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Abstract

The multi-disciplinary field of optomechanics deals with the coupling be-
tween electromagnetic radiation and mechanical motion. We discuss how
optomechanical systems can be used to investigate dark matter and spon-
taneous wave function collapse, by setting bounds on the parameters
that constitute these theories. Specifically, we focus on optomechanical
systems based on silicon nitride membranes and torsion micropendula.
Our table-top experiments are cost-effective and compact as compared to
accelerator-based particle physics experiments.

Searching for dark matter with an optomechanical system: Dark mat-
ter (DM) is predicted to make up around eighty-five percent of the mat-
ter in our universe; however, its physical nature is unknown, spurring
calls for new types of detection methods. Our approach is based on the
study of nanomembrane oscillations, which might be driven by a vector
“dark photon” field, similar to an electromagnetic field. However, the
dark photon field exerts a force on atoms proportional to their neutron-
number. Expressions for our membrane’s sensitivity to the dark photon
field are derived in this thesis. Specifically, by modeling the DM signal
as a Lorentzian noise peak and equating the DM spectrum with the mea-
surement noise, we obtain lower bounds of the DM coupling strength. A
key consideration is that since the DM field is uniform over the length
scales of a lab, we need to monitor the membrane’s motion relative to
an object with a different neutron-number. We explore a “Trampoline-
on-Membrane” (TOM) device, fabricated in our laboratory, that enables
this functionalization.

Testing spontaneous wave function collapse models with an optome-
chanical system: Spontaneous wave function collapse models are pro-
posed to account for deviations from standard quantum mechanics and
explain why quantum measurements always produce definite outcomes—
rather than a superposition as predicted by the Schrödinger equation.
Collapse models are typically based on the inclusion of phenomenologi-
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cal and non-linear terms in the Schrödinger equation, which describe the
collapse of the wave function in space. Experimentally, they might man-
ifest as accelerated decoherence of pure states made of a large number
of atoms, or an excess of zero-point motion in a solid state mechani-
cal resonator, both of which can be tested with optomechanical systems.
We interpret the displacement sensitivity of our lab’s TOM device and
torsional micropendulum as constraints on the Continuous Spontaneous
Localization (CSL) model—the most widely studied collapse model.

The DM and CSL constraints predicted in this thesis are competitive
with leading constraints set by the Laser Interferometer Gravitational-
Wave Observatory (LIGO), the Laser Interferometer Space Antenna
(LISA) Pathfinder, and the Eöt-Wash torsion balance experiment. We
envision setting more stringent bounds in the future by operating our
experiments in a cryostat.
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Chapter 1

Introduction

Cavity optomechanics [1] is the study of the interaction between light
and mechanical motion, enhanced by coupling a mechanical resonator
to an optical cavity. In recent years, state-of-the-art fabrication meth-
ods leading to ultra-low-loss nanomechanical resonators have generated
tremendous interest in this field. Fundamental optomechanics research
includes exploring the quantum limits of measurement [2] and radiation
pressure- based feedback cooling [3]. Applications include acceleration
and force sensing (although the chip-scale packaging capabilities of OM
sensors have not yet reached the sophistication seen in microelectrome-
chanical systems). Optomechanical (OM) systems can also form part of
hybrid quantum systems—for example a nanomechanical resonator can
be used to coherently couple microwave and optical photons, enabling
extraction of information from cryogenic quantum computer onto a room
temperature optical fiber.

The following are some favorable features of optomechanical systems:

• High displacement and force sensitivity: Optical fields can
be quantum-noise-limited at room temperature, enabling interfero-
metric displacement measurement with sensitivity at the femtometer
level, sufficient to resolve the thermal (Brownian) motion of nanome-
chanical resonators. The force equivalent thermal motion of a high-Q
nanomechanical resonator can moreover be as low as zeptonewtons
[4]; as such, cavity optomechanical systems can be used to realize
ultrasensitive force measurements.

• High bandwidth: Owing to the high speed of light, optical fields
are sensitive to rapid perturbations, enabling displacement/force
measurements with gigahertz (or higher) bandwidth. We can more-
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over modulate the frequency and amplitude of optical fields at these
frequencies, enabling sophisticated optical readout and control pro-
tocols.

• Sensitivity beyond the quantum limit: Displacement produced
by radiation pressure in a optomechanical system leads to coupling
of the amplitude and phase of the optical field. This intrinsic op-
tomechanical Kerr nonlinearity can be used to squeeze the optical
field, enabling displacement (and thereby, force) measurements be-
yond the Standard Quantum Limit [1].

• Customizable optics: Cavity OM coupling is produced when the
resonance frequency of an optical cavity is coupled to the motion of
a mechanical element. This coupling can be realized in a diversity of
geometries, varying from macroscopic Fabry-Perot cavities to chip-
scale microtoroidal resonators.

• Customizable mechanics: Likewise, mechanical resonators can
be realized in a vast diversity of sizes/geometries, and functionalized
to be coupled to a diversity of force fields in addition to radiation
pressure, from magnetic fields to charge. This feature has led cavity
optomechanical systems to be considered as “universal” transducers.

OM systems have been used to observe manifestations of the Heisenberg
Uncertainty Principle (see Sec. 1.4.4) and they are increasingly being
used to observe other quantum phenomena in macroscale systems. For
example, OM experiments are being used to project signatures of super-
positions of states of massive objects and are thus considered to be strong
candidates for experimentally verifying quantum gravity.

Strained nanomechanical resonators have been shown to exhibit very high
quality-factors due to a phenomenon known as dissipation dilution. Re-
cently, it has been shown that [5] torsion modes can experience massive
dissipation dilution too, like transverse flexural modes. This is expected
to open the floodgates to further research in high-Q torsional optome-
chanics and torsional dissipation dilution.
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Gravitational wave detection can also be placed under the umbrella of
optomechanics. In fact, LIGO (Laser Interferometer Gravitational-Wave
Observatory) and the techniques to carry out such experiments, like pre-
cision interferometry, have played a major part to spur OM research.
Today, apart from gravitational waves, there are other physical theo-
ries that are being put to test by OM setups, by pursuing the detection
of fundamental forces, originating from dark matter, spontaneous wave
function collapse, etc.

1.1 Signal Processing:

This thesis will make heavy use of linear response theory applied to
stochastic (noise) signals. Here, we provide an essential description of
the power spectral density, a statistical property of noise signals that is
central to our treatment of optomechanical systems.

1.1.1 Autocorrelation and power spectral density (PSD):

The autocorrelation of a signal, x(t), is defined by:

⟨x(t)x(t+ τ)⟩ = lim
T→∞

∫ T/2

−T/2

x(t)x(t+ τ)dt (1.1)

According to the Wiener-Khinchin theorem, the Fourier transform of the
autocorrelation of x(t) yields the "double-sided" power spectral density:

Sxx(ω) ≡
∫ ∞

−∞
⟨x(t)x(t+ τ)⟩ e−iωτdτ (1.2a)

∝ |x(ω)|2 (1.2b)

where x(ω) is the Fourier transform of x(t) and〈
x2(t)

〉
=

∫ ∞

−∞
Sxx(ω)dω/2π. (1.3)
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If x(t) is real-valued, then Sxx(ω) = Sxx(−ω). This motivates the defi-
nition of the "single-sided" power spectral density:

Sx(ω) ≡ 2Sxx(ω), (1.4)

on the domain of ω > 0, where:〈
x2(t)

〉
=

∫ ∞

0

Sx(ω)dω/2π. (1.5)

1.1.2 Superposition of signals in the time domain and fre-
quency domain:

Throughout this thesis, we will often jump between the time and fre-
quency domain as we add different signals, e.g.

A(t) = B(t) + C(t) → SAA(ω) = SBB(ω) + SCC(ω), (1.6)

where A(t), B(t), and C(t) are three time-dependent signals and SAA(ω),
SBB(ω), and SCC(ω) are their respective power spectral densities.

The above transformation is only valid when signals B and C are not
correlated. We can see that by taking the autocorrelation of A:

⟨A(t)A(t+ τ)⟩ = ⟨B(t)B(t+ τ)⟩+ ⟨B(t)C(t+ τ)⟩+ ⟨C(t)B(t+ τ)⟩︸ ︷︷ ︸
cross−correlation terms

+ ⟨C(t)C(t+ τ)⟩

and noticing that only eliminating the cross-correlation terms gives:

⟨A(t)A(t+ τ)⟩ = ⟨B(t)B(t+ τ)⟩+ ⟨C(t)C(t+ τ)⟩ . (1.7)

Applying the Fourier transform to both the sides of Eq. 1.7 and invoking
the Wiener–Khinchin theorem gives:

SAA(ω) = SBB(ω) + SCC(ω). (1.8)



13

x

E+circ

E-circ

Ein

Eref

L

Eout

Figure 1.1: Schematic of a canonical 1-D optomechanical system, composed of an
optical cavity (Fabry-Perot resonator) sandwiched between two mirrors, one of which
is free to move.

1.2 Cavity optomechanical coupling

The canonical cavity optomechanical system consists of a Fabry-Periot
cavity with a compliant end mirror (Fig. 1.1). We shall be interested
in performing measurements of the displacement of the end-mirror by
monitoring the phase or amplitude of the field leaking out of the cavity.
Towards this end, we provide a basic description of the dynamics of the
cavity optomechanical system, which are succinctly described by a pair
of coupled differential equations [1, 6]:

mẍ(t) +mγmẋ(t) +mω2
mx(t) = Fext(t) + FRP(x, t) (1.9a)

ȧc(t) = (κ+ i(ω0 − ωc(x(t))) ac(t) +
√
2κ1Ein(t). (1.9b)

Eq. 1.9a is the equation 1 of motion for a damped harmonic oscillator
and describes the displacement, x, of the compliant end mirror. The vari-
ables m, γm, and ωm are the effective mass, damping rate2, and natural
frequency of the mirror, respectively. Fext(t) is the sum of all the exter-
nal forces on the mirror, excluding the radiation pressure force, FRP(t),
which we shall return to shortly.

1 We don’t have to use vector notations for x(t), F (t), etc. as we are considering one-dimensional
motion.

2 Here, for simplicity, we are assuming a velocity-damped model.
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Eq. 1.9b is the equation of motion for the complex amplitude, ac, of the
intracavity field in the slowly varying envelope approximation, normalized
so that |ac(t)|2 is the energy of the intracavity field. The variables κ, ω0,
ωc, κ1, and Ein denote the energy decay rate of the cavity, the angular
frequency of the input field, the resonance frequency of the cavity, the
rate of energy decay through the input mirror, and the slowly varying
complex amplitude of the input field, respectively.

The two equations are coupled via the position-dependent cavity res-
onance frequency:

ωc(x) =
mc

2(L+ x)
≈ ωc(0)−Gx, (1.10)

where m is the cavity mode order (an integer value), c is the speed of
light, L is the nominal cavity length, and:

G ≡ −dωc

dx
≈ ωc

L
(1.11)

is the optomechanical coupling (a.k.a. frequency-pulling) factor.
To see how G enters into the dynamics of the mechanical resonator,

note that for x = 0, the radiation force experienced by the mirror in Fig.
can be written in several ways:

FRP(t) =
2Pcirc(t)

c
=

|ac(t)|2

L
=
h̄ωcnc
L

= h̄Gnc =
G|ac(t)|2

ωc
(1.12)

where Pcirc(t) is the power circulating in the optical cavity (the power
incident on the end mirror) and nc is the intracavity photon number [1].

Linearizing about small fluctuations, ac − ⟨ac⟩ and making the no-
tational change: ac → ⟨ac⟩ + ac, FRP → ⟨FRP⟩ + FRP, etc., yields the
linearized cavity optomechanical equations (assuming a stationary input
field, Ein = 0):

mẍ(t) +mγmẋ(t) +mω2
mx(t) = Fext(t) + FRP(x, t) (1.13a)

ȧc(t) = (κ+ i∆)ac(t) + iGx(t)⟨ac⟩, (1.13b)



15

where ∆ = ⟨ω0⟩−⟨ωc⟩ is the laser-cavity detuning, ⟨ac⟩ =
√
2κ1⟨Ein⟩/(κ

+ i∆) is the mean cavity field, and Fc(x, t) = G (⟨ac⟩ac + c.c.) /ωc is the
fluctuating radiation pressure force.

For the purposes of this thesis, we will assume that the cavity field
responds instantaneously to the mechanical motion (the so-called “bad
cavity limit”), in which case the LHS of Eq. 1.13b can be ignored, and
the sensitivity of the intracavity field to mechanical motion becomes:

ac(t) ≈
iGx(t)

κ+ i∆
⟨ac(t)⟩. (1.14)

Finally, the output field can be related to the circulating field by the
input-output relation [1]:

Eout(t) =
√
2k2ac(t). (1.15)

We note that, in the simplest case of a resonantly probed cavity (∆ =
0), the phase of the output field, ϕout(t), can be expressed in terms of the
position of the mechanical resonator in a familiar way:

ϕout(t) ≈
Im[Eout(t)]

Re[Eout(t)]
=

Im[ac(t)]

Re[ac(t)]
=
Gx(t)

κ
=
ωcx(t)

Lκ
=

2Fx(t)
λ

,

(1.16)
where F = πc/(Lκ) is the cavity finesse.

More generally, taking the Fourier transform of both sides of Eq. 1.14,
we can relate ac and x by an optomechanical susceptibility:

χacx(ω) ≡
ac(ω)

x(ω)
=

G

∆+ ω − iκ
, (1.17)

where, for completeness, we’ve retained the finite cavity response term,
ȧc(t), in Eq. 1.13b, leading to the term, ω, in the denominator (which is
negligible in the bad cavity limit, ω ≪ κ).

1.3 Optomechanical measurement: Linear response model

In this thesis, we will adopt a semi-heuristic model for optomechani-
cal measurement in which sensitivities will be characterized by linear
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response functions and noise as an uncorrelated process with the appro-
priate power spectral density. The most important response will be the
mechanical susceptibility, characterizing the displacement of a mechanical
oscillator produced by external forces. The most important noises will be
thermal noise (displacement noise intrinsic to the mechanical resonator)
and shot noise (measurement noise intrinsic to the optical field).

In general, we describe the outcome of a measurement of the mechan-
ical oscillator’s displacement as:

xmeas(t) = x(t) + ximp(t), (1.18)

where x(t) is the physical motion of the oscillator and ximp(t) is the noise
of the measurement tool—also known as imprecision noise—referred to
as an apparent (and not physical) displacement.

We wish to infer from this measurement the magnitude of some en-
vironmental parameter that acts on the mechanical oscillator, producing
displacement. Towards this end, we model the oscillator’s physical mo-
tion as produced by a total external force Ftot that contains several terms:

mẍ(t) +mγmẋ(t) +mω2
mx(t) = Ftot(t) (1.19a)

= Fsig(t) + Fth(t) + Fba(t); (1.19b)

Fsig(t) is the signal force whose properties we wish to determine; Fth(t)
is the thermal Langevin force (producing thermal motion, as we shall
expand on later), and Fba(t) = FRP(t) is a stochastic radiation pressure
“back-action” force due to the optical readout field, also referred to as
radiation pressure shot noise.

1.3.1 Measurement sensitivity in the frequency domain

Measurement sensitivity can be succinctly expressed in the frequency
domain, in terms of power spectral densities. Towards this end, we apply
the Fourier transform to both the sides of Eq. 1.18 and Eq. 1.19, yielding:

xmeas(ω) = x(ω) + ximp(ω). (1.20)
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and
x(ω) = χm(ω)(Fsig(ω) + Fth(ω) + Fba(ω)), (1.21)

where
χm(ω) =

x(ω)

F (ω)
=

m−1

ω2 − ω2
m + iγmω

(1.22)

is the mechanical susceptibility.
Converting Eq. 1.20 and Eq. 1.21 to PSD units, we obtain:

Smeas
xx (ω) = Sxx(ω) + S imp

xx (ω) (1.23a)

= |χm(ω)|2(Ssig
FF (ω) + Sth

FF (ω) + Sba
FF (ω)) + S imp

xx (ω) (1.23b)

≡ |χm(ω)|2(Ssig
FF (ω) + Sth

FF (ω) + Sba
FF (ω) + S imp

FF (ω)), (1.23c)

where S imp
FF (ω) = χ−1

m (ω)S imp
xx is the apparent force due to measurement

imprecision noise.
In practice, the sum of measurement and thermal noise sets a lower

bound on the signal, referred to as the measurement sensitivity:

Ssig
FF (ω) ≤ Sth

FF (ω) + Sba
FF (ω) + S imp

FF (ω). (1.24)

1.4 Sources of noise:

Here, we discuss the various kinds of noises that one encounters during
a typical measurement in the lab. These noises can be either physical or
apparent in nature. Physical noises correspond to actual fluctuations that
are coupled to the motion of our mechanical resonator, while apparent
noises are those fluctuations that seem to be arising from the resonator’s
motion; but in reality, do not carry any signatures of the oscillation.
The resonator’s thermal motion and the radiation pressure induced back-
action force are examples of sources of "physical" noise, while the noise
due to optical phase fluctuations contributes to only "apparent" motion.

1.4.1 Thermal noise:

A solid-state mechanical oscillator with a non-zero temperature is subject
to thermal noise—random motion due, for example, to collisions with
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thermally excited gas particles in the ambient environment. According to
the fluctuation-dissipation theorem, the magnitude of the thermal motion
is proportional to the (in general frequency-dependent) energy damping
rate γm(ω), and can be expressed as a force spectral density [7]:

Sth
F (ω) =

4kBT

ω
Im[χm(ω)

−1] = 4kBTγm(ω)m, (1.25)

where T is the temperature of the environment (bath).
The thermal force drives the oscillator into thermal (“Brownian”) mo-

tion, characterized by a displacement noise spectrum:

Sx(ω) = |χm(ω)|2Sth
F (ω) =

4kBTγm(ω)

m

1

(ω2
m − ω2)2 + ω2 (γm(ω))

2 .

(1.26)
For velocity damping (γm(ω) = γm = ωm/Qm),

Sx(ω)|velocity damping=
4kBTγm(ωm)

m

1

(ω2
m − ω2)2 + ω2ω2

m/Q
2
m

; (1.27)

while for “structural” damping (characteristic of the vibrational modes of
elastic bodies), γm(ω) = γm(ωm)× ωm/ω = ω2

m/(ωQm),

Sx(ω)|structural damping=
4kBTγm(ωm)

m

ωm/ω

(ω2
m − ω2)2 + ω4

m/Q
2
m

. (1.28)

Note:

• Strictly speaking, Eq. (1.25) is only valid when the thermal phonon
occupation of the oscillator n̄th = (e(h̄ωm)/(kBT )−1)−1, is much greater
than 1. When this doesn’t hold, the thermal energy term kBT in Eq.
(1.25) can be replaced with the energy of a thermally excited quan-
tum harmonic oscillator h̄ωm(n̄th+1/2), yielding the the “Quantum”
Fluctuation Dissipation Theorem:

Sth
F (ω) = 4h̄ωm(n̄th +

1

2
)γm(ω)m. (1.29)

It’s interesting to note from the above equation, that when there are
zero phonons (i.e. when n̄th = 0 at a temperature of 0 K), there is
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still a "thermal" motion corresponding to Sth
F (ω) = 2h̄ωmγm(ω)m

present—this is the zero-point motion. Experiments described later
in this thesis were carried out at room temperature with sub-MHz
oscillators (n̄th ≳ 106), and thus we will be using Eq. (1.25) only.

• There is also “extraneous” thermal noise from the components that
make up the measurement apparatus, for example from the other
optical mirror of a Fabry-Perot-type cavity optomechanical system
(Fig. 1). In this thesis, we consider only the “intrinsic” thermal
motion of the designated mechanical oscillator.

1.4.2 Photon shot noise (imprecision and backaction)

Heuristically, an optical field can be pictured as a current of randomly
moving particles (“photons”) with well-defined energy h̄ω0 and momen-
tum h̄ω0/c. The randomness of the photon flux manifests as a noise in
the phase and amplitude of the optical field, giving rise to two forms of
noise in an interferometric displacement measurement—imprecision noise
(an apparent motion due to the random arrival of photons on the pho-
todetector) and backaction noise (physical motion due to random arrival
of momentum-transferring photons on the mechanical oscillator).

1.4.3 Imprecision shot noise

The first form of shot noise—imprecision shot noise—is an apparent mo-
tion due to the random arrival of photons on the photodetector, mani-
festing as a random phase fluctuation, δϕshot ∝ gδximp/κ (see Eq. 1.16).
In the bad cavity limit (κ≫ ωc), the imprecision noise can be expressed
as a displacement noise spectral density [1]:

S imp
xx (ω) =

1

32

(
κ

n̄cG2

)
(1.30)

or equivalently:

S imp
xx (ω) =

πh̄cλ

64

(
1

ηF2P

)
, (1.31)



20

where η ∈ [0, 1] is a unitless parameter characterizing the photodetector
quantum efficiency [1].

1.4.4 Radiation pressure shot noise

The second form of shot noise—backaction shot noise—is the random
physical motion produced by the momentum transfer of photons imping-
ing on the mechanical oscillator. In the bad cavity limit, this “radiation
pressure shot noise" can be expressed as an approximately frequency-
independent force spectral density [1]:

Sba
FF (ω) = 8h̄2

n̄cG
2

κ
. (1.32)

The associated mechanical motion is given by:

Sba
xx(ω) ≡|χm(ω)|2Sba

FF . (1.33)

Notably, from Eq. (1.30) and Eq. (1.32), we can see that:

S imp
xx (ω)Sba

FF (ω) ≥
h̄2

4
, (1.34)

which is a signature of the Heisenberg Uncertainty Principle.
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Chapter 2

Dark matter and its detection

Dark1 matter is predicted to make up around eighty-five percent of the
matter in our universe. Although dark matter cannot be explained by
standard model physics, its existence is consistent with many astrophys-
ical predictions; for example, it accounts for the extra mass required to
hold galaxies together. Resolving the nature of DM is one of the biggest
outstanding scientific problems and will help us understand the funda-
mental composition of our Universe. Some of the most popular candi-
dates for DM are WIMPs (weakly interacting massive particles), axions,
and sterile neutrinos. We, however, are concerned with the detection of
ultralight dark matter (ULDM) using optomechanical force sensors.

2.1 Ultralight dark matter: phenomenology

It has been hypothesized that dark matter could be composed of non-
thermally produced ultralight particles with mass mDM ≲ 10 eV/c2 [8].
For this mass range and the measured galactic halo DM density, these
particles are inferred to be bosonic. If ULDM particles of mass mDM ≲
1 eV/c2 are virialized with an average speed of vvir ∼ 10−3c [9], they
would have a de Broglie wavelength of λDM = h/(mDMvvir) ≳ 1mm.
Additionally, the local DM energy density of ρDM ≈ 0.4GeV/cm3 [10]
would imply a large number of ULDM particles within a volume λ3DM,
implying, in turn, that they compose a coherent field, oscillating at a
Compton frequency of ωDM = mDMc

2/h̄ ≲ 2π× 1014 Hz, with a Doppler-
broadened linewidth of ∆ωDM = ωDM(∆vvir/c)

2 ∼ 10−6 ωDM, where ∆vvir

is the dispersion in the velocity of the ULDM particles. The ULDM field
1 "Dark" matter is not dark-colored; rather it is invisible. It doesn’t interact with baryonic

matter and is thus invisible to electromagnetic radiation.
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is analogous to an electromagnetic (EM) field and can be expressed as:

ϕ(t, r) ≈ ϕ0 cos(ωDMt− kDM · r+ θDM(t)), (2.1)

where ϕ0 ∼
√
2ρDM/ωDM

2 and kDM = 2π/λDM. The phase of the ULDM
field, θDM(t), is considered to be roughly constant for coherence time
τDM ≡ (2QDM)/ωDM ≈ 106/ωDM, beyond which it diffuses to a value
between 0 and 2π. This decoherence can be modeled by an exponentially
decaying time auto-correlation [11]:

R(td) ≡ ⟨ϕ(t′)ϕ(t′ + td)⟩t′ (2.2)

≈ ϕ20
2
e−|td|/τDMcos(ωDMtd). (2.3)

Invoking the Wiener-Khinchin theorem (Eq. 1.2a) thus yields a ULDM
amplitude power spectral density of

SDM
ϕϕ (ω) =

∫ ∞

−∞
dtde

−iωtdR(td) (2.4)

=
ϕ20
2

(
τDM

1 + τ 2DM(ω − ωDM)2
+

τDM

1 + τ 2DM(ω + ωDM)2

)
, (2.5)

The above expression corresponds to a double-sided spectrum with two
Lorentzian sidebands centered at ω = ±ωDM. We avoid dealing with neg-
ative frequencies by re-defining S(ω) as the total power spectral density
detectable in a narrow-band filter, centered at ω ≥ 0:

S(ω ≥ 0) ≡ S(ω) + S(−ω). (2.6)

We then get:

SDM
ϕϕ (ω ≥ 0) = ϕ20

(
τDM

1 + τ 2DM(ω − ωDM)2

)
. (2.7)

Therefore, the DM field’s spectrum can be considered to be a Lorentzian
with quality factor, QDM ≡ ωDM/FWHM = (ωDMτDM)/2 ≈ 5× 105.

2 In the next section, we will talk about a kind of ultralight DM known as "vector DM", where
the amplitude, ϕ0, takes the form of a vector, ϕϕϕ0, which characterizes the vector DM field, ϕϕϕ(t, r).
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We can express the DM field as a Lorentzian of linewidth (FWHM),
γDM, whose power spectral density can be written as:

SDM
ϕϕ (ω) =

SDM
ϕϕ (ωDM)

1 + 4(ω − ωDM)2/γ2DM

, (2.8)

where SDM
ϕϕ (ωDM) is the Lorentzian peak value [11]:

SDM
ϕϕ (ωDM) ≈

4
〈
ϕ20
〉

∆ωDM
≈ 2

3
(a0)

2QDM

ωDM
. (2.9)

and the second equality assumes a randomly polarized DM field (
〈
ϕ2
〉
→〈

ϕ2
〉
/3) [11].

2.2 Introducing the vector DM force and acceleration:

In this section, we will consider the force produced by ULDM particles
based on the hypothesis that ULDM is a vector field composed of "dark
photons" (DP). DP are vector (spin-1) bosons and we focus on a class of
them that couples to the SM particles through direct gauge couplings.

The vector dark photon field can be represented as:

ϕϕϕ(t, r) ≈ ϕϕϕ0 cos(ωt− k · r+ θDM(t)), (2.10)

where |ϕϕϕ0| ∼
√
2ρDM/ω is the amplitude. The rest of the symbols are

defined identically to those in Eq. (2.1).
Analogous to an EM-field, the dark photon field exerts a force on SM

particles in proportional to their "DM charge" q [12, 11]

F (t, r) = qϕϕϕ(t, r). (2.11)

For example, for a dark photon that couples to the baryon number,
B, of a particle, we can write:

q = gBB, (2.12)
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where gB is the DM coupling strength to B. Similarly, for a dark photon
field that couples to the baryon minus lepton number, B−L, of a particle,
we can write:

q = gB−L(B − L), (2.13)

where gB−L is the DM coupling strength to B − L.

In this thesis, we consider only B − L coupling (for a discussion of the
motivation, c.f. [12]). We can then express the dark photon force as:

F (t, r) = gB−L(B − L)F 0 cos(ωt− k · r+ θDM(t)), (2.14)

where:

|F 0| ≡

√
2
e2ρDM

ϵ0
≈ 6× 10−16N (2.15)

is found by equating the energy density of the gauge field to the DM
energy density, ρDM [11], e refers to the electric charge of an electron,
and ϵ0 is the electric permittivity of free space.

For a neutral atom, B − L is the neutron number. This means that
B−L dark photons can hypothetically be detected by mechanical systems
made of neutrons (which is to say, most solid state mechanical systems).
For example, the dark photon field would produce a differential acceler-
ation of bodies with different neutron densities, or between bodies made
of the same material which are separated by a distance comparable or
larger than the de Broglie wavelength. Henceforth, we will consider only
the time-variance of the DM force, since at frequencies of interest for op-
tomechanical sensing (1 kHz - 1 MHz), the de Broglie wavelength is much
larger than a typical laboratory.

Using Eq. 2.14 and noting B−L = A−Z we can write the DM force
on a single atom as [11]:

FDM
atom(t) = gB−L(A− Z)mua0 cos(ωDMt+ θDM(t)),

where A (Z) is the mass (atomic) number, mu is the atomic mass unit,
and a0 = 3.7× 1011m/s2.
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The force exerted by DM on a body of mass, m, made up of n atoms is:

FDM
m (t) = ngB−L(A− Z)mua0 cos(ωDMt+ θDM(t)). (2.16)

Therefore, the acceleration of the body is given by:

aDM
m (t) =

FDM
m (t)

m
=
FDM
m (t)

nAmu
= gB−L

A− Z

A
a0 cos(ωDMt+ θDM(t)).

(2.17)
The above equation implies that the DM produces an acceleration

which depends only on the material of the body; as such, it’s useful to
think of the DM field as an acceleration field rather than a force field.
We can express this field as

aDM(t) = aDMcos(ωDMt+ θDM(t)), (2.18)

where aDM = a0gB−L(A− Z)/
(√

3A
)

and the factor of
√
3 accounts for

polarization (see Eq. 2.9).
Finally, analogous to the PSD of the DM field expressed in Eq. 2.9, we

can express the PSD of the DM acceleration field as a Lorentzian noise
peak with a peak value of

SDM
aa (ωDM) ≈

4⟨aDM(t)
2⟩

∆ωDM
≈ 2

3

(
a0gB−L

A− Z

A

)2
QDM

ωDM
. (2.19)

2.3 A mechanical dimer for detecting dark matter:

In this section, we will describe the interaction between a B − L ULDM
field and a mechanical oscillator formed by two masses made of different
materials, joined by a spring. We later use this “mechanical dimer” to
model a generic inhomogeneous optomechanical sensor.

A sketch of the mechanical dimer is shown in Fig. 1a. The net force
on mass 1 is given by

F1(t) =n1gB−L(A1 − Z1)mua0 cos(ωDMt+ θDM)− kx(t)

≡FDM
m1

(t)− kx(t)
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x
ρ1

ρ2

FDMρ1

ρ2

Figure 2.1: Schematic of proposed mechanical-dimer DM sensor: Left:
lumped mass model. Right: membrane-based implementation. Variable ρ here refers
to the density of the DM coupling charge (not to be mistaken with mass-density).

where n1 is the total number of atoms that make up mass 1, k is the
spring constant and x(t) = x1(t)− x2(t) is the spring displacement.

Therefore, the acceleration of mass 1 is given by:

a1(t) =
F1(t)

m1
=

F1(t)

n1A1mu
= gB−L

A1 − Z1

A1
a0 cos(ωDMt+ θDM)−

kx(t)

m1
.

(2.20)
The net force on mass 2 is given by:

F2(t) = n2gB−L(A2 − Z2)mua0 cos(ωDMt+ θDM) + kx(t). (2.21)

Thus, the acceleration of mass 2 is given by:

a2(t) =
F2(t)

m2
=

F2(t)

n2A2mu
= gB−L

A2 − Z2

A2
a0 cos(ωDMt+ θDM) +

kx(t)

m2
.

(2.22)
The relative acceleration of the 2 masses, a1(t) − a2(t) is equal to the
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m1

m2

Figure 2.2: Dimer model of the DM sensor

double-derivative of the spring’s displacement, ẍ(t); i.e.

ẍ(t) =a1(t)− a2(t) (2.23)

=gB−L

(
Z2

A2
− Z1

A1

)
a0 cos(ωDMt+ θDM)− kx(t)

(
1

m2
+

1

m1

)
.

(2.24)

We observe from Eq. 2.29, that, for a differential acceleration to ex-
ist between the two masses, they have to possess different atomic-mass
number ratios (Z/A). Since the neutron-nucleon number ratio is equal to
1− Z/A, we can equivalently state that different neutron densities (i.e.,
different neutron-nucleon number ratios) lead to differential acceleration.

Eq. 2.24 can be re-expressed as the equation of motion for a harmonic
oscillator:

ẍ(t) + ω2
mx(t) + aDM

rel (t) = 0, (2.25)

where ωm =
√
k/meff is the resonance frequency, meff = (m1m2)/(m1 +

m2) is the effective mass of the dimer, and aDM
rel (t) is the relative acceler-
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ation of two free masses driven by the DM alone3:

aDM
rel (t) =

FDM
m2

(t)

m2
−
FDM
m1

(t)

m1
(2.26)

=gB−L

(
Z1

A1
− Z2

A2

)
a0 cos(ωDMt+ θDM) (2.27)

=gB−Lf12a0 cos(ωDMt+ θDM), (2.28)

a f12 is the " suppression4 factor" of the dimer:

f12 =

∣∣∣∣Z1

A1
− Z2

A2

∣∣∣∣ . (2.29)

The magnitude of the relative acceleration between the dimer’s masses is
proportional to this suppression factor.

To introduce damping, we turn to the frequency domain, applying
the Fourier transform to Eq. 2.25 and including an (in general fequency
dependent) damping term, iωγm(ω)x(ω), to get:

− ω2x(ω) + ω2
mx(ω) + iωγm(ω)x(ω) + aDM

rel (ω) = 0. (2.30)

By rearranging the terms in the above equation, we get:

x(ω) =
(
ω2 − ω2

m − iωγm(ω)
)−1

aDM
rel (ω) (2.31a)

=χxa(ω)a
DM
rel (ω), (2.31b)

where:

χxa(ω) = x(ω)/aDM
rel (ω) =

(
ω2 − ω2

m − iωγm(ω)
)−1 (2.32)

is the acceleration susceptibility of our dimer-sensor.
We will now talk in terms of power spectral densities, which is what one

deals with, typically, in a lab. Since Sxx(ω)/S
DM
aa (ω) = |x(ω)/aDM

rel (ω)|2

3 aDM
rel (t) is different from the net/physical relative acceleration between the two masses, a1(t)−

a2(t), which is given by Eq. 2.24.
4 Since Z/A is ≤ 1, the ∆(Z/A) ≡ f12 is also ≤ 1, and thus f12 is called a "suppression" factor

as it reduces the relative acceleration between the two masses of the dimer.
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and by considering structural damping γm(ω) = ω2
m/(ωQm) (relevant for

the internal modes of elastic bodies [7]), we can write:

SDM
xx (ω) = |χxa(ω)|2SDM

aa (ω) (2.33a)

=
(
(ω2 − ω2

m)
2 + ω4

m/Q
2
m

)−1
SDM
aa (ω). (2.33b)

The above equation describes the sensitivity of the mechanical dimer to
the DM signal to be measured, SDM

aa (ω).
Finally, we replace the DM charge term from Eq. 2.19, gB−L(A−Z)/A,

with the dimer’s effective DM charge, gB−Lf12, to express the dimer’s
peak DM acceleration PSD as:

SDM
aa (ωDM) ≈

2

3
(βgB−Lf12a0)

2QDM

ωDM
, (2.34)

where β is a spatial overlap factor that accounts for more general me-
chanical mode shapes (e.g. β = (4/π)2 for the fundamental mode of a
membranes as in Fig. 1b [11], elaborated on below.

2.3.1 Some points to note on our dimer system’s analysis:

• This model deals with only those masses that are of elemental form
(made up of only one kind of atom). If there were different kinds of
atoms (with different neutron-nucleon ratios) present in a mass, each
kind would experience a different acceleration due to the different
force from the DM field. Thus, the mass would experience different
levels of internal stresses throughout its volume and would deform.

The force of the vector DM field on a molecule composed of ni num-
ber of atoms is given by:

FDM
molecule(t) = gB−Lmua0 cos(ωDMt+ θDM(t))

n1∑
i=1

(Ai − Zi).

Thus, the total force of the vector DM field on mass 1 (m1) is given
by:

FDM
m1

(t) = gB−Lmua0 cos(ωDMt+ θDM(t))N1

n1∑
i=1

(Ai − Zi),
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where N1 is the total number of molecules that make up mass 1
(m1).

aDM
m1

(t) =
FDM
m1

(t)

m1
=

FDM
m1

(t)

N1mu

∑n1

i=1Ai

=gB−La0 cos(ωDMt+ θDM(t))

∑n1

i=1(Ai − Zi)∑n1

i=1Ai

=gB−La0 cos(ωDMt+ θDM(t))

(
1−

∑n1

i=1 Zi∑n1

i=1Ai

)
.

Similarly, for mass 2, we get:

aDM
m2

(t) = gB−La0 cos(ωDMt+ θDM(t))

(
1−

∑n2

i=1 Zi∑n2

i=1Ai

)
.

Therefore, the relative DM acceleration between the two masses is:

aDM
m1

− aDM
m2

= gB−La0 cos(ωDMt+ θDM(t))

(∑n2

i=1 Zi∑n2

i=1Ai
−
∑n1

i=1 Zi∑n1

i=1Ai

)
We now define the suppression factor (f12) to be equal to:

f12 =

∣∣∣∣∑n2

i=1 Zi∑n2

i=1Ai
−
∑n1

i=1 Zi∑n1

i=1Ai

∣∣∣∣ .
Some suppression factors of dimers composed of the following pairs
of materials (that are used widely in fabrication) are given:

– Silicon Nitride (Si3N4) and Silicon (Si):

f12 =

∣∣∣∣∣
∑7

i=1 Zi∑7
i=1Ai

− ZSi

ASi

∣∣∣∣∣ =
∣∣∣∣ (14× 3) + (7× 4)

(28× 3) + (14× 4)
− 14

28

∣∣∣∣ = 0

(2.35)
– Si3N4 and Germanium (Ge):

f21 ≈ 0.0676

– Si3N4 and Beryllium (Be):

f21 ≈ 0.0556
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Among the above three cases, the Si3N4-Ge dimer would be the most
sensitive relative-acceleration sensor, while the Si3N4-Si dimer would
not produce any differential acceleration.

• One might ask why we use a dimer and not a single-mass spring
system? Let’s say we did consider a single-mass spring system. The
surface (ground, wall, Earth, etc.) which is attached to the spring is
also some mass, under the action of a dark matter force. We should
remember that the dark matter field is considered to be omnipresent
and thus we cannot isolate any mass from its influence.

• Since the acceleration of a body due to gravity is independent of
its mass, the gravitational accelerations would have cancelled out,
had we included gravity in our analysis of the relative acceleration
between the two masses. Even if we were considering a single spring-
mass system suspended from the top of a ceiling under the action of
gravity, all the equations would still hold good if we shift the equi-
librium position accordingly to account for the gravitational force.

• In Eq. 2.20 and Eq. 2.22, we have considered m = nAmu, which
is actually an approximation as we have not accounted for binding
energy (energy to assemble/disassemble a system of particles) in our
calculations.

2.4 Measurement noise in dimer-based dark matter detector:

We now consider the noises entering the dimer-based dark matter de-
tection scheme. Towards this end, we consider the equation of motion
(excluding the damping term, which we will include in the Fourier do-
main) describing the dimer’s oscillation:

ẍ(t) + ω2
mx(t) + aDM

rel (t) + ath(t) + aba(t)︸ ︷︷ ︸
noise

= 0, (2.36)

where ath(t) and aba(t) are the thermal and back-action acceleration
noises, respectively.
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The measurement of the dimer’s motion can be expressed as a sum of
the physical motion x and imprecision noise ximp:

xmeas(t) = x(t) + ximp(t) (2.37a)
= xDM(t) + xth(t) + xba(t) + ximp(t). (2.37b)

Taking the Fourier transform of Eq. 2.37b and including structural damp-
ing as in Eq. 2.30 yields

xmeas(ω) = x(ω) + ximp(ω) (2.38a)
= χxa(ω)

(
aDM
rel (ω) + ath(ω) + aba(ω)

)
+ ximp(ω) (2.38b)

where χxa(ω) = (ω2 − ω2
m + iω2

m/Q) is the acceleration susceptibility as
defined in Eq. 2.32.

Converting to power spectral densities, we get:

Smeas
xx (ω) =SDM

xx (ω) + Sth
xx(ω) + Sba

xx(ω) + S imp
xx (ω) (2.39a)

=|χxa(ω)|2
(
SDM
aa (ω) + Sth

aa(ω) + Sba
aa(ω)

)
+ S imp

xx (ω). (2.39b)

From Eq. 1.25, we can write the thermal acceleration noise as:

Sth
aa(ω) =

Sth
FF (ω)

m2
eff

=
2kBTmγm(ω)

meff
=

2kBTmωm

meffQm

ωm

ω
, (2.40)

where meff =
m1m2

m1 +m2
is the effective mass of the dimer (see Eq. 2.25).

For the imprecision noise S imp
xx and backaction noise S imp

xx , we envision
the two masses comprising the dimer as end-mirrors of a Fabry-Perot cav-
ity, forming a cavity optomechanical system. Thus following Eq. 1.31 and
1.4.4 we identify S imp

xx (ω) = πh̄cλ
64F2P and Sba

aa(ω) =
h̄2

m2
effS

imp
xx (ω)

, respectively.
Rearranging once again, we identify minimum DM signal that can be

detected, with the total measurement noise (see Sec. 1.4):

Smeas
aa (ω) = Sth

aa(ω) + Sba
aa(ω) + |χxa(ω)|−2S imp

xx (ω). (2.41)

Recalling Eq. 2.34 for the resonance DM signal

SDM
aa (ωDM) ≈

2

3
(βgB−Lf12a0)

2QDM

ωDM
.
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and equating with the resonant measurement noise, Smeas
aa (ωDM), we rea-

son that the coupling parameter gB−L can be bound from below as

gB−L ≥
√
3/2

βf12a0

√
Smeas
aa (ωDM)

ωDM

QDM
. (2.42)

If we further assume that the resonance frequency of the mechanical de-
vice matches the DM frequency (ωm = ωDM), and that our measurement
is dominated by thermal noise

(
Smeas
aa (ωDM) ≈ Sth

aa(ωDM)
)
, we predict a

lower bound of [11]

gthB−L ≥
√
3/2

βf12a0

√
4kBTω2

DM

meffQmQDM
. (2.43)

2.5 Improving resolution by time averaging

In this section, following [11], we will consider how time-averaging can
improve the resolution of the DM search. We first note that in practice all
measurements are of finite duration, and therefore the PSD of a stochas-
tic process can be only estimated. This estimate, called a periodogram,
is computed by taking the Discrete Fourier Transform of the measure-
ment record. Averaging several independent periodograms—“Bartlett’s
method”—gives a successively better estimate of the PSD.

Specifically, consider a finite-duration record of stochastic signal a(t)
characterized by finite-time Fourier transform aT (ω) =

∫ t0+T/2

t0
a(t)eiωtdt.

The periodogram is given by PT
aa(ω) ≡ |aT (ω)|2 /∆f , where ∆f = 1/T

is the resolution bandwidth. We define PT,N
aa (ω) ≡ ⟨PT

aa(2πf)⟩N as the
average of N indepedendent periodograms (e.g., by choosing t0 so that
the measurement intervals don’t overlap). According to Barlett’s method,
PT,N

aa (ω) converges to the smoothed (over bandwidth ∆f) PSD given by
Wiener-Khinchin theorem (Eq. 1.2a) in the limit N → ∞, i.e.

PT,N
aa (2πf) ≡ ⟨|aT (ω)|2⟩N

∆f
−−−→
N→∞

1

∆f

∫ f+∆f/2

f−∆f/2

Saa(2πf
′)df ′ (2.44)
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The standard deviation of the PSD estimate ∆PT,N
aa (ω) plays an im-

portant role in parameter estimation, as it sets the PSD of the smallest
signal asig(t) that can distinguished from a(t) in a measurement of the
form a(t) + asig(t). For a Gaussian noise process a(t), ∆PT,N

aa (ω) ≈
Saa(ω)/

√
N [13] which implies that smaller asig can be measured with

longer total measurement times τ ≡ NT . The scaling with τ however
depends on whether asig(t) is coherent or incoherent over τ . We consider
these two cases below, for the case of our partially coherent DM signal
aDM(t) (Eq. 2.18) with coherence time τDM [11]:

• Total measurement time τ < τDM:

For total measurement time τ = NT < τDM, the, the signal is coher-
ent and the optimal strategy to make a signal measurement τ = T .
The total power in periodogram at ω = ωm is PT

aa(ωm)∆f + ⟨a2DM⟩
and the standard deviation is ∆PT

aa(ωm)∆f ≈ Saa(ωm)/τ . The min-
imum coupling parameter gB−L that can be resolved thus scales as

gmin
B−L ∝

√
Saa(ωm)

τ
. (2.45)

where a is the total measurement noise.

• For total measurement time τ > τDM:

For total measurement time τ = NT > τDM, the measurement
record can be divided into approximately N = τ/τDM statistically
independent measurements, and periodograms can be averaged using
Bartlett’s method. The total power in the averaged periodogram at
ω = ωm is

(
PT,N

aa (ωm) + PT,N
aDMaDM

(ωm)
)
∆f , which for sufficiently

large N is approximately
(
Saa(ωm) + SDM

aa (ωm)
)
∆f . Assuming the

measurement is dominated by noise, the standard deviation of the
power estimate is ∆PT,N

aa (ωm)∆f ≈ Saa(ωm)/
√
N . The minimum

coupling parameter gB−L that can be resolved thus scales as
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gmin
B−L ∝

√
Saa(ωDM)

τDM

(τDM

τ

)1/4
. (2.46)

where again a(t) represents the measurement noise.
Combinging Eq. 2.45 and Eq. 2.46 with Eq. 2.42 we get

gB−L(ω) ≥
√
3

βf12a0

√
Smeas
aa (ω)

τDM
×

{
(τDM

τ )1/2, τ ≲ τDM

(τDM

τ )1/4, τ ≫ τDM.
(2.47)

and the thermal limit (see Eq. 2.43):

gthB−L ≥
√

3/2

βf12a0

√
4kBTω2

DM

µQmQDM
×

{
(τDM

τ )1/2, τ ≲ τDM

(τDM

τ )1/4, τ ≫ τDM,
(2.48)

where τDM = 2QDM/ωDM is the DM coherence time and τ is the total
measurement time.

2.6 Experimental apparatus for DM detection:

The proposed experimental apparatus for DM detection consists of a
dual Si3N4 membrane cavity-optomechanical accelerometer attached to
a Germanium reference plate, as shown in Fig. 2.3. We are currently

x

a

Si3N4

Ge
Si

Figure 2.3: Schematic of proposed membrane-based DM detector
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focusing on the dual membrane accelerometer and provide an outline of
its properties in the following section.

2.6.1 Trampoline-on-membrane (TOM) accelerometer

We fabricated the device shown in Fig. 2.4, consisting of a 2.5mm ×
2.5mm×7.5 nm silicon nitride (Si3N4) "trampoline" suspended opposite
a square membrane of similar dimensions on a 0.2 mm thick silicon (Si)
chip. The trampoline serves as a test mass for acceleration of the chip,
to which the relatively stiffer square membrane is rigidly attached. The
trampoline has a 200µm- wide pad and 200µm- wide tethers, with fillets
tailored to optimize the Q of the fundamental trampoline mode. For
these dimensions, the fundamental resonance frequency of the trampoline
is ω1 = 2π · 40 kHz, and the physical mass and Q of the trampoline
are m1 = 12 ng and Q1 = 1.1 × 107, respectively, implying a thermal
acceleration sensitivity of Sth

a =0.56µg/
√
Hz.

Figure 2.4: Trampoline-on-membrane accelerometer (taken with permission
from [14]): (a) Schematic of the device: a pair of membranes with different stiff-
nesses, attached to a common base respond differently to base acceleration. (b) Each
membrane can be considered to be a spring-mass system suspended from a common
frame. The membranes form a Fabry-Perot end-mirrors. (c) Photo of the fabricated
device. (d) Finite-element simulation of the fundamental flexural modes of the device.
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Details about the characterization of the TOM accelerometer are dis-
cussed in Fig. 2.5 and a set of room temperature temperature acceleration
measurements, limited by both thermal noise and imprecision noise, are
described in Fig. 2.6. The noise floor of the accelerometer, shown in the
bottom of Fig. 2.6, is used to obtain the (hypothetical) DM and (actual)
CSL constraints in Fig. 4.1 and Fig. 4.2, respectively.

Figure 2.5: Characterization of TOM accelerometer (taken with permission
from [14]): (a) Optical transmission versus wavelength near 850 nm. A finesse of 2.2
is obtained by fitting the interference fringes to an Airy function. Readout is carried
out near the fringe midpoint, highlighted by a red circle. (b) Optical micrograph
(above) of the trampoline membrane and energy ringdown (below) of its fundamental
flexural mode. Fitting to an exponential yields a Q = 1.1× 107. (c) Above: Scheme
for characterizing the response of the dual-membrane accelerometer (top) to a base
excitation. Below: measurement of the response at frequencies below the fundamental
resonance of the rigid membrane (120 kHz). Near the 40 kHz trampoline resonance,
the response is approximated by the mechanical susceptibility of the trampoline alone.
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Figure 2.6: Sensitivity of TOM accelerometer (taken with permission from [14]):
Acceleration noise floor (bottom) inferred by dividing the displacement spectrum
(top) by the acceleration susceptibility. Darker shades of red correspond to larger
optical powers. Gray shading indicates the resonant bandwidth over which thermal
noise dominates imprecision noise for the largest output power, Pout = 1.5 mW.
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Chapter 3

Collapse Models and their Detection

3.1 Spontaneous wave function collapse models:

The Schrödinger equation describes deterministic evolution of the wave
function as a linear superposition of different states, but a measurement
of a system always yields a single state. This conflict is what is referred
to as the “measurement problem” in quantum mechanics. Spontaneous
wave function collapse models [15] seek to resolve the measurement prob-
lem by stating that the Schrodinger evolution is an approximation; one
which turns out to be good for microscopic systems, but fails as the
size/complexity of the system increases. Thus, spontaneous wave func-
tion collapse models, also called objective-collapse theories or dynamical
reduction models [16], probe the gap between our understanding of the
classical and quantum world.

In collapse theories, the Schrödinger equation is supplemented with ad-
ditional nonlinear and stochastic terms which localize the wave function
in space. The resulting dynamics is such that for microscopic, isolated
systems, the new terms have a negligible effect; therefore, the usual quan-
tum properties are recovered, apart from tiny deviations. By contrast,
an inbuilt amplification mechanism makes sure that for macroscopic sys-
tems consisting of many particles, the collapse becomes stronger than the
quantum dynamics. Then their wave function is always well-localized in
space, so well-localized that it behaves, for all practical purposes, like a
point moving in space according to Newton’s laws. In this sense, collapse
models provide a unified description of microscopic and macroscopic sys-
tems, avoiding the conceptual problems associated with measurements in
quantum theory.

Commonly studied collapse models are:

• Continuous spontaneous localization (CSL) model [17]
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• Ghirardi–Rimini–Weber (GRW) model [18]

• Diósi–Penrose (DP) model [19]

These models stand in opposition to many-worlds interpretation theories,
in that they hold that a process of wave function collapse curtails the
branching of the wave function and removes unobserved behavior.

The fundamental dynamics of collapse models is given by the following
stochastic differential equation for the wave function [15, 19]:

d|ψt⟩ =
[
−i
h̄

Hdt+
√
λ(A − ⟨A⟩t)dWt −

λ

2
(A − ⟨A⟩t)2dt

]
|ψt⟩, (3.1)

where H is the Hamiltonian of the system and ⟨A⟩t = ⟨ψt|A|ψt⟩ is the
expectation value of some operator, A, assumed to be self-adjoint. A, for
example, could be the position or the 1-D spin operator. λ is a positive
constant, which sets the strength of the collapse mechanism and Wt is a
standard Wiener process.

Eq. 3.1 describes a diffusion process on the unit sphere of a Hilbert
space. H induces a unitary "rotation" on the sphere, while the remaining
terms tend to collpase the wave function towards one of the eigenstates of
the operator, A, in a stochastic fashion. If the dynamics induced by H is
dominant, then the evolution is deterministic and only slightly "blurred"
by the collapse terms, for very long times. Alternatively, if the collapse
terms are dominant, then the wave function collapses very rapidly in a
random fashion, with the probabilities that seem to be consistent with
the Born rule.

3.2 The continuous spontaneous localization (CSL) model

Our study deals with the continuous spontaneous localization (CSL)
model, which is the most widely studied type of collapse model. The
CSL model was proposed by Philip Pearle in 1989 [20] and finalized by
Pearle, Gian Carlo Ghirardi, and Alberto Rimini in 1990 [17]. It describes
the wave function to be continuously collapsing in time while choosing the
convenient basis of position to describe localization. Negligible effects of
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this model are predicted for microscopic systems; while they become evi-
dent in macroscopic systems, as ensured by the amplification mechanism.
It is to be noted that the symmetry of identical particles is maintained.

The experiments testing the CSL model can be divided into inter-
ferometric and non-interferometric experiments, which probe direct and
indirect effects of the collapse mechanism, respectively:

• Interferometric experiments try to detect the direct action of the
collapse, namely, the spatial localization of the wavefunction. They
include the experiments where a superposition is created, followed
by a probe in its interference pattern. CSL reduces the interference
contrast, which is expressed mathematically by the reduction of the
off-diagonal terms of the statistical operator [21].

• Non-interferometric experiments consist of CSL tests that are not
based on the preparation of a superposition. They exploit an indirect
effect of the collapse, which consists of a Brownian motion induced
by the interaction with the collapse noise. The effect of this noise
amounts to an effective stochastic force acting on the system, and
several kinds of experiments can be designed to quantify such a force,
like those probing:

– Radiation emission from charged particles [22]

– Heating in bulk materials [23]

– Diffusive effects 1 [24, 25]

The CSL model is characterized [26] by two phenomenological parame-
ters, the collapse rate, λ, and the correlation length of the noise, rc. λ
sets the frequency of the collapse, while rc can be used to quantify the
strength of the collapse. That is, superpositions of lengths greater than
rc correspond to strong collapses; while superposition of sizes lower than
rc would imply a weaker collapse.

1We seek to explore this particular signature of CSL, which we will detail upon in the next section.
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3.3 CSL-induced forces and torques:

In this section, we 2 will derive the forces and torques that are hypothe-
sized by CSL theory, to act on mechanical bodies, like on our nanomem-
brane and torsion paddle. Our derivation of the CSL momentum diffusion
rate (Eq. 3.9) follows similar derivations in [27, 25, 28, 24, 29, 30, 31].

3.3.1 CSL momentum diffusion:

The dynamics of a rigid body subject to continuous spontaneous local-
ization (CSL) is described by the master equation [31]:

ρ̇ = (L+ LCSL)ρ, (3.2)

where L is the Liouvillian operator associated with standard quantum
mechanics:

Lρ = − i

h̄
[H, ρ] (3.3)

and LCSL is a correction due to CSL:

LCSLρ = − λCSL
2r3CSLπ

3/2m2
0

∫
[M(r), [M(r), ρ]]d3r, (3.4)

where:
M(r) =

∑
n

mne
(r−rn)2/2r2CSL (3.5)

is the mass operator that describes the localization of constituent atoms
of masses, mn, position, rn, within a radius, rCSL, and at a rate, λCSL.

CSL leads to diffusion of the linear and angular momenta of the body.
To decouple these degrees of freedom, we consider rotation about one of
the principal axes of the body. The master equation can then be written:

LCSLρ = − 1

h̄2

(
D

(x)
CSL [x, [x, ρ]] +D

(ϕ)
CSL [ϕ, [ϕ, ρ]]

)
, (3.6)

whereD(x)
CSL is the linear momentum diffusion rate andD(ϕ)

CSL is the angular
momentum diffusion rate.

2 This section was primarily the work of our advisor, Dr. Dalziel Wilson. Many thanks to him!
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Phenomenologically, the linear momentum diffusion can be viewed as
a stochastic force, FCSL(t), with autocorrelation, ⟨FCSL(t)FCSL(t

′)⟩ =
DCSLδ(t− t′), and single-sided PSD:

SCSL
F (ω) = 2D

(x)
CSL. (3.7)

Likewise, angular momentum diffusion can be viewed as a stochastic
torque, τCSL(t), with PSD:

SCSL
τ (ω) = 2D

(ϕ)
CSL. (3.8)

For center-of-mass motion in the x-direction, the linear momentum
diffusion rate can be expressed as:

D
(x)
CSL = λCSL

h̄2r3CSL
π3/2m2

0

∫
e−r2CSLk

2

k2x|ρ̃m(k)|2d3k, (3.9)

where ρ̃m(k) =
∫
ρm(r)e−ik·rd3r is the Fourier transform of the mass

density, ρm(r), which is also called as the “structural factor”.
Similarly, for rotation about a principal axis as the z-axis, the angular

momentum diffusion rate can be expressed as 3:

D
(ϕ)
CSL = λCSL

h̄2r3CSL
π3/2m2

0

∫
e−r2CSLk

2|(ky∂kx − kx∂ky)ρ̃m(k)|2d3k. (3.10)

Equations 3.9 and 3.10 can be greatly simplified for homogeneous bodies
(ρm(r) = ρ0), whose dimensions are much larger than the characteristic
length, rCSL.

3.3.2 CSL-induced force on a nanomembrane:

We consider a very thin plate (thickness ∼ rCSL) embodied by a Si3N4

nanomembrane; e.g. the central pad of the trampoline in our TOM de-
vice. To ensure that the membrane acts like a rigid body, we consider a
trampoline whose tethers are much less massive than the central pad.

3 Here, ∂kx
and ∂ky

are short-hands for ∂
∂kx

and ∂
∂ky

, respectively.
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We consider a rectangular plate with dimensions, bX × bY × bZ , along
its axes, X, Y and Z. Its structure factor is thus:

ρ̃m(k) = m sinc

(
kXbX
2

)
sinc

(
kY bY
2

)
sinc

(
kZbZ
2

)
, (3.11)

where m = ρ0bXbY bZ is the total mass of the plate. If we assume the
axes of the membrane to superimpose with the corresponding cartesian
coordinate axes, we get x = X, y = Y , and z = Z.

The effective CSL force acting on the membrane is:

SCSL
F (ω) = 2λCSL

h̄2r3CSLm
2

π3/2m2
0

∫
k2xe

−k2xr
2
CSLsinc2

(
kxbx
2

)
dkx (3.12a)

×
∫
e−k2yr

2
CSLsinc2

(
kyby
2

)
dky

∫
e−k2zr

2
CSLsinc2

(
kzbz
2

)
dkz

(3.12b)

≈ λCSL
h̄2r2CSLm

2

m2
0

16π

b2xbybzrCSL
(1− e−b2x/2r

2
CSL) (3.12c)

≈ λCSL
16πh̄2r2CSL

m2
0

ρ0m

bx
(1− e−b2x/2r

2
CSL) (3.12d)

which simplifies to

SCSL
F (ω) ≈ λCSL

16πh̄2r2CSL
m2

0

ρ0m

bx
×


1 if bx ≫ rCSL
1
2 if bx ≈ rCSL
b2x

2r2CSL
if bx ≪ rCSL.

(3.13)

depending on the thickness bx of the membrane.

3.3.3 CSL-induced torque on a torsion paddle:

We now consider a square plate (bx = bz = b) of mass m = ρ0b
2by rotated

by 45◦ in the x− z plane, and where the principal axis of rotation of the
plate is its diagonal.
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The structural factor is:

ρ̃m(k) = m sinc
(
k+b

2

)
sinc

(
kyby
2

)
sinc

(
k−b

2

)
,

where k± = (kx ± kz)/
√
2.

SCSL
τ (ω) = 2λCSL

h̄2r3CSLm
2

π3/2m2
0

∫
e−r2CSLk

2 |(ky∂kx − kx∂ky)ρ̃m(k)|
2d3k = 2λCSL

h̄2r3CSLm
2

π3/2m2
0

(
∫

e−r2CSLk
2
yk2ysinc2

(
kyby
2

)
dky

∫
e−r2CSL(k

2
x+k2z)

(
∂kxsinc

(
k+b

2

)
sinc

(
k−b

2

))2

dkxdkz

−
∫

e−r2CSLk
2
y

(
∂kysinc

(
kyby
2

))2

dky

∫
e−r2CSL(k

2
x+k2z)k2xsinc2

(
k+b

2

)
sinc2

(
k−b

2

)
dkxdkz

)
If b≫ rCSL, we get (after some tedious algebra):

SCSL
τ (ω) ≈ λCSL

16πh̄2r2CSL
m2

0

ρ0m

12

(
b2

by
−
b2y
b

)
.

If the plate is thin (by ≪ b):

SCSL
τ (ω) ≈ λCSL

16πh̄2r2CSL
m2

0

ρ0Izz
by

, (3.14)

where Izz ≈ mb2/12 is the moment of inertia of a thin, square plate about
its diagonal axis.

Note that the expression for the CSL-induced torque on the square
paddle is almost identical to the CSL-induced force on the membrane,
with mass replaced by momentum of inertia.

3.3.4 Torsion pendulum as a torque sensor:

For testing CSL we consider a high-Q Si3N4 torsion micropendulum as
described in Sec. 3.3.7. We here consider the torque sensitivity of this
device, mirroring the analysis presented earlier for force sensing.

The net torque acting on the torsional paddle4 is (ignoring damping,
which we will account for later):

τnet(t) = τext(t)− kθθ(t) = Iθ̈(t), (3.15)
4We interchangeably use “torsion (micro)pendulum” and “torsion paddle”.
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where τext(t) is the net external torque acting on the paddle, kθ is the
torsional spring constant characterizing the stiffness of the torsion fiber,
and I is the moment of inertia of the paddle. Rearranging gives the
harmonic equation of motion:

θ̈(t) + ω2
mθ(t)−

τext(t)

I
= 0, (3.16)

where ωm =
√
kθ/I is the natural frequency of the torsion pendulum.

We introduce damping in the frequency domain by apply the Fourier
transform to Eq. 3.16, yielding

− ω2θ(ω) + ω2
mθ(ω) + iωγm(ω)θ(ω)︸ ︷︷ ︸

damping term

−τext(ω)
I

= 0 (3.17)

Or equivalently

θ(ω) = I−1
(
−ω2 + ω2

m + iωγm(ω)
)−1

τext(ω) (3.18a)
≡ χθτ(ω) τext(ω), (3.18b)

where χθτ(ω) is the torque susceptibility of the torsional pendulum.
Re-expressing in terms of power spectral densities, and assuming struc-

tural damping gives

Sθθ(ω) = |χθτ(ω)|2Sext
ττ (ω) (3.19a)

=
(
(ω2 − ω2

m)
2 + ω4

m/Q
2
m

)−1
Sext
ττ (ω). (3.19b)

Equation 3.19 encapsulates the torque-sensing mechanism of our paddle,
where the signal that is to be detected, Sext

ττ (ω), is coupled to our paddle’s
angular displacement, Sθθ(ω).

3.3.5 Measurement sensitivity in the frequency domain:

Mirroring the analysis in section 1.3.1, we now consider the sensitivity
of a torque measurement including readout noise. Towards this end we
consider a measurement of the angular displacement of the torsion paddle
including readout noise

θmeas(t) = θ(t) + θimp(t) (3.20)
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which in the Fourier domain becomes

θmeas(ω) = θ(ω) + θimp(ω) (3.21)

where θimp is the readout noise referred to an apparent displacement and

θ(ω) = χθτ(ω) (τCSL(ω) + τth(ω) + τba(ω)) (3.22)

is the physical displacement produce by (hypothetical) CSL, thermal, and
measurement back-action torque, respectively.

In PSD units, the total measurement signal is

Smeas
θθ (ω) =SCSL

θθ (ω) + Sth
θθ(ω) + Sba

θθ (ω) + S imp
θθ (ω) (3.23a)

=|χθτ(ω)|2
(
SCSL
ττ (ω) + Sth

ττ(ω) + Sba
ττ (ω)

)
+ S imp

θθ (ω). (3.23b)

where SCSL
τ is the CSL torque from Eq. 3.14,

Sth
τ (ω) = 4kBTγm(ω)I, (3.24)

is the thermal torque acting on the paddle (analagous to Eq. 1.25) and

Sba
τ (ω) ≥ h̄2

S imp
θ (ω)

, (3.25)

is the back-action torque, which depends on the readout strategy. As
described in [5], we employ an optical lever (Fig. ??) with imprecision:

S imp
θ (ω) ≳

1

w2
0

h̄cλ

8P
, (3.26)

where P is the optical power reflected from the paddle and w0 is the spot
size of the optical field.

Equating the CSL noise with the total measurement noise yields an
upper bound on λCSL, i.e.

SCSL
τ (ω) = λCSL

16πh̄2r2CSL
m2

0

ρ0I

by
(3.27a)

≥ Sth
τ (ω) + Sba

τ (ω) + |χτ(ω)|−2S imp
θ (ω) (3.27b)

=⇒ λCSL(ω)
m2

0

16πh̄2r2CSL

by
ρ0I

(
Sth
τ (ω) + Sba

τ (ω) + |χθτ(ω)|−2S imp
θ (ω)

)
(3.27c)
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θ
2w0

w

x

z

Figure 3.1: Schematic of optical lever measurement (taken with permission
from [5]): A Gaussian laser beam with a waist, w0, is reflected off the torsion paddle
and its deflection is monitored using a split-photodiode a distance, z, away. Angular
displacement, θ, of the torsion paddle produces a displacement of x = 2θz of the
optical beam on the split photodiode.

3.3.6 Thermal-Noise-Limited CSL constraints

Thermal noise sets an ultimate limit on the sensitivity to CSL noise, for
both torsion pendula and membranes. In both cases, it turns out that:

λmax
CSL(ωm) ∝

bωmT

ρQm
,

where b is the thickness of the paddle (by) or membrane (bx). We consider
the two cases individually below:

a) Torsion paddle: Comparing the CSL torque (Eq. 3.14) to the ther-
mal torque (Eq. 3.25) yields

λmax
CSL(ω) =

m2
0by

16πh̄2r2CSLρmIzz
Sth
τ (ω) =

byωmT

ρ0Qm

kBm
2
0

4πh̄2r2CSL

γm(ω)

γm(ωm)
. (3.28)

b) Nanomembrane: Comparing the CSL force (Eq. 3.13) with the
thermal force (Eq. 1.25) and assuming ideal thickness bx ≈ rCSL yields

λmax
CSL(ω) ≈

m2
0

8πh̄2rCSLρ0m
Sth
F (ω) ≈ bxωm

ρ0Qm

kBTm
2
0

2πh̄2r2CSL

γm(ω)

γm(ωm)
(3.29)
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3.3.7 Torsion micropendulum device

In this section, we will discuss a Si3N4 torsion micropendulum fabricated
and read out with deflectometry measurements in our lab [5].

Figure 3.2: (a) Geometry and (b) micrograph of Si3N4 torsion micropendulum, taken
with permission from [5]

.
As shown in Fig. 3.2, the device consists of a rigid, 100µm thick,

600µm × 600 µm Si pad (the torsion paddle) suspended from a 75 nm
thick, 25µm wide Si3N4, 7mm long nanoribbon (the torsion fiber).5

As described in [5], a powerful feature of Si3N4 nanoribbons with re-
spect to inertial sensing is their ability to be mass-loaded without re-
duction in their torsional Q-factors. In-vacuum measurements revealed

5It is interesting to note that the torsion micropendulum is made from the trampoline device
used for the dark matter proposal, by two of the four Si3N4 tethers while etching.

Figure 3.3: [5] Ringdown of a ωm = 2π · 40 Hz, Qm = 2× 106 Si3N4 torsion micropen-
dulum. This device was used for CSL constraints shown in Fig. 4.2
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a 1000-fold drop in the fundamental torsion resonance frequency of the
ribbons, from 40 kHz to 34 Hz, corresponding to a million-fold increase
in moment of inertia. Despite this substantial mass-loading, ringdown
measurements revealed an increased quality factor of Qm ≈ 2.5 × 106,
relative to the unloaded ribbon’s, Qm ≈ 1.5× 106. (This increase in Q is
due to the lossless gravitational restoring torque of the paddle.)
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Chapter 4

Results and discussion

In Figure 4.1 and 4.2 we present predicted DM contraints and estimated
CSL constraints based on the room temperature noise floor of our TOM

Figure 4.1: Contemporary and and predicted contraints on B−L dark pho-
ton coupling: Dashed-blue and solid-blue curves are models for the acceleration
sensitivity of four different membranes, expressed as minimum DM coupling strength,
gB−L, for a measurement time equal to the DM coherence time (τDM = 2QDM/ωDM)
and one year, respectively. Each model assumes Qm = 109, an operating temperature
of T = 10 mK, a displacement sensitivity of 2 × 10−17 m/

√
Hz, and a suppression

factor of f12 = 0.068 relative to a Germanium (Ge) reference mass. It is evident that
larger membranes yield stronger constraints. The black, yellow/brown, and green
plots are bounds set by the Eöt-Wash [32] experiments, LIGO-1 [33]/LIGO-3 [34],
and MICROSCOPE [35], respectively. The plots in various shades of red are hypeth-
ical bounds for our TOM accelerometer based on the room temperature noise floors
in Fig. 2.6, assuming a measurement time equal to the DM coherence time and also
assuming f12 = 0.068 by placing the device atop a Ge substrate as shown in Fig. 2.3.
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accelerometer and torsion micropendulum (read out with an optical lever
[5]), respectively. Details are provided in the captions and in further
discussion given below.

DM constraints. Blue and red curves in Fig. 4.1 are B − L dark
photon coupling bounds inferred from theoretical and experimental (see
Fig. 2.6) sensitivities of a membrane accelerometer. The blue models
were generated using Mathematica assuming parameters discussed in the
caption. We used the imprecision noise model S imp

xx = πh̄cλ/(64F2P )
with laser wavelength λ = 1µm, cavity finesse F=100, and optical power
P = 0.3 mW. For the experimental curves, inferred from the noise floors
of the room tempearture TOM accelerometer in Fig. 2.6, we would like
to emphasize again that the bounds are hypothetical, as they assume the
device is fixed to a Ge-reference mass as shown in Fig. 2.3.

CSL constraints - torsion micropendulum: The CSL constraint drawn
from optical lever readout of our torsion micropendulum is shown as a
purple, dotted curve in Fig. 4.2. The curve was obtained by dividing
the optical lever measurement (calibrated by translating the split pho-
todetector by a known amount [5]) by the susceptibility of the torsion
pendulum inferred from ringdown measurement in Fig. 3.3. The disper-
sive feature at the mechanical resonance frequency (∼ 40 Hz) is caused
by a mismatch between the actual and modeled resonance frequency due
by drift. Since the mechanical linewidth of the micropendulum is only
γm ≈ 2π · 20µHz, this artefact is difficult to avoid. We note that the
measurement shown, the device is suspended from a custom vibration
isolation stage atop our optical table.

CSL constraints - nanomembrane: CSL constraints drawn from the
noise floor of our room temperature TOM accelerometer are shown as
pink dashed lines in Fig. 4.2. These curves were obtained by first con-
verting the acceleration noise spectra Fig. 2.6 to force noise by multiply-
ing by the effective mass of the trampoline (m ≈ 12 ng), then equating
the force noise to the CSL noise (Eq. 3.13) using a membrane thickness
of bx = 75 nm.
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Figure 4.2: Landscape of the CSL diffusion rate bounds by various mechan-
ical experiments [24]: The purple and pink dotted plots refer to the diffusion rate
bounds inferred from our torsional balance and TOM experiment, respectively; while
the purple and pink dashed plots refer to their respective CSL bounds, if they were
limited by thermal noise that follows structural damping. At higher frequencies, we
can see that TOM sets more stringent bounds as compared to the torsion balance.
The gray region represents the range of diffusion parameters yet to be tested [36].
Resonant thermal-noise measurements using cryogenic cantilevers [29, 37] exclude a
narrow range of parameters at 1-10 kHz. Advanced LIGO’s sensitivity does not yet
broach this interesting region [38], while LISA Path Finder does exclude swaths at
low frequency [39]. The red region represents the optomechanical torsion pendulum
experiment by Kentaro Komori et al. [24] that recorded a torque sensitivity of 20
aNm/

√
Hz, while the red dashed line corresponds to the experiment limited by ther-

mal torque noise that follows structural damping.
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Chapter 5

CONCLUSION AND OUTLOOK

By combining quantum-limited displacement readout with cryogenic op-
erating temperatures, the sensitivity of our DM detector is expected to
exceed current bounds set by the Eöt-Wash experiments, in measurement
time of minutes, over a fractional bandwidth of ∼ 0.1% in the mass range,
10−11−10−10 eV/c2. It is also possible to implement scanning techniques
[11] that could broaden the bandwidth of our detector to more than an
octave. Looking forward, we anticipate that a variety of optomechanical
accelerometer platforms can perform similarly as vector ULDM detec-
tors. Optically or magnetically levitated test masses seem particularly
promising, as in addition to high Q0 ×m factors, they can be frequency
scanned over a wide bandwidth [40, 41, 42]. Our ULDM analysis assumes
that TOM’s mechanical resonance frequency is matched to the DM signal
frequency, which is very unlikely to be the case, in reality. To circumvent
this “needle in a haystack” problem, array-based networks are called for.
Collaboration and teamwork is highly desirable, where each individual
experiment can focus on a particular frequency range.

For both, our DM and CSL detection experiments, we plan to carry
out measurements at cryogenic temperatures, using a 4K continuous flow
cryostat and, later, a sub-100-mK dilution refrigerator. These will lead
to much dramatically improved constraints due to reduction of thermal
noise; however the bandwidth will remain limited by imprecision noise.
By introducing a photonic crystal, we can improve the reflectivity (∼ 99
%) and finesse inside the cavity, thus decreasing the imprecision shot
noise. We also are trying to leverage dissipation dilution for increasing
the mechanical Q of the system. Ultimately, we target reducing thermal
noise to the level that only radiation pressure and imprecision shot noise
dominate, enabling us to explore the Standard Quantum Limit, laser
cooling to the motional ground state, and other possible quantum effects
that are not typically observed on macro-scale objects.
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