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ABSTRACT

Solar and other renewable power sources are becoming an integral part of the elec-

trical grid in the United States. In the Southwest US, solar and wind power plants

already serve over 20% of the electrical load during the daytime on sunny days in the

Spring. While solar power produces fewer emissions and has a lower carbon foot-

print than burning fossil fuels, solar power is only generated during the daytime and

it is variable due to clouds blocking the sun. Electric utilities that are required to

maintain a reliable electricity supply benefit from anticipating the schedule of power

output from solar power plants. Forecasting the irradiance reaching the ground, the

primary input to a solar power forecast, can help utilities understand and respond to

the variability. This dissertation will explore techniques to forecast irradiance that

make use of data from a network of sensors deployed throughout Tucson, AZ. The

design and deployment of inexpensive sensors used in the network will be described.

We will present a forecasting technique that uses data from the sensor network and

outperforms a reference persistence forecast for one minute to two hours in the fu-

ture. We will analyze the errors of this technique in depth and suggest ways to

interpret these errors. Then, we will describe a data assimilation technique, optimal

interpolation, that combines estimates of irradiance derived from satellite images

with data from the sensor network to improve the satellite estimates. These im-

proved satellite estimates form the base of future work that will explore generating

forecasts while continuously assimilating new data.
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CHAPTER 1

INTRODUCTION

The installed capacity of solar power in the US continues to grow as a result of the

decommissioning of aging coal power plants, lower costs, state renewable portfolio

standards, and efforts to decarbonize the electrical grid. As shown in Figure 1.1, this

growth has accelerated since 2010, and the US Energy Information Administration

predicts that the installed utility-scale capacity of solar power will reach 31 GW by

the end of 2018 [1]. Of the 4,000 TWh of energy generated in 2016 in the US, 60

TWh was produced by solar power plants [2].

Figure 1.1: Annual installations of solar photovoltaic (PV) systems in the US.
[Source: [3]]

Sunlight is the fuel that drives all solar power plants. Unlike sources of fuel
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for conventional power generators like coal or natural gas, the solar resource is

variable due to clouds and the motion of the sun in the sky. This variability of the

solar resource leads to uncertainty at the electric utility and increases management

costs [4]. Forecasts help utilities manage the variability in a number of ways [5, 6],

including the dispatch of conventional generators, the optimal dispatch of battery

storage [7], and the scheduling of reserve capacity [8]. Improvements in forecasts can

further reduce costs [9]. Ultimately, better forecasts increase the amount of solar

power that utilities can add to the grid.

An example of the variability from a 28 MW power plant due to clouds is shown

in Fig. 1.2. The power plant started producing power near sunrise, and reaches its

peak power output of 28 MW in a few hours. However, clouds begin moving over

the plant in the afternoon causing large and rapid fluctuations in the power. Ramps

(change in power per time) as large as 25 MW occur in a span of 5 minutes. Utility

companies need to constantly match the electrical generation to the demand, which

means the utility needs generation standing by (spinning reserves) that can provide

the power as a cloud passes over the plant and then turn off just as quickly when

the solar plant returns to full output.

This dissertation will explore solar forecasting techniques that we developed

to help utilities mitigate this variability. A distinctive feature of this work is the

incorporation of data from a ground sensor network. First in Section 1.1, I provide

context and motivation for this dissertation in terms of the solar generation in the

Southwest US. Then in Section 1.2, I discuss other forecasting research efforts and

how this research compares. Section 1.3 discusses the guiding hypotheses behind

this dissertation and provides a summary of the work.

The remainder of the dissertation is organized as follows. Chapter 2 describes

the design and deployment of a network of irradiance sensors to obtain data for

the forecasts we discuss. Appendix A and Appendix B describe a forecasting tech-

nique that relies solely on data from the sensor network. Chapter 3 expands on

the careful error analysis necessary to understand these so-called network forecasts.

Appendix C and Appendix D describe how the data from the sensor network was
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combined with satellite images to provide an improved starting point for forecasts

with additional details in Chapter 4. Chapter 5 describes future work that will

expand on these forecasting methods. Finally, we discuss producing forecasts op-

erationally in Chapter 6 and Appendix E before offering concluding thoughts in

Chapter 7.

1.1 Solar Power in the Southwest

The Southwest Variable Energy Resource Initiative (SVERI)1 was formed in the fall

of 2012 to study the impact and characteristics of variable energy resources in the

Southwest. The SVERI partnership grew out of the relationships among many of

the utilities in the Southwest Reserve Sharing Group (SRSG). Utilities in the SRSG

share contingency reserves to reduce the costs of control standards and increase the

reliability of the Western Interconnection. Many of the SVERI member utilities are

balancing authorities tasked with maintaining the reliability of the electrical grid in

the Western US and Canada.

Our group at the University of Arizona gathered and analyzed data from the

SVERI utilities to help them understand the impact of the variable resources, mainly

solar and wind power. The SVERI utilities have documented a total of 1100 MW

of installed utility scale solar capacity, 800 MW of installed wind capacity, and a

peak load of 23 GW [10]. Another roughly 1 GW of generation comes from dis-

tributed generation (DG) solar systems that are installed on residential or commer-

cial rooftops. Heatmaps showing the time of day load, wind generation, utility-scale

solar generation, and wind and solar fraction of load for two years are shown in

Fig. 1.3. Heatmaps for weather variables at the University of Arizona are shown in

Fig. 1.4 to correlate weather to, for example, the abrupt decrease in load around

10/14 corresponding to the end of monsoon season.

The Arizona Renewable Energy Standard and Tariff (REST) mandates that

1The SVERI member utilities are Arizona’s G&T Cooperatives, Arizona Public Service, El Paso
Electric, Imperial Irrigation District, Public Service Company of New Mexico, Salt River Project,
Tucson Electric Power, and the Western Area Power Administration’s Desert Southwest Region.
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Figure 1.3: Time of day heatmaps of SVERI load, solar power generation, wind
power generation, and the fraction of load served by solar and wind power. The
heatmaps were generated with two years of data and the white areas indicate missing
data. The diurnal cycle is clearly seen in the solar data, and can also be found in
the wind and load. A weekly cycle is also evident in the load. At times in the spring
when heating and cooling loads are low and there is high solar generation, wind and
solar power can serve up to 12% of the load.
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Figure 1.4: Time of day heatmaps for temperature, dewpoint, global horizontal
irradiance (GHI), and wind speed all measured at the University of Arizona in
Tucson. Notable features include the many clear days evident in the GHI heatmap
and the beginning and end of the monsoon season (when moisture from the Gulf of
California moves into Arizona) visible in the dewpoint heatmap.
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utilities in Arizona generate 15% of their energy from renewable resources by 2025

[11]. As mentioned above, DG solar systems provide a large fraction of the total

renewable energy generation. One problem utilities encounter with DG systems is

that real-time monitoring is limited. Since the power generated by these systems

can also be consumed on site, variability in DG power is visible to the utilities as

variability in the load. Real-time estimates (or nowcasts) and forecasts of this DG

variability will be required for the most accurate load forecasts.

Figure 1.5: Net load (total load minus wind and solar generation) projections for
SVERI in 2027. The shape of the November net load is referred to as a duck curve.
Forecasts along with storage and other policies will help utilities change how solar
and wind power are controlled to avoid these multi-GW ramps. Figure reproduced
from [12]

Similar to DG, utilities may consider power generated at large solar and wind

power plants to be modifiers of the load instead of power that is controlled and

dispatched. Utilities are then interested in what they call the net load, or the total

load minus the generation from solar and wind power plants. Based on projections

from 2014 SVERI data, net load profiles in 2027 may resemble those shown in

Fig. 1.5. Notice the large power ramps that occur in the so-called duck curve in

November. Dealing with these 3 GW ramps in only a few hours is costly since

utilities currently rely mostly on quick-start combustion turbines. Using forecasts,
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utilities can better control large solar and wind power plants and avoid some of these

large ramps. Other smart grid technologies such as energy storage and time of use

rates will also play a critical role in avoiding these ramps to maintain the reliability

of the grid.

The remainder of this dissertation will focus on the primary input to solar power

plants: sunlight. We will specifically refer to solar irradiance or the amount of

sunlight in a given area that can perform useful work.

1.2 Solar Irradiance Forecasting

As mentioned above, the solar irradiance that reaches the Earth’s surface is variable.

The first obvious source of variability is the diurnal cycle due to the movement of

the sun through the sky. The second major source of variability is due to clouds

blocking light from the sun from reaching the surface of the Earth. Aerosol, dust

particles, and water vapor in the atmosphere can also reduce sunlight, although they

often only account for a small, constant reduction except in the case of a dust storm

or dense smog.

There are three primary classifications of the radiation that reaches the Earth’s

surface as shown in Fig. 1.6. The first is the radiation that comes in a straight path

directly from the sun called direct irradiance. The direct irradiance that strikes the

earth at a normal angle is called the direct normal irradiance (DNI). Light can also

reach the surface by being scattered in the atmosphere by clouds or aerosols or by

features on the surface such as trees and is referred to as diffuse irradiance. The

total diffuse irradiance that strikes a horizontal surface on the Earth is referred to as

the diffuse horizontal irradiance (DHI). The sum of the direct and diffuse irradiance

is referred to as the global irradiance, and the total direct and diffuse irradiance on

a horizontal surface is called the global horizontal irradiance (GHI).

The majority of solar power plants are non-concentrating systems that collect

both direct and diffuse radiation, thus we will focus on techniques that forecast GHI.

Furthermore, we are interested in producing forecasts that will, after being converted
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Figure 1.6: Illustration of direct, diffuse, and global irradiance

to solar power forecasts, be used to maintain grid reliability and for power market

trading similar to [8]. Thus, we will focus on forecasts that predict the irradiance

now through a week from now. Reviews of solar power and irradiance forecasting

can be found in [6, 13, 5]. Figure 1.7 shows the typical forecast horizons for a number

of forecasting techniques.

Forecasting techniques are often compared based on the range of forecast hori-

zons where they outperform a reference forecast. This reference can be a persistence

forecast that assumes the irradiance in the future will be the same as it is currently

or a forecast based on climatology.

Cloud camera forecasts rely on a camera that is pointed at the sky and usually

includes a wide-angle lens [14]. Such forecasts use these images to attempt to detect

and classify clouds [15]. Cloud camera forecasts have been shown to outperform

persistence forecasts at time horizons from under 1 minute to 15 minutes [16]. These

types of forecasts are useful for managing an individual power plant in near real-

time.

Statistical forecasts, for our purposes, are those that rely on measured irradiance
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data. We group many techniques in this category including auto-regressive models

[17], artificial neural networks [18] and other machine learning algorithms [19, 20],

and the lasso [21]. Persistence forecasts also fall into this category. These techniques

also span a broad range of forecast horizons. Some provide forecasts for 20 seconds

to 10 minutes while others may produce forecasts for many days in advance.

Network forecasts are a type of statistical forecast that will be studied in depth in

this dissertation. These forecasts depend data from a network of irradiance sensors

deployed over a large area, and they outperform the reference persistence forecast for

time horizons from 1 minute to 2 hours in the future. These forecasts are discussed

further in Chapter 3.

Satellite forecasts rely on estimates of irradiance produced from images taken by

geostationary satellites. These estimates can be categorized into semi-empirical and

physical models. Semi-empirical models rely on historical data from the satellite

and ground sensors to find the function that translates from satellite image pixel to

observed irradiance [22]. Physical models use the satellite images to infer properties

about the clouds which are then used in a radiative transfer model to predict the
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sunlight that reaches the surface [23]. Improvements to these irradiance estimates

using ground data and data assimilation will be explored in Chapter 4.

Forecasts that predict irradiance for time horizons greater than a few hours and

up to about a week rely on numerical weather predictions (NWP). NWP are solu-

tions to the partial differential equations that govern the atmosphere including the

transport of mass and the thermodynamics of the system. A number of assumptions

must be made and processes such as radiative transfer, surface characteristics, and

the phase change of water must be parameterized in order to complete the calcula-

tions in a reasonable amount of time even on the most powerful supercomputers. We

produce NWP forecasts using the Weather Research and Forecasting (WRF) [24] at

the University of Arizona with customized settings for the Southwest [25]. Exam-

ple wind speed and GHI outputs from the UA-WRF model are shown in Fig. 1.8.

Chapter 5 discusses possible improvements for UA-WRF forecasts.

Figure 1.8: Example wind speed near the surface and GHI outputs from a WRF
model run at the University of Arizona.

There is also active research in forecasts that combine different forecasting tech-

niques to improve forecasts across horizons [26].
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1.3 Summary of Results

Figure 1.9 shows speculative estimates of forecast errors as a function of forecast

horizon created near the start of this dissertation work. This sketch serves as a

hypothesis for the research performed in this dissertation. Specifically, we wish

to understand the practical limits of persistence, network, and satellite forecasting

techniques in the Southwest. We also want to understand what makes a “good”

forecast which requires a thorough understanding of various error metrics and an

understanding of how the forecasts will be used. Figure 1.10 shows the culmination

of this work.

Figure 1.9: Speculative normalized root mean squared errors (NRMSE) for various
types of forecasts. This sketch serves as a hypothesis to be tested in this dissertation.
We wish to understand the practical limitations of various forecasting techniques.

The specific forecasting methods studied in this dissertation rely on a network

of irradiance sensors. A network with sufficient density and time resolution did not

exist in Tucson at the start of this dissertation work, so we set out to design and

deploy inexpensive sensors. The design and deployment of the network is described

in Chapter 2. For the period of April to July 2014, we collected data from about 50
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Figure 1.10: A comparison of irradiance forecast root-mean squared errors (RMSE)
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numerical weather models generated at the UA using the Weather Research and
Forecasting (WRF) model. The intelligent fusion is a theoretical combination of
forecasts at different time horizons for the best forecast at all horizons. The solid
lines (and points) indicate forecasts that will be studied in depth in this dissertation.
Dashed lines are forecasting techniques that will be studied in future work. The
persistence and network forecasts will be discussed in Chapter 3 and the satellite
image points will be discussed in Chapter 4.
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Figure 1.11: Picture of a sensor deployment.

custom sensors and rooftop PV systems to use in subsequent studies. All data was

detrended to clear-sky index using the expectation of the output of each sensor on

a clear day.

With this irradiance network data, the first forecasting methodology we imple-

mented and analyzed relies only on data from the network as described in Chapter 3

and labeled as network in Fig. 1.10. The basic idea behind the network forecast is

depicted in Fig. 1.12 where the output of sensor 19 can predict what the output of

sensor 31 will be in 8 minutes. To generate forecasts, we first collect data from the

sensors and interpolate between them to produce a clear-sky index map as shown in

Fig. 1.13. Then, using a vector representing the cloud motion, we can move this map

to produce a forecast at any point. The errors for this type of forecast were studied

in depth and a sample of those errors is shown in Table 1.1. Forecasts produced in

this way outperform a persistence forecast by 20% on average.

While analyzing this network forecast, we also carefully analyzed various types of

persistence forecasts to understand the network forecast error metrics. Figure 1.14
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Figure 1.14: RMSE vs forecast horizon on May 19, 2014 for network forecasts made
with all the sensors in the network (blue) and with one upwind sensor removed (red),
along with a spatially-averaged persistence forecast (yellow). The dip at 7 min for
the forecast using the full network illustrates that properly placed upstream sensors
do improve forecasts over a simple spatial average.
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29

shows that network forecasts do incorporate data from the sensors to improve errors,

but at some times the errors in the network forecast closely resemble the errors of

persistence forecasts. We found that smoother forecasts, or those with less variance

than he observations, may seem to perform better than forecasts with higher variance

when error metrics are considered in isolation. Using the Taylor diagram shown in

Fig. 1.15, we show that network forecasts transition from matching the observation’s

variance to essentially becoming an area average persistence forecast after about 20

minutes. More details on how to interpret this diagram are described in Chapter 3.

Thus, we claim that network forecasts are an improvement over spatial or time

averaged persistence forecasts even if they may have similar RMSE values.

Figure 1.16: A satellite image captured by a geostationary satellite (left) and the
GHI produced from this image (right).

After studying network forecasts that perform well for forecast horizons under

two hours, we began studying forecasts derived from satellite images to produce

forecasts for horizons out to six hours. A number of algorithms exist that convert

images of the tops of clouds from geostationary satellites to images of irradiance on

the ground [27, 28, 29, 30]. An example of one such conversion is shown in Fig. 1.16.

This conversion from cloud top brightness to the amount of radiation that passes

through clouds is subject to errors. We found that these satellite derived irradiance



30

estimates (pink square on left axis of Fig. 1.10), before any forecasting is involved,

had average errors nearly as large as always assuming the sky were clear. Thus, in

order to produce useful forecasts from satellite derived irradiance images, we first

improved the satellite derived irradiance nowcasts.

We used data from the irradiance sensor network to produce better satellite

derived irradiance nowcasts as described in Chapter 4. Using a data assimilation

method known as optimal interpolation (OI), we combined the sensor data with the

satellite derived irradiance based on the relative errors between them. We also pa-

rameterized the correlations between pixels in the satellite images in various ways.

These correlations are responsible for spreading information from the sensor loca-

tions to other locations throughout the image. An example of improvements using

OI is shown in Fig. 1.17.

We found significant improvements using this method after various complicating

factors such as misalignment in the satellite image relative to the ground sensors

were corrected. The improved nowcast’s RMSE is shown as the pink diamond in

Fig. 1.10 and in Table 1.2 We also found that this method to improve satellite

irradiance nowcasts is applicable to a number of satellite to irradiance algorithms.

Table 1.2: Error statistics for the NREL MIDC sensor on the University of Arizona
campus. Background refers to the initial satellite estimate and the analysis is the
result of OI. UASIBS and SE are two different satellite image to irradiance models.
The analysis was computed with only the MIDC sensor withheld and averaged over
the verification data set, and cloudiness covariance was used; see Chapter 4 for more
details. Both the UASIBS and SE models show improvements and have a similar
analysis RMSE. Units are W/m2.

MBE MAE RMSE

UASIBS Analysis 4.16 27.2 71.1
UASIBS Background 20.7 38.8 98.8
SE Analysis 11.2 36.0 72.7
SE Background -86.1 107 140

To produce forecasts of irradiance based on the OI analysis, one might use a

forecasting method that relies on cloud advection. With a forecasting model in



31

111.4°W 111.2°W 111°W 110.8°W 110.6°W

31.95°N

32.1°N

32.25°N

32.4°N

32.55°N

UASIBS Background

0.20

0.35

0.50

0.65

0.80

0.95

1.10

1.25

1.40

C
le

ar
S

ky
 In

de
x

111.4°W 111.2°W 111°W 110.8°W 110.6°W

31.95°N

32.1°N

32.25°N

32.4°N

32.55°N

SE Background

0.20

0.35

0.50

0.65

0.80

0.95

1.10

1.25

1.40

C
le

ar
S

ky
 In

de
x

111.4°W 111.2°W 111°W 110.8°W 110.6°W

31.95°N

32.1°N

32.25°N

32.4°N

32.55°N

UASIBS Analysis

0.20

0.35

0.50

0.65

0.80

0.95

1.10

1.25

1.40

C
le

ar
S

ky
 In

de
x

111.4°W 111.2°W 111°W 110.8°W 110.6°W

31.95°N

32.1°N

32.25°N

32.4°N

32.55°N

SE Analysis

0.20

0.35

0.50

0.65

0.80

0.95

1.10

1.25

1.40

C
le

ar
S

ky
 In

de
x

Figure 1.17: Example initial satellite estimate (known as the background) (top row)
and analysis (bottom row) clear-sky index images using a physical (UASIBS, left
column) and a semi-empirical (SE, right column) satellite image to ground irradiance
models. Note that in this case, UASIBS failed to produce many clouds. OI adds
clouds to the analysis and also makes the darker, clear areas even more clear. In
this case, the SE model overproduces clouds. OI reduces the cloud amount while
keeping clouds in the correct locations.
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place, optimal interpolation can be extended to the Kalman filter which constantly

incorporates new data into a forecast while also retaining information about past

data. It is common in numerical weather prediction to propagate and Kalman filter

an ensemble of states. An ensemble in this case also allows for each forecast to have

a different cloud motion field which may improve the final forecasts.

Satellite forecasts have been shown to perform well for forecast horizons up to

6 hours. For longer forecast horizons, numerical weather models are likely needed.

We currently run the Weather Research and Forecasting (WRF) model configured

for the Southwestern US. Improvements in the WRF model may come from assimi-

lating satellite data, assimilation of data from the sensor network, or studying WRF

initialization or physics ensembles.

Finally, once high-quality forecasts are available for all forecast horizons, they

can be intelligently fused to produce a single forecast that incorporates the best

properties of each forecast methodology. Utilities and other stakeholders often need

a single forecast for horizons from five minutes to one week to make decisions.
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CHAPTER 2

IRRADIANCE MONITORING NETWORK

Using historical data from 80 residential rooftop PV systems, Lonij et al. produced

intra-hour solar power forecasts that showed skill over persistence forecasts [31].

The local electric utility, Tucson Electric Power (TEP), was interested in receiving

these short-term forecasts in real-time. To generate real-time forecasts, data from

sensors need to be gathered in real-time. To accomplish this goal, we designed

custom irradiance sensors that are deployed remotely and report data in real-time

via cell modem as described in Section 2.1. We also partnered with a local rooftop

PV installer to gather power data from PV systems to act as proxies for irradiance,

described in Section 2.2. This irradiance monitoring network, that was deployed in

Tucson, AZ, is the basis for much of the forecasting work in this dissertation.

2.1 Design of Custom Sensors

This section describes the custom irradiance sensors that were developed to support

the forecasting work in this dissertation. These sensors were custom designed based

upon the lack of available, low-cost alternatives. The sensors as described cost

around $500 in raw materials when they were built in early 2014. This low cost

allowed us to build and deploy many sensors to collect more data. The sensors were

also designed to communicate data back in real-time so that the network could be

used to produce operational forecasts for TEP.

2.1.1 Photodiode Sensor

A number of photodiodes were studied to determine a suitable, inexpensive replace-

ment for a pyranometer to measure irradiance. We tested a clear domed photodiode

which we sanded to better diffuse light, a thin sheet of Teflon glued on a photodiode
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to diffuse light, and a an unmodified, flat photodiode, among others. We found that

the flat photodiode (Osram BPW34) provided a reasonable signal level and cosine

response, shown in Fig. 2.1. This photodiode is sufficient to detect deviations in

the irradiance from clear-sky conditions, as a pyranometer would, which is the main

way the network is used.
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Figure 2.1: A comparison of the signal from a photodiode and a calibrated pyra-
nometer. The photodiode does not exhibit a perfect cosine response with a wider
peak that decays too quickly. However, the photodiode performs well for the main
purpose of detecting changes in irradiance. Note that the noise in the measurement
of the photodiode is about double the noise in the pyranometer measurement.

2.1.2 Hardware

A custom printed circuit board was designed for the components that store and send

sensor data to a central server every minute. The circuit diagram for this board is

shown in Fig. 2.2. Design files for the circuit board can be found online [32].
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The custom sensors are developed around the Olimex iMX223-OLinuXino-

MICRO board. The OLinuXino was chosen because it consumes little power (< 1

W) and it runs a full Linux operating system which allows for development in any

language that can be installed on Linux along with the usual suite of Linux tools

(SSH, Bash, logs). It is also relatively inexpensive to purchase complete boards, and

the plans are open-source if one desires to build the board themselves.

Data are communicated via GSM using a MULTITECH MTSMC-H5-U Socket-

Modem. This modem accepts a standard SIM card that is registered with a cellular

data provider. The modem is connected to the OLinuXino via USB. WvDial and

PPPD are used to setup the connection to the modem and allow internet access.

Power to the system is provided by a 10 W solar panel and a 6 Ah lead-acid

battery. A standard solar charge controller is used to limit the current from the

panel to the battery. The nominal 12 V from the battery is routed to the circuit

board with the OLinuXino and modem and converted to 5 VDC with a circuit based

on the LM2676 step-down regulator.

The circuit board is designed to accept input from either a calibrated pyra-

nometer (Apogee SP-212) or an inexpensive silicon photodiode (Osram BPW34) as

discussed in Section 2.1.1. A trans-impedance amplifier (MCP602) with appropriate

gain is used to convert the current from the photodiode into a measurable voltage.

The voltage from the sensor (or sensor + trans-impedance amplifier) is converted

to a digital signal with the MCP3201 12-bit analog-to-digital converter (ADC). This

digital signal is then read by the OLinuXino at regular intervals from the GPIO pins.

An additional 4 channel 12-bit ADC (MCP3204) is used to convert other values such

as enclosure temperature (measured by an LM61) and battery voltage to be read on

the OLinuXino GPIO pins for monitoring. A 4.096 V voltage reference (MCP1541)

is used by both ADCs.

A fully assembled printed circuit board is shown in Fig. 2.3. The circuit board

is housed in a waterproof box with an air snorkel and cable nipples to maintain

water resistance. A metal extrusion serves as a mast to mount the photodiode or

pyranometer. The solar panel and this mast are attached to the top of the waterproof
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Figure 2.3: A fully assembled printed circuit board for a custom sensor. The red
board is the OLinuXino and the green board on the left is the cell modem with a
flexible antenna. Through hole components were chosen for easy soldering.

box which can then be placed outside. A photo of the interior of the box with the

circuit board and lead acid battery is shown in Fig. 2.4. An entire completed sensor

undergoing testing is shown in Fig. 2.5.

2.1.3 Software

Here we document the approach we took to collect and send data from each sensor.

We compiled a Linux kernel with options to take advantage of the GPIO and SPI

capabilities of the OLinuXino board. With this kernel, we chose Arch Linux as the

operating system and copied this base system onto an SD card with a unique system

identifier for each sensor. Upon first boot, the system checks with a centralized server

to register itself.

Most scripts were written in Python which enabled fast prototyping. The main

data collection script is started on boot and monitored via Supervisor to ensure it

is restarted if it crashes for some reason. This script pulls data from the connected
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Figure 2.4: A photo of the interior of the sensor enclosure. The air vent and water-
proof cable nipples are visible on the right side of the box. The 6Ah 12V motorcycle
battery is shown near the bottom.

ADCs at a configurable rate, time-stamps it, and stores it in files. These data are

then uploaded to our central servers every minute where it can be imported into a

database.

A separate script monitors the wireless connection to ensure the device maintains

an internet connection. In addition to regularly sending the status of the battery

and the board temperature for each sensor, each sensor also monitors a webpage that

can instruct a sensor to connect to a central server via SSH and provide a reverse

tunnel. This reverses tunnel allows us to remotely login to each sensor without

knowledge of the sensor’s IP address and avoiding firewall issues.

2.1.4 Possible Improvements

A number of improvements can be made to the sensor design presented in this

section. First, most sensor failures were a result of the enclosure and mounting

choice. Since the sensors were simply placed on the ground, they could be knocked



39

Figure 2.5: A photo of a complete custom irradiance sensor as it undergoes testing
outside. The photodiode sensor can be seen mounted in the upper right of the image
connected via a coax cable to the circuitry inside the box.
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over by animals, the cable to the sensor could be destroyed by rodents, or they could

be flooded during the monsoon season. To mitigate issues like this, we recommend

that sensors be mounted on a stake. While this would complicate deployment, it

would likely prevent sensor failure due to orientation issues (where the solar panel

is not in the sun to power the device) and some water damage.

In addition to a new enclosure and mounting design, a number of improvements

in electronics have been made since the sensors were first developed. With the rise of

the Internet of Things, there now exist numerous low-power computing devices that

could replace the OLinuXino MICRO in our design. These new low-power devices

now often come with an integrated lithium battery charge controller. Using lithium

batteries instead of lead-acid will enable smaller, lighter sensors.

Finally, improvements can be made to the connection to a wireless network. A

number of M2M devices have been released that enable wireless connectivity in low-

power, integrated devices. For example, MULTITECH now manufactures a device

that integrates a processor running Linux with the wireless network hardware. These

devices may also include GPS receivers enabling precise location of sensor devices

and more accurate time keeping.

2.2 Rooftop PV Systems as Sensors

One major challenge with using rooftop PV systems as sensors is that the data are

often difficult to collect. One solution we employed is to use the built-in capabili-

ties of some inverters to upload data to a server via FTP. With the help of a local

PV system installer, Technicians for Sustainability, we are collecting 5 minute aver-

aged power data from over 70 systems in the Tucson area in near real-time. Since

many inverters connect to a homeowner’s network, we also explored using inexpen-

sive Linux devices (Raspberry Pi) to communicate with inverters on the network

and upload the data to a central server, but found them unreliable for constant,

unmonitored operation.

The electric utilities also have access to inverter data, although it may be delayed



41

by days or weeks and aggregated to daily or longer values. With an increase in the

installation of smart inverters, utilities are increasingly able to access inverter data

in real-time. With an appropriate data transfer system in place, one can acquire

the rooftop data from the utility, generate a forecast, and send the forecast back to

the utility.

Since irradiance is the primary driver of PV output power, power data from

rooftop PV systems can act as a proxy for irradiance. When analyzing both power

and irradiance data, a units conversion is necessary. In our work, we choose to

convert all irradiance proxy data to clear-sky index

kn(t) =
yn(t)

yclrn (t)
(2.1)

where yn(t) is the measured time-series and yclrn (t) the expected time-series for sensor

n if the sky were clear. The clear-sky expectation, yclrn (t), for each sensor was

determined by analyzing the time-series of the sensor for a week preceding t and

stitching together the values at clear times. This approach accounts for differences

in systems such as orientation, peak power, and shading. Furthermore, use of the

clear-sky index detrends the diurnal cycle in the data. The clear-sky expectation

should account for temperature and aerosol effects on a given sensor to produce an

unbiased clear-sky index.

2.3 Network Deployment

The locations of the sensors located in the Tucson, AZ, area are shown in Fig. 2.6.

The blue circles denote the locations of rooftop PV systems that we receive data

from as described in Section 2.2. The majority of these sensors are located in central

and north Tucson where the majority of homes are located. We have no control over

the placement of these sensors, but are grateful to Technicians for Sustainability for

setting up the data transfer and to the homeowners that allow us to use the data.

The time span that data are available depends on each individual system due to

factors such as when it was installed and if the data transfer stopped for some
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Figure 2.6: Map of Tucson, AZ, indicating the locations of custom and rooftop PV
sensors. The NREL MIDC star refers to the calibrated and maintained irradiance
sensor located at the University of Arizona.

reason.

The red squares denote the locations of the custom sensors described in Sec-

tion 2.1. These sensors were placed south of Tucson where there is a lack of rooftop

PV sensors. As described in Appendix A, the primary goal of this configuration

was to study forecasts for a number of PV power plants located around 32.1◦ N

and 110.8◦ W. The sensors are arranged as they are based on the analysis done in

[31], the fact that the primary cloud direction in non-monsoon season is from the

west-southwest, and the limited number of sensors available. The custom sensors

shown in Fig. 2.6 were deployed in late March 2014. Data from these sensors is

available from April to July 2014, when the sensors started failing due to monsoon

rains and other causes mentioned in Section 2.1.4. A handful of sensors continued

to operate for over two years before they failed from unknown causes. While these
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sensors provided useful information, the sensors, in their current form, are too time

consuming to maintain beyond a proof of concept.

High-quality 10 second irradiance data has been continuously gathered from the

National Renewable Energy Laboratory (NREL) MIDC OASIS sensor hosted at

the University of Arizona. This suite of sensors (including GHI and DNI measure-

ments) is part of the NREL Solar Resource & Meteorological Assessment Project

(SOLRMAP) and is regularly maintained [33]. Data from this suite of sensors is

publicly available at http://www.nrel.gov/midc/ua_oasis. Data from select sen-

sors in the network supporting [34, 35] is available online [36, 37].

http://www.nrel.gov/midc/ua_oasis
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CHAPTER 3

IRRADIANCE NETWORK FORECASTS

With data from the irradiance monitoring network described in Chapter 2, we stud-

ied a technique to produce forecasts for one minute to one hour in advance based

on the work of [31]. We call this forecast technique a network forecast. Preliminary

work on this is described in Appendix A and an in depth study of these types of

forecasts is described in Appendix B.

The basic idea behind the network forecasts is that if a sensor records the irradi-

ance at some point that sensor should have some predictive power of the irradiance

for a sensor or PV power plant downstream. An illustration of this type of predic-

tion is shown in Fig. 3.1 where the output of sensor 19 predicts the output of sensor

31 with an eight minute lead time.

11:20 11:25 11:30 11:35 11:40 11:45 11:50 11:55 12:00 12:05
Local Time

500

600

700

800

900

1000

1100

1200

1300

1400

G
H

I (
W

/m
2
)

Sensor 19 leading Sensor 31
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Figure 3.1: An example of the output of sensor 19 (red) predicting what the output
of the upstream sensor 31 (blue) in roughly 8 minutes.
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3.1 Irradiance Forecast Error Metrics

While studying and evaluating the forecasts described in Appendix B, we learned

how important it is to understand forecast error metrics and their limitations. Here

we present an example of possibly misleading error metrics as a warning to those

evaluating forecasts to exercise care.

We will evaluate each metric on forecasts of clear-sky index to remove the time of

day weighting that is implicit when computing errors for GHI. First, we will define

the error metrics to be discussed. The most common metrics are mean bias error

(MBE), mean absolute error (MAE), and root mean squared error (RMSE) that are

defined as

MBE =
1

N

N∑

i=1

(fi − oi), (3.1)

MAE =
1

N

N∑

i=1

|fi − oi|, (3.2)

RMSE =

√√√√ 1

N

N∑

i=1

(fi − oi)2, (3.3)

where fi is the forecast at time i and oi is the observation of a sensor. MBE indicates

the average bias of a forecast, and if it is not nearly zero, bias correction techniques

may be applied to the forecast to reduce it further. MAE indicates the average

magnitude of errors as does RMSE, but RMSE weights large errors more. Other

metrics include Pearson’s correlation coefficient, the standard deviation of the errors,

and the standard deviation of the forecasts as compared to the standard deviation

of the observations. More metrics and examples of their use can be found in [38, 39].

We will also look at the ramp metrics defined in [40], the ramp detection index
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(RDI), false ramp index (FRI), and ramp magnitude forecast index (RMI):

RDI =
Nhit

Nhit +Nmiss

(3.4)

FRI =
NFRP

NFRP +NTNR

(3.5)

RMI = 1−

√√√√√
∑Nr

i=1

(
I(ti + FH )− Î(ti + FH )

)2

∑Nr

i=1 (I(ti + FH )− I(ti))
2

, (3.6)

where Nhit is the number of correctly detected ramps, Nmiss is the number of ramp

events not detected, NFRP is the number of ramps that were predicted but did not

occur, NTNR is the number of times no ramp was predicted and no ramp occured,

Nr is the number of ramp events, I is the observed irradiance, Î is the predicted

irradiance, and FH is the forecast horizon.

3.1.1 Example Forecasts

Here we present forecasts for two days in Tucson, AZ, in 2014. The first day shown

in Fig. 3.2 has thick but broken clouds. The second day shown in Fig. 3.3 has more

scattered clouds. In each case, observations are averaged to five minutes, Forecast A

is a five minute persistence forecast, Forecast B is a smoothing applied to the data,

and Forecast C is a fraction of the clear-sky profile for that day.

Which forecast is best depends on how one plans to use the forecast. If one is

concerned with quanities like average hourly production from a PV plant, perhaps

the smoother Forecast B is best. If one is concerned with variability to, for example,

schedule generation to back up solar power, Forecast A might be preferable. In most

cases, Forecast A is considered the forecast that better captures the nature of the

observations.

Table 3.1 shows the values of some standard error metrics for forecasts on each

day. For Day 1, Forecast A is clearly the best forecast with the lowest MAE and

RMSE, and the highest correlation to the observations. It also performs better at

detecting ramp events. On Day 2, MAE and RMSE would suggest that Forecast B
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Figure 3.2: Five minute ahead forecasts for a day with thick broken clouds. Forecast
A is a persistence forecast that captures the variability of the observations, but offset
by 5 minutes. Forecast B is a somewhat smoothed forecast, and Forecast C is simply
a fraction of the clear-sky profile.
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Figure 3.3: Five minute ahead forecasts for a day with scattered clouds. Forecast A
is a persistence forecast that captures the variability of the observations, but offset
by 5 minutes. Forecast B is a somewhat smoothed forecast, and Forecast C is simply
a fraction of the clear-sky profile.
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Table 3.1: Error metrics (in units of clear-sky index) for the forecasts on Day 1
shown in Fig. 3.2 and Day 2 shown in Fig. 3.3. Refer to the text of Section 3.1 for
a description of each metric.

(a) Day 1

A B C

MBE 0.00 0.00 0.00
MAE 0.09 0.16 0.22
RMSE 0.14 0.20 0.24
Correlation 0.85 0.60 –
Std. Dev. 0.24 0.13 0.00
RDI 0.80 0.51 0.57
FRI 0.25 0.59 0.88
RMI 0.42 0.29 0.22

(b) Day 2

A B C

MBE 0.00 0.02 0.01
MAE 0.10 0.09 0.12
RMSE 0.16 0.13 0.16
Correlation 0.49 0.53 –
Std. Dev. 0.15 0.07 0.00
RDI 0.62 0.55 0.50
FRI 0.28 0.23 0.37
RMI 0.21 0.26 0.19

is the best. Furthermore, Forecast C has the same RMSE as Forecast A. The ramp

detection metrics for each forecast are comparable.

If given Forecast B or C on Day 2, a user might consider it to be a forecast of

a clear day, although with possibly more aerosols in the air reducing the irradiance

slightly from the expected clear-sky profile. Forecast A is the only forecast to capture

the variability that is also seen in the observations and is often most concerning to

utilities. Thus, the metrics are somewhat misleading on Day 2.

3.1.2 Taylor Diagrams

The Taylor diagram is an excellent tool to summarize a number of metrics for many

forecasts in a single figure [41]. Figures 3.4 and 3.5 are the Taylor diagrams for the

forecasts on Day 1 and Day 2, respectively. For any forecast, the radius indicates

the standard deviation of the forecast and the angle is the correlation of the forecast

with the observations. The gray contours indicate lines of constant centered RMSE,

or RMSE once any bias has been removed from the forecast (the forecasts in this case

study are designed to have insignificant bias). A perfect forecast would lie on the

x-axis (correlation = 1) and have the same standard deviation as the observations.

Figure 3.4 confirms our assessment that Forecast A is best on Day 1 since it has
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Figure 3.4: A Taylor diagram for the forecasts on Day 1 shown in Fig. 3.2. The light
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the observations.
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the lowest CRMSE, standard deviation equal to that of the observations, and the

highest correlation to the observations. From Fig. 3.5, Forecast A is better than

Forecast C since they have a similar CRMSE but Forecast A actually matches the

variability observed in the observations. On the other hand, Forecast B has a lower

CRMSE, but does not capture this variability. In this case, it depends on the use

case to say whether Forecast A or Forecast B is best.

3.1.3 Suggestions

We have demonstrated why an understanding of the error metrics and careful ap-

plication is important when evaluating forecasts. Evaluating forecasts on only a

single or a couple of days may lead to conflicting results, so a longer time period

with varied weather should be used when considering the overall performance of a

forecast. Furthermore, a number of metrics should be calculated and compared to

understand the differences in forecasts, and the Taylor diagram provides a good sum-

mary of some metrics. Finally, an examination of the actual forecast as compared

to observations is useful to gain an intuitive sense of the forecast.

When comparing errors across studies, it is important to also consider the region

that the forecast was made for. For example, the desert Southwest experiences

fewer overcast days than locations in the Southeast. The Southwest also has a high

number of clear days. A forecast with low errors in the Southeast may be better at

forecasting overcast days but have less skill on mostly clear days.

3.2 Future Work

One limitation to the network forecast methodology that we studied is that only

a single velocity vector was used to transport the predicted clear-sky index map.

Future work could explore using a number of vectors based on clouds at different

heights and an advection scheme. A way to determine the heights of the cloud layers

is also needed. One might also explore which weather domains (e.g. stationary high

pressure systems or monsoon convection) this type of forecast performs best in order
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to switch between forecast methodolgies for different domains. Future work that

explores using cloud maps generated from satellite images as opposed to the clear-

sky index maps generated from network data in Appendix B to produce forecasts

will be described in Chapter 5.
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CHAPTER 4

OPTIMAL INTERPOLATION TO IMPROVE SATELLITE NOWCASTS WITH

DATA

Optimal interpolation (OI) is a Bayesian technique that combines data from multiple

sources based on their relative errors. We use OI to combine the irradiance estimates

derived from satellite images (referred to as the background) and data from the

sensor network described in Chapter 2 with the goal of producing better satellite

irradiance nowcasts (known as the analysis). These analyses will be used as the

basis for forecasts in future work. This technique is described in Appendix C and

Appendix D. We show that by using this technique we can nearly eliminate the

bias present in these satellite derived irradiance estimates and reduce the root mean

squared error by over 50% for one satellite to irradiance model.

This chapter supplements the descriptions of OI presented in Appendix C and

Appendix D. We describe the satellite image to ground irradiance algorithms we used

for OI in more depth, show how the parameters for OI were chosen, and describe

future work.

4.1 Satellite to Irradiance Algorithms for OI

In this section we will describe the satellite image to ground irradiance algorithms

used in Appendix D and discuss other algorithms. One factor that affects how well

OI performs for a given background image generated from some satellite to irradiance

algorithm is the spatial resolution. OI, as presented in Appendix D, focuses on a

relatively small, city scale area. This means that the background image must have

sufficient density in this area to extract the maximum amount of information from

the deployed sensors when correcting the image. Furthermore, since our goal is to

produce nowcasts, the algorithm should only rely on data present at the current
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time and take a reasonable amount of time to compute.

4.1.1 UASIBS Model

The University of Arizona Solar Irradiance Based on Satellite (UASIBS) model was

developed at the University of Arizona by Chang Ki Kim in 2015 [27]. This model

relies on the infrared images of the GOES-W satellite to find completely overcast

areas based on a comparison of the brightness temperature difference (difference

between 10.7 and 3.9 µm images) to a reference calculated over the past few weeks.

If the infrared channels do not find an area to be overcast, the visible image is

compared to a threshold image to determine if any of the 16 pixels in the 4km ×
4km box have a cloud. Once pixels are classified as cloudy or clear, a look-up table

is employed to find the atmospheric transmittance and GHI on the ground for each

pixel. A number of look-up tables are generated using the Goddard Space Flight

Center Radiative Transfer Model: one for clear sky accounting for aerosols, one for

high level clouds, one for mid level clouds, one for low clouds, and one for cumulus

clouds.

The look-up table approach to calculate transmittance is limited. First, a number

of climatological averages, specific to Tucson, are used in the calculations of the look-

up tables including AOD and ozone. Near real-time analysis and forecasts of AOD

and ozone may improve estimates. The Monitoring Atmospheric Composition and

Climate (MACC) project [42] has such analysis and forecasts of AOD and ozone

available, and a ground truth measurement of AOD is available from the Tucson

AERONET site [43]. Another limitation of the look-up table approach is that

only ten values of the solar zenith angle are used which introduces artificial steps

noticeable in the output GHI.

The cloud detection methodology may also classify a cloud as the wrong type

leading to the use of the wrong look-up table. This is illustrated in Fig. 4 of Ap-

pendix D reproduced in Fig. 4.1. There is a distinct lack of images with clear-sky

index between 0.6 and 0.8 for UASIBS that requires further investigation to de-

termine if it is a problem with the look-up tables themselves or using the wrong
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Figure 4.1: A scatterplot of the predicted vs measured clear-sky index for UASIBS
before OI (blue) and after (orange). The UASIBS algorithm does not produce clear-
sky indices between 0.6 and 0.8. OI helps correct this somewhat. (Reproduced from
[35])

look-up table. With newer, fast radiative transfer codes, perhaps the look-up table

approach can be replaced with a direct call to a radiative transfer code to avoid

many of these limitations.

4.1.2 Semi-Empirical Model

The semi-empirical model used and described in Appendix D is based on what is

commonly know as the SUNY model developed by Perez et al. [28]. This model

was chosen because it is well known within the community and provides a good

benchmark. The SUNY model was developed using ground truth sensors spread

throughout the US with few in arid climates and no sensor in Arizona. Notably,
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Figure 4.2: A scatterplot of the predicted vs measured clear-sky index for semi-
empirical model before OI (blue) and after (orange). The semi-empirical model
tends to overpredict clouds as shown in the clear-sky index scatterplot on the left.
The splitting for the background GHI in the right image is likely due to a time of
day effect. OI removes this splitting (Reproduced from [35])

Perez et al. recognized the deficiency in arid areas with high ground albedos and

proposed a method to correct this issue [44]. The high ground albedo in Tucson

combined with the empirical coefficients developed for the entire US likely lead to

the overprediction of cloudy skies in Fig. 4.2.

A new, more strict test of OI in southern Arizona would be to recalculate the

empirical coefficients used in the semi-empirical model for the area. This would likely

improve the background errors of the semi-empirical model and may also improve

the final errors after performing OI.

4.1.3 Other Models

There are numerous algorithms to convert satellite measured radiances to ground

irradiance. A good overview of semi-empirical and physical methods can be found

in [22, 23].

One publicly available dataset is the GOES Surface and Insolation Products
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(GSIP) [45]. GSIP provides hourly irradiance estimates at a resolution of 1/8 degree.

OI is unlikely to perform well with this low spatial resolution (~14km) where clouds

are not well resolved and many sensors are contained in a single grid cell.

The National Renewable Energy Laboratory (NREL) is developing a new al-

gorithm called the Physical Solar Model (PSM) that has been used to update the

National Solar Radiation Database (NSRDB) [46]. NSRDB provides 30 minute 4km

× 4km data covering the US (and some other countries) from 1998 to 2015. One

could explore how OI performs for an NSRDB background, but the low spatial reso-

lution may prove limiting. Furthermore, the PSM algorithm is still in development.

4.2 Correlation Parameterization

Section 4 of Appendix D describes various correlation parameterizations we stud-

ied. The semi-empirical model is essentially a polynomial relationship between the

cloudiness as measured by the satellite and the clearness observed on the ground.

Therefore, one might expect that OI with the cloudiness correlation parameteriza-

tion essentially modifies this cloudiness to clearness function. This is in fact the case

as demonstrated in Figs. 4.3 and 4.4. These figures show the analysis produced by

OI for the three correlation methods along with a plot of the adjusted visible albedo

from the satellite (cloudiness) versus the clear-sky index estimate of the background

and analysis (clearness). Notice that cloudiness correlation tends to change the

form of this cloudiness to clearness function for the analysis, whereas the spatial

and empirical correlation parameterizations tend to broaden the curve instead.

An example of the same cloudiness to clearness graphs but for the UASIBS

model is shown in Fig. 4.5. The UASIBS algorithm is more complex and not a

simple function of the adjusted visible albedo, but each correlation parameterization

changes this cloudiness to clearness mapping in a different way. Also note the

undesirable “bulls-eye” like pattern in the spatial correlation analysis image1 that

does not correspond with reality.

1This may not be visible in the printed form of this dissertation.
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Figure 4.3: An example of the cloudiness (adjusted visible albedo) to clearness
(clear-sky index) functions for the three correlation parameterizations for 2014-04-
19 at 11:30 local time. Cloudiness correlation tends to reshape the analysis curve
whereas the other parameterizations broaden it.
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Figure 4.4: An example of the cloudiness (adjusted visible albedo) to clearness
(clear-sky index) functions for the three correlation parameterizations for 2014-06-
15 at 13:00 local time. Cloudiness correlation tends to reshape the analysis curve
whereas the other parameterizations broaden it.
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Figure 4.5: An example of the cloudiness (adjusted visible albedo) to clearness
(clear-sky index) functions for the three correlation parameterizations for 2014-06-
15 at 13:00 local time with the UASIBS model. Here the clear-sky index is not a
relatively simple function of the adjusted visible albedo. However, the correlation
parameterizations still adjust the cloudiness to clearness mapping in different ways.
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4.3 Parameter Estimation

Section 6 of Appendix D discusses the tuning of OI for a specific location including

the estimation of the parameters k, l, d by minimizing the mean-squared error (MSE)

of the analysis over sensors withheld from OI. A minimization via a grid search over

the parameters was performed and the resulting MSE for each set of parameters is

shown in Fig. 4.6.

This figure clearly shows distinct minima in parameter space for the UASIBS

satellite to irradiance model which indicates that OI is sensitive to the choice of

parameters. On the other hand, the lack of distinct minima in parameter space

for the semi-empirical model indicates that a wide range of parameters would give

similar results after performing OI. If in the future the semi-empirical model is chosen

as the background model for an OI based routine, a more thorough investigation

into why OI is insensitive to these parameters is warranted.
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Figure 4.6: Optimization surfaces for the parameters k, l, d of the optimal inter-
polation routine. The columns represent different choices of k, the rows distinguish
between cloudiness and spatial correlation, the y-axis is l and the x-axis is d1/2.
The top figure shows surfaces for the UASIBS model and the bottom is for the
semi-empirical model. Note, that for all choices of k and the correlation parame-
terization, the surfaces for the UASIBS model have a clear minimum. The surfaces
for the semi-empirical model have less distinct minima (even after rescaling for the
spatial correlation set) indicating that optimal interpolation is not as sensitive to
parameter choice for this model.
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4.4 Image Position Errors

Section 5 of Appendix D describes how errors in the satellite image position relative

to the ground sensors are corrected by minimizing the MSE of the OI analysis. These

location errors primarily effect OI with the cloudiness correlation parameterization.

This correction is not perfect and does not always work as intended. An example

of a failure of this method for the semi-empirical model is shown in Fig. 4.7.

The cloudiness to clearness plots discussed in Section 4.2 may provide a method

to detect when these location errors occur. The large positive slope in the cloudiness

to clearness plot of Fig. 4.7 essentially indicates that a higher reflectivity as seen

by the satellite indicates fewer clouds. This is highly unlikely and is an indication

that the MSE location correction was insufficient. A better method to correct for

position errors may take into account both the slope of the adjusted visible albedo

to clear-sky index mapping and the MSE of the OI analysis.
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Figure 4.7: An example on 2014-06-11 at 15:00 where the geolocation correction
for the cloudiness correlation parameterization and the semi-empirical model fails.
The large, positive slope in the cloudiness to clearness graph is indicative of this
failure since it does not make physical sense.
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4.5 Future Work

Much can be done to extend the work in Appendix D. The first likely extension is to

use these nowcasts of irradiance to produce a forecast as in Appendix B where the

OI analysis replaces the interpolated map and is advected by a cloud wind. This

can then be extended further with a better advection scheme and a more complex

wind field.

One also could explore the valid range of OI, e.g. can information from sensors

in Tucson be used to correct the background image over Phoenix 100 miles away?

Perhaps other parameterizations, such as a combination of cloudiness and spatial

correlation, will be necessary for OI to perform well in this situation.

Another topic one could explore is distinguishing between cloud layers when

performing OI. Say for example that sensor 1 is covered by a low cloud while sensor

2 is covered by a high cloud. It might be helpful to separate these layers so that

sensor 1 provides information to correct the low clouds while sensor 2 provides

information about the high clouds. In addition to possibly improving the OI result,

knowledge of the cloud layers will also help with forecasting since each layer can be

advected independently.

A natural extension of OI with a forecast is the Kalman filter. The Kalman filter

would essentially perform OI, move the image according to a cloud advection scheme,

and repeat with new observations using the shifted image as the background. Since

the satellite takes a new image at least every 30 minutes, there are two sources of

data that the update step should incorporate: the sensor data available every 5

minutes and the new satellite image every 30 minutes. A forecasting system using

such a Kalman filter is described in Chapter 5.
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CHAPTER 5

FUTURE WORK

5.1 Satellite Image Forecasts

Chapter 4 and Appendix D present a way in which a nowcast of irradiance can

be improved using data assimilation techniques. Naturally, we want to extend this

nowcast into a forecast using the technique of cloud motion vectors that produced

forecasts in Chapter 3 and Appendix B. More complicated dynamics other than

advection such as cloud formation and dissipation may be incorporated. Eventually,

a full numerical weather model may be required to capture the dynamics of the

system with the desired accuracy.

With a forecast model, it is natural to extend optimal interpolation to the well-

known Kalman filter where a forecast of the state is produced and constantly up-

dated with new information. This has the added benefit of retaining information

from all previous steps. Errors will be present in an estimation of the cloud velocity

field, thus we will use an ensemble Kalman filter with an ensemble of velocity fields.

An additional challenge will be integrating two types of observations into the state

of the system: new observations from ground sensors and new satellite images.

In addition to introducing the forecast model and Kalman filter, we will also ex-

plore extending the area of analysis and the number of observations used. Figure 5.1

shows the locations of roughly 300 sensors that may provide useful information to

this data assimilation problem. Some sensors such as the SURFRAD and NREL

MIDC sites are regularly maintained, calibrated, and report high resolution data.

Other sites such as those in the RAWS network provide hourly irradiance values

and may lack routine maintenance.

With the launch of the GOES-16 geostationary satellite, a number of groups are

developing products and algorithms that make use of the new Advanced Baseline
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Figure 5.1: Map of all currently available irradiance sensors near Arizona. These
sensors come from a number of networks with varying quality and time resolutions.

Imager (ABI) and will provide better background state estimates. The new ABI will

image the continental US every five minutes with 16 spectral bands and resolutions

as high as 0.5 km for the 0.64 µm visible band. Pictures of a comparison of the

new GOES-16 and the current GOES-13 visible images in Fig. 5.2 and of a detailed

image over California in Fig. 5.3 show the impressive capabilities of the instrument.

A forecast regenerated every 5 minutes for 5 minutes to 6 hours in advance cov-

ering a 300× 300 km area over the state of Arizona with 0.5 km resolution satellite

estimates and 300 sensors from a 50 member (or larger) ensemble is a computation-

ally daunting task. Initial research into the local ensemble transform Kalman filter

to reduce the computational demands is promising [47]. Still, producing these fore-

casts operationally will likely require use of a high performance computing cluster

and specialized compute hardware such as GPUs or coprocessors.
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Figure 5.2: A comparison of visible images created from the visible channels of the
new GOES-16 satellite and the previous generation GOES-13. GOES-13 has only a
single visible channel while GOES-16 has three. Image courtesy of NOAA.
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Figure 5.3: A visible image of the western US from the new GOES-16 satellite.
The improved resolution and spectral bands will improve satellite derived irradiance
estimates compared to the current generation of satellite. Image courtesy of NOAA.
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5.2 Cloud Data Assimilation in WRF

Forecasts produced by the Weather Research and Forecasting (WRF) numerical

weather model at the University of Arizona tend to lack clouds. Given the large area

coverage that satellite images provide, it is natural to consider assimilating clouds

from satellite images into the WRF model. This is a nontrivial task because the

model does not produce clouds directly and the errors in cloud properties derived

from satellite images can be difficult to estimate. Previous work has had some

success by comparing the WRF cloud fields and satellite imagery to modify the

water vapor variable in WRF [48]. This is a good starting point for future work,

but ideally other properties of the cloud such as the ice and water content, depth,

etc. would be accounted for.

5.3 Ensemble WRF Forecasting

An ensemble of WRF forecasts, similar to the ensemble of satellite forecasts dis-

cussed in Section 5.1, may produce better forecasts by spanning more of the solution

space. This is regularly done at operational forecasting centers. Currently, UA-WRF

is run about six times a day with different initial conditions based on the 0Z, 6Z, and

12Z GFS and NAM forecasts. This produces a multi-physics, time-lagged ensemble.

Additional ensemble members can be produced by varying the various parameteriza-

tions in the model such as the microphysics and planetary boundary layer schemes.

This will require study of model performance differences with different schemes to

ensure ensemble members have a reasonable spread to avoid wasting computation

on members that always produce the same forecast.

5.4 Intelligent Forecast Fusion

As mentioned in Chapter 1, one eventual goal is to combine different types of fore-

casts taking into account their relative accuracies at different time horizons into one

unified forecast. This unified forecast would predict future values from one minute in



71

the future out to seven days combining persistence, network, satellite, and numerical

weather forecasts.

One technique to produce this fused forecast is to compute a weighted sum of

all the forecasts where the weights are dependent on the forecast horizon. Then the

challenge becomes choosing the weights. Ideally, these weights would be based on

the errors in the forecasts at different time horizons. The errors can be calculated

using a year of past data and forecasts, but the errors will vary depending on the

weather and season. One way to account for this may be to establish categories such

as clear days, days with high thin clouds, etc. and compute errors for each category.

Then, one determines the category for the day and applies the weights based on the

category. Another option may be to use machine learning techniques to determine

the weights between forecasts.
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CHAPTER 6

OPERATIONAL FORECASTING FOR UTILITIES

We produce operational forecasts for each utility scale solar power plant and an

estimate of the distributed generation for Arizona Public Service (APS), Public

Service Company of New Mexico (PNM), and Tucson Electric Power (TEP). A

rough map of the balancing areas that each utility is responsible for and the locations

of their power plants is shown in Fig. 6.1. At the time of this writing, utilities are

primarily concerned with day ahead and hour ahead solar power forecasts to help

schedule or trade power. The production of operational solar power forecasts for

electric utilities informs how we judge forecast quality and the types of forecasts we

study. Furthermore, providing these operational forecasts to the utilities ensures

that our research is funded and that the research products are used.

TEP

APS
PNM

Figure 6.1: A map showing the utility scale renewable power plants and the balanc-
ing areas of our utility partners (APS, TEP, and PNM). We forecast for each of the
solar power plants shown as a sun, and for each wind plant represented as a wind
turbine although not discussed in this dissertation.

In this chapter, we will discuss the operational systems that generate the fore-

casts. First, we will discuss the data collection procedures to acquire real-time data
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from the power plants in Section 6.1. Then, we will describe the current operational

system components including the different types of forecasts, irradiance to power

conversion, and the forecast delivery system in Section 6.2. Finally, we will intro-

duce the next generation system that is being implemented to produce forecasts

more quickly in a more reproducible fashion in Section 6.3.

6.1 Data Collection

We receive ten second resolution real-time solar power production data from each

utility every one minute. We also receive weather data when available from utility

owned weather stations. This real-time production data allows us to produce per-

sistence forecasts for each power plant for short forecast horizons. We also archive

this data to improve our forecast and irradiance to power algorithms.

Initially, APS and PNM sent their data to TEP, and TEP forwarded this data

along to the UA via SFTP. We then designed Python scripts that would read the

data from the uploaded files and insert that data into a MySQL database. The

MySQL database has one table with metadata about each power plant, and each

plant is given a unique ID. The actual data is then stored in a MySQL table with

this ID as the primary index and the UNIX timestamp of the data point as the

secondary index.

Now, APS sends their power and weather data directly to us via a file upload to

an HTTP API every minute. This data includes plant availability, expected future

outages, and curtailment schedules so that this information can be incorporated into

the forecasts.

We have also installed an OSISoft PI system in our data center. The PI system

is a data historian that many utilities use to record and store the operating data of

their power plants. With this system in place at the UA, TEP can now transfer data

directly to our PI system through what is known as a PI-to-PI connection. This

removes the SFTP upload and MySQL import steps of our data collection pipeline.
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6.2 Current Operational System

The current operational system depends on individual irradiance forecasts generated

by the Weather Research and Forecasting (WRF) numerical weather model, network

and persistence forecasts as discussed in Chapter 3, and the satellite derived irradi-

ance estimates discussed in Chapter 4 along with a simple cloud advection forecast

model. Parts of this system are described in Appendix E.

Products from WRF form the basis of forecasts with time horizons from six hours

to seven days ahead. We run WRF with a 5.4 km horizontal spacing outer domain

that covers much of the western US and northern Mexico, and a 1.8 km inner one-

way nest that covers the states of Arizona and New Mexico as shown in Fig. 6.2.

The high resolution inner domain better represents the terrain features that have a

large impact on the weather, especially during the monsoon season. The model is

set to output instantaneous GHI and DNI every three minutes. Other parameters

such as the microphysics scheme, land surface model, and planetary boundary layer

scheme have been chosen specifically for this region after studying the model results.

Each day, we produce six forecasts with WRF using the forecasts from the

North American Mesoscale Forecast System (NAM) and the Global Forecast Sys-

tem (GFS). The forecasts from the NAM and GFS at 00Z, 06Z, and 12Z each day

serve as the initialization and boundary conditions for the WRF forecasts for a time-

lagged ensemble. Occasionally, extra WRF forecasts with initializations from the

Rapid Refresh (RAP) model are created primarily for intra-day forecasts of severe

weather.

With these six new WRF forecasts each day, along with some forecasts from the

previous day, we produce three irradiance forecasts. One of these forecasts is a best

estimate of the irradiance that is a mean of the entire WRF ensemble. We also

produce minimum and maximum irradiance forecasts. As discussed in Chapter 5,

improved blending and WRF ensemble techniques will be studied in the future.

One challenge with the WRF forecasts is the size of the forecast files. We produce

files for surface parameters with three minute resolution out to ten days in some
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Figure 6.2: Outer and inner WRF domains

cases at the 1.8 km horizontal spacing of the inner domain. These files may be as

large as 47 GB in NetCDF4 classic format. We found that accessing a single point

forecast from these files could take as long as ten minutes.

To overcome this slow access time, we first designed a system that abstracts the

access to the WRF files and then stores the point forecasts in a Redis in-memory

database for future access. This system allowed us to access a point forecast in a few

milliseconds once it is initially loaded into Redis. To reduce the tens of minutes that

it takes to load the forecasts into the Redis database the first time, we convert the

files to NetCDF4 format with compression and rechunking. Compression reduced

the file size, and amount of data that may be read from the disk, from 47 GB to

19 GB. This rechunking greatly reduced point forecast access times because of how

the forecasts are stored on disk. When the forecasts files are written by WRF, all

gridpoints at one forecast time are written in a single chunk. In this default scheme,

the entire file must be read to obtain the time-series forecast for a single gridpoint.
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By rearranging the chunks within a file so that they are chunked with only a few

gridpoints and all the forecast times, we only need to read a few chunks of data

from disk in order to get the point forecasts we want.

With irradiance forecasts generated, we then need to convert from irradiance to

power. To perform this conversion, we carefully analyze the production data and

produce clear-sky expectations for each power plant. Then, we convert irradiance

forecasts into clear-sky index forecasts and multiply by the clear-sky expectation for

the power plant to produce a power forecast. This produces forecasts that are within

a few percent of the actual power produced on clear days. In the future, improved

modeling of the system directly incorporating module and inverter parameters along

with secondary variables such as temperature will be studied.

Figure 6.3: Screenshot of the forecasting website

The software that extracts the data from the WRF files, generates the other fore-

casts, combines them together, converts the irradiance forecasts to power forecast,
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and generates CSV files and plots of the forecasts is currently a monolith written in

Python. The plots are then presented on a website that the utilities can access as in

Fig. 6.3. Utilities can also download the CSV files with the forecast data from the

site. We also operate a public website with primarily forecasts of weather variables

(temperature, wind, etc) at https://forecasting.energy.arizona.edu/public. In addi-

tion to the website with the forecast graphics and CSV downloads, we also have a

REST API to programatically access the forecast data.

6.3 Future Improvements

In addition to the new forecasting methodologies and techniques discussed in Chap-

ter 5, we also plan to improve the forecast generation software. The current fore-

casting monolith has grown complex and difficult to debug and it lacks sufficient

test coverage. Furthermore, the process consumes large amounts of memory and

can take up to an hour to generate a new forecast and all the associated figures. A

new framework will be more distributed with unit tests for nearly every line of code.

It will be easier to incorporate new and developing forecasting techniques into the

framework, and new forecasts should be generated in under a minute. An overview

of the new framework is shown in Fig. 6.4.

The new framework relies on the Python library Dask. With Dask, we first

define a computation based on the inputs, functions to execute, and outputs. Dask

then generates a computation graph and the computation can be distributed to a

number of worker processes that may reside on multiple machines. Dask also allows

task to be distributed based on machine requirements such as the presence a GPU

to perform the satellite optimal interpolation. The computation graph can be stored

with each forecast along with package version information to provide provenance of

how the forecast was generated for better reproducibility.

The second primary component of the framework is the data API. This API will

allow for any client with a connection to the API to retrieve data from WRF files or

MySQL with a simple GET command. The API will also be responsible for storing
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Figure 6.4: A diagram of the future forecasting system. The WRF and measurement
data is retrieved from the API. Then, Dask workers generate the forecasts and upload
them to the API. The forecasts can then be retrieved from the API by utility partners
or by plot generators.

the generated forecast data in a proper format, and retrieving that data to send to

the utility companies or to other output processes. The API will be built as a set

of microservices so that components can be upgraded individually.

The third component of the framework is the output layer. Here, static plots,

dynamic plots, and CSV files will be generated for the current web portal. This

decoupling of the plotting and forecast generation should allow for faster forecast

generation times, and even faster plotting since it will make it easier to distribute

the plotting to multiple processes.
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CHAPTER 7

CONCLUSION

This dissertation has described the techniques and limitations of solar irradiance

forecasts that are used to produce operational solar power forecasts for utilities. The

forecasting techniques rely on data from an irradiance sensor network. In order to

obtain such data, we designed and deployed inexpensive, remote irradiance sensors

throughout Tucson, AZ. Using data from these sensors, we produced forecasts that

improve upon a reference by reducing RMSE by 20% for time horizons from one

minute to two hours. We also carefully analyzed the errors of these forecasts and

described how a smoother forecast may have smaller errors. This error analysis

has improved our understanding of how to judge the quality of a forecast based

on commonly used forecast metrics. For longer forecast horizons from 30 minutes

to six hours, irradiance estimates derived from satellite images are used. Initial

satellite estimates had large errors, but we used data assimilation and data from the

sensor network to cut some errors in half. We studied various methods to estimate

the correlation between pixels in satellite irradiance estimates, including a novel

method based on the difference in cloudiness between two pixels.

Next steps include incorporating a cloud advection model into the data assimi-

lation routine to produce forecasts and to continuously incorporate new data while

retaining prior information. The WRF forecasts used for day-ahead and longer

forecasts could benefit from incorporating the actual cloud field at the model intial-

ization and from an ensemble of model runs.
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APPENDIX A

REPRINT: SHORT-TERM PV POWER FORECASTS BASED ON A

REAL-TIME IRRADIANCE MONITORING NETWORK

The following manuscript was published in the proceedings of the 2014 IEEE 40th

Photovoltaic Specialist Conference (PVSC). Further background material is pre-

sented in Chapter 3 of this dissertation. The manuscript is reprinted with permission

from IEEE. Copyright (2014) by IEEE. Original reference: A. T. Lorenzo, W. F.

Holmgren, M. Leuthold, C. K. Kim, A. D. Cronin and E. A. Betterton, “Short-term

PV power forecasts based on a real-time irradiance monitoring network,” 2014 IEEE

40th Photovoltaic Specialist Conference (PVSC), Denver, CO, 2014, pp. 0075–0079.

doi: 10.1109/PVSC.2014.6925212
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Abstract—We built an irradiance sensor network that we are
now using to make operational, real-time, intra-hour forecasts of
solar power at key locations. We developed reliable irradiance
sensor hardware platforms to enable these sensor network fore-
casts. Using 19 of the 55 irradiance sensors we have throughout
Tucson, we make retrospective forecasts of 26 days in April
and evaluate their performance. We find that that our network
forecasts outperform a persistence model for 1 to 28 minute time
horizons as measured by the root mean squared error. The sensor
hardware, our network forecasting method, error statistics, and
future improvements to our forecasts are discussed.

Index Terms—data analysis, forecasting, real-time systems,
sensors, solar energy.

I. INTRODUCTION

The demand for high accuracy solar power forecasting ser-
vices is increasing as electric utilities and independent service
operators add more variable and potentially destabilizing solar
power generation. Numerous forecasting methods are being
actively developed including those based on artificial neural
networks [1], total sky imagers [2]–[5], irradiance sensor
networks [6], [7], satellite derived irradiance [8], numerical
weather models [9], and hybrid methods [10]. Each method
has an optimal forecasting horizon; often, total sky imagers
and irradiance sensor network forecasts perform best for very
short (5-30 minutes) time horizons, satellite forecasts perform
best for short- to mid-term horizons (1-4 hours), and numerical
weather models perform best for longer horizons (>4 hours).
The optimal horizon for neural networks and hybrid methods
varies.

In our 2013 study [6], we made retrospective forecasts
using 15 minute data from rooftop PV systems that performed
optimally for 45 minute time horizons. In this paper, we
describe our operational forecasts that are made using an
improved sensor network that reports in real-time. We evaluate
forecasts from 26 days in April that were made retrospectively.
Our network forecasts outperform a persistence forecast for
1 to 28 minute time horizons. We attribute differences in
performance compared to our earlier study to the smaller
network and finer (1 minute) time resolution of the real-time
sensors used in the present study.

In Section II, we describe our irradiance monitoring network
and the sensors we developed. Then, we explain our method
to generate irradiance network forecasts in Section III. Error

statistics are presented in Section IV, and conclusions and
future work are discussed in Section V.

II. IRRADIANCE MONITORING NETWORK

A major barrier to making irradiance network based PV
power forecasts is obtaining irradiance data in near real-
time with high spatial and temporal resolution. We currently
have a network of 55 sensors throughout the Tucson region
that we use to make operational network forecasts. In this
concentrated study, we use a subset of 19 sensors near the
University of Arizona Science and Technology Park (UASTP).
Our sensors are made up of irradiance network nodes (INNs)
that we developed, rooftop PV system power data direct
from monitoring equipment, and utility-scale PV power data.
We now describe the INN hardware we developed to make
network forecasts, the central database where all irradiance
data is stored, and the network used in this study.

A. Sensor Hardware

To make high-quality network forecasts, we need reliable
sensor hardware that reports in nearly real-time. We chose to
design our own hardware after researching existing solutions in
the market and finding them unsuitable or too expensive. Our
sensor hardware is relatively cheap, uses reliable Linux mi-
crocomputers, and requires minimal maintenance. Our current
sensors are not meant to be accurate global irradiance sensors,
although with careful mounting and a suitable pyranometer,
they can be. A summary of the sensor hardware is presented
in Table I.

TABLE I
SUMMARY OF IRRADIANCE NETWORK NODES

Model Comms.
Backend

Sensor
Type

Processing
Unit

Collection
Period

Saguaro Cellular data
network

Pyranometer
or
photodiode

iMX233-
OLinuXino-
MICRO

1 second

Prickly Pear Ethernet
internet
connection

Rooftop PV
power mea-
surement

Raspberry
Pi

10 seconds

Yucca Ethernet
internet
connection

Pyranometer
or
photodiode

Raspberry
Pi

1 second

978-1-4799-4398-2/14/$31.00 ©2014 IEEE 0075
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Fig. 1. Picture of the Saguaro INN. The solar panel that provides power to
the unit and the sensor attached to the stalk are visible.

The Saguaro INN is designed to be placed in remote
locations and communicate via cellular data networks. We use
either a calibrated pyranometer (Apogee SP-212) or a cheap
silicon photodiode (Osram BPW34) to monitor the irradiance
at the location of the sensor. We use a trans-impedance ampli-
fier to convert the current from the photodiode to a measurable
voltage. Voltage data from the sensor is read every second
from a program running on an Olimex iMX233-OLinuXino-
MICRO via an analog to digital converter. This data is sent
every minute via a cellular modem (Multi-Tech MTSMC-H5)
to our central database. This hardware is co-located on a
custom PCB along with a DC-DC switching power supply,
a board temperature monitor, and a battery voltage monitor. A
10W solar panel, 6Ah, 12V lead acid battery, and solar charge
controller provide power to the hardware that consumes less
than 1W of power on average. A picture of the Saguaro INN
is shown in Fig. 1.

The Prickly Pear and Yucca INNs both send data over the
internet using a Raspberry Pi, but use different sensors. The
Prickly Pear INN communicates over Ethernet to a rooftop PV
system’s monitoring hardware (e.g. SMA Sunny WebBox) to
use PV power as a proxy for irradiance. The Yucca INN uses
a pyranometer or photodiode, like the Saguaro INN, that is
read via an Arduino FIO placed in the sun and transferred via
XBee radio to the central unit.

All three INNs use the Arch Linux operating system with
custom kernels. Most programs are written in Python. Data
is time-stamped on each INN, and the INN clock is synced

via NTP. We currently use SFTP to transfer the data from
the sensor to our central database every minute. In the future
we will use the messaging service ZeroMQ to transfer data
with lower latency. We can update the software remotely using
Fabric, and we use SSH to remotely log-in to a sensor if
needed. We also have scripts on the Saguaro INN that monitor
the cellular data connection, the board temperature, and the
battery voltage. The INNs only send data during the day (as
calculated by ephemeris code for each day) to save power and
network bandwidth.

B. Central Database

As soon as data is sent to our central server via SFTP or
ZeroMQ, a script loads the raw data into a MySQL database.
The data is identified by a sensor ID number, epoch time
stamp, and measurement. We also keep a MySQL table to
store metadata for each sensor including location, sensor type,
etc., and a table to store battery charge levels and temperatures
for Saguaro INNs.

C. Network Used in this Study

A map of the 19 sensors used in this focused study is shown
in Fig. 2. Most of the sensors are Saguaro INNs, although
some are 5-minute data from rooftop PV systems, and 2-
second power data from utility-scale installations. Forecasts
were analyzed for locations at the UASTP, shown in Fig.
2b. We use a higher density of sensors to the southwest of
the UASTP because the primary wind direction is from the
southwest.

III. SENSOR NETWORK FORECASTS

Here we describe how we generate our network forecasts,
which is similar to our previous method described in [6]. First,
we generate clear-sky expectations for each sensor using data
from clear days. Operationally, these are generated weekly
and checked visually. This data driven approach captures
shading due to obstacles, orientation, and other system specific
parameters. At each specified time step t (every 1 minute in
this study), we calculate the clearness index for each sensor
n as

Kn(t) =
gn(t)

gn,clear(t)
(1)

where gn(t) is the measured data at time t and gn,clear(t) is
the clear-sky expectation at time t. In this study, the measured
data is the average of the data collected over the previous one
minute. Once the clearness is calculated for each sensor, we
use bi-variate interpolation to make an interpolated clearness
map similar to Fig. 3. We set the boundary of this map using
the average clearness of all sensors for the previous minute. We
can also use satellite images or numerical weather models to
set this boundary. Then, we forecast the clearness for a sensor
or arbitrary location by propagating this clearness map using
an assumed cloud motion vector. There are several ways we
can estimate this cloud motion vectors, and we describe some
methods we will explore in future work in Section V. Here, we
use the hourly outputs of a custom, high-resolution Weather

978-1-4799-4398-2/14/$31.00 ©2014 IEEE 0076
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(a) Full Sensor Map

(b) Detailed UASTP Map

Fig. 2. Map of sensors used in this study throughout the Tucson area. A more
detailed map of the UA Science and Technology Park (UASTP) highlighted
in (a) is shown in (b).

Research and Forecasting (WRF) model that are produced
earlier in the day to determine the cloud motion vector at
each time t. To make this determination, we find the most
likely cloud base height and then use the wind speed and
direction at this height as the cloud motion vector. Finally, we
calculate the quantity of interest (power or irradiance) with this
forecasted clearness and the clear-sky expectation. We repeat
this procedure for each forecast horizon.

For this study, we generated forecasts every minute, and the
forecasts include predictions for GHI at a given location out
to 30 minutes in advance. An example of a single forecast,
showing predicted GHI for the next 30 minutes, is shown in
Fig. 4. A full day of 10-minute ahead forecasts is shown in
Fig. 5.

Fig. 3. Example interpolated clearness map.

Fig. 4. Example forecasts made for a 30 minute period on 4/22/2014. The
network forecast, clearness persistence forecast, clear-sky expectation, and
measured data are shown. Forecasts shown are made at 15:29.

IV. ERROR STATISTICS

We now present error statistics for GHI forecasts made for
26 days in April. Of these days, 10 days had completely
clear skies, 8 days were variable due to high, thin cirrus
clouds, 2 days were overcast, and the remaining 6 days were
highly variable, likely due to small cumulus clouds. Data used
to calculate and evaluate the forecasts were binned into 1
minute averages. Forecasts were calculated and evaluated for
each minute of the day for forecast horizons from 0 to 30
minutes. Forecast error metrics were calculated for each day
and then averaged for the month. Only daylight hours were
considered. In addition to evaluating our network forecasts, we
also evaluate a clear-sky model and two persistence models: a
clearness based persistence model that assumes the clearness
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Fig. 5. Example 10 minute ahead forecasts made on 4/18/2014. The network
forecast, clearness persistence forecast, clear-sky expectation, and measured
data are shown. The forecasts for 10 minutes in the future are made every
minute.

is constant and a measurement based persistence model that
assumes the measured irradiance will be constant for the next
30 minutes. As expected, the measurement persistence model
has larger errors than a clearness persistence model as forecast
horizon increases because it does not account for the diurnal
cycle. For comparison, the clear-sky forecast model simply
assumes that any future irradiance will be the same as the
clear-sky expectation. We also evaluated MAE and RMSE
error statistics for WRF forecasts that are generated 2 to 20
hours in advance.

Table II and Figs. 6-7 present error statistics for a single
irradiance sensor in the UASTP. The mean absolute error
(MAE) and root mean squared error (RMSE) (using the
standard definitions as found in [11]) at forecast horizons in
multiples of 5 minutes are shown in Table II. A plot of MAE vs
forecast time horizon is shown in Fig. 6 and a plot of RMSE
vs forecast time horizon is shown in Fig. 7. The clearness
persistence MAE and RMSE at the 0 minute forecast horizon
is not identically zero because we limit the clearness to a
maximum of 1.1 and errors in the clear-sky expectation in
the early morning and late evening occasionally result in a
calculated clearness in excess of this 1.1 limit. We then use
this 1.1 clearness to calculate the expected irradiance, leading
to small errors at zero time horizon. The network forecast is
similarly affected by this clipping, but the larger error at the
0 minute horizon is mainly due to the interpolation we use
to make clearness maps. Since this interpolation is smoothed
for interpolation stability, the calculated clearness does not
always match the measured clearness. Despite these errors,
it is encouraging that our irradiance network based forecasts
outperform the persistence model for the days studied for 1
to 28 minutes as measured by RMSE and 2 to 17 minutes as
measured by MAE.

TABLE II
ERROR STATISTICS FOR 26 DAYS IN APRIL FOR PERSISTENCE AND

NETWORK FORECASTS. BOLD FONT INDICATES WHEN THE NETWORK
FORECAST OUTPERFORMS PERSISTENCE FORECASTS.

Clearness Persistence Network Forecast
Forecast
Horizon

MAE
(W/m2)

RMSE
(W/m2)

MAE
(W/m2)

RMSE
(W/m2)

0 min 0.166 1.23 3.26 11.3
5 min 30.4 58.6 27.6 48.1
10 min 38.7 69.1 36.6 60.0
15 min 43.6 74.8 43.0 67.9
20 min 47.7 79.0 50.0 74.7
25 min 50.6 81.3 54.1 78.6
30 min 52.9 83.2 60.1 85.4

Fig. 6. Mean absolute error as a function of forecast horizon for a single
sensor calculated each day and averaged over 26 days in April.

Fig. 7. Root mean squared error as a function of forecast horizon for a single
sensor calculated each day and averaged over 26 days in April.
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As mentioned above, we make operational forecasts of PV
power. An example 10 minute ahead power forecast is shown
in Fig. 8. The MAE for the 10 minute ahead network forecast
on the day shown is 0.0908 MW or 2.7% of capacity, and the
RMSE is 0.140 MW or 4.1% of capacity. We do not present
more detailed error statistics of our power forecasts as we
did for irradiance above because the data we currently have
for the UASTP is so coarse, often with 5 minutes between
measurements. For the purposes of forecast comparison, it is
also more useful to compare irradiance forecasts to remove
the extra step of converting irradiance to power.

Fig. 8. Example 10 minute ahead power forecasts made on 4/18/2014. The
network forecast, clearness persistence forecast, clear-sky expectation, and
measured data are shown.

V. CONCLUSIONS

We designed and built low-cost irradiance sensors in order
to make irradiance network forecasts. Using this network, we
have been making operational forecasts since the beginning of
2014. A retrospective analysis for 26 days in April shows that
our forecasts often perform better than a persistence model.
When comparing forecasts, one must remember that our error
statistics were calculated for irradiance and not clearness.
This essentially weights our MAE and RMSE by the time
of day. In the near future, we will re-evaluate our forecasts to
make a more direct comparison with other work. We will also
calculate numerous metrics that are described in [11] and [12]
for further comparison with other techniques.

While our results of intra-hour forecasts with a network
of irradiance sensors are encouraging, there are still many
improvements to be made. We are satisfied with the operation
of our custom INNs, but we need to deploy more throughout
the Tucson region for higher quality forecasts that perform
better at forecast horizons approaching one hour. There are
also numerous improvements that we can explore for our
forecasting algorithm including:

1) More accurate cloud motion vectors from ground sensor
correlations, upper-air soundings, WRF forecasts, artifi-
cial neural networks, or some combination

2) Improved clearness map boundaries that incorporate
satellite derived irradiance

3) Clearness map interpolation techniques that use previous
measurements more wisely to fill in gaps.

We expect that these improvements will noticeably reduce
our errors and extend the time horizons at which we can
outperform persistence models.
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Abstract

We describe and evaluate forecasts of solar irradiance using real-time measurements from a network of irradiance sensors. A forecast
method using cloud motion vectors obtained from a numerical weather model shows significant skill over a standard persistence model
for forecast horizons from 1 min to over 2 h, although the skill metric may be misleading. To explain this finding, we define and compare
several different persistence methods, including persistence methods informed by an instantaneous spatial average of irradiance sensor
output and persistence forecasts informed by a time-average of recent irradiance measurements. We show that spatial- or temporal-
averaging reduces the forecast RMS errors primarily because these forecasts are smoother (have smaller variance). We use a Taylor
diagram, which shows correlation, RMSE, and variance, to more accurately compare several different types of forecasts. Using this
diagram, we show that forecasts using the network of sensors have meaningful skill up to 30 min time horizons after which the skill
is primarily due to smoothing.
� 2015 Elsevier Ltd. All rights reserved.

Keywords: Solar forecasting; Solar irradiance; Sensor network

1. Introduction

The intermittency of solar power causes a cost to utili-
ties and, ultimately, rate payers (Joskow, 2011). Solar
power forecasts (Kleissl, 2013; Inman et al., 2013) may
reduce these costs by enabling utilities to manage the vari-
ability of solar power in a number of ways. For example,
forecasts can be used in conjunction with battery storage
systems to control ramp-rates or provide frequency sup-
port (Hill et al., 2012; Cormode, 2015). Additionally, fore-
casts will provide utility grid operators with a prediction of

the expected photovoltaic (PV) output so they can more
efficiently schedule backup generators.

A number of different techniques are used to forecast
global horizontal irradiance (GHI). For forecast horizons
in the intra-minute to a few minute range, techniques with
input data from several ground sensors are often used
(Achleitner et al., 2014; Elsinga and van Sark, 2014;
Yang et al., 2015; Lipperheide et al., 2015).

For longer (intra-hour) forecast horizons, methods
based on irradiance sensor networks (Lonij et al., 2013),
machine learning techniques (Chu et al., 2015b), and sky
imagers (Yang et al., 2014; Chu et al., 2015a) are being
actively studied. Satellite image based forecasts are useful
for 1-h to many hours in advance (Perez et al., 2010;
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Bilionis et al., 2014). For time horizons from several hours
to up to a week in advance, numerical weather models
often give the best predictions (Mathiesen and Kleissl,
2011; Diagne et al., 2014; Perez et al., 2013). Combinations
of techniques are also being studied to extend the useful
time horizon of a forecast (Marquez et al., 2013; Lauret
et al., 2014).

Networks of irradiance sensors overcome some chal-
lenges typically associated with sky imagers or satellite
images. For example, data from networks of irradiance
sensors do not have the issue of converting pixel brightness
to irradiance as sky imagers and satellite image methods
have. Sky imagers and satellite images have the additional
challenge of estimating cloud height to correctly project
irradiance at cloud height to a location on the ground.

In this paper, we describe GHI forecasts that utilize a
network of sensors placed throughout Tucson, AZ for
April, May, and June 2014. The ideas behind this work
are similar to those of Lonij et al. (2013), however the data
sources and implementation are different. The rooftop PV
network in Lonij et al. (2013) was limited to historical
reports of 15 min average power, whereas the irradiance
sensors used in the present research report 1 s resolution
data with 1 min latency. This allows us to make higher res-
olution and, as we will see, more accurate forecasts.

We will show that our sensor network based forecasting
method has significant skill when compared to a clear-sky
index persistence forecast from 1 min to beyond 2 h time
horizons. While the limited area and density of the network
likely limits the skill and forecast horizon of our network-
based forecasting method, the geographic diversity of mea-
surements provide several advantages including improved
persistence estimations. We will also explore why the fore-
casts exhibit such significant skill and explain this result is
due to smoothing after 30 min forecast horizons.

First, we describe our network of irradiance sensors.
Then, we describe how we use the network to make fore-
casts. A discussion of different types of persistence fore-
casts follows. Finally, we present and discuss our results
and offer a concluding summary.

2. Irradiance sensor network forecasts

Our forecasting method relies on a network of sensors
that sample the global horizontal irradiance at a number
of locations. Our network consists of 12 irradiance sensors
we developed, plus three rooftop PV power systems and
one calibrated, commercial sensor. The calibrated sensor
is part of a National Renewable Energy Laboratory
(NREL) Solar Resource and Meteorological Assessment
Project (SOLRMAP) site at the Univ. of Arizona
(Wilcox and Andreas, 2010). Converting the data to
clear-sky indices using an expected clear-sky profile for
each sensor allows us to combine sensors that measure
different quantities to make forecasts. These sensors are
distributed throughout Tucson as shown in Fig. 1. The irra-
diance sensors we developed collect 1 s data and transmit

it to a database every minute via cellular data networks
(Lorenzo et al., 2014). Some use commercial pyranometers
while others use photodiodes. Since we use clear-sky
indices with data driven clear-sky profiles, the absolute
error of the sensor is not a concern. However, the sensor
used to evaluate the forecasted irradiance is a commercial
sensor (Apogee SP-212) and agrees with the calibrated sen-
sor to within 2% on average on clear days. The data were
plotted for each day and for each sensor and verified by
eye to provide some measure of quality control. See
Lorenzo et al. (2015) for access to the dataset that was used
in this study.

The first step in making our forecasts is to convert irra-
diance and PV power data to clear-sky index data. The
clear-sky index for a sensor n at time t is defined as

knðtÞ ¼ ynðtÞ
yclrn ðtÞ ; ð1Þ

where ynðtÞ is the measured data and yclrn ðtÞ is the clear-sky
expectation. Clear-sky expectations for each sensor are
generated by fitting the measured data on a clear day in
the recent past. An advantage of using this data-driven
method of generating clear-sky expectations rather than a
clear-sky model, such as the REST2 model (Gueymard,
2008) or Ineichen model (Ineichen and Perez, 2002), is that
the data-driven method inherently accounts for sensor ori-
entation, permanent obstacles, and sensor calibration
errors. Furthermore, because our forecasting method relies
on forecasting clear-sky index and then converting back to

Fig. 1. Map of irradiance sensors used for this study in Tucson, AZ. The
red star indicates the position of the sensor that was used to evaluate
forecasts in Section 5. The sensor was chosen because of its proximity to
25 MW of installed PV power in and around the University of Arizona
Science and Technology Park Solar Zone. The forecast area extends from
31:83� N to 32:28� N and 110:7� W to 111:15� W. (For interpretation of
the references to color in this figure legend, the reader is referred to the
web version of this article.)
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irradiance as a final step, the changes in atmospheric con-
ditions between clear-sky days are not a major source of
error in our final forecasts.

Next, we use the clear-sky indices to interpolate the scat-
tered data onto a 1400 km2 clear-sky index map for the
Tucson region. To generate a clear-sky index map, we first
create a 0.001� grid (with grid points approximately every
100 m) and add the sparse data from our network to the
grid. We then set points along each boundary of the grid
to the average of the clear-sky index values obtained from
all the sensors. As we will see in Sections 4.4 and 5, this
boundary condition helps to maintain forecast skill at
longer time horizons.

Next, we fill all points in the grid with interpolated val-
ues as shown in Fig. 2. We chose to use multiquadric inter-
polation because it performs well at interpolating scattered
geospatial data (Franke, 1982; Nuss and Titley, 1994), and
it was more robust with our sparse data. We did not use a
kriging method, even though kriging is often used to inter-
polate geospatial data, because we lack sufficient data to
adequately estimate the variogram (Webster and Oliver,
1993; Sirayanone, 1988). We also explored inverse distance
weighted interpolation, but found the output to be similar
to multiquadric interpolation with insignificant differences
in forecast errors (typically <3 W/m2 difference in the root
mean square error for all forecast horizons).

Then, we translate this interpolated clear-sky map a dis-
tance determined by the cloud motion vectors (which may
vary in time). The translation in the x direction, with the y
translation being analogous, is given by

Dxðti; tÞ ¼
Z t

ti

vxðt0Þdt0; ð2Þ

where ti is the time at which the forecast is being made,
t � ti is the forecast horizon, and vxðtÞ is the x component
of the time-varying cloud motion vector. Any grid points

that are missing data after the translation are filled with
the average clear-sky index for all the sensors. Fig. 2 shows
an example of an interpolated clear-sky index map and a
map that has been shifted along the estimated cloud
motion vector. Finally, we sample from this translated
map at the desired forecast locations to obtain a forecasted
clear-sky index which can be multiplied by the clear-sky
expectation for that location to obtain an irradiance fore-
cast. As we will discuss, for sufficiently long forecast hori-
zons this procedure makes our network based forecasts
indistinguishable from spatially-average persistence
forecasts.

Forecasts out to 2 h in advance with 1 min time resolu-
tions were made every 1 min for this analysis. As an exam-
ple, one hour’s worth of 5 min ahead forecasts along with
measurements are shown in Fig. 3. This time-series is a
composite showing snapshots (individual points) from
120 different forecasts that were each made 5 min in
advance on a rolling basis. Concatenating points from dif-
ferent forecasts this way for several months lets us evaluate
errors for forecasts with a 5 min horizon. Furthermore,
updating forecasts every 1 min is valuable since 1 s data
is constantly streaming into our database and each forecast
has some new information that will likely improve the pre-
diction for a specific time in the future. Later, we discuss
errors as function of forecast horizon.

For estimating cloud motion velocity vector compo-
nents (vx; vy), several techniques have been discussed
including sensor correlations (Fung et al., 2014; Bosch
et al., 2013), predictions from NWP (Lave and Kleissl,
2013; Lonij et al., 2013), analysis of aircraft communica-
tions addressing and reporting system (ACARS) or rawin-
sonde data, scaling of measured ground velocity, analysis
of sky camera images (Urquhart et al., 2013), and analysis
of satellite images (Hammer et al., 1999). For our analysis,
we used modeled soundings (atmospheric temperature and

Fig. 2. An example interpolated map of clear-sky index on 5/19/14 near noon is shown in (a). Using the estimated cloud motion vectors this map is shifted
according to desired forecast horizon as shown in (b). Then, samples from this shifted map are taken to as the forecasted clear-sky index for a particular
location. The white space at bottom and left of (b) is filled in with the average clear-sky index of all sensors at the time the forecast is generated. The red
star indicates the sensor that was used to evaluate forecasts. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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dewpoint as a function of altitude/pressure) from the
Weather Research and Forecasting (WRF) model run by
the Univ. of Arizona, Dept. of Atmospheric Sciences
(Leuthold, 2015). First, we compute a profile of relative
humidity as a function of altitude averaged over the Tuc-
son area from the WRF model. To estimate the cloud
motion vectors, we find the altitude at which relative
humidity is greatest (dashed line in Fig. 4), similar to
Lave and Kleissl (2013). We then find all nearby heights

that have a relative humidity that is within 90% of the max-
imum (shaded area in Fig. 4). The wind speed and direction
is then averaged for these altitudes and over the entire Tuc-
son area to provide an estimated cloud motion vector. A
new cloud motion vector is estimated in this way from each
hourly output of the WRF model and then interpolated to
1 min time resolution. This simple estimation method has a
number of limitations including only recognizing a single
cloud layer and possibly selecting the wrong layer of the
atmosphere i.e. one in which there are no clouds. This
cloud motion estimation method along with the modest
size and density of our network likely limits the overall
accuracy of the network based forecasts presented here.
Still, this network based method produces forecasts with
lower errors than several standard persistence methods,
as we discuss next.

3. Error metrics

We assessed the accuracy of forecasts using standard
error metrics that are defined in Zhang et al. (2015). Each
error metric is computed for forecast horizons, FH , ranging
from 1 min to 30 min (FH ¼ 0; 1; . . . ; 30) by comparing
forecasts, yFH ðtiÞ, to subsequent instantaneous measure-
ments, yðtiÞ, of a single irradiance sensor. Errors were only
computed when the solar zenith angle was less than 75�.
Unless otherwise noted, only the 46 cloudy days in the
study period were used to calculate error metrics and each
metric is computed over this entire cloudy data set. Data
and forecasts for a sensor (star in Fig. 1) in the middle of
the network and near many large PV installations were
used. Comparisons are always made with an instantaneous
measurement, not averaged data, even when the forecast
uses averaging.

In addition to root-mean squared error (RMSE) and
mean absolute error (MAE), we also compute the centered
root-mean squared error (CRMSE) for irradiance

CRMSEðFHÞ ¼ 1

N

XN
i¼1

ðyFH ðtiÞ � �yFH Þ � ðyðtiÞ � �yÞ� �2 !1=2

;

ð3Þ
where an overbar indicates the sample mean of the quantity
(Taylor, 2001). The CRMSE removes forecast bias and will
become important later.

We also compute errors for forecasted clear-sky indices.
This is valuable because, as opposed to irradiance, clear-
sky index errors are not weighted based on the position
of the sun in the sky.

We also define relative metrics in terms of clear-sky
indices in order to present errors in percentages. The rela-
tive RMSE is

rRMSEðFHÞ ¼ �k�1 1

N

XN
i¼1

kFH ðtiÞ � kðtiÞ
� �2 !1=2

: ð4Þ

Relative MAE is similarly defined as

Fig. 3. An example of a 5 min ahead network forecast compared to
measured data. Forecasts were generated every 1 min and the forecast for
5 min in the future is shown. The forecast and measurements at 12:00
show excellent agreement. For reference, the MAE for this entire period is
105 W/m2 and the RMSE is 140 W/m2, and for 11:45 to 12:00 the MAE is
68 W/m2 and the RMSE is 82 W/m2.

Fig. 4. Example vertical profiles of relative humidity and wind speed
made by a numerical weather model on 5/19/14 at noon. To find the
altitude at which clouds are most likely to form, we find the height with the
greatest relative humidity (red dashed line). The winds at this height and
heights within 90% of the maximum relative humidity (red shaded area)
are averaged to produce an estimate of the cloud motion vector. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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rMAEðFHÞ ¼ �k�1 1

N

XN
i¼1

kFH ðtiÞ � kðtiÞ
�� ��: ð5Þ

Following the method of Marquez and Coimbra (2012),
we can approximate forecast skill s as

sðFHÞ � 1� RMSEðFHÞ
RMSEpðFHÞ ; ð6Þ

where RMSEp is the RMSE for a clear-sky persistence
forecast, described in Section 4.2. To estimate the average
skill over many days, the ratio RMSE

RMSEp
is estimated by the

slope of the regression fit of daily RMSE vs RMSEp. The
average skill is then hsi ¼ 1� slope. Examples of these
plots and regressions are presented in Fig. 11.

4. Persistence forecasts

Persistence forecasts are the simplest type of forecast to
implement and are often the most accurate at very short
time horizons, making them a standard to compare with
other methods. In this section we describe and compare
the persistence forecasts we use for irradiance forecasting.

Before describing the various types of persistence, we
first define the terminology we will use. The measured
quantity of sensor n (e.g. irradiance) at time t will be
denoted by ynðtÞ. The forecast of sensor n at some time
t þ FH in the future will be denoted by y�nðt þ FHÞ. As men-
tioned in Section 3, we call FH the forecast horizon. The
clear-sky expectation for a particular sensor will be
denoted yclrn and the value of the clear-sky expectation at

time t is yclrn ðtÞ.

4.1. Measurement persistence

We call one of the simplest persistence methods ‘‘mea-
surement persistence.” A measurement persistence forecast
simply assumes that the irradiance at a future time will be
the same as it is at the current time. Measurement persis-
tence is defined by

y�nðt þ FHÞ ¼ ynðtÞ: ð7Þ
This type of persistence is useful for short time horizons,

but it does not account for the diurnal cycle of irradiance
due to changing solar position and this leads to large errors
at longer time horizons as shown in Fig. 5.

4.2. Clear-sky index persistence

In this method, the clear-sky index is calculated at the
current time and persisted into the future. A forecast of
irradiance is obtained by multiplying this clear-sky index
by the value of the clear-sky expectation at the forecast
time. The equation for clear-sky index persistence is

y�nðt þ FHÞ ¼ yclrn ðt þ FHÞ
yclrn ðtÞ � ynðtÞ: ð8Þ

This method performs better than measurement persistence
because it takes into account the diurnal cycle of irradi-
ance, but it does require that a clear-sky expectation for
the sensor, yclrn ðtÞ, be known or modeled appropriately.

4.3. Time-averaged persistence

At time horizons greater than a few minutes, it can be
beneficial to first average the measured clear-sky index over
some time period defined by N time steps, each with period
Dt, ending at some past time t0. This average clear-sky
index is then multiplied by the clear-sky expectation of
the target sensor to compute a forecast. Time-averaged per-
sistence is thus computed as

y�nðt þ FHÞ ¼ yclrn ðt þ FHÞ � 1

N

XN�1

i¼0

ynðt � t0 � iDtÞ
yclrn ðt � t0 � iDtÞ : ð9Þ

Often, a rolling averaged is used so t0 ¼ 0; Dt is the time
resolution of the measured data, and N is chosen so
ðN � 1ÞDt gives the desired averaging time. The total aver-
aging time does not limit the frequency with which fore-
casts can be made. For example, a 5 min rolling average
persistence can recomputed every 1 min and still provide
a useful forecast since new data is incorporated every time
a forecast is made. An example of time-averaged persis-
tence error with different averaging times using a rolling
average is shown in Fig. 6.

4.4. Spatially-averaged persistence

If multiple measurements of irradiance are available in
an area, one can make a persistence forecast based on the
average clear-sky index of all the sensors. We refer to this
method as spatially-averaged persistence. To make these
forecasts, the measurements of multiple sensors are first
converted to clear-sky indices using clear-sky expectations
for each sensor. Then, these clear-sky indices are averaged

Fig. 5. Comparison of different types of persistence forecasts. RMSE,
plotted as a function of forecast horizons, was computed for each type of
forecast using data from the 46 cloudy days as described in Section 3.
Spatially-averaged persistence has the lowest RMSE for all but the very
shortest forecast horizons.
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together. This average clear-sky index is then multiplied by
the clear-sky expectation of the target sensor to produce a
forecast for that sensor. Using N sensors, the spatially-
averaged persistence for sensor n is

y�nðt þ FHÞ ¼ yclrn ðt þ FHÞ � 1

N

XN
m¼1

ymðtÞ
yclrm ðtÞ : ð10Þ

This method does not perform as well as clear-sky index
persistence or measurement persistence at time horizons
under a few minutes, as shown in Fig. 5, but it is more
accurate (according the RMSE metric) than other persis-
tence methods discussed here at longer (2–30 min) forecast
horizons.

One could also imagine replacing the simple mean in Eq.
(10) with a weighted mean by, for example, using the lasso
(Yang et al., 2015) or some other shrinkage and selection
method. Time and spatial averaging can also be combined
as discussed in Section 5.1.

5. Results

We now present the results of the network and persis-
tence forecasts using metrics defined in Zhang et al.
(2015) and Section 3 for the study period of April, May,
and June 2014. First, we evaluate persistence forecasts.
Then, we study network forecast errors in depth. Finally,
we compare network forecasts to other irradiance forecast-
ing methods.

5.1. Persistence forecast results

Root-mean squared errors from the four types of persis-
tence forecasts described above are plotted in Fig. 5. We
see that for the 46 cloudy days we studied in Tucson,
AZ., the two types of input averaging, spatial and tempo-
ral, both improve forecasts compared to clear-sky index
persistence after time horizons of a few minutes. The cross-

over time depends on the weather. As expected, clear-sky
index persistence performs better than measurement persis-
tence because it accounts for the diurnal cycle.

Though Fig. 5 shows spatially-averaged persistence out-
performing time-averaged persistence, the averaging time
and number of sensors averaged can change these curves
significantly. Figs. 6 and 7 show various averaging times
and number of sensors in the average, respectively. We
see that longer averaging times reduce errors at time hori-
zons greater than 5 min but are worse at shorter time hori-
zons. The common auto-regressive moving average
(ARMA) model similarly weights previous values and/or
errors to produce a forecast. We also see that adding more
sensors to a spatially-averaged persistence reduces errors
except at time horizons shorter than a few minutes.

One explanation for our finding that spatially-averaged
persistence performs better than time-averaged persistence
is related to the number of dimensions in each average.
Using kinematics (x ¼ vt) we can map the time series yiðtÞ
onto a one-dimensional transect in space downwind from
the sensor. In comparison, the spatial average uses data
from locations that are distributed in two dimensions
including some locations that are upwind of the location
of interest. By averaging over two dimensions, not one,
spatial average persistence effectively uses more indepen-
dent samples of the cloud field. This theory assumes that
all sensors are subject to the same cloud field, which is
reasonable for the size of our network.

When we average the input data over both space and
time, as shown as the green line in Fig. 8, we find the
RMSE is lower at longer time horizons.

5.2. Network forecast results

We now compare our network forecasts to a clear sky
(k�nðtÞ ¼ 1) forecast, measurement persistence, clear-sky
index persistence, and spatially averaged persistence (using
the same 16 sensors which were used to make the network
forecast). Fig. 9 shows the MAE for these methods for only

Fig. 6. Comparison of time-averaged persistence forecasts with different
averaging times. The averages shown are made via a rolling average
(t0 ¼ 1) with Dt ¼ 1 s and N adjusted for each curve to give the
appropriate total averaging time as described in Section 4.3. Longer time
averages reduce errors at longer time horizons.

Fig. 7. Comparison of spatially-average persistence forecasts with a
varying number of sensors averaged. Adding more sensors to the spatial
average improves the forecast RMSE.
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cloudy days while Fig. 10 shows the RMSE. Plots of
CRMSE show similar trends. Note that network forecasts
have nonzero error at zero forecast horizons because of the
smoothing applied when making the interpolated clear-sky
index map and due to limiting the maximum forecasted
clear-sky index to 1.25. We see that network forecasts have
lower MAE than other methods for time horizons from
1 min to 30 min. We only graph up to 30 min forecast hori-
zons because the 30 min to 2 h errors are similar and unin-
teresting. Fig. 10 shows that the network forecasts have
lower RMS errors than the other methods at forecast hori-
zons less than about 4 min and then have slightly higher
RMSE values than spatially-averaged persistence. This dif-
ference between RMSE and MAE suggests that network
forecasts have fewer small errors but more large errors than
spatially-averaged persistence forecasts. For completeness,
we also present error metrics for all 91 days in the study
period in Appendix A. Clear days show similar trends

but with smaller errors which lowers the 91 day average
RMSE by 40–50% depending on the time horizon.

We also compute forecast skill as defined by Marquez
and Coimbra (2012). Fig. 11 illustrates the regressions used
to calculate the average skill of our forecasts. At low clear-
sky index persistence RMSE values (e.g. clear days), we see
that the skill is negative (network RMSE > clear-sky index
persistence RMSE). For days with larger clear-sky index
persistence RMSE values, we see that our network fore-
casts have positive skill. The average skill found from
regressions, typically 20%, is plotted in Fig. 12 as a func-
tion of forecast horizon.

5.3. Exploration of forecast errors

The forecast skill of the network-based forecasts
remains at a surprising +20% at time horizons through
2 h. This was unexpected because the finite domain of the
network is usually transited by clouds in 10–20 min. To
explain this finding, we revisited the underlying statistics
of forecast skill. The root mean squared error can be
written as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
f þ r2

o � 2rfroqþMBE2
q

; ð11Þ

where rf is the forecast standard deviation, ro is the mea-
surement standard deviation, q is the correlation coeffi-
cient, and MBE is the mean bias error (Taylor, 2001).
When correlations and biases are small, the RMSE reduces
to a sum in quadrature of the observation and measure-
ment standard deviations. Under these conditions, a
smoother forecast will have a lower RMSE, and thus a
more positive forecast skill, than a more variable forecast.
Of course, this does not mean that the smoother forecast is
more skillful under most definitions of the word.

As an alternative means of understanding the relative
merits of our forecast methods, we turned to Taylor
diagrams (Taylor, 2001). The Taylor diagram in Fig. 13
shows the CRMSE, correlation coefficient, and standard

Fig. 8. Comparison of a persistence forecast made by first averaging over
space and then averaging over time (green line) to other persistence
methods. Averaging in time and space marginally improves forecasts at
longer time horizons. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. MAE of many types of forecasts averaged over 46 cloudy days.
Clear sky refers to a forecast where one assumes the sky is always clear
(k�nðtÞ ¼ 1). Network forecasts have the lowest MAE at all time horizons
shown.

Fig. 10. RMSE of many types of forecasts averaged over 46 cloudy days.
Clear sky refers to a forecast where one assumes the sky is always clear
(k�nðtÞ ¼ 1).
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deviations of clear-sky index forecasts for each forecast
method. Here, we analyzed forecasts of clear-sky index
instead of irradiance so all values are dimensionless. The
solid contour lines are lines of constant CRMSE. We see
that network forecasts have correlations greater than or
approximately equal to spatially-averaged persistence but
with higher standard deviation. This means network fore-
casts capture more variability. Network forecast standard
deviation transitions from performing like clear-sky index
persistence forecasts at short time horizons to approaching
spatially-averaged persistence, analogous to the transitions
for MAE and RMSE in Figs. 9 and 10. At roughly 30 min
forecast horizons, network forecasts behave about the
same as spatially-averaged persistence forecasts as we
expect based on the method used and average cloud veloc-
ities. Hence, we say that our network forecasts are more
useful than simple spatial averaging for forecast horizons

Fig. 11. Network RMSE vs clear-sky index persistence RMSE for all days and 5, 10, 15, and 30 min forecast horizons calculated for clear-sky indices. The
slope of the best fit line is used to approximate the skill of the forecasts. Each point represents one day of data and forecasts. The forecast skill is positive
for any point below the y ¼ x line. The plots illustrate that network forecasts may have negative skill for days that are nearly clear. Furthermore, they show
a consistent positive skill for cloudier days with few outliers.

Fig. 12. Average skill of our network forecasts for the study period of
April, May, and June 2014.
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less than 30 min. Regardless of their forecast skill metric
scores, assessing the utility of network and spatial-
average persistence forecasts past 30 min is challenging.
We therefore suggest that researchers restrict their use of
forecast skill to methods which have similar mean bias
errors and standard deviations.

Fig. 13 also shows how network and spatially-averaged
persistence forecasts always have lower RMSE than clear-
sky index persistence after a certain horizon. This is a result
of the combination of lower standard deviation and higher
correlation for the network and spatially-averaged persis-
tence forecasts. This trend holds for even longer forecast
horizons. Unfortunately, Eq. (11) does not simplify for
the forecasts and data shown here so both correlation
and standard deviation need to be considered to under-
stand RMSE.

5.4. Limitations and comparisons to other work

One limitation of the current network algorithm is that
it does not account for multiple cloud layers. Satellite
images from many of the studied days confirm that multi-
ple cloud layers were moving in different directions. We

also studied incorporating data from times in the past
appropriately shifted by cloud motion vectors but found
no noticeable improvement, likely due to this complex
motion.

On a day with a single cloud layer coming from the
southwest shown in Fig. 14, we see that a single upstream
sensor greatly improves network forecasts at around the
7 min forecast horizon. This demonstrates that the network
method can perform quite well if the velocity of the clouds
is well defined and the sensors are appropriately located.

Another limitation is the size of the irradiance network.
Depending on the wind motion vectors clouds can pass
from the edge of the network to the center in 10 min. Since
the boundary is set to the spatial average of sensors, net-
work forecasts converge to spatially averaged persistence.

Still, our current method of network forecasting per-
forms as well as or better than both clear-sky index and
spatially-averaged persistence. Error statistics for network
forecasts for cloudy days are presented in Table 1.

When we compared our current network method and
high resolution data with the previous work of Lonij
et al. (2013), we see that our new method performs favor-
ably. Lonij et al. use a network of 80 rooftop PV systems
in the Tucson area with 15 min averaged power data to
make short-term forecasts of power. Their method uses a
similar cloud translation method as this work, but wind
vectors are obtained from NOAA forecasts, via optimiza-
tion of the wind vector to minimize RMS forecast errors,
or via a Kalman filter applied to optimized vectors. At 15
and 30 min forecast horizons, the best forecasts of Lonij
et al. had skills of �8.0% and 2.4%, respectively, while
our new method has skills of 17.7% and 21.2%. Even com-
pared to the optimized ‘‘forecasts” (which were not true
forecasts) with skills of 1.6% and 34.5% at 15 and

Fig. 13. Taylor diagram for clear-sky index persistence (red), spatially-
averaged persistence (yellow), 5-min time-averaged persistence (green),
and network (light blue) forecasts for 1 min (circle), 3 min (triangle), 7 min
(diamond), 30 min (square), and 120 min (pentagon) forecast horizons.
The black dashed line indicates the standard deviation of the data. Solid
contours around the observations point are lines of constant CRMSE.
Forecasts for clear-sky index were used so all quantities are dimensionless.
At the 120 min forecast horizon, the spatially-averaged persistence and
network points overlap. Network forecasts start with a standard deviation
near that of the measurements, but this decreases at longer time horizons
as the network forecast begins to resemble spatially-averaged persistence.
(For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 14. RMSE vs forecast horizon on May 19, 2014 for network forecasts
made with all the sensors in the network (blue) and with one upwind
sensor removed (red), along with a spatially-averaged persistence forecast
(yellow). The dip at 7 min for the forecast using the full network illustrates
that properly placed upstream sensors do improve forecasts over a simple
spatial average. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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30 min, our new method performs well. We only used
3 months of data from our real-time network while Lonij
et al. used one year of data.

Chu et al. (2015b) produced a cloud tracking forecast of
PV power with an ANN applied to a deterministic forecast
using a sky imager at a site near the Nevada/Arizona bor-
der. The initial deterministic forecast model does not per-
form well compared to persistence, with negative skills at
5, 10, and 15 min forecast horizons. However, the re-
forecast using an ANN technique improves the result with
skills of 15.1%, 21.8%, and 26.2% at forecast horizons of 5,
10, and 15 min respectively, which are comparable to our
technique. Similar optimization could be applied to our
deterministic network forecasts to further improve skill.
A Taylor diagram of both the initial deterministic forecast
and ANN re-forecast would be useful as another method to
assess the forecasts.

Compared to the regression methods in Yang et al.
(2015), our forecasts perform comparably at the 5 min
forecast horizon. Yang et al. used 1 s irradiance data from
Oahu and applied the lasso and ordinary least squares
regression methods to make very short term (< 5 min) fore-
casts. At shorter horizons, both methods can outperform
the reference persistence forecast. Since our forecasts
approach the clear-sky index persistence model, regression
methods are likely a better choice if sub-five minute time
horizons forecasts are needed, at least for the region stud-
ied here.

6. Conclusion

We presented a deterministic method to forecast irradi-
ance that uses data from a network of irradiance sensors as
the primary input. This method can combine the benefits of
clear-sky index persistence and spatially-averaged persis-
tence into one forecast. It outperforms a reference clear-
sky index persistence model for 1–120 min forecast hori-
zons. Much of this improvement is due to spatial averag-
ing, which shows surprising utility for the region and
time period studied. However, network forecasts still exhi-
bit more variability than spatially-averaged persistence,
thus we claim network forecasts are better at forecasts hori-
zons less than 30 min. The results presented here used
numerical weather model winds at a single layer of the

atmosphere to perform cloud advection, so complex cloud
movement or incorrect cloud motion vectors likely limited
the accuracy. The limited size and density of the network
also limits the accuracy of network forecasts.

We showed that forecast skill can be a misleading met-
ric, and we instead used a Taylor diagram to better under-
stand the differences among forecast methods. This lead us
to reinterpret our finding that network forecasts show sig-
nificant skill to 2 h forecast horizons so now we make a
more informed claim that network forecasts show mean-
ingful skill out to 30 min forecast horizons. We encourage
other authors to make use of Taylor diagrams when assess-
ing the quality of forecasts.

While the method presented may have a limited useful
maximum forecast horizon, the irradiance sensor network
will be a valuable asset to make other types of forecasts.
For instance, regression methods using a network can
improve very short time horizon forecasts (Yang et al.,
2015). In the future, we could use the network of sensors
to improve satellite image forecasts similar to Marquez
et al. (2013) and to validate numerical weather model fore-
casts. We may also study how different interpolation meth-
ods affect the results of our network-based forecasting
method in a detailed comparison.
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Appendix A. Analysis for both clear and cloudy days

Table A.2 presents error statistics calculated over all
91 days in the study period. As expected, the magnitude
of errors is smaller when more clear days are included.

Table 1
Summary of error statistics for network forecasts for the 46 days with clouds. Error statistics were calculated for the entire dataset at once. Only forecasts
and data with solar zenith angle less than 75� were used. The mean irradiance was �y ¼ 662 W=m2 and the mean clear-sky index was �k ¼ 0:92.

FH (min) rMAE (%) MAE (W/m2) MBE (W/m2) rRMSE (%) RMSE (W/m2) Avg. skill (%)

1 4.96 30.97 �1.44 11.90 82.55 22.96
3 7.51 48.13 �1.39 15.89 110.46 23.09
5 9.29 59.59 �3.91 18.67 127.06 19.65
10 11.39 71.38 �8.59 22.11 141.44 18.63
20 13.23 82.39 �10.46 24.03 152.84 18.66
30 13.95 86.57 �7.52 24.49 154.15 21.21
60 15.45 95.59 �6.65 26.59 160.72 21.00
120 17.02 106.51 �2.01 29.20 172.45 19.58
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Appendix B. Supplementary material

Location metadata, measurements, clear-sky expecta-
tions, and cloud motion vectors used in this study have
been released online under the CC-BY-NC 4.0 license
(Lorenzo et al., 2015).
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Tróia 92 SE – 14, . In: Quantitative Geology and Geostatistics, vol. 5.
Springer, Netherlands, pp. 155–166. http://dx.doi.org/10.1007/978-94-
011-1739-5_14.

Wilcox, S., Andreas, A., 2010. Solar Resource & Meteorological Assess-
ment Project (SOLRMAP): Observed Atmospheric and Solar Infor-
mation System (OASIS); Tucson, Arizona (Data). http://dx.doi.org/
10.7799/1052226.

Yang, D., Ye, Z., Lim, L.H. I., Dong, Z., 2015. Very short term irradiance
forecasting using the lasso. Sol. Energy 114, 314–326. http://dx.doi.
org/10.1016/j.solener.2015.01.016.

Yang, H., Kurtz, B., Nguyen, D., Urquhart, B., Chow, C.W., Ghonima,
M., Kleissl, J., 2014. Solar irradiance forecasting using a ground-based
sky imager developed at UC San Diego. Sol. Energy 103, 502–524.
http://dx.doi.org/10.1016/j.solener.2014.02.044.

Zhang, J., Florita, A., Hodge, B.-M., Lu, S., Hamann, H.F., Banunar-
ayanan, V., Brockway, A.M., 2015. A suite of metrics for assessing the
performance of solar power forecasting. Sol. Energy 111, 157–175.
http://dx.doi.org/10.1016/j.solener.2014.10.016.

A.T. Lorenzo et al. / Solar Energy 122 (2015) 1158–1169 1169



99

APPENDIX C

REPRINT: OPTIMAL INTERPOLATION OF SATELLITE DERIVED

IRRADIANCE AND GROUND DATA

The following manuscript was published in the proceedings of the 2016 IEEE

43rd Photovoltaic Specialist Conference (PVSC). Further background material is

presented in Chapter 4 of this dissertation. The manuscript is reprinted with

permission from IEEE. Copyright (2016) by IEEE. Original reference: A. T.

Lorenzo, M. Morzfeld, W. F. Holmgren and A. D. Cronin, “Optimal interpo-

lation of satellite derived irradiance and ground data,” 2016 IEEE 43rd Photo-

voltaic Specialists Conference (PVSC), Portland, OR, 2016, pp. 0291–0296. doi:

10.1109/PVSC.2016.7749596



100

Optimal Interpolation of Satellite Derived Irradiance and Ground Data

Antonio T. Lorenzo∗, Matthias Morzfeld†, William F. Holmgren‡, Alexander D. Cronin§

∗College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, United States
†Department of Mathematics, University of Arizona, Tucson, AZ, 85721, United States

‡Department of Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, United States
§Department of Physics, University of Arizona, Tucson, AZ, 85721, United States

Abstract—We describe how Bayesian data assimilation can be
used to improve nowcasts of irradiance over small, city-scale,
spatial areas. Specifically, we use optimal interpolation (OI) to
improve satellite derived estimates of global horizontal irradiance
(GHI) using ground truth data that was collected sparsely over
Tucson, AZ. Our results show that the local data indeed improves
the satellite derived estimates of GHI. A key to success with OI
in this context is to prescribe correlations based on cloudiness,
rather than spatially. OI can be used with a variety of data, e.g.,
rooftop photovoltaic production data or irradiance data, as well
as with several different satellite derived irradiance models.

Index Terms—data assimilation, optimal interpolation, remote
sensing, solar irradiance

I. INTRODUCTION

Accurate estimates of the global horizontal irradiance (GHI)
are crucial to the deployment and grid integration of photo-
voltaic (PV) systems. Satellite derived GHI estimates are used
to design and site PV power plants, to forecast the power
output of a fleet of PV generators, and to provide electric
utilities real-time estimates of the distributed generation (DG)
or “behind the meter” generation of rooftop PV systems. Data
assimilation provides a framework to combine the large area
coverage of GHI estimates derived from satellite imagery with
the more accurate data of ground sensors.

Previous work has also explored using data assimilation
techniques to improve solar radiation estimates [1], [2]. We
use optimal interpolation (OI), which can be thought of as
a generalized least squares approach [3]. OI is a statistical
method to combine prior information about some parameter
(the background) with observations based on the errors and
correlations in the background and observations. The back-
ground is computed from satellite estimates, the observations
come from a mix of GHI sensors and rooftop PV systems. OI
is also used by [2], where numerical weather prediction (NWP)
solar radiation data are combined with ground sensors. A key
difference and innovation in our paper is that correlations
used for OI are prescribed based on differences in cloudiness
between locations, rather than spatial distance.

Our paper is organized as follows. We describe OI in Sec. II
and apply it to satellite GHI estimates in Sec. III. We discuss
the results in Sec. IV and future work in Sec. V. Finally, a
summary is provided in Sec. VI.

II. OPTIMAL INTERPOLATION PROCEDURE

A. Method

We briefly describe the OI method; the derivation can be
found in many data assimilation textbooks, e.g. [3]. The output
of an OI routine (known as the analysis), x̂, is a vector of
length N and is a weighted sum of the background (the
prior information represented as an N vector), xb, and the
measurements, y (M vector):

x̂ = xb +W(y −Hxb). (1)

In this study, xb is composed of satellite derived clear-sky
indices and y is composed of clear-sky indices from a number
of ground irradiance sensors. The observation matrix, H (M×
N matrix), maps points in the background space to points in
observation space. We construct H using the nearest neighbor
approach of selecting the background points that are closest
to the observation locations. The weight matrix, W (N ×M
matrix), is constructed from the error covariance matrix of the
background, P (N × N matrix), and the error covariance of
the observations, R (M ×M matrix) as

W = PHT (R+HPHT )−1. (2)

We also compute the error covariance matrix of the analysis,
P̂ (N ×N matrix), as

P̂ = (I−WH)P, (3)

where I is the N ×N identity matrix.
An essential part of the OI routine is choosing appropriate

error covariance matrices, R and P. The standard method, that
we also follow is to assume that the errors between sensors
are uncorrelated so that R is a diagonal matrix. Each diagonal
element of R is the variance of the observations at each
location over a given period (in the results that follow we
used the entire study period).

The method we use to obtain P is novel, in fact it is
the primary difference between our work and [2]. First, we
separate P into a correlation matrix C and diagonal variance
matrix D:

P = D1/2CD1/2. (4)

We obtain D in a similar manner as R: we take the variance
of each pixel in the satellite image over some period of time.

Care must be taken when estimating the background correla-
tion matrix C. A standard method is to assume the correlation
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decays exponentially with distance between points and this
approach is taken in [2]. This method works well for resource
assessment with daily or longer integration times and for
nowcasts at locations with sensors nearby. The method we
use depends on the actual distributions of clouds as seen by
the satellite. The idea is that pixels in the background that
have similar cloudiness have high correlation and those with
very different cloudiness have low correlation. In the final
analysis, this translates to only adjusting the cloudy areas with
observations that are also cloudy and leaving the clear areas
to be adjusted by observations of the clear sky.

To construct the correlation matrix C (N × N ), we first
define the distance, dij , as the difference between pixel i and
pixel j of an image v (N vector) that defines the cloudiness,

dij = |vi − vj |. (5)

To obtain the elements of C, cij , we apply a known correlation
function, k, to each distance so that

cij = k(dij). (6)

Any one of a number of covariance functions could be chosen
for k; see [4] for a partial list. In this work, we studied piece-
wise linear correlation functions,

k(r) =

{
1− r

l r < l
0 r ≥ l

, (7)

where l is a characteristic length that must be specified. The
choices of k and l need to be tuned to the area that the
algorithm is applied to. Once the error covariance matrices
are defined, one can compute an analysis estimate using the
above equations.

B. Data used for optimal interpolation

This study applies OI to observations and geostationary
satellite data from April, May, and June 2014 in Tucson,
AZ. The observation data were collected from 22 diverse
sensors including a calibrated NREL MIDC sensor [5], custom
irradiance sensors [6], and data from rooftop PV systems.
Irradiance observations were averaged to 1 minute and PV
data are reported as 5 minute averages. We note that all data
sources (observations and satellite images) are available in
near real-time so that the OI corrected GHI images can be
used as a basis for forecasts. To simplify the computation,
all data were converted to clear-sky index data using clear-
sky expectations for each sensor. Five sensors, including the
calibrated NREL MIDC GHI sensor, were not used in the OI
process for validation and error statistics are only presented
for these withheld sensors. The remaining 17 sensors are used
as the observations, y, in the OI routine.

The satellite data were obtained from the GOES-W geosta-
tionary satellite, which was GOES-15 for the period of interest.
To obtain the background error correlation, we estimate the
cloudiness image, v, from the 1 km resolution, visible band of
the satellite as follows. We convert the raw visible brightness
counts, bi, to visible albedo, divide by the cosine of the solar

Fig. 1. Adjusted visible albedo image derived from the GOES-W visible
reflectance image on 2014-04-18 18:30Z over Tucson, AZ. The lighter/high
albedo areas indicate cloudy areas. The green circles are the sensors used for
OI, the blue squares are the sensors used for error analysis, and the black
circle in the center is the calibrated NREL MIDC sensor.

zenith angle, φ, to correct for the time of day, and arrive at
an adjusted visible albedo,

vi =

(
bi
255

)2

/ cos(φi). (8)

We plot the adjusted visible albedo as a map over Tucson,
AZ, in Fig. 1. The lighter areas in Fig. 1 correspond to areas
of high albedo which indicates that the area is cloudy. This
adjusted visible albedo is used to obtain the background error
correlation matrix via eqs. (5)–(7) with a correlation length
of l = 0.2. However, other quantities, such as cloud fraction,
could also be used to estimate the cloudiness at each satellite
pixel.

C. Satellite derived irradiance models

We studied two satellite image to GHI models to generate
the background image, xb, which was also converted to clear-
sky index before applying OI.

One satellite to GHI model to generate xb is a physically
based model called the University of Arizona Solar Irradiance
Based on Satellite (UASIBS) model [7]. UASIBS uses the
visible and infrared images from the GOES-W satellite to
generate a cloud mask. Then, parameterized cloud properties
determined from the infrared images are used in a radiative
transfer model to determine the surface GHI. This GHI es-
timate has the same resolution as the visible channel of the
GOES-W satellite (approximately 1km).

The second model to generate xb is a semi-empirical model,
which we refer to as the EM model. This model is based on the
SUNY model which applies a regression to the visible channel
of the GOES-W satellite [8]. The only differences between the
EM model and the SUNY model are that the dynamic range
is set only with the 3 months of data used in this study instead
of the recommended 60 day window with seasonal correction
and that the specular correction factor was neglected.
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Fig. 2. Example OI results for one image/data taken on 2014-04-19 18:30Z (11:30 AM local time). The top row are the background satellite derived clear-sky
index estimates before OI. The lower row are the clear-sky index analysis after performing OI. Satellite derived estimates using the UASIBS model are on
the left and those using the EM model are on the right. Lighter shades indicate thicker clouds. The green circles are the sensors used for OI, the blue squares
are the sensors used for error analysis, and the black circle in the center is the calibrated NREL MIDC sensor. Comparing the background and analysis, one
can see that the thin cloud near the center of the image is made slightly thicker in the analysis.

III. RESULTS

In this section, we present the results of the analysis of
roughly 1200 satellite images taken over Tucson, AZ. Both the
UASIBS and EM models described above were used to convert
the raw satellite images to estimates of GHI at the surface and
then used as the background field for the OI algorithm.

Figure 2 shows uncorrected background maps of clear-sky
index derived from the UASIBS and EM models and the OI
corrected analysis. Notice that in the UASIBS analysis image,
the thin clouds in the center of the image are thicker than in
the background based on the information of the sensors near
the top of the image that measure other parts of the cloud.
For the EM model, OI adjusts the cloudy areas to be more
cloudy and the clear areas to be more clear. We also see that
the analysis images in Fig. 2 are similar suggesting that OI
works robustly with different satellite image to GHI models
that define the background.

Figure 3 shows an example of the errors of the background
and analysis images as compared to sensor observations for a
single satellite image/time processed with the UASIBS model.
The errors shown are computed from sensors that are not used
during OI. We see that the absolute error was reduced for

all sensors, including the calibrated MIDC sensor and rooftop
PV systems. This suggests that the OI correctly propagates
information from data to unobserved locations.

We calculated empirical cumulative distribution functions
(CDF) for the observations, background, and analysis. Figure
4 shows these CDFs for the UASIBS model. The slope of
zero around 0.8 in the CDF of the UASIBS background (red
dashed-dotted line) indicates that the UASIBS model does not
predict clear-sky indices of 0.8. The analysis (blue dashed line)
does predict clear-sky indices in that range and even extends
the range over 1.0 to more closely match the observations.

The empirical CDF for the EM model is shown in Fig. 5. We
see that the EM model tends to over-predict clouds, but that
the OI then removes much of this bias. On the other hand, the
figure suggests that the analysis could be improved at smaller
clear-sky indices to better match the observations.

For the 1200 images analyzed, root-mean squared errors
(RMSE), mean absolute errors (MAE), and mean bias errors
(MBE) decreased on average. Error statistics for the EM and
UASIBS models in terms of the clear-sky index calculated over
all the withheld sensors and for clear, cloudy, and all days are
presented in Table I. Error statistics in units of GHI for the
calibrated MIDC irradiance sensor are presented in Table II.
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TABLE I
ERROR STATISTICS CALCULATED OVER 1200 SATELLITE CLEAR-SKY INDEX ESTIMATES AND OI CORRECTED ANALYSIS. BOTH THE EMPIRICAL (EM)
MODEL AND UASIBS MODEL DESCRIBED IN SEC. II-C ARE SHOWN. THE MEAN ABSOLUTE ERROR (MAE), ROOT MEAN SQUARED ERROR (RMSE),

AND MEAN BIAS ERROR (MBE) ARE CALCULATED OVER ALL THE WITHHELD SENSORS AND ALL IMAGE TIMES AS A SINGLE TIME-SERIES. STATISTICS
WERE CALCULATED FOR ALL DAYS, ONLY CLEAR DAYS (ROUGHLY 700 DAYS), AND CLOUDY DAYS (500 DAYS). ALL NUMBERS ARE IN UNITS OF

CLEAR-SKY INDEX WHICH HAS A TYPICAL RANGE OF 0 TO 1.3.

MAE RMSE MBE
All Clear Cloudy All Clear Cloudy All Clear Cloudy

EM analysis 0.088 0.048 0.149 0.172 0.095 0.245 0.026 0.021 0.033
EM background 0.184 0.152 0.231 0.268 0.213 0.333 0.138 0.140 0.136

UASIBS analysis 0.080 0.039 0.141 0.164 0.088 0.235 -0.005 -0.004 -0.006
UASIBS background 0.094 0.047 0.164 0.190 0.099 0.275 -0.015 -0.003 -0.034

TABLE II
ERROR STATISTICS CALCULATED OVER 1200 SATELLITE GHI ESTIMATES AND OI CORRECTED ANALYSIS FOR THE CALIBRATED NREL MIDC SENSOR.
BOTH THE EMPIRICAL (EM) MODEL AND UASIBS MODEL DESCRIBED IN SEC. II-C ARE SHOWN. THE MEAN ABSOLUTE ERROR (MAE), ROOT MEAN
SQUARED ERROR (RMSE), AND MEAN BIAS ERROR (MBE) ARE CALCULATED OVER ALL IMAGE TIMES AS A SINGLE TIME-SERIES. STATISTICS WERE

CALCULATED FOR ALL DAYS, ONLY CLEAR DAYS (ROUGHLY 700 DAYS), AND CLOUDY DAYS (500 DAYS). UNITS ARE W/M2 .

MAE RMSE MBE
All Clear Cloudy All Clear Cloudy All Clear Cloudy

EM analysis 56.0 23.4 104. 113. 32.3 174. 16.1 17.3 14.3
EM background 110. 85.7 145. 144. 97.0 194. 75.0 83.8 61.9

UASIBS analysis 50.9 17.5 101. 110. 26.4 171. 2.94 6.96 -3.03
UASIBS background 53.1 16.4 108. 120. 27.9 186. -12.4 3.02 -35.2
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Fig. 3. A plot of the absolute error in the analysis and background
images (generated with UASIBS) as compared to observations at some sensor
locations showing reduced errors for a single satellite image. The sensors
shown were not included in the OI correction routine. Note that sensor 11184
is the MIDC calibrated irradiance sensor and sensors 437, 435, and 407
are rooftop PV systems. The red squares indicate the absolute error in the
background image while the blue circles indicate the error in the analysis.
The dashed lines indicate the mean absolute errors for the sensors shown.

IV. DISCUSSION

Our results show significant improvement by the OI for
the EM model. Improvements for the UASIBS model are
more modest. The reasons for this are as follows. UASIBS
is a more sophisticated satellite image to GHI model, so that
improvements are harder to obtain. In particular, the average
error values shown in the tables above differ from the large
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Fig. 4. UASIBS empirical cumulative distribution function. The black line
is the CDF of the observations, the red dashed-dotted line is the CDF of the
background, and the blue dashed line is the CDF of the analysis. The UASIBS
background does not predict clear-sky indices around 0.8 and does not extend
beyond 1.0. The analysis shows better agreement with the observed CDF.

improvements we have seen on many days, and illustrated in
Fig. 3. We suspect that average errors are likely to be affected
by large errors occurring only on some days due to parallax.

Parallax refers to the discrepancy between the actual loca-
tion of a cloud and the location tagged by a satellite [9]. The
GOES-W satellite is located at 135◦W on the equator while
Tucson, AZ is at roughly 32◦N and 110◦W, so the satellite is
viewing the clouds at an angle. The satellite geolocates each
pixel as if it were at the surface. This means that a cloud
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Fig. 5. The empirical cumulative distribution function for the EM model.
The black line is the CDF of the observations, the red dashed-dotted line
is the CDF of the background, and the blue dashed line is the CDF of the
analysis. The background EM model seems to make clouds thicker than they
are in reality. The analysis corrects much of this bias and changes the shape
of the CDF to more closely match the observations.

obscures a pixel that is to the NE of the cloud, so the actual
location of the cloud is to the SW of what the satellite tags
the pixel as. Thus, when the OI algorithm tries to compare the
observations with the background derived from the satellite
image, the observations and background may disagree about
whether a cloud is present at all.

This issue is illustrated in Fig. 6 where many sensors are
near the edges of the estimated clouds. Some of the sensors
locations that are reported as clear in the background are
actually cloudy. The OI algorithm tries to rectify this by
adjusting the areas that were clear in the background to be
cloudy. When we compare this analysis to the background
and adjusted visible albedo image, we see the analysis does
not look physical. If we shift the satellite image by a small
amount to the SW and rerun OI, we see that this shifted
analysis looks more like what one would expect given the
visible albedo image. This suggests that we first need to correct
the parallax issue before performing OI, and that the error
statistics calculated over 1200 image times are likely skewed
by these errors.

V. FUTURE WORK

We plan to improve this work in several aspects. An
important task will be to correct the issue of parallax that can
cause large errors in the OI analysis. We have experimented
with estimating the cloud top height and adjusting for parallax
on a pixel by pixel basis, but found this is challenging to do
well. In the future, we plan to group classes of clouds together
to then determine a height for each cloud group and shift the
group appropriately.

This work focused only on the area around Tucson, AZ.
One future experiment could examine how OI can improve
background estimates using observations that are very far apart
and may experience different weather conditions.

VI. CONCLUSION

There are a number of models to convert satellite images to
ground irradiance, and all are prone to errors. These satellite
derived irradiance images are important to many phases of PV
integration, from siting to forecasting the output of a fleet. We
describe how to improve the irradiance estimates using ground
data and optimal interpolation.

The optimal interpolation technique uses satellite derived
estimates of GHI, ground observations, and the associated
error estimates to produce a GHI estimate that has, on average,
better error statistics. An important consideration for the
method as described is the specification of the error correlation
between pixels in the satellite image. We propose using the
(almost) raw visible image from the satellite to correlate pixels
based on the cloudiness at each pixel. We apply this method to
a physically based satellite image to GHI model and show that
the distribution of the estimated GHI more closely matches the
data. Similarly, the method applied to an empirical satellite
image to GHI model removes a large bias from the GHI
estimate.

One limitation in the optimal interpolation method is that
errors in the estimated locations of the clouds in the satellite
GHI estimate can produce analysis images that are unreason-
able. Thus, future work will explore correcting this issue of
parallax or recognizing when this issue occurs so that optimal
interpolation can be avoided for those times. Other future work
includes producing a forecast from these improved satellite
derived GHI nowcasts.
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Fig. 6. Illustration of error due to parallax. The adjusted visible albedo image from the GOES-W visible channel, background clear-sky index estimate made
with the UASIBS algorithm, analysis after performing OI, and analysis after shifting the satellite image are shown. The green circles are the sensors used for
OI, the blue squares are the sensors used for error analysis, and the black circle in the center is the calibrated NREL MIDC sensor. We see that at sensor
locations near the edge of clouds in the background, the sensors and background disagree about whether it is cloudy. This causes the OI to fail as it tries to
rectify this discrepancy. If we shift the image slightly to the SW and redo the OI, we see that the sensors and background now better agree about whether
the area is cloudy so that the analysis after shifting looks more reasonable.
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a b s t r a c t

We use a Bayesian method, optimal interpolation, to improve satellite derived irradiance estimates at
city-scales using ground sensor data. Optimal interpolation requires error covariances in the satellite esti-
mates and ground data, which define how information from the sensor locations is distributed across a
large area. We describe three methods to choose such covariances, including a covariance parameteriza-
tion that depends on the relative cloudiness between locations. Results are computed with ground data
from 22 sensors over a 75� 80 km area centered on Tucson, AZ, using two satellite derived irradiance
models. The improvements in standard error metrics for both satellite models indicate that our approach
is applicable to additional satellite derived irradiance models. We also show that optimal interpolation
can nearly eliminate mean bias error and improve the root mean squared error by 50%.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Estimates of global horizontal irradiance (GHI) are essential at
many stages of photovoltaic (PV) system deployment and opera-
tion. A widely used technique is to compute GHI from geostation-
ary satellite images, which are typically available every 15–30 min
and cover large areas of the globe. Such satellite derived estimates
of GHI are commonly used to design and site PV power plants
(Vignola et al., 2013), to forecast the output of a fleet of PV gener-
ators (Kühnert et al., 2013), and to provide real-time estimates of
distributed generation (DG) or ‘‘behind the meter” generation of
rooftop PV systems (Saint-Drenan et al., 2011). Satellite derived
estimates have also been used to detect failures in PV systems
(Drews et al., 2007).

In addition to satellite derived GHI estimates, one may have
access to ground sensors that provide more accurate GHI measure-
ments, but are often sparsely distributed. We present a method
that combines the broad areal coverage of satellite derived GHI
with the accurate point measurements from ground sensors in
order to provide more accurate GHI estimates for city-scale areas.

Similar techniques have used ground measurements to improve
satellite derived irradiance estimates in the context of improving
daily (or longer) irradiance estimates. Much of this work studies

so called site adaptation techniques with the goal of improving
multi-year satellite irradiance estimates using a limited measure-
ment campaign from ground sensors (Polo et al., 2016). A number
of studies use Kriging methods that rely on spatial interpolation of
the ground data along with satellite derived estimates (D’Agostino
and Zelenka, 1992; Journée et al., 2012; Frei et al., 2015). Others
use linear bias corrections (Polo et al., 2015), polynomial bias cor-
rections (Mieslinger et al., 2014), or apply a polynomial to correct
the satellite cumulative distribution function (Schumann et al.,
2011). Ruiz-Arias et al. (2015) used optimal interpolation (OI) with
numerical weather prediction solar radiation data and monthly-
averaged daily GHI values from ground sensors.

OI is a Bayesian technique often used in geophysics, in particu-
lar numerical weather prediction, to combine models and observa-
tions. OI is mathematically equivalent to 3D variational methods,
Kriging, and Gaussian process regression (Low et al., 2015). OI
and 3D variational techniques are often used in the field of mete-
orology, Kriging is used in the context of geostatistics, and one
often encounters Gaussian process regression in the context of
machine learning. Thus, each method seeks a solution with the
approach and quantities, like covariances, appropriate for each
context.

In the context of this study, the satellite derived GHI estimates
represent the model and the ground sensor data are the observa-
tions for OI. We focus on improvements to GHI estimates from a
single satellite image using OI rather than improving the

http://dx.doi.org/10.1016/j.solener.2017.01.038
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multi-year satellite estimates. This single satellite image will be
used to nowcast DG production and to produce forecasts. We also
present a novel method to parameterize the correlation between
satellite pixels using the relative cloudiness between them.

We describe the satellite derived irradiance models and obser-
vation data in Section 2, the OI method in Section 3, and three ways
to estimate covariances between locations in Section 4. These
covariances are critical to the success or failure of OI. A method
to correct for satellite geolocation errors is described in Section 5,
and parameter tuning is detailed in Section 6. We present and dis-
cuss the results of applying OI to Tucson, AZ in Section 7. Finally, a
summary of the work is provided in Section 8.

2. Models and observations

2.1. Satellite derived irradiance models

To investigate how well OI works with different types of prior
information, we use two different models to convert satellite
images to GHI maps. The resulting GHI maps are called the ‘‘back-
ground” or ‘‘prior” in OI and will be denoted by xb. Both models use
images from the GOES-W geostationary satellite that cover the city
of Tucson, AZ (roughly 75� 80 km). An example of a visible albedo
image derived from the visible channel of GOES-W is shown in
Fig. 1.

One of the models is a physical model called the University of
Arizona Solar Irradiance Based on Satellite (UASIBS) model (Kim
et al., 2016). UASIBS uses the visible and infrared images from
the GOES-W satellite to generate a cloud mask. Then, parameter-
ized cloud properties determined from the infrared images are
used in a radiative transfer model to determine the surface GHI.
This GHI estimate has the same resolution as the visible channel
of the GOES-W satellite (approximately 1 km).

The second model is a semi-empirical model, which we refer to
as the SE model. This model is based on the SUNY model which
applies a regression to the visible channel of the GOES-W satellite
(Perez et al., 2002). The only differences between our SE model and
the SUNY model are that the dynamic range is set with the
3 months of data used in this study instead of the recommended
60 day window with seasonal corrections and that the specular
correction factor was neglected.

To remove effects of the diurnal cycle and ease incorporation of
data from rooftop PV systems, all images were converted into
clear-sky index images by dividing the estimated GHI by a clear-
sky GHI estimate. The resulting values of clear-sky index range
from nearly 0 for an overcast sky to 1 for a cloud-free sky. These
conversion algorithms do not take into account image time-
stamp inaccuracies or satellite geolocation errors, but corrections
for those errors will be discussed in Section 5.

2.2. Ground observations

The observation data are collected from 22 sensors including a
calibrated NREL MIDC sensor (Wilcox and Andreas, 2010), custom
irradiance sensors (Lorenzo et al., 2014), and data from rooftop PV
systems. The sensor locations are indicated by orange circles in
Fig. 1.

Irradiance observations were averaged to 5 min to match PV
data that are reported as 5 min averages. This averaging is consis-
tent with the inherent averaging due to the satellite spatial resolu-
tion. We note that all data sources (ground sensors and satellite
images) are available in near real-time so that the OI corrected
GHI images can be used as a basis for forecasts or DG nowcasts.

All data were converted to clear-sky index data using clear-sky
expectations for each sensor. To produce the clear-sky expectation
for one day, the measurements from preceding clear days within
one week are averaged to produce an initial estimate. This initial
estimate is then scaled to match the clear times on the day of inter-
est to account for differences in turbidity or temperature. This
method simplifies the calculation of clear-sky expectations for
the rooftop PV systems because no parameters about the system
(directional response, peak power) are assumed. The clear-sky
expectations and clear-sky index data was inspected manually to
confirm the quality. Note that the ground observation data may
experience cloud enhancement events which lead to clear-sky
indices greater than 1.

We restrict our data and analysis to solar zenith angles less than
60�. At times, we also withhold sensors from the OI routine and use
these sensors to validate how well OI performs for other locations
in the image besides the input sensor locations.

2.3. Data set description

About 1300 satellite images collected over April, May, and June
2014 were converted to irradiance images with the two models
and paired with the corresponding ground observations. We ran-
domly divide the data set into a training set with 437 images
(252 clear and 185 cloudy images) and a verification set of 874
images (504 clear and 370 cloudy images). The training set is used
to tune parameters for OI as described in Section 6. The verification
set is used for error analysis and to draw conclusions about OI.

The distinction between clear and cloudy satellite images will
become important in Section 3 for determining sensor error vari-
ances. Clear times are identified using a combination of the UASIBS
estimates and the ground sensor data. Specifically, if the minimum
value of a UASIBS clear-sky index image is greater than 0.8, the
mean of the image is greater than 0.99, and the second largest
deviation from 1 of any of the ground observations is less than
0.05, then we classify the image as clear. This procedure accurately
identifies times at which no clouds exist in the area of study. Other
methods can also be used to perform this classification (Reno and
Hansen, 2016; Escrig et al., 2013; Ghonima et al., 2012), but our
simple method is sufficient for our purposes.

Fig. 1. Visible albedo image derived from the visible channel of the GOES-W
satellite. Lighter colors indicate cloudier areas. The orange dots represent the
locations of the sensors used in this study which includes both irradiance sensors
and rooftop PV systems as described in Section 2.2. The yellow square in the center
indicates the location of a calibrated GHI sensor on the University of Arizona
campus. The image covers an area of roughly 75� 80 km over Tucson, AZ. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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3. Optimal interpolation

We now describe the OI method. Under wide assumptions, OI is
optimal in the sense that it is the best linear, unbiased estimator of
a field. Further detail can be found in data assimilation textbooks,
e.g. Kalnay (2003).

The result of the OI routine, known as the analysis, xa, is a vector
that is produced by computing a weighted sum of the background
(or prior information), xb, and a correction vector (or ‘‘innovation”
in OI) that depends on the measurements, y:

xa ¼ xb þWðy �HxbÞ: ð1Þ
As discussed in Section 2.1, the N satellite derived clear-sky

indices from one image are represented as the background vector,
xb. The measurement vector, y, is a vector of length M of clear-sky
indices generated from M ground irradiance sensor and rooftop PV
power data observations as discussed in Section 2.2. The observa-
tion matrix, H, is an M � N matrix that maps points in the back-
ground space to points in the observation space. We construct H
using the nearest neighbor approach of selecting the satellite pixels
that are closest to the observation locations. Another possible
approach is to average the points in the background that are within
a given radius of each sensor location. Furthermore, H can contain
conversion factors to convert the units of xb to the units of y. In our
case however, H is unitless because y and xb are both in units of
clear-sky index. Example background and analysis images for the
UASIBS and SE models are shown in Fig. 2.

The weight matrix, W, is an N �M matrix constructed from the
error covariance matrices of the background, P, and the observa-
tions, R, as

W ¼ PHTðR þHPHTÞ�1
: ð2Þ

Choosing these error covariance matrices must be done with
care: they define how information is transferred from sensor loca-
tions to other locations in the satellite image, and how much
weight is given to any one sensor or satellite pixel.

R is defined as the error covariance matrix of the observations
such that

y ¼ yt þ e; e � Nð0;RÞ ð3Þ

where yt is the true value of the observation and e is a random vec-
tor sampled from a multivariate normal distribution with mean 0
and covariance R. On clear days, we assume the true clear-sky index
values are 1.0. We also assume that the measurements are unbiased
and that the correlations in the errors between sensors is negligible,
so R is a diagonal matrix in our case. Thus, we estimate the diagonal
elements (sensor error variances) by computing the variance on a
set of clear days in the training data set for each sensor individually.
Furthermore, we restrict the minimum variance to be 0.001 or
about a 3% clear-sky index RMS error to avoid exact interpolation
at sensor locations. With R calculated from the ground sensor data,
we describe various ways to parameterize P next.

4. Covariance parameterization and correlation structure

Choosing an appropriate background error covariance matrix is
an important step in the OI method for this application and deter-
mines how well OI performs. The background error covariance
matrix, P, defines how information is transferred from sensor

Fig. 2. Example background (top row) and analysis (bottom row) clear-sky index images using the UASIBS (left column) and SE (right column) satellite image to ground
irradiance models applied to the visible satellite image shown in Fig. 1. Note that in this case, UASIBS failed to produce many clouds. OI adds clouds to the analysis and also
makes the darker, clear areas even more clear. In this case, the SE model overproduces clouds. OI reduces the cloud amount while keeping clouds in suitable locations.
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observation locations to locations throughout the background
image. Similar to R; P is defined such that

xb ¼ xt þ g; g � Nð0;PÞ ð4Þ
where xt is the ‘‘true” value of the satellite derived clear-sky index
image and g is a random vector sampled from a multivariate normal
distribution with mean 0 and covariance P.

We will now describe three methods to calculate P:

1. Empirical: P calculated empirically from all of the background
images,

2. Spatial: Pwith correlations parameterized based on the physical
distance between pixels, and

3. Cloudiness: P with correlations parameterized based on the dif-
ference in cloudiness between each pixel.

4.1. Empirical covariance

The empirical P is calculated by assuming that satellite-derived
clear-sky index images are sampled from the same multivariate
normal distribution and then simply computing the covariance
using all images in the training data set. This assumption is likely
invalid given the high probability of clear days leading to a non-
Gaussian distribution. An analysis computed with this type of P
gives non-physical results, as described in Section 7, but is
included for comparison.

4.2. Correlation matrix parameterization

Before describing spatial and cloudiness covariances, it is useful
to decompose P into a diagonal variance matrix, D, and a correla-
tion matrix, C as

P ¼ D1=2CD1=2: ð5Þ
Here, D sets the scale of the errors while C describes how errors and
information spread. We obtain D in a similar manner as we do for R,
we use a number of clear images from the training data set to esti-
mate the variance of each pixel in the background individually. The
errors in xb come mainly from the satellite image to ground irradi-
ance conversion that often exhibits large differences in error
between clear and cloudy images. Thus, we allow for a tunable scal-
ing factor, d, in the construction of D for cloudy images to account
for possible model error differences between clear and cloudy skies
so that

D ¼ dD0 ð6Þ
where D0 is the variance estimated from the clear images.

The correlation matrix C defines how information is transferred
from the sensor locations to other locations in the satellite esti-
mate. C can be parameterized based on the spatial distance
between points in the background as in Ruiz-Arias et al. (2015)
or, as we demonstrate, one might rely on information in the cur-
rent satellite image, such as cloudiness.

To construct the elements of C; cij, we apply a correlation func-
tion, k, to the distance metric r computed between each pixel i and
j

cij ¼ kðrijÞ: ð7Þ
Any number of covariance functions, k, can be chosen; see

Rasmussen and Williams (2005) for a partial list. We chose to
study a piece-wise linear correlation function

kðrÞ ¼ 1� r
l r < l

0 r P l

�
; ð8Þ

an exponential correlation function

kðrÞ ¼ exp � r
l

� �
; ð9Þ

and a square exponential correlation function

kðrÞ ¼ exp � r2

l2

� �
: ð10Þ

For each correlation function, l is a characteristic length that we
tune with a training data set for each choice of k to minimize error
as described later in Section 6.

4.3. Spatial covariance

The distance metric for the spatial correlation parameterization
is the standard Euclidean distance (once locations are mapped to a
two dimensional plane using a map projection),

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
: ð11Þ

Thus, the spatial covariance P is constructed by applying Eqs. (5)–
(7) and (11) with a tuned k; l, and d as described in Section 6.

4.4. Cloudiness covariance

For what we call cloudiness covariance, we parameterize C
based on the difference in cloudiness in the visible satellite image.
This corresponds to only adjusting the cloudy areas with observa-
tions that are experiencing similarly cloudy sky and leaving the
clear areas to be adjusted by observations of the clear sky. This
adjustment is made without consideration of the spatial distance
between pixels. We use the adjusted visible albedo calculated from
the visible satellite image rather than the processed clear-sky
index maps to compute the correlation. This avoids cloud repre-
sentation errors that may arise in the satellite to irradiance conver-
sion; for example, note how UASIBS fails to produce clouds in
many areas of Fig. 2. Also note that because this parameterization
depends on the visible satellite image, C and subsequently P are
calculated for each image individually.

To calculate the adjusted visible albedo, we convert the visible
brightness counts from the satellite, bi, to visible albedo and divide
by the cosine of the solar zenith angle, /, to correct for the time of
day:

v i ¼ bi

255

� �2
,

cosð/iÞ: ð12Þ

An example of this adjusted visible albedo is shown in Fig. 1. We
also remove the constant (over the three months we studied) back-
ground albedo that is due to the land surface. This background is
calculated as the average of the adjusted visible albedo on clear
days in the training set so that

zi ¼ v i � �vclear
i ð13Þ

The distance metric for the cloudiness correlation parameteri-
zation is the absolute value of the difference between pixel values
of the adjusted visible albedo image (with the land surface back-
ground removed):

rij ¼ jzi � zjj: ð14Þ
Thus, the cloudiness covariance P is constructed by applying

Eqs. (5)–(7) and (12)–(14) with a tuned k; l, and d for each individ-
ual satellite image.

4.5. OI summary

In summary, to perform OI, one must first collect background,
xb, and observation, y, data. Then define observation error covari-
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ances, R, from the observation data and define the background
error covariances, P, either empirically or by following the above
procedure after choosing a distance metric r, the correlation func-
tion k, the correlation length l, and the scaling factor d using Eqs.
(5)–(7). Finally, Eqs. (1) and (2) can be used to compute the analy-
sis, xa.

5. Geolocation correction

It is important to consider errors in the tagged location for each
satellite pixel compared to the ground sensors and the time-stamp
of the image. Furthermore, one must take into account the position
of the sun in order to predict the cloud shadow location on the
ground. If this cloud shadow location is inaccurate, the optimal
interpolation routine may perform poorly, or worse, may invert
the cloudy and clear areas of the images. Examples of an inverted
analysis and the corrected analysis once these position adjust-
ments are taken into account are shown in Fig. 3.

The first geolocation issue is called parallax, which is the dis-
crepancy between the actual location and the location tagged by
a satellite due to the satellite viewing the scene at an angle
(Vicente et al., 2010). The GOES-W satellite is located at 135�W
on the equator while Tucson, AZ is at roughly 32�N and 110�W.
The satellite tags the location of each pixel as if it were at the sur-
face. This means, for our region, that a cloud obscures a pixel that is
to the NE of the cloud. Thus, the actual location of the cloud is to
the SW of what the satellite tags the pixel as.

Another source of error is a timing issue that arises because the
satellite tags each image with a single time, however it may take

the satellite 30 min to sweep and capture that image. Thus, there
is uncertainty in the time that any part of the image was captured.

Estimating where the cloud shadow falls on the surface due to
solar position effects is the final geolocation issue we take into
account. If the shape and height of the clouds is known, the correc-
tion for both parallax and solar position is a simple geometry prob-
lem. However, cloud shape and height are difficult to determine
with sufficient accuracy, and we rely only on an estimate of the
height of the top of the clouds and ignore the vertical thickness.
We also assume that the cloud height is uniform in one image.

Given these limitations, we use a simple strategy to correct for
geolocation errors. We find a single optimal cloud height by mini-
mizing the mean squared error (MSE) between the OI analysis and
sensors that are not used to perform OI. The sensors not used are
the same cross-validation sensors we will discuss next. We per-
form this correction using a grid search for cloud heights ranging
from 0 to 14 km and we shift the entire background image based
on that height, perform OI, then calculate the MSE. Once the height
that minimizes MSE is found, we perform OI again on the shifted
background image and save the analysis as our result for the given
time. This technique assumes that there is a single cloud layer,
which is not always the case and can be improved in the future.

6. Tuning OI to a specific location

As discussed in Section 4.2, k; l, and d are tunable parameters
that determine how information is spread through the image. In
order to find suitable values of these parameters, we split the
satellite images into a training and a verification set as described

Fig. 3. An example of a time when errors in geolocation of the satellite image result in an analysis that is inconsistent with the actual satellite image. The background
estimate in this case (upper right) agrees well with the visible satellite image (upper left). However, after performing OI, the analysis (lower left) has clouds in areas that
should be clear according to the visible image and sometimes makes areas that should have clouds clear. After shifting the background image slightly, OI produces an analysis
(lower right) that is consistent with the visible image.
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in Section 2.3, and tuning is only performed with the training set.
Furthermore, we perform a six fold cross-validation over the sen-
sors in order to validate the model at locations not included in
the OI calculation. We then perform a grid search through the
parameter space and define the optimal parameters as those that
give the lowest mean (over the cross-validation sets) MSE of the
withheld sensors. This tuning is performed for both spatial and

cloudiness correlation parameterizations and for both the SE and
UASIBS models.

The optimal parameters for theUASIBS and SEmodels using both
cloudiness and spatial covariances computed only using the training
data are presented in Table 1. We note that these parameters are
optimal for Tucson, AZ. Other areas, sensors, or study periods may
require a different parameterization of the error covariances.

Table 1
Optimal parameters for the UASIBS and SE models for both cloudiness and spatial covariances. l has units of adjusted visible albedo for cloudiness covariances and units of
kilometers for spatial covariances.

d l k

UASIBS Cloudiness 156 0.2 Linear
Spatial 225 20 Exp.

SE Cloudiness 1.56 0.6 Exp.
Spatial 0.25 100 Exp.

Fig. 4. Scatter plots of predicted versus measured clear-sky index (top row) and GHI (bottom row) for the calibrated NREL MIDC GHI sensor on the University of Arizona
campus for both the UASIBS model (left column) and SE model (right column). The analysis was computed using cloudiness covariance, the optimal parameters listed in
Table 1, and the verification data set. Data from the background images is plotted as blue �’s and data from the OI analysis is plotted as orange +’s. GHI is computed by
multiplying clear-sky indices and an appropriate clear-sky profile. In each case, we see that the analysis values are more tightly scattered around the dashed y ¼ x line. Also
notice that the UASIBS model does not predict clear-sky index values from roughly 0.6 to 0.8 but that the analysis does move some values into this range. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In general, the minimum MSE is sensitive to the parameter
choice with the most sensitivity shown for l and least sensitivity
for k. A small change in l (0.1 for cloudiness and 10 km for spatial)
typically degrades the MSE by 10% or more. One exception is the
combination of the SE model and spatial covariance which produce
MSE surfaces that are less sensitive to a range of parameters, for
example a 40 km difference in l only raises the MSE by 10%.

Large d values for the UASIBS model indicate that the estimated
variance from only the clear days is too low. This is because UASIBS
suppresses many clouds or slight variations on clear days. An
example of this on a cloudy day is shown in Fig. 2. A value of
d < 1 for the SE model indicates that the model tends to overesti-
mate the variance on cloudy days as a result of the tendency to
overproduce clouds even at times that should be clear.

Our proposed tuning process is computationally intensive but
manageable; computation for one set of (k; l; d) and one cross-
validation set using 24 cores of two Intel Xeon E5-2690 v3 proces-
sors takes nearly 10 min. Thus, to tune over the six cross-validation
sets, three choices of k, ten choices of both l and d, spatial and
cloudiness correlation parameterizations, and the SE and UASIBS
models would take nearly 7 weeks on a single 24 core machine.
It would take a typical 4 core laptop or desktop nearly a year to
perform the same tuning. To speed up this tuning, the bulk of
the operations were converted to GPU code which decreased the
run-time for a single parameter set over the test data to 5 min
using a single GPU. We used the University of Arizona’s El Gato
supercomputer, which has 140 NVIDIA K20x GPUs, to perform
the tuning in a matter of days. Once tuning is complete, OI can
be computed in under five seconds for each image.

7. Results and discussion

We compute the OI analysis on each of the images in the veri-
fication data set using optimal parameters found in Section 6. First,
we compute the analysis of the verification data by only withhold-
ing the NREL MIDC GHI sensor at the University of Arizona, and
later we calculate errors while performing six fold cross-
validation over the sensors.

Scatter plots of predicted versus measured values at the NREL
MIDC sensor using cloudiness covariance are shown in Fig. 4. In
the clear-sky index scatter plots, we see that the UASIBS model
under-predicts clouds while the SE model over-predicts clouds. It
is interesting to note that the UASIBS model does not predict
clear-sky index values between 0.6 and 0.8, and that OI helps to fill
in this gap. The GHI scatter plots show that the analysis performs
well and is more tightly scattered around the y ¼ x line with min-
imal bias. It is especially striking to note how well OI improves the
GHI estimates for the SE model. Figs. 2 and 4 also demonstrate that
OI is not simply a bias correction applied to the whole background
because the analysis is not a linear (or even polynomial) function
applied to the background values. This is especially evident in
the scatter plot of GHI for the SE model (lower right of Fig. 4).

We compute the mean bias error (MBE), mean absolute error
(MAE), and root mean squared error (RMSE) over the verification
data with 5 min average sensor data and ‘‘instantaneous” satellite
estimates. For RMSE, the square root is computed after all averag-
ing computations. The errors in GHI when only the NREL MIDC sen-
sor was withheld from the OI routine and converting clear-sky
index to GHI using the sensor’s clear-sky profile are shown in
Table 2.

To calculate the errors over the cross-validation sensors in order
to validate OI at locations not included in the algorithm, we aver-
aged over the withheld sensors, the cross-validation runs, and the
verification images. Fig. 5 shows the reduction in errors for the
UASIBS and SE models using cloudiness covariance for the analysis

errors as compared to the background errors. Table 3 presents the
errors for the background and analysis computed with each covari-
ance method for the UASIBS and SE models, respectively. Analyzing
Figs. 4 and 5 and Tables 2 and 3, we see that the SE model initially
has a large bias that is corrected in the analysis. This also leads to
large MAE and RMSE relative improvements of 68% and 50%,
respectively. The analysis using the best covariance parameteriza-
tion for UASIBS had a RMSE relative improvement of 16%.

Furthermore, it is interesting to see that the errors after optimal
interpolation are similar for both the UASIBS and SE models. We
interpret this as evidence that one can use the relatively simple

Table 2
Error statistics for the NREL MIDC sensor on the University of Arizona campus. The
analysis was computed with only the MIDC sensor withheld and averaged over the
verification data set, and cloudiness covariance was used. Both the UASIBS and SE
models show improvements and have a similar analysis RMSE. Units are W/m2.

MBE MAE RMSE

UASIBS analysis 4.16 27.2 71.1
UASIBS background 20.7 38.8 98.8
SE analysis 11.2 36.0 72.7
SE background �86.1 107 140

Fig. 5. Clear-sky index cross-validation error statistics for the UASIBS and SE
models before (background) and after (analysis) performing OI using cloudiness
covariance with the optimal parameters listed in Table 1. The error statistics were
computed by averaging over the withheld sensors, the cross-validation runs, and
the verification times. The SE model initially has a large bias that is corrected by the
analysis. After analysis, both the UASIBS and SE models have similar RMSE.

Table 3
Clear-sky index error statistics using the UASIBS and SE models with cloudiness,
spatial, or empirical covariance parameterizations. Errors are calculated by averaging
over the withheld sensors, cross-validation runs, and verification images. OI using any
of the covariance methods improves upon the background for both models. All errors
are in units of clear-sky index.

MBE MAE RMSE

UASIBS model
Cloudiness analysis 0.003 0.039 0.097
Spatial analysis 0.004 0.038 0.099
Empirical analysis 0.000 0.043 0.105
Background 0.022 0.045 0.115

SE model
Cloudiness analysis �0.001 0.050 0.102
Spatial analysis �0.005 0.051 0.105
Empirical analysis �0.001 0.051 0.106
Background �0.132 0.156 0.201
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semi-empirical model with optimal interpolation and still obtain
irradiance estimates that are comparable in quality to estimates
from more complicated, physics-based models. This also suggests
that the optimal interpolation routine that we have presented is
likely to work with satellite image to irradiance models that were
not studied here.

OI assumes that the background error is unbiased and Gaussian
as described in Eq. (4). However, it is clear from Fig. 5 that the SE
background is biased. From Fig. 4, it also appears that the UASIBS
background is not Gaussian. Thus, we cannot assume that this
application of OI yielded the best linear unbiased estimate, but
we show that OI still produces measurable improvements.

The results in Table 3 indicate that any of the three methods to
compute the background error covariance matrix produce an anal-
ysis that improves upon the background. However, when we sub-
jectively compare the analysis of the covariance models, as in
Fig. 6, we see that analysis using the cloudiness covariance method
better represents the cloud pattern depicted in the visible satellite
image. Clouds produced using the spatial and empirical covariance
methods are physically inconsistent with the clouds depicted in
the visible albedo image. For example, the lower left corner of
the images in Fig. 6 should have no clouds present according to
the visible albedo image, but the empirical covariance analysis
has clouds present in that region. The analysis produced using spa-
tial covariance shows a thin and smoothly varying ‘‘background
cloud” that is simply not observed in the visible albedo image. Fur-
thermore, the cloudiness covariance parameterization is calculated
for each satellite image individually which likely leads to a better
modeling of the spatial heterogeneity of irradiance. Thus, we rec-
ommend the cloudiness covariance parameterization as the
method of choice, but additional verification sensors evenly dis-

tributed throughout the study area may help to better distinguish
the parameterizations through objective measures.

8. Conclusions

We presented an application of optimal interpolation that com-
bines ground irradiance sensor data with a satellite derived esti-
mate of irradiance. We systematically analyzed three methods to
choose an error covariance matrix for the satellite derived GHI esti-
mates. This covariance matrix is critical to the success of OI. We
observed the best results by assigning covariances based on the
differences in cloudiness rather than spatial or empirical covari-
ances. Our implementation of OI was trained and evaluated using
three months of data in Tucson, AZ. We tuned the model parame-
ters over one-third of the data, and presented the results of OI over
the remaining two-thirds.

The results show that OI improves the entire satellite derived
irradiance field with data from only a small number of point loca-
tions. Furthermore, the success of OI with different satellite
derived irradiance models indicates that OI is likely applicable to
satellite derived irradiance models not described in this paper.

In future work, we wish to study if OI is applicable to larger
areas than the city scale studied here. If, for example, clouds form
because of the same physical forcings, OI using cloudiness covari-
ance may be able to use sensors in Tucson to improve irradiance
estimates 100 miles away in Phoenix. Furthermore, OI as described
in this paper can be extended to a Kalman filter with the use of a
cloud advection model. This allows forecasts to be made that also
incorporate previous satellite and ground sensor data instead of
relying on a single snapshot in time.

Fig. 6. Example of OI using empirical, spatial, and cloudiness covariance with the UASIBS model. The upper left shows the visible image taken from the satellite with the
surface albedo removed. The upper right shows the analysis using cloudiness covariance that generally agrees with the visible albedo image. The analysis computed with an
empirical covariance matrix (bottom left) generates clouds in the lower left of the image that are not present in the visible albedo image. The spatial covariance analysis
(bottom right) shows a smoothly varying and thin ‘‘background cloud” that is inconsistent with the visible albedo image.
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Abstract  —  We developed a real-time PV power forecasting 

system for Tucson Electric Power using a combination of high-
resolution numerical weather prediction, satellite imagery, 
distributed generation (DG) production data, and irradiance 
sensors. The system provides forecasts with 10 second resolution 
for the first 30 minutes and 3 minute resolution out to 3 days.  
Forecasts out to 30 minutes are updated every 60 seconds based 
on new data from DG installations and irradiance sensors.  

Index Terms — forecasting, real-time systems, sensors, solar 
energy. 

I. INTRODUCTION 

The need for PV power forecasting to support grid 
integration is well established [1-4].  We describe an 
operational hybrid forecasting system that utilizes input from 
3 different sources: a high-resolution numerical weather 
prediction model, satellite imagery, and a network of 
distributed generation PV systems and irradiance sensors. Our 
forecasts are currently used at Tucson Electric Power to 
inform conventional generation resource allocation and to give 
system operators insight into behind-the-meter energy usage 
and generation. Our 10-second resolution short-term forecasts 
can help anticipate destabilizing ramp events, enable 
preemptive curtailment to avoid high ramp rates, and reduce 
the battery size needed to control ramp rates. Our long-term 
forecasts predict both solar and wind power production with 
3-minute resolution, enabling day-ahead forecasts of the 
possibility of high variability. Integrating the forecasting 
technologies into a single hybrid forecast will improve the 
forecast accuracy at all time horizons and present end-users 
with a straightforward and simple product. 

The field of solar power forecasting has quickly grown over 
the last several years. PV power forecasts have been made 
using numerical weather prediction [2, 5], satellite imagery [2, 
6], total sky imagers [2, 7], and sensor networks [8]. The work 
we present here is, to our knowledge, the first work that 
combines a short-term forecasting method (i.e. total sky 
imagers or sensor networks) with both medium-term satellite 
imagery and long-term numerical weather modeling. We also 
emphasize that the work we present here represents the 
analysis of true forecasts, rather than retrospective modeling 
and analysis of historical data. 

II. DATA SOURCES 

In this section we provide a summary of the 3 different 
components of our forecasting system: a WRF numerical 
weather model, satellite imagery, and a network of DG PV 
systems and irradiance sensors. 

A. Numerical Weather Prediction 

The backbone of our forecast is a suite of high-resolution 
Weather Research and Forecasting (WRF) mesoscale 
numerical weather models. Each day we run four different 
models initialized using the 6Z and 12Z GFS and NAM 
forecasts, plus one additional forecast using cloud assimilation 
from satellite imagery. The models use a 5.4 km outer domain 
spanning 28.5° longitude by 20.75° latitude, and a 1.8 km 
inner domain spanning 7.7° longitude by 5.3° latitude. The 
consistency, or lack thereof, of the multiple model runs 
provides one estimate of the uncertainty of the WRF forecasts. 
We typically run the 6Z forecasts out to 72 hours and the 12Z 
forecasts out to 48 hours. Variables directly relevant to 
renewable power forecasting, including GHI, DNI, 10 meter 
winds, 80 meter winds, and 2 meter temperature, are output 
every 3 minutes. Figure 1 shows WRF forecasts for a 25 MW 
single-axis tracker installation. 

The high spatial and temporal resolution of our WRF model 
enables direct prediction of local irradiance and variability, 
rather than relying on historical correlations between 
irradiance, variability and other model outputs. The high 
spatial resolution is also essential for accurate weather and 
irradiance modeling in regions with rapidly changing 
topography and land use, such as southern Arizona. 

We used the NREL SOLRMAP OASIS station at the 
University of Arizona [9] to compare the WRF model 
predictions of GHI to the measured GHI. Calculations of the 
daily average mean absolute error (MAE) and normalized 
MAE (NMAE) of the WRF model GHI predictions are shown 
in Table I and Table II. We only considered times of the day at 
which the solar altitude was greater than 10 degrees. The 
MAE shown here was calculated at 3-minute resolution and 
MAE statistics for hourly forecasts are approximately 25% 
smaller. Normalization was calculated with respect to the clear 
sky irradiance at each time bin. For this work, we restrict our 
analysis of the WRF model runs to the month of April so that 
we can more directly compare them to the network forecasting 
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method discussed below and in reference [10]. Figure 2 shows 
the distribution and averages of the MAE errors for all 
forecast times. 

Our WRF models outperformed a clear sky forecast by 
approximately 20% on day 1, 10% on day 2, and 15% on day 
3. The curious observation that the day 3 forecast error is 
smaller than the day 2 forecast error is explained by the fact 
that not all models successfully run on all days and that clear 
days are significantly easier to forecast than cloudy days. 
Coincidentally, clear sky conditions were overrepresented in 
the models that ran out to 3 days.  

 
TABLE I 

MEAN ABSOLUTE ERROR (W/M2) OF GHI FORECAST (3 MIN. 
BINS) 

Day 6Z-
NAM 

6Z-
GFS 

6Z 12Z-
NAM 

12Z-
GFS 

12Z Mean Clear 
sky 

1 65.3 61.1 63.3 63.1 59.1 61.1 63.2 84.6 
2 79.8 73.4 77.0 70.5 68.0 69.3 73.9 84.6 
3 70.2 70.0 70.1 -- -- -- 70.1 84.6 
 

TABLE II 
NORMALIZED MEAN ABSOLUTE ERROR (W/M2) OF GHI 

FORECAST (3 MIN. BINS) 
Day 6Z-

NAM 
6Z-
GFS 

6Z 12Z-
NAM 

12Z-
GFS 

12Z Mean Clear 
sky 

1 .101 .091 .096 .097 .090 .094 .094 .125 
2 .120 .110 .115 .106 .102 .104 .109 .125 
3 .105 .105 .105 -- -- -- .105 .125 
 
 

 
 
Fig. 1. WRF forecasts of single axis tracker PV power production for 
up to five different daily model runs (thin lines) and their averages 
(thick green). The top image shows model runs starting on January 
29, 2014, the middle image shows models starting on January 30, and 
the bottom image shows model runs starting on January 31 so that 
one can observe how the forecast develops as new initialization data 
becomes available. The time axis is in MST. Figure 3 shows the 
satellite-derived irradiance on the variable afternoon of January 31. 
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Fig. 2. GHI WRF forecast MAE and NMAE calculated every 3 
minutes (grey dots) vs. forecast hour. Blue, red, and green dots show 
the average MAE at that forecast time across all 6Z or 12Z forecasts 
in the month of April, 2014. Blue, red, and green lines show the daily 
average MAE for days 1, 2, and 3, respectively.  The data show a 
slight trend towards less accurate forecasts in the afternoons.  

B. Satellite Imagery 

Our WRF models, like all currently available numerical 
weather models, are insufficient to predict short-term 
variability with high confidence. The first method we use to 
predict short-term variability is satellite image processing. We 
use the visible and infrared channels of the GOES satellite 
imagery, combined with WRF model output, to determine the 
irradiance that reaches the ground. Figure 3 shows an example 
of the satellite derived irradiance map. The derived irradiance 
map can then be propagated forward in time using the WRF 
model wind speeds at the estimated cloud height. More 
sophisticated methods using image analysis algorithms do 
exist for satellite-based forecasting [2], however, we find that 
using the WRF model wind velocity is simple and still 
accurate for the majority of cloud systems in Southern 
Arizona. We will present a more detailed analysis of our 
satellite imagery forecasts in future work.   

 
 
Fig. 3. GOES derived irradiance centered near Tucson, Arizona. This 
image corresponds to approximately 1/31 13:00 MST in Figure 1. 

 

C. Network of irradiance sensors 

A network of PV systems and irradiance sensors forms the 
final forecasting tool in our collection [8, 10]. We use PV 
output from 10 utility-scale systems and 20 residential 
systems as a proxy for irradiance. Data loggers on these 
systems send us data every 2 seconds to 15 minutes, 
depending on the system. We have also developed custom 
irradiance sensors that communicate via cellular modems. 
These sensors send us 1-second resolution data every 60 
seconds. Figure 4 shows the network node locations and type. 

The first step in creating a forecast from this sensor network 
is to create clear sky profiles for each sensor. We determine 
the sensor clear sky profiles using filtered historical data. We 
then interpret deviations from the clear sky profile as 
shadowing from clouds. We calculate the clearness index for 
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each sensor, and then calculate an interpolated clearness map 
across the forecasting domain. The WRF models’ predicted 
wind velocities at cloud height determine the speed, direction, 
and uncertainty of the clearness map propagation in time. 
Finally, the forecasted PV power is determined from the 
propagated clearness map.  For details, see [8, 10]. 
 

 
 
Fig. 4. Map of utility scale PV installations (suns), residential PV 
systems with data-monitoring hardware (blue and green pins), and 
custom-built irradiance sensors (red pins) used for PV power 
forecasting in the Tucson region. 

III. HYBRID FORECASTING 

We combine the WRF models, satellite imagery, and sensor 
network data into a single “hybrid forecast” for Tucson 
Electric Power. Figure 5 shows a comparison of the individual 
forecasts across 4 orders of magnitude in time. Network and 
persistence forecasts perform well for time scales shorter than 
30 minutes, and WRF models perform best at longer time 
horizons. We anticipate that expanding the sensor network 
will enable it to outperform WRF forecasts out to 1-2 hours. 
Additional work is needed to evaluate our GOES satellite-
based forecasts and combine them with the network and WRF 
forecasts. 
 

The forecasts and their confidence intervals are 
automatically refreshed every minute throughout the day as 
new model runs, satellite images, or network data becomes 
available. We currently supply these forecasts to TEP via a 
website for 13 utility-scale PV power plants and an aggregate, 
shown in Figure 6. The data from our network of rooftop PV 
installations also informs an estimate of real-time behind-the-
meter PV generation. We are working with TEP to integrate 
these forecasts into their Energy Management System.  
 

 

Fig. 5.  Comparison of forecasted GHI MAE for 5 different 
forecasting techniques as a function of forecast time horizon. The 
WRF model forecast errors are daily averages. 
  

 
 
Fig. 6.  Screenshot of website for delivering PV power forecasts to 
Tucson Electric Power. The day ahead forecasted total power 
production (thick green), measured utility scale solar (blue), 
measured distributed generation (red), and utility scale wind (thin 
green) is shown.  Actual production is shown in black. 
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