood, 'symmetric');

weak_hi = ordfilt2(img, 4, cross_nhood, 'symmetric');

im_denoised = (imwie1 + imwie2 + imwie3 + imwie4 + immed1 + immed2 + weak_lo + weak_hi) ./ 8;

end %function

custom_ahe.m

%

% input image must be grayscale and of class double

% (we call rgb2ntsc in cylundistortfolder.m)

function [im_contrasted] = custom_ahe(img)

simple_adjust = imadjust(img);

ahe_56_uni = adapthisteq(img, 'NumTiles', [5 6], 'ClipLimit', 0.02, 'Distribution', 'uniform');

ahe_56_exp = adapthisteq(img, 'NumTiles', [5 6], 'ClipLimit', 0.02, 'Distribution', 'exponential');

ahe_56_ray = adapthisteq(img, 'NumTiles', [5 6], 'ClipLimit', 0.02, 'Distribution', 'rayleigh');

ahe_65_uni = adapthisteq(img, 'NumTiles', [6 5], 'ClipLimit', 0.02, 'Distribution', 'uniform');

ahe_65_exp = adapthisteq(img, 'NumTiles', [6 5], 'ClipLimit', 0.02, 'Distribution', 'exponential');

ahe_65_ray = adapthisteq(img, 'NumTiles', [6 5], 'ClipLimit', 0.02, 'Distribution', 'rayleigh');

39

% We want to have an even number of inputs to the median, so that two of them

% will be averaged. Thus, get the above 7 things down to 6 by averaging the

% CLAHE results for each distribution and each grid size

ahe_avg_uni = (ahe_56_uni + ahe_65_uni) ./ 2;

ahe_avg_exp = (ahe_56_exp + ahe_65_exp) ./ 2;

ahe_avg_ray = (ahe_56_ray + ahe_65_ray) ./ 2;

ahe_avg_56 = (ahe_56_uni + ahe_56_exp + ahe_56_ray) ./ 3;

ahe_avg_65 = (ahe_65_uni + ahe_65_exp + ahe_65_ray) ./ 3;

im_contrasted = median(cat(3, simple_adjust, ahe_avg_uni, ahe_avg_exp, ahe_avg_ray, ahe_avg_56,

ahe_avg_65), 3);

end %function

xx_denoise_chroma.m

%

% input image must be grayscale and of class double

% (we call rgb2ntsc in cylundistortfolder.m)

function [im_denoised] = xx_denoise_chroma(img)

tempA = cleanup_denoise_step(img);

tempB = imgaussfilt(img, 0.6);

tempC = (tempA+tempB)./2;

tempAA = cleanup_denoise_step(tempC);

tempBB = imgaussfilt(tempC, 0.6);

tempCC = (tempAA+tempBB)./2;

tempA = cleanup_denoise_step(tempCC);

tempB = imgaussfilt(tempCC, 0.6);

im_denoised = (tempA + tempB) ./ 2;

end %function

simple_keystone.m

% Applies a keystone distortion effect

% This is NOT a homography; it is a naive line-by-line effect

% (similar to the keystone adjustment on a CRT monitor).

%

% For simplicity we assume that img is grayscale and of class double.

function [im_persp] = simple_keystone(img, pOffs)

wdth_i = size(img, 2);

hght = size(img, 1);

wdth_o = round(wdth_i+2*abs(pOffs));

40

im_persp = zeros(hght, wdth_o);

for i_row = 1:hght

 begOfRow = 1+(2*pOffs)*(i_row-1)/(hght-1);

 endOfRow = wdth_o-(2*pOffs)*(i_row-1)/(hght-1);

 if pOffs < 0

 begOfRow = begOfRow-2*pOffs; % i.e. +2*abs(pOffs)

 endOfRow = endOfRow+2*pOffs; % i.e. -2*abs(pOffs)

 end

 for i_col = 1:wdth_o

 if i_col >= begOfRow && i_col <= endOfRow

 % Pixel inside the valid image area

 srcCol = 1+(wdth_i-1)*(i_col-begOfRow)/(endOfRow-begOfRow);

 if srcCol == floor(srcCol)

 % Pixel read from an exact integer location

 im_persp(i_row, i_col) = img(i_row, srcCol);

 else

 % Naive linear interpolation within the row

 pixLft = img(i_row, floor(srcCol));

 pixRgt = img(i_row, ceil(srcCol));

 interp_factor = srcCol-floor(srcCol);

 im_persp(i_row, i_col) = interp_factor * pixRgt + (1-interp_factor) *

pixLft;

 end

 else

 % Pixel outside the valid image area - fill w/ medium gray

 im_persp(i_row, i_col) = 0.5;

 end

 end

end

end %function

performFolderMod.m (invoked from the MATLAB command line to start the actual stitching process for the feature-

detection/linear-transformation approach)

% Make a panorama, using images from a folder

% Based very loosely on

http://www.tobw.net/index.php?cat_id=2&project=Panorama+Stitching+Demo+in+Matlab (link now dead)

% filename lexicographical order MUST represent the linear progression in which the images were taken

function [im_stitched] = performFolderMod(folder)

% undistort script will read BMPs and write PNGs

images = dir(fullfile(folder,'*.png'));

n_images = size(images, 1);

fprintf('Found %i images\n', n_images);

if n_images < 3

 % not worthwhile to support the case of only 2 images

 error('Need at least three images (in PNG format)');

41

end

central_idx = floor((n_images+1)/2);

isFirstStitch = true;

min_pts_needed = 5; % manually adjust for chosen transformation method

% This approach is inefficient in that we read and feature-detect each image twice.

% However, the obvious solution would require logic currently in CVTBmatch to be duplicated here...

for idx = central_idx:n_images-1

 fprintf('About to begin stitching images %i and %i\n', idx, idx+1);

 im1 = imread(fullfile(folder, images(idx).name));

 if isFirstStitch

 % Ensure that im_stitched is initialized, so that if we fail to match the

 % image pairs on either side, the function will return something sane instead of

erroring out

 im_stitched = im1;

 end

 im2 = imread(fullfile(folder, images(idx+1).name));

 try

 [pts1 pts2] = CVTBmatch(im1, im2);

 catch siftExcpt

 % The name "sift" for the exception variable is a historical artifact;

 % this code is for SURF.

 disp('Failed to obtain matched pairs of feature points.');

 disp('Giving up and switching to other side. Error description was:');

 disp(siftExcpt.message);

 break

 end

 n_pts_matched = length(pts1);

 if n_pts_matched < min_pts_needed

 fprintf('Insufficient matches between images %i and %i (have %i, need %i).\n', idx,

idx+1, n_pts_matched, min_pts_needed);

 disp('Make sure files are named in proper sequence. Giving up and switching to other

side.');

 break

 end

 try

 [T_curr_im2, ~] = determ_search(pts2, pts1, 'proj_mix');

 catch calcXformExcpt

42

 disp('Failed to create transformation; this probably means that determ_search');

 disp('or a transformation method has a fatal implementation mistake.');

 disp('Giving up and switching to other side. Error description was:');

 disp(calcXformExcpt.message);

 break

 end

 % T_prev_pos tracks the extent to which the first (central) image has been pushed

 % down and/or to the right by im_stitched growing at the top and/or left.

 % Such information is kept separate from T_prev_im2, the composition of generated transforms.

 if isFirstStitch

 [im_stitched, stitched_mask, ~, ~, T_prev_pos] = stitch_a(im1, im2, T_curr_im2);

 T_prev_im2 = T_curr_im2;

 isFirstStitch = false;

 else

 T_im2_unshifted = maketform('composite', T_curr_im2, T_prev_im2);

 T_im2 = maketform('composite', T_prev_pos, T_im2_unshifted);

 [im_stitched, stitched_mask, ~, ~, T_next_pos] = stitch_a(im_stitched, im2, T_im2,

stitched_mask);

 T_prev_pos = maketform('composite', T_next_pos, T_prev_pos);

 T_prev_im2 = T_im2_unshifted;

 end

 warning off all % for size warning

 imshow(im_stitched);

 warning on all

end %for (1st side)

isFirstStitchOn2ndSide = true;

for idx = central_idx:-1:2

 fprintf('About to begin stitching images %i and %i\n', idx-1, idx);

 im1 = imread(fullfile(folder, images(idx).name));

 im2 = imread(fullfile(folder, images(idx-1).name));

 try

 [pts1 pts2] = CVTBmatch(im1, im2);

 catch siftExcpt

 disp('Failed to obtain matched pairs of feature points.');

 disp('Giving up. Error description was:');

43

 disp(siftExcpt.message);

 break

 end

 n_pts_matched = length(pts1);

 if n_pts_matched < min_pts_needed

 fprintf('Insufficient matches between images %i and %i (have %i, need %i).\n', idx-1,

idx, n_pts_matched, min_pts_needed);

 disp('Make sure files are named in proper sequence. Giving up.');

 break

 end

 try

 [T_curr_im2, ~] = determ_search(pts2, pts1, 'proj_mix');

 catch calcXformExcpt

 disp('Failed to create transformation; this probably means that determ_search');

 disp('or a transformation method has a fatal implementation mistake.');

 disp('Giving up. Error description was:');

 disp(calcXformExcpt.message);

 break

 end

 if isFirstStitchOn2ndSide

 if isFirstStitch

 % Uh oh, the very first pair on the other side failed to match -

 % that is the only way we could have gotten here. We need this special

 % case because otherwise stitched_mask would not be defined.

 [im_stitched, stitched_mask, ~, ~, T_prev_pos] = stitch_a(im1, im2,

T_curr_im2);

 T_prev_im2 = T_curr_im2;

 isFirstStitch = false;

 else

 % we need to keep the previously-calculated T_prev_pos and stitched_mask,

 % but as we are starting again at the central image, we do not want to

preserve T_prev_im2

 T_im2 = maketform('composite', T_prev_pos, T_curr_im2);

 [im_stitched, stitched_mask, ~, ~, T_next_pos] = stitch_a(im_stitched, im2,

T_im2, stitched_mask);

 T_prev_pos = maketform('composite', T_next_pos, T_prev_pos);

 T_prev_im2 = T_curr_im2;

 end

44

 isFirstStitchOn2ndSide = false;

 else

 T_im2_unshifted = maketform('composite', T_curr_im2, T_prev_im2);

 T_im2 = maketform('composite', T_prev_pos, T_im2_unshifted);

 [im_stitched, stitched_mask, ~, ~, T_next_pos] = stitch_a(im_stitched, im2, T_im2,

stitched_mask);

 T_prev_pos = maketform('composite', T_next_pos, T_prev_pos);

 T_prev_im2 = T_im2_unshifted;

 end

 warning off all % for size warning

 imshow(im_stitched);

 warning on all

end %for (2nd side)

imwrite(im_stitched, strcat('stitchResult-', folder, '.png'));

% make sure we show the last state in case we broke out of the 2nd loop

warning off all % for size warning

 imshow(im_stitched);

warning on all

end %function

CVTBmatch.m

% Generate matched pairs of features between im1 and im2

% using MATLAB's (C)omputer (V)ision System (T)ool(b)ox.

% (should probably have called this SURFmatch...)

%

% Returns the lists of matched points for both images (always nonempty).

% Currently, error is thrown if no matches are found.

%

function [points1, points2] = CVTBmatch(im1, im2)

 % Config constants

 dsf_mt = 983; % lower = more lenient

 dsf_nsl = 5; % (don't touch it)

 mf_mt = 1.07; % higher = more lenient matching

 mf_mr = 0.56; % higher = more lenient matching

 im1red = im1(:,:,1);

 im1green = im1(:,:,2);

 im1blue = im1(:,:,3);

 im1gray = rgb2gray(im1);

 im2red = im2(:,:,1);

45

 im2green = im2(:,:,2);

 im2blue = im2(:,:,3);

 im2gray = rgb2gray(im2);

 disp('DEBUG: channel split done');

 % Get lists of raw points

 rawpts1red = detectSURFFeatures(im1red, 'MetricThreshold', dsf_mt, 'NumScaleLevels',

dsf_nsl);

 rawpts1green = detectSURFFeatures(im1green, 'MetricThreshold', dsf_mt, 'NumScaleLevels',

dsf_nsl);

 rawpts1blue = detectSURFFeatures(im1blue, 'MetricThreshold', dsf_mt, 'NumScaleLevels',

dsf_nsl);

 rawpts1gray = detectSURFFeatures(im1gray, 'MetricThreshold', dsf_mt, 'NumScaleLevels',

dsf_nsl);

 rawpts2red = detectSURFFeatures(im2red, 'MetricThreshold', dsf_mt, 'NumScaleLevels',

dsf_nsl);

 rawpts2green = detectSURFFeatures(im2green, 'MetricThreshold', dsf_mt, 'NumScaleLevels',

dsf_nsl);

 rawpts2blue = detectSURFFeatures(im2blue, 'MetricThreshold', dsf_mt, 'NumScaleLevels',

dsf_nsl);

 rawpts2gray = detectSURFFeatures(im2gray, 'MetricThreshold', dsf_mt, 'NumScaleLevels',

dsf_nsl);

 disp('DEBUG: detectSURFFeatures done');

 % Get features corresponding to raw points

 % SURFSize of 128 makes this really finicky (i.e. fewer matches)??

 [feats1red, rawpts1red] = extractFeatures(im1red, rawpts1red);

 [feats1green, rawpts1green] = extractFeatures(im1green, rawpts1green);

 [feats1blue, rawpts1blue] = extractFeatures(im1blue, rawpts1blue);

 [feats1gray, rawpts1gray] = extractFeatures(im1gray, rawpts1gray);

 [feats2red, rawpts2red] = extractFeatures(im2red, rawpts2red);

 [feats2green, rawpts2green] = extractFeatures(im2green, rawpts2green);

 [feats2blue, rawpts2blue] = extractFeatures(im2blue, rawpts2blue);

 [feats2gray, rawpts2gray] = extractFeatures(im2gray, rawpts2gray);

 disp('DEBUG: extractFeatures done');

 % Match up the features

 idxsRed = matchFeatures(feats1red, feats2red, 'Unique', true, 'MatchThreshold', mf_mt,

'MaxRatio', mf_mr);

 idxsGreen = matchFeatures(feats1green, feats2green, 'Unique', true, 'MatchThreshold', mf_mt,

'MaxRatio', mf_mr);

 idxsBlue = matchFeatures(feats1blue, feats2blue, 'Unique', true, 'MatchThreshold', mf_mt,

'MaxRatio', mf_mr);

 idxsGray = matchFeatures(feats1gray, feats2gray, 'Unique', true, 'MatchThreshold', mf_mt,

'MaxRatio', mf_mr);

46

 disp('DEBUG: matchFeatures done');

 if isempty(idxsRed)

 anyRedMatches = false;

 disp('No matches on red!');

 else

 mpts1red = rawpts1red(idxsRed(:,1), :);

 mpts2red = rawpts2red(idxsRed(:,2), :);

 anyRedMatches = true;

 end

 if isempty(idxsGreen)

 anyGreenMatches = false;

 disp('No matches on green!');

 else

 mpts1green = rawpts1green(idxsGreen(:,1), :);

 mpts2green = rawpts2green(idxsGreen(:,2), :);

 anyGreenMatches = true;

 end

 if isempty(idxsBlue)

 anyBlueMatches = false;

 disp('No matches on blue!');

 else

 mpts1blue = rawpts1blue(idxsBlue(:,1), :);

 mpts2blue = rawpts2blue(idxsBlue(:,2), :);

 anyBlueMatches = true;

 end

 if isempty(idxsGray)

 anyGrayMatches = false;

 disp('No matches on luma!');

 else

 mpts1gray = rawpts1gray(idxsGray(:,1), :);

 mpts2gray = rawpts2gray(idxsGray(:,2), :);

 anyGrayMatches = true;

 end

 disp('DEBUG: indexing done');

 % Pull the plain arrays out of the SURFPoints objects

 if anyRedMatches

 ppts1red = mpts1red.Location;

 ppts2red = mpts2red.Location;

 else

 ppts1red = [-1 -1]; % sentinel value

 ppts2red = [-1 -1]; % real points will always be nonnegative

 end

 if anyGreenMatches

 ppts1green = mpts1green.Location;

47

 ppts2green = mpts2green.Location;

 end

 if anyBlueMatches

 ppts1blue = mpts1blue.Location;

 ppts2blue = mpts2blue.Location;

 end

 if anyGrayMatches

 ppts1gray = mpts1gray.Location;

 ppts2gray = mpts2gray.Location;

 end

 disp('DEBUG: .Location done');

 % Pool together the point pairs from each color channel

 points1 = ppts1red;

 points2 = ppts2red;

 if anyGreenMatches

 points1 = [points1; ppts1green];

 points2 = [points2; ppts2green];

 end

 if anyBlueMatches

 points1 = [points1; ppts1blue];

 points2 = [points2; ppts2blue];

 end

 if anyGrayMatches

 points1 = [points1; ppts1gray];

 points2 = [points2; ppts2gray];

 end

 disp('DEBUG: ; done');

 % Although we used the 'Unique' parameter above, uniqueness is ensured only

 % within each channel; pooling the channels may have created duplication,

 % which we need to remove here

 if anyRedMatches || anyGreenMatches || anyBlueMatches || anyGrayMatches

 pts=unique([points1 points2], 'rows');

 % If red channel failed to match, we have to remove the sentinel value.

 % We can only get here if at least one other channel *has* matches, so

 % we know that 2:end should be valid.

 if pts(1,1)==-1

 pts=pts(2:end, :);

 end

 fprintf('Found %i matches in total\n',size(pts,1));

 % CV toolbox methods return single, but t'form methods require double

 points1 = double(pts(:,[1 2]));

48

 points2 = double(pts(:,[3 4]));

 else

 % XXX: does this need to be fatal, or should we return empty arrays

 % and let the caller handle the situation?

 error('No matches found');

 end %if

end %function

determ_search.m

% Calculates a transformation that aligns the points points1 and points2

% using a deterministic search (eliminating one point at a time) to avoid

% outliers.

% transMode: aff_lsq - Affine mapping

% proj_svd - Homography

% n_pts: size of point sample

% Return values:

% T_im1: a tform object encalpsulating the transformation from image1

% (points1) onto image2 (points2)

% best_pts: points used to estimate best transformation (Dim: arbitrary x 4)

%

% This function, and the subroutines for specific transformation modes, are

% based on the RANSAC implementation from

% http://www.tobw.net/index.php?cat_id=2&project=Panorama+Stitching+Demo+in+Matlab

% (link now dead)

function [T_im1, best_pts] = determ_search(points1, points2, transMode)

disp('Performing deterministic search');

t = tic();

best_score = -99;

it_improv={}; % saves the inlier score per improvment

switch transMode

 case 'aff_lsq'

 min_n_pts = 4;

 case 'proj_svd'

 min_n_pts = 5;

 case 'proj_mix'

 min_n_pts = 5;

 otherwise

 error('transmode not known');

end

n_pts_provided = length(points2(:,1));

if n_pts_provided < min_n_pts

 error('You must provide enough points to overdetermine the chosen transformation type');

end

49

% Special case: There were just enough points provided, so no "search" is needed

if n_pts_provided == min_n_pts

 disp('Have just enough points - calculating transformation without searching subsets');

 disp('(poor results likely!)');

 best_pts = [points1 points2];

 warning off all

 switch transMode

 case 'aff_lsq'

 T_im1 = affine_leastsquare(points1, points2);

 case 'proj_svd'

 T_im1 = homography_svd(points1, points2);

 case 'proj_mix'

 T_im1 = weak_homography(points1, points2);

 otherwise

 % should not get here - should already have errored out above!

 error('transmode not known');

 end

 warning on all

 return

end

% Configuration constants

scoring_sigma = 2.35;

it_improv_max_print_len = 50;

%

% Choose some key points with which to check the sanity of the transformation.

% The more it looks like a rigid motion, the more reasonable we consider it to

% be. We draw a few lines across the bounding box of the input points; the more

% their lengths change, the lower our figure of merit (more logic in loops below)

pts1mins = min(points1);

pts1maxs = max(points1);

pts1mids = (mean(points1) + median(points1) + pts1mins + pts1maxs) ./ 4;

pts1lft = pts1mins(1);

pts1rgt = pts1maxs(1);

pts1top = pts1mins(2);

pts1bot = pts1maxs(2);

pts1mdx = pts1mids(1);

pts1mdy = pts1mids(2);

bboxwdth = pts1rgt - pts1lft;

bboxhght = pts1bot - pts1top;

bboxdiag = sqrt(bboxwdth*bboxwdth + bboxhght*bboxhght);

50

refpt1 = [pts1lft pts1top 1];

refpt2 = [pts1lft pts1mdy 1];

refpt3 = [pts1lft pts1bot 1];

refpt4 = [pts1mdx pts1bot 1];

refpt5 = [pts1rgt pts1bot 1];

refpt6 = [pts1rgt pts1mdy 1];

refpt7 = [pts1rgt pts1top 1];

refpt8 = [pts1mdx pts1top 1];

if n_pts_provided > 16

 disp('More than 16 matches; using median cut');

 [temppts1 temppts2] = medcut_to_16pts(points1, points2);

 n_pts_searchspace = 16;

else

 disp('No median cut needed');

 temppts1 = points1;

 temppts2 = points2;

 n_pts_searchspace = n_pts_provided;

end

% DIRTY HACK to work around class problems

all_idxs = zeros(n_pts_searchspace, 1);

for i_setup = 1:n_pts_searchspace

 all_idxs(i_setup)=i_setup;

end

bf_n_subsets = nchoosek(n_pts_searchspace, min_n_pts);

fprintf('Brute-force-testing %i subsets of size %i (please be patient)\n', bf_n_subsets, min_n_pts);

bf_subsets = nchoosek(all_idxs, min_n_pts);

for i_bf = 1:bf_n_subsets

 bf_idxs = bf_subsets(i_bf,:);

 warning off all % XXX: why? (this was in TobW's original code)

 switch transMode

 case 'aff_lsq'

 M = affine_leastsquare_mat(temppts1(bf_idxs,:), temppts2(bf_idxs,:));

 T = maketform('affine', M);

 case 'proj_svd'

 M = homography_svd_mat(temppts1(bf_idxs,:), temppts2(bf_idxs,:));

 T = maketform('projective', M);

 case 'proj_mix'

 M = weak_homography_mat(temppts1(bf_idxs,:), temppts2(bf_idxs,:));

 T = maketform('projective', M);

 otherwise

 % should not get here - should already have errored out above!

 error('transmode not known');

51

 end

 warning on all

 % transformation check

 if max(max(isnan(T.tdata.T)))==1

 error('Unexpected NaN in transformation'); % XXX: does this really need to be fatal?

 % or can we simply "continue"? (can this ever happen in current MATLAB vers.?)

 end

 % NB: We *evalute the quality* of the transformation against ALL points,

 % not just the 16 returned by the median cut.

 % Apply the transformation ...

 [A_X A_Y] = tformfwd(T,points1(:,1),points1(:,2));

 dXsq = (A_X - points2(:,1)).^2;

 dYsq = (A_Y - points2(:,2)).^2;

 % ... tally up the inlier score ...

 inlier_score=0;

 for i=1:length(dXsq)

 esq = dXsq(i)+dYsq(i);

 inlier_score = inlier_score + exp(-esq/(2*scoring_sigma*scoring_sigma));

 end

 % ... transform the reference points, check sanity ...

 trnpt1 = M.' * refpt1.';

 trnpt2 = M.' * refpt2.';

 trnpt3 = M.' * refpt3.';

 trnpt4 = M.' * refpt4.';

 trnpt5 = M.' * refpt5.';

 trnpt6 = M.' * refpt6.';

 trnpt7 = M.' * refpt7.';

 trnpt8 = M.' * refpt8.';

 % - normalize the vectors...

 trnpt1 = trnpt1 ./ trnpt1(3);

 trnpt2 = trnpt2 ./ trnpt2(3);

 trnpt3 = trnpt3 ./ trnpt3(3);

 trnpt4 = trnpt4 ./ trnpt4(3);

 trnpt5 = trnpt5 ./ trnpt5(3);

 trnpt6 = trnpt6 ./ trnpt6(3);

 trnpt7 = trnpt7 ./ trnpt7(3);

 trnpt8 = trnpt8 ./ trnpt8(3);

 % - ...and the 3rd component will subtract away

 diag1dist = norm(trnpt5-trnpt1);

 horizdist = norm(trnpt6-trnpt2);

 diag2dist = norm(trnpt7-trnpt3);

 vert_dist = norm(trnpt8-trnpt4);

52

 diag1ratio = diag1dist/bboxdiag;

 horizratio = horizdist/bboxwdth;

 diag2ratio = diag2dist/bboxdiag;

 vert_ratio = vert_dist/bboxhght;

 diag1invrat = bboxdiag/diag1dist;

 horizinvrat = bboxwdth/horizdist;

 diag2invrat = bboxdiag/diag2dist;

 vert_invrat = bboxhght/vert_dist;

 diag1log = log(diag1ratio);

 horizlog = log(horizratio);

 diag2log = log(diag2ratio);

 vert_log = log(vert_ratio);

 % -empirical: geo.mean of Lorentzian-curve-of-log with SQRT of whichever ratio is <=1

 diag1merit = sqrt((1/(diag1log*diag1log+1)) * sqrt(min(diag1ratio, diag1invrat)));

 horizmerit = sqrt((1/(horizlog*horizlog+1)) * sqrt(min(horizratio, horizinvrat)));

 diag2merit = sqrt((1/(diag2log*diag2log+1)) * sqrt(min(diag2ratio, diag2invrat)));

 vert_merit = sqrt((1/(vert_log*vert_log+1)) * sqrt(min(vert_ratio, vert_invrat)));

 rigidity_factor = min([diag1merit horizmerit diag2merit vert_merit]);

 % ...and multiply to obtain the final score

 adjusted_score = inlier_score * rigidity_factor;

 % improvement check

 if adjusted_score > best_score

 best_score = adjusted_score;

 T_im1 = T;

 it_improv{end+1} = best_score;

 best_idxs = bf_idxs;

 end

end % for i_bf

if numel(it_improv) <= it_improv_max_print_len

 disp('High scores:');

 disp(it_improv);

else

 disp('Too many high-score updates to display');

end

best_pts=zeros(length(best_idxs),4);

best_pts(:,[1 2])=points1(best_idxs,:);

best_pts(:,[3 4])=points2(best_idxs,:);

disp('done.')

53

toc(t)

end % function

affine_leastsquare.m

function [T] = affine_leastsquare(pts1, pts2)

% ... create a object used by 'imtransform'

T = maketform('affine', affine_leastsquare_mat(pts1, pts2));

end

affine_leastsquare_mat.m

function [X] = affine_leastsquare_mat(pts1, pts2)

% for more details, please see: Lecture 12, page 51,

http://www.vision.ee.ethz.ch/~bleibe/multimedia/teaching/cv-ws08/cv08-part12-local-features2.pdf

% prepare matrix A with pts1

A = zeros(size(pts1,1)*2,6);

A(1:2:end,5) = 1;

A(2:2:end,6) = 1;

A(1:2:end,1:2) = pts1;

A(2:2:end,3:4) = pts1;

% prepare matrix B with pts2

B = zeros(size(pts2,1)*2,1);

B(1:2:end)=pts2(:,1);

B(2:2:end)=pts2(:,2);

% solve A*x = B for x using least square error

x = A\B;

% reorder elements of x

X(1,1)=x(1);

X(1,2)=x(3);

X(2,1)=x(2);

X(2,2)=x(4);

X(3,1)=x(5);

X(3,2)=x(6);

X(1,3)=0;

X(2,3)=0;

X(3,3)=1;

end

54

homography_svd.m

% Calculate a homography that maps im1 to im2

function T = homography_svd(points1, points2)

T = maketform('projective', homography_svd_mat(points1, points2));

% The Matlab way:

% (only works with 4 points)

%T = maketform('projective', points2, points1);

homography_svd_mat.m

% Calculate a homography that maps im1 to im2

function x = homography_svd_mat(points1, points2)

% for more details, please see: Lecture 12, page 60,

http://www.vision.ee.ethz.ch/~bleibe/multimedia/teaching/cv-ws08/cv08-part12-local-features2.pdf

% Build matrix

xaxb = points2(:,1) .* points1(:,1);

xayb = points2(:,1) .* points1(:,2);

yaxb = points2(:,2) .* points1(:,1);

yayb = points2(:,2) .* points1(:,2);

A = zeros(size(points1, 1)*2, 9);

A(1:2:end,3) = 1;

A(2:2:end,6) = 1;

A(1:2:end,1:2) = points1;

A(2:2:end,4:5) = points1;

A(1:2:end,7) = -xaxb;

A(1:2:end,8) = -xayb;

A(2:2:end,7) = -yaxb;

A(2:2:end,8) = -yayb;

A(1:2:end,9) = -points2(:,1);

A(2:2:end,9) = -points2(:,2);

% Solve using smallest eigenvector

[U,S,V] = svd(A);

h = V(:,9) ./ V(9,9);

x = reshape(h,3,3);

weak_homography.m

% Calculate a homography that maps im1 to im2

% (biased toward an affine transform to limit perspective blowup)

function T = weak_homography(points1, points2)

T=maketform('projective', weak_homography_mat(points1, points2));

55

weak_homography_mat.m

% Calculate a homography that maps im1 to im2

% (biased toward an affine transform to limit perspective blowup)

function M = weak_homography_mat(points1, points2)

% compute the affine xform and homography the usual way

ma = affine_leastsquare_mat(points1, points2);

mh = homography_svd_mat(points1, points2);

% pick some reference points

pts1mins = min(points1);

pts1mids = (mean(points1)+median(points1))./2;

pts1maxs = max(points1);

refpt1 = [pts1mins(1) pts1mins(2) 1];

refpt2 = [pts1mins(1) pts1mids(2) 1];

refpt3 = [pts1mins(1) pts1maxs(2) 1];

refpt4 = [pts1mids(1) pts1mins(2) 1];

refpt5 = [pts1mids(1) pts1mids(2) 1];

refpt6 = [pts1mids(1) pts1maxs(2) 1];

refpt7 = [pts1maxs(1) pts1mins(2) 1];

refpt8 = [pts1maxs(1) pts1mids(2) 1];

refpt9 = [pts1maxs(1) pts1maxs(2) 1];

% transform the reference points per the transformations calculated above

affpt1 = ma.' * refpt1.';

affpt2 = ma.' * refpt2.';

affpt3 = ma.' * refpt3.';

affpt4 = ma.' * refpt4.';

affpt5 = ma.' * refpt5.';

affpt6 = ma.' * refpt6.';

affpt7 = ma.' * refpt7.';

affpt8 = ma.' * refpt8.';

affpt9 = ma.' * refpt9.';

hompt1 = mh.' * refpt1.';

hompt2 = mh.' * refpt2.';

hompt3 = mh.' * refpt3.';

hompt4 = mh.' * refpt4.';

hompt5 = mh.' * refpt5.';

hompt6 = mh.' * refpt6.';

hompt7 = mh.' * refpt7.';

hompt8 = mh.' * refpt8.';

hompt9 = mh.' * refpt9.';

hompt1 = hompt1 ./ hompt1(3);

56

hompt2 = hompt2 ./ hompt2(3);

hompt3 = hompt3 ./ hompt3(3);

hompt4 = hompt4 ./ hompt4(3);

hompt5 = hompt5 ./ hompt5(3);

hompt6 = hompt6 ./ hompt6(3);

hompt7 = hompt7 ./ hompt7(3);

hompt8 = hompt8 ./ hompt8(3);

hompt9 = hompt9 ./ hompt9(3);

% average the transformed points and assemble lists

avgpt1 = (affpt1+hompt1) ./ 2;

avgpt2 = (affpt2+hompt2) ./ 2;

avgpt3 = (affpt3+hompt3) ./ 2;

avgpt4 = (affpt4+hompt4) ./ 2;

avgpt5 = (affpt5+hompt5) ./ 2;

avgpt6 = (affpt6+hompt6) ./ 2;

avgpt7 = (affpt7+hompt7) ./ 2;

avgpt8 = (affpt8+hompt8) ./ 2;

avgpt9 = (affpt9+hompt9) ./ 2;

refpts = [refpt1(1) refpt1(2); refpt2(1) refpt2(2); refpt3(1) refpt3(2); refpt4(1) refpt4(2);

refpt5(1) refpt5(2); refpt6(1) refpt6(2); refpt7(1) refpt7(2); refpt8(1) refpt8(2); refpt9(1)

refpt9(2)];

avgpts = [avgpt1(1) avgpt1(2); avgpt2(1) avgpt2(2); avgpt3(1) avgpt3(2); avgpt4(1) avgpt4(2);

avgpt5(1) avgpt5(2); avgpt6(1) avgpt6(2); avgpt7(1) avgpt7(2); avgpt8(1) avgpt8(2); avgpt9(1)

avgpt9(2)];

% finally compute the new, weakened homography

M = homography_svd_mat(refpts, avgpts);

medcut_to_16pts.m

function [simppts1, simppts2] = medcut_to_16pts(points1, points2)

 n_pts_input = size(points1, 1);

 rects = zeros(16, 4);

 avgpts = (points1 + points2) ./ 2;

 apmins = min(avgpts);

 apmaxs = max(avgpts);

 rects(1, 1) = apmins(1);

 rects(1, 2) = apmins(2);

 rects(1, 3) = apmaxs(1);

 rects(1, 4) = apmaxs(2);

 % Scan the rectangles and perform the cuts

 for rect_bit_level = 0:3

 rect_bit_value = 2^rect_bit_level;

57

 for i_rect = 1:rect_bit_value

 cur_rect_min_x = rects(i_rect, 1);

 cur_rect_min_y = rects(i_rect, 2);

 cur_rect_max_x = rects(i_rect, 3);

 cur_rect_max_y = rects(i_rect, 4);

 pt_in_cur_rect_flags = zeros(n_pts_input, 1);

 for i_point = 1:n_pts_input

 % We consider boundaries as inclusive, to avoid the situation of a

rectangle containing no points

 if cur_rect_min_x <= avgpts(i_point, 1) && avgpts(i_point, 1) <=

cur_rect_max_x && cur_rect_min_y <= avgpts(i_point, 2) && avgpts(i_point, 2) <= cur_rect_max_y

 pt_in_cur_rect_flags(i_point) = 1;

 end

 end

 idxs_in_cur_rect = find(pt_in_cur_rect_flags);

 pts_in_cur_rect = avgpts(idxs_in_cur_rect, :);

 cur_meds = median(pts_in_cur_rect);

 cut_x_axis_flag = ((cur_rect_max_x - cur_rect_min_x) > (cur_rect_max_y -

cur_rect_min_y));

 if (cur_rect_max_x - cur_rect_min_x) == (cur_rect_max_y - cur_rect_min_y)

 % alternate between horizontal and vertical cuts in the event of a tie

 cut_x_axis_flag = (mod(rect_bit_level, 2) == 1);

 end

 % The rectangle of lower coordinate value overwrites rects(i_rect, :),

 % while the rectangle of higher value is placed in

rects(i_rect+rect_bit_value, :).

 % Each pass doubles the number of rectangles stored in rects, until it is

full.

 if cut_x_axis_flag

 rects(i_rect, 3) = cur_meds(1);

 rects(i_rect+rect_bit_value, 1) = cur_meds(1);

 rects(i_rect+rect_bit_value, 2) = cur_rect_min_y;

 else

 rects(i_rect, 4) = cur_meds(2);

 rects(i_rect+rect_bit_value, 1) = cur_rect_min_x;

 rects(i_rect+rect_bit_value, 2) = cur_meds(2);

 end

 rects(i_rect+rect_bit_value, 3) = cur_rect_max_x;

 rects(i_rect+rect_bit_value, 4) = cur_rect_max_y;

 end

 end

 % Rescan the final rectangles and assign bucket flags

 pt_in_bucket_flags = zeros(n_pts_input, 16);

 for i_rect = 1:16

58

 cur_rect_min_x = rects(i_rect, 1);

 cur_rect_min_y = rects(i_rect, 2);

 cur_rect_max_x = rects(i_rect, 3);

 cur_rect_max_y = rects(i_rect, 4);

 for i_point = 1:n_pts_input

 if cur_rect_min_x <= avgpts(i_point, 1) && avgpts(i_point, 1) <=

cur_rect_max_x && cur_rect_min_y <= avgpts(i_point, 2) && avgpts(i_point, 2) <= cur_rect_max_y

 pt_in_bucket_flags(i_point, i_rect) = 1;

 end

 end

 end

 % If a point lies on a boundary between buckets, split its weight accordingly

 dupchk = sum(pt_in_bucket_flags, 2);

 for i_point = 1:n_pts_input

 pt_in_bucket_flags(i_point, :) = pt_in_bucket_flags(i_point, :) ./ dupchk(i_point);

 end

 % Average the original points within each bucket

 simppts1 = zeros(16, 2);

 simppts2 = zeros(16, 2);

 for i_rect = 1:16

 simppts1(i_rect, 1) = sum(points1(:,1) .* pt_in_bucket_flags(:, i_rect)) /

sum(pt_in_bucket_flags(:, i_rect));

 simppts1(i_rect, 2) = sum(points1(:,2) .* pt_in_bucket_flags(:, i_rect)) /

sum(pt_in_bucket_flags(:, i_rect));

 simppts2(i_rect, 1) = sum(points2(:,1) .* pt_in_bucket_flags(:, i_rect)) /

sum(pt_in_bucket_flags(:, i_rect));

 simppts2(i_rect, 2) = sum(points2(:,2) .* pt_in_bucket_flags(:, i_rect)) /

sum(pt_in_bucket_flags(:, i_rect));

 end

end % function

performFlowStitching.m (invoked from the MATLAB command line)

% Make a panorama, using images from a folder IMPORTANT:

% Image files must be named so that their lexicographical order

% represents a left-to-right progression.

function [unwrapped_stitch] = performFlowStitching(folder)

% - START OF FUNCTION - %

disp('** Part 0: Initial reading of images **');

imgfiles = dir(fullfile(folder,'*.png'));

n_images = size(imgfiles, 1);

fprintf('Found %i images\n', n_images);

if n_images < 3

 % XXX: copied from performFolderMod.m

59

 % This script could be made to work with only two images,

 % but we don't have a camera with sufficient FOV.

 error('Need at least three images (in PNG format)');

end

% Obtain the heights and widths, and create a cell array that holds the images

images = cell(n_images, 1); % could initialize empty and then use end+1 below...

heights = zeros(n_images,1);

widths = zeros(n_images,1);

for i = 1:n_images

 tmp_img = imread(fullfile(folder, imgfiles(i).name));

 if ndims(tmp_img) < 3

 fprintf('Problem with image no. %i: ', i);

 error('One or more images are grayscale; current implementation requires RGB');

 end

 heights(i) = size(tmp_img, 1);

 widths(i) = size(tmp_img, 2);

 images{i} = double(tmp_img)./255;

end

if max(heights)>min(heights)

 error('All images must have same height');

end

if max(widths)>min(widths)

 error('Current implementation requires all images to have same width');

end

hght = heights(1);

wdth = widths(1);

% High-pass-filter the images

disp('** Part 1: High-pass filtering temp copy **')

%

ims_hp = images;

midGray = 0.5;

for i = 1:n_images

 % custom_imgaussfilt computes a blur radius on its own

 % we add midGray to prevent potential domain problems with rgb2gray

 ims_hp{i} = ims_hp{i} - custom_imgaussfilt(ims_hp{i}) + midGray;

 fprintf('* finished with image %i\n', i);

end

% Compute brute-force horizontal alignment (on the high-passed images)

disp('** Part 2: Brute-force pre-alignment **');

60

% min_overlap needs to be larger than patchsize and

% (more restrictively) topwsize, below

min_overlap = 30;

max_overlap = floor(wdth/2);

best_overlaps = zeros(n_images,1);

for i = 1:n_images

 cur_best_overlap = min_overlap;

 cur_best_rmsdiff = inf;

 for ov = min_overlap:max_overlap

 curr_right = ims_hp{i};

 curr_right = curr_right(:,wdth-ov+1:wdth,:);

 if i == n_images

 next_left = ims_hp{1};

 else

 next_left = ims_hp{i+1};

 end

 next_left = next_left(:,1:ov,:);

 curr_right_red = curr_right(:,:,1);

 curr_right_grn = curr_right(:,:,2);

 curr_right_blu = curr_right(:,:,3);

 curr_right_lum = rgb2gray(curr_right);

 next_left_red = next_left(:,:,1);

 next_left_grn = next_left(:,:,2);

 next_left_blu = next_left(:,:,3);

 next_left_lum = rgb2gray(next_left);

 rmsdiff_red = norm(curr_right_red-next_left_red, 'fro')/sqrt(ov*hght);

 rmsdiff_grn = norm(curr_right_grn-next_left_grn, 'fro')/sqrt(ov*hght);

 rmsdiff_blu = norm(curr_right_blu-next_left_blu, 'fro')/sqrt(ov*hght);

 rmsdiff_lum = norm(curr_right_lum-next_left_lum, 'fro')/sqrt(ov*hght);

 cur_rmsdiff = rmsdiff_red + rmsdiff_grn + rmsdiff_blu + rmsdiff_lum;

 % XXX: should exclude blue from the max here? Or does incorporating

 % luma make this a non-issue? (also need to check RGB vs. BGR order)

 cur_rmsdiff = cur_rmsdiff + max([rmsdiff_red rmsdiff_grn rmsdiff_blu rmsdiff_lum]);

 if cur_rmsdiff < cur_best_rmsdiff

 cur_best_overlap = ov;

 cur_best_rmsdiff = cur_rmsdiff;

 end

 end

 best_overlaps(i) = cur_best_overlap;

 fprintf('* chose raw overlap of %ipx between image %i and next\n', cur_best_overlap, i);

end

61

disp('** Part 2.5: Harmonizing overlap values **');

best_overlaps_temp = best_overlaps;

% better to err in favor of more overlap rather than less

%fudge_target = max(best_overlaps);

fudge_target = (mean(best_overlaps)+median(best_overlaps)+2*max(best_overlaps)+max_overlap)/5;

for i = 1:n_images

 best_overlaps_temp(i) = round(0.435*best_overlaps_temp(i)+0.565*fudge_target);

 fprintf('* adjusted overlap of %ipx between image %i and next\n', best_overlaps_temp(i), i);

end

best_overlaps = best_overlaps_temp;

% Compute optical flow on the overlapping regions

disp('** Part 3: Optical flow and warping ** (be patient!) **');

%

overlap_regions = images;

for i = 1:n_images

 curr_right = images{i};

 curr_right = curr_right(:,wdth-best_overlaps(i)+1:wdth,:);

 if i == n_images

 next_left = images{1};

 else

 next_left = images{i+1};

 end

 next_left = next_left(:,1:best_overlaps(i),:);

 % iat_dense_sift internally converts RGB images to grayscale

 % by averaging the channels. We can do better...

 curr_right_red = curr_right(:,:,1);

 next_left_red = next_left(:,:,1);

 curr_right_grn = curr_right(:,:,2);

 next_left_grn = next_left(:,:,2);

 curr_right_blu = curr_right(:,:,3);

 next_left_blu = next_left(:,:,3);

 curr_right_gray = rgb2gray(curr_right);

 next_left_gray = rgb2gray(next_left);

 % actual I.A.T. stuff begins here

 % NB: patchsize must be less than min_overlap above

 % this patchsize matches that in the tutorial

 patchsize = 8;

 % full resolution

 gridspacing = 1;

 fprintf('(image %i) about to do iat_dense_sift...\n', i);

 disp('...on curr_right_red');

 curr_right_red_sift = iat_dense_sift(curr_right_red, patchsize, gridspacing);

 disp('...on next_left_red');

62

 next_left_red_sift = iat_dense_sift(next_left_red, patchsize, gridspacing);

 disp('...on curr_right_grn');

 curr_right_grn_sift = iat_dense_sift(curr_right_grn, patchsize, gridspacing);

 disp('...on next_left_grn');

 next_left_grn_sift = iat_dense_sift(next_left_grn, patchsize, gridspacing);

 disp('...on curr_right_blu');

 curr_right_blu_sift = iat_dense_sift(curr_right_blu, patchsize, gridspacing);

 disp('...on next_left_blu');

 next_left_blu_sift = iat_dense_sift(next_left_blu, patchsize, gridspacing);

 disp('...on curr_right_gray');

 curr_right_lum_sift = iat_dense_sift(curr_right_gray, patchsize, gridspacing);

 disp('...on next_left_gray');

 next_left_lum_sift = iat_dense_sift(next_left_gray, patchsize, gridspacing);

 %

 SIFTflowpara.alpha = 2.23;

 SIFTflowpara.d = 63;

 SIFTflowpara.gamma = 0.00415;

 SIFTflowpara.nlevels = 5;

 SIFTflowpara.wsize = 7;

 SIFTflowpara.topwsize = 26;

 SIFTflowpara.nIterations = 56;

 SIFTflowpara.nTopIterations = 150;

 % XXX: Are both forward & reverse computations necessary (or is one flow

 % guaranteed to be the inverse of the other? - in practice not true)

 fprintf('(image %i) iat_SIFTflow working on rev red:\n', i);

 [vx_rev_red, vy_rev_red, ~] = iat_SIFTflow(curr_right_red_sift, next_left_red_sift,

SIFTflowpara);

 fprintf('(image %i) iat_SIFTflow working on fwd red:\n', i);

 [vx_fwd_red, vy_fwd_red, ~] = iat_SIFTflow(next_left_red_sift, curr_right_red_sift,

SIFTflowpara);

 fprintf('(image %i) iat_SIFTflow working on rev green:\n', i);

 [vx_rev_grn, vy_rev_grn, ~] = iat_SIFTflow(curr_right_grn_sift, next_left_grn_sift,

SIFTflowpara);

 fprintf('(image %i) iat_SIFTflow working on fwd green:\n', i);

 [vx_fwd_grn, vy_fwd_grn, ~] = iat_SIFTflow(next_left_grn_sift, curr_right_grn_sift,

SIFTflowpara);

 fprintf('(image %i) iat_SIFTflow working on rev blue:\n', i);

 [vx_rev_blu, vy_rev_blu, ~] = iat_SIFTflow(curr_right_blu_sift, next_left_blu_sift,

SIFTflowpara);

 fprintf('(image %i) iat_SIFTflow working on fwd blue:\n', i);

 [vx_fwd_blu, vy_fwd_blu, ~] = iat_SIFTflow(next_left_blu_sift, curr_right_blu_sift,

SIFTflowpara);

 fprintf('(image %i) iat_SIFTflow working on rev luma:\n', i);

 [vx_rev_lum, vy_rev_lum, ~] = iat_SIFTflow(curr_right_lum_sift, next_left_lum_sift,

SIFTflowpara);

 fprintf('(image %i) iat_SIFTflow working on fwd luma:\n', i);

 [vx_fwd_lum, vy_fwd_lum, ~] = iat_SIFTflow(next_left_lum_sift, curr_right_lum_sift,

63

SIFTflowpara);

 vx_rev = median(cat(3, vx_rev_red, vx_rev_grn, vx_rev_blu, vx_rev_lum), 3);

 vx_fwd = median(cat(3, vx_fwd_red, vx_fwd_grn, vx_fwd_blu, vx_fwd_lum), 3);

 vy_rev = median(cat(3, vy_rev_red, vy_rev_grn, vy_rev_blu, vy_rev_lum), 3);

 vy_fwd = median(cat(3, vy_fwd_red, vy_fwd_grn, vy_fwd_blu, vy_fwd_lum), 3);

 % Pad vector fields to the size of the original image. (todo explain more)

 vx_rev_padded = padarray(vx_rev, [patchsize/2 patchsize/2], 'replicate');

 vy_rev_padded = padarray(vy_rev, [patchsize/2 patchsize/2], 'replicate');

 vx_fwd_padded = padarray(vx_fwd, [patchsize/2 patchsize/2], 'replicate');

 vy_fwd_padded = padarray(vy_fwd, [patchsize/2 patchsize/2], 'replicate');

 % At the left edge of each overlap, warp the next image all the way back to meet the current.

 % At the right edge, warp the current image all the way forward to meet the next.

 % Smooth transition in between.

 blend_weight_rev = zeros(1, best_overlaps(i));

 blend_weight_fwd = zeros(1, best_overlaps(i));

 for j_col = 2:best_overlaps(i)

 cur_weight = (j_col-1)/(best_overlaps(i)-1);

 cur_weight = sin(cur_weight*pi/2);

 cur_weight = cur_weight * cur_weight;

 blend_weight_fwd(j_col) = cur_weight;

 blend_weight_rev(best_overlaps(i)-j_col+1) = cur_weight;

 end

 blend_weight_rev = repmat(blend_weight_rev, hght, 1);

 blend_weight_fwd = repmat(blend_weight_fwd, hght, 1);

 vx_rev_wtd = vx_rev_padded .* blend_weight_rev;

 vy_rev_wtd = vy_rev_padded .* blend_weight_rev;

 vx_fwd_wtd = vx_fwd_padded .* blend_weight_fwd;

 vy_fwd_wtd = vy_fwd_padded .* blend_weight_fwd;

 [warpedINL, suppINL] = iat_pixel_warping(next_left, vx_rev_wtd, vy_rev_wtd);

 [warpedICR, suppICR] = iat_pixel_warping(curr_right, vx_fwd_wtd, vy_fwd_wtd);

 overlap_regions{i} = average_by_support(warpedINL, suppINL, warpedICR, suppICR);

 fprintf('* finished with image %i\n', i);

end

% Build a cell array that contains the non-overlapping regions of each image

disp('** Part 4: Selecting non-overlapping regions ** (almost done...) **');

%

nonoverlap_regions = images;

has_nonoverlapping_cols = ones(n_images,1);

for i=1:n_images

64

 overlap_right = best_overlaps(i);

 if i==1

 overlap_left = best_overlaps(n_images);

 else

 overlap_left = best_overlaps(i-1);

 end

 if overlap_right+overlap_left < wdth

 im_cur = images{i};

 nonoverlap_regions{i} = im_cur(:,overlap_left+1:wdth-overlap_right,:);

 else

 fprintf('Uh-oh, no non-overlapping columns from image %i!\n', i);

 has_nonoverlapping_cols(i) = 0;

 end

 fprintf('* finished with image %i\n', i);

end

% Assemble the overlap and non-overlap regions

disp('** Part 5: Assembling regions **');

%

unwrapped_stitch = overlap_regions{n_images};

for i=1:n_images

 if i > 1

 unwrapped_stitch = cat(2, unwrapped_stitch, overlap_regions{i-1});

 end

 if has_nonoverlapping_cols(i) == 1

 unwrapped_stitch = cat(2, unwrapped_stitch, nonoverlap_regions{i});

 end

 fprintf('* finished with image %i\n', i);

end

% swdth = size(unwrapped_stitch, 2);

% todo later: circle warp (in a separate function?)

disp('done: About to save image');

imwrite(unwrapped_stitch, strcat('flowStitchResult-', folder, '.png'));

% - END OF FUNCTION - %

end

custom_imgaussfilt.m

% Wrapper for the Gaussian blur from Image Processing Toolbox

% Automatically computes a blur radius that is useful for high-pass filtering

% and makes some compromises with respect to boundary conditions

%

65

% img must be of class double,

% but both grayscale and RGB are supported

function [im_blurred] = custom_imgaussfilt(img)

nd = ndims(img);

hght = size(img, 1);

wdth = size(img, 2);

% empirically-chosen formula: geometric-harmonic mean

hm = 8;

gm = max(hght,wdth);

if gm <= hm

 error('custom_imgaussfilt: Image must be larger than 8px');

end

for i_safety = 1:32

 if gm-hm < 0.7

 break;

 else

 newhm = 2/(1/hm+1/gm);

 newgm = sqrt(hm*gm);

 hm = newhm;

 gm = newgm;

 end

end

blur_rad = hm;

% XXX: In principle, the circular BC does not make sense for this application.

% However, it best satisfies the def'n of a freq-domain low-pass filter...

cblur = imgaussfilt(img, blur_rad, 'Padding', 'circular');

rblur = imgaussfilt(img, blur_rad, 'Padding', 'replicate');

sblur = imgaussfilt(img, blur_rad, 'Padding', 'symmetric');

medstk = median(cat(nd+1, cblur, rblur, sblur), nd+1);

im_blurred = (0.19*cblur + 0.38*rblur + 0.38*sblur + 0.05*medstk);

end %function

