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ABSTRACT

Mathematical methods have been developed to perform arms-control-treaty verifi-

cation tasks for enhanced information security. The purpose of these methods is

to verify and classify inspected items while shielding the monitoring party from

confidential aspects of the objects that the host country does not wish to reveal.

Advanced medical-imaging methods used for detection and classification tasks have

been adapted for list-mode processing, useful for discriminating projection data

without aggregating sensitive information. These models make decisions off of vary-

ing amounts of stored information, and their task performance scales with that

information.

Development has focused on the Bayesian ideal observer, which assumes com-

plete probabilistic knowledge of the detector data, and Hotelling observer, which

assumes a multivariate Gaussian distribution on the detector data. The models can

effectively discriminate sources in the presence of nuisance parameters. The chan-

nelized Hotelling observer has proven particularly useful in that quality performance

can be achieved while reducing the size of the projection data set. The inclusion

of additional penalty terms into the channelizing-matrix optimization offers a great

benefit for treaty-verification tasks. Penalty terms can be used to generate non-

sensitive channels or to penalize the model’s ability to discriminate objects based

on confidential information. The end result is a mathematical model that could

be shared openly with the monitor. Similarly, observers based on the likelihood

probabilities have been developed to perform null-hypothesis tasks.

To test these models, neutron and gamma-ray data was simulated with the

GEANT4 toolkit. Tasks were performed on various uranium and plutonium in-

spection objects. A fast-neutron coded-aperture detector was simulated to image

the particles.
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CHAPTER 1

A History of Nuclear Nonproliferation and an Approach to

Arms-Control-Treaty-Verification Tasks

This chapter serves as an introduction to the reader, giving all of the background

information necessary to understand the method development, which is the novel

contribution of this thesis. First, in Section 1.1, a history of nuclear weapons is sum-

marized, giving the motivation for the methods developed in this thesis. Next, an

introduction to image science gives a description of each of the elements of the imag-

ing equation (Section 1.2). This section also introduces the concept of task-based

assessment and stresses the importance that statistics play in imaging. Section 1.3

features a discussion on the relevant tasks to arms-control-treaty verification, such as

null-hypothesis and binary-classification tasks. Some background is given on these

tasks as well as the different possible applications relevant to the nuclear-security

mission.

The significant contribution of this work to the subject of treaty verification is

the development of mathematical methods that can perform different tasks with-

out requiring an information barrier (IB). An IB is a software or hardware barrier

that prevents the dissemination of sensitive information on treaty-accountable items

(TAIs) to unauthorized individuals. Further information on IBs as well as an expla-

nation of the different approaches to treaty verification can be found in Section 1.5.

Section 1.4 describes how similar models have been applied to medical imaging prob-

lems in the past. Section 1.6 contains a discussion on the approach this thesis takes

to the development of models that process list-mode (LM) events and make decisions

based on non-sensitive data.

1.1 A History of Nuclear Weapons and Nuclear Nonproliferation

This section explores a brief history of the development of nuclear weapons—from

their development and first use in 1945 to the buildup of the arms race (Sec-

tion 1.1.1). This culminated in the Cuban Missile Crisis (Section 1.1.2), which

is considered the height of the Cold War. A summary is presented of important

treaties signed between the United States (U.S.), Soviet Union (U.S.S.R.) and other
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nuclear and non-nuclear states over the past several decades in Section 1.1.3. To ver-

ify compliance with future treaties, new technologies will be needed. The challenges

associated with these different problems are summarized in Section 1.1.4. More de-

tails, and summaries of interesting historical events, can be found in Charles Loeber’s

book (Loeber, 2005).

While I have attempted to partition history into three periods—the arms race

and escalation of political conflict between the U.S. and U.S.S.R., the peak of the

Cold War in 1962, and the movement towards nonproliferation—reality is not as

clean cut (United States Department of State, 2009). The Vietnam war was fought

in the 1960s between North and South Vietnam, but heavily backed in money and

manpower by the U.S.S.R. and U.S., respectively. In 1968, the U.S.S.R. invaded

Czechoslovakia and in 1979 Afghanistan. However, none of these events carried

significant risk of nuclear war, and the two sides became more reserved in their

tactics after the Cuban Missile Crisis, assisting other countries rather than directly

confronting each other.

1.1.1 From the Dropping of the Bombs to the Start of the Cold War

In 1945 the U.S. dropped two nuclear bombs on Japan; one was dropped on August

6 on Hiroshima, killing 140,000 people within a year (Gibson, 1997), and the second

was dropped on August 9, killing 70,000 within a year in Nagasaki. These acts

hastened the end of World War II as Japan surrendered less than a week later.

At that time, the U.S. only had one remaining warhead in their stockpile and was

the only nation in the world with the technology. Shortly after Japan’s surrender,

optimism about the future of nuclear energy was at a high. The Atomic Energy

Act (Int, 1946) was signed in 1946 and transferred development and construction of

the weapons to the Atomic Energy Commission, which was led by civilians. This

hope for a peaceful future is best emphasized by the following quote in the act:

It is hereby declared to be the policy of the people of the United States

that, subject at all times to the paramount objective of assuring the

common defense and security, the development and utilization of atomic

energy shall, so far as practicable, be directed towards improving the

public welfare, increasing the standard of living, strengthening free com-

petition in private enterprise, and promoting world peace.

History, of course, turned out differently. Through a dedicated effort, including the
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Figure 1.1: The U.S. stockpile increased dramatically from 1946 up to 1966, with
peak production occuring in 1957 through 1961

work of spies in the Manhattan Project (Groves, 1983) such as Klaus Fuchs and

Theodore Hall (Haynes and Vassiliev, 2009; Williams, 1989), the U.S.S.R. developed

an atomic bomb and tested it in 1949. This began the Cold War—the decades long

conflict between the U.S. and U.S.S.R. that was mostly fought through proxy wars.

This state of tension caused the arms race to explode in an exponential manner (Na-

tional Resources Defense Council, 2002). The growth of the U.S. stockpile over the

next two decades is shown in Figure 1.1.

The arms race was not solely limited to the production of more weapons between

the U.S. and the U.S.S.R. The United Kingdom (U.K.) developed its first weapon in

1952, France in 1960, and China in 1964 (Gibson, 1997). In addition to an increase

in nuclear proliferation, the arms race also caused a dramatic increase in yield. The

Fat Man bomb dropped on Japan had a yield of 21kT. In the late 1940s, significant

investment took place in the development of thermonuclear fusion bombs. In May

of 1951, George, with a yield of 225 kT, was tested around the Marshall Islands.

In October 1952, the first staged-thermonuclear device was tested, with a yield of

10.4Mt.

1.1.2 The Cuban Missile Crisis

The height of the Cold War was arguably the Cuban Missile Crisis. Fidel Cas-

tro’s communist regime gained power through a revolution that ended in January,

1959 (Pérez-Stable, 1999). Castro regularly made anti-American remarks, and fear

of a nearby government politically similar to the U.S.S.R. led the U.S. to cancel

sugar and oil imports, beginning a dramatic escalation of tension between the two
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countries. Cuba sought other trade partners, turning to Nikita Khrushchev and the

U.S.S.R. to fulfill their economic needs, raising the ire of the U.S. In response to

Cuban policies such as the nationalization of American-owned Cuban oil refiner-

ies, President Eisenhower levied an embargo on exports to Cuba (Young, 1960) on

October 19, 1960. In 1962, this was further extended to cover almost all imports.

The U.S. attempted to overthrow Castro in April of 1961 (Gilman, 2004). The

CIA trained roughly 1,500 rebels in Florida, Guatemala and other countries coun-

tries beginning in 1959. It was intended to be a covert operation, appearing to

be an independent rebellion, but by the time the invasion occurred, the plan had

been well publicized. The New York Times reported on the U.S.’s plans before the

operation was underway. The attempt to overthrow Castro failed, serving only to

further cement Castro’s power, as the Cuban public was outraged. Furthermore, the

U.S.S.R. used the crisis as a political opportunity, obtaining the Cuban government’s

agreement to place ballistic-missile launch sites on Cuban soil.

The Cuban Missile Crisis covered a 13 day period in October, 1962 (Gale, 2008).

On the morning of October 14, 1962, the US received intelligence that Soviet ballistic

missiles were stationed in Cuba, some of which were believed to have a range of 2,200

miles. Rather than strike the launch sites or invade Cuba, President Kennedy opted

to create a blockade, quarantining all offensive military equipment being shipped

to Cuba. On October 24th, the quarantine went into effect, and while most Soviet

ships reversed course, three still moved toward the quarantine line. These moments

created the most tense moment of the Cold War. Shortly before the U.S. would

have been forced to act, the Russian ships turned around. By October 25th, some

of the missiles were believed to be operational, and the U.S. considered offensive

action to remove them. On the 26th, the Soviets offered to dismantle their missiles

in exchange for the US guaranteeing they would not invade Cuba, and after debate,

the U.S. agreed. The missiles were dismantled on October 28th, ending the episode

that was the closest the world has ever came to nuclear war.

1.1.2.1 Positive Impacts of the Cuban Missile Crisis

The impact this event had on U.S. and Soviet relations was largely positive. It led to

the institution of the “hot line", allowing direct communication between the leaders

of the two countries. It also served as an impetus for the Test-Ban Treaty. Perhaps

the most interesting perspectives were from the two men at the heart of the incident.

In November of 1962, shortly after the end of Cuban Missile Crisis, Kruschev said,
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They talk about who won and who lost. Human reason won. Mankind

won.

Similarly, Kennedy, speaking at an American University Commencement address in

1963 (Kennedy, 1963) stated,

...even in the cold war—which brings burdens and dangers to so many

countries, including this nationś closest allies—our two countries bear

the heaviest burdens. For we are both devoting massive sums of money

to weapons that could better be devoted to combat ignorance, poverty,

and disease.

We are both caught up in a vicious and dangerous cycle with suspicion

on one side breeding suspicion on the other, and new weapons begetting

counter-weapons.

In short, both the United States and its allies, and the Soviet Union and

its allies, have a mutually deep interest in a just and genuine peace and

in halting the arms race. Agreements to this end are in the interests

of the Soviet Union as well as ours—and even the most hostile nations

can be relied upon to accept and keep those treaty obligations and only

those treaty obligations which are in their own interest.

This speech was not only remarkable for its message of peace just eight months after

the world was on the brink of nuclear war, but for an important policy proposal as

well. Negotiations on a test-ban treaty had begun in 1958, four years before the

Cuban Missile Crisis, between the U.S., U.S.S.R. and U.K. However, there were still

disagreements over verification of compliance with the treaty. The U.S. and U.K.

wanted the capability to inspect Soviet missile sites in the event that an explosion

was detected inside the U.S.S.R.’s borders, a stipulation that the U.S.S.R. did not

acquiesce to (Office of the Historian, 1963). In his commencement speech, Kennedy

also included a policy declaration, leading to the formation of the Limited Test Ban

Treaty:

I now declare that the United States does not propose to conduct nuclear

tests in the atmosphere so long as other states do not do so. We will not

be the first to resume. Such a declaration is no substitute for a formal

binding treaty—but I hope it will help us achieve one. Nor would such
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a treaty be a substitute for disarmament—but I hope it will help us

achieve it.

1.1.3 International Progress Towards Nuclear Nonproliferation and Arms Reduc-

tion

This section summarizes the various treaties that have been signed into force.

1.1.3.1 Limited Test Ban Treaty

The Limited Test Ban Treaty (United States and Union of Soviet Socialist Republics,

1963) was signed in 1963. After years of tests over land and at sea and concerns

over nuclear fallout from those tests, the U.S., U.S.S.R. and U.K. agreed on a treaty

to ban tests that caused fallout over adjacent countries, essentially forcing all future

tests to be conducted underground. Verification for this treaty was done by national

means, using radionuclide testing of the atmospheric particles. To detect a possible

explosion, the concentration of decay chain products such as Americium 241, Cesium

137, Iodine 131 and Strontium 90 were measured (CTBTO Preparatory Commission,

2012). The test ban was expanded upon in 1974, when the countries signed the

Threshold Test Ban Treaty, preventing detonation of any nuclear devices over 150kT

underground. Though this treaty was signed in 1974, it did not enter into force until

1990 (United States and Union of Soviet Socialist Republics, 1974).

1.1.3.2 Nuclear Non-Proliferation Treaty

The incredible size of the U.S. and U.S.S.R. stockpile certainly served as an impetus

for disarmament treaties between the countries. While the exact cost is not known,

the Brookings Institute (Schwartz, 2011) has arrived at a minimum estimate (shown

in Figure 1.2). They found that by 1996, the U.S. had spent $409 billion in weapon

development, $3.2 trillion in deployment costs, $830 billion in targeting and control

costs, and $937 billion on nuclear defense (costs in 1996 dollars). Due in part to

the above costs, as well as the existential threat that nuclear weapons posed to hu-

manity, there was momentum in the late 1960s for an international nonproliferation

treaty. In 1968, the Treaty on the Non-Proliferation of Nuclear Weapons (NPT)

was signed (United Nations Office of Disarmament Affairs, 1968) by the five nu-

clear states—the U.S., the U.S.S.R., the U.K., France, and China. There were three

central tenets behind this treaty:
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Figure 1.2: Pie chart of the estimated cost to keep the U.S. stockpile up to date
between 1940 and 1996 in 1996 U.S. dollars (Schwartz, 2011).

1. Non-Proliferation of Weapons: Nuclear-weapon states were not to share their

weapons or knowledge of construction with non-nuclear-weapon states, pre-

venting the proliferation of knowledge required to construct weapons. (Article

I). Non-nuclear weapon states were not to receive or seek out information on

building nuclear weapons (Article II).

2. Disarmament: Nuclear weapon states were to make an effort to stop the arms

race and negotiate towards disarmament (Article VI)

3. Spread of Knowledge for Peaceful Purposes: Non-nuclear states were to sub-

mit to standards set by the International Atomic Energy Agency (IAEA). In

exchange, the weapon states were to share knowledge about any peaceful uses

of nuclear energy (Article V).

The NPT has always been a political balancing act, and is a grand bargain of sorts

between the weapon and non-weapon states. Over the past 25 years, significant

progress has been made on these fronts. However, non-weapon states argue that

disarmament has not gone far enough considering the sacrifice they are making in

foregoing a critical means of defense (Bird, 2015). Australia, for example, expressed

their disappointment in a 2015 statement to the United Nations:

...a growing number of states have expressed frustration at the slow pace

of nuclear disarmament. These have led for some to call for a treaty

banning nuclear weapons...

...Australia, like many States, is concerned that 45 years since the NPT

entered into force some 16,000 warheads still exist. We (Australia) re-

main concerned that some states will continue to produce weapons-grade
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uranium and plutonium, although we acknowledge that a number of nu-

clear weapon states have declared moratoria on the production of fissile

material. We are concerned that some States are developing new, small,

battlefield scale nuclear weapons.

1.1.3.3 Various Disarmament Treaties

In the initial nonproliferation agreements, nuclear disarmament focused on the

number of delivery systems, as these were the most easily verified aspects of the

weapons. In 1972, Nixon and Brezhnev signed the Strategic Arms Limitation Treaty

(SALT 1) (Bureau of International Security and Nonproliferation, 1972). This treaty

stopped further production of land-based intercontinental ballistic missiles (ICBMs).

SALT 1 limited the U.S. to 1,054 ICBMS and the U.S.S.R. to 1,618 ICBMs. It also

set limits on submarine-launched ballistic missiles (SLBMs)—710 missiles on 44 sub-

marines for the U.S. and 950 missiles on 62 submarines for the U.S.S.R. Verification

of these treaties was done by national technical means, and the two states agreed

not to conceal information that would prevent verification. This was largely done by

satellite—one missile was contained in each silo, and even as the U.S. and U.S.S.R.

began to move their silos underground, they were still detectable from satellite. Due

to the large size of the missile-launch sites and the manpower required to maintain

them, it is difficult to hide them from an observer. SLBM verification was accom-

plished through monitoring the subs themselves. These submarines are large and

require visible production and support infrastructure (OTA Project Staff, 1990).

One aspect that the SALT I treaty did not address was Multiple-Independently-

Targeted Re-entry Vehicles (MIRV), which the U.S. was using in their weapons in-

creasingly often. As an example, the LGM-30 Minuteman III (Federation of Ameri-

can Scientists, 2015) has three re-entry vehicles that can be pointed at three different

targets. SALT II sought to address this, specifically putting a limit on the number

of MIRVed missiles (United States and Union of Soviet Socialist Republics, 1979),

and limiting the total number of missiles to 2,250. This agreement was signed in

January of 1979 by Carter and Brezhnev, but was not ratified by the U.S. Congress

as concerns grew over the U.S.S.R.’s invasion of Afghanistan. While the treaty was

never formally ratified, both countries did state they would comply (Arms Control

Association, 2014b).

In 1988, the Intermediate-range Nuclear Forces treaty (Arms Control Associa-

tion, 2014a) eliminated all missiles with a range of 500-5,000km. This treaty effec-
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Figure 1.3: Summary of stockpile and delivery-system reduction agreements made
by the U.S. and U.S.S.R./Russia.

tively prevented the U.S. and U.S.S.R. from putting weapons in friendly territories

close to the opposing countries (such as Cuba). In total over 2,500 missiles were

destroyed. It also was the first treaty with intrusive on-site inspections for verifi-

cation. Verification was done through inspections one to three months before the

treaty entered into force. Up to 20 limited notice inspections a year and the moni-

toring of missile production sites were allowed in the treaty as well. Monitors were

welcome to oversee missile destruction. When the U.S.S.R. disbanded, Russia kept

the agreement with the U.S. All other U.S.S.R. successor states signed by 2002 and

likewise destroyed their intermediate-range missiles.

The Strategic Arms Reduction Treaty (START) (Federation of American Scien-

tists, 1999) was signed in 1991 and went into effect in December of 1994. It stated

that within seven years, both countries must limit the total number of warheads to

6,000 and delivery vehicles to 1,600. Unlike the SALT treaty, START incorporated

an intrusive verification structure. Baseline readings were taken in 1995. Starting

at that time, the U.S. began portal monitoring activities at two Russian missile as-

sembly sites, though Russia chose not to continuously monitor the U.S. portal listed
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in the treaty.

Verification of warhead totals is a far more difficult task than delivery system

totals. Missile construction is visible from satellites, and on site inspections do not

reveal sensitive information, unlike measuring a warhead. The details of warhead

construction are closely guarded secrets by each country. Hence, the verification

process for the first START treaty was fairly simple. Each missile type was assigned

a certain number of warheads, and the inspecting country could come in and verify

that the correct number of warheads (or fewer) were loaded up on the missiles (Tre,

1991) by verifying the absence of nuclear material on some of the reentry vehicles.

SORT (Strategic Offensive Reductions Treaty) (United States and Union of So-

viet Socialist Republics, 2003) entered into force in 2003. SORT obligated the U.S.

and U.S.S.R. to reduce their stockpiles to a maximum of 2,200 warheads (by START

counting rules) in 2012. Both countries stated compliance by 2009. In 2011, New

START was signed (U.S. Department of State, 2011). This further reduced the

number of missiles to 700 total land and sea based missiles, and 1550 total war-

heads. New START counted re-entry vehicles as warheads, as opposed to the orig-

inal START which verified a pre-assigned number for each missile (Arms Control

Association, 2012). In addition, bombers were counted as a single warhead, though

warheads aren’t typically deployed on bombers, so there will be less than 1550 total

deployed warheads when both countries comply. The treaty allows for 10 yearly

on-site inspections at submarine and air bases to count the number of deployed

warheads. The US declared compliance with the state warhead limit in October,

2015 (Kristensen, 2015).

1.1.4 Future Steps Towards Arms Control

Of great importance to this thesis, and the cause of this project’s existence, is the

potential for future limitations on warheads in arms-control treaties. To reduce

the stockpile further, the two countries will need the capability to verify missile

disarmament and warhead dismantlement. Methods need to be developed that

answer the question "Is this measured item a warhead? If so, what type?" This task

is inherently difficult. Neither side wants to reveal secrets about its weapons, so a

measurement must be made that can verify the tested object is a warhead without

gaining access to the intimate details of that object.

The Comprehensive Nuclear Test Ban Treaty (CTBT) (CTBTO Preparatory
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Commission and others, 1996) was ready for signing in 1996. It would ban any nu-

clear tests, even underground, essentially preventing non-weapon states from gaining

the experience necessary to build a functioning nuclear weapon, or risk deploying

a non-functional weapon. It would also prevent weapon states from testing new

weapons. A particular goal of this treaty was to avoid a regional arms-race between

India and Pakistan that could have the potential to incite nuclear war. Unfortu-

nately, this goal has not been accomplished—North Korea, India and Pakistan, the

states that are arguably three of the most important to international nuclear sta-

bility, have not signed the treaty. In fact North Korea has tested weapons in 2006,

2009 and 2015 (BBC News, 2015). In addition, Iran, Israel, China and the US have

signed but not ratified the treaty, though it is believed these countries would fall in

line if the U.S. did ratify it. Verification of this treaty, while not pertinent to this

project, is still an active area of research. Verification is and will be done through a

mix of seismic, hydroacoustic and infrasound monitoring stations around the world

in addition to radionuclide stations to detect possible fallout (Comprehensive Test

Ban Treaty Organization, 2012).

There are many other important problems in the nuclear-security mission that

must be addressed alongside the disarmament effort. Once the number of warheads

becomes the limiting measure of nuclear capability, greater restrictions will need to

be placed on the generation and movement of plutonium worldwide. The IAEA has

worked for decades to inspect nuclear civilian facilities in non-nuclear weapon states,

and prevented the movement of special nuclear material to weapons facilities (Gib-

son, 1997). However, they do not do any surveillance of nuclear-weapon states, and

as the number of weapons decrease further, the U.S. and Russia will need to submit

to inspections of their energy facilities as well.

Another part of the nuclear-security mission is spent-fuel assay, currently done

through some simple neutron and gamma gross count rates. A small percentage

of spent fuel from reactors is fissile plutonium and uranium, but overall 90% of

the world’s plutonium reserves are contained in fuel dumps. High-accuracy, non-

destructive measurement of the fission isotopes in spent-fuel rods is a task that

current research is focusing on.
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1.2 A Brief Introduction to Image Science

Some notational definitions are necessary for the reader. Throughout this work,

vectors and matrices are bolded. As an example, the three-dimensional cartesian

coordinate vector r is used to represent the {x, y, z} coordinate space. Averages are

represented using both angle brackets <,> and in shorthand with a line over the

variable.

To perform tasks such as discriminating an object as one of two types, data

needs to be measured on that object. Expressed mathematically, a system h maps

an object f to some data g. This measurement process can be represented in different

forms depending on how the object and imager are described. This section begins

with a description of those components in Section 1.2.1. After that, Section 1.2.2

introduces the reader to the concept of task-based assessment.

1.2.1 Object, System, and Image Description

For now, only the linear form of the imaging equation is discussed. As an example,

a pinhole camera (pg 629 of Barrett’s "Foundations of Image Science" (Barrett and

Myers, 2003)) maps an object with an emitted spatial distribution f(r) through an

imaging system h(r, r′) to an image g(r′). Shown in equation form,

g(r′) =

∫
h(r, r′)f(r)dr. (1.1)

Here, h is example of a continuous-to-continuous (C-C) system. More generally,

taking the object f as a function of variables X, and the image data g a function of

variables X′, a C-C system can be represented as,

g(X′) =

∫
h(X,X′)f(X)dX. (1.2)

Most current imaging systems, whether they are used to image electromagnetic ra-

diation or neutrons, use a digital output. A fast-neutron coded-aperture detector is

used throughout this thesis. While more detail on this system is discussed in Sec-

tion 3.1, the imager ultimately outputs a detected energy for each photomultiplier

tube in the imaging system. Binning this data by pixel index and energy, the system

can be represented in a discrete-to-continuous (D-C) format,

gm =

∫
hm(X)f(X)dX. (1.3)
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Here, the data vector g would consist of all of the gms, where m goes from 1 to M

total bins. hm(X) is the sensitivity of the mth detector bin to a given object with

parameters X.

The imaging equation is still missing one critical component—the noise. Noise is

randomness in the output due to any stochastic processes in the object or imaging

system. The noise scales with the number of detected counts and therefore the

strength of the object intensity. Accounting for noise is critical when it comes to

task performance and the noise is represented in the imaging system as,

gm =

∫
hm(X)f(X)dX + nm. (1.4)

While reconstruction does not play a role in this project for reasons to be ex-

plained later in this chapter, many imaging related tasks use known information on

g and h to reconstruct the object frec. This reconstruction is then used to make

decisions. There is an enormous amount of literature devoted to this subject, but

some basic reconstruction algorithms are maximum-likelihood estimation maximiza-

tion (MLEM) (Shepp and Vardi, 1982) and filtered back projection (FBP) (Zeng,

2012).

In the following subsections, the source distribution f , imaging system h, data

g, and noise n are discussed in detail. A thorough discussion of imaging systems

can be found in Chapter 7 (Barrett and Myers, 2003). A statistical description of

the objects and image data can be found in Chapter 8 (Barrett and Myers, 2003).

1.2.1.1 Object Description

The object f is a continuous function representing the dependence of the emission

rate over many variables. Particles of a certain type pname are emitted from Cartesian

location r with momentum p and energy E. As such, X in (1.3) could be represented

as {pname, r,p, E}. This f can be represented as a sum of a background term, b,

and source term, s, both dependent on the same parameters as f .

When performing treaty-verification tasks, there are nuisance parameters present

in the object, which are labeled γ in this work. Nuisance parameters are sources

of variability that affect the data acquired, but are not of interest in performing

the task. These unknowns in the system degrade task performance. Understanding

the role nuisance parameters play in the forward model and properly accounting for

them in the observer models helps to compensate for the performance losses they

introduce. One treaty-verification task involves the imaging of an unknown object
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inside a drum or container. This object could have unknown orientation inside the

drum, and the placement of the drum itself is often imprecise. Another nuisance

parameter could be variation in the age of the material among multiple TAIs of the

same type. This causes variation in the detected gamma and neutron intensities and

energy distributions. γj is defined as the set of of nuisance parameters for object j,

e.g.,

γj = {object orientation, object location, source age, etc.}. (1.5)

1.2.1.2 Imaging System Description

The discussed imaging equations in this chapter have all been linear. Ignoring noise

for the moment, they have the property,

gm,1 =

∫
hm(X)f1(X)dX

gm,2 =

∫
hm(X)f2(X)dX

(gm,1 + gm,2) =

∫
hm(X)(f1(X) + f2(X))dX

(1.6)

Unfortunately, this linearity does not hold for gamma ray or neutron imaging.

Gamma rays are attenuated by any material between their emission location and the

detector, and are scattered by surrounding geometries. Neutron imaging deviates

even further from the simple linear mapping; neutrons emitted through spontaneous

fission can cause induce fission events in the object geometry, leading to a chain re-

action. Such a system is highly nonlinear, and would more accurately be represented

by the imaging equation,

gm =

∫
hm(X; f)f(X)dX. (1.7)

In this system, the imaging operator is also a function of the object. This thesis will

not delve deeper into nonlinear imaging systems, but this highly non-linear behavior

led in part to the choice to use a Monte Carlo transport code to simulate detector

data. A more thorough description of nonlinear systems can be found in section 7.5

of "Foundations" (Barrett and Myers, 2003).

1.2.1.3 Noise Description and Probability Theory

Up to this point, focus has been on the deterministic aspects of the imaging equa-

tion. In a real-life experiment, there is always some randomness associated with

g. A random variable x takes on values governed by its probability distribution.
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Figure 1.4: A Poisson distribution with mean 5. The x axis is the value that the
random variable x takes on. The y axis shows the number of times x is sampled out
of 10,000 total trials.

Discrete random variables can only take on discrete values and are described by a

probability Pr(·), while continuous random variables can take on infinitely many

and uncountable values and are represented by a probability density function (pdf)

pr(·). This section discusses two prominent sources of noise in imaging.

Poisson noise (Good, 1986), also known as shot noise, is always present in an

imaging system, and is due to the discrete nature of the emitted particles. When

counting the number of detected particles, only non-negative integer values are pos-

sible. One parameter (called λ) is used to describe a Poisson distribution. λ is

equal to both the mean and variance of the distribution. The discrete probability

distribution for a Poisson random variable x is shown below,

Pr(x) =
e−λλx

x!
. (1.8)

An example Poisson distribution with λ = 5 is shown in Figure 1.4. The Poisson

distribution is positively skewed (the mean value is greater than the median value).

The Gaussian distribution (Gauss, 1809), defined below, also plays an important

role in image science. Gaussian distributions are defined by their mean x and vari-

ance (spread) σ2
x, though they are often described by their standard deviation σx as

well. A Gaussian pdf is,

pr(x) =
1

2πσ2
x

e
− (x−x)2

2σ2x . (1.9)
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Figure 1.5: A Gaussian distribution with mean 0 and variance (and standard devi-
ation) 1. As a rule of thumb, 68% of the values fall within one standard deviation,
95% within two and 99.7% within three.

The probability of selecting a value of x within a certain range can be found by

integrating this probability density over that range of x values.

The pdf for a Gaussian distribution with mean 0 and variance 1 is plotted in Fig-

ure 1.5. Gaussian distributions are also known as normal distributions and are occa-

sionally represented in this work as N (x, σ2
x). Gaussian noise is present in imaging

due to energy smearing (p. 756 of (Barrett and Myers, 2003)). For example, when

a gamma ray of energy E0 enters the detector and is absorbed, the output of a

given PMT in the imaging system is a voltage V . V is actually Poisson due to

photon-counting statistics, but for enough detected photons it can be modeled as

a Gaussian random variable with mean and variance dependent upon the absorbed

energy and detector quality.

Gaussian distributions also arise from the Central Limit Theorem (Araujo and

Giné, 1980), which roughly states that the sum of independent, identically dis-

tributed random variables xn with mean xn and variance σ2
xn yields an approximately

normal distribution with mean
∑N

n=1 xn and variance
∑N

n=1 σ
2
xn . The observer mod-

els presented in this paper can generally be presented as a sum of independent

and identically distributed random variables, and hence, with a few exceptions, the

resulting test statistic distributions are Gaussian.

Finally, the multivariate Gaussian distribution plays a role in the channelized

Hotelling observer. The pdf on a set of random variables x, whether they are
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correlated or uncorrelated, is,

pr(x) =
1

(2π)N |Kx|
e
−1
2

((x−x)†)K−1
x (x−x)†). (1.10)

Kx is the covariance matrix, which contains the variance on each element of x along

the diagonal and the covariance between each pair xi and xj where i 6= j in the

off-diagonal elements. |Kx| represents the determinant of that covariance matrix.

1.2.1.4 Image Description

Photon-counting detectors often bin the data into a vector g that contains the

number of detected events attributed to a certain pixel interaction and in a certain

energy range for a given acquisition time. Photon-processing detectors process data

in LM format. Throughout chapter 4, the data is represented by a total number of

detected events, N , and the detectable data for each event, {An}.
The statistics of the image data are governed by those of the object and imaging

system. Poisson noise is present due to counting statistics. If an object is imaged

for a certain acquisition time, only a certain number of particles Nd are detected,

and the distribution on the number of detected particles is Poisson with mean Nd.

The mean number of detected particles Nd is related to the mean number of emitted

particles Ne by a detection efficiency ηe−d. For a point source and a detector without

any surrounding geometries to scatter particles, there are generally two components

to this detector efficiency; a factor representing the geometric likelihood that an

emitted particle hits the detector ηgeom and a detector efficiency representing the

probability that a particle entering the detector interacts in the detector ηdet.

Object variability due to nuisance parameters is another source of randomness

in the image data. When nuisance parameters are present, the data g is doubly

stochastic, as there are two sources of variability. When determining the mean of g,

which is denoted g, two averages must be taken:

g =
〈
〈g〉g|γ

〉
γ

(1.11)

The first average is over the Poisson noise in the imaging system given knowledge

of the nuisance parameter. The second average is over the nuisance parameters.

1.2.2 Task-Based Assessment

Image quality is a term that can take on many different meanings depending on the

way it is used. Some define image quality by the resolution of a reconstructed object;
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the more capable the imaging system is of resolving small features in the object, the

better the system for that task. Measures such as the signal-to-noise ratio (SNR,

defined in (1.12)), contrast to noise, mean squared error between a reconstructed

object and the original object, and other statistics are also useful measures of image

quality. In the below definition of SNR, the variables x1, x2 are random variables

with means x1, x2 and variances σ2
x1
, σ2

x2
,

SNR =
x2 − x1√
σ2
x2

+ σ2
x1

(1.12)

A multitude of research groups in the national-security mission are currently working

on novel detectors to achieve better resolution, or acquire more complete data. The

University of Michigan, for example, is working on a Compton neutron imager to per-

form long range localization (Poitrasson-Rivière et al., 2015). Oak Ridge National

Laboratory has developed a detector (Archer et al., 2010) that uses time-correlated

measurements to count coincident detections due to fission. These systems all pro-

vide useful contributions to the nuclear-security mission and potential verification

of TAIs.

This thesis, however, takes a task-based approach to imaging, emphasizing detec-

tors and decision making models that best perform certain objectives. Task-based

imaging requires a well-defined task to be performed on objects, an observer to

perform that task, and a figure of merit to judge the observer performance. There

are many different tasks applicable to arms-control-treaty verification that will be

explored in Section 1.3. The most prominent are null-hypothesis tasks, binary-

classification tasks, and counting tasks.

An observer is the person or mathematical model that performs the defined task.

A great summary on observer models, including those relevant to this work, can be

found in (Barrett et al., 1993). In a task such as tumor detection in medical imag-

ing diagnostics, the human observer uses the reconstructed object to make decisions.

X-ray CT, SPECT, and PET imaging often use a human observer (radiologist) to

make a decision in a given task. This thesis, however, will focus on the application

of mathematical observer models to treaty-verification tasks. These mathematical

models act on the data, ultimately returning a scalar test statistic which is thresh-

olded or compared to some range of values to make a decision

There also must be a figure of merit to judge the ability of the observer model

to perform a given task. The figure of merit used will be task-dependent; a deeper

explanation for analyzing model performance for tasks related to treaty verification
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is explained later in Section 1.3.

1.3 Relevant Treaty-Verification Tasks

There are many potential tasks that are necessary to perform in arms-control-

treaty verification and for other purposes in the nuclear-security mission. Null-

hypothesis (Section 1.3.1), binary-discrimination (Section 1.3.2), counting (Sec-

tion 1.3.3), estimation (Section 1.3.4) and other important tasks (Section 1.3.5)

will be discussed in this section, and examples will be given for each.

1.3.1 Null Hypothesis Tasks

To perform a hypothesis test, one begins by defining the null hypothesis and alterna-

tive hypothesis. The null hypothesis, for example, could be that the measured TAI

is of a single type, or has certain physical characteristics. The alternative hypothesis

would be that the null hypothesis is not true. A statistical test is used to declare

whether a tested object’s measured data is consistent with the null hypothesis state-

ment within statistical chance. If so, the the null hypothesis is not rejected. If not,

the null hypothesis is rejected.

Calibration data on a trusted TAI would be measured, and the mathematical

observer model would be trained on this data. This observer returns a test statistic

when an independent measurement is taken from the same source. The test statistic

itself is a random variable due to Poisson noise and randomness in the source term.

The spread on the test-statistic distribution will depend on the variability of the

detector data from one measurement to the next, and over many measurements of

the trusted source a distribution on test statistic values pr(t|H0) is built for the null-

hypothesis object. When measuring an unknown source, the test statistic returned

by the model can compared to pr(t|H0) and rejected if the value is unlikely.

An intuitive explanation of a two-tailed null hypothesis test is shown in Fig-

ure 1.6. A type I error occurs when the value of the test statistic (resulting from

performing the model on H0) falls outside the accepted range of values. This occurs

with probability α. Because the range of values for t to be accepted can not be

infinite, there will always be a finite probability of rejecting H0 even if it is true. A

correct acceptance of H0 then occurs with probability (1− α) when testing the the

object used to train the statistical test. A type II error would represent a successful

spoof of the trusted TAI and occurs with probability β. (1− β) is referred to as the
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Figure 1.6: The left image (Subudhi, 2013) shows an example test-statistic distribu-
tion pr(t|H0), which in this case is standard normal. 95% of the values fall within
two standard deviations, or for this distribution, a value within ± 2. A test statistic
with an absolute value greater than 2 is rejected. On the right is a decision table. A
type II error occurs when the measured item is inconsistent with H0, but model fails
to reject it. A type I error occurs when the null hypothesis is true but the model
rejects the item.

"power" of the test. A greater "power" implies that the test is stronger in rejecting

Ha.

In this dissertation, null-hypothesis performance plots consist of the percent of

the time H0 is rejected as a function of acquisition time. As more data is read in, it

becomes increasingly likely that the model will correctly reject any source that is not

from H0. This is exemplified in Figure 1.7. When a source belonging to a class other

than H0 is tested, the observer ideally rejects it. As the acquisition time increases,

the test statistic should deviate further from pr(t|H0), and be rejected more often.

When the H0 source is tested, it is rejected with a probability determined by the

power of the test. In this case, values greater than 2 standard deviations from the

mean were rejected, which corresponds to 5% of of the samples.

It is important to recognize that a null-hypothesis test can never be used to

confirm a hypothesis, only reject it. There is always a finite probability that the

tested object was not of the null-hypothesis type. There are two potential causes for

this. First, the detector may not be able to distinguish the null hypothesis object

from the tested object due to poor resolution or lack of some other discriminatory

capability. Second, the object itself could just be a very well done spoof that fools

the observer model. These pitfalls require a more practical definition of "successful"

result. One potential answer is that a spoof must be prohibitively expensive to

produce so that it is not in the host country’s best interest to do so.

Examples of null-hypothesis tests include the Chi-Squared Goodness of Fit

Test (Greenwood and Nikulin, 1996) and the Mahalonobis distance (De Maess-
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Figure 1.7: Example performance plot for a null hypothesis test. The probability of
the tested object being rejected is plotted as a function of time. In this task, there
are only two outcomes (reject/not reject). The error bars are therefore governed by
binomial statistics. One standard deviation is defined as sqrt(pr∗(1−pr)

N
), where N is

the number of samples taken to test the model.

chalck et al., 2000). These are discussed in detail in Section 6.1. Next, specific

hypothesis-testing tasks are introduced.

1.3.1.1 Is the Imaged Object a Warhead?

In this task, the host country places a warhead inside some container (such as the

one shown in Figure 1.8) in front of a measurement system. The monitor wants

to confirm the presence of a warhead inside the container. This is a question that

would likely be central to any warhead-counting procedure, but is inherently diffi-

cult to answer. Different individuals and groups have different answers as to what

constitutes a warhead. The IAEA, for example, declares a "significant quantity"

of certain isotopes and elements necessary to create a bomb, such as 8kg of pluto-

nium or 25kg of highly enriched uranium (defined as >20% U235) (IAEA in Austria,

June). A mass of plutonium on a similar order of magnitude to these numbers could

be treated as a warhead, but that disregards how difficult the construction of a

functional warhead is, and the necessary geometry. Alternatively, a warhead could

be defined as SNM arranged to produce yield? If this were the chosen definition,

the geometric construction would need to be taken into account.



37

Figure 1.8: An example storage container for a warhead.

1.3.1.2 Was the Object Changed in Transport?

In this task, an object is measured prior to transport, then is loaded into a vehicle

that is outside a monitor’s purview (Hauck et al., 2012). It is measured again when

it reaches its arrival destination, and the monitor must verify that the imaged object

is the same as the object that left the initial facility. This is a well-defined task in

comparison to warhead verification. A template-matching technique would be the

desired approach to this problem; the monitor would compare the first and second

measurements to make a decision. However, there are inherent hurdles to overcome

in this specific task not present in a warhead verification task. The background

distribution, for example, would be different due to the change in location. In

addition, it is possible that the object moved in transport, causing extra variability

in the source term.

1.3.2 Classification Tasks

Binary-classification and N-type classification tasks also have a role to play in treaty

verification. In a binary-classification task, there are two hypotheses. For example,

in nuclear-threat detection, one hypothesis, denoted H1, is that only a background

is present and the second hypothesis, H2, is that a source and background are

present. Calibration data is acquired for the two hypotheses and used to train the

mathematical model. Then the model is tested on independent signal present and

signal absent distributions, resulting in two test-statistic distributions, pr(t|H1) and

pr(t|H2), as shown in Figure 1.9.



38

Figure 1.9: Example test statistic distributions when performing the observer model
on signal-absent and signal-present scenes. The signal-absent distribution is pr(t|H1)
and signal-present distribution is pr(t|H2).

H1 is true H2 is true
Choose H1 Correct Type II error
Choose H2 Type I error Correct

Table 1.1: Decision table for binary-classification tasks. There are two hypotheses,
H1 and H2, that the observer must decide between. Incorrectly diagnosing source 1
as source 2 is a type I error and incorrectly diagnosing source 2 as source 1 is a type
II error.

A threshold is set based on these distributions. Any test statistic greater than the

threshold causes a signal-present declaration; a lower test statistic yields a signal-

absent declaration. An example decision table is shown in Table 1.1. The penalties

for a type 1 error and type 2 error are task-dependent. In a threat-detection task,

the costs of incorrect decisions are very different. The type 1 error raises an alarm,

wasting valuable time and taxpayer money. The type 2 error allows for the possibility

of a nuclear attack. Each of these would need to be assigned their own costs. If

the task is instead the binary classification of a tested item as one of two types,

the penalty for either of the two errors would be the same—a misclassification of

the object. Choice of the test-statistic threshold changes the probabilities of each

of these errors. For example, if the threshold is set at the far left of the distribution

in Figure 1.9, the model always decides H2. If the threshold is set at the far right,

it always decides H1.

One figure of merit to gauge the performance of an observer model in binary-

classification tasks is the Receiver-Operating-Characteristic (ROC) curve (Hanley

and McNeil, 1982). This plots the true-positive fraction (probability of correctly
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Figure 1.10: Example ROC curve for overlapping test-statistic distributions, as
in Figure 1.9. If the two test-statistic distributions completely overlap, the ROC
curve would be a diagonal line from (0,0) to (1,1). If the two test statistic distribu-
tions are completely separated, the ROC curve goes from (0,0) to (0,1) then over to
(1,1).

choosing the H2 outcome) as a function of the false-positive fraction (type II error

probability) as the threshold is varied. An example ROC curve is shown in Fig-

ure 1.10. Using this curve and the cost functions associated with type 1 and type

2 errors, one can choose an optimal threshold. Further discussion on this topic can

be found in section 13.2 of (Barrett and Myers, 2003).

This work is not immediately concerned with how to define the cost functions for

incorrect decisions or where exactly to set the threshold for each task. Therefore,

the figure of merit used in this thesis is the area under the ROC curve, which can

be seen as a measure of the separation of the two test-statistic distributions, closely

related to the SNR (see p. 819 of (Barrett and Myers, 2003)). When the test-

statistic distributions overlap, the AUC takes on a value of 0.5. When they are

completely separated, it has a value of 1. In this dissertation, binary-discrimination

task performance isjudged by plots of the AUC as a function of acquisition time

(see Figure 1.11)—as more counts are received, the observer model becomes more

certain in declaring an unknown source as type H1 or H2.

One advantage to using the AUC as a metric is that the two-alternative forced-

choice test (2AFC) can be used to determine the AUC value (Fechner et al., 1966).

With this method, the observer is presented with a series of pairs of testing datasets.

One data set is a measurement of source 1, and the other is a measurement of source

2. For each dataset, the observer calculates a test statistic that is intended to have
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Figure 1.11: Example performance plot for a binary classification task.

a higher value for source 2 than for source 1. The AUC is equivalent to the fraction

of the time that the source 2 test statistic is greater.

N-type classification can be accomplished in a similar matter. Rather than use a

single threshold, the test-statistic space can be segmented into N (or more) decision

sections. There would be a probability of the test statistic falling into each decision

range, pr(∆tn, |Hj). A decision table analogous to Table 1.1 would have N×N out-

comes, and there would be a corresponding cost for each specific incorrect outcome.

Ideally, multiple test statistics would be used, each corresponding to a different as-

pect of the measurement data, and this M < N dimensional space could be used to

classify the items.

While the development of models that can perform binary or N source classifi-

cation tasks is important, the ideal model would be able to answer the question "is

this tested source of type 1,2,...N or a spoof?" A combination of the classification

and null-hypothesis tests would be needed to answer the question.

1.3.2.1 Explosive Dismantlement

One type of binary-classification task useful for treaty verification is explosive

dismantlement. The reader can consider a warhead as being composed of two

components—a primary object that is used to start the nuclear reaction and a sec-

ondary that is compressed by the energy released by the primary, drastically increas-

ing the yield. The dismantlement step involves the removal of the primary (see Fig-
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Figure 1.12: Illustration of the removal of the explosive from a pit.

ure 1.12). More information on this task can be found at http://nnsa.energy.gov/

ourmission/managingthestockpile/dismantlementanddisposition. A monitor

would be performing a binary classification task, determining whether the tested

TAI does or does not still have the high explosive attached. This could be achieved

by using a template-matching approach, with the bare pit serving as one hypothesis,

while the pit surrounded by the explosive serves as the second hypothesis.

1.3.2.2 Categorize Warhead Type

The U.S. has a limited number of nuclear warheads and each type gets assigned to

a certain missile (Norris and Kristensen, 2010). A model that can perform N-source

classification tasks would be ideal.

1.3.3 Counting Tasks

While the work accomplished in this thesis has focused on the prior two tasks, the

development of models that can count the number of warheads is desired. Ideally, an

imaging detector could be placed at a storage site and image every object in its field

of view, counting the number of warheads. This is a very difficult task. The largest

obstacle to overcome is the lack of linearity in the imaging system. Gamma-rays

emitted from further objects are attenuated by closer objects. Neutrons emitted

from farther objects induces fission in closer objects.

1.3.4 Estimation Tasks

While not a focus of this thesis, estimation tasks are common in medical imaging

and have a role to play in the nuclear-security mission. Rather than detecting the

presence of a material, these tasks estimate some feature of the object, whether that

be mass, size or location. Performance can be judged by an EROC curve, where the

y axis is the number of times a true positive result occurs with correct estimation

http://nnsa.energy.gov/ourmission/managingthestockpile/dismantlementanddisposition
http://nnsa.energy.gov/ourmission/managingthestockpile/dismantlementanddisposition
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of the source parameter.

1.3.5 Other Necessary Tasks for the Nuclear Security Mission

There are many other tasks that prove useful for the nuclear security mission. These

range from detection and localization tasks to portal monitoring.

1.3.5.1 Threat Detection and Localization

The first project I worked on was the detection and localization of nuclear threats in

a cluttered radiation environment (The APS Panel of Public Affairs, 2013), such as

a city (see Figure 1.13). It is a critical mission to ensure civilian safety. Specifically,

this project emphasized the detection of dirty bombs (United States Nuclear Regula-

tory Comission, 2012), which are radiological dispersal devices that terrorists could

construct. This is a hard problem—the signal is generally weak and the background

distribution changes with time and location. To perform detection and localization,

an imaging detector was placed inside a vehicle and driven down a street. Eleven

images were taken, once every three meters. This setup differs significantly from

medical imaging devices, as the projections of the object scene onto the detector

come from a limited number of angles, making reconstruction of the object scene

difficult.

For this task, the object was discretized, and split into 1m3 voxels, with each

voxel having a certain intensity (emission energy was ignored in this study). The

background was modeled as a lumpy-Gaussian distribution. To generate this model,

the number of Gaussian peaks was randomly selected from a predefined distribution,

with the center of each peak being randomly selected from the object scene. The

object was modeled as a point source, randomly located in the field of view. Local-

ization, as discussed above, is an estimation task, and model performance was judged

to be correct when it correctly predicted the object location within a tolerance of

1-3m.

MLEM reconstruction was performed and if the peak reconstructed intensity

was above some threshold, the object was declared present at that location. The

estimated location was compared to the known value. Alternatively, the scanning

linear observer (SLO) (Whitaker et al., 2008) assumes a multivariate normal dis-

tribution on the data. Because the SLO uses knowledge of the correlations in the

detector data between different source locations, it is able to more effectively detect
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Figure 1.13: A detector is driven through an environment, with different regions of
the object scene in its field of view at different times. In simulation, it reconstructed
a 80m x 100m scene.

and locate the source. Performance of these methods is shown in Figure 1.14.

1.3.5.2 Cargo Screening and Portal Monitoring

A good summary for this task can be found at https://missions.llnl.gov/

counterterrorism/cargo-containers. Each year, roughly 6 million cargo con-

tainers enter the U.S. and a small fraction are physically inspected. Officials are

concerned that a party might hide uranium, plutonium or other special nuclear

material (SNM) in these containers, but physically searching each container would

be impossible due to time constraints. In this task, cargo containers shipped from

overseas are imaged for potential explosives. This is difficult in part due to the

significant shielding in these containers and the many different object types that

could be stored inside the container. In addition, there is background supression—it

is hard to acquire background calibration data because the containers themselves

serve to suppress the background over the field of view. Developed detectors need

to quickly image the contents and verify the absence of nuclear materials.

Both the threat-detection and cargo-screening missions have added practical con-

straints. The cost of a false alarm is expensive; it requires professionals to investigate

the alarms themselves. Given that the likelihood of SNM detection is generally rare,

https://missions.llnl.gov/counterterrorism/cargo-containers
https://missions.llnl.gov/counterterrorism/cargo-containers
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Figure 1.14: Plot of threat detection and localization performance. The scanning
linear model, which utilizes the statistics of the detector data set, represents an
improvement over MLEM reconstruction.

a high false-alarm rate wastes operator time and has a negative impact on commerce.

In addition, nuclear threats are not the only concern for cargo screening as drug and

human trafficking are more common, so a nuclear detector is one of many modalities

that assess the container.

1.3.5.3 Spent-Fuel Assay

The IAEA is responsible for verifying that nuclear material dedicated to, and gen-

erated from, civilian facilities is not repurposed for weapons programs. To confirm

this, methods must be developed that can accurately estimate the amount of pluto-

nium contained in fuel cells. Some examples of systems developed for spent nuclear

fuel assay, as well as deeper discussion of the motivation, can be found in (Willman

et al., 2006; Quiter et al., 2010).

1.4 Medical Imaging Applications

The mathematical models used in this work have previously been applied to various

tasks in the field of medical imaging. I will discuss two of these in this section.
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Figure 1.15: The different SPECT detector designs considered by Lee.

1.4.1 Detector Optimization

Dr. Chih-Jie Lee worked on a project for General Electric (GE) to do a cost-benefit

analysis of different detectors for the task of detecting and localizing myocardial

infarction (Lee et al., 2013). The pixels that GE uses in their SPECT imagers are

expensive to manufacture, and GE wanted to gauge performance in detection and

localization tasks using various other pixel arrangements (see Figure 1.15). Patients

were simulated with the NURBS-based cardiac torso software package. The back-

ground consisted of several different organs in his study. Standard geometries and

ranges in radiotracer uptake were simulated for all of these organs. Attenuation

by the organs was included as well. Defects were varied in size and location in the

heart. Radiotracer uptake changes due to these defects, and this was the signal

that the models looked for. The scanning linear observer was applied to perform

the detection and estimation tasks on these defects. Lee found that GE could sub-

stantially reduce the number of pixels by up to 30% while still maintaining optimal

performance.

1.4.2 Modeling Human Performance

Park and Clarkson (Park et al., 2005) studied the ability of the channelized Hotelling

observer to detect signals in signal-known-exactly and signal-known-statistically

tasks. A description of the channelized Hotelling observer will not be given here

as it is discussed later in this dissertation. Performance was compared to human ob-
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servers at those same tasks. The motivation for this work, and similar work (Kupin-

ski and Clarkson, 2005), is that a radiologist’s time is expensive and mathematical

observers that show superior performance could be used to develop improved detec-

tor systems. A lumpy background model was used throughout the study, combining

a series of gaussian curves over the image plane. The signal was treated as a fixed

(signal-known-exactly) or variable (signal-known-statistically) peak in the projec-

tion data. Three different imaging systems were considered, trading off resolution

for sensitivity. They found that the channelized Hotelling observer outperformed

the human observer when the signal was known, but performed poorly when the

signal location was unknown.

1.5 Current Approaches to Warhead Verification and the Necessity for an Infor-

mation Barrier

While the need to verify individual warheads and closely monitor and track pluto-

nium production and storage may be a few years away, the difficulties inherent to

warhead verification have been recognized for decades. In this section, two standard

approaches to treaty verification are discussed (Section 1.5.1). The need for IBs

in treaty-verification tasks is further expanded on (Section 1.5.2). One example is

discussed of a system that utilizes an IB to categorize TAIs without giving the mon-

itor knowledge of sensitive characteristics of the objects. Finally, some competing

approaches to treaty verification are outlined (Section 1.5.3).

1.5.1 Template Matching vs Attribute Estimation

There are two common approaches that can be taken to verification tasks. One is

an attribute-verification approach. This could extract features such as the mass,

isotopic composition or size of the warhead. The system would output information

that would give the monitor confidence that what it is measuring is a warhead and

not a spoof.

The second approach to these tasks is a template-matching approach, and this

dissertation focuses on those methods. This approach assumes that calibration data

has been taken on previously verified TAIs. The observer models are built from

these trusted TAIs’ data, then used to classify independent objects. The medical

imaging community has been using methods to perform similar tasks for decades,

such as the Bayesian ideal observer and channelized Hotelling observer.
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1.5.2 Need for Information Barriers

Basic neutron count-rate detectors have been used in the past to verify the absence

of SNM on the missiles. Combined with an estimate of the mass and size of the

warhead, this can give information on the composition and amount of plutonium.

So far, this information has been sufficient to perform verification in the limit of

a large number of missiles. As future treaties reduce the stockpile further and

warheads become the limiting factor, detecting the difference between a chunk of

plutonium or other neutron emitting substance and a warhead is critical. A gamma

spectrum for example can give information such as the uranium and plutonium

isotopic composition. Geometric properties can be determined through a particle

imager, whether for neutrons or gamma rays. Generally, it would be ideal to allow

for as many detection modalities as possible to perform the verification task.

However, the act of taking these measurements, and imaging in particular, would

release sensitive information to the monitor; through reconstruction methods such

as FBP or MLEM, the monitor could gain access to the shape or other geometric

properties of the warhead. The monitor wishes to verify that the imaged item is

a TAI, while the host wants to avoid disclosing any sensitive aspects of the ob-

jects (Fuller, 2010). Because of this, there has been a focus on developing systems

and methods that utilize an IB to prevent transmission of sensitive information to

the monitor.

One such system that utilizes an IB is the Controlled Intrusiveness Verification

Technology (CIVET) system (Zuhoski et al., 1999), developed in part by Zuhoski,

Indusi and Vanier at Brookhaven National Laboratory. Essentially, CIVET is an

intelligent system, with software jointly developed by the host and monitor, that can

analyze data and make declarations about the objects being measured without re-

vealing any sensitive information to the monitor. The implementation of the system

outlined in the referenced paper only uses a high-resolution gamma spectrometer to

test sources, though other instruments could also be included behind the IB. The

objectives for the development of this system are:

1. The system must be unable to transmit data.

2. The system must be unable to covertly store data.

3. The system must assure proper program (software) execution.

4. The system must verify proper sensor operation.
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Figure 1.16: An intuitive picture summarizing a template-matching approach to
treaty verification that utilizes an IB. The red blocks signify need for an IB, yellow
the need at certain times, and green is open to the monitor.

5. The system must securely protect collected data.

6. The system must be composed of exportable technology.

7. Both hardware and software must be inspectable.

Due to specialized components and a lack of documentation, commercial hardware

cannot be used—the host and monitor must therefore jointly develop their own

hardware. The benefit is that there is not a limit on the number of sensors to

be used, as they all would be behind this IB. Additional examples of IBs are the

Trusted Radiation Identification System (TRIS) and Trusted Radiation Attribute

Demonstration System (TRADS) systems (Seager et al., 2001; Mitchell and Tolk,

2000; Geelhood et al., 2000) developed by Sandia National Laboratories. These

systems are fundamentally similar to the CIVET system, placing a measurement

behind an IB. Figure 1.16 gives an intuitive summary of the CIVET system and any

others that utilize an overarching IB while taking a template-matching approach.

IBs are very costly. They would require significant joint effort on the part of

the U.S. and Russia to develop these methods and authenticate the system. In

comparison, a mathematical model that stores only non-sensitive information that

is still sufficient for confirmation (to be discussed in more detail in the following

section) would allow the host and monitor to share all information in the model.

The ideal measurement system would be unable to distinguish objects that differ

along predefined sensitive parameters regardless of the model used to perform the
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task. The output of such a measurement device could be shared with the monitor.

1.5.3 Competing Work in the Field of Information Barrier-less Imaging

This section explores some approaches that other research groups have taken to

performing treaty verification tasks with a significantly reduced IB.

1.5.3.1 Zero Knowledge Protocol

A “Zero Knowledge Protocol" (ZKP) has been developed by Glaser, Barak and

Goldston at Princeton (Glaser et al., 2014). A template that corresponds to the

negative of a neutron measurement is preloaded into the measurement device. An

example could be a neutron image of an object, where the data vector g1 consists of

the counts detected in each pixel. The host and monitor would agree on a number

of desired counts in each bin, gmax. The detector output would then be preloaded

with gmax − g1 counts in each bin. This initial value would not be available to the

monitor. A tested item is then imaged, and the template value for the detected bin

would be incremented by one for each detected event. At the end of the acquisition

time, every bin would have gmax counts (ignoring Poisson noise). If the number of

counts in each bin is not gmax, then the template did not match the tested item.

The group at Princeton proposes to use multiple preloads along with one previ-

ously verified and one unknown item. The monitor would choose which preload to

use with which item. The monitor does not know the preloads but does know it is

designed to yield gmax counts in each bin. If the preload that is the negative acts on

a trusted item or an unknown item of the same type, it will yield the correct result.

The other preload will not. This procedure would occur many times. If the host

was to cheat and design the second preload to match the second object, multiple

measurements mixing the different preloads and objects would pick out the cases

when the preloads and measurements are mismatched, proving to the monitor that

the host was cheating. Otherwise, if the unknown item was of the same type as the

verified item, an "accepted" result would occur when the preload for the trusted

item was used, and a negative result would occur when the preload for a different

item was used. Therefore, the monitor could declare that the two objects are the

same and the host did not cheat if they have a positive result 50% of the time. More

information, including an intuitive explanation of the protocol using marbles in a

bucket, is presented in (Glaser et al., 2014).
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Figure 1.17: The SPGC uses a single pixel and randomly changing mask pattern to
encode a measurement in time.

In this protocol, an IB would be required to hide the preloads from the monitor.

In addition, it’s not entirely clear how this model could account for nuisance pa-

rameters; its possible that many distinct preloads could be used, one corresponding

to each specific nuisance parameter realization. The expected fraction of positive

results would then be 1
2∗NNP

where NNP is the number of nuisance parameter real-

izations used.

1.5.3.2 Single-Pixel Gamma Camera

A group at Pacific Northwest National Lab has worked on a single-pixel gamma

camera (SPGC), shown in Figure 1.17 to perform treaty verification tasks Gilbert

et al. (2016). This detector would consist of a single large-volume pixel and have

a mask pattern that changes randomly with time. In order to decode the output

of the detector pixel and reconstruct an image of the object, the mask pattern’s

initial seed would need to be known. Only the host would have access to the mask

sequence, but by starting the mask at the same initial seed, a measurement of a

trusted item could be compared to a tested item.

1.6 Task-Based Approach to Limiting Dispersal of Sensitive Information in Treaty

Verification

This work focuses on methods that can be used to overcome the IB requirement,

and if not that, significantly diminish the amount of measurements that need to be

taken behind an IB. It serves as a big picture summary for the models developed in

this thesis.

1.6.1 Use of Projection Data

Projection data is the data that results from measuring an object with a detector.

The methods developed in this dissertation only use projection data to verify the
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inspection objects. This adds a minor benefit to treaty verification, as the monitor

would not see aggregated measurement data at the time that the test is performed.

However, any information given to the monitor at the time should ultimately be

considered theirs to own, so the projection data would still reveal sensitive informa-

tion on the objects. The monitor could use the projection data and knowledge of

the imaging system to reconstruct sensitive details on the object.

More importantly, with a well defined task, the statistical nature of the projection

data can be utilized to improve task performance. This is because reconstruction

methods, such as FBP or MLEM, ignore that statistical information. Past studies,

including the threat-detection results discussed in Section 1.3, have demonstrated

the advantages that can be provided by an observer that utilizes the statistical

nature of the detector data.

1.6.2 List-Mode Processing

In addition to using projection data, methods were developed that process LM data

in an attempt to remove the necessity of an IB when performing measurements of

the unknown item. The use, and subsequent disposal, of LM events—which can

be defined as the interaction of a particle in the detector—as they are acquired

by the system means that an “image” is never actually formed either in terms of

a projection image or a reconstruction of the object. As data is never aggregated,

there is no sensitive information available to the monitor when testing sources. The

execution of an example observer model that uses LM data is shown in Figure 1.18.

In this example, a probability model is developed from calibration data acquired

from imaging a scene with the signal present and absent. The model used in this

study is the ideal observer, which is described in chapter 4. When testing an object,

the test statistic is updated with each detected event. The greater the number of

detected events, the more likely that the test statistic is correctly above or below the

threshold and that the chosen decision is the correct one. The processing of testing

data on the right side of Figure 1.18 is nonsensitive, as shown in Figure 1.19.

The requirement to process data in LM is very restrictive. It limits the mathe-

matical models to linear models and models that can be represented by a product of

terms containing the LM data. This is emphasized further by considering advanced

classification techniques that have been developed in recent years. Some examples

of these methods are tree classifiers (Safavian and Landgrebe, 1991), support vector
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Figure 1.18: The left column depicts the LM processing of particles. Each detected
particle is read in, its data updates a test-statistic, and then that data is purged
from memory. On the right is the the ideal observer’s test statistic (the log of the
likelihood ratio), updated as each event is read in. In this example the threshold is
set to zero to declare signal present or signal absent.
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Figure 1.19: An intuitive picture exemplifying an observer model that processes LM
data to make a decision. In this graphic, the model utilizes sensitive calibration data.
When testing a source, only the test statistic, which is nonsensitive, is updated.

machines (SVM) (Schölkopf and Smola, 1998), and artificial neural networks (Drei-

seitl and Ohno-Machado, 2002). It appears difficult to adapt some of these routines

to process LM data. Random forest classifiers (Breiman, 2001; Liaw and Wiener,

2002) operate by constructing many random decision trees (where decisions could

consist of a comparison of one of the data variables with a number) from boot-

strapped samples of calibration data and then aggregating the tree results to make

a decision. This classifier requires the aggregation of testing data to make decisions

and such information would necessitate an IB. SVMs take the M dimensional data

space and segment it using a function to make decisions. SVMs can take many

forms, but for this purpose it is useful to split them into two categories—linear and

non-linear. Non-linear SVMs would require knowledge of the complete data set.

Only a linear SVM would satisfy the LM requirement. Similarly, artificial neural

networks cannot process LM data because they use a nonlinear sigmoidal function

after each node.

This dissertation does not discuss in significant detail the methods that could

be used to enforce LM processing. One could imagine an electronic board attached

to the PMT output that performs some mathematical operations from a predefined

template and outputs a single number for the test statistic. The host would need to

verify that the system does not aggregate spectral and spatial information.
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Figure 1.20: An intuitive picture demonstrating a nonsensitive observer model. As
the acquired information necessary to build the model would still be sensitive, the
only IB would be on this acquisition of calibration data. Otherwise, the monitor
would have access to all of the information in the mathematical model.

Figure 1.21: Model performance should scale roughly with the amount of sensitive
information required.

1.6.3 Development of Observer Models that Store Nonsensitive Information

The ultimate goal for this work is the development of observer models that can per-

form various tasks without revealing sensitive information on the TAIs. This would

allow the host to share the observer with the monitor without revealing sensitive as-

pects of its own TAIs. Such a model is depicted in Figure 1.20. This work discusses

a range of observer models that store varying amounts of information. Generally, as

more information is included, performance is expected to improve, as shown in Fig-

ure 1.21. The only information barrier required with such a model would be when

acquiring calibration data on the trusted items.

While this thesis focuses on a template-matching approach, a similar framework

could still be used for an attribute-estimation approach. Nonsensitive characteristics



55

related to sensitive details on the objects could be measured. This could be done by

simply returning a red light/green light for certain features, such as if the mass of

the plutonium in an object is greater than 500g. Significantly more nuclear material

than this would be required for a high-yield weapon, so it may not be deemed a

sensitive measurement.
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CHAPTER 2

Radiation Detection for Arms-Control-Treaty Verification

Radiation is the transmission of energy in the form of waves and particles through

a medium. For the purpose of arms-control-treaty verification, it is desirable to

detect electromagnetic radiation (in the form of gamma rays) and particle radiation

(neutrons) that were emitted from the TAI. Three specific types of radiation are

discussed:

• Photons are quanta of electromagnetic radiation. In particular, gamma rays—

photons with energies greater than 100keV—are considered in this work.

• Neutrons are neutrally charged subatomic particles that can travel long dis-

tances through dense materials and interact with other nuclei.

• Alpha particles, denoted by α, consist of two protons and neutrons bound

together and are identical to the Helium nucleus (He4). As they have no

electrons, they are positively charged.

In this chapter, photon, neutron, and alpha radiation are discussed and their

relevant physical processes summarized (Section 2.1). Then, in Section 2.2, the

important detectable features of TAIs are briefly discussed along with the usefulness

of gamma ray and neutron measurements. The cause of background detections

for gamma-ray and neutron measurements are explained in Section 2.3. Finally,

various measurement systems designed for detecting gamma rays and neutrons are

discussed in Section 2.4. This section borrows liberally from Reilly, Enselin, Smith

and Kreiner’s work, "Passive Non-destructive Assay of Nuclear Material", and is

occasionally referred to as PANDA throughout this chapter. See (Reilly et al.,

1991) for more details.

2.1 Physics of Fundamental Particles

This section discusses the physics processes relevant to treaty-verification tasks.

Gamma rays (Section 2.1.1), neutrons (Section 2.1.2) and alpha particles (Sec-

tion 2.1.3) are discussed in detail.
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2.1.1 Gamma Rays

Gamma rays are emitted by radioactive decay processes. They are quanta of electro-

magnetic radiation, travel at the speed of light, and their energy is proportional to

their wave frequency. They are not effectively attenuated by most material, making

them a prime source of radiation to be measured.

The cumulative attenuation that does occur can be represented by Beer’s law,

I(L) = I0e
(−µlL). (2.1)

In (2.1), the intensity, I is the transmitted energy per unit second per area, I0 is

the intensity of the radiation entering a medium, µl is the attenuation coefficient

(units 1/length) and L is the distance traveled through the medium. µl is dependent

on the material type, density, and the energy of the gamma rays. The inverse of

µl is often referred to as the path length or attenuation length of the gamma ray.

Throughout this chapter, the mass attenuation coefficient µ = µl/ρ is also used,

where ρ is the material density. The mass attenuation coefficient is independent of

density and directly relates the interaction probability to element number.

A plot of the attenuation coefficient of photoelectric absorption, Compton scat-

tering, and pair production for a NaI crystal is shown in Figure 2.1. These physics

processes are discussed in more detail in the following subsubsections.

2.1.1.1 Emission Processes

Certain isotopes, specifically those of uranium and plutonium, are unstable and

naturally decay through alpha and beta radiation to daughter isotopes (see Fig-

ure 2.2). After decay, the resulting isotopes are often left in an excited state and

decay through gamma emission to a more stable state. The emissions occur only

on certain energy lines. The emission distribution of an object changes with isotope

age and material composition.

http://www.radiochemistry.org/periodictable/gamma_spectra/ is a good

source to find the emission spectra for various materials. An example for U235 is

shown in Figure 2.3. Of particular importance in this spectra is the 186 keV line, the

most active line with a high enough energy to avoid being completely self-shielded in

uranium objects. Additionally, U238 has a moderately intense peak at 1001 keV and

plutonium 239 has important peaks in the 300-400 keV, 639-648 keV, and 756-769

keV ranges.

http://www.radiochemistry.org/periodictable/gamma_spectra/
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Figure 2.1: Plot of the attenuation coefficient for photoelectric absorption, Comp-
ton scattering and pair production in NaI scintillator (Reilly et al., 1991). Pho-
toelectric absorption is the dominant process up to roughly 300 keV but falls off
drastically with energy. Compton scattering is the dominant process from about
400 keV to 3 MeV. Pair production dominates at higher energies.

2.1.1.2 Physics in Transport

There are two processes that cause attenuation of gamma rays within the energy

range of interest to this project; photoelectric absorption and Compton scattering.

Low-energy gamma rays primarily undergo photoelectric absorption (discovered

by Heinrich Hertz in 1887 using ultraviolet light (Hertz, 1887)). The gamma ray

interacts with a bound atomic electron, as shown in Figure 2.4, transferring all

energy to the electron. Some energy goes to overcoming the binding energy, and the

rest increases the kinetic energy of the ejected electron,

hν = Ee + Eb, (2.2)

where ν is the frequency of the photon, hν is the energy of the photon, Ee is the

kinetic energy of the ejected electron and Eb is the binding energy of that electron

to the nucleus. The probability of this interaction occurring increases with Z4 (Z

being the proton number) and falls off with (hν)3 (Reilly et al., 1991).

Compton scattering (Compton, 1923) (shown in Figure 2.5) is the interaction

of a gamma ray with a free or weakly bound electron, transferring a fraction of its

energy to an electron initially at rest. The gamma ray loses energy and changes

trajectory by an angle φ. That direction is related to the initial and final energy by
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Figure 2.2: A diagram of the Pu-239 decay chain. Lawrence Berke-
ley’s Nuclear Forensic Search Project has more decay chain examples at
http://metadata.berkeley.edu/nuclear-forensics/Decay%20Chains.html.
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Figure 2.3: An example low-energy spectral measurement of U235 with a high-purity
germanium (HPGe) detector.

Figure 2.4: Diagram of photoelectric absorption—the incoming gamma ray deposits
all of its energy into the electron, ejecting it from its atomic binding (Reilly et al.,
1991).
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Figure 2.5: Diagram of Compton scattering. An incoming high-energy gamma ray
scatters off a free at-rest electron, resulting in an energetic electron and scattered
gamma. (Reilly et al., 1991).

Figure 2.6: Example detected spectra when only Compton scattering interactions
occur (Reilly et al., 1991). The maximum energy corresponds to a 180◦ deviation
for the incident gamma ray. The number above each of the curves corresponds to
the energy of the gamma ray before Compton scattering occurs.

the Klein-Nishina distribution (Klein and Nishina, 1929). Using the conservation of

energy and momentum, one can derive the final energy E ′ of the gamma ray as a

function of its incident energy E, the electron’s rest energy mec
2, and φ,

1

E ′
− 1

E
=

h

mec2
(1− cos(φ)). (2.3)

When φ = π, the resulting gamma is scattered backwards and the maximum amount

of energy is transferred to the electron. A plot of the resulting energy distribution

on the scattered gamma rays is shown in Figure 2.6.

Two other physics processes that involve gamma rays are pair production and

photofission. Pair production occurs when a gamma ray passes close to the nucleus,

creating an electron-positron pair. After the pair anhilates, two 511 keV gammas

are created. Photofission occurs at very high energies, when an incoming gamma

causes the ejection of nuclear particles. These two processes happen at high energies,

mostly not of interest to the detection of TAIs. Combining the various processes, a

total mass-attenuation coefficient is found (shown in Figure 2.7). A particular point
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Figure 2.7: The total mass attenuation coefficient for many relevant elements (Reilly
et al., 1991).

of interest is the 186 keV line, emitted from U235. This emission line is heavily

attenuated by uranium, plutonium and lead.

2.1.2 Neutrons

Neutrons are particles that do not have a charge and are therefore able to travel

long distances through most matter. The energy of a neutron is its kinetic energy,

proportional to its velocity squared. Because neutrons vary drastically in energy and

their interaction rates change accordingly, neutrons in different energy ranges are

often given different names. Only fast (1-20 MeV) and thermal (room temperature,

or around .025 eV) neutrons are discussed in this thesis. In this subsection, the

physics of neutron creation are discussed as well as the important physics processes

involved in transport. More details on the physics of neutron interactions in matter

can be found in chapters 11 and 12 of (Reilly et al., 1991).

2.1.2.1 Emission Processes

Neutron emission occurs mostly through fission, either spontaneous or induced.

Spontaneous fission happens when an isotope splits into two or more fragments,

overcoming the nuclear force that binds the nucleus together and releasing a sig-

nificant sum of energy. There are often multiple neutrons that result from a single

fission event; the number of neutrons produced is denoted the multiplicity and fol-

lows an isotope-dependent probability distribution. Figure 2.8 shows the neutron

emission rates for various isotopes. Generally, even isotopes are significantly more

likely to fission than odd isotopes by three or more orders of magnitude. Another

important fact to note is that plutonium isotopes, specifically Pu240 and Pu242,
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Figure 2.8: This chart shows the neutron emission rates per unit mass and the
fission multiplicity. Of particular interest in neutron measurements is Pu240 and
Pu242, each of which have a far higher emission rate than the remaining uranium
and plutonium isotopes (Reilly et al., 1991).

have much higher emission rates than uranium isotopes. This is why when simu-

lating neutron data in Section 3.7, neutron measurements are ignored for the two

objects that only differ in their uranium composition. In addition to neutrons, fis-

sion events generally release 7 to 10 prompt high-energy gamma rays (Reilly et al.,

1991). Delayed neutrons are also emitted far more rarely; these result from beta

decay of the fission products.

While even isotopes are more likely to undergo spontaneous fission, odd isotopes

of Pu and U are more likely to fission when interacting with a neutron. Figure 2.9

shows the fission cross-section of the various elements. Low-energy neutrons are

drastically more likely to induce fission in the odd isotopes than high-energy neu-

trons.

The energy spectra of the emitted neutrons is defined by Watt’s equation (Watt,

1952),

pr(E) = e(−E
A

)sinh(
√
BE). (2.4)

This form holds for many isotopes for both spontaneous and stimulated fission.

Pu240, for example, has A=0.795 and B=4.69. Most isotopes have similar parameter

values for the Watt spectra, and ultimately this makes the neutron-energy spectra

somewhat useless for assay of TAIs.
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Figure 2.9: Fission cross sections for various isotopes (Reilly et al., 1991). Both
Pu239 and U235 have significantly higher cross section values at higher energies.

2.1.2.2 Physics in Transport

In this section, the physics of the transport of neutrons through non-fissile material

is discussed. In particular, elastic scattering and neutron capture are explained.

Elastic scattering happens when an incoming neutron collides with a nucleus,

transferring some of its energy to that nucleus. Conservation of energy and mo-

mentum shows that greater energy transfer happens when the neutron collides with

low Z nuclei. This is why hydrocarbons are often used as both a moderator (to

dampen neutron energy) and in detector materials. Neutron capture occurs when

a low-energy neutron is absorbed into a nucleus. The resulting isotope is generally

in a higher energy state and releases a high-energy gamma ray (Reilly et al., 1991).

Figure 2.10 gives scattering and capture information on various materials. Of par-

ticular interest is CH2 in this table, which is comparable to the mask material for

the detector used in this project. One attenuation length corresponds to roughly

0.37 cm at room-temperature and 2.22 cm around 1 MeV.

2.1.3 Alpha Particles

An alpha particle is essentially a He nucleus and is produced by alpha decay processes

along the decay chain for the radioactive isotopes (Figure 2.2). It quickly loses energy

when traveling through any medium due to electronic excitation and ionization.
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Figure 2.10: Table of cross sections and interaction lengths for various low Z and
high Z isotopes. Σt gives the total attenuation coefficient and Σa the absorption
coefficient of neutron capture. (Reilly et al., 1991)
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Ultimately, this limits the utility of alpha particles in detection and classification

of TAIs. Alpha particles have roughly a 4 cm path length in air and much less in

denser materials.

2.2 Detectable Features of TAIs

This section summarizes the value that gamma-ray (Section 2.2.1) and neutron

(Section 2.2.1) measurements can provide in performing warhead verification tasks.

2.2.1 Gamma Ray Measurements

Only certain isotopes of high-Z materials have a high probability of fissioning when

interacting with low-energy neutrons, and these are referred to as fissile. An object

that produces yield must contain fissile plutonium (Pu239) and/or uranium (U235).

These isotopes also have a strong gamma-emission rate. If a monitor was able to

take a high resolution measurement of the gamma spectra, they could back out the

isotopic ratios of the uranium and plutonium in the TAI, determining the compo-

sition of U235 vs U238 and Pu239 vs. other plutonium isotopes. Similarly, if the

statistics are high enough and spatial resolution good enough, gamma-ray imaging

would offer the monitor confirmation that the imaged item could produce yield and

is not just a hunk of SNM. Most of the intense emission lines for these fissile isotopes

are low-energy photons, and these lines tend to be heavily shielded (Figure 2.7).

2.2.2 Neutron Measurements

Unfortunately, in part due to a low signal because of shielding, gamma-ray mea-

surements are generally not sufficient for warhead verification. Even though

spontaneous-fission events are far less likely to occur than gamma emission from

radioactive decay, neutrons are easier to detect because the majority escape the

TAI. The neutron background is also significantly less intense than the gamma

background.

Neutron measurements provide multiple advantages. As fission produces mul-

tiple neutrons per event, the recording of multiple neutrons within a certain small

time window is evidence of SNM being measured and not a potential background

source. In addition, because neutrons are neutrally charged and are generally un-

likely to interact in the TAIs, which mostly consist of high Z materials, they offer

higher fidelity information on the geometric construction of the sources.
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2.3 Background

Any measurement of gamma rays or neutrons also contains detected background

particles. Natural radioactivity in the surrounding environment, cosmic-ray interac-

tions and possible nearby objects that aren’t of interest to the task produce a signal

on the detector. Cosmic rays are high-energy particles that originate outside the

solar system and produce secondary particles upon interacting in the earth’s atmo-

sphere. Other naturally occurring elements such as uranium, thorium and potassium

also contribute to the gamma-ray spectra (Reilly et al., 1991).

In treaty-verification tasks, where measurements are taken with a stationary de-

tector, the background should be constant with time. In a threat-detection task, as

discussed in the introduction chapter, the background consists of many individual

sources located throughout the environment. In addition, this background changes

with time. Performing detection tasks with a locally-varying, time-dependent back-

ground is significantly more difficult.

Background neutrons contribute to the data as well, though less often and in

fact were ignored in the simulation studies in this thesis. They are also produced

through cosmic radiation and are naturally occurring in the ocean (Yamashita et al.,

1966).

2.4 Detection

Radiation detection is playing an ever increasing role in our society. Possible uses

range from early detection of certain cancers or diseases, to the detection of threats

at home or abroad, to verification of nuclear warheads. In order to detect particles,

there must be some way of converting the energy of the incoming particle into a

digital signal. This section explores various methodologies to achieve this. It is

ultimately desirable to have a detector that can measure the intensity of the source,

energy spectra and be able to localize where the particle is coming from within the

field of view.

Section 2.4.1 and Section 2.4.2 discuss methodologies for detecting gamma rays

and neutrons, respectively. Section 2.4.3 provides a relatively brief summary on

imaging high-energy particles with focus on a coded-aperture system. Section 2.4.4

gives more information on the detector response for scintillator detectors.
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2.4.1 Gamma Ray Detection

Gamma rays strongly interact with matter due to their electromagnetic nature. Scin-

tillation detectors and solid-state detectors are two detectors useful for performing

measurements of gamma rays.

2.4.1.1 Scintillation Detector

A scintillator is a volume of material that can absorb energy from certain radiation

and convert it to light waves (electromagnetic radiation with an energy on the order

of 1eV). Gamma rays interact in the scintillator via Compton scattering and photo-

electric absorption, producing ionized atoms and energetic electrons. These particles

travel through the material, giving off photons as they interact at different locations

throughout the scintillator. A photomultiplier tube (PMT) (Hamamatsu Photon-

ics K.K., 2007) is often used to record the energy from the light waves; it converts

the initial photon energy to electrons, then amplifies them (with low noise) to get an

output signal proportional to the detected energy. It should also be pointed out that

the ideal scintillator needs to emit photons at a different range of frequencies than it

absorbs them; if the absorption and emission distributions overlapped, any produced

signal would be lost. To force this separation between absorption and emission lines,

impurities are often added to change the electronic band-gap structure. An exam-

ple of this is thallium-doped sodium iodide. An example schematic of a scintillator

detector can be found in Figure 2.11. Generally, scintillators do not have superb

energy resolving capabilities. For example, NaI(Tl) achieves a resolution of about

14 keV at a deposited energy of 122keV (Reilly et al., 1991).

2.4.1.2 Solid State Detector

A solid-state detector (Figure 2.12) directly collects the charge produced by the

gamma ray interactions inside the material. An example of a solid state detector is

high-purity germanium (Twomey, 2003), which has very good energy resolution—

about 0.5 keV for 122keV of deposited energy. Solid-state detectors also tend to be

far more expensive.

2.4.2 Neutron Detection

As discussed in Section 2.1.2, neutrons only interact with other nuclei. There are

therefore only two ways to perform neutron detection.
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Figure 2.11: Schematic of a scintillation detector. The scintillator produces a
light signal that passes through an intermediary light guide until it reaches the
PMT (Reilly et al., 1991). In order to prevent loss of light leaving the scintillator,
mirrors or reflective substances are usually placed around the remaining sides. In
order to pass the light from the scintillator to the PMT, a light guide is often used
to allow the light rays exiting the scintillator to spread out, proportionally hitting
more than one PMT (only one is shown here). To prevent loss due to significant
changes in index of refraction between the various components, the light guide must
be chosen carefully.

Figure 2.12: Schematic of solid-state detector (Reilly et al., 1991)

One option is to use a material that induces elastic scattering, and detect the

energy of the resulting ionized particles. This method generally works well with fast

neutrons, which have a higher probability of scatter than capture or fission. Both

solid state and scintillator detectors can be used for this purpose. The downside

to using a scintillator is that it generally has high gamma sensitivity as well. In

addition, while the neutron-hydrogen energy conversion efficiency can be up to 100%,

only a maximum of 28% can be transferred to a carbon nucleus due to the difference

in masses. The advantage gained through a scintillator detector is that a dense

material can be used, dramatically increasing detection efficiency.

The second detection strategy is to detect the fission products, gamma rays,

alpha particles and protons that result from nuclear reactions. As shown in Fig-

ure 2.9, these reactions are far more common for lower energy neutrons. A common

detector used to count neutrons is a He3 gas detector (Batchelor et al., 1955). He3

interacts with slow-moving neutrons, yielding hydrogen, tritium, and excess energy

in the daughter products that are detected.

Coincidence detectors (Archer et al., 2010; Enqvist et al., 2008) are gaining

prominence as well. The detection of multiple neutrons within a sufficiently small
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time window is a sign that SNM is nearby. These detectors are placed in close

proximity to the objects being measured, and are often themselves cylindrical in

nature to surround the object.

2.4.3 Imaging

High-energy particle imaging works quite differently from optical imaging. The

imaging of light (Barrett and Myers, 2003; Greivenkamp, 2004) can be done using

curved glass (lenses), which serve to focus the incoming light onto an image plane.

Meanwhile, it is impossible to bend gamma rays and neutrons through the use of

some intermediary material, so imaging needs to be done mathematically through

the methods discussed in this section. In order to localize the detected-particle

interaction, the detector plane is discretized, yielding many output signals across a

range of pixel locations.

To properly categorize the object’s spatial emission distribution, many projec-

tions of the object onto the imager at certain angles (called slices) must be taken.

This is called tomography, and tomographic reconstructions are possible with either

of the following image methodologies (Hsieh, 2009; Cree and Bones, 1994).

2.4.3.1 Coded Aperture

A coded-aperture imaging systems prevents the passage of gamma rays and neu-

trons at certain locations and momentum directions. Lead (for gamma rays) and

polyethylene (for neutrons) are two mask materials that effectively attenuate incom-

ing radiation from specific directions. When imaging, there is a tradeoff between

sensitivity and spatial resolution. For example, in a wide-area search application

where the detected signal is minimal, it behooves the monitor to use large detector

pixels to acquire high statistics in order to effectively perform detection tasks. This

comes at the cost of reduced spatial sensitivity. My work, discussed in Section 1.3.5,

used the NaI detector developed by Ziock et al (Ziock et al., 2006).

A simple pinhole mask would offer high resolution but very little sensitivity to

the imaged object. To overcome this, coded aperture masks (Fenimore and Cannon,

1978) are commonly used to image high-energy radiation. Roughly 50% of the mask

is filled, and the other 50% is holes, allowing for much higher sensitivity than a

simple pinhole imager. These masks are uniformly redundant arrays, designed so

that any shift in the mask from its initial state results in roughly half of the initial
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Figure 2.13: Schematic of the Compoton camera. Given the absorbed energy values
in the scattering and absorption plane, the angle φ in (2.3) can be determined. The
emission location must have ocurred somewhere on a cone in the object plane.

holes being covered. Expressed another way, the autocorrelation function peaks at

zero, then sees a significant drop for any shift in mask location. A mask allows for

imaging in all three dimensions, as a change in the location of the object leads to a

change in the mask shadow.

2.4.3.2 Compton Imaging

Localization can also be done via Compton scattering if gamma rays are being

detected. In the case of neutrons, two plane cameras can be used by taking advantage

of elastic scattering (Poitrasson-Rivière et al., 2015). In this approach to detect high

energy particles, two image planes are used, as in Figure 2.13. The first plane serves

to scatter the incoming particles, and the second absorbs the lower-energy remnants.

Using knowledge of the trajectory between the two planes and the deposited energies,

it is possible to back out a cone of likely interaction locations (Cree and Bones, 1994).

2.4.4 Detector Response for Scintillation Detector

The detector used throughout this thesis (see Section 3.1) is designed to detect

fast neutrons and utilizes a liquid scintillator. Three components of a scintillator

detector’s response to absorbed radiation are discussed: the particle recoil conversion

efficiency, energy resolution, and pulse shape discrimination. More information on

this detector can be found in the following chapter.
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2.4.4.1 Detected Recoil Energy

After a scattering event, an energetic electron (Compton scattering) or proton (elas-

tic scattering off H) travels through the medium. The light output for the two

particle types is energy and material dependent, and the proton energy conversion

efficiency is much less than that of electrons. As a quick example, a 60keV electron

produces roughly the same light output as a 500keV proton (Reilly et al., 1991). For

this reason, the detected neutron energies are expressed in keVee, with the last two

es standing for "electron equivalent". Using the above example, a 500keV neutron

would be detected at 60 keVee.

2.4.4.2 Energy Resolution

A detector’s energy resolution is defined by its ability to resolve two energy peaks

that are close together. This is inherently limited by the statistics of the pro-

duced electrons during scintillation. A NaI scintillator, for example, has a certain

scintillation efficiency and produces roughly 1,000 electrons for a detected 300 keV

photon (Reilly et al., 1991). The number of observed electrons is actually a random

variable due to various inefficiencies with the detection process, and is governed by

Poisson statistics. For a NaI scintillator, the energy resolution of a 300 keV photon

is roughly 22.6 keV.

2.4.4.3 Pulse Shape Discrimination

Because organic scintillators have a high sensitivity to gamma rays, there needs to

be a methodology to distinguish detected gamma rays from neutrons. This is done

based on the electronic output signature from the PMTs. Neutron and gamma-ray

detection results in different decay times of the pulses that arrive when a particle is

detected. PSD is often done based on a measure of their delayed fluorescence (Adams

and White, 1978), but classification is often imperfect and results in misclassification

of gamma rays as neutrons, an important factor to take into account because the

neutron detection rate is often significantly less than the gamma ray detection rate.

This is discussed further in chapter 7.
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CHAPTER 3

Data Simulation

Ideally, the data used to test the observer models developed in this work would

be acquired from real life experiments. However, the cost of acquiring experimen-

tal data was prohibitively expensive for this project. The number of approved,

unclassified inspection objects is also limited, and any existing data proved to be

difficult to obtain. Instead, all data was simulated using the Geometry And Tracking

(GEANT4) toolkit (Allison et al., 2006; Agostinelli et al., 2003), used to simulate

the passage of particles through matter. GEANT4 is open source software, writ-

ten in c++ and developed by the high-energy physics community. It is often used

in particle-physics and nuclear-science applications. It contains approximately one

million lines of code and over two thousand classes. In this chapter, all GEANT4

class names are italicized for clarity.

This chapter begins with a description of the detector in Section 3.1. Section 3.2

defines the different tasks that the developed models are performed on. A brief

introduction to GEANT4 is given in Section 3.3 in order to familiarize the reader

with the software. A summary of the variance reduction (VR) techniques used to

speed up the simulations is described in Section 3.4 along with the results from a

case study. Section 3.5 discusses the various classes chosen for particle emission,

physics, transport, VR, and detection for the simulations used in this thesis.

3.1 Detector Description

The detector used throughout this thesis was the fast-neutron coded-aperture de-

tector, developed by Sandia National Laboratories (SNL) and Oak Ridge National

Laboratories Hausladen et al. (2012). This detector was chosen for a few reasons.

First, two of the members of our collaboration contributed to its design. Second, as

it is occasionally housed at the lab, the opportunity existed to acquire experimen-

tal data on some of these objects and see how the models developed in this thesis

perform in practice.

The detector was designed to image high-energy neutrons (>1MeV) for arms-

control-treaty verification tasks. It uses a high-density polyethylene coded aperture
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mask to image neutrons. The mask attenuate neutrons via elastic scatter (PANDA

cites a path length of 2.22 cm for CH2) (Reilly et al., 1991). It is a rank 19 mod-

ified uniformly redundant array. The detector is split into 4x4 segregated blocks.

Each block has 10x10 pixels filled with a liquid scintillator, with each pixel being

1 cm x 1 cm x 5 cm. The pixels are optically separated. Each detector block has

its own light guide and 2x2 array of PMTs. The detector response software deter-

mined the pixel ID by using the relationship between the four PMT outputs, though

spatial resolution is somewhat poor in part due to the low number of PMTs used.

More information on the detector response calibration measurements can be found

in Section 7.1.1.

Though the detector for this project is designed to detect neutrons, it also serves

as a low-resolution gamma detector. The mask also provides some ability to image

gammas due to a small but not insignificant scattering rate in the mask. Hydrogen,

for example, has a mass attenuation coefficient of 0.2 cm2/g at 400keV. For polyethy-

lene, that would correspond (roughly) to a 5 cm attenuation length. A picture of

the detector is shown in Figure 3.1. The front face of the detector is covered by a

quarter inch lead plate; this plate effectively serves to attenuate low energy gammas

(see Figure 2.7). Neutrons at 1MeV have about an 8 cm, or 3.2 inch interaction

length in lead, so this lead plate is transparent to them.

The detector used in the GEANT4 simulations is somewhat different from the

current iteration of the detector. The simulated detector uses a liquid scintillator of

material EJ-309 (Eijen Technology, 2010) while the current iteration uses a plastic

scintillator. The current detector has improved PSD performance. The scintillator

is mostly composed of carbon and hydrogen atoms. Incoming neutrons elastically

scatter as discussed in chapter 2, ejecting protons from the nucleus.

The detector system was simulated with a source-to-mask distance of 70.5 cm,

mask-to-detector distance of 60 cm, mask-element size of 1.21 cm and mask thickness

of 6.95 cm. In the simulations, the imaging axis was the ẑ axis.

3.2 Treaty Verification Tasks

This section describes the various tasks used to gauge the observer models that are

discussed in chapter 4 and chapter 5. All measurements in these tasks are passive.
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Figure 3.1: On the left is a picture taken of the fast-neutron coded aperture detector.
The polyethylene mask is in front of the detector on the right. The quarter-inch
lead plate that is normally in front of the detector is not shown in this picture so
that the detector blocks are visible. On the right is a close up of the composition of
an individual detector block.

3.2.1 Idaho Inspection Objects

Binary-classification and null-hypothesis tasks were performed using inspection ob-

jects developed by Idaho National Laboratory (INL) (Neibert et al., 2010); this

thesis uses inspection objects labeled 8 and 9 (see Figure 3.2), which are referred

to here as IO8 and IO9. These geometries are built by stacking rectangular plates

of similar size. Both objects have a geometrically identical hollow plutonium core.

The Pu material consisted of 94% Pu239 and 4.1% Pu240 by mass with other el-

ements accounting for the remainder. IO8 surrounds the Pu core with depleted

uranium (99.8% U238) and IO9 shields the Pu core with highly-enriched uranium

(93% U235). As discussed in the physics section, this causes a significant difference

in emitted gamma spectra. U235’s 186 keV line, while very intense, is hard to de-

tect as it is self shielded by the geometry. The 1001 keV line of U238, while less

intense, is only lightly attenuated when traveling through uranium. There is also a

slight difference in the gamma images of these sources due to the different shielding

geometries. The neutron information for this task was ignored due to the overall

similarity of the geometries.

The objects were imaged with their vertical axis in construction aligned with the
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Figure 3.2: IO8 and IO9 developed by INL (Neibert et al., 2010). IO8 is plutonium
shielded by depleted uranium (DU) while IO9 is plutonium shielded by highly-
enriched uranium (HEU). Both assemblies are supported by an aluminum framework
inside an 8”× 8”× 8” aluminum box that is 1" thick.

imaging axis.

3.2.2 BeRP Ball Location Study

In the second task the Beryllium Reflected Plutonium (BeRP) ball (Mattingly, 2009)

was modeled. It is a 3.79 cm radius solid plutonium sphere. In this work, only the

bare plutonium sphere was simulated. See Figure 3.3 for details. It is composed

of 93.7% Pu239, 5.9% Pu240, 0.3% Pu241, and the remaining tenth of a percent

consisted mostly of Pu238, Pu242, and Am241. The source was imaged at two

locations in the x-y plane—once at (0 cm, 0 cm) and once at (2 cm, 2 cm). The

models were trained on this data and asked to discriminate future images as being

at one of the two locations.

3.2.3 2D Circle vs. Square Source

In this study, plutonium ring and square sources were simulated with lengths ranging

from 10 cm to 30 cm. The sources were 1mm thick in the ẑ dimension (along the

imaging axis) and 1mm thick in the transverse dimension. The same plutonium

composition as the BeRP ball was used. The observer models were tasked with

discriminating an unknown object as one of the two geometries.

3.3 Introduction to GEANT4

Monte Carlo physics simulation was accomplished using the GEANT4 toolkit; par-

ticles are processed one by one, from emission until the particle either loses all of
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Figure 3.3: The BeRP ball was developed by Los Alamos National Laboratory
in 1980. The acronym stands for beryllium-reflected plutonium, but that is an
anachronism. Today, the Pu sphere is surrounded by polyethylene shells which
serve to scatter neutrons and increase the keff of the source. It is often used as
a source to verify Monte Carlo transport code as well as an inspection object for
treaty verification.

its energy or exits the world geometry. Every GEANT4 emission process is labeled

as an event, and the particles resulting from this process labeled primary parti-

cles (of which there may be more than one). Every GEANT4 simulation requires

the user to define a run manager (G4RunManager) that needs a primary generator

action (G4VUserPrimaryGeneratorAction), a set of particles to track and physics

processes to simulate (G4VModularPhysicsList), and a detector and physical ge-

ometry description (G4VUserDetectorConstruction). There are also a multitude of

optional user classes that allow the user to interact with the simulation. This section

introduces the reader to some of the important features of GEANT4.

3.3.1 Physics

GEANT4 has a large number of physical processes available for the user. The user

chooses which particles to track when defining the physics list. Using the particle’s

process manager, the user can add various physical processes. For example, the user

can register a high-precision elastic-scattering process to the neutron particle. There

are also commonly used physics lists that can be referenced rather than defining each

particle and process separately (such as G4EmLivermorePhysics, which simulates

high-fidelity EM physics processes down to low energies).

GEANT4 includes methods for production cuts for secondary particles. The user

sets a minimum distance that the secondary particle needs to travel. If GEANT4

calculates that it will not reach that minimum distance, the manager instead deposits
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that energy at the current position. This can be used to speed up simulation time

rather than simulating all particles down to very low energies.

3.3.2 Tracks and Steps

A step is defined as the distance from one physics process or geometry boundary

crossing to the next, and the G4Step class contains information on how the particle’s

data changed from one step point to the next. The G4StepPoint class includes

the particle’s information at that location of the geometric boundary crossing or

physics interaction. The user can define a G4UserSteppingAction class that retrieves

information from the particle’s track at each step, or terminate the particle if it

reaches a certain set of conditions.

The G4Track class contains all of the current information about the particle at

the end of its current step. It tracks the position, momentum, energy, time, current

volume and material, and the next volume and material.

3.3.3 Geometry

Geometries in GEANT4 are defined by three classes—G4VSolid, G4LogicalVolume,

and G4VPhysicalVolume. The G4VSolid class is the base class used to define

physical geometries. GEANT4 has most desired geometries already available—

rectangular solid, sphere, tube, cone, tetrahedra, and generic polygon classes— all

of which are inherited from G4VSolid. There are also classes to unify or subtract

solids. Each G4VSolid is assigned to a G4LogicalVolume class along with a material

type. The G4VPhysicalVolume class is a placed instance of a logical volume inside

the world volume.

3.3.4 Detector

The user-defined G4VUserDetectorConstruction class contains the world geometry

and all object and detector geometries. The run manager calls the Construct()

function in this class before initializing a run, and the various physical geometries

are constructed and placed. The detector construction class requires at least one

G4VSensitiveDetector object to be assigned to a geometry; otherwise, the run man-

ager aborts and returns an error. The sensitive detector class takes a physical volume

as an input. For each event, GEANT4 records a collection of the particles interact-

ing in each detector. Each detected particle causes the creation of a user-defined
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G4VHit object in GEANT4. The user can define what information gets recorded

with each detector interaction, such as the location of interaction, change in energy,

physics process, etc. The user can then access this collection of G4VHit objects

for each event. The user can then define methods to process this information and

output the data.

3.3.5 Primary Generator Action

GEANT4 has built-in classes and libraries to handle radioactive-decay processes for

gammas and spontaneous-fission processes for neutrons. The user needs to define the

location, momentum direction, particle type and energy of every emitted particle.

It can do this through a basic G4Gun class that GEANT4 provides or through its

own custom built methods. Regardless, each G4VPrimaryGeneratorAction class

must include a GeneratePrimaries() function that calls GeneratePrimaryVertex()

to create an emission event.

3.4 Variance Reduction in GEANT4

This section presents an overview of methods that can be used to speed up GEANT4

simulations. The goal of VR techniques is to reduce the variation in each data bin

for the same amount of simulation time. VR techniques increase the likelihood that

each emitted particle is detected, and assign a weight W to each emitted particle to

prevent biasing of the detector data. An unbiased simulation would have all weights

equal to one. A deeper summary of VR measures can be found in the MCNP

primer (Shultis and Faw, 2011). MCNP (Briesmeister et al., 1986) is an alternative

particle transport code.

This section begins with a discussion on the statistics used to gauge VR efforts

(Section 3.4.1). Then, primary particle biasing (Section 3.4.2), importance sampling

(Section 3.4.3) and weight windowing (Section 3.4.4) are explained. Finally results

from my own efforts to utilize VR in GEANT4 are discussed in Section 3.4.5.

3.4.1 Statistical Measures to Gauge the Effect of Variance Reduction

The MCNP manual outlines ten statistical checks that can be used to decide whether

the statistics are high enough, and VR methods effective enough to trust the sim-

ulated data. There are five metrics analyzed—the mean, relative error, variance

of the variance, VR figure of merit, and a history score pdf (Tatsumi, 2012; Arce
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et al., 2007). The statistic examining the history score pdf was not included in this

work. GEANT4 does not have built in methods to track these statistics for a de-

tector; as part of this work, these statistics have been coded into a post-processing

routine that happens after the detector-response code is implemented. Ideally, the

conditions themselves would be the stopping criteria for the simulation.

In the following subsections, the detector data is denote a vector x that contains

all of the binned data. The user can decide whether each xm should be the number of

counts that are detected by a given pixel, or the number of counts in any pixel-energy

bin, or some other definition.

3.4.1.1 Mean Data

The mean is the average weight in each detector bin,

xm =

∑N
n=1Wm,n

N
(3.1)

where N is the total number of events processed in GEANT. The first condition is,

1. There is a nonmonotonic behavior in the estimated mean for each detector bin

as a function of the number of events N over the last half of the problem.

3.4.1.2 Relative Error

The relative error is widely considered the most important statistical check, and

was the check emphasized throughout this work. The relative error is defined as the

standard deviation on the estimate of the mean divided by the mean (it can also be

thought of as the inverse of the SNR),

Rm =
Sxm
xm

(3.2)

There are three tests related to the relative error,

2. An acceptably low magnitude on the relative error (0.05 is a standard value).

3. Monotonically decreasing R as a function of the number of histories N for the

last half of the problem

4. A 1/sqrt(N) decrease in R as a function of N over the last half of the problem.

For a simulation without VR, a relative error below 0.05 would correspond to 400

detected counts.
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3.4.1.3 Figure of Merit

The figure of merit is defined as,

FOM =
1

R2T
(3.3)

where R is the relative error, defined in (3.2) and T is the simulation time. More

intuitively, it could be thought of as the SNR2 (which increases with N) divided by

N . The conditions on the figure of merit are,

5. A statistically constant value of the FOM as a function of N for the last half

of the problem.

6. A nonmonotonic behavior in the FOM as a function of N over the last half of

the problem.

3.4.1.4 Variance of the Variance

The variance of the variance (VoV) can be thought of as the accuracy of the esti-

mation of the relative error R and is defined as,

V OV =
S2(S2

x)

S2
x

(3.4)

The VoV uses the third and fourth moments of the weight distribution for each bin.

The statistical conditions for the VoV are:

7. Magnitude should be less than 0.1

8. Monotonically decreasing VoV as a function of N for the last half of the prob-

lem

9. A 1/N decrease in the VoV as a function of N for the last half of the problem

3.4.1.5 Discussion on Sufficient Data for Task Performance

These VR statistical measures give the user confidence in the data measured in sim-

ulation for a given object. For confidence in a binary-classification task-performance

metric, these statistics could be used to gauge the difference between two data sets.

This is a much stricter condition. The same statistics could be used, but rather than

finding statistics of the data x, the difference between the two data sets, ∆x, would

be the chosen random variable. Any averages would be over the data distributions

for each object.
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3.4.2 Primary Particle Biasing

Primary-particle biasing is a biasing of the emission distribution for the particles.

Properly done, it emphasizes the emission of particles that are more likely to hit the

detector. Generally, this is a distribution on the location r, momentum p and energy

E for a given source. The emission probability can be expressed as prunbiased(r,p, E).

The user creates a new sampling distribution prbiased(r,p, E). Because the user is

sampling more often from more interesting sections of the phase space, more particles

are detected given the same number of emissions. To offset this, each particle is

assigned a weight,

W =
prunbiased(r,p, E)

prbiased(r,p, E)
(3.5)

As an example, this thesis considered a linear bias on the energy distribution of

emitted gamma rays. This is because lower-energy gammas are unlikely to escape

the object and furthermore, unlikely to be detected. The equations describing the

energy biasing are below,

Prunbiased(Em) =
I(Em)∑M
m=1 I(Em)

Prbiased(Em) =
EmI(Em)∑M
m=1 EmI(Em)

Wm =

∑M
m=1EmI(Em)

Em
∑M

m=1 I(Em)
.

(3.6)

In the above equations, M is the total number of emission lines, Em is the mth

emission energy and I(Em) is the intensity of that line. For complex geometries,

location and momentum direction biasing is riskier. Due to scattering inside the

object, particles emitted in opposite directions can still hit the detector. Hence, any

biasing on these probabilities needs to be moderate.

Primary particle biasing is often used for a small increase in VR. Excessive

primary biasing leads to unlikely, but not insignificant, parts of the emission phase

space being sampled rarely and the corresponding weight being too high, leading to

a simulation that increases the time needed to achieve confidence in the data set.

3.4.3 Geometric Importance Sampling

Importance sampling increases the likelihood that a particle reaches the detector re-

gardless of where it is emitted. In GEANT4, the user can overlay parallel geometries
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on top of the mass geometry, which is where the physics and detection processes

occur. In the parallel geometry, the user can define a mesh of geometries with dif-

ferent importance values, where a higher importance value corresponds to a higher

probability of detection at that location. When a particle moves from geometry m,

with importance Im to a new geometry n with importance In, a ratio r = In
Im

is

defined. Generally, it is easiest to assign importance values that are a power of 2.

The behavior of the system then depends on the value r takes on,

If r > 1, split into r tracks, reduce track weight by 1/r.

If r = 1, continue tracking.

If r < 1, kill track with probability (1− r).

(3.7)

The user can set up different parallel geometries for different energy ranges and

particle types. It is often recommended to choose distances between importance

cells roughly equal to the particle’s interaction length at that energy. This procedure

results in on average one particle escaping the object for each emission.

3.4.4 Weight Windowing

Weight windowing is a method used to keep the weights within a user defined range.

Weight windowing can be applied to every physical cell and energy range indepen-

dently. The procedure is outlined in Figure 3.4. Weights below the lower weight

bound are killed off with probability probability W
WL

, while weights above the upper

weight bound are split into a number of particles related to the ratio between the

initial weight and upper weight limit. The resulting weight (if the initial weight was

outside the range) is set to the survival weight. Weight windowing is often used

with supplementary VR methods, such as cross-section biasing on the scattering

distribution.

3.4.5 Brief Comments on Implementation in GEANT

GEANT4 has built in methods to perform importance sampling and weight window-

ing. A secondary parallel geometry can be laid on top of the physical geometry, with

different geometries being given different importance values or weight windows. Us-

ing importance sampling, with the necessary classes defined, a given particle moves

into a high importance cell and is split. The initial particle’s weight changes and a
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Figure 3.4: The user defines a survival factor Cs and upper limit factor Cu for the
whole problem. The user supplies each space-energy cell with a lower weight bound
WL.

second particle is produced. GEANT4 also has scoring classes available to the user

to calculate the sum of the weights and other statistics.

Implementation is difficult due to the detector response. For an unbiased simu-

lation, the detector response for an event sums the detected energies and bins the

total energy into a mean pixel ID. For a simulation with importance sampling or

weight windowing, all particles created from a splitting along an importance bound-

ary must be treated as a unique event. I developed these methods myself. In the

G4UserSteppingAction class, I tracked all new particles created due to splitting

along a parallel-geometry boundary. These new particles were assigned their own

"scoring track" IDs. Secondary particles resulting from the split of the first particle

were given the same scoring ID. In the detector response stage, the particle type,

mean energy and pixel ID were found for the data for each scoring track.

Simulation studies were performed on a simple HEU sphere, with a parallel mesh

set so that each layer had the thickness of the attenuation length for the 186 keV line.

In addition, primary-particle biases on momentum and location were considered as

well as an energy-location cut, where only particles emitted within a certain number

of interaction lengths of the edge of the sphere were simulated. With the cutoff

and momentum and energy biases, R2T decreased by a factor of 25. Importance

sampling was considered in addition to this, with shell thicknesses equal to the

scattering length at 186 keV; this resulted in a less efficient simulation (using the

FOM metric) than one that used a minimum energy cutoff and primary particle

biases. In twice the time, the relative error dropped by around 20% (the expected

drop would be greater than 40% for improved VR). A table of the performance of the

various attempted VR methods can be found in Table 3.1. I believe that either my

user code was inefficient or the added time due to transporting the particle through
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VR Method FOM
none 1
PP 25
IS+WW 12.5
IS+WW+PP 15

Table 3.1: Table exploring speed improvement for VR techniques. PP corresponds
to primary particle biasing, IS importance sampling and WW weight windowing.

the various cells and performing the VR algorithms was a drag on the simulations

that prevented an improvement in VR.

While a significant amount of time was spent speeding up the GEANT4 simula-

tions, alternative methods were also considered. These are discussed in the following

section.

3.5 Simulation Features for Each Task

The user-defined functions used in the GEANT4 simulations are discussed in this

section. A picture of the simulation can be found in Figure 3.5. In this picture,

IO8 is stored inside an aluminum box and is imaged by the fast-neutron detector.

A close-up of IO8 is shown in Figure 3.6. There are no geometries other than the

source and detector in this simulation. This decision was made to keep the simulation

times reasonable; with four walls, a floor and a ceiling surrounding the geometry,

every emitted particle that escapes the source would need to be processed through

some material, whether that is the detector or the room. The room would scatter

both gammas and neutrons back to the detector, which could be thought of as a

second background term related to the room geometry. The inclusion of the room

geometry slowed the simulations down considerably and subsequently was ignored.

Discussion on how inclusion of other physical geometries in the environment would

impact model performance is discussed in chapter 7.

Orientation was chosen as a nuisance parameter in some task-performance stud-

ies. In these studies, a random rotation method developed by Arvo (Arvo, 1992)

was used. Three random numbers between zero and one are chosen. The object is

first rotated a random amount around the ẑ axis using the first number; then the

ẑ axis is rotated to a random location in φ, θ space using the last two. To generate

stratified samples, evenly spaced values of the three random numbers were used.

Three initial rotations around ẑ were chosen. Then ẑ was rotated into twenty dif-

ferent points (five in φ, four in θ) on the unit sphere for sixty total orientations. In
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Figure 3.5: Geant4 model of system. An inspection object is stored inside an alu-
minum cube on the left (gray). The polyethylene mask is shown in yellow and the
gray geometries in the mask are holes. On the right is the detector.

Figure 3.6: Geant4 model of IO8, removing the aluminum case and the top DU
plate. The magenta geometry is the plutonium and the blue geometry is depleted
uranium.
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the studies in the experiments section, a stated rotation number x1x2x3 corresponds

to Arvo random numbers x1/3, x2/5, and x3/4. As an example, Arvo rotation 111

corresponds to Arvo random numbers 1/3,1/5, and 1/4.

3.5.1 Particle Emission

The object geometries were coded into the transport application. Any materials with

a significant gamma-ray emission rate, such as plutonium and uranium, were treated

as source geometries. Particles were emitted from these geometries by randomly

selecting a location from inside a large box surrounding the geometry and verifying

that the particle was inside that geometry. Particles were emitted isotropically

and with a biased energy distribution that is described in more detail in the VR

subsection. Separate simulations were set up for fission emissions and radioactive-

decay processes.

3.5.1.1 Radioactive Decay Processes

Radioactive-decay processes were modeled using a Sandia library, “SandiaDecay",

created by SNL employee and project team member Will Johnson, that is based on

Evaluated Nuclear Structure Data File (National Nucear Data Center, 2016) data.

The library allows for custom mixing and aging of isotopes and includes over 3,000

nuclides. Each source geometry was read into the G4VPrimaryGeneratorAction

class, and the emission rate was calculated for each geometry in the object based

on its size and material. A source information class was set up to contain

the emission spectra data for each material, output from “SandiaDecay". The

G4VUserPrimaryGeneratorAction class randomly selects a geometry from an in-

tensity distribution, finds the material, and samples the energy.

3.5.1.2 Spontaneous Fission

All items were imaged passively in this dissertation; alternatively, the host and mon-

itor could agree to actively image the objects, sending in a beam of neutrons that

induce fission in the object geometry. Spontaneous fission was simulated using a

Lawrence Livermore National Lab fission library (Wright, 2015), G4FissLib, that is

included in the GEANT4 source code. The user initializes predefined SponFissIso-

tope classes and assigns them an isotope number and an intensity. Multiple Spon-

FissIsotope classes can be added to a MultipleSource class that contains different
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isotopes. This library does not have the necessary data to calculate the spontaneous

fission intensity for a given mass of a substance, so I included a function that found

the spontaneous rate for each isotope from PANDA (Reilly et al., 1991).

The LLNLFission library randomly samples an isotope number from the Multi-

pleSourceClass. The number of produced gammas and neutrons is found from that

fission reaction’s multiplicity distribution, and the energy for each neutron from the

Watt fission spectra. The library does allow for correlated emissions. A flag can

be set to either sample each neutron’s energy independently (as was done in this

simulation) or set the total emitted energy based on experimental data.

3.5.2 Physics

The G4EmLivermorePhysics class was used for all electromagnetic processes. The

class includes models based on Livermore datasets for gammas and electrons. These

physics processes were always simulated regardless of whether the simulation was

set up for photon or neutron emission.

Neutron simulations used predefined data sets for elastic (G4NeutronHPElastic)

and inelastic (G4NeutronHPInelastic) collisions, fission (G4NeutronHPFission) and

capture (G4NeutronHPCapture). These are high precision models designed to sim-

ulate neutron transport down to low energies. In addition, the various cross sections

for high Z isotopes (Z > 92) were requested and received from CERN, though no

claims were made on the accuracy of this data.

The Lawrence Livermore Simulation site (Wright, 2015) does offer updated

physics libraries with more thoroughly tested data. That neutron data was not

used in this work.

3.5.3 Transport, Detection and Detector Response

A user stepping-action class was defined that terminated any gammas when they

dipped below 100keV as these were unlikely to be detected. In addition, any neutrons

attenuated below 50keV by the mask were terminated. At the end of each event,

a user event action obtains the hit collection for the given event for each sensitive

detector. The simulations did not model the the transport of the light resulting

from the energetic electron or proton interactions in the scintillator. Instead, we

were given a lookup table, derived from experimental data, that returns the light

output for a given detected proton or electron. After that, an energy smearing



89

Figure 3.7: Plot of the standard deviation of the Gaussian energy smear as a function
of deposited energy.

was applied to the light output. The distribution of the energy smear is Gaussian

with a standard deviation given in Figure 3.7. For each event, the average position,

weighted by deposited energy, of each detected particle was found and binned into

a pixel. PSD was assumed to be perfect, even though it is often not, as described

in the Physics chapter. The pixel ID, detected particle, energy type, and time since

particle emission were all recorded.

3.5.4 Variance Reduction Techniques

The VR techniques used were simulation dependent. The sources where only neu-

tron images were considered, such as the BeRP ball location study and 2D geo-

metric source tasks, were unbiased. This is because the neutrons do not interact

significantly in the source geometries, and therefore most escape and the effect of

biasing is limited. A neutron-emission cut was considered, but low energy neu-

trons do induce fission in the objects which needs to be accounted for. A primary

momentum-direction bias would likely have been helpful, especially for the thin 2D

sources where interaction inside the object geometry is limited. Regardless, only

about 200 hours were needed to simulate the desired number of counts for a given

configuration of the 2D geometric sources.

However, the gamma simulations of the INL inspection objects were biased.

This is necessary due to heavy self-shielding. When Pu241 beta decays, Am241

is produced. Am241 has a very intense peak (corresponding to 27 emissions per

second per gram) at 60keV and another intense peak at 26.4 keV (1.8 emissions per

second per gram). These gammas are extremely unlikely to escape the object or

pass through the lead plate on the detector. Between these peaks and other low

energy peaks (the highest intensity emission line above 100keV was a 105keV line
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VR Method CPU hours R2T
none 6.4e6 1
100keV cutoff 17200 372
100keV cutoff + Energy bias 4800 1333

Table 3.2: Table exploring speed improvement for VR techniques for the inspection
objects. The 100keV energy cut provided the greatest decrease in number of CPU
hours required and the energy bias provided another factor of 4.

at 0.0048/s), only roughly 1 in 1 billion emitted particles were detected for IO9 in

the unbiased simulations, which took roughly 10 hours to simulate. To achieve a

relative error of 0.05 for each of the 1600 pixels, this would require 6.4 million CPU

hours.

To speed up the simulations, no gamma emissions below 100keV were considered.

This is conservative—a 200keV gamma must travel through roughly seven path

lengths in the lead plate in front of the detector. However, the 186 keV peak of

U235 is active and some gammas pass through the lead plate. A linear energy bias

was also included, defined by,

Prbiased(Em) =
CmI(Em)∑M
m=1 CmI(Em)

Cm = Em when Em < 1 MeV

= 1MeV when Em > 1MeV

(3.8)

The effect of these choices is shown in Table 3.2. This provided a dramatic improve-

ment in simulation time

3.5.5 Parallel Processing

GEANT4.10 was released in December, 2014. This significant update offers the capa-

bility of multi-threaded processing, though it does not have a GPU implementation

available yet. A helpful code-migration reference can be found at https://twiki.

cern.ch/twiki/bin/view/Geant4/QuickMigrationGuideForGeant4V10. The

multithreaded GEANT4 parallelizes processing, tracking each event on a separate

CPU. A new user action class G4VUserActionInitialization has been defined, and

the primary-generator-action, stepping, event, and run action classes all get wrapped

up into this new class that is thread local.

The user must be careful to keep the code thread safe using multi-threaded

GEANT. In particular, thread locking through mutexes is necessary for any input

https://twiki.cern.ch/twiki/bin/view/Geant4/QuickMigrationGuideForGeant4V10
https://twiki.cern.ch/twiki/bin/view/Geant4/QuickMigrationGuideForGeant4V10
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Threads CPU hours Real Time Speedup
1 5e7 3543 1
4 5e7 934 3.8
8 5e7 514 6.9
12 5e7 390 9.1
16 5e7 345 10.3

Table 3.3: Parallelizability of GEANT4 code using multithreaded build. This per-
formance analysis was done on the Sandia glory cluster, but an analysis on the
modern red-sky cluster achieved a maximum speedup of about 13.

being read in from a file or output saved to a file. Parallelization results for the

simulations can be found in Table 3.3.

3.5.6 Splitting up Simulations

A critical aspect of this work is accounting for the role that nuisance parameters

play in treaty-verification tasks. To do so, it was necessary to simulate data sets for

many different object orientations and locations. While simulating a set of detector

data took roughly 4,800 hours for IO8, only 16 hours were necessary to transport

the particles from the surface of the object to the detector. For this reason, the

simulations were split into two components; one simulation transports the emitted

particles to a sphere surrounding the object (see Figure 3.8), and the second reads in

the LM data from the output of the first simulation and transports those particles to

the detector (see Figure 3.9). As in the other VR efforts, this primarily provided an

improvement for the IO8 and IO9 gamma simulations. The simulation time changed

from 4,800 hours (in the case of the inspection objects) for each simulated image to

about 4,800 hours for the initial source flux calculation and then only 16 hours for

each realization of the source (before the parallel processing speedup). It provided

a factor of 8 improvement when processing neutrons for IO8 and IO9, though the

improvement was minimal for the neutron sources considered in this thesis.

The downside to this method is that each measurement required a large amount

of storage. The LM detector data only requires on the order of 1 GB of storage for

sufficient data; after splitting the simulations up, the storage requirement on the

flux exiting the object was on the order of 100GB.

To store the LM data output from the first simulation, the ROOT frame-

work (Brun and Rademakers, 1997) was used. All of the data for each detected

particle was stored in an object. ROOT provides methods to visualize large amounts
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Figure 3.8: First GEANT4 simulation. A spherical detector surrounds the object,
shown in wireframe visualization here.

Figure 3.9: Second GEANT4 simulation, reading in the LM data file output from
the first simulation and transporting those particles to the detector.
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Figure 3.10: Background spectrum created with 2.60% K40, 3.49 ppm of uranium,
and 11.09 ppm of thorium.

of data which can be used to verify the simulations are working as expected.

3.5.7 High Performance Computing

The steps taken in this section show a drastic improvement in simulation speed;

energy biasing, parallelization and splitting up the simulation into two make the

simulation time more manageable. However, 4800 hours ( roughly 400 after par-

allelization) to simulate high enough statistics on the flux exiting the inspection

objects is still an unmanageable number. To make these simulations manageable,

the transport applications were run on Sandia’s high performance computing clus-

ters. The Red-Sky cluster, for example, has roughly 2800 nodes and 22,000 cores.

3.6 Background

The gamma-radiation background spectrum was generated using the Gamma Detec-

tor and Response Software (GADRAS)(Mitchell, 1988). Because GADRAS does not

include liquid scintillators in its list of detector materials, NaI was used. Spectral

templates for this geometry were created for 1.01% K40 (from the earth’s man-

tle), 10 ppm of thorium, and 5 ppm of uranium (both from soil). Using these

templates, background spectra can be created for different outdoor locations. An

example gamma-ray background that was used throughout this work is shown in

Figure 3.10. This background spectrum was applied equally to all pixels. This is a

significant assumption that often is not true in real life. In actuality, background

particles coming from the direction of the source would be "imaged" by the detec-

tor, leading to a shadow pattern due to the mask. In addition, any imaged TAI

suppresses the background behind it. No neutron background was used.
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Figure 3.11: A comparison of the gamma spectra and count rates for IO8 and
IO9 under three different orientations. When IO9 is imaged with the cube face
perpendicular to the imaging axis (as in the 000 orientation), the low energy photons
travel through the minimum shielding, and the count rate is highest and spectra
shifts most towards low energies. The IO8 spectra and count rate are fairly consistent
regardless of orientation chosen (count rate varies by 15%). In all three cases,
photons detected from IO8 are more likely to be of higher energy than IO9.

3.7 Simulation Data

The simulated data used in each of the various tasks is discussed in this section.

3.7.1 Idaho Inspection Objects

IO8 and IO9 were measured in simulation under many orientations. The detected

count rate and gamma-energy spectra for IO8, with depleted uranium, is less sen-

sitive to changes in orientation than IO9 (Figure 3.11), which sees significant shifts

in both spectra and count rate. With the VR techniques, roughly 2 million gamma

rays were detected. The detected weights summed to around 2,000 for each of the

two sources. The particles were binned into 64 energy bins, ranging from 100keV to

3MeV.

3.7.2 BeRP Ball Location Study

Neutrons emitted from the BeRP ball were imaged in simulation at two locations in

the x-y plane. Roughly 5.5 million detected neutrons were recorded (all with weight

1) for each of the two simulations. Events were binned into an energy-weighted

pixel ID. Count maps can be found in Figure 3.11. Unless stated otherwise, the

count-rates were always set equal for these tasks to gauge the observer’s ability to

discriminate on spatial data rather than count rate.
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Figure 3.12: Images of the BeRP ball at (0 cm,0 cm,0 cm) on the left and (2 cm,2
cm,0 cm) on the right. Each pixel is 1 cm in length, so the difference in image
location corresponds to a 2 pixel shift in both the vertical and horizontal directions.

Figure 3.13: Images of the 20 cm ring source (on the left) and square source (on the
right).

3.7.3 2D Circle vs Square Source

Plutonium ring and hollow square sources were simulated, each with a length of

20 cm. The neutron count maps can be found in Figure 3.13. Smaller and larger

sources with these geometries were also simulated for the developed models that

penalize storage of sensitive information. 12.5 million counts (with weight 1) were

simulated for each of these sources. The detected count rate scales roughly with

diameter, though in all of the performance studies, the count rates of any imaged

sources were set equal to focus on the geometrical nature of the sources instead of

the mass.
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CHAPTER 4

Bayesian Ideal Observer

The Bayesian ideal observer is the optimal observer for binary-classification tasks,

as it has complete probabilistic knowledge of the measured data. Importantly for

this project, it can be represented in a form that processes LM data. Section 4.1 dis-

cusses multiple forms of the ideal observer, beginning with the signal-known-exactly

(SKE) model and then expanding the theory to incorporate nuisance parameters.

Section 4.2 demonstrates how the LM ideal observer models perform in the various

tasks discussed in Section 3.2. This chapter expands on a JOSA-A publication (Mac-

Gahan et al., 2016d) and IEEE conference proceedings (MacGahan et al., 2014).

Much of the theory presented in those publications is repeated in this chapter, but

with additional emphasis on implementation of the models and ways a cheating host

and monitor could trick the other party.

4.1 Theory and Model Implementation

In advance of the theory discussion, it is useful to formalize the notation for LM data.

This notation is taken from work developed by Barrett, Parra, and Caucci (Barrett

et al., 1997; Caucci and Barrett, 2012). Additional discussion on list-mode theory

and its applications can be found in work by Clarkson (Clarkson, 2012) and Jha et

al. (Jha et al., 2013). There is a fundamental difference in the motivations for their

work and this work. While they utilize LM data to prevent the loss of information

that comes with binning data, the desire here is to overcome the need for an IB

by discriminating sources with LM data. Because this work is not utilizing the full

information of the LM data by binning it, it is true that performance is not optimal

compared to the methods developed in the above cited papers. However, the focus

of this project is on deriving observer models that do not aggregate data. This is

because as the limit of the individual bin size (in the case of energy) goes to zero,

the discrete distribution will approximate a continuous one.

In this chapter, the data is represented by the total number of counts N and the

set of LM data {An}. Each An contains all of the detectable information for the nth
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event. For a neutron-coded aperture imager, this data is,

An = {particle type, pixel number, energy deposited}. (4.1)

For a HPGe detector (Twomey, 2003), which is a high-resolution gamma detector,

the data would consist of only the gamma-ray energy deposited, as the detector does

a poor job detecting neutrons and does not have any imaging capabilities. Notice

that (4.1) contains both discrete (particle type and pixel number) and continuous

(energy) random variables. In all of the experiments in this section, the energy is

binned, meaning all distributions are discrete. Despite this, all probabilities on the

LM data are treated as continuous.

The ideal observer (Barrett and Myers, 2003) is defined as

Λ({An}, N) =
pr({An}, N |H2)

pr({An}, N |H1)
. (4.2)

In (4.2), the arguments are a mixture of discrete and continuous random variables

and the pr(·) notation was used in these cases. The ideal observer thresholds the

likelihood ratio to make decisions and declare the data from class 1 or class 2. Note

that the likelihood includes the LM data as well as the number of detected events N ,

which is not LM data, as it requires accumulating information (the event count) over

many events. Though not explicitly stated in the above equation, the likelihoods

and ideal observer are dependent on acquisition time.

In the following subsections, forms of the ideal observer are developed for an SKE

discrimination task (Section 4.1.1), a task where nuisance parameters are present

(Section 4.1.2), and an alternative, occasionally more useful form to incorporate

nuisance parameters (Section 4.1.3). Finally, Section 4.1.4 discusses methods to

account for the inherent variability in performance due to imperfect calibration

data.

4.1.1 Signal-Known-Exactly Ideal Observer

The SKE ideal observer assumes that the nuisance parameters are known and thus

the likelihood ratio is given by,

ΛSKE({An}, N |γ1, γ2) =
pr({An}, N |γ2, H2)

pr({An}, N |γ1, H1)
. (4.3)

The SKE likelihoods in (4.3) can be represented in LM format. Under a known set of

nuisance parameters, the likelihood that the data ({An}, N) comes from hypothesis
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Hj is

pr({An}, N |γj, Hj) = pr({An}|N, γj, Hj)Pr(N |γj, Hj). (4.4)

The first term is a pdf on observing some set of LM data given full knowledge of

the nuisance parameters relevant to hypothesis Hj. The second term is a Poisson

probability on the number of counts observed. As each event is independent, (4.4)

can be written as

pr({An}, N |γj, Hj) = Pr(N |γj, Hj)
N∏
n=1

pr(An|γj, Hj), (4.5)

where the last term pr(An|γj, Hj) is the probability of observing the LM event data

An given that object j is being imaged and with known nuisance parameters γj.

The Poisson probabilities depend on the mean count rate for events originating

from the object being imaged (the source) N (s)

j and the mean count rate for events

originating outside the object (background events) N (b), both of which depend on

the set of nuisance parameters γj. The overall mean count rate for hypothesis Hj

is defined as N j = N
(s)

j +N
(b). In (4.4), Pr(N |γj, Hj) is a Poisson probability with

mean N j, i.e., Pr(N |N j).

To make sense of the second term, pr(An|γj, Hj), a variable hn is defined. hn

describes the origin of the nth detected particle. The probability that the detected

event is a background event (hn = h(b)) can be differentiated from a source event

(hn = h(s)). Including these conditional probabilities in the LM term,

pr(An|γj, Hj) =

pr(An|γj, hn = h(b))Pr(hn = h(b)|γj, Hj)+

pr(An|γj, Hj, hn = h(s))Pr(hn = h(s)|γj, Hj),

(4.6)

where Pr(hn = h(b)|γj, Hj) is the probability that the detected event came from the

background, and Pr(hn = h(s)|γj, Hj) = 1 − Pr(hn = h(b)|γj, Hj) the probability

that the detected event originated from the source. These probabilities are equal to

the ratio between the mean number of background or signal counts and the total

mean number of counts. The dependence of the LM data for a background event on

Hj was dropped because the background distribution is the same for either object

being imaged.

The likelihoods found in the numerator and denominator of (4.3) have now

been expanded to include a Poisson term on the total detected counts, terms which

account for the probability of a background or a source event (another nuisance
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parameter related to the count rate), and the probability density of observing LM

data for a source event and a background event. These last two probabilities include

the distribution of where an event occurs in the detector (i.e., the imaging aspect of

the system) as well as the distribution associated with the energy of the event (i.e.,

the spectral aspect of the system). These distributions must be determined either

through calibration or through Monte Carlo simulations. Replacing the likelihoods

in (4.3) with the discussed expressions reveals that,

ΛSKE({An, }, N |γ1, γ2) =

Pr(N |N2)

Pr(N |N1)

N∏
n=1

pr(An|γ2, H2)

pr(An|γ1, H1)
.

(4.7)

Both the numerator and denominator inside the product utilize the background and

source decomposition shown in (4.6).

4.1.1.1 Implementation

Implementation of this SKE ideal observer would occur in three stages, consistent

with the binary-classification task discussion in Section 1.3. First, in the calibration

stage, a pair of high-statistics LM-data sets are measured (or simulated) for two

different trusted TAIs. These data sets are used to find Nj and are binned by energy

and pixel number and then normalized to find a probability density on observing

the LM data pr(An|γj, Hj).

Second, the monitor would need to measure the trusted TAIs many times (enough

to properly account for the Poisson noise on the test statistic) and perform the

ideal observer on that data to generate a distribution on Λ for each of the two

hypotheses, pr(Λ|H1) and pr(Λ|H2). For each measurement, the test statistic Λ

would be initialized to one. For each detected event, the test statistic is multiplied

by the ratio of observing that event’s data An given the two hypotheses and the

known nuisance parameters. At the end of the acquisition time, Λ is multiplied

by the ratio of the probabilities for observing N counts under the two hypothesis,

resulting in a final value for Λ. This distribution would be used, once the appropriate

cost functions are decided upon for incorrect decisions, to decide on a threshold

value tthresh. tthresh could be designed to maximize the true-positive rate for a given

acceptable level of incorrect classifications.

Finally, in the testing stage, an unknown object would be placed in front of

the imager for the monitor to perform a verification measurement. The model
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would be performed on the data as described in the above paragraph. In this case,

however, the LM data An would update the model and then be deleted. Finally, Λ

is thresholded to make a decision.

The choice to compute the test statistic rather than the individual likelihoods

was made for computational ease. The LM probabilities used in this model are often

very small (the smaller the bin size, the lower the probability values are). Calculation

of an individual likelihood expression such as pr(An, N |γ1, H1) is difficult as it is the

product of small numbers and goes to zero computationally after a handful of list-

mode events. This can be overcome through the use of log likelihoods or by tracking

only the test statistic.

In practice, the LM ideal observer could be implemented with an electronic board

that updates the test statistic with a certain value for each detected particle read in.

The system would only need to have enough memory to store Nj and pr(An|γj, Hj),

determined from the calibration data, and t. In addition, it would need to perform

any mathematical calculations necessary as events are read in.

Another important component to the implementation of this model is address-

ing the variability in detector response. This is an important task that has not

been considered in detail due to lack of experimental data. It is addressed further

in Section 7.1.1.

4.1.1.2 Storage and Need for an Information Barrier

The storage requirement for the Bayesian ideal observer is significant. The SKE

ideal observer requires storage of both spatial and spectral measurements. In a

treaty-verification application, this information could be used to determine sensitive

isotopic and spatial information about the object. Storage of this calibration data

would need to be behind an IB, as in Figure 1.19. The monitor would therefore not

be able to access this information, reducing its confidence that a useful measurement

is being performed.

4.1.1.3 A Cheating Host

The host country could try to fool the monitor by using a spoof that the model would

declare is H1 or H2. The monitor would only be given access to the test-statistic

distributions for the trusted TAIs, pr(t|H1) and pr(t|H2), and the test statistic for

the unknown item. If an unverified object returns a test statistic that is statistically

unlikely for either of the two trusted TAIs, the tested source could be defined as
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neither of the two. A probability density on the log of the test statistic distribution,

log(t|Hj) can be found easily; log(t|Hj) is the sum of many independent random

variables in the form of log(An|Hj). In the SKE case, it is a normal distribution due

to the central limit theorem. However, it is fairly easy to spoof given the massive

dimensionality reduction involved, going from a total of M detector bins to a single

test statistic. An example is discussed in Section 4.2.2.

Furthermore, the fact that the monitor can not access this information leads to

an incentive for the host to bake in spoofs into H1 and H2 in order to trick the

monitor. The monitor would not be able to determine if the host did so.

4.1.1.4 A Cheating Monitor

It could be of interest to the monitor to perform the model on unclassified items

with known data distributions. Given enough measurements, especially if done with

single emission lines to back out the value the model assigns to that energy, this

could begin to reveal specifics of the model.

4.1.2 Ideal Observer Incorporating Nuisance Parameters

When the nuisance parameters γ1 and γ2 are not known exactly, the likelihood

expressions in the ideal observer must be integrated over the probability densities

of those nuisance parameters for optimal performance. (4.2) then becomes,

Λ({An}, N) =

∫
pr({An}, N |γ2, H2)pr(γ2)dγ2∫
pr({An}, N |γ1, H1)pr(γ1)dγ1

. (4.8)

The probability density on the LM data {An} is conditioned on knowledge of the

nuisance parameters and then averaged over the distribution of the nuisance param-

eters pr(γj). This prior distribution would be very difficult to determine empirically.

For example, if the location was unknown, the host could make a best guess on the

distribution of the location nuisance parameter, but any deviation of the actual

tested locations from this distribution would degrade task performance.

The incorporation of nuisance parameters brings a practical concern. The de-

pendence of the true detected spatial and energy distributions on certain nuisance

parameters is complex. In order to use the ideal observer in practice, the host coun-

try would need to measure their TAIs under many different conditions to acquire

the probability densities on pr(An, N |γj, Hj) in order to properly train the ideal ob-

server. While the nuisance parameter priors discussed in this section are continuous,
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in reality they would likely need to be treated as discrete as the host would not be

able to measure pr(An, N |γj, Hj) for all γj, or analytically determine the likelihood.

In addition, the host would need to investigate the objects themselves to properly

identify the prior distributions. Performance degrades for any deviation between the

prior distributions chosen by the host and the actual distribution of those nuisance

parameters when the monitor is testing the objects.

This model could be evaluated through Monte Carlo sampling of the numer-

ator and denominator in (4.8). This is explained in more detail in the following

subsubsection.

4.1.2.1 Observer Evaluation

The observer model must maintain the ability to process LM data to avoid aggre-

gating data when testing a source. With the SKE ideal observer, this is relatively

trivial. But it becomes a more difficult problem when nuisance parameters are in-

corporated. Using Monte Carlo integration methods, integration over γj can be

represented as a sum over the number of Monte Carlo samples for that source Sj,

Λ({An}, N) =

∑S2

s2=1 pr({An}, N |γ(2,s2), H2)∑S1

s1=1, pr({An}, N |γ(1,s1), H1)
, (4.9)

where each γj,sj have been sampled from pr(γj). Note that this integral requires two

separate summations, which is why the sample numbers for the nuisance parameters

in source 2, s2 have been differentiated from the sample numbers from source 1, s1.

Each γj,sj must be determined before processing of the tested source’ data begins.

Then, each pr(An, N |γj,sj , Hj) would be updated with the LM data.

Monte Carlo sampling of the integrals in the numerator and denominator offers

the most straightforward solution, but proves mathematically difficult in instances

where the numerator and denominator are both very close to zero computationally,

as in this application. This can be circumvented by using the log likelihood. To pro-

ceed without the storage of LM data, all samples of γj must be taken before the data

is processed, and each log likelihood expression log(pr(An, N |γj,sj , Hj)) must be up-

dated as the LM data is read in. At the end, a common factor is subtracted from both

numerator and denominator of (4.9), and the terms are re-exponentiated and added.

This procedure makes the problem computationally feasible. In testing, the method

requires storage of the individual log likelihood values log(pr({An}, N |γ(j,sj), Hj))

for each of the two sources and chosen samples of γj,sj .
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Monte Carlo integration proved sufficient to evaluate the ideal observer for the

experiments chosen in this dissertation, as only one nuisance parameter was treated

at a time. As the dimensionality of the nuisance parameters γ1 and γ2 increases,

evaluation of this integral through standard Monte Carlo methods becomes diffi-

cult due to slow convergence (Asmussen and Glynn, 2007). This can be improved

through Quasi-Monte Carlo methods, but a faster technique to calculate this integral

is Markov-Chain Monte Carlo (MCMC) (Gilks, 2005). MCMC integration continu-

ously resamples the nuisance parameters based on a proposal density pr(γj,new|γj,old),
performing the following operation,

1. Sample γj,new from pr(γj,new|γj,old)

2. If pr(An, N |γj,new, Hj) > pr(An, N |γj,old, Hj), accept γj,new

Otherwise, accept γj,new with probability
pr(An, N |γj,new, Hj)

pr(An, N |γj,old, Hj)

3. Recalculate pr(An, N |γj, Hj) with current γj

4. Repeat

(4.10)

The correlations between consecutive evaluations of pr(An, N |γj, Hj) bring practical

concerns. γj is initialized to a guess. Most MCMC guides recommend a burn-in time

to allow γj to find a more likely value of pr(An, N |γj, Hj), preventing a large number

of unlikely probabilities from stopping quick convergence. In addition, it is often

recommended to take one of every 100 or so evaluations to prevent sample to sample

correlations.

4.1.2.2 Implementation

Implementation of the ideal observer when nuisance parameters are present is a

painstaking task on the host country’s part. First, the host would need to estimate

the priors pr(γj). To repeat the earlier example, location variability could be present,

whether due to inconsistent packaging in its container or inconsistent placing of the

container in front of the detector. The prior could then be treated as a Gaussian

distribution in the coordinate plane, centered at (0,0,0) with a certain estimated

variance in all directions. The host country would need to measure the object

in many different locations to find pr({An}, N |γj, Hj). To use this method while

keeping the LM requirement, pr({An}, N |γj, Hj) would need to be calculated over

a predefined grid on the nuisance parameter values. Likewise, if MCMC was used,

the proposal density pr(γj,new|γj,old) would also need to have discrete values of γj.
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As in the SKE case, the host country would also need to test the trained ideal

observer on trusted objects to generate the test statistic distributions. For best

performance, these trusted objects (and the tested items) must also exhibit the

same variability as the sources used to calibrate the observer model.

4.1.2.3 Storage and Need for an Information Barrier

The fact that many measurements must be taken to train the ideal observer enforces

the need for an information barrier. For example, if the orientation of the TAI is

unknown, the observer needs to train on many measurements of the TAI at different

orientations. Such data could be used in a MLEM routine or FBP to reconstruct

more sensitive information than a single measurement could provide.

4.1.2.4 A Cheating Host and Monitor

Like the SKE model, the ideal observer that incorporates nuisance parameters also

offers some ability to distinguish spoofs. However, the distribution on pr(t|H1) and

pr(t|H2) are broader than the SKE distributions, making it harder to reject an item

other than H1 and H2.

The monitor does gain an advantage in its ability to access the test-statistic

distribution. While the log of the ideal observer in the SKE case is normal, the log

ideal observer when testing objects with nuisance parameters is a weighted sum of

normal random variables and can actually be highly non-normal. The nature of the

distribution will give the monitor some information about how the SKE likelihoods

vary with nuisance parameter values. This is discussed further in Section 4.2.3.

4.1.3 Ideal Observer Using Posterior Probability Density

Through some manipulation of (4.8), it is possible to derive a more manageable form

of the ideal observer. The following derivation is similar to work done by Kupinski

et al. in a previous paper (Kupinski et al., 2003). Before beginning, a notational

change is made for convenience. The symbol γ0 is now the set of nuisance parameters

shared by source 1 and 2, such as variability in background activity, orientation,

and location. The symbols γ1 and γ2 will now be used to describe the nuisance

parameters unique to sources 1 and 2, such as the material composition of each



105

source if not exactly known. (4.8) now becomes,

Λ({An}, N) =∫ ∫
pr({An}, N |γ0, γ2, H2)pr(γ0)pr(γ2)dγ0dγ2∫ ∫
pr({An}, N |γ0, γ1, H1)pr(γ0)pr(γ1)dγ0dγ1

.
(4.11)

Beginning with (4.11), simplify the denominator back to pr({An}, N |H1) and

marginalize the numerator over the remaining nuisance parameters γ1,

Λ({An}, N) =
1

pr({An}, N |H1)

×
∫ ∫ ∫

pr({An}, N |γ0, γ2, H2)...

pr(γ0)pr(γ1)pr(γ2)dγ0dγ1dγ2.

(4.12)

Next, multiply both the numerator and the denominator inside the integral

by the SKE likelihood for source 1, pr(An, N |γ0, γ1, H1), and acknowledge that

pr(An, N |γ0, γ2, H2)/pr(An, N |γ0, γ1, H1) for a specific γ1 and γ2 is the SKE observer

as in (4.7),

Λ({An}, N) =
1

pr({An}, N |H1)

×
∫ ∫ ∫

ΛSKE({An}, N |γ0, γ1, γ2)

pr({An}, N |γ0, γ1, H1)pr(γ0)pr(γ1)

pr(γ2)dγ0dγ1dγ2.

(4.13)

Next simplify further using Bayes’ rule, creating a posterior probability density,

pr(γ0, γ1|{An}, N,H1) =

pr({An}, N |γ0, γ1, H1)pr(γ0)pr(γ1)

pr({An}, N |H1)
.

(4.14)

Substituting (4.14) into (4.13), we arrive at the final result,

Λ({An}, N) =

∫
ΛSKE({An}, N |γ0, γ1, γ2)pr(γ2)

pr(γ0, γ1|{An}, N,H1)dγ0dγ1dγ2.

(4.15)

This form of the ideal observer presents various advantages and disadvantages

over (4.8) that are explored in the following subsubsection.

4.1.3.1 Observer Evaluation

This integral can be evaluated by sampling the nuisance parameters γ0 and γ1 from

the posterior density pr(γ0, γ1|{An}, N,H1) and the γ2 nuisance parameters from
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their respective probability densities and performing Monte Carlo integration. This

provides an advantage over (4.8) because the SKE ideal observer is generally more

computationally feasible than the individual likelihoods and does not require the

use of log likelihoods. Another advantage to this method is that the posterior pdf

provides a distribution on γ0, γ1 values more consistent with the data ({An}, N)

than a simple Monte Carlo sample. The integral should therefore converge faster.

4.1.3.2 Implementation, Storage, and Ability to Discriminate Spoofs

The posterior pdf pr(γ0, γ1|{An}, N,H1) is dependent on the data set ({An}, N).

However, to keep the LM storage requirement, the full {An} can not be known

in advance. Computing the posterior pdf requires evaluating the likelihood

pr({An}, N |γ0, γ1, H1) over a large number of points on the γ1, γ0 nuisance param-

eter grid. The full ({An}, N) are not known before this nuisance parameter grid is

set up, requiring a large range of values for the γ0, γ1 grid. In the end, it is not clear

that this method would provide a significant speed increase as a similar number

of grid points may be required to evaluate (4.15) as samples needed to effectively

evaluate (4.8).

This model presents a new method to calculate the ideal observer that is ben-

eficial in certain situations. The storage requirements and ability to discriminate

spoofs does not change compared to the Monte Carlo integration in (4.8). Regardless

of the approach chosen, the ideal observer would need to store many sets of cali-

bration data under different object configurations in order to incorporate nuisance

parameters, increasing storage requirements and complexity of operations behind

an IB.

4.1.4 Method to Account for Imperfect Calibration Data

In both simulation and a real-life application, the accuracy of the calibration data

is limited by the statistics; this limitation degrades task performance due to the

mismatch between the calibration data and the "true" distribution that the tested

source’s detector data would take on given unlimited statistics. To address this

problem, the variation in the calibration data can be treated as a nuisance parameter.

A few variables are defined to better understand this problem:

• The mean values of the true data distribution when imaging source j are

denoted as gj,t. This is non-random (assuming a constant detector response
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for now) and unknown.

• The calibration data corresponds to a random sample from a Poisson (or nor-

mal if the statistics are high enough) distribution with mean gj,t. The cali-

bration data for source j is denoted as gj,c, containing values gj,c,m. These are

non-random and known.

• The vector gj,cs is a random variable used to represent the range in possible

values the true mean could take on given the calibration data. Individual

realizations of gj,cs correspond to possible values of the true mean.

As the only known data is the single set of calibration data, we must assume gj,cs
is normal with mean and variance equal to gj,c. This proposed distribution is an

approximation and imperfect. If the true mean for a bin was smaller than the

sampled calibration data, it would have a lower variance. If the true mean was

higher, it would have a higher variance. Therefore, a proper sampling distribution

would emphasize higher gj,cs values over lower ones. Ignoring this, the SKE ideal

observer, with truth data known, would be represented as,

Λ({An}, N) =
pr({An}, N |g2,t)

pr({An}, N |g1,t)
. (4.16)

However, as already stated, the truth data is not known. Therefore, it can be

represented as an integral over the random variable gj,cs.

Λ({An}, N) =

∫
pr({An}, N |g2,cs)pr(g2,cs)dg2,cs∫
pr({An}, N |g1,cs)pr(g1,cs)dg1,cs

. (4.17)

In the following subsubsection, I present a method to evaluate the likelihood

integrals. I also present a method to gauge the variability in performance due to

unknown count rate.

4.1.4.1 Evaluating Likelihood Integrals

The likelihood of observing a data set given source j was imaged is,

pr({An}, N |Hj) =

∫
pr({An}, N |gj,cs)pr(gj,cs)dgj,cs. (4.18)

Breaking this down into the LM and Poisson components,

pr({An}, N |Hj) =

∫
Pr(N |gj,cs)

N∏
n=1

pr(An|gj,cs)pr(gj,cs)dgj,cs. (4.19)
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The mean count rate for a certain gj,cs is then equal to,

N cs =
M∑
m=1

gj,cs,m. (4.20)

Ncs isN (
∑M

m=1 gj,c,m,
∑M

m=1 gj,c,m). It should be noted thatNcs has a smaller relative

error than any individual bin. If the nth detected particle falls into bin mn, the

probability on the LM component can be expressed as,

pr(An|gj,cs) =
gj,cs,mn∑M
m=1 gj,cs,m

. (4.21)

Plugging (4.20) and (4.21) into (4.19), and assuming the Poisson term is relatively

constant to the LM term, yields the final form,

pr({An}, N |Hj) =Pr(N |
M∑
m=1

gj,cs,m)

∫ ∏N
n=1 gj,cs,mn

(
∑M

m=1 gj,cs,m)N
×

pr(gj,cs,1)pr(gj,cs,2)...pr(gj,cs,M)dgj,cs,1dgj,cs,2...dgj,cs,M .

(4.22)

This is the expectation value of a ratio of correlated random variables. This expres-

sion was not evaluated analytically, though a useful source that utilizes a Taylor

series expansion can be found at http://www.stat.cmu.edu/~hseltman/files/

ratio.pdf. This was evaluated in simulation with Monte-Carlo techniques, ran-

domly sampling each gj,cs from gj,c. The results are not included with this thesis,

as they show no difference in returned ideal observer value from the SKE model.

I believe that because pr(g2,cs) is normal, it is equally likely that a sampled value

is higher or lower than the calibration mean. The result is that when integrating

over the randomness in each bin, the returned average is the same as if the SKE

model was used. After seeing this result, emphasis was put on accounting for the

variability in the ideal observer due to imperfect calibration data.

4.1.4.2 Using Known Variability in Calibration Data to Gauge Performance Vari-

ability

Data g1,c′ and g1,c′ was sampled from pr(g1,cs) and pr(g2,cs). The ideal observer was

then calibrated using these new data sets and performed on independent testing

data. This procedure generates a number of AUC values, which allows for uncer-

tainty quantification of the AUC value.

This method can be compared to the SKE method (ignoring calibration data

variability) to gauge whether the statistics of the calibration data are sufficient. A

http://www.stat.cmu.edu/~hseltman/files/ratio.pdf
http://www.stat.cmu.edu/~hseltman/files/ratio.pdf
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significant drop in model performance would imply that the statistics are not high

enough and the AUC value changes when using a different set for the calibration

data. In the experiment section where these methods are implemented in practice,

the output plots are a distribution of resulting AUC values.

An alternative to this method would be to double the acquisition time for the

objects, and create what is called an antler plot. An antler plot would show the

AUC for a certain acquisition time as a function of the number of counts N in the

calibration data set. As N increased, the AUC should move towards the true value

for that acquisition time.

4.2 Experiments and Results

In this section, the ideal observer models discussed in the theory section are applied

to the various tasks described in Section 3.2. The experimental methodology is

discussed in Section 4.2.1. Then, the SKE ideal observer (Section 4.2.2) and the

ideal observer incorporating nuisance parameters (Section 4.2.3, Section 4.2.4) are

applied to specific tasks. Finally, the methods to account for uncertainty in the

calibration data are discussed in Section 4.2.5.

4.2.1 Methodology

The methodology used to evaluate the performance of an observer model in binary-

classification tasks can be found in Section 1.3.2. Calibration and testing data sets

were simulated for the two objects in each task. These two sets have high statistics

and both are essentially independent samples of the "true" data on the detector

when a given object is imaged. The calibration data set is used to train the observer

model. LM data is sampled from the testing data set to test the model. Therefore,

the LM data actually takes on a statistical nature different from both the calibration

data and the "true" data, though the impact of that is ignored in these experiments.

The reason LM data was sampled from the binned simulation data rather than taken

directly from a data file (GEANT4 can output detections event-by-event) is that it

is unclear how to properly sample from the list when the LM events have non-unity

weights, as in the IO8 vs. IO9 classification task.
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4.2.2 SKE Ideal Observer

In this section, experiments are designed and data simulated to test the SKE ideal

observer (4.3). In each case, the model is trained on a specific pair of data sets from

measured objects under known conditions. The model is then judged by its ability to

discriminate a second set of measurements. All of the discussed discrimination tasks

are considered in this section. In addition, examples of the test statistic distributions

and discussions of discriminating spoofs can be found in each subsection.

4.2.2.1 IO8 vs. IO9 Gamma Data Discrimination

In this task, the ideal observer was trained on IO8 and IO9 data measured under

a certain orientation. When discussing the orientation of the objects being imaged,

I refer to the Arvo rotation number described in Section 3.5. This model was then

used to classify independently measured IO8 and IO9 data sets from that same

orientation. This was done for Arvo orientation 000 and 111. Arvo orientation 000

puts the face of the cube parallel to the mask plane. IO9’s 186 keV line undergoes

the minimal attenuation in this case. This leads to drastically different count rates

between IO8 and IO9 and a more disparate energy spectra (see Figure 3.11). The

111 orientation is a standard off-imaging axis orientation and the count rates and

spectra for the two objects imaged at this orientation are generally more similar.

Figure 4.1 shows the performance of different components of the ideal observer

in classifying the two items. The "All terms" lines correspond to the full SKE ideal

observer. The "Poisson terms" lines correspond to an ideal observer based on only

the Poisson probabilities on overall detected counts,

Λ(N) =
Pr(N |H2)

Pr(N |H1)
. (4.23)

The "LM terms" lines correspond to an observer based on just the LM probabilities,

Λ({An}) =
N∏
n=1

pr(An|H2)

pr(An|H1)
. (4.24)

Note that the likelihoods in eq. (4.24) are not proper probability densities as it

they are not normalized. The plots in Figure 4.1 show how the Poisson and LM

components of the ideal observer effect overall performance; in the 000 orientation

study, the Poisson probabilities play a larger role in ideal observer performance than

the 111 orientation study.
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Figure 4.1: The left plot shows the performance of the total (4.3), LM (4.24) and
Poisson (4.23) components of the ideal observer trained and tested on independent
measurements of the 000 orientation. The right plot shows the performance when
trained on and testing the 111 orientation. For these plots, the data sets were
summed over pixel ID, producing high statistics data sets on the counts observed in
each energy bin.

The error bars on the plots in Figure 4.1 are due to the limited number of

testing data samples taken on IO8 and IO9 to calculate the AUC. The error is

due to binomial statistics—the outcome is chosen to be H1 or H2, with a certain

probability. The standard deviation on the AUC value is then sqrt(AUC∗(1−AUC)
N

).

The impact of testing and training data that doesn’t take on the "true" distribution

on the AUC is ignored for now.

A second study was performed to check whether the LM observer performance

for the 000 orientation in Figure 4.1 was due to spectral or spatial differences. In

these studies, the count rates for the two measured objects were set equal to avoid

decisions being made based on the count rate component. The data was binned

different ways, once by just energy value, a second time by pixel ID, and a third

using both the spatial and spectral information. The performance of all three is

shown in Figure 4.2. As explained in Section 3.7.1, the difference in gamma images

is minimal, and in this performance study it is apparent that while there is some

signal to be found in the differences between the gamma images, it is low compared

to the gamma spectra.

4.2.2.2 BeRP Ball Location Discrimination and Geometry Classification

Next, the ideal observer was performed on the two tasks based on neutron data.

Ideal observer performance in both tasks is shown in Figure 4.3, binned in different
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Figure 4.2: In this study, measurements of the Arvo 000 orientation were binned
in different ways and the ideal observer was trained and tested on this data. The
count rates for the data sets were set equal to properly explore the performance in
classifying the spatial vs. spectral data. The "Pixel+Energy" line bins the data into
1600 pixels and roughly 50keV energy bins, the "Energy" line bins the data into just
the energy bins, and "Pixel" bins the data into just the Pixels.

ways. The count rates for the data sets were set equal to properly gauge the model’s

ability to discriminate the two images. In both tasks, the detected neutron energy

data is of little use to the ideal observer, with the decision being made almost

entirely on the image data. The model trained and test on "Binned by Pixel" data

generally outperforms the "Binned by Pixel+Energy" data. This is because the

splitting up each pixel count bin into smaller energy bins (without increasing the

size of the calibration data set) just adds noise to the model. This is explored further

in Section 4.2.5

4.2.2.3 Spoof Rejection Example 1

In this subsubsection, the test statistic distributions are examined and spoofs are

tested. The 20 cm ring and square source discrimination task was used in this study.

The count rates were equalized to gauge the effect of the spatial information. For an

acquisition time corresponding to 2,000 signal counts being observed, the resulting

test-statistic distributions when testing independent data sets as well as the BeRP

ball data sets is shown in Figure 4.4. The test-statistic distributions on the ring

and square sources could be used to identify spoofs. For example, if any tested

items return a test statistic that falls outside the middle 90% of likely values for the
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Figure 4.3: For the left plot, the ideal observer (with different binning choices) acts
on BeRP ball data at (0 cm, 0 cm) and (2 cm, 2 cm). In the right plot, the ideal
observer acts on the square and ring source data.

two distributions, that item could be rejected. Accepting values within the middle

90% for the two distributions, only 12.4% of the time the BeRP ball at (0 cm, 0

cm) would be rejected, and only 13.8% of the time the BeRP ball at (2 cm, 2 cm)

would be rejected. If the middle 95% was accepted, the entire range of test statistics

covered by the x axis in Figure 4.4 would fail to be rejected.

The monitor’s ability to reject alternative hypotheses can be improved by using

higher statistics. Upping the mean number of acquired counts to 20,000 significantly

improved the probability of correctly rejecting the BeRP ball. Using the middle 90%,

the rejection rates increase to 95.1% (BeRP ball at (0 cm, 0 cm)) and 94.5% (BeRP

ball at (2 cm, 2 cm)). If the middle 95% was accepted, the rejection rates are 91.5%

(BeRP ball at (0 cm, 0 cm)) and 91.9% (BeRP ball at (2 cm, 2 cm)). Using these

higher statistics, the ideal observer trained for the geometric-source discrimination

task could effectively distinguish and reject the BeRP ball.

4.2.2.4 Spoof Rejection Example 2

A second study was performed with the ideal observer trained to discriminate the

16 cm ring source from the 20 cm ring source. This study is complementary to

the prior study. The count rates were set equal for all of the imaged sources. For

an acquisition time corresponding to 20,000 counts observed and 1,000 samples of

testing data taken, and rejecting values outside the middle 95% of the test-statistic

distribution, the following results were found.

• The 24 cm ring source was rejected 31.1% of the time.
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Figure 4.4: Test-statistic distributions for each object with an average of 2,000 signal
counts being recorded. The AUC for the ring and square source distributions is over
0.99. The BeRP ball test statistic distributions fall between the ring and square
source geometry distributions, but the test-statistic values are not rejected.
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Figure 4.5: Test statistic distributions for the sources with an average of 20,000
signal counts being recorded for each distribution. The AUC for the ring and square
source distributions is 1. The BeRP ball distributions fall between the ring and
square source geometry distributions. For this acquisition time, both distributions
correctly reject the BeRP ball.
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• The 16 cm square source was rejected 100% of the time.

• The 20 cm square source was rejected 6.5% of the time.

• The 24 cm square source was rejected 84.8% of the time.

• The BeRP ball located at (0 cm, 0 cm) was rejected 96.5% of the time.

• The BeRP ball located at (2 cm, 2 cm) was rejected 91.5% of the time.

The ideal observer is therefore effectively able to reject most of the other simu-

lated sources at 20,000 counts. The variation in rejection efficiency for these spoofs

is not trivial to understand; the 16 cm ring and 20 cm ring are closest geometrically

to the 16 cm square and 20 cm square, yet one of these sources is rejected easily and

the other is not. Theoretically, these two should be the hardest objects to reject out

of all 6, but this is not the case.

Intuitively, the mask is designed such that a delta function in object space pro-

duces an orthogonal mask pattern to that of a shifted delta function. In other words,

an inner product between the image data for any two different locations in object

space should be roughly constant. Likewise, the inner product between a difference

of mask patterns for two different locations and the mask pattern for a third loca-

tion should return a constant (roughly zero). It is not so clear how this information

could be used to better understand the rejection rates for this model. The ideal

observer is a ratio between mask patterns, not a simple difference, and the objects

themselves are extended.

4.2.2.5 Procedure to Generate Spoofs

While higher statistics can help discriminate two distributions whose means vary

significantly, they do not help to reject a tested item with a mean test-statistic

value equal to that of the TAI. However, it is not difficult to create images that

effectively spoof one of the test statistic distributions. In this section, the count rate

was normalized, leaving only the LM terms to impact the ideal observer. The log of

the SKE likelihood value is then,

log(pr({An}, N |Hj)) =
N∑
n=1

log(pr(An|Hj)) (4.25)

pr(An|Hj) is given by the calibration data, and for the mth bin, that probability

density is equal to gm,c∑M
m=1 gm,c

. When testing an unknown item, the number of detected
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counts in each bin can be represented as gm. The likelihood can then be represented

as,

log(pr({An}, N |Hj)) =
M∑
m=1

gm log(
gm,c∑M
m=1 gm,c

) (4.26)

The average likelihood value over multiple measurements of the unknown object is

then equal to,

〈pr({An}, N |Hj)〉g =
M∑
m=1

gm log(
gm,c∑M
m=1 gm,c

) (4.27)

For example, consider a four pixel image where the calibration data is acquired

and the likelihood of a particle being detected in each pixel is [0.1 0.25 0.25 0.4].

Imaging the same object that the model was trained on for 100 detections would

result in roughly a likelihood mean of (log(0.1) ∗ 10 + log(0.25) ∗ 25 + log(0.25) ∗
25 + log(0.4) ∗ 40) = −56. The tested item distribution could be manipulated

from here; for the two bins with near equal probability, the tested item probability

could be raised and lowered by the same amount. For example, the normalized data

distribution on the tested item could potentially be [0.1 0.3 0.2 0.4]. This results in an

average likelihood value of (log(0.1)∗10+log(0.25)∗30+log(0.25)∗20+log(0.4)∗40 =

−56). I am ignoring the change in variance here, and unlike the mean, the variance

does change by manipulating the distribution on the tested item’s data in this way.

For this study, the ideal observer was trained on the ring and square source data.

The ring source was the item that was chosen to be spoofed in this study. The ideal

observer was generated using an acquisition time corresponding to 20,000 signal

counts being detected, which was high enough to properly reject the BeRP ball

data in the prior subsubsection. I created a program that found the two probability

values in pr(An|Hj) closest together, added/subtracted the same number from those

probabilities, and carried out this procedure a number of times. This number was

chosen to be a random number between 0 and 10% of the minimum value of the two

probabilities. The result of this procedure is spoofs 2, 3, and 4 shown in Figure 4.6.

These were treated as data sets on the tested items. Note that with spoof 4, this was

taken to the extreme, and the method starts to break down when the probability

differences between the chosen bins becomes too large. In addition, spoof 1 was

generated by subtracting a certain probability from the left side of the count map

and adding it to the right. Given the symmetry of the count map, I expected

that this would also lead to a successful spoof. Evidence that these spoofs were

successful is shown in Table 4.1. Both the mean and variance of the spoof test
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Figure 4.6: Four successful spoofs of the ring source for the ideal observer trained for
the circle/ring discrimination task. The final three were run through the procedure
outlined in this section. Spoof 2 used 100 iterations, spoof 3 used 400 iterations and
spoof 4 used 4000 iterations.

statistic distributions align closely with the mean and variance of the ring’s test

statistic distribution.

This methodology ignored the fact that only certain images are possible with

coded-aperture imaging. While this simplistic method leads to significantly noisy,

non-realistic images, other methods could be used to create more physically realistic

spoof images. A possible routine to do this is outlined below,

1. Change pr(An|Hj) by adding and subtracting values in bins with near equal

probability.

2. Reconstruct the object corresponding to this image.

3. In object space, the reconstructed objected is pushed towards a more physically

realistic geometry.

4. Simulate data on this new model.
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Tested item Λ σ2
Λ

20 cm Ring Source -40.4 94
Spoof 1 -37.81 98.8
Spoof 2 -39.5 96
Spoof 3 -41 106
Spoof 4 -46 93.1

Table 4.1: The mean and variances for the test statistic distributions when imaging
the four sources in Figure 4.6 in addition to the ring source that they are designed
to spoof.

4.2.3 Monte Carlo Evaluation of Ideal Observer Incorporating Nuisance Parame-

ters

This section provides a concrete example of the ideal observer that integrates over

nuisance parameters as in (4.8).

4.2.3.1 IO8 vs. IO9 with Orientation Variability

Here it is assumed that TAIs of an unknown orientation are put inside opaque

containers and are imaged by the detector, with every orientation of the source being

equally likely. The goal of this experiment is to classify TAIs regardless of their

orientation. A total of 60 evenly-spaced orientations of the objects were imaged.

The Bayesian prior for the nuisance parameter was built assuming each of these

orientations was equally likely. The assumption in this section is that the tested

sources have the same pdf on the orientation nuisance parameter as the training

sources. These studies were done with the strong background. Two separate studies

are discussed.

The first study (see Figure 4.7) highlights the benefits of including the nuisance

parameters in the observer model. An SKE ideal observer was found for the sim-

ulated sources with Arvo rotation 000. It was used to discriminate IO8 and IO9

testing data using Arvo rotation 000. Performance in this task is very strong. This

model was then used to classify IO8 and IO9 data under rotation 111, and the ob-

server performs worse than the guessing observer. These two orientations offer the

most extreme disparity between the two sources, and predictably performance is

quite poor in the case where the observer and testing data are mismatched. The

observer model that averaged over all 60 orientations as in (4.8) was then used to

discriminate simulated IO8 and IO9 data sets under each orientation. Performance

improves upon using the observer that accounts for both orientations when classi-
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Figure 4.7: When the testing data is taken from a different orientation than the SKE
ideal observer was derived, performance declines. Averaging over the orientation
nuisance parameter in the observer model improves performance.

fying data from the 111 rotation.

In the second study, rather than test an individual orientation, the testing data

was randomly sampled from one of the 60 orientations. An observer developed from

the 000 orientation performs worse than the guessing observer in classifying all of the

training data orientations, while the 111 rotation, whose data is more representative

of most of the 60 rotations, performs fairly well. As expected, performance is best

when the observer model that averages over the orientation nuisance parameter acts

on the randomly sampled testing data, as in Figure 4.8. This study emphasizes

that while strong (but non-optimal) performance can be retained without properly

accounting for nuisance parameters, it is subject to the chosen nuisance parameter

value or prior density on which the observer is built.

4.2.3.2 Test-Statistic Distributions

The incorporation of nuisance parameters allows for the possibility of non-normal

distributions on the log of the ideal observer. As an example, for the IO8/IO9

discrimination task with orientation variability, the test statistic distributions are

shown in Figure 4.9. IO8’s is mostly normal, which is because the detector data does

not vary much when IO8 is rotated. IO9’s test statistic distribution, though, is de-

cidedly non-normal. This holds up whether incorporating the count-rate differences

or not. This non-normal behavior makes testing for spoofs, as shown in Section 4.2.2,

even harder—the IO9 distribution is broad enough that it would be difficult to reject
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Figure 4.8: Performance varies significantly when using just a single orientation for
IO8 and IO9 calibration data in the observer model to discriminate these sources
when testing a random orientation. The observer integrating over all orientations
performs the best.

a wide range of spoofs.

The test-statistic distribution itself does give the monitor hints as to the object’s

construction. If the monitor knows that orientation was a nuisance parameter,

then they can discern from the test-statistic distribution that H2 is an object with

spatially dependent shielding and/or composed of SNM that prioritizes low-energy

emissions.

4.2.4 Ideal Observer using Posterior Probability Density

This section presents a practical implementation of the observer model derived in

the posterior pdf theory section.

4.2.4.1 IO8 vs. IO9 with Count-Rate Variability

This study represents a real-life scenario where a set of sources were created with

the same geometry (and thus all should be classified as the same source) but with

different emission rates. The observer assumes that there is a spread on activity

rates, leading to a probability density over N1 and N2. A variable background

strength is also accounted for in this study, and its corresponding detection rate

Nb is an example of a shared nuisance parameter γ0. The practical implementation
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Figure 4.9: Test statistic distributions for IO8 and IO9 set at an acquisition time
to acquire 20,000 signal counts. The left plot incorporates count-rate differences
among the different orientations. In the right plot, all of the count rates for dif-
ferent orientations of the two sources were set equal so the ideal observer does not
make decisions on that information. In both cases, the data was binned by energy.
While the IO9 test-statistic distribution on the right does not appear continuous, a
more thorough sampling of the orientation nuisance parameter space would yield a
continuous distribution.

of (4.15) in this instance is,

Λ({An}, N) =

∫ ∫ ∫
ΛSKE({An}, N |Nb, N1, N2)

pr(Nb, N1|{An}, N,H1)pr(N2)

dNbdN1dN2.

(4.28)

IO8 and IO9 calibration data from Arvo rotation 000 was read in and the observed

count rate was assumed to be the mean of a normal pdf with a standard deviation

equal to 40% of the mean. Sample data was found through randomly sampling the

mean number of counts on each pixel according to this posterior density. Figure 4.10

shows that when only using the initial single set of calibration data, the observer

model does a poor job classifying IO8 and IO9 objects with varying count rate, with

an AUC value that flattens out around 0.9 from 100 to 500 signal counts. Using

the observer model that incorporates count-rate variability in the above equation,

improved performance is achieved.

4.2.5 Accounting for Imperfect Calibration Data

This subsection will present practical examples of the effect of using imperfect cali-

bration data, and how the host could quantify the effect of this uncertainty on the

performance.
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Figure 4.10: Performance of the SKE observer with known count rate (CR) declines
when a range of source activity rates among the testing objects is assumed. Perfor-
mance improves upon using the ideal observer that averages over the CR nuisance
parameter (4.28) with the correct probability density on the CR.

4.2.5.1 Effect of Using Independent Testing Data

The models are trained on data simulated via Monte Carlo techniques. This data

set is equivalent to a sample from the "true" probability distribution on the detector

data. This section compares performance when the sampling distribution for the

tested data comes from the training data or from an independently simulated set.

When classifying data sets sampled from the training data distribution, performance

is unrealistically good. Testing data sampled from the independently simulated

distribution leads to worse, more physically realistic performance.

In reality, all of the measurements would be independent samples from the "true"

detector distribution. If the training data set had high enough statistics, one would

expect it would well approximate the "true" distribution and the performance would

be roughly the same whether testing the sets sampled from the calibration or inde-

pendently simulated.

The performance of the various ideal observer terms is shown for two separate

tasks in Figure 4.11. In classifying IO8 and IO9, the performance of each of the terms

stays relatively constant. This is because the data is binned into a relatively small

number of bins (10 energy bins correspond to a range of roughly 500keV), allowing

for higher statistics to accumulate in each bin. In comparison, the performance of

the LM terms for the geometry classification task drops precipitously when testing

on the calibration data compared to testing data. This is because the data is binned
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Figure 4.11: The top row of plots shows the effect of classifying the calibration
data as opposed to independently simulated data for the IO8 and IO9 classification
task. Performance of the LM component in this study drops when classifying an
independent data set. The bottom row shows the effect when classifying the 20 cm
ring and square sources. These plots did not assume the count rates were equal.
These plots show a dramatic decrease in LM performance.

into 1,600 bins, requiring a much higher acquisition time to make decisions when

the statistics of the testing and training data sets do not match. Meanwhile, in both

studies, the Poisson component stays fairly consistent as it is essentially a single bin

of data.

I do not believe that there is a method that can be used to produce an accurate

AUC value despite the lack of sufficient statistics on the training data sets. As

discussed in Section 4.1.4, an attempt was made to integrate over possible "true"

detector-data distribution values, but this arrives at similar performance results to

the SKE case.

An initial look at figures where the Poisson component outperforms the complete

ideal observer (Figure 4.11), or the imaging data outperforms the spatio-spectral
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data (Figure 4.3) brings up an interesting point in regards to the ideal observer.

While this could be the result of limited statistics on the calibration data, it is

also possible that the Poisson and LM component, when combined, yield worse

performance. The Poisson and LM information are indiscriminately combined when

evaluating the ideal observer. Taking the log of the ideal observer,

log(Λ({An}, N)) = (log(Pr(N |H2))− log(Pr(N |H1))) +(
N∑
n=1

log(pr(An|H2))− log(pr(An|H1))

)
(4.29)

Each of these four terms can be treated as a normal distribution (in the SKE case).

The distribution on log(Λ) is then a sum/difference of distributions on the Poisson

and LM components. The difference of the log of the Poisson terms is roughly nor-

mal for a high acquisition time, as well the as the LM terms on the right. The logged

ideal observer can then be represented as the sum of two normal distributions. It is

possible for the SNR2 that results from the sum of distributions for H1 and H2 to

be less than the SNR2 for one of those distributions. This is demonstrated using the

Poisson, LM and complete ideal observer test statistic distributions. Throughout

this discussion, I use SNR2 essentially as a surrogate for the AUC, though in reality

this is only true when the variances are equal. Still, the SNR2 does give some in-

formation on the separation of the test-statistic distributions. First, the probability

densities on the Poisson and LM test statistics are below,

pr(tP |H1) = N (µ1,P , σ
2
1,P )

pr(tP |H2) = N (µ2,P , σ
2
2,P )

pr(tLM |H1) = N (µ1,LM , σ
2
1,LM)

pr(tLM |H2) = N (µ2,LM , σ
2
2,LM).

(4.30)

From these equations, the SNR2 between the H1 and H2 test statistic distributions

for the Poisson and LM components can be determined,

∆µP = µ2.P − µ1,P

∆µLM = µ2,LM − µ1,LM

σ2
P = σ2

2,P + σ2
1,P

σ2
LM = σ2

2,LM + σ2
1,LM

SNR2
P =

(∆µP )2

σ2
P

SNR2
LM =

(∆µLM)2

σ2
LM

(4.31)
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The SNR2 for the combined LM and Poisson distributions is,

SNR2
P+LM =

(∆µP + ∆µLM)2

σ2
P + σ2

LM

(4.32)

Through some algebra, condition for when SNR2
P+LM < SNR2

P can be determined,

(∆µP + ∆µLM)2

σ2
P + σ2

LM

<
(∆µP )2

σ2
P

∆µ2
LM

∆µ2
P

+ 2
∆µLM
∆µP

<
σ2
LM

σ2
P

(4.33)

In the worst case, ∆µLM = 0 and σ2
LM is high, resulting in a higher SNR2 using just

the Poisson terms than using the Poisson and LM terms.

It should be mentioned that there is a relationship between the mean and vari-

ance of a normal log-likelihood distribution, as discussed in Barrett’s work (Barrett

et al., 1998). He derives that the mean for a normal log-likelihood distribution H1

distribution should be equal to the negative of half of the variance for that distri-

bution. The mean under H2 should then be the negative of the mean underH1, and

the variance under H2 should be equal to that under H1. Using this, the variables

in (4.31) can be redefined in terms of the hypothesis two parameters:

∆µP = 2µ2,P

∆µLM = 2µ2,LM

σ2
P = 2σ2

2,P

σ2
LM = 2σ2

2,LM

(4.34)

This leads to a final condition for when the SNR2 decreases when Poisson and

LM distributions are combined in terms of the statistics under H2:

(∆µP + ∆µLM)2

σ2
P + σ2

LM

<
(∆µP )2

σ2
P

µ2
2,LM

µ2
2,P

+ 2
µ2

2,LM

µ2
2,P

<
σ2

2,LM

σ2
2,P

(4.35)

4.2.5.2 Method to Account for Lack of Perfect Calibration Data

Here, I test the methodology to bound the variation in performance due to the fact

that the calibration measurement is a sample from the unknown "true" detector

data. This work is the implementation of the methods discussed in the last subsub-

section of Section 4.1.4. The 20 cm circle/square geometry discrimination task was

used to test this. The reason for this choice is that the performance plots in Fig-

ure 4.11 and Figure 4.3 show the complete ideal observer performing worse than the
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Poisson component and full spatio-spectral binned information performing worse

than just the spatially binned data.

g1,c and g2,c were set to the calibration data sets for H1 and H2. Calibration was

read in and pr(g1,cs) and pr(g2,cs) were treated as normal random variables with

mean and variance equal to g1,c and g2,c. Data g1,c′ and g1,c′ was sampled from

these g1,c and g2,c, the ideal observer was trained on this data and then evaluated

on the independent testing data set. This procedure was repeated for 400 samples

from g1,c and g2,c. The results are shown in Figure 4.12. For each of these plots,

the acquisition time was set in advance.

The first study looks at the different components of the ideal observer. A slight

drop in performance was observed compared to the SKE ideal observer for the

LM and complete ideal observer models. Because the statistics are high enough,

performance using just the Poisson component stayed approximately the same.

In the second study, the ideal observer was trained and tested on data binned in

different ways. When binned by energy, the observer acts as a guessing observer for

both the SKE ideal observer and the observer acting on resampled calibration data

sets. When binned by pixel, performance is consistently strong in both cases. But

a significant change is seen when binning into pixel and energy values—the AUC

drops from 0.80 in the SKE case to 0.69 in the the resampled calibration data case.

This implies that the performance seen in the SKE case is largely due to statistical

chance and that a second simulation of the calibration data could yield significantly

different results. These results give us one piece of evidence regarding whether the

resulting AUC value returned by the ideal observer is reliable.

4.3 Conclusion and General Comments

The Bayesian ideal observer is able to process LM data and offers optimal per-

formance, both in the SKE case and in the presence of nuisance parameters. The

nuisance parameter distributions would need to be accurately estimated by the host,

and any deviation from these distributions would result in nonoptimal classification

of the objects. The ideal observer also has demonstrated the ability to reject other

sources, specifically alternative neutron sources, based on their image data. Studies

of IO8 and IO9 with orientation variability show that the ideal observer’s ability

to discriminate spoofs degrades as more nuisance parameters are simulated and the

test-statistic distributions become broader.



127

0.4 0.5 0.6 0.7 0.8 0.9 1

AUC

0

20

40

60

80

100

120

140
O

c
c
u

ra
n

c
e

s

20 cm Ring vs. Square Source 
Ideal Observer Performance 

Varying Calibration Data

All terms SKE AUC 0.948

LM terms SKE AUC 0.578

Poisson terms SKE AUC 0.965
Mean

0.964

Mean

0.928

Mean

0.555

0.4 0.5 0.6 0.7 0.8 0.9 1
AUC

0

20

40

60

80

100

O
c
c
u
ra

n
c
e
s

20 cm Ring vs Square Source 
Ideal Observer Performance 

Count Rates Equalized at 2,000 Signal Counts
Varying Calibration Data

Pixel+Energy bin SKE AUC 0.796
Pixel bin SKE AUC 0.959
Energy bin SKE AUC 0.512

Mean
0.503 Mean

0.691
Mean
0.945

Figure 4.12: For each plot, the ideal observer was evaluated when resampling the
calibration data from pr(g1,cs) and pr(g2,cs). In the left plot, the Poisson, LM and
complete ideal observer models were evaluated for the circle/square classification
task. The right plot shows the performance of the data when binned by energy,
pixel ID or both. The legends show the SKE ideal observer’s AUC value, based only
on the simulated calibration data in addition to the mean of the shown distributions.

Ultimately, I am skeptical of how useful the ideal observer would be in a treaty-

verification setting compared to the standard IB approach discussed in Section 1.5.2.

In the CIVET system, the monitor and host jointly agree on intelligence for the sys-

tem, and the monitor can verify that the system can properly categorize inspection

objects based on these measurements. This system aggregates data, but the monitor

never sees it. For the ideal observer, calibration measurements would be taken on

trusted TAIs, and this sensitive calibration data and model would need to be stored

behind an IB. The host would train the ideal observer with this data and without

monitor oversight, because the monitor could not access this sensitive data. Then

the model is tested on unverified TAIs, and the monitor must trust that the host did

not bake a spoof into the training of the ideal observer. Furthermore, the testing of

nonsensitive inspection objects does not help the monitor gain any knowledge due

to massive dimensionality reduction from the measurement data to t.
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CHAPTER 5

Development of Hotelling and Channelized Hotelling Observers that Prevent

Discrimination on Sensitive Information

While the Bayesian ideal observer is a useful tool, and offers optimal performance,

the fact that the model would need to be stored behind an information barrier

would make a monitor hesitant to agree to using it in a treaty-verification setting.

In this chapter, observer models that act as linear discriminants are discussed. These

models process LM data linearly. The purpose of this chapter is threefold.

• The Hotelling observer (HO) (Hotelling, 1931) is a linear observer with equiv-

alent performance to the ideal observer when the statistics of the data are

Gaussian. The Hotelling weights are applied to binned testing data to yield

a test statistic which is then thresholded to make a decision. This chapter

demonstrates the advantages that this model provides over the ideal observer,

including less stored information and an inability to back out the image data.

• There are advantages to be gained through utilization of the channelized

Hotelling observer (CHO) (Barrett et al., 1993). With this method, a series

of templates are applied to the image data, resulting in a set of channelized

values; the optimally weighted sum of these values gives the test statistic. This

method essentially gives the monitor access to multiple test statistics, which

could be used for better discrimination of spoofs.

• Additional penalty terms can be incorporated into the CHO’s optimization

routine to either maximize the information available to the monitor while

maintaining optimal performance or to create non-optimal channels that the

monitor could access.

The theory behind HO and CHO models and the results for the IO8 vs. IO9 discrim-

ination task were presented at the 2015 IEEE NSS/MIC Symposium (MacGahan

et al., 2015). The work presented here will be submitted to Nuclear Instruments

and Methods in Physics Research A in the upcoming months (MacGahan et al.,

2016b). This chapter contains three sections. Section 5.1 introduces the theory for
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the models and Section 5.2 shows how these models perform in practice. Section 5.3

presents a summary of the developed methods.

5.1 Theory

A linear model uses the binned form of the data g, which can be represented in

terms of the LM data {An} and number of counts N by,

gm =
N∑
n=1

fm(An), (5.1)

where fm is the binning function for the mth bin. A linear observer then applies a

set of weights W to g to return a scalar test statistic t,

t = W†g =
N∑
n=1

M∑
m=1

Wmfm(An). (5.2)

The weights for each bin Wm (also called the template throughout this chapter)

determine how well the test statistic distributions are separated when performing

the model. Both the HO and CHO are examples of linear template models.

Potential spoofs are more seriously considered in this chapter than in the pre-

vious one. To do this, it is important to know the statistics on the test-statistic

distribution. The statistics on g, the number of counts in each bin, are Poisson.

The test statistic t is then a sum of many weighted (due to Wg) Poisson random

variables. If g is appreciably large, as is often the case when imaging an object

or performing a high-resolution gamma measurement, t will be normal due to the

central limit theorem with mean and variance given by,

t =
M∑
m=1

Wmgm

σ2
t =

M∑
m=1

W 2
mgm.

(5.3)

5.1.1 Hotelling Observer

The HO is the linear observer that maximizes the SNR2 (1.12) between the test-

statistic distributions of the two objects being measured (Barrett and Myers, 2003).

It is also equivalent to the Bayesian ideal observer when the statistics of the data

are multivariate normal if the covariance matrices on the data are equal for the two
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hypothesis. The Hotelling weights, which are denoted as WH, are defined by,

WH = K−1
g ∆g

Kg =
K1 + K2

2

∆g = g2 − g1.

(5.4)

gj is the mean data set for source j and Kj corresponds to the covariance matrix for

source j. It is useful to think about the HO in terms of the operator K−1/2
g , where

K−1/2
g K−1/2

g = K−1
g . Using this operator, the HO can be presented as,

t =∆g†K−1
g g

t =∆g†K−1/2
g K−1/2

g g

t =(K−1/2
g ∆g)†(K−1/2

g g).

(5.5)

There is a difference between K−1/2
g in this equation and the whitening operator for

a given data set K−1/2. When the whitening operator is applied to a data set as

in g(1) = K−1/2g, it returns a data set with unity variance. The HO is outlined in

(5.5) is comparable but as it is the average of the covariance matrices for the two

hypotheses, it will not return unity variance. Still, there is a decorrelating effect,

and this method does produce a test statistic that is normal in nature.

5.1.1.1 Calculation of Hotelling Weights

The averages in (5.4) are over the unknowns in the imaging system. Always present

is Poisson noise, and in an SKE study, where there is no other variability in the

detector data, the covariance matrices are diagonal with values equal to the mean.

In this case, taking the inverse of the covariance matrix is trivial; the inverse is also

diagonal with values equal to the inverse of the covariance matrix values.

Upon incorporation of nuisance parameters, the averages become doubly stochas-

tic or worse and the problem becomes more difficult. The terms in the Hotelling

template are,

Kj =
〈〈

(gj − gj)
†(gj − gj)

〉
gj |γj

〉
γj

gj =
〈〈

gj
〉
gj |γj

〉
γj
.

(5.6)

The first average is over Poisson noise while the second is over the nuisance-

parameter distributions. The resulting matrix is generally dense. Calculating the

inverse of this matrix is usually impractical. Using a data set with 1,600 pixels and
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64 energy bins, there are approximately 1e5 elements in g with 1e10 elements in

Kg. The number of samples will likely be far less than the size of the data vector,

leading to a non-invertible matrix. Certain estimation techniques can be used to

overcome this limitation (Bickel and Levina, 2008; Bai and Shi, 2011), but require

often unrealistic assumptions. In simulation, this computational barrier can be over-

come using the Matrix Inversion Lemma (Woodbury, 1950). To use this lemma, the

covariance matrix must be able to be represented in the form,

Kg = A + BCD, (5.7)

where A is diagonal. To get the covariance matrix in this form, one can add and

subtract gj, the Poisson averaged data for a given nuisance-parameter realization,

in the covariance matrix equation of (5.6). Kj can then be expressed as,

Kj =
〈〈

(gj − gj)
†(gj − gj)

〉
gj |γj

〉
γj

Kj =
〈〈

(gj − gj)
†(gj − gj)

〉
gj |γj

〉
γj

+
〈
(gj − gj)

†(gj − gj)
〉
γj

Kj =
〈
Kgj |γj

〉
γj

+ Kγj = Diag(gj) + Kγj .

(5.8)

The left matrix is diagonal with values equal to the mean of the detector data, aver-

aged over Poisson randomness and all nuisance parameter densities. The right term

is dense and contains the variation of the Poisson-averaged data over the nuisance-

parameter distribution. A deeper look at (5.8) brings up another interesting feature

of the HO. The Poisson covariance matrix increases linearly with the number of

detected counts N . The covariance matrix over nuisance parameters, however, has

a component that increases with N2. Therefore, the optimal Hotelling weights are

dependent upon acquisition time.

Treating orientation as a nuisance parameter as an example, a vector θ can be

defined which corresponds to the orientation of the object being imaged, where [1 0

0 ....0] and [0 1 0 ....0] correspond to different object orientations. Then a system-

response matrix Hθ is defined and resulting detector data g = Hθθ. Hθ in the

above equation is slightly different from the H in the imaging equation ((1.3)), which

generally reflects system sensitivity to a given emission location and energy. The Hθ

in (5.9) is the system response for an imaged object under a certain set of nuisance

parameters. The covariance matrix for source j, Kγj , can then be represented by

the detector response function and the covariance matrix for the θ vector,

Kγj = HθKθjH
†
θ. (5.9)
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In simulation, the known nuisance-parameter distributions are used to find Kθj .

Hθ is determined by assuming the GEANT4 data is the “true" system response to

each object. This technique enables the application of the Matrix Inversion Lemma,

reducing the problem from a MxM inverse, where M can be thousands to millions,

to a PxP inverse, where P is the number of orientations chosen to average over.

5.1.1.2 Implementation

In practice, the host would gather calibration data and determine the weights. As

discussed in the previous subsections, if nuisance parameters are present then the

host could choose to guess the prior density on the nuisance parameters and come

up with a system response in order to use the Matrix Inversion Lemma to take

the inverse of Kg. The host could also choose to reduce the size of the dataset

considerably and take enough measurements on their objects for the matrix to be

invertible. If the weights were deemed sensitive, the monitor would only be able to

verify the algorithm and have access to the test statistic. The weights would need

to be stored behind an information barrier.

Testing would work much like the ideal observer. Independent measurements

would be taken on objects of type H1 and H2 and test statistic distributions gen-

erated from these measurements. A threshold would be determined based on these

distributions, either by maximizing the probability of correctly identifying the two

sources for a certain type I or II error, or some other measure. The model would

then act on an unknown source, updating the test statistic event by event for a

certain acquisition time. This test statistic would then be thresholded to make a

decision.

5.1.1.3 Storage

The differences in storage between the HO and Bayesian ideal observer are critical

in regards to information security. While the ideal observer stores the detector

data for each realization in the covered nuisance-parameter space, the HO simply

contains a product of first and second order statistics over this space. As an example

that is explored further in Section 5.2.1, if orientation is a nuisance parameter, the

spatial and spectral information will be blurred out by averaging over the nuisance-

parameter distributions. Because of this, even if the monitor was able to gain access

to K−1
g and ∆g, its ability to reconstruct the details of the object being imaged

would be limited.
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5.1.1.4 A Cheating Host

As discussed in the chapter 4, spoofs could be discriminated based on their test

statistic value. As the monitor would not have access to the WH, they could only

use the test statistic distributions for the two sources to identify spoofs. The dis-

tributions are normal with mean and variance stated in (5.3). Any measured test

statistics would be compared to these distributions to see if they fall within that

spread. The simple form of the test statistic distribution lends itself to a straightfor-

ward spoof attempt. One could manufacture a data set that has the same statistics

as those for one of the TAIs as discussed in Section 4.2.2. Because the procedure

for creating the spoof would be largely the same, successful spoof generation is not

discussed in this chapter.

5.1.1.5 A Cheating Monitor

The HO in (5.4) is analogous to a secondary imaging system that only see the

differences between the two objects. If the monitor somehow gained access to WH,

and tried to reconstruct grec = W−1
H t, all it could back out is projection data that

looked like the Hotelling weights, not the highly sensitive detector data. All other

information in g is in the matrix’s null space.

The weights themselves are sensitive. In a spectral-discrimination task, the

Hotelling weights could help the monitor determine the difference in composition

of the two objects, such as the fraction of U235 vs. U238 in a uranium object.

However, the individual data sets g1 and g2 are more sensitive as the monitor can

directly relate these measurements back to the objects. There are conditions where

the monitor could back out these data sets. If the monitor had knowledge of one of

the two data sets, g2, they could solve for g1. This is especially easy in the SKE

case, when the covariance matrix is diagonal. Simply rewriting the definition for the

Hotelling weights in terms of g1,

WH = 2 ∗ g2 − g1
g2 + g1

g1 = g2
2−WH

2 + WH
.

(5.10)

The procedure is more difficult when nuisance parameters are present. If there are

no nuisance parameters in source 2 (with a known data vector g2), but there are

nuisance parameters in source 1 (unknown), the Hotelling weights are

WH = 2 ∗ (Diag(g2 + g1) + Kγ,1)−1 ∗ (g2 − g1). (5.11)
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Here, K1 has already been broken down into its diagonal and dense components

(which are both unknown to the monitor). Kγ,1 could be represented as a matrix

product BCD (also unknown to the monitor) as in (5.9) and then the Matrix Inver-

sion Lemma applied. Ultimately, there does not appear to be an easy way to find

Kγ,1 and g1 from the above equation, but the monitor could use prior knowledge on

the object geometry and simulate perturbations of it to create an object resulting

in the correct WH. If both objects used to form WH are unknown, or if nuisance

parameters are present in both objects, the procedure becomes even more difficult.

Finally, it could be of interest to the monitor to test a series of inspection objects

to potentially bound the test statistic of the TAIs in order to increase confidence in

the tested item. One could imagine the monitor imaging a series of objects ranging

from the BeRP ball to a slab of plutonium to other potential sources. Due to the

massive dimensionality reduction involved in taking g to t, bounding this value

would be impossible. However there is some potential for concern on the host’s

part. Each measurement on a known object creates an additional constraint that the

monitor could potentially use to back out Wg. Due to the immense dimensionality

reduction (for an image with this system, g has 1,600 values) it would take too many

measurements for this procedure to put the Hotelling weights at risk.

5.1.2 Channelized Hotelling Observer

The CHO has become widespread in the field of medical imaging for a few rea-

sons. First, it is a cheap alternative to a professional radiologist in image quality

studies (Yao and Barrett, 1992; Wollenweber et al., 1999) and has proven to model

human performance well in SKE tasks with a localized signal. In addition, it re-

duces the size of the data, requiring a far more practical number of data sets to

train the model than the HO. In this thesis it is used for a much different purpose—

information security. I believe this is the first time the CHO has ever been used for

this purpose.

The CHO applies a channelizing matrix T to the binned data g (of size M),

resulting in a much smaller dimensional vector v of length L. L can be as large or

small as the host and monitor desire. Using calibration data for the two objects, an

optimal set of channelized weights Wv are then found, and applied to channelized
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testing data to make decisions,

v = Tg

t = W†
vv,

(5.12)

where the weights that best separate the resulting test statistic distributions are,

Wv = K−1
v ∆v. (5.13)

K−1
v and ∆v are analogous to the terms in (5.4). The CHO can also be expressed

as a template on g by defining,

W†
g = W†

vT. (5.14)

This form is used throughout this chapter.

The performance of this model depends on the T chosen. If T was set to a

matrix of random numbers, performance (while better than the guessing observer)

would be very poor. To achieve performance equivalent to the HO, it is necessary

to find the matrix that best separates the test statistic distributions. This is done

by maximizing the signal-to-noise ratio of the multivariate normal distributions on

v1 and v2 ,

SNR2(T) = ∆v(T)
†
K−1

v (T)∆v(T). (5.15)

The T that optimizes this function is found through a gradient descent optimiza-

tion routine with backtracking (Boyd and Vandenberghe, 2004). This routine re-

quires both an objective function (the SNR2) and the derivative of that function.

In order to take the derivative of the expression in (5.15), matrix calculus must be

used (Bodewig, 2014). With an optimal T,

WH =≈W†
vT, (5.16)

and performance equivalent to the HO is achieved. Because the optimization rou-

tine needs to be stopped to limit computer time, the resulting WH will only serve

as a strong approximation for W†
vT. The results section shows that a standard

optimization of T results in sensitive channels for certain tasks. The addition of a

penalty term to the objective function,

fobj(T) = SNR2(T)− fpen(T), (5.17)

offers some possibilities in circumventing this barrier. In Section 5.1.3, Section 5.1.4,

and Section 5.1.5, three different methods are presented that either reduce total

information or prevent discrimination on sensitive information.
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There is one last interesting note that is important to point out. The SNR2

between the v distributions is maximized by this procedure. However, the test

statistic is the inner product of Wv and v. The difference between the mean test-

statistic values can then be represented as,

∆t = W†
g∆g

∆t = W†
vT∆g

∆t = ∆v†K−1
v T∆g

∆t = SNR2.

(5.18)

The SNR2 between the v distributions is equivalent to the difference in mean test-

statistic value. This is another effect of the decorrelating weights.

5.1.2.1 Implementation

Training of the CHO is a far more computationally practical task than the HO.

Rather than needing M measurements to generate an invertible covariance matrix,

the host can get by with (at a minimum) L measurements. Kg and g can be

found through the L samples, then the optimization occurs using Kv = T†KgT and

v = Tg. This is a fundamental advantage for the CHO in a practical setting.

T would first be determined from calibration data for the two sources. Then,

using the calibration data, the optimal weights Wv would be calculated for that

T. This model would be tested on the trusted items to generate a test-statistic

distribution and the threshold set based on these distributions and the cost functions

for incorrect outcomes, as discussed in the Implementation section of prior models.

Future sources would then be classified with this model.

5.1.2.2 Storage

Compared to the HO, storage has been changed from the sensitive Hotelling weights

WH to two variables—a channelizing matrix T and a set of channelized weights Wv.

For an optimal T, the monitor should therefore only access T or Wv, or a subset of

the two, but not the entirety of both. However, as shown in the results section, the

optimization of T often results in sensitive channels, depending on the task. Even

if T is nonsensitive, it is significantly easier in practice to hide the channelizing

matrix than the weights. As Wv can be determined from aggregating v1s and v2s,

it would be more convenient to hide T. To hide Wv, the host would need to hide

the channel values v as well, which defeats the purpose of using the model in the
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first place. Therefore, a standard implementation of the CHO in a treaty verification

setting would have the host gather calibration data and determine the channelizing

matrix. The monitor would only have access to Wv, v and t.

5.1.2.3 A Cheating Host

The CHO does bring two additional benefits in discriminating spoofs:

• The L channel values themselves are nonsensitive. As the number of channels

increases, the monitor has more information available to use to discriminate

spoofs from the TAIs—the individual channel values can be aggregated as

more sources are tested and the monitor could use that data to test for spoofs.

• There are an infinite number of channelizing matrices that maximize the SNR2

in (5.15). This randomness goes a long way to increasing monitor faith that

the host is not placing a spoof in front of the detector, as the host does know in

advance what the channels are, and therefore cannot design a spoof to return

the same value. The host country could store the calibration data, generating

a new T for each new set of verification measurements.

The channelized values are also approximately normally distributed (for a large

number of detector bins M), with each channel having mean and variance,

tl =
M∑
m=1

Tl,mgm

σ2
tl

=
M∑
m=1

T 2
l,mgm,

(5.19)

where Tl,m corresponds to the value in the lth channel and mth bin. An example of

the CHO’s ability to discriminate spoofs is discussed in the results section.

These extra channels provide advantages in detecting spoofs, but the channels

themselves tend to be noisy versions of the Hotelling weights. If the monitor desired

better detection of spoofs, additional terms would need to be added to the opti-

mization of the channelizing matrix to maximize the separation of the test-statistic

distributions between the TAIs and spoof objects. To accomplish this, an additional

term could be added to eq. (5.17) in the form of,

fspoof = ηspoof

Nspoof∑
nspoof=1

(SNR2
1,nspoof

+ SNR2
2,nspoof

). (5.20)
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Such a penalty term would maximize the distance between the test-statistic distri-

butions for the two TAIs and a set of Nspoof objects. ηspoof would determine how

strongly the TAI-spoof optimization impacts the resulting T rather than the two

TAIs in the discrimination task.

5.1.2.4 A Cheating Monitor

If the monitor was to cheat and gain access to T, all would not be lost from the host’s

perspective. T is non-square and hence not invertible; instead, its Moore-Penrose

pseudoinverse can be used (?), and it will be represented by pinv(T ). Similar to

the HO discussion, pinv(T)v usually returns projection data that looks like the

Hotelling weights. This happens because the optimization routine maximizes the

SNR2 and the individual channels take on the nature of the Hotelling weights. This

is not true for a general T. One could set each channel of T to a different basis

function, and reconstruct far more information on each object’s projection data than

for the T that maximizes the SNR2.

In its desire to create channels that can detect spoofs, the monitor could put the

security of the host’s objects at risk. A standard implementation of the CHO results

in channels that are noisy versions of the Hotelling weights. If extra terms are added

to the optimization routine to identify certain spoofs, these channels will have more

varied information; such a channelizing matrix could do a better job reconstructing

g from v.

Hypothetically, host and monitor could agree on performing the model on a

series of nonsensitive objects with known image data. If the monitor takes enough

measurements, it would acquire v for each known object (with a known g). Backing

out information on the channelizing matrix is about as difficult as finding WH for

the HO, except now there are L templates rather than one.

5.1.3 Method to Generate Nonsensitive Channels

This approach attempts to maximize the amount of nonsensitive information avail-

able to the monitor while still maintaining optimal performance. Nonsensitive chan-

nels were created by choosing a penalty term that reduces the performance of each

individual channel in distinguishing the objects in the binary-classification task,

fpen(T) = η

L∑
l=1

SNR2
lthchannel(Tlthchannel). (5.21)
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This penalty term is referred to as the "channel performance penalty" throughout

this paper. Utilizing this penalty, it is possible to maintain optimal performance,

as the optimization routine now focuses on the relationships between the channels

rather than the channels themselves.

As the results section shows, this method is not a perfect answer for the informa-

tion security problem. While the individual channels are nonsensitive, if the monitor

was given the entire T, a singular value decomposition (Golub and Reinsch, 1970)

enables them to back out the Hotelling weights. However, it does allow the host to

give the monitor a large number (but not all) of the channels. This would increase

monitor confidence that the channelization process is working properly.

5.1.3.1 Implementation and Storage

Implementation and storage for this model would be functionally the same as the

standard CHO. The only difference is that the monitor would be given a certain

number of channels in the channelizing matrix. The monitor could also test be-

nign inspection objects to verify that the channelization procedure is performing as

expected.

5.1.3.2 A Cheating Host

The additional information available to the monitor is a net benefit here. The moni-

tor would be given the channelized values for the host’s items as well as the channels.

The fact that the monitor has access to some of the channels would allow them to

test their own spoofs and see how the spoof channelized-value distributions compare

to the TAI distributions. This would allow them to find possible vulnerabilities

in the channelizing matrix that they could explicitly test for when verifying tested

items. However, the end result of the channel performance penalty tends to be very

noisy channels. These channels would generally have difficulty distinguishing any

measured items.

5.1.3.3 A Cheating Monitor

The host’s objects could be put at risk due to the monitor’s access to some of

the channels. The monitor could measure their own objects, perform the channel

templates on this data and arrive at channelized values vl. By comparing the distri-

bution on their measured item with the host’s item, they could back out the nature
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of the imaged item. Again, though, these channels tend to be noisy and would do a

poor job distinguishing other sources.

Hypothetically, the host and monitor could agree on performing the model on a

series of nonsensitive objects with known image data. This method, which would give

the monitor a large number of channels, drastically reduces the number of degrees

of freedom in the problem, though it would still take at least as many nonsensitive

test item measurements as in the HO case.

5.1.4 Method to Gauge Storage-Information Tradeoff

Two routines are presented here that could be used to scale down the stored in-

formation used in the discrimination task, possibly allowing the host country to

create a nonsensitive template. T is optimized through the same procedure for both

methods,

fpen(T) =η1(SNR2
max channel − SNR2

worst channel)

+ η2

L∑
l=1

L∑
l′=l+1

(
Tchannel l · Tchannel (l+1)

)2
.

(5.22)

The first penalty term creates equally performing channels; the second enforces

orthogonality. This penalty function is an effective way to spread information among

the different channels. From here, the host could reduce the discriminatory power

of the model, with the following method,

• The host could add noise to each bin of the resulting channels by,

Tnewl,m = Tl,m +N (0, C2). (5.23)

As the standard deviation C of the noise increases, WvT becomes increasingly

noisy and less like WH. This does not require the optimization technique

in (5.22).

• Individual channels in T could be zeroed out. This causes WvT to become

increasingly non-optimal and the overall task performance to decline. The

initial optimization shown in (5.22) is important for this technique, as when

information is spread out, dropping channels should lead to a mostly linear

decline in performance.

The downside to this method is that performance in the classification task is not

optimal. In that sense, it could be compared to a low-resolution measurement of an
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object. Such measurements have been proposed for treaty-verification tasks in the

past, but the fact that they are not optimal hurts task performance. An optimal

way of penalizing out sensitive information is discussed in Section 5.1.5.

5.1.4.1 Implementation and Storage

Implementation is similar to the standard CHO. In this case, the host country would

need to find what level of noise (or the number of channels if the channel reduction

approach is chosen) is appropriate to identify the test items without handing the

monitor revealing information on their TAIs. This methodology allows the host to

share both the channelizing matrix and the weights with the monitor.

This model is one possible example of an acceptable observer model that classifies

items based on LM data (see Figure 1.20 ). However, because it does not specifically

penalize out certain sensitive information, it is also far from optimal performance-

wise.

5.1.4.2 A Cheating Host

As always, the monitor would be able to access t, v and Wv. This routine would also

give the monitor complete access to the entire channelizing matrix. This presents

numerous benefits. The monitor, with access to the model, has greater ability to

determine possible successful spoofs and then test for them while performing the

verification of the objects. The monitor can also verify that the system is working

correctly by measuring a benign inspection object.

5.1.4.3 A Cheating Monitor

As described in Section 5.1.3, the monitor’s access to T presents a vulnerability to

the host’s items. In addition, the monitor could use noise-reduction techniques to

back out possible values of the Hotelling weights. For example, a median filter (Sun

and Neuvo, 1994) could be applied or a smoothness constraint enacted. These

methods are often imperfect. It would be easier to apply these methods to a WH

that slowly varies in space (when using an imaging detector) rather than a WH that

varies over a centimeter scale.

5.1.5 Method to Prevent Discrimination on Sensitive Parameters

The methods discussed in Section 5.1.3 and Section 5.1.4 give the monitor access to

either individual channels or the entirety of the channelizing matrix. As discussed,
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the monitor could hypothetically use knowledge of the channels to test their own

items, attempting to create an object that results in the same channelized value and

test-statistic distributions as the measured TAIs. The sharing of this information

puts the host’s sensitive items at risk. Ideally, a model could be developed that

returns the exact same channelized values and test-statistic distribution for objects

that differ along certain sensitive parameters. This section presents a method to

achieve this goal.

If the host is able to explicitly declare what information is sensitive (such as

mass or isotopic composition), the optimization of the channelization matrix can be

used to prevent discrimination based on these sensitive parameters. If the host does

not want the monitor to know the parameter p, which takes on a value p0, within a

tolerance ∆p, the host can create the following objective function,

fobj(T) =SNR2
1,2(T)

− ηSNR2
(1,p=p0)−(1,p=p0+∆p)(T).

(5.24)

This penalty is referred to in this dissertation as the "sensitive information penalty".

This objective function finds a T that maximizes the separation of the distributions

on v between sources 1 and 2 while minimizing the separation between source 1

constructed with p = p0 and source 1 constructed with p = p0 + ∆p. The sum of

the optically weighted channels W†
vT no longer can distinguish imaged sources that

differ along the penalized parameter. If both sources have more than one sensitive

parameter, (5.24) can be generalized to,

fobj(T) =SNR2
1,2(T)

−
2∑
j=1

K∑
k=1

ηSNR2
j,(pk=pk,0)−(j,pk=pk,0+∆pk)(T).

(5.25)

This method essentially pushes the differences in the measurements between pairs

of objects into T’s null space. Similar to (5.18), the effect of this penalty term is to

create test-statistic distributions with overlapping means.

It should be noted that there are a limited number of degrees of freedom in the

model. As the number of penalized pairs increases, the number of possible Wgs

resulting from the optimization routine decreases. Each penalized pair essentially

puts an additional condition on Wg, and too many would result in an optimiza-

tion routine that can’t possibly succeed. In the case of neutron detector used in

this project, with 1600 pixels, it is unlikely that a prohibitive number of penalized
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pairs would be required. Likewise, if the penalized space encompasses the difference

between the optimized objects, the optimization routine will fail.

5.1.5.1 Implementation

Implementation of this model in real life presents a challenge. The host has access

to the two items in the discrimination task. However, the sources that differ along

the sensitive parameters from the true source would not be readily available and

would be very expensive to construct. Ideally, simulation data would be accurate

enough that this entire exercise could be done in simulation. Monte Carlo simulation

can reliably produce the incident flux on the detector plane if all of the geometries

are modeled accurately. A particular problem is the detector response. Detector

response is often pixel-dependent and changes with time; hence, it is necessary for

a calibration measurement to be taken to find the current detector response before

a measurement has taken place. The simulated data could then be adjusted to

account for the current detector response. More discussion on this point is presented

in chapter 7.

In practice, multiple parameters would likely be deemed sensitive by the host,

which may require an additional penalty term with a distinct η in (5.24). The

inclusion of nuisance parameters adds another layer of difficulty to this problem, as

we would need to know the effect of nuisance parameters on both objects in the

penalty term.

Penalization is imperfect due to different statistics in the training and testing

data sets. The test-statistic distributions given to the monitor could be found for the

minimum acquisition time for maximum model performance for the discriminated

pair of sources. Because it is unlikely the test-statistic distributions for the penalized

objects completely overlap, the host would need to set some maximum allowable

AUC value. There are a limited number of warheads of each type in the stockpile.

The standard deviation on the estimate of the mean of the test-statistic value for

all of the sources within one type can be denoted by σTAI . If the difference in mean

test-statistic value for the true and penalized objects, ∆tTAI−penalizedTAI is smaller

than σTAI , the host would have confidence that the monitor could not glean useful

information from T. This would be an ideal result for the host, and this method

could set the limit on the maximum allowed AUC.
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5.1.5.2 Storage

The storage for this model is the ideal scenario, and a practical example of the model

shown in Figure 1.20.

5.1.5.3 A Cheating Host

This methodology presents all of the benefits of the model that adds noise to the

channels, except this model allows for optimal performance in the discrimination

task. As there is more information in the channels than in Section 5.1.4, they

should also do a better job discriminating certain spoofs on their own. As discussed

in Section 5.1.2, additional terms could be incorporated into the optimization of the

channelizing matrix to specifically identify certain spoofs.

5.1.5.4 A Cheating Monitor

The onus falls on the host to verify that their T is nonsensitive. One significant

issue is that any changes from the calibration TAI measurement to the unknown

item measurements result in imperfect penalization. The test-statistic distributions

for the penalized sources may not overlap, allowing the monitor to attempt to back

out the actual geometry. This emphasizes the need for high statistics to calibrate the

model and for high-quality transport simulations and for realistic detector response.

Another concern is nuisance parameters. This procedure leads to minimum sepa-

ration between the two test-statistic distributions for pr(t|H1,p0) and pr(t|H1,p0+∆p),

but it remains possible that when testing certain individual realizations of the nui-

sance parameters, the TAI and penalized object will be more easily distinguishable

by T. The host may also desire to enforce a condition that the AUC for each

realization is sufficiently low.

5.2 Experiments and Results

In the following studies, calibration data sets were simulated for the two sources

in the discrimination task. Independent data sets were simulated for these same

sources, and the 2AFC test was performed as described in Section 1.3.2. The chosen

figure of merit—the AUC—was plotted as a function of acquisition time to gauge

task performance. When the CHO was performed, the channelization matrix was

always initialized to a random set of numbers before the optimization routine began.



145

Figure 5.1: The Hotelling weights for the BeRP ball location-discrimination task.
As expected, the optimized CHO performs equally well as the HO.

5.2.1 Hotelling Observer

The IO8 and IO9 discrimination task demonstrates how the presence of nuisance pa-

rameters affects the Hotelling weights and performance for a spectral-discrimination

task. The BeRP ball location and circle/square studies show discrimination ability

based on the neutron image shift. The Hotelling weights for each of these tasks

will be shown because they represent the optimal linear discriminant which future

results will be compared to.

5.2.1.1 BeRP Ball Location-Discrimination Hotelling Weights

In the BeRP ball location study, there were no nuisance parameters present. The

Hotelling weights (Figure 5.1) can then be expressed as g2−g1
g2+g1

and correspond to a

scaled version of the neutron image shift in Figure 3.12. Here, the BeRP ball at (2

cm, 2 cm) was source 2 in (5.4).

5.2.1.2 BeRP ball Location-Discrimination Inverse Problem

This section demonstrates what the monitor could gain by performing the inverse

problem. If the monitor could somehow gain access to WH, they could perform

grec = W−1
H t to reconstruct a data set. Obviously, this reconstructed data set will

look like the Hotelling weights.

An image of the BeRP ball at (0 cm, 0 cm) was taken with 100,000 detected

counts. W†
Hg was performed, yielding a test statistic of value -1,242. pinv(WH)t

was then performed to acquire a reconstructed image. Taking the difference between
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Figure 5.2: The left plot shows an example image taken of the BeRP ball at (0 cm, 0
cm), with 100,000 detected counts. The middle plot shows a reconstruction of that
image using the test statistic t and Hotelling weights WH. The right plot shows the
difference between the initial and reconstructed images. This delta image is in the
null space of WH.

the true image and reconstructed image and passing that result through the system

yields a test statistic of 4.5e-13 (approximately 0). This is because all of the data

for that object other than the differences between g1 and g2 is filtered out when

applying the Hotelling weights. The difference between the true projection data for

that source and the delta image is almost imperceptible. Figure 5.2 contains the

various plots for this study.

In a task such as this one, where there are no nuisance parameters present, the

host could back out sensitive information on one object if it knows the data set for

the second and the Hotelling weights. In this case, the BeRP ball at (0 cm, 0 cm) is

treated as the unknown TAI and the BeRP ball at (2 cm, 2 cm) as the object that

the monitor has knowledge about. The monitor can do this through the procedure

shown in (5.10), resulting in the image shown in Figure 5.3. This is equivalent to

the calibration image shown in Figure 3.12.

5.2.1.3 20 cm Ring Source vs. Square Source Hotelling Weights

The HO was tasked with discriminating a source as one of two geometric types—a

ring or square. Like the BeRP ball study, they correspond to a scaled version of the

image shift presented in Figure 3.13. The Hotelling weights are shown in Figure 5.4.

5.2.1.4 INL Inspection Object Classification

In this study, various orientations of the INL inspection objects were used to train

the HO, which was then tested on independent data sampled from one of these

orientations. As discussed in the theory section, the Hotelling weights are dependent

on the acquisition time when nuisance parameters are present; Figure 5.5 shows the
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Figure 5.3: Using (5.10), and knowledge of g2 and WH, the monitor could back out
the distribution on g1, as shown in this picture.

Figure 5.4: The Hotelling weights for the 20 cm ring and square source discrimination
task.
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Figure 5.5: The Hotelling weights, K−1
g ∆g are dependent on acquisition time due to

the fact that the Poisson covariance term varies withN while the nuisance parameter
matrix varies with N2. The weights at two different acquisition times are shown in
this figure.

change in Hotelling weights that incorporate orientation variability for an acquisition

time corresponding to 10 counts as opposed to 10,000. The short-acquisition-time

weights can be explained because IO8’s measured spectra is consistently shifted

towards higher energies when compared to IO9’s. Therefore, a low-energy detection

returns a low-positive weight while a high-energy detection returns a large-negative

weight.

Figure 5.6 presents the performance of the HO, trained on different sets of data,

in classifying data measured from a randomly chosen orientation of IO8 and IO9.

This is the HO analog to the ideal observer performance shown in Figure 4.8. In

comparing the two plots, the performance of the HO is substantially lower than the

ideal observer when the model is trained and tested on data from all of the orien-

tations. This is expected; the ideal observer is the optimal classifier and integrates

over the likelihood distribution for each individual orientation, while the HO acts by

decorrelating the calibration and testing data. The error bars for these performance

curves are due to sampling of the testing data; 1000 total testing data samples were

taken for each AUC point on each curve. The error is governed by binomial statistics

as discussed in Section 4.2.2.

Finally, the test statistic distribution when the model data matches the testing

data is always normal for the HO (shown in Figure 5.7), even when nuisance pa-
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Figure 5.6: In all three studies, the developed model was tested by sampling data
from a randomly chosen object’s orientation. As in the ideal observer study, the
observer trained on the 000 orientation performs poorly, 111 orientation performs
better, and model trained on all 60 orientations performs the best.

rameters are present. This is by design due to the decorrelating process involved

when applying WH to g. This could present an advantage over the ideal observer,

which returns a non-normal test-statistic distribution that could reveal information

on the object to the monitor. On the other hand, given that the monitor may be

told the nuisance parameters, knowledge that the test-statistic distribution should

be normal would give the monitor something to strive for if they tried to back out

the host TAI’s geometry.

5.2.2 Channelized Hotelling Observer

A four channel optimization using the optimization routine in (5.15) was performed

for each task.

5.2.2.1 BeRP Ball Location Discrimination

An example channelization for the BeRP ball localization task is shown in Fig-

ure 5.8. Each channel clearly contains some component of the Hotelling weights

in Figure 5.1, with the fourth channel looking especially similar. In this task, the

channels themselves would constitute sensitive information and need to be put be-

hind an IB. This is demonstrated by the performance study in Figure 5.9, showing

equal performance between the best performing channel and CHO.
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Figure 5.7: The left figure shows the test statistic distribution when a model trained
on the 000 orientation of IO8 and IO9 is tasked with classifying data from one of 60
orientations. Notice the highly non-normal data distribution, similar to the result for
the ideal observer (Figure 4.9). The right plot shows the test statistic distributions
for the HO trained on all 60 orientations. Both resulting distributions are normal.
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Figure 5.8: An example optimization of the channelizing matrix for the BeRP ball
location study. Multiple channels show strong performance. Not shown here is the
optimally weighted sum of channels, which results in an image very similar to the
Hotelling weights for this task with an SNR2 of 1.74.



151

0 200 400 600
Mean Signal Counts

0.5

0.6

0.7

0.8

0.9

1

A
U

C

BeRP ball at (0,0) vs. (2,2)

Hotelling observer
Channelized Hotelling observer
Best channel

Figure 5.9: This plot shows how the HO, CHO (with an optimal T) and the best
performing channel performs at the task. This implies that at least one channel
contains similar information to the sensitive Hotelling weights.

An extra comment needs to be made here about the variability in the perfor-

mance curves using the CHO. A different T will result for a different Tin that is put

into the optimization routine. W†
vT will be similar, but not equal, to the Hotelling

weights. This model is optimal in performing the task on the calibration data that

the model is trained for. When testing on the calibration data, each optimal T will

perform the same. When testing on alternative data sets, even those independently

sampled from the same objects the calibration data was simulated from, performance

will vary with each optimization of T. This effect is exaggerated when measuring

the individual channel performance as in Figure 5.9; for each optimization of T,

vastly different channels will result.

The CHO performance curves shown throughout this chapter do not take this

randomness into account—each AUC point corresponds to only one optimization of

T tested on 1,000 samples from the testing data distribution. Therefore, the error

bars for these AUC curves significantly underestimate the variation. Instead, the

variability is partially accounted for by performing a single optimization for every

AUC point.
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Figure 5.10: To generate this plot, the calibration data was binned by energy prior
to channelization. None of the channels share much in common with the Hotelling
weights, WvT.

5.2.2.2 IO8 vs. IO9 Discrimination

In the first study, data was simulated for IO8 and IO9 and the resulting data sets

were binned by energy. The channelization matrix was found from this calibration

data. It was then used to classify independently simulated IO8 and IO9 energy

data. The channels resulting from the optimization (Figure 5.10) are quite different

from the Hotelling weights for this task. The noisy channels seem to result from

optimizing T for a low number of detector bins. Because these channels are noisy

and do not necessarily have much in common with the Hotelling weights (as a non-

object measure, they do not look similar visually), it is possible for the monitor

to back out more information on the image data by performing grec = pinv(T)v

than in other examples in this section, where the inverse problem will result in the

Hotelling weights. The result of the inverse problem is not shown here because the

results are highly dependent on the particular channelization matrix optimization.

In the second study, the data was binned into spatio-spectral bins and the chan-

nelizing matrix was trained on this data (see Figure 5.11). When asked to classify

independent data, the channels resulting from this procedure show equal perfor-

mance to the HO and 4 channel CHO for the discrimination task. The resulting

channels were also summed over pixel ID, and the left plot of Figure 5.11 shows

that these rebinned channels are equivalent to the Hotelling weights for this task.
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Figure 5.11: The channelization matrix was trained on full spatio-spectral binned
data sets for IO8 and IO9. The left plot shows the result when the channels are
binned by energy—the 4 channels are equivalent to (or the negative of) the Hotelling
weights. The right plot shows that the best performing channel, and in fact all of
the channels, have near equal performance to both the HO and CHO.

These first two studies show that while the channelization procedure creates noisy

channels, recombining the binned data can yield sensitive data.

5.2.2.3 Spoofs

This study demonstrates how the individual channels can be used to discriminate

spoofs. The model was trained to differentiate the 16 cm ring source from the 20 cm

ring source, as in Section 4.2.2. A single four channel optimization of T was done,

optimizing the separation between the training distributions on the channelized

values. The CHO using this T was applied to independent data sets for the 16

cm ring and 20 cm ring sources, resulting in distributions on t, v1, v2, v3, and v4.

The model was then tested against different data sets resulting from measurements

of the other simulated neutron sources. Values that fell outside the 2.5 and 97.5

percentile of the distributions were rejected. Table 5.1 shows the percent rejected

for each source using each value. It is rare that the channelized value does a better

job rejecting the tested source than the whole test-statistic. This is because the

channels that result from the optimization of T tend to be noisy versions of the

Hotelling weights themselves. However, channel 2 for the 24 cm ring source is

a counterexample, as it drastically outperforms the test-statistic in rejecting the

object.

The monitor could also define specific spoofs to penalize against by adding ad-

ditional terms to the optimization routine and optimizing the TAIs against these

spoofs. However, as stated before, the difficult aspect in discriminating spoofs is
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Spoof t% v1% v2% v3% v4%
16 cm Sq 100 100 94.2 100 100
20 cm Sq 6.1 6.1 7.6 5.6 6.0
24 cm Sq 73.5 72.4 69.0 74.7 76.4
24 cm R 20.4 19.8 28.6 21.3 23.0
(0,0) BeRP 96.7 96.3 90.6 96.6 96.3
(2,2) BeRP 94.8 94.9 81.8 94.1 94.5

Table 5.1: A single optimization of T was done, optimizing the distance between
the test-statistic distribution for the 16 cm ring and 20 cm ring sources. Thresholds
at the 2.5 and 97.5 percentiles were found for the total test statistic as well as the
channelized values. The sources in the left column were measured 1,000 times in
simulation, then the CHO was performed on them, and their channelized values and
test statistic were compared to the corresponding thresholds.

that the monitor does not know in advance what object the host uses to spoof the

TAI.

5.2.3 Method to Generate Nonsensitive Channels

This section presents multiple different implementations of the model that penalizes

individual channel performance for a given task.

5.2.3.1 BeRP Ball Location Discrimination

The incorporation of the penalty term in (5.21) degrades the ability of each individ-

ual channel to discriminate the two sources. For this study, an acquisition time was

set so that an average of 400 counts were read in from IO8. As Table 5.2 shows,

when η is increased, the maximum channel performance decreases without reducing

overall CHO performance. This behavior persists up to η = 1, after which overall

performance drops. An example output of the channel optimization when η has a

value of 1 is shown in Figure 5.12. The individual channels are nonsensitive—each

performs very poorly in discriminating the two BeRP ball locations.

Though this routine can effectively generate nonsensitive channels, a singular

value decomposition (Golub and Reinsch, 1970) of T, as shown in Figure 5.13,

reveals that the singular vector with the lowest singular value looks like the sensitive

WH. This result emphasizes the fact that a T that optimizes the SNR2 necessarily

contains sensitive information on the objects. This implies that T is still sensitive

and the host would not be able to share it with the monitor.

However, due to the importance this optimization routine places on the rela-
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η Mean SNR2 for max
channel

SNR2 for all chan-
nels

Percent failed (SNR2 <
0.1)

1e-4 8.13 8.63 0
1e-3 6.66 8.63 0
1e-2 1.17 8.63 0
1e-1 0.106 8.63 0
1 0.0042 8.63 0
1.1 0.0025 3.88 55

Table 5.2: 100 optimizations of channelizing matrix were performed for each row in
this table. The acquisition time for this study was set so that an average of 400
mean signal counts were detected. This corresponds to an optimal SNR2 of 8.63.
As η increases, the best channel performance drops. When η rises above 1, the
optimizations fail increasingly often.
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Figure 5.12: An example optimization of the channelizing matrix for the BeRP ball
location study when the channel performance penalty η = 1. Each channel appears
to be random, but when properly weighted, maximum performance is obtained and
WvT is equivalent to the Hotelling weights.
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Figure 5.13: Singular value decomposition of the channelizing matrix shown in Fig-
ure 5.12. The singular vector with the lowest singular value contains the Hotelling
weights.

tionship between channels, removing a single channel or small number of channels

from the resulting T causes a debilitating effect on performance. This is evidenced

in Table 5.3—regardless of how many channels there are, the performance of a large

number Lmon < L of the channels is very poor. When 90% of channels are known,

performance is poor, but there are still occasional optimizations where the combined

channels can effectively discriminate the sources. When only 75% of channels are

given to the monitor, the resulting performance is very poor, and the Wg can no

longer discriminate between the two sources. This creates an interesting applica-

tion for treaty verification. The host can give the monitor Lmon channels of T, the

channel weights Wv and in testing the host can access all of the channelized data

v.

Overall, this method presents an advantage over the standard implementation

of the CHO. Because the host can share Lmon channels, the monitor could hypo-

thetically image a known nonsensitive test object in front of the detector, see the

nonsensitive g and verify that the algorithm is working properly on the shared chan-

nels. This additional information at the monitor’s disposal can also help the monitor

to identify spoofs that could fool the known channels.
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L Lmon SNR2 for Lmon channels % Performing Poorly (total
SNR2 < 0.1)

4 3 0.269 88
10 9 0.7105 50
10 7 0.0195 98
25 24 0.975 18
25 22 0.291 46
25 18 0.0314 98

Table 5.3: The acquisition time for this study was set so that an average of 400
mean signal counts were read in. This corresponds to an optimal SNR2 of 8.63. 50
optimizations of T with L channels were performed for each row in this table. The
second column Lmon is the number of channels shared with the monitor, chosen at
random. The right two columns shows how the Lmon channels would perform at the
task. Ideally, the Lmon channels would have no discriminatory ability, defined here
as resulting in an SNR2 under 0.1. The right column shows the percentage of the
time that the Lmon channels led to an SNR2 of 0,1 or under for this task.

5.2.3.2 Inspection Object Discrimination Task

The IO8 and IO9 data was binned into spatio-spectral bins and T was found. For

an unpenalized optimization of T, performance of the individual channels was very

strong as shown in Figure 5.11. The channel-performance penalty was then included

in the channelization-matrix optimization. η was chosen to be 0.2 to properly pe-

nalize the channels while retaining optimal performance. Figure 5.14 presents an

example series of channels (summed over pixel ID) and a performance plot. This

optimization results in 4 channels that look very similar, but none perform well.

5.2.4 Method to Gauge Storage-Information Tradeoff

This section presents multiple studies that explore the methods developed to reduce

the discriminatory ability of the models.

5.2.4.1 BeRP Ball Location Discrimination

Here, an implementation of the optimization of T using the penalty terms in (5.22)

is presented. The first penalty function effectively, though imperfectly, spreads

information among the channels (see Table 5.4). Taking η1 = 0.2, η2 was optimized

to minimize the sum over the inner products of the different channels (see Table 5.5).

This method creates orthogonal channels that share information equally. After this

optimization of T, two methods of reducing the discriminatory ability of the CHO

were explored, consistent with the theory section. The following methods don’t make
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Figure 5.14: The left plot shows an example channelizing matrix, optimized for
spatio-spectral data and then summed over pixel ID. The four resulting channels
are all noticeably different from the Hotelling weights but are similar to each other.
Each performs poorly, as shown in the right plot.

η ∆SNR2 for max vs. min channel SNR2
tot

1.00E-03 1.36 1.73
1.00E-02 1.12 1.73
1.00E-01 0.89 1.73
3.00E-01 0.75 1.70
5.00E-01 0.7 1.64
8.00E-01 0.72 1.56
1.00E+00 0.67 1.46
5.00E+00 0.0025 0.01

Table 5.4: 50 optimizations of the channelizing matrix with 10 channels were per-
formed for each row in this table. The acquisition time for this study was set so
an average of 80 mean signal counts were read in. This corresponds to an optimal
SNR2 of 1.73.

any distinction between what information in W†
g = W†

vT is sensitive or nonsensitive.

In the first method, individual channels are zeroed out in the channelizing matrix.

For each resulting T, the optimal weights Wv are found. As more channels are

removed (see Figure 5.15), WvT looks less like WH. T is therefore non-optimal. In

the second method, zero mean Gaussian noise with standard deviation C is added

to each bin of the channelizing matrix. The procedure follows (5.23), and the effect

is shown in Figure 5.16. As C is ramped up, increasingly noisy weights WvT result.

Hypothetically, one of these methods could offer the host a way of generating a

nonsensitive channelizing matrix that could still differentiate the two objects. The

second method has the advantage that the monitor keeps access to the different

channels, which again is useful in distinguishing other objects from the two the
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η1 η2 ∆SNR2 for max vs. min channel Sum of Inner Product
Squared

0.2 1.00E-01 0.73 4.25
0.2 1.00E+00 0.48 2.15
0.2 1.00E+01 0.34 0.085
0.2 1.00E+02 0.33 0.0093
0.2 5.00E+02 0.32 0.0011

Table 5.5: 50 optimizations of the channelizing matrix with 10 channels were per-
formed for each row in this table. The acquisition time for this study was set so
an average of 80 mean signal counts were read in. This corresponds to an optimal
SNR2 of 1.73.
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Figure 5.15: These plots show WvT as channels are zeroed out in the channelizing
matrix. The optimization was done for a mean of 80 signal counts. The SNR2 totals
correspond to AUCs of 0.810, 0.795, 0.724 and 0.562 respectively.
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Figure 5.16: These plots show WvT as zero mean Gaussian noise with various
standard deviations is added to the channelizing matrix. The optimization was
done for a mean of 80 signal counts. The SNR2 totals correspond to AUCs of 0.828,
0.764, 0.665 and 0.625 respectively.

binary-classification task is designed for.

5.2.5 Method to Prevent Discrimination on Sensitive Parameters

This subsection discusses two implementations of the model that prevents discrim-

ination along predefined sensitive parameters. In each section, a certain aspect of

the object is explicitly defined as sensitive. The goal for each of these experiments

is to create a T that returns the same test-statistic value for both the normal and

penalized object.

5.2.5.1 BeRP Ball Location Discrimination Penalizing X Location

To carry out this task, a toy problem was created (see Figure 5.17) based on the

BeRP ball location-discrimination task. The x̂ parameter of the BeRP ball located

at (0 cm, 0 cm) was treated as the sensitive information. The x̂ location was declared

sensitive from a value of 0 mm to 20 mm and differences in data due to the ŷ location

were treated as nonsensitive. The goal of this study was to create a model that is

incapable of distinguishing a BeRP ball located at (0 mm, 0 mm) from (20 mm,

0 mm) yet still effectively classifies a BeRP ball at (0 mm, 0 mm) and (0 mm, 20

mm). The BeRP ball was simulated at (20 mm, 0 mm) to penalize x̂ information
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Figure 5.17: Diagram of BeRP ball locations (note that the BeRP ball size is larger
than the difference between locations shown here). Performance in discriminating
between BeRP balls located at (0 mm, 0 mm) and (20 mm, 20 mm) is optimized
while (0 mm, 0 mm) and (20 mm, 0 mm) is penalized.

within this tolerance. The count rates for the sources were set equal to emphasize

the role imaging plays in the model.

The necessity of incorporating a penalty term into the optimization of T, as

in (5.24), is demonstrated by Figure 5.18. This figure shows a performance study

using the standard optimization of T, optimizing the separation of the test-statistic

distributions resulting from imaging the BeRP ball at the (0 mm, 0 mm) and (20

mm, 20 mm) locations. The performance curves show that with a high enough

acquisition time, it is possible to differentiate a BeRP ball at (0 mm, 0 mm) and (20

mm, 0 mm) by their resulting test-statistic value. This is not ideal. In a real life

study, the monitor could take home the test-statistic distribution from the testing

site. In this case, the monitor could image a range of BeRP balls at various locations

and find the resulting test-statistic distribution that corresponds to the BeRP ball

at (0mm,0mm).

Penalization of the x̂ location was accomplished through the following objective

function,

fobj(T) =SNR2
(0,0),(20,20)(T)

− ηSNR2
(0,0),(20,0)(T).

(5.26)

Figure 5.19 shows the effect of the penalty coefficient η on the resulting channelizing

matrix. Choosing a high value for the penalty coefficient, η = 50, the CHO is no

longer able to distinguish the pair of sources that only differ in their x̂ coordinate.
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Figure 5.18: T was trained to optimize the separation between the test statistic
distributions when performing the CHO on the data from the (0 mm, 0 mm) and
(20 mm, 20 mm) BeRP ball images. This T was then used to discriminate different
pairs of data sets.

A plot of WvT is shown in Figure 5.20. The result corresponds to a simple ŷ shift

in the count maps.

The effectiveness of this method is demonstrated further in a performance study

(see Figure 5.21). The T resulting from the optimization routine was tested on

independently simulated data sets. When η = 0, the optimization routine only

maximizes the separation of the two test-statistic distributions for the objects in

the classification task, and the performance matches Figure 5.18. When η = 50,

performance in discriminating the objects whose task performance was optimized is

still very good while the performance between the (0mm,0mm) and (20mm,0mm)

images is near the guessing observer. In comparison to the η = 0 performance study,

it is easier to distinguish the BeRP balls at (0mm,20mm) from (0mm,0mm). This

is because penalizing out the x̂ differences results in a T that can only differentiate

sources based on ŷ information. Finally, this particular study carries the added

benefit that a tested source inside the tolerance at (10mm,0mm) cannot be distin-

guished from (0mm,0mm). This is not always true, and the following subsubsection

presents an example where multiple penalty terms would be required.

It is also important to note that the penalization of the test-statistic distributions

was not perfect. While the SNR2 shown in Figure 5.19 is essentially zero at η = 50,

the AUC shown for the (0 mm, 0 mm) vs. (20 mm, 20 mm) task in Figure 5.21 is not
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Figure 5.19: This study was done for an acquisition time corresponding to 1,000
detected signal counts. For each η, 20 optimizations of T were performed. The
SNR2 was plotted when performing this T on different pairs of calibration data sets.
As η increases, the SNR2 for the penalized pair of sources drops to zero while the
SNR2 for the optimized sources drops by a factor of about 1/3.

10 20 30 40

X Pixels

10

20

30

40

Y
 P

ix
e

ls

Figure 5.20: A plot of WvT when the X̂ information has been penalized with
η = 50.
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Figure 5.21: Performance of the CHO with channelization matrix optimized by
(5.26). The black line shows the performance of a standard optimization without a
penalty term. Including the penalty in the optimization of T, good performance is
maintained when classifying sources that different in their ŷ component, while near
guessing observer performance is seen when classifying sources that differ in their x̂
component.

0.5 at 1,000 signal counts as expected. This brings up an important point. Training

of T and optimization of η occurs using the same calibration data sets. This results

in imperfect penalization when testing independent data sets, especially when the

calibration data sets have limited statistics.

Finally, it is interesting to see what the monitor could back out of this procedure

in terms of the image data. If the monitor were to gain access to the BeRP ball

image at (20 mm, 20 mm), they could follow (5.10) to find the data on the BeRP

ball at (0 mm, 0 mm). This resulting image (see Figure 5.22) looks like the BeRP

ball imaged at (0mm, 0mm) smeared-out over x (see Figure 3.12 for a comparison).

The theory behind this work and the BeRP ball x̂ location results will be pre-

sented at the 2016 Symposium for Radiation Measurements and Applications Con-

ference MacGahan et al. (2016a).

5.2.5.2 Ring vs. Square Discrimination Penalizing Size

For this task, the lengths of the ring and square sources were treated as the sensitive

parameter. Specifically, the problem was set up so the host wanted to prevent the

monitor from gaining knowledge on the size of their sources up to a tolerance of ± 4
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Figure 5.22: If the monitor were to gain access to g2 (the BeRP ball at (20 mm, 20
mm)), they could use (5.10) to back out the data on g1 (the BeRP ball at (0 mm,
0 mm)). This image is the result.

cm. A standard optimization of the channelizing matrix is able to distinguish ring

and square sources of different sizes—this is emphasized in Figure 5.23. However, it

is also able to easily distinguish sources of the same geometry with different sizes,

implying their test statistic distributions are separable with a long enough acquisi-

tion time. To prevent T from being able to distinguish these sizes, the optimization

routine in (5.27) is used.

fobj(T) =SNR2
R20,S20

(T)− η×

(SNR2
R20,R16

(T) + SNR2
R20,R24

(T)

+ SNR2
S20,S16

(T) + SNR2
S20,S24

(T))

(5.27)

This procedure penalizes the ability of the channelization matrix to differentiate

objects of the same geometry but different sizes (results are in Figure 5.24). To best

penalize the various pairs of objects, η was chosen to be 20. Again, note that the

calibration data sets are penalized and not independently simulated sets. To explore

the results of the penalization routine, two sets of plots are shown. At first, the model

was trained with calibration data sets that included 5e8 detected counts. This proves

to be insufficient—the model is essentially being trained on data that is too noisy for

this particular task, leading to imperfect penalization when performing the model

on independently simulated data. A second set of simulations was executed to

increase the data by a factor of 5 to 25e8 detected counts. Figure 5.25 shows that
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Figure 5.23: T was found using the unpenalized optimization routine for these
performance curves. The CHO is able to distinguish the 20 cm ring vs. 20 cm
square source in addition to pairs of objects of the same geometry but different size,
particularly the 20 cm square vs. 16 cm square and 20 cm ring vs. 24 cm ring.

when the calibration data statistics are higher, the models more effectively penalized

out the desired pairs of objects. Examining the right plots more carefully, at 5e8

detected counts, the model is still able to distinguish a 20 cm square source from

the 24 cm square source. With higher statistics, performance in this pair decreases

substantially, but the model can distinguish the 20 cm square source from an 18 and

a 22 cm square source. If the monitor desired to penalize out this entire range, they

would need to add more penalty terms to the optimization routine.

Alternatively, we can look at the model’s ability to distinguish square and ring

sources of varying sizes. The penalized model was used to classify different pairs
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Figure 5.24: As η is increased, the SNR2 for all penalized tasks decreases to zero.
There is still signal left for the desired discrimination task.
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Figure 5.25: The plots show the penalized CHO model’s (5.27) ability to distinguish
ring sources (top) and square sources (bottom) of different sizes using independent
data from the calibration data. When the amount of calibration data used to train
the models is increased, the CHO’s performance in penalizing the desired pairs
decreases significantly.
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Figure 5.26: A plot of the performance of the penalized CHO model’s ability to dis-
criminate different geometries of sizes other than the 20 cm lengths it was optimized
for. When the calibration data statistics are higher, penalization is improved and
all tasks show closer to equal performance as a function of acquisition time.

with the results shown in Figure 5.26. For the penalized pairs to have an SNR2

of zero, their test statistic distribution means need to overlap. The ideal result

would put all of the means for the circle sources within a penalized size range at

the same mean, and all of the square sources at a different mean. This should lead

to near equal performance when classifying different geometries of non-equal sizes,

and that behavior is demonstrated in Figure 5.26. The Hotelling weights are shown

in Figure 5.5. The weights on g after penalization are shown in Figure 5.27.

The theory behind this work and the ring vs. square task with size penalization

results will be presented at the 2016 INMM conference MacGahan et al. (2016c).

5.2.5.3 When Penalization Fails

The host would ideally be able to give T, Wv, the channelized value distributions for

the two TAIs, and test-statistic distributions for the two TAIs to the monitor with-

out the monitor being able to back out the sensitive data on g. As shown in (5.18),

the result of this optimization is test-statistic distributions with overlapping means.

However, the variances of the distributions are not necessarily equivalent. This is

important—the monitor could attempt to recreate the objects, trying to match the

mean and variance of the test-statistic distributions to the true mean and variance.

As (5.19) shows, a Wg yielding equal means does not necessarily imply equal vari-

ances.

A study was done where the CHOmaximized the distance between the 20 cm ring

and 20 cm square sources test-statistic distributions while penalizing the separation
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Figure 5.27: An example plot of W†
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vT for the geometric source discrimination
task.

between the same geometries of different sizes, as in the prior subsubsection. The

resulting T was tested on the calibration data to avoid extra uncertainty being

introduced with different testing data. At first, the count rates were set equal for all

of the sources. An acquisition time corresponding to 40,000 detections was chosen.

The resulting test-statistic distribution for the 20 cm ring source wasN (16.68, 27.32)

and the distribution for the 16 cm ring source was N (16.39, 27.54). These two

distributions essentially overlap as desired. However, when the count rates were not

set equal prior to the optimization of T, the distribution for the 20 cm ring source

was N (314.7, 74.3) and the 16 cm ring source was N (314.76, 61.94). This is because

when the count rates are different, the variation in magnitudes for each Wm tends

to be larger, and the variance scales with W 2
m. This is a significant difference in

variance (though the AUC in this case would still be very poor) that the monitor

could use to back out information on the host’s TAI. Methods to address this issue

are presented in chapter 7.

5.3 Conclusion and General Comments

This chapter presents multiple linear observers that can be used to perform binary-

discrimination tasks. Both the HO and CHO drastically reduce the storage com-

pared to the ideal observer, a net benefit for treaty verification. Using a standard

optimization of the channelizing matrix, the monitor would have the channelized
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value and test-statistic distributions for the measured sources at its disposal, though

it would be unable to access the channelizing matrix, which is often sensitive. The

L channels could be optimized to distinguish certain likely spoofs.

Inclusion of penalty terms in the optimization routine of the channelizing matrix

makes the CHO a more palatable option for treaty verification. The method to

penalize individual channel performance leads to channels with no discriminatory

power, yet optimal task performance is retained. This method would allow the

host to share the channels with the monitor, increasing their confidence that the

model is functioning as expected. A second method adds noise to the resulting

channelization matrix, scaling down the discrimination ability of the model and

reducing stored sensitive information. These two methods do not require the host

to define precisely what components of the TAIs are sensitive.

The host can create a model that is unable to discriminate between the actual

TAI and slightly altered items that differ along explicitly defined sensitive param-

eters. Such a model prevents the monitor from backing out the geometry of the

constructed source. The two models cited in the above paragraph do not necessar-

ily enforce poor discrimination along a sensitive parameter; this model does. This

model could be shared between the host and monitor. This presents a significant

benefit compared to the prior two methods. First, the channels are better able to

discriminate spoofs as they have more structure than the channels resulting from

the first two penalty routines. Second, performance in the discrimination task is

optimal.

Putting all of this work together, an ideal model for using the CHO framework

would:

1. Optimize the separation between the test-statistic distributions for the two

items for the discrimination task.

2. Penalize the difference in test-statistic distributions for any stated sensitive

parameters.

3. Design the model (or individual channels) to identify certain spoofs through

an additional term in the optimization routine.

Such a model could optimally perform a task, be shared with the monitor, and be

able to discriminate many different spoofs.
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CHAPTER 6

Null Hypothesis Tests for Warhead Verification

While the methods developed so far in this thesis can perform binary-classification

tasks such as verification of explosive dismantlement, the desire remains to develop

null-hypothesis tests useful for treaty verification. The most important task required

for future arms-control-treaties is the verification of the presence of a warhead. The

monitor needs to answer the question "Is this object what the host says it is, or

is it something else?" As with the binary-classification tasks, it would be ideal to

develop a null-hypothesis model that (a) processes LM data to prevent aggregation

of projection data for the tested item and (b) does not store sensitive information.

Unfortunately, it is difficult to create a model that processes LM data but is

not spoofable. Section 6.1 explores some common null-hypothesis tests and explains

why most are unable to process LM data. Section 6.2 introduces methods, using the

LM likelihood from the ideal observer and the Hotelling observer as a framework,

that while imperfect still satisfy the LM requirement. Section 6.3 presents some

simulated applications of these methods and discuss the results.

6.1 Difficulty in Implementing Standard Null Hypothesis Methods with List-Mode

Data

In this section there is a discussion of standard null hypothesis tests, and why they

are unable to process LM data. The Chi-Squared test and Mahalanobis distance are

discussed in detail, then a broader approach is taken.

6.1.1 Chi-Squared Test

The χ2 distribution (Greenwood and Nikulin, 1996) is taught in most freshman

statistics courses. It is the result of the sum of the square of independent, standard

normal random variables (denoted in the equation below as Zm). For M total data

bins,

χ2 =
M∑
m=1

Z2
m. (6.1)
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Depending on the number of binsM (which is also the number of degrees of freedom),

the χ2 value corresponds to a p value (the probability of observing that data given

H0) and a decision is made by thresholding the p value. When the measurement

system is an imager, the data consists of the number of counts in each energy-pixel-

particle bin, gm. The distribution on each gm is Poisson, but for a large number

of counts approximates a normal distribution N (µ = gm, σ
2 = gm). Plugging these

numbers into (6.1) results in the χ2 Goodness of Fit Statistic,

χ2 =
M∑
m=1

(gm − gm)2

gm
. (6.2)

Deviation of the tested gm from its mean value increases the χ2 value and reduces

the probability that the tested data is from the H0 distribution.

Unfortunately, the χ2 test cannot be used to process list-mode data. The reason

for this is the term g2
m that results from multiplying out the numerator in eq. (6.2).

It is impossible to find the square of gm using just list-mode data—the algorithm

requires the aggregation of the projection data, which as previously discussed, is

sensitive.

6.1.2 Mahalanobis Distance

The Mahalanobis distance (De Maesschalck et al., 2000) is essentially a more general

description of the χ2 distribution, which assumes independent data variables. The

Mahalanobis distance takes the exponent of the multivariate normal distribution as

a distance metric,

d = (g− g)†K−1
g (g− g). (6.3)

When the data bins are independent, Kg = Diag(g) and (6.2) and (6.3) are equiva-

lent. While this distance metric is able to properly account for correlations between

the variables, it ultimately has the same flaw as (6.2) in that it is unable to process

LM data.

6.1.3 General Distance Metrics

Many other statistical tests have been analyzed. A useful list of standard similarity

and distance metrics can be found in a paper by Sung-Hyuk Cha (Cha, 2007),

which presents a series of metrics in terms of P , the probability density on the data
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distribution for the null hypothesis, and Q, the density on the data distribution for

the tested source. A quick scan of this paper reveals that only a single metric can

be processed with LM data—the inner product,

S =
M∑
m=1

PmQm (6.4)

This is an unnormalized measure of the similarity of two distributions and can

be thought of as the projection of P onto Q. Similar to the ideal observer and

Hotelling observer, this is inherently spoofable. Starting with Q = P, for two bins

with equal probabilities of P, one Q bin probability can be increased and the second

decreased in such a manner to keep S constant.

Furthermore, a simple thought exercise presents a fundamental flaw with this

model, or any hypothesis test that can be performed using LM data. If P is a flat

distribution, then regardless of the shape of Q, the same S is returned. In fact,

this seems to be a fundamental issue with any null hypothesis test that processes

list-mode data. However, there is no spatial or spectral measurement that would

result in a flat distribution.

6.2 Theory

This section discusses the models that have been developed to perform null-

hypothesis tasks.

6.2.1 Null Hypothesis Test Based on Likelihood Expression

The first step taken was the development of a model based on the probability den-

sity on (An, N). The likelihood from the ideal observer (4.8) was treated as the

test statistic. In the equation below, it is explicitly noted that this probability is

dependent on the acquisition time T ,

t = pr({An}, N |H0, T )

=

∫
pr({An}, N |H0, γ)pr(γ)dγ

=

∫
Pr(N |H0, γ, T )

N∏
n=1

pr(An|H0, γ)pr(γ)dγ.

(6.5)

Once again, the reader should note that the total number of countsN is not LM data,

though it is mostly nonsensitive. This model, while effective, is far from perfect. The



174

Poisson term has the nice feature that its value is greatest when N is closest to the

calibration data mean N . The probability drops off when measured objects have

either higher or lower detection rates. The product of LM terms, meanwhile, is

not so easily understood. First, it is possible to image a source that returns higher

values of pr(An|H0, γ) on average than the null hypothesis source. An example of

this is presented in the results section. Secondly, the count rate impacts the product

of LM terms—as N increases, the number of likelihood products (all of which are

less than one, due to the discrete nature of the probability densities in our work)

increases, causing a decrease in overall probability.

For this reason, a second likelihood model was developed, this time conditioning

the probability on the number of counts observed. This leads to a simpler model

that is advantageous in certain circumstances,

t = pr({An}|H0, N)

=

∫ N∏
n=1

pr(An|H0, γ)pr(γ)dγ
(6.6)

This model performs better than (6.5) when the detected-count rates between H0

and any tested sources are roughly equal. The reason for that is the test statistic

distribution for (6.5) is broader than (6.6) as randomness in N increases the vari-

ance. This model also performs better in other circumstances. This is demonstrated

further in the results section.

6.2.1.1 Implementation

Implementation of this model works similarly to the ideal observer. The null hy-

pothesis object is imaged under a set of known nuisance parameters in the SKE case.

The data is binned in some fashion, and the data is normalized to find the probabil-

ity of detecting a particle in each bin. When nuisance parameters are present, the

host must estimate pr(γ) and find pr({An}, N |γ,H0) for many values of γ.

This model is then performed on independent data measured from the same

trusted item, ideally measuring objects that take on the same nuisance parameter

distribution as the calibration data was acquired for. This results in a test-statistic

distribution. Thresholds are set based on this distribution, as described in Sec-

tion 1.3.1, at the 97.5 percentile and 2.5 percentile.

Finally, unknown items are tested. Any tested items that return a test statistic

greater than the 97.5 percentile or lower than the 2.5 percentile are rejected. Note
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that a distribution comparison as discussed in Section 6.1 cannot be performed as

the monitor could not guarantee that an entire set of imaged objects are of the same

type, so objects would need to be tested and possibly rejected one by one.

6.2.1.2 Storage and Need for an Information Barrier

Similar to the ideal observer, model storage for the two likelihood-based null hypoth-

esis tests would be very sensitive. This would require an IB. The only information

visible to the monitor would be the test statistic, or when nuisance parameters are

present, a series of likelihood values that are combined to result in a single test

statistic used to make decisions.

6.2.1.3 A Cheating Host and Monitor

While designed spoofs are not covered in great detail in this chapter, one can refer to

the discussion of spoofs in Section 4.2.2 for information on how a host could design

a spoof to fool the likelihood model and return the same test statistic.

As stated in the ideal observer section, the SKE model would give a very lim-

ited amount of information to the monitor, just the normal test-statistic distribu-

tions. Upon incorporation of nuisance parameters, the model can become highly

non-normal, and this distribution could be used by the monitor to back out some

knowledge on the construction of the geometry or isotopics used.

6.2.2 Linear Models

In this section, the HO and CHO models are applied for a null-hypothesis task

rather than for binary classification. The desire to use a linear model is based on

the various advantages that optimization of the channelizing matrix T in the CHO

can provide. The CHO’s capability of penalizing sensitive information is crucial for

null-hypothesis tasks as well. Penalty terms can be added to the routine, as in (5.17),

to prevent discrimination of objects that differ along the sensitive parameter.

The difficulty in implementing this approach comes in finding a pair of sources

to differentiate. As there is only one set of calibration data associated with TAI, the

host would need to define an alternative hypothesis Ha to discriminate H0 against.

Ha could be a lack of sources in the field of view or a set of likely spoofs, or something

else. Generally, the optimization routine for the channelizing matrix would look like,
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SNR2(T) = SNR2
0−a(T)− η

K∑
k=1

SNR2
(0,pk=pk,0)−(0,pk=pk,0+∆pk)(T) (6.7)

In the above equation, p0 corresponds to the original value of the sensitive parameter

and pk corresponds to the parameter value for the kth sensitive penalty term.The

data sets for the penalized objects would all be simulated. This optimization of T

would result in nonsensitive channelized values, however Ha is chosen.

The first consideration was to set Ha to a signal absent scene, which is the

simplest definition of Ha. If a neutron measurement is considered, the background

is minimal (it is ignored here). The flaw in this model is clear when analyzing the

Hotelling weights (ignoring the penalty terms in (6.7) for now). In the absence of

nuisance parameters, the first and second order statistics can then be represented

as,

∆g =g0

Kg =Diag(g0/2)
(6.8)

The Hotelling weights would then be K−1
g ∆g = g0

g0/2
= 2 for every single detector

bin. The observer model would serve as a simple count-rate detector. This would

be optimal for the task of distinguishing the detected image data from the absence

of data, but would be spoofed easily. Any source with the same count rate as the

null-hypothesis TAI would return the same test statistic.

A more optimal approach than taken in (6.8) would be to optimize the SNR2 of

the test-statistic distributions between H0 and a summation of objects representing

the space of likely spoofs. The spoofed sources could consist of slabs of SNM, non-

weapons grade plutonium and uranium, or some other object that the host could

create to fool the monitor. This space is extremely difficult to define; furthermore,

the massive dimensionality reduction involved in the HO and CHO would likely

mean that there are successful spoofs whose measurement data fall significantly far

from any source that looks like a TAI. Hence, the space of all spoofs to penalize

against would likely be too large.

As I have not developed a convincing linear model to use for hypothesis testing,

there are no simulated experiments for this theory; more discussion on hypothesis

tests can be found in the future work section.
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Figure 6.1: The left plot shows an example test-statistic distribution pr(log(t)|H0)
for IO8 using (6.5). Data was sampled from IO8 1,000 times and the test statistic
found to generate this distribution. Cutoffs were set at roughly -1,575 and -1,825.
Sources that produced test-statistic values outside this range were rejected. The
second plot shows the percentage of the time a second tested item was rejected.

6.3 Experiments

In this section, the models discussed in Section 6.2.1 are employed to perform

hypothesis-testing tasks on the INL inspection objects and various neutron sources.

6.3.1 Inspection Object Discrimination

In this subsection, the IO8 and IO9 inspection objects (Section 3.2.1) were con-

sidered. Throughout the following experiments, the data was binned by energy.

To begin, IO8 was treated as the null hypothesis, with only the 000 orientation

being considered. A test-statistic distribution was generated for independently sim-

ulated IO8 000 orientation data. A distribution over the log likelihood is shown

in Figure 6.1. For large N , it is normal, as the log likelihood is the sum of many

independent random variables. A cutoff for the 2.5 and 97.5 percentile were found

from this distribution; any tested values outside this cutoff were rejected. Next,

data was sampled from the independently simulated IO8 and IO9 simulation data,

the model was performed on that data, and the resulting values were compared to

the rejection cutoffs. Given enough counts, this model effectively rejects IO9 data

while only rejecting IO8 5% of the time, as expected.

In the next set of experiments, various orientations of IO8 were treated as H0 and

various orientations of IO9 were tested, with the hope that IO9 would be rejected

in all cases. In this study, both likelihood models discussed in Section 6.2.1 were
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performed on the data. The reader should refer to Figure 3.11 for a refresher on the

spectra for the two objects at various orientations. The results (see Figure 6.2) help

to demonstrate the differences in the models. There are three components here that

are worth discussing:

• The Poisson component in (6.5) pushes the IO9 distribution for the "full like-

lihood" model to lower test statistic values. This is generally a small contri-

bution compared to the LM component.

• The measured IO9 gammas have higher probabilities of detection at lower

energies than the IO8 gammas. For both models, this means that testing IO9

returns a higher LM likelihood log(pr(An|H0)) than IO8 on average.

• The magnitude of the full-likelihood test statistic depends most on the number

of products (N) of log(pr(An|γ,H0)). When testing against a source with a

higher detection rate, more particles are detected, leading to more LM prod-

ucts and an increasingly negative log likelihood. When testing against a source

with a lower detection rate, less LM terms are recorded, resulting in a higher

test statistic.

In the 111 discrimination task, the IO9 count rate is roughly 30% lower than I08’s.

In this case, the individual log(pr(An|H0)) values when testing IO9 are greater than

for IO8, which affects both models, pushing the test-statistic distribution higher for

IO9 than IO8. In addition, for the full likelihood model, less products go into the

model than for IO9 than for IO8, further increasing the distance between the two

distributions. This is why the full-likelihood model outperforms the LM product

model for this orientation.

In the 000 discrimination task, when testing the IO9 source that causes an in-

crease of 60% in detection rate over IO8 for that orientation, IO9’s full likelihood

is more negative due to more LM products entering the equation. However, the

count rate difference is not great enough to pull the IO9 log-likelihood distribution

far enough to the left to provide an improvement in performance over the LM only

model.

The poor performance of the hypothesis test that integrates over nuisance pa-

rameters in Figure 6.2 can be related back to the test-statistic distributions. For

testing data corresponding to a single realization of the nuisance parameters, the

model produces a normal distribution (even the model that incorporates nuisance
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Figure 6.2: Performance for models built on certain orientations of IO8 in discrimi-
nating certain orientations of IO9. When H0 is set to a single orientation of IO8, it is
able to reject IO9 for the two studies shown. When H0 is set to all IO8 orientations,
it is only able to reject IO9 a fraction of the time even as the acquisition time goes
to infinity.

parameters). The test statistic-distribution resulting from testing objects taking on

many different realizations of the nuisance parameters results in a sum of normal dis-

tributions. The resulting distribution (Figure 6.3), as in the ideal observer section,

can be non-normal. When IO8 is treated as H0 and tested on independently sim-

ulated IO8 data using many nuisance parameter realizations, the result is a mostly

normal test-statistic distribution. When testing IO9, however, the distribution is

highly non-normal. While it appears that certain values of log(t) between the IO9

distribution peaks are negligible, this is due to the stratified orientation sampling

method; if the orientation of IO9 was truly random, as in real life, the distributions

would be continuous.

As the test statistic distributions show, regardless of how many counts are de-

tected, the model would never be able to reject IO9 100% of the time. Likewise,

if IO9 were chosen to be H0, as in the right figure of Figure 6.3, the model would

never be able to reject IO8’s data because the 2.5% and 97.5% tiles would always

encompass it.

6.3.2 Ring Source Hypothesis Testing

In this section, the 20 cm ring source is treated as H0. Independent data measured

from the 20 cm ring source was used to create the pr(t|H0) distribution for each of the

two discussed models ((6.5) and (6.6)). The 2.5 and 97.5 percentiles were found for

these test statistic distributions, and any tested items yielding test statistics outside

these bounds were rejected. The various neutron sources discussed in Section 3.2.2

and Section 3.2.3 were tested against H0. All of the data sets were binned by pixel
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Figure 6.3: In the left plot, IO8 is treated as H0. The model was built and tested
on many orientations of IO8 and IO9. In the right plot, IO9 was treated as H0 and
IO8 and IO9 data were tested. Note that the distributions are approximately the
same in the left and right plots. This demonstrates the fact that the distribution
nature is caused more by the variability of the tested source’s data than the model
itself.

ID. Because emphasis was put on the neutron count maps in decision making for

this task, all of the count rates were set equal. This approach benefits the LM

ratio likelihood test (6.6) over the likelihood that incorporates the count rate (6.5).

This is demonstrated in Figure 6.4. At 25,000 counts, the full likelihood model

cannot distinguish a ring source from a square source based on the test statistic.

Notice that the means for the distributions are the same regardless of model but

the variance increases considerably for the model conditioned on acquisition time.

This is because the number of detected counts is still a random variable when the

acquisition time is held constant, leading to variability in the number of products

in (6.5).

This is demonstrated further by the performance plots in Figure 6.5. The likeli-

hood conditioned on acquisition time is not able to reject any of the other neutron

sources. The likelihood conditioned on the number of observed counts, meanwhile,

is able to reject all of them given a long enough acquisition time. This is not the

first time we’ve seen this result; the ideal observer proved able to correctly reject

certain spoofs (Figure 4.5) as well.
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Figure 6.4: The left plot shows the test statistic distributions for the ring and square
sources using the likelihood expression based on acquisition time (6.5) and the right
plot shows the test statistic distributions for the likelihood using a predefined number
of counts (6.6).
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Figure 6.5: The left plot shows the performance of the likelihood expression based
on acquisition time (6.5) when testing alternative neutron sources. The right plot
shows the performance of the likelihood using a predefined number of counts (6.6).
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6.4 Conclusion and General Comments

A null-hypothesis test was developed that uses the LM likelihood to reject possible

spoofs. This test is not ideal, and can be tricked. This is especially true when

nuisance parameters are present in the TAI and imaging system that lead to broad

test-statistic distributions on the TAI, preventing the model from rejecting a large

range of test-statistic values. Furthermore, the sensitive nature of the stored data

would require an IB, preventing the monitor from accessing the model.

Linear models were also considered, and provide the advantage that the penalty

term formalism discussed in chapter 5 can be applied. However, the definition of

the alternative hypothesis is critical to this model’s performance and it is unclear

how to define Ha to best reject spoofs.
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CHAPTER 7

Future work

This dissertation presents multiple methods that could be used to perform binary-

discrimination tasks without revealing sensitive information to the monitoring party.

However, there is more that can be done, whether that is expanding upon the models

already developed or creating new methods for null-hypothesis tests. Section 7.1 and

Section 7.2 consider the improvements that will need to be made to the simulation

studies and observer models to perform real-life verification. Section 7.3 discusses

new ideas for null-hypothesis tests that have yet to be be implemented. Section 7.4

expands on the CHO work to discuss improved penalty terms. Experimental data

has been acquired on the ring and square sources, and Section 7.5 shows the first

results for this data and summarize how to compare simulation and physically-

acquired data. Finally, Section 7.6 demonstrates the advantages of a detector that

is physically insensitive to certain parameters of the imaged items. One possible

method to create such a detector is presented.

7.1 Simulation Studies

The simulations performed for this dissertation were fairly simplistic; if these mod-

els were going to be used to predict real-life performance, they would need to be

improved. There are three components addressed here:

• Most importantly, variation in detector response is critical to model perfor-

mance and was ignored in the simulation studies in this thesis. (Section 7.1.1)

• The simulation geometry is bare bones, including just the object and detector

geometries. The impact of simulating a more physically realistic world is

discussed here. (Section 7.1.2)

• Pulse-shape discrimination between gamma rays and neutrons was not consid-

ered in this work. Its inclusion would impact the performance of the models.

(Section 7.1.3)
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7.1.1 Variability in Detector Response

In the simulation studies, there was no image-to-image variability incorporated in

the detector response other than energy smearing. In reality, there are changes

associated with the detector response over short and long time scales. Significant

temperature changes are a standard problem. If this detector is shipped from one

location to another, the detector response could change (there are often numerous

missile sites where testing would occur). During transport, the geometries of the

detector could degrade (in the case of PMTs) or shift. In particular, shifts in the

location of the light guides and PMTs could alter the light collection efficiency. This

requires calibration measurements prior to measurements at a new site.

An example of the changing detector response over a large scale time period

is shown in Figure 7.1 and Figure 7.2. These maps are generated by flooding a

given detector block with neutrons. The location of interaction can be determined

by the ratio of outputs for the four PMTs for each detector block. For a detector

with all of the PMT’s having equal gain and light-collection efficiency working as

designed, there are 100 evenly spaced Gaussian peaks on the neutron flood map.

The location of the calibration peaks shown in the two calibration measurements

was found assuming the ratio of PMTs for a perfect detector response. When the

measurement occurs, any detections in a given pixel block with the PMT ratio

corresponding to that calibration measurement would be assigned to that pixel ID.

The two count maps differ significantly in some detector blocks. In these maps,

blocks such as the one in row 1, column 2 and row 2, column 2 show a fairly ideal

detector response, where the light coming from each pixel is easily distinguishable.

The block in row 2, column 3 could be due to PMTs in the upper left corner and

lower right corners having increased gain, or PMTs in the other corners having lower

gain. The end effect is a stretching of the response along the upper left to lower right

diagonal. Of particular concern when comparing two calibration measurements is

the blocks in row 4, columns 1-3. It is not clear what is causing this behavior but it

could potentially be that air gaps are being created in the light guide to scintillator

and light guide to PMT connections, causing loss of light in certain regions.

In addition, a simple neutron-flood calibration measurement is essentially a first-

order calibration. For example, if the location of the neutron source changes, the

neutron travels through a different path in each pixel. For this particular detector,

the pixels are fairly long and light bounces around and spread out before entering
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Figure 7.1: An example calibration measurement for the fast-neutron coded aperture
detector taken in April 2015 using a Californium source.

the light guide, so location of the calibration source does not significantly effect the

light collected.

7.1.2 Room Geometry

A concrete floor was considered in the early stages of the project. The detector was

placed inside a 4 meter x 8 meter square room in the second stage of the simulation,

which transports the flux exiting the inspection object to the detector. 6 inches of

concrete was used as the floor. GEANT4 allows certain materials to be uploaded

from the National Institute of Standards and Technology database. Concrete is

composed of 52.9% oxygen, 33.7% silicon, 4.4% cadmium, 1% hydrogen, and other

elements, all with Z<26. As expected, the addition of low Z materials to the world

geometry causes a far greater impact on the neutron-simulation speed than the

gamma-simulation speed.

The addition of the floor led to a roughly 11% decrease in the speed of gamma-

ray simulations—a drop from 105,000 events per second to 93,000 events per second.
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Figure 7.2: An example calibration measurement for the fast-neutron coded aperture
detector taken in November 2015 using an AmBe source.

The effect on the neutron simulations was far more dramatic. Inclusion of the floor

dropped the neutron simulation speed by over 90%, from 53,000 events per second

to 4,700 events per second. This significant speed decrease combined with less than

satisfactory results when attempting to utilize importance sampling with GEANT4

(see Section 3.4) is the reason the floor, and any other room geometries, were not

simulated. Another important material for consideration in the room geometry is

aluminum due to its high rate of thermal-neutron capture and subsequent gamma

emission (Hardell et al., 1969).

7.1.3 Pulse-Shape Discrimination

In the simulation studies, misclassification of neutrons as gammas, and vice versa,

was largely ignored. PSD is often done by observation of the electron output pulse

from the PMT. Protons (produced by elastic scattering by neutrons off of hydrogen

atoms) and electrons (produced by photoelectric absorption and Compton scattering

of gamma rays) have different time-dependent light yields. An example method to

accomplish PSD is presented in (Adams and White, 1978). In this procedure, the

pulse is integrated over two time windows. T1 (corresponding to the width of the
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rising pulse, set to roughly 25 ns) has integrated charge Q1 and T2 (the total pulse

width, set to roughly 400ns) has integrated charge Q2. Normalization factors for

the integrated charge, K1 and K2 are then found. A check is done to see if K1Q1

is greater than K2 ∗ (Q1 +Q2). If so, the particle is declared to be a gamma ray; if

not, it is declared a neutron. Other PSD methods use a tail-to-total ratio.

Regardless of the approach chosen, PSD methods are prone to misclassifica-

tion. Such misclassification leads to a smearing of the neutron and gamma detector

data sets, which could degrade task performance for the models developed in this

dissertation. Accounting for misclassification is particularly important when us-

ing reconstruction techniques. For example, in IO8 and IO9, where uranium (high

gamma-emission rate, low neutron-emission rate) shields plutonium (high neutron-

emission rate), misclassification of gammas from the uranium material as neutrons

would result in neutrons that appear to be coming from the uranium material. This

could lead the monitor to believe that the uranium geometry is actually another

material.

7.2 Model Implementation

This section explains how the observer models would be adapted to incorporate the

various physical processes explained in Section 7.1.

7.2.1 Variability in Detector Response

Accounting for such drastic variation in detector-response is impossible to do sta-

tistically using the nuisance-parameter formalism developed for the ideal observer

and CHO. A calibration measurement must be taken prior to treaty-verification

measurements. Sandia employees have developed code that takes in the detected

neutron flux on each detector block (found in simulation) and uses the flood map

calibration measurement to find the expected output ratio for the four PMTs. This

can be used to create a realistic set of detector data from the GEANT4 simulated

data.

If the models built on training data at a specific site are intended to be used to

perform tasks on items at another site, there must be a methodology to adjust the

data to the new detector response in order to perform the observer models. This

could be done by taking the experimental data and using the flood map to back out

an estimate on the number of interactions in each pixel. Then, when performing the
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model at a second site, the absorbed flux for each pixel would be translated back

to an electronic output by using the new detector-response code. Any errors in this

process affect the task performance.

Accurately adjusting the data for the current detector response is doubly im-

portant for the CHO that penalizes storage of sensitive information. This model

is trained on certain data sets, some of which are acquired in simulation and some

through experiment. The simulated detected flux can be reliably generated through

GEANT4 or MCNP. The detector-response code would be applied to the simulation

output, ideally resulting in an accurate set of detector data for the penalized objects.

The model’s ability to discriminate the TAI from the penalized sources would then

be penalized in the channelizing-matrix optimization routine.

If this observer and detector will be used in future verification measurements,

penalization of the differences in these data sets must be consistently strong and

adapt to the changing detector response. Imperfect penalization would result in

the monitor being able to observe differences in the test-statistic distributions and

use the TAI’s distribution to reverse-engineer the geometry. There are multiple

procedures that could be used to accomplish this; two are outlined below.

7.2.1.1 Assume the Penalty Direction Vector is Constant

When nuisance parameters are not present, the penalization routine degrades T’s

ability to detect a change in measured data between the TAI and the penalized

object. This data-difference vector between measurements would be in the null

space of T. Using the calibration of the detector response, the simulated GEANT4

data can be turned into a simulated measurement. The difference between the

experimentally measured TAI and the simulated penalized object would be found

and the model built off of this. The second set of verification measurements would

be done at some later time with a different detector response. A measurement of a

trusted TAI could be done, then the simulated penalized source found by assuming

the difference vector is constant despite the changing detector response. The model

would be trained on this data. This would require a second measurement of the

trusted TAI with the new detector response, which the host may not want to agree

to.

This procedure is a bit simplistic. First of all, the presence of nuisance parame-

ters makes the penalization routine more complicated than simply putting a single

difference vector in T’s null space. Second, as Figure 7.1 and Figure 7.2 show, the
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response varies with location on the detector. If there are certain pixels where less

light is collected between calibration measurements, both the TAI and altered TAI

would have less light collected, leading to a smaller difference in measurement data

for the second TAI measurement than the first. Assuming a constant data-difference

vector would yield inaccurate penalization.

7.2.1.2 Method to Adjust Experimental and Simulated Data to New Detector Re-

sponse

The flood map calibration measurement would be performed before any measure-

ments of the TAIs. The two TAIs in the discrimination task would then be measured

and any penalized objects simulated. An estimate on the detected flux in each pixel

would be found from the experimental data on the TAI and the flood map. This

detected flux should be consistent across measurements (ignoring the room geom-

etry effects for now). When the detector is taken to a new site, a new flood map

measurement would be taken and the detector response recalibrated. The simula-

tion and experimental detector flux from the first set of measurements would then be

processed with this new detector response to best model the new measurement data.

Then, the model would be trained on this new data and unknown items tested. This

procedure is probably more accurate than the first and does not require a second

measurement of a trusted TAI.

7.2.2 Room Geometry

To account for the room geometry’s effect on the detector data, a prior measurement

would be required. Such a measurement could be taken with the TAI in place.

A chunk of attenuating material could be placed between the TAI and detector,

as in Figure 7.3. All neutrons traveling on a straight line path to the detector

would be attenuated while the other neutrons interacting in the room would not be

shielded. Then, a measurement without the attenuator could be taken and the

difference between these measurements would be treated as the calibration and

testing data. This routine would account for both room effects and the locally

varying background. The issue with this approach is that the attenuating material

could suppress the background coming from behind the item. When the attenuation

material is removed, background particles could pass through the source and interact

in the detector.
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Figure 7.3: An example measurement that could be used to gauge the impact of the
geometries of the room on the detector data. The inspected object is shielded by
the polyethylene hemisphere.

7.2.3 Pulse-Shape Discrimination

Accounting for imperfect PSD in the observer models is actually unnecessary. This

is a benefit using the template-matching approach with projection data. Both the

training and testing data contain the misclassified gammas and neutrons. The de-

tector software decides whether the detected radiation was from a gamma ray or a

neutron and then that event’s data is binned by particle type, pixel ID and energy.

In fact, the host and monitor could instead choose to bin the data by PMT ratio

and the two measures for the integrated charge of the pulse, rather than pixel ID,

total energy and particle type.

7.3 Quadratic Approximation for Null Hypothesis Test

As discussed in Section 6.1, the large majority of distribution-distance metrics do

not naturally process data in LM format. However, a quadratic approximation to

some of these methods seems like a viable alternative. The work presented here

was undertaken by Mohammed Khalil, a Sandia employee. Assuming normalized

calibration data P, and testing data Q, the Mahalanobis distance can be represented

as,

d = (Q−P)†KP
−1(Q−P), (7.1)

where KP is the covariance matrix of the normalized data P. This is a good model

to start with. It returns a non-negative distance d, and is 0 when P = Q. An SVD

can be done of the (symmetric) covariance matrix so that it can be represented by,

KP = X†ΛX. (7.2)
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Here, X is a matrix of eigenvectors and Λ is a diagonal matrix with the eigenvalues

λk along the diagonal. There are K total eigenvectors; for an invertible covariance

matrix, K is equal to the number of bins in the data, M . The inverse of the

covariance matrix is,

KP
−1 = X†Λ−1X. (7.3)

Using this representation, (7.1) can be represented as,

d =
K∑
k=1

(Q−P)†X†k ∗ 1/λk ∗Xk(Q−P)

d =
K∑
k=1

1/λk ∗ ((Q−P)†Xk)
2

d =
K∑
k=1

1/λk ∗ (Q†Xk −P†Xk)
2.

(7.4)

Taking this a step further, the inner product between Q and Xk can be expressed

in terms of the counts Nm (out of N total) detected in each of the M bins,

Q†Xk =
M∑
m=1

QmXk,m

Q†Xk =
M∑
m=1

Nm

N
Xk,m

Q†Xk =
1

N

N∑
n=1

M∑
m=1

Xk,mn ,

(7.5)

where Xk,mn is the value of the mth
n bin (corresponding to the nth detected particle)

for the kth eigenvector. This derivation proves that (7.4) can process data in LM

format, with the Q†Xk product being updated as events are read in. K total LM

products would need to be stored for this method. Even if the monitor was to be

given each eigenvector, the dimensionality reduction would make it hard to back out

Q. This procedure shares some similarities to the CHO—the CHO projects a set of

channels onto the observed data, while this method projects eigenvectors onto the

data.

The question then becomes one of spectral analysis. To best distinguish Q from

P, all K = M eigenvectors would be needed to best approximate the true distance

d. However, if all were used, the model would likely be deemed sensitive. Instead, if

K < M eigenvectors were used, the returned d in (7.4) would be an approximation

to the d using the complete decomposition. Though some eigenvectors (those with
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larger λk) are more important to the decomposition of KP than others, that doesn’t

necessarily mean they would do a better job identifying spoofs. Spoofs can take on

many geometries and ideally the eigenvectors would be able to reject many different

types. However, the eigenvectors for a certain KP are not something that can be

optimized as they are fixed—the best eigenvectors to discriminate spoofs would need

to be selected.

Instead, KP can be approximated generally through,

KP
−1 = Φ†ΛΦ. (7.6)

where Φ is a normalized vector not related to the eigenvector Xk. Using this for-

malism, the Φ vectors could be optimized in some way to best reject a set of spoofs.

7.4 Channelized Hotelling Observer

There are a few tasks left to accomplish in the development of a CHO model that

can effectively penalize the model’s discriminatory ability on sensitive parameters of

the object. This section covers two in particular—preventing discrimination based

on the channel distributions for two objects, and preventing discrimination on the

variances of the two distributions. The ideal result would be a T that returns the

exact same test-statistic and channelized value distributions when the penalized

pairs of objects are measured.

7.4.1 Preventing Discrimination of Channelized Value Distributions

The techniques discussed in Section 5.1.5 serve to equalize the mean test-statistic

value for objects that differ along a sensitive parameter. This is a good start,

but ideally, the monitor would also be unable to back out information from the

channelized values, v, either. Each channelized value can be presented as the inner

product of a channel and the data vector,

vl = Tlg (7.7)

An example penalty term is below,

fpen(T) = η
2∑
j=1

K∑
k=1

L∑
l=1

SNR2
(j,pk=pk,0)−(j,pk=pk,0+∆pk)(Tlthchannel). (7.8)

Note that this penalty is similar to (5.21), except now the discrimination ability of

each individual channel is being penalized for the pair of objects that the host does
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not want the model to discriminate, rather than the pair of objects that the model

needs to discriminate. It should be noted that equal means on the channelized data

for the channels would imply equal means on the test statistics. This penalty term

would replace eq. (5.25).

7.4.2 Preventing Discrimination on Distribution Variance

Prior work has shown that penalizing the SNR2 of the test-statistic distributions

between the two objects serves to equate the mean of the test-statistic distributions.

However, as explained at the end of Section 5.2.5, in studies where the count rates for

the penalized pair of objects are not set equal, the variances of the two test-statistic

distributions can be notably different (in the stated example, one had a variance

of 62 and the other 74). The monitor could use the fact that they are different to

reverse engineer the objects and back out the true value of that sensitive parameter.

This is a difficult problem to overcome. Penalizing SNR2 is not the same as the

difference in mean data, ∆t = W†
g∆g for the penalized objects. This is because

Wv is found for the performance-optimized pair of sources for the task, not the

performance-penalized pair. When using the penalized pair to determine Wv, the

magnitude of the variance dropped drastically, but the ratio between variances (and

hence, the ability to differentiate the two) stayed approximately the same.

A second attempt was made to penalize the variance based on equation (5.3).

The difference in variance on the two test-statistic distributions can be expressed in

matrix form as,

∆σ2
t (T) = Wg(T)†Diag(∆g)Wg(T). (7.9)

In this equation, Wg is a function of the channelizing matrix. However, this is not

a distance metric, so the square was taken to create a penalty function,

fpen(T) = (Wg(T)†Diag(∆g)Wg(T))2. (7.10)

This form is easily differentiable with matrix calculus. Unfortunately, an optimiza-

tion routine based on this objective function and gradient has not returned test-

statistic distributions with more similar variances. Instead, it returns distributions

with variances lower in magnitude. Alternative penalty terms that equalize the

variances of the distributions are still being considered.

Another approach could be to utilize a distance metric between the distributions

of the measured objects that differ along the sensitive parameter. Some possible
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techniques can be found in (Cha, 2007). Despite their inability to process LM data,

these metrics can still be used in the optimization routine.

7.5 Experimental Study on Ring vs Square Source Size Penalization

This dissertation presented a method to discriminate two objects by geometry type

while avoiding discrimination based on the object size. Experimental measurements

on extended Californium sources have been taken to compare to the simulation stud-

ies. Small Californium sources were placed on a moving surface and imaged by the

detector. The surface was programmed to move in both circular and square motions

of different sizes. The results after a matched filter reconstruction technique (Ye

et al., 2006) are shown in Figure 7.4. Reconstructions of the objects show that the

location was not held constant. This is not a concern for this study, but it does mean

a comparison of classification performance (and penalization of the size parameter)

won’t be exact between simulation and experiment. Furthermore, this study empha-

sizes the importance of accounting for nuisance parameters in an actual verification

measurement. These images could be used to classify independently imaged objects,

which could vary in location just as these objects did. If so, the orientation nuisance

parameter would need to be accounted for, requiring more calibration images.

Each measurement will be split up into training and testing data sets. The

optimization routine will optimize T to perform the geometric discrimination task for

the 20cm geometries while penalizing the ability to discriminate a single geometric

source of different sizes. T will be tested on the independent data sets. We plan to

publish these results in IEEE Transactions on Nuclear Science in late 2016.

7.5.1 Simulation Validation

These measurements also present an opportunity to perform validations of the

GEANT4 simulations. The reconstructed objects could be run through GEANT4

and the resulting projection data paired with the calibrated detector response to

create a simulated experimental measurement. This could be compared to the mea-

sured data to check model consistency.

7.6 Detector Insensitive to Certain Information

The downside to relying on electronics to apply the observer model to the data is

that there is always the opportunity for one side to fool the other. A dishonest host
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Figure 7.4: Reconstructions of the extended ring sources (16cm and 24cm) and
square sources (16cm and 24cm) are shown here. The 16cm ring and 24cm square
were imaged a little off center by accident.
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could implement an electronic switch that changes how LM data is processed, or

process data other than what is read in from the detector. This is an especially

significant worry when implementing the ideal observer model, because the monitor

does not have access to the model itself. Likewise, the monitor could try to fool the

host by including a method to secretly aggregate the projection data.

The ideal end result for this project would be the construction of a detector

specifically designed to be insensitive to certain aspects of the TAIs. This would

allow the monitor to take measurements without requiring an IB. This is a diffi-

cult objective, but could be accomplished by taking advantage of the non-sensitive

weights on g that the CHO can produce. The following subsection is one possible

implementation.

7.6.1 Building Non-Sensitive Weights into an Attenuation Plate

The host would start by utilizing the standard imaging detector, including the stan-

dard mask designed to optimally differentiate signals at different locations in object

space. For a binary-discrimination task such as explosive dismantlement, the host

could acquire calibration data on the TAIs and simulate objects that differ from

those TAIs along predefined sensitive parameters. The host could then follow the

CHO procedure to create a set of non-sensitive weights that are unable to differen-

tiate objects that differ along a sensitive parameter. The ideal set of weights Wg

would have values between zero and one, allowing the monitor to build an attenu-

ation plate that can absorb that amount in front of each pixel. This procedure is

outlined below.

The test statistic returned by the performing the CHO on measured objects is

t = W†
gg, where Wg is the weights on g that are non-sensitive to the penalized

objects. If the count rates for the two objects are equal, the sum of the values in

g will also be equal for a given acquisition time. Adding a constant to Wg results

in a vector W′
g that should also return equal means for the two tested items. This

procedure could be used to create a positive W′
g. An alternative if the count rates

are not equal for the various objects would be to design an optimization routine for

T that enforces positive weights on g.

From there, the values in W′
g could be linearly scaled down until the maximum

value is one, a procedure that also yields equal means for the various test statistic

distributions. These new weights are denoted by W′′
g. These weights can be imple-
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mented physically by putting an attenuating material right up against the detector

plane. Each individual pixel could have a different attenuator thickness. Pixels with

a low W′′
g would have a higher attenuator thickness so that the number of detected

counts decreases.

Ultimately, this idea is probably easier to implement in theory than in practice.

Neutrons are hard to stop and require at least a couple centimeters of an attenuating

material such as polyethylene. This thickness could cause neutrons directed at one

pixel to be attenuated by the moderator for an adjacent pixel. Furthermore, when

location is a nuisance parameter, the object may be located away from the center

of the field of view, exaggerating this effect. The ideal attenuator would be as thin

as possible.

This procedure is advantageous over the electronic board channelizing procedure

for a number of reasons. The sensitive TAI parameters would fall into the "null

space" of the imager itself—the monitor would never have the possibility of accessing

this information as long as the attenuating material is in front of the detector. The

monitor could use this detector with any of the discussed observer models (or even

models that do not require LM processing) as the detector data is always non-

sensitive.

There are pitfalls to this procedure, however. Similar to the discussion on the

CHO in Section 7.4, while it is possible to set the means of the test-statistic distri-

butions equal, it is a more difficult task to set the variances equal.
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