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ABSTRACT 

This dissertation consists of two parts: an adaptive dispersion formula and 

polarization aberration functions for general plane symmetric optical systems. 

 First, an adaptive glass dispersion formula is defined and discussed. The formula 

exhibits superior convergence with a minimum number of coefficients. Using this formula, 

the correction of chromatic aberration per spectrum order can be rationalized. Comparisons 

between the formula and the Sellmeier or Buchdahl formulas for glasses in the Schott 

catalogue are made. The six-coefficient adaptive formula is found to be the most accurate 

with an average maximum index of refraction error of 2.91×10-6 within the visible band. 

Second, a new set of polarization aberration functions for general plane symmetric 

optical systems is proposed. These new polarization aberration functions are derived based 

on the paraxial approximation and the second-order approximation. The polarization 

aberrations of an optical system are the sum of the contributions from each surface. In other 

words, this new set of polarization aberration functions provides insight of polarization 

aberration surface by surface. The polarization aberrations of optical systems with tilted or 

decentered elements, and refractive or reflective elements, are discussed and analyzed. 

Compared with CODE V real ray tracing simulation, the difference is less than 2.5% for 

an imaging system with three curved mirrors.   

  



12 
 

1. Introduction 

1.1  Imaging Systems  

Imaging and non-imaging are two different types of optic systems. For an imaging 

system, it forms images of objects using refractive, reflective, or diffractive optical 

elements. Camera, microscope, and telescope are typical examples of imaging optical 

systems. The object of an imaging system can be self-luminous, reflective, or scattering. 

For a non-imaging system, it shapes the light source with designed transfer function to 

form desired light radiation as the output, for instance, an automobile head light, back light 

of a flat panel display, and solar energy concentrator.  

Aberration is a property in imaging optical systems, and it had been studied over 

hundreds of years. Ideally, image should be formed as a duplication of the object with 

desired magnification and location. However, aberrations usually degrade the sharpness of 

image and distorts the imaging plane. For example, when an object point source emits a 

spherical wavefront, which passes through an imaging system, due to surface figures of the 

optical lenses, the output wavefront may be deviated from spherical shape. So, the image 

of the point source would be blurred and deformed. Aberrations of the imaging system 

need to be corrected to minimize the image quality degradation. 

Aberrations are also known as deviations from Gaussian optics, first order optics, 

and paraxial optics. These three are the optics of perfect optical system, where spherical 

surfaces would form ideal images. There are three main types of aberrations: 

monochromatic aberrations, chromatic aberrations, and polarization aberrations. Examples 
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of monochromatic aberrations are spherical aberration, coma, astigmatism, and distortion. 

In terms of chromatic aberrations, longitudinal chromatic aberration and lateral chromatic 

aberration are two major types. Chromatic aberrations arise from the fact that the refractive 

index is a function of wavelength. If the light source has a broad spectrum, image quality 

could be influenced by the chromatics aberrations. For polarization aberration, it can be 

categorized into physical and geometrical types. Physical type is divided into diattenuation 

aberration and retardance aberration while geometrical type is the skew aberration.  

Polarization aberrations represent how the polarization states vary across the pupil.  

1.2  Monochromatic Aberrations 

Monochromatic aberrations describe wavefront deformation monochromatically or 

quasimonochromatically [1]. The Snell’s Law describes how the light refracts at interfaces. 

In paraxial approximation, sin (𝜃) in Snell’s Law is approximated and represented by , 

which is the first term of its Taylor expansion. After including more terms, for example the 

second term, the results would be embodied the third-order monochromatic aberrations. 

These third order aberrations are widely known as Seidel aberrations. In addition to the 

first two terms of Taylor expansion, there are more higher order terms contributing to more 

higher order aberrations. Exact ray tracing essentially would be equivalent to summing up 

all the terms including high order terms.  

Spherical aberration, coma, astigmatism, field curvature, and distortion are five 

primary aberrations of Seidel aberrations developed in 1856 [2]. Spherical aberration is 

defined as the difference of refraction or reflection among rays that propagate through a 
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spherical surface at different pupil radii. Coma, which happens in the off-axis field only, 

comes from the variation in magnification over the pupil. Astigmatism is another type of 

off-axis aberration in which rays propagate in two perpendicular planes with different 

power and focal lengths. Field curvature describes a flat object plane that would not 

perfectly conjugate to a flat image plane. Distortion comes from the variation in 

magnification over the field, where barrel distortion is a decrease in image magnification 

with distance from the optical axis, and pincushion distortion is an increase in image 

magnification with the distance from the optical axis. 

On top of third order, for the fifth order monochromatic aberrations, there are 9 

primary aberrations developed firstly by K. Schwarzschild in 1905 [2]. Five out of 10 are 

the improvements upon the primary Seidel aberrations, and 4 out of 10 are new forms of 

wavefront deviation, such as oblique spherical aberration. All these monochromatic 

aberrations and corresponding mathematical forms provide important insight into the 

image quality of an imaging optical system. 

1.3  Chromatic Aberrations 

If the light source is not monochromatic, the dispersion of the optics material would 

affect the imaging quality and the corresponding Seidel and higher order aberrations. 

However, the effects on Seidel and higher order aberrations are not as pronounced as 

chromatic aberrations, which comes from the fact that rays with different wavelengths 

would propagate along different paths through the system. Snell’s law, thin lens equation, 

and lens maker equation are all functions of refractive index of materials, which are 
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wavelength dependent. In general, refractive index of an optical material is larger at shorter 

wavelength. Abbe number, also known as the V-number, is widely utilized as a metric of 

material dispersion. High values of Abbe number indicate lower dispersion. 

There are two major types of chromatics aberrations, longitudinal chromatic 

aberration and lateral chromatic aberration. Longitudinal chromatic aberration is also 

called as axial color or chromatic change of focus. It describes the range of image location 

of an optical system as spanning a given wavelength range. On the other hand, lateral 

chromatic aberration is also called as lateral color or chromatic change of magnification.  

It refers to the wavelength dependent magnification of an optical system. The off-axis 

object point would be formed at different image heights at different colors. Both 

longitudinal chromatic aberration and lateral chromatic aberration essentially come from 

the fact that the focal length of an optical system is a function of wavelength. 

A combination of two lenses, one positive and one negative, is one straightforward 

way to minimize chromatic aberration of an optical system. Theoretically, this lens 

combination is achromatized at two specific wavelengths, and chromatic aberrations in 

between these two specific wavelengths decrease. The optimization of image quality and   

minimization of chromatic aberrations are dependent on both lens surface recipe and Abbe 

number of optics material. Figure 1.1 shows the Abbe number v.s. refractive index for 

various glasses [3]. Vertical axis is the refractive index of optical material at 587.6 nm, and 

horizontal axis is the Abbe number. Flint glass and Crown glass are the two main materials 

used to correct chromatics aberrations. Flint glass has relatively high refractive index and 
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low Abbe number (55 or less), while crown glass has low refractive index and high Abbe 

number (50 or higher). A convex lens of crown glass is usually combined with a concave 

lens of flint glass to form an achromatic doublet lens. 

 
Figure 1.1 Abbe number v.s. refractive index for various glasses [3] 

1.4  Polarization Aberrations 

Polarization aberrations of an optical system describe how the polarization state of 

light varies when this polarized light passes through the optical system. For an ideal 

polarization aberration free optical system, a uniform polarization input optical field should 

yield a constant polarization output field without polarization change after propagating 

through the system. An identity Jones matrix can be utilized to describe the polarization 
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response of such an ideal optical system. Deviations from the identity Jones matrix are so-

called polarization aberrations. In conventional optical system without considering 

polarization aberrations, the amplitude response function or point spread function at the 

image plane is the Fourier transform of the optical field at the exit pupil. After incorporating 

polarization aberrations, the Jones matrix is introduced, and the amplitude response 

function is generalized to the amplitude response matrix, while the exit pupil is also 

generalized to the exit Jones pupil [4]. 

 Polarization aberrations can be categorized into physical and geometrical types. 

Physical polarization aberrations come from Fresnel aberrations, thin film coatings, and 

anisotropic optical materials. Fresnel aberrations refer to the polarization state change due 

to the Fresnel effects at interfaces between different optical media. These non-uniform 

polarization variations across the pupil can be further categorized into diattenuation 

aberration and retardance aberration. Diattenuation aberration is the polarization dependent 

transmittance and reflectance, while retardance aberration is the polarization dependent 

optical path difference.  

Geometrical polarization aberration can be observed in an optical system after 

physical polarization aberrations are removed. Geometrical polarization aberration is also 

called as skew aberration [4]. In an axial symmetric optical system, there is no skew 

aberration for the meridional rays, but there are skew aberrations for skew rays. Skew 

aberration is a polarization rotator, which rotates polarization states between entrance pupil 

and exit pupil based on geometric transformation of an optical system. It rotates linearly 
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polarized light or the axis of elliptical polarized light. It is independent of the incident 

polarization state, and the diattenuation and retardance of optical elements.   

1.5  Summary of Contents 

This work presents two research topics: a new dispersion formula for understanding 

the correction of axial color and polarization aberration analyses in plane symmetric optical 

systems. An adaptive dispersion formula that provides less index fitting error on average 

is presented and studied. Polarization aberrations in plane symmetric optical systems are 

investigated and a new set of polarization aberration functions is proposed on top of the 

polarization aberration functions for axial symmetric optical systems. 

Chapter 2 presents an adaptive dispersion formula which is essentially a truncated 

polynomial with one adaptive term is studied. This is an insightful way to understand and 

carry out the correction of chromatic change of focus aberration. Chapter 3 presents 

different methodology to describe polarization aberrations. An extended derivation of 

polarization aberration for plane symmetric optical systems is shown, and practical 

application examples are demonstrated. Chapter 4 concludes by presenting closing remarks.  

Appendices A and B are supplemental materials of the adaptive dispersion formula. 

 

 

  



19 
 

2. Adaptive Dispersion Formula for Index Interpolation and 

Chromatic Aberration Correction 

2.1  Introduction 

A dispersion formula is utilized to relate the refractive index of optical material to 

the wavelength of light. Generally speaking, the refractive index of a material will only 

have a few measurement data at selecting wavelengths. To know the value of refractive 

index at a particular wavelength, we need to use the dispersion formula to get an 

interpolated value. Therefore, it is important to have an accurate dispersion formula. There 

are several dispersion formulas available, and these can be classified into two types. The 

first type is in the form of an algebraic fraction, and the second type is in a polynomial 

form. For example, in 1871, Wolfgang Sellmeier developed a formula which belongs to 

the first type and is [5] 

   , 1
2

2

2
2

2
2

1
2

2
12

i

i

C

B

C

B

C

B
n



















 
 

(2.1) 

where n is the index of refraction at wavelength λ. Bi and Ci are Sellmeier coefficients, 

which vary from glass to glass. In 1954, Hans Buchdahl introduced a change of coordinate 

from wavelength space λ to a chromatic coordinate ω and developed a power series of ω 

called Buchdahl dispersion formula [6-10] 
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where n is the index of refraction at chromatic coordinate ω. Although this model is a 

polynomial of ω, it is still classified as of the first type model since the relationship between 

coordinates ω and λ is 

 ,
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which is in the form of an algebraic fraction. This relationship for ω provides the functional 

nonlinearity between n and λ in ( )n   space. In Eq. (2.2) and Eq. (2.3), λ0 is the reference 

wavelength, and 0n  is the index of refraction at reference wavelength λ0. vj and α are the 

Buchdahl coefficients. The coefficient α plays the role of a convergence coefficient which 

varies with λ0 and lies within narrow limits for common glasses. For instance, if 0.574 µm 

is chosen for λ0 in the visible band, then the optimal value of α is around 2.5. However, in 

practice the coefficient α is fixed for all glasses to allow the chromatic coordinates to be 

useful for correcting chromatic aberration [9]. 

A Taylor series, which is an example of the second type of dispersion formulas, can 

be used to describe the dispersive behavior of glass. Such a series is desirable for theoretical 

studies of chromatic aberration correction. Thus, some efforts have been made to develop 

such a series in wavelength space. For example, a truncated Taylor series centered at the 

reference wavelength λ0 is [10] 

       , --- 0
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where ap is a Taylor series coefficient. However, a major problem of this polynomial is its 

weak convergence. A large number of terms are required to achieve a specific accuracy for 

known index of refraction data. The more terms that are added, the more oscillation (or 
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ripple) can potentially take place. If so, the interpolated index for a given wavelength can 

have a large error. Thus dispersion formulas that have a small number of terms and that are 

precise are desirable. However, as shown below the fitting precision can be improved by 

using more terms. 

In this chapter, an adaptive dispersion formula that provides less index fitting error 

on average is presented and studied [11]. The coefficients of the formula when multiplied 

by the sag of a lens provide directly the amount of primary, secondary, tertiary, etc. spectra. 

This decomposition is an insightful way to understand and carry out the correction of 

chromatic aberration per spectrum order in a lens system. 

2.2  Adaptive Dispersion Formula 

In this study, the interest in a dispersion formula of the second type is partly 

motivated by the interest in rationalizing the correction of chromatic aberration. Thus a 

normalized chromatic coordinate is defined as  

 , 0







 
(2.5) 

where Λ is a constant and is the larger value of (λmax－λ0) or (λ0－λmin). Here λmax and λmin 

are the extreme values of wavelength range of interest. This unitless normalized chromatic 

coordinate ∆λ has a linear relationship with λ, and its value is limited within ±1. The central 

value of ∆λ, which depends on the reference wavelength λ0, is not necessary zero. 

Now an adaptive dispersion formula using the normalized chromatic coordinate is 

defined as  
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where q is an even positive integer. Aq and K are coefficients that are determined for each 

specific glass. n0 is the index of refraction at the reference wavelength λ0. Equation (2.6) is 

a polynomial on ∆λ, except for the last term. The last term, being odd on ∆λ, is keystone 

distorted. The formula is adaptive because it selects the best keystone distortion coefficient 

K for a given glass, and also converges by using a small number of coefficients. In practice, 

as discussed below, only the A1, A2, A3, A4, A5 coefficients are used for the correction of 

chromatic aberrations. 

 
Figure 2.1 Index variation for N-BK7 glass: (a) total variation, (b) linear variation, (c) quadratic variation, 

(d) cubic variation, (e) quartic variation, and (f) quintic variation. 
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Figure 2.1 shows graphically how the index of refraction for N-BK7 glass is 

decomposed with the adaptive dispersion formula. The total index variation is a summation 

of linear, quadratic, cubic, quartic, and quintic variations, which are drawn at the same 

scale. The linear term dominates the index variation, and the quadratic term comes second. 

2.3  Index Fitting 

There are eleven measured indices measured within the visible band for each Schott 

glass. All the index data can be found in Schott glass catalogue [12]. The eleven values of 

the measured indices of refraction are assumed to be error free and are used as the target 

values. One way to fit the dispersion formula to the measured indices of refraction and 

obtain the dispersion formula coefficients is to apply the least-squares method [13-14]. 

Here, the refractive index fitting is performed within the commercial lens design software, 

Zemax OpticStudio, using the built-in orthogonal descent algorithm for optimization. A 

Zemax macro is written to calculate the RMS differences between the calculated indices 

and the measured indices, and then return the RMS difference value to the merit function. 

The dispersion formula coefficients are varied as to minimize the RMS difference and thus 

the formula coefficients are found.  

2.4  Dispersion Formula Fitting Accuracy 

First, twenty Schott glasses from each zone in the glass map are selected for 

studying the accuracy of dispersion formulas. λmax is 0.7065188 μm and λmin is 0.4046561 

μm. 0.546074 μm is chosen for λ0 in both Buchdahl and the adaptive formulas since it can 

make the formulas converge better. The selected glasses are F2, LF5, LLF1, N-BAF10, N-
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BAK4, N-BALF4, N-BASF2, N-BK7, N-FK51A, N-K5, N-KF9, N-KZFS4, N-LAF2, N-

LAK9, N-LASF40, N-PK51, N-PSK53A, N-SK16, N-SSK5, and N-SF66. The target 

fitting indices are the measured indices at wavelengths in the visible range: 0.4046561, 

0.4358343, 0.4799914, 0.4861327, 0.546074, 0.5875618, 0.5892938, 0.6328, 0.6438469, 

0.6562725, and 0.7065188 μm [12]. 

A comparison between Sellmeier, Buchdahl, and the adaptive dispersion formulas 

is presented in Table 2.1. The columns provide the maximum fitting error and RMS fitting 

error for each dispersion formula. The bottom row of the table provides a summary of the 

index fitting in average values. Since Schott uses the Sellmeier formula with six 

coefficients, the six-coefficient adaptive formula and the six-coefficient Buchdahl formula 

are used for fair comparisons. In order to understand the convergence performances of the 

adaptive and Buchdahl formulas, the four-coefficient adaptive formula and the four-

coefficient Buchdahl formula are also included for comparisons. From the bottom row of 

the table, the six-coefficient adaptive formula has the smallest fitting errors on average, 

and the four-coefficient adaptive formula performs similarly in fitting as the Sellmeier 

formula. The six-coefficient Buchdahl formula (including α as a fitting variable) performs 

as well as the Sellmeier formula, but the four-coefficient Buchdahl formula has larger 

fitting errors than the Sellmeier formula. So, the keystone distortion coefficient K does 

allow the adaptive formula to have smaller fitting errors and less terms. Clearly, the six-

coefficient adaptive formula and the four-coefficient adaptive formula provide the best 

index fitting on average. 
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Table 2.1 Fitting errors for different dispersion formulas (unit of error: ×10-6) 

 
 Glass Glascode 

Adaptive Formula Buchdahl Sellmeier Adaptive Formula Buchdahl 

six coefficients (q=4) six coefficients (j=5) six coefficients (i=3) four coefficients (q=2) four coefficients (j=3) 

Max error RMS error Max error RMS error Max error RMS error Max error RMS error Max error RMS error 

1 F2 620364.36 3.28 1.66 3.48 1.67 3.67 1.78 3.66 1.78 3.85 1.78 

2 LF5 581409.322 3.88 2.27 3.86 2.25 3.90 2.71 3.88 2.28 4.35 2.49 

3 LLF1 548458.294 2.10 1.15 5.93 2.88 4.91 2.35 4.24 2.25 6.21 3.31 

4 N-BAF10 670471.375 2.22 1.01 3.25 2.15 3.42 2.15 2.27 1.30 6.76 4.13 

5 N-BAK4 569560.305 1.52 0.87 1.42 0.86 3.90 2.68 3.30 1.82 7.65 4.93 

6 N-BALF4 580539.311 2.43 1.46 3.72 1.57 3.90 2.21 3.12 1.53 8.47 4.57 

7 N-BASF2 664360.315 2.61 1.24 2.78 1.29 3.20 1.99 2.96 1.28 2.72 1.62 

8 N-BK7 517642.251 1.74 0.91 2.79 1.40 3.64 2.07 3.14 1.81 9.13 6.22 

9 N-FK51A 487845.368 2.00 0.98 2.96 1.83 2.95 1.93 2.21 1.63 3.05 1.82 

10 N-K5 522595.259 2.98 1.44 3.00 1.41 4.50 2.68 2.80 1.52 9.25 5.90 

11 N-KF9 523515.25 3.24 1.89 3.62 2.32 3.69 2.35 3.27 2.34 5.85 3.20 

12 N-KZFS4 613445.3 3.21 1.57 3.38 2.08 3.44 2.28 3.19 2.39 6.33 4.28 

13 N-LAF2 744449.43 3.48 1.59 5.45 2.13 4.45 2.14 4.18 2.08 8.56 4.63 

14 N-LAK9 691547.351 2.18 1.09 2.19 1.08 2.20 1.09 2.27 1.24 8.56 5.41 

15 N-LASF40 834373.443 3.38 2.05 5.96 2.59 3.79 2.45 3.67 2.15 7.23 2.61 

16 N-PK51 529770.386 3.38 1.92 3.47 1.98 4.25 2.93 3.60 2.10 8.01 4.28 

17 N-PSK53A 618634.357 4.38 2.79 5.34 2.84 4.31 2.60 4.29 2.62 6.85 3.27 

18 N-SK16 620603.358 2.28 1.14 3.44 1.88 3.68 2.03 2.51 1.98 8.21 5.24 

19 N-SSK5 658509.371 3.39 1.78 3.63 1.89 4.90 3.02 4.63 3.14 5.02 3.18 

20 N-SF66 923209.4 1.93 1.18 3.01 1.63 4.01 2.60 3.65 1.83 4.12 2.39 

Average 2.78 1.50 3.63 1.89 3.83 2.30 3.34 1.95 6.51 3.76 

 

 

Figure 2.2 Fitting error graphical analyses 
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Second, the fitting performances of different dispersion formulas for all 119 glasses 

in the Schott catalogue [12] are compared. From Figure 2.2 and the table in Appendix A, 

we find similar results to those in Table 2.1. The six-coefficient adaptive formula is found 

to be the most accurate, while the four-coefficient adaptive formula is as good as the 

Sellmeier formula. 

Moreover, the six-coefficient Sellmeier formula for N-BK7 glass is fitted with the 

four and six coefficients adaptive formulas. This is performed by the orthogonal descent 

algorithm within the lens design software Zemax OpticStudio, and a macro is written to 

calculate the RMS differences between the indices calculated from Sellmeier and the 

adaptive formulas. We assume that the 300 indices of refraction calculated from Sellmeier 

formula in visible band are error free. As shown in Figure 2.3, the maximum fitting errors 

of the four and six coefficients adaptive formulas are about 5×10-7 and 5×10-9 respectively. 

This indicates that the adaptive formulas can substantially mimic the Sellmeier formula. It 

also shows that including more terms in the adaptive formula can reduce ripple amplitude 

and improve the fit. 

 
Figure 2.3 Index fitting errors of the adaptive formula for N-BK7 as fitted to the six-coefficient Sellmeier 

formula: (a) six-coefficient adaptive formula, (b) four-coefficient adaptive formula. 
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2.5  Correction of Chromatic Change of Focus per Spectrum Order 

Another purpose of the adaptive formula is to help us realize the correction of 

chromatic change of focus per spectrum order. The chromatic change of focus ∂λW020 

aberration (axial color) for a system of N thin lenses in air is given by [15] 
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(2.7) 

where y is the first-order marginal ray height at the thin lens, c1 and c2 are the curvatures 

of the surfaces, and  

  
2

1 22

y
S c c 

 
(2.8) 

is the thickness variation from the surface sag at height y. Therefore, the chromatic change 

of focus is proportional to the product of index variation and thickness variation S. 

Since the chromatic coordinate ∆λ is dimensionless and normalized to unity, the 

coefficients A1, A2, A3, A4, A5 multiplied by S directly provide the amount of chromatic 

change of focus as linear, quadratic, cubic, etc. spectra that are contributed by the lens. This 

aberration is expressed as an optical path difference between the extreme wavelengths 

0.4046561 μm and 0.7065188 μm. 

For correcting primary, secondary, and tertiary spectra in a system of N thin lenses, 

for example, we must satisfy 
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(2.9) 

Clearly, by expressing the index of refraction as a polynomial of the chromatic coordinate 

∆λ, we can perform the correction of chromatic aberration per order of spectrum. This is 

an insightful and useful aberration correction decomposition. Appendix B provides the 

coefficients A1, A2, A3, and K of the four-coefficient adaptive formula for the glasses in 

Schott catalogue using λ0 0.546074 μm, λmax 0.7065188 μm, and λmin 0.4046561 μm.  

For N-BK7 glass, A1 is -0.0082 (see the table in Appendix B). Therefore, for a 

positive lens with a sag of 1 mm at the edge of the aperture, the contribution to primary 

spectrum as an optical path difference is -0.0082 mm. This can be corrected with a negative 

lens made out of F2 glass which has a coefficient A1 -0.0176 and would require a sag value 

of -0.4688 mm. As another example, the combination of glasses N-FK51A and N-PSK3 

can correct for primary and secondary spectra as shown graphically in Figure 2.4. The 

primary and secondary spectra are almost zero. The residual is dominated by the tertiary 

spectrum. This correction is done by cancelation of similar spectrum orders contributed by 

the positive lens N-FK51A with 1 mm sag at the edge of the aperture and the negative lens 

N-PSK3 with a sag value of -0.6628 mm. From this starting point of thin lenses, a real 

apochromat with N-FK51A and N-PSK3 thick lenses can be obtained as Figure 2.5(a) and 

(b). From the chromatic focal shift figure in Figure 2.5(c), the doublet corrects for the 

primary and secondary spectra. 



29 
 

 
Figure 2.4 Cancelation of primary and secondary spectra in a doublet by using N-FK51A and N-PSK3 

glasses: (a) linear term, (b) quadratic term, (c) residual cubic term. 

 

 
Figure 2.5 Apochromat with N-FK51A and N-PSK3 glasses: (a) layout, (b) lens data, (c) chromatic focal 

shift 

 

2.6  Conclusions 

An adaptive dispersion formula which is essentially a truncated polynomial with 

one adaptive term is studied. A coefficient K in the adaptive term permits the convergence 

and makes the formula adaptive to each type of glass. Commercial lens design software 

with built-in orthogonal descent optimization algorithm is used for fitting formula 

coefficients. An index fitting comparison with 119 glasses in the Schott catalogue and for 

wavelengths in the visible band is presented. As six coefficients are adopted, the adaptive 

formula provides an average refractive index error of 2.91×10-6, while Buchdahl formula 
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and Sellmeier formula have refractive index errors of 3.63×10-6 and 3.82×10-6 on average 

respectively. The adaptive formula coefficients when multiplied by the sag of a lens 

provide directly the amount of chromatic change of focus as primary, secondary, tertiary, 

etc. spectra. This is an insightful way to understand and carry out the correction of 

chromatic change of focus aberration. A table of coefficients for Schott glasses and for the 

four coefficient adaptive formula is also provided. 
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3. Polarization Aberration Analyses in Plane Symmetric       

Optical Systems 

3.1 Introduction 

Light is an electromagnetic wave with polarization properties, and its polarization 

state may be changed based on the interfaces and properties of the medium it passes 

through, such as Fresnel effects, thin film coating effects, birefringence of the medium, and 

birefringence caused by stress. Moreover, the geometry of the lens can also alter coordinate 

systems and change the polarization state. These could be the origins of polarization 

aberrations [16]. 

The first four items are the physical factors, which are related to the refractive 

indices of material. Refractive index is a complex number (m+ik), where m is the real part 

of refractive index and k is the extinction coefficient. Dielectric materials have zero or 

small |k| values, while metals have large |k| values. Figure 3.1 shows the transmittance of 

the dielectric coating MgF2 on glass substrate and the reflectance of the metal coating Al 

on glass substrate with different incident angles of light. Transmittance and reflectance are 

the ratios of transmitted irradiance and reflected irradiance to incident irradiance, 

respectively. In the figure, the transmittance, reflectance, and phase all depend on the 

incident angle and the polarization state of light. The polarization state of light can always 

be decomposed into two orthogonal eigen states, namely the p and s states. The electric 

field of p state is oscillating in the plane of incidence, while the electric field of s state is 

perpendicular to the plane of incidence. The common electric field amplitude of p and s 
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states is treated as an amplitude aberration contribution (apodization), while the common 

phase of p and s light is treated as a geometrical wavefront aberration. The difference of 

transmittance or reflectance between p and s states causes diattenuation, and the difference 

of phases causes retardance. The reflectance phase difference between p and s states is 

larger because of a larger magnitude of the extinction coefficient of Al, which is |-6.43| at 

wavelength 587nm. On the contrary, the transmittance phase difference is small because 

MgF2 has zero extinction coefficient. The small phase difference comes from the thin film 

interference. In general, the larger magnitude of the extinction coefficient, the stronger the 

light absorption capacity of the material, and the greater the retardance caused. 

 
Figure 3.1 Polarization effects from coatings 

Birefringence is a unique optical property of material, where the refractive indices 

can be different along different axes of material. Different indices between axes can change 

the polarization state and the propagation direction of light. Anisotropic materials, such as 

crystal and calcite, are intrinsically birefringent [17-18]. Isotropic materials, for example 

plastics and glasses, are not birefringent, but under thermal strain, mechanical loading, or 
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mold flow stress, isotropic materials lose their isotropy and become birefringent 

extrinsically. This effect is called stress induced birefringence [19]. When there are 

materials with birefringence in an optical system, the polarization effects have to be 

examined carefully. If the birefringent optical components are not perfectly manufactured 

or perfectly aligned in the optical system, polarization aberrations will occur and degrade 

optical system performance, such as MTF.  

The geometry of an optical lens can also alter the polarization state of light. 

Geometrical ray bending, especially for skew rays, will rotate the local x-y coordinates 

with respect to the global Cartesian coordinates, so that the polarization state at the entrance 

pupil will be rotated when the ray reaches the exit pupil. This intrinsic geometrical 

transformation across the pupil is the skew aberration. It occurs even for non-polarizing 

optical systems. For example, a linear polarized skew ray could be rotated by a few degrees 

in a high NA system [20-22]. 

The polarization effects in optical systems have been discussed and analyzed in 

many literatures [23-30]. Polarization aberrations are the changes in the amplitude, phase, 

or polarization state associated with light paths between the entrance and the exit pupils of 

an optical system, which can degrade image quality. Polarization aberrations, whether from 

physical or geometrical factors, can be calculated and analyzed by several commercially 

available software, such as CODE V, Zemax, and FRED. The software uses real ray tracing 

with polarization calculation enabled to get the polarization characteristics of the ray at 

each interface in the optical system. However, a fundamental understanding and an 
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analytical form of the polarization aberrations would certainly be a great help to optical 

design, especially when designing optical systems with high NA values and systems with 

coatings or mirrors.  

Jones vectors and Jones matrices [31-32] have been used in optical systems for 

polarization ray tracing over the past few decades. The Jones vector describes the electric 

filed of the light; while the Jones matrix describes polarization effects, such as the Fresnel 

effects from interfaces, the diattenuation of polarizers, and the retardance of waveplates. 

Originally, a 2×2 Jones matrix was used to describe the polarization effects in local x-y 

coordinate system [33-34]. In 1987, Chipman introduced the polarization aberration 

functions which were calculated by the expanded Jones matrices in terms of Pauli spin 

matrices [35-38]. The polarization aberration functions were used for isotropic lenses and 

mirror systems with weak polarization effects in paraxial approximation. Later, Chipman 

introduced the 3×3 polarization ray tracing matrix [39-40], which utilizes global x-y-z 

coordinate system to translate polarization effects of polarization sensitive components. 

This methodology is a new way of doing polarization ray tracing and straightforward. More 

studies on the three-dimensional polarization ray tracing method were presented and the 

methods were coded as a CODE V macro and the Polaris-M software [41-44].  

Aberration theory provides basic understanding of an optical system, and an 

effective optimization of an optical system's performance also requires analysis using 

aberration theory. However, the development of aberration theory is not straightforward, 

and there is still much to explore. In this chapter, polarization aberration functions for 
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general plane symmetric optical systems are presented. The background of the new set of 

polarization aberration functions is reviewed in Section 3.2. An extended derivation of 

these polarization aberrations is described in Section 3.3. Practical application examples 

are given in Section 3.4. Finally, conclusions are summarized in Section 3.5. 

3.2 Polarization Aberrations in Axial Symmetric Optical Imaging Systems 

Recently, Sasián proposed an alternative approach to illustrate the polarization 

aberrations [45-47]. A set of polarization fields, the nR


and nT


 fields, was also constructed 

to describe the optical field at the entrance pupil or exit pupil of the optical system as a 

linear combination of these two basic fields. This whole approach followed the vector 

expression of Shack's vector wavefront aberration theory, and further extended it to 

describe the polarization aberrations. 

3.2.1 The orthogonal vector fields for describing the polarization fields 

In the 1970s, Shack introduced the third-order wavefront aberration theory in vector 

form for an axial symmetric system at the University of Arizona. In 1988, Sasián adopted 

the concept of Shack’s work and introduced the vector wavefront aberration function for a 

plane symmetric system, which is written as [48] 
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(3.1) 

i


 is the unit vector of the direction of plane of symmetry. It is fixed in orientation, and it 

defines the coordinate system. H


 and   are the normalized field and aperture vectors of 
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the system, respectively. The angles between these three vectors are shown in Figure 3.2. 

W2k+n+p,2m+n+q,n,p,q is the aberration coefficient with lower indices indicating the powers of 

H, ρ, cos(θ), cos(α), and cos(𝛽) for a particular aberration term. A set of unit vectors j


, h


, 

k


, r


, t


 are introduced according to vectors i


, H


, and  . The relationships between 

these vectors are shown in Figure 3.3. A single ray is defined by a field point at H


 (or Hh


) 

and a pupil point at   (or ρ r


). Then the vector fields nR


 are constructed by 

  , ,nR W i H  
   

, (3.2) 

and the vector fields nT


 are derived by rotating the nR


 fields by 90 degrees. The nR


and nT


 

fields are orthogonal, and the inner products of nR


and nT


 fields are zero, where the 

subscript n is the field number. This field construction methodology is inspired by the 

references [49-51]. Figure 3.4 shows the first 18 nR


 and the first 18 nT


 fields over the pupil 

with a specific field vector H


, like the 2R


 field.  There are 6 first-order fields and 30 third-

order fields. These low order fields are mainly concerned in most of the amplitude 

polarization aberrations [45-47].  

 

Figure 3.2 Unit vector 𝚤̇⃗, field vector 𝐻ሬሬ⃗ , and aperture vector 𝜌⃗ 
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Figure 3.3 Unit vectors 𝚤̇⃗, 𝚥̇⃗, ℎሬ⃗ , 𝑘ሬ⃗ , 𝑟, and 𝑡. 𝚤̇⃗ ⊥ 𝚥̇⃗, ℎሬ⃗ ⊥ 𝑘ሬ⃗ , and 𝑟 ⊥ 𝑡. ℎሬ⃗ ∥ 𝐻ሬሬ⃗  and 𝑟 ∥ 𝜌⃗ 

 
Figure 3.4 Polarization fields up to third order: (a) 𝑅ሬ⃑ ௡ fields and (b) 𝑇ሬ⃑ ௡ fields 
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3.2.2 Polarization aberration functions for refractive axial symmetric systems 

Sasián also introduced the polarization aberration functions of the field and aperture 

vectors for an axial symmetric optical system under second order approximation [47]. 

Firstly, the optical field E


 at the entrance pupil of a single spherical optical surface with 

stop located at the center of curvature, which coincides with the entrance and exit pupil 

locations, is expressed as  

      2
, , exp , ,E H A H i H

  


   
 

     

 
(3.3) 

where  ,A H 
  

 is the field amplitude describing the polarization state of the optical field. 

 ,A H 
  

 is plane symmetric and could be decomposed into a superposition of the nR


and 

nT


 fields.  ,H 
 

 is the optical phase related to the general wavefront aberrations. The 

time dependence is neglected here. After refraction from the surface, the on axis optical 

field E


 is changed to *E


 based on the Fresnel equations at the exit pupil: 

        2 22 2
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 

        
 (3.4) 

The optical field is simultaneously affected by the diattenuation and retardance at the 

surface. Here, by using paraxial approximation, the pupils are flat, and the rays are almost 

parallel to the optical axis. Therefore, the directions of p and s states before and after 

refraction are r


 and t


, where r


 is the direction of  . Since the surface is a curved surface 

with curvature C, the angle of incidence   across the surface varies linearly with the 

incident angle i of the first-order marginal ray as   i   . The amplitudes of Fresnel 
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coefficients, st and pt , of an uncoated surface under second order approximation can be 

expressed as: 

  2 ,  and     st T TtA    
 

 (3.5) 

    2 ,pt T T t t A      
 

 (3.6) 
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, and A ni . T and t are related to 

apodization, and ∆t describes the diattenuation. A is the unitless refraction invariant of the 

first-order marginal ray. n and n  are the indices of refraction before and after the surface. 

When the cosine effect of projected area for refraction power is also included, T and t 

would be modified as 
2 nn
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 and 
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nn
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, respectively. The phases of Fresnel 

coefficients cause the phase of s-polarized light to change by  22
A

   



 

 and the phase 

of p-polarized light to change by  22
( )A

    


  
 

, where δ is the common phase 

change, and ∆δ describes the retardance. δ and ∆δ are functions of wavelength, which 

causes chromatic variations of polarization. δ and ∆δ have a unit of length, rather than a 

unit of angle, because it is more straightforward to describe the properties of δ and ∆δ in 

relation to the wavelength of optical field. Regarding chromatic polarization aberration, it 

is outside the scope of this dissertation and would not be discussed further. For coated 

surfaces, the coefficients st , pt , δ, and ∆δ can be derived from multilayer coating equations 
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[52-54] or calculated by fitting the formulas to the data from a thin film design program. 

Figure 3.5 shows the Fresnel coefficients under second order approximation. 

 
(a)          (b) 

Figure 3.5 Fresnel coefficients under second order approximation: (a) amplitude and (b) phase 

 
Figure 3.6 The unit vectors 𝑎⃗ and 𝑏ሬ⃗  

If retardance ∆δ is not present, *E


 becomes E


, and Eq. (3.4) can be rewritten as  
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The polarization state of E


 is linear polarized. The directions of the first two items are 

parallel to E


. However, the presence of the third item, which is the diattenuation term, 

would alter the polarization state and make E


 no longer parallel to E


. Thus, a unit vector 

a


 parallel to E


, and a unit vector b


 perpendicular to E


 are defined and shown in Figure 
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3.6. E


 could be written as E a
 

, and E 


 is created as E b


. With this new orthogonal 

system a


 and b


, the optical field *E


 (as the ellipse in Figure 3.6) can be split into a 

component 1
oE


 parallel to a


 and a component 1
eE


 parallel to b


: 
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(3.8) 

and 
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(3.9) 

The approximate values are calculated from the second-order approximation. The 

superscripts o and e have nothing to do with the ordinary and extraordinary rays in 

anisotropic materials. When the optical axis of the uniaxial birefringent component 

coincides with the symmetry axis of the optical system containing this component, Eq. (3.8) 

and Eq. (3.9) are like to describe the electric field distribution of light in such a system. In 

this chapter, o is in the direction without retardance, and e is perpendicular to o. If the 

sinusoidal functions in Eq. (3.8) and Eq. (3.9) are kept without making too many 

approximations, the isogyres of birefringent materials are clearly visible after some 

calculations simulating the cross-polarizer effect [55]. 
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After performing stop shifting, 1
oE


 and 1
eE


 fields for a single surface system with 

a general stop location are derived. Then Sasián deducted the final orthogonal optical 

fields, oE


 and eE


, and the polarization aberration functions at the exit pupil for an axial 

symmetric optical system with q surfaces. Second order approximation is used to simplify 

the derivation of formulas [47]. oE


 and eE


 are 

          2
, , ,

, , ,                                        
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       

 
(3.10) 

and 
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(3.11) 

where  ,A H 
  

 is the field amplitude function at the exit pupil 
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(3.12) 

and  ,A H 
    is  ,A H b

  
. A


 is the field amplitude at the entrance pupil of the optical 

system with q surfaces. P0, P1, P2, and P3 are the polarization aberration coefficients for 

constant piston, defocus, tilt, and quadratic piston common apodizations. These are scalar 

aberrations and are independent of the polarization state of the incoming field A


. On the 

other hand, ∆P1, ∆P2, and ∆P3 are the polarization aberration coefficients for diattenuations. 

These terms are vector aberrations and are dependent of the polarization state of the 

incoming field A


 from Eq. (3.12). They alter the orientation of the incoming field A


. All 

these polarization aberration coefficients are listed in Table 3.1. A  in Table 3.1 is the 
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unitless refraction invariant of the first-order chief ray, and i  is the paraxial angle (slope) 

of incidence of chief ray at a given surface. u  and y  are the chief ray slope and the chief 

ray heigh at the surface, respectively. u and y are the same quantities relative to the marginal 

ray. C is the curvature of the surface. 

In Eqs. (3.10) and (3.11),  ,H 
 

 represents the phase change common to oE


 

and eE


 fields, while  ,a H 
 

 and  ,b H 
 

 are the retardance functions of eE


 and 

oE


 fields, respectively.  ,c H 
 

 is also a retardance function. However, the difference 

is that it does not affect the phase, but the amplitude of the eE


 field. These four functions 

at the exit pupil are defined as 

        1 2 3, ,                         H H H H            
      

 (3.13) 
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 (3.14) 
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 (3.15) 

and 
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(3.16) 

From Eq. (3.13) to Eq. (3.16), it is easy to find that  ,H 
 

 and  ,a H 
 

 have nothing 

to do with the polarization state of the incoming field A


, while  ,b H 
 

 and 

 ,c H 
 

 are relevant because of the presence of a


 in them. δ1, δ2, and δ3 are the 
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polarization aberration coefficients for defocus, tilt, and quadratic piston common phase 

changes, which change the first order properties of the optical system. ∆δ1, ∆δ2, and ∆δ3 

are the polarization aberration coefficients for retardance. All these polarization aberration 

coefficients are listed in Table 3.1, too. 

3.2.3 Polarization aberration functions for reflective axial symmetric systems 

In all axial symmetric imaging systems, not only lenses but also mirrors are the 

main components. There are many famous mirror systems, such as Schmidt camera, 

Gregorian telescope, and Cassegrain telescopes. Therefore, a set of similar polarization 

aberration functions for mirror systems are necessary.  

Following the content in Section 3.2.2, the optical field E


 at the entrance pupil is 

expressed as Eq. (3.3). After reflection from the surface, the on axis optical field E


 is 

changed to *E


 based on the Fresnel equations at the exit pupil: 

        2 22 2
* .

i A i A

s pE r E t t r E r r e e
      
 
   

      
 

        
 (3.17) 

The amplitudes of Fresnel coefficients, sr and pr , of an uncoated surface under second 

order approximation are: 

  2 ,  and     sr R RrA    
 

 (3.18) 

    2 ,pr R R r r A      
 

 (3.19) 
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where 
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, and A ni . R and r are related to apodization, and 

∆r describes the diattenuation. For reflection, the reflectance is the sum of 2
sr and 2

pr . 

Unlike transmittance, it does not contain the cosine factor. So, there is no need to modify 

the R and r coefficients when the energy conservation is taken into account. The phases of 

Fresnel coefficients cause the phase of s-polarized light to change by  22
A

   
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
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 and 

the phase of p-polarized light to change by  22
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  
 

, where δ is the 

common phase change, and ∆δ describes the retardance. The π phase shift for the p-

polarized light after reflection is added in order to maintain the right-hand rule, which is 

not an aberration and is neglected in this dissertation.  

For an uncoated mirror with refractive index (m+ik), the coefficients R, r, ∆r, δ, and 

∆δ can be further deduced. By replacing n  in Fresnel reflection equation with m+ik, 

simplifying the real and imaginary parts separately, and calculating the amplitude and 

phase of this complicated complex number with second order approximation, it is not 

difficult to get the coefficients: 
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 for 

s-polarized light and p-polarized light, and it will be neglected here. For coated surfaces, it 

is easier to calculate the coefficients by fitting the formulas to the data from a thin film 

design program. 
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Since the equations of sr and pr  are in the same form as the equations of st and pt , 

the following derivation will be exactly the same as the derivation of the refractive optical 

system. The final polarization aberration functions of the reflective system are similar to 

that of the refractive system, as long as T is replaced by R, t is replaced by r, and ∆t is 

replaced by ∆r. The coefficients for reflective surfaces are added into Table 3.1, too. When 

an optical system has both reflective and refractive optics, the polarization aberration 

coefficients are still calculated as the sum of the contributions from each surface, while T 

and R are the product of the contributions from each surface. Taking the Cassegrain 

telescope as an example, Figure 3.7 shows that the basic structure of this telescope is a set 

of reflectors plus an eyepiece, and this system has four surfaces, two of which are reflective 

and two of which are refractive. The P1 coefficient is calculated as  

  2 2 2 2
1 2 3 4 1 1 2 2 3 3 4 4 .R R T T r A r A t A t A  

 
(3.20) 

 
Figure 3.7 Cassegrain telescope with eyepiece 

This new approach proposed by Sasián to describe the polarization aberrations is 

based on the assumptions of paraxial approximation and second order approximation. Also, 

absorption and dichroism of light are neglected. The advantage under these assumptions is 
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that the polarization aberrations of the entire system are the sum of the polarization 

aberrations of the individual surfaces. All the polarization coefficients can be calculated 

from the first-order ray tracing data and the system structure parameters. These make the 

polarization coefficients similar to the Seidel coefficients of wavefront aberrations. This 

method is applicable to axial symmetric optical systems with spherical or slightly 

aspherical surfaces. The polarization state distribution of the incident optical field over the 

pupil can be plane symmetric, double plane symmetric or axial symmetric with respect to 

the optical axis of the system. For most of the optical systems the polarization aberrations 

are usually much smaller than the general wavefront aberrations. In many cases an 

approximate low order expansion of polarization aberrations is more useful than the exact 

value because the low order terms dominate.  
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Table 3.1 Polarization aberration coefficients for an axial symmetric optical system with q surfaces 
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3.3 Polarization Aberrations in Plane Symmetric Optical Imaging Systems 

An axial symmetric optical system does not change its characteristics when it is 

rotated at any angle with respect to the optical axis of the system. It only has an axial 

symmetric wavefront deformation for an object point on axis. Most of the optical systems 

are axial symmetric, such as objective lenses, camera lenses, and Maksutov telescope. The 

surfaces of optical components could be spherical or aspherical. When the degrees of 

symmetry are reduced, it becomes a double-plane symmetric optical system, which is 

symmetric about two orthogonal planes, for instance x-z and y-z planes [56-58]. That is to 

say, the right half of the system characteristics would be the same as the left half, while the 

upper half of the system characteristics would be the same as the lower half as the optical 

axis is along the z axis. A famous example of double-plane symmetric system is the 

anamorphic camera lens. When the degrees of symmetry are further reduced, it becomes a 

plane symmetric optical system that is symmetric about one plane, for example the y-z 

plane [59-60]. One half of the system is a mirror image of the other half. Scheimpflug 

camera is a typical example. On the other hand, a system constructed by an eccentric or 

off-axis section of an axial symmetric optical system is sometimes treated as a plane 

symmetric system as well. However, this kind of system has an inherent axis of symmetry 

that passing through the centers of curvature of all components [61]. Essentially, it is still 

a type of the axial symmetric system. The aberrations of such system can be calculated 

from the equivalent axial symmetric system and then choosing the specific portion of the 

aperture [38, 62].  
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In general, double-plane symmetry is a special case of plane symmetry, and axial 

symmetry is a special case of double-plane symmetry. When the symmetry is reduced, 

more aberration terms will be generated. Figure 3.8 illustrates the symmetry of optical 

systems and the corresponding examples. 

 

Figure 3.8 The symmetry of an optical system and examples 

Recently, more and more optical systems have adopted non-symmetric designs to 

achieve better image quality and to reduce the number of elements in the system. There are 

a lot of literature discussing the non-symmetric optical systems, and several aberration 

functions had been proposed to compare with the traditional axial symmetric aberration 

functions. An example of the non-symmetric system is the Alvarez lens [63], which is often 

used to adjust the focal length. A significant step was carried out by Buchroeder in 1976 

[64]. He introduced the aberration theory for tilted component optical systems. Each 

component in the system is axial symmetric and can be tilted in any direction about its 

nodal point so that a ray is not deviated but slightly shifted after passing through the 
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component. Later Shack and Thompson [65-70] developed the wavefront aberration 

function for tilted and decentered optical component systems in vector form as 

            , ,
, ,

, ,
p mn

k l m j j jj
j p n m
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        

 
(3.21) 

where j  specifies the disturbed component, and j  is the normalized field displacement 

vector from the tilted and decentered component j . This vector wavefront aberration 

theory, also known as the nodal aberration theory, is applied broadly in optical engineering. 

The main idea to convert the axial symmetric aberration function into a non-symmetric 

aberration function is to replace the field vector H


 with the effective field vector ( )H 
 

 

in the axial symmetric aberration function. When there is only one component tilted and 

decentered or there are multiple components tilted and decentered in the same direction in 

an axial symmetric system, the system becomes a plane symmetric system. Figure 3.9 is a 

schematic diagram illustrating that the center of aberration field changes with the field 

displacement vector 


 for a plane symmetric system. However, an axial symmetric system 

could turn into non-symmetric if the components are tilted and decentered in multiple 

directions. Figure 3.10 shows that different directions of j  may cause no symmetry in the 

system. Based on the work from Thompson, Moore et al. further extended Sasián’s 

aberration function [71] for plane symmetric systems into an aberration function of non-

symmetric systems [72].  
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Figure 3.9 Schematic diagram of the field displacement caused by the tilt of a single surface 

 

 

Figure 3.10 Schematic diagram of the field displacements caused by the tilts of multiple lenses 

The derivations of wavefront aberration functions for plane symmetric [48] and 

non-symmetric systems [66] could be applied to the derivation of polarization aberration 

function for plane symmetric systems. McGuire and Chipman followed the work of 

Buchroeder and introduced the polarization aberration finctions of tilted and decentered 

optical systems [38]. In this section, the applicability of the polarization aberration 

functions in Section 3.2 will be extended to plane symmetric optical systems, using the 

method of Buchroeder. The optical field is also plane symmetric, and it can be decomposed 

by the nR


and nT


 fields.  
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As shown in Figure 3.2, the three vectors i


, H


, and   are utilized to describe a 

ray in a plane symmetric optical system. i


 is the unit vector of the direction of plane of 

symmetry. i


 is a fixed direction in the first and second quadrants, and it is usually defined 

as the +y direction (0,1). In this case, the plane of symmetry is the y-z plane.  

In order to describe the optical system, a reference must be established. All the 

aberration functions are expanded based on this reference. In an axial symmetric system, 

the reference is the optical axis. For a plane symmetric optical system, this reference is a 

selected ray called the optical axis ray (OAR), which proporgates in the plane of symmetry. 

The three vectors i


, H


, and   are all perpendicular to the OAR with their feet located on 

the OAR. When looking towards the OAR, the distribution of these three vectors is shown 

in Figure 3.11. The OAR would pass through the center of the field of view and the center 

of the pupils. The aperture stop is assumed to be circular, perpendicular to the OAR, and 

centered on the OAR. Although the field vector H


 is perpendicular to the OAR, the object 

plane and the image plane may not be perpendicular to the OAR due to the Scheimpflug 

principle. The pupils may not be perpendicular to the OAR either as shown in Figure 3.12.  

 

Figure 3.11 Unit vector 𝚤̇⃗, field vector 𝐻ሬሬ⃗ , and aperture vector 𝜌⃗ with OAR 
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Figure 3.12 Plane symmetric system with one tilted surface 

Figure 3.12 shows an axial symmetric system with a spherical surface in gray dash 

lines. This unperturbed system has an optical axis along the +z axis. The slope of the chief 

ray is u , and the incident angle of chief ray at the surface is i . When the surface is tilted 

clockwise about the x axis as shown in black solid line, the system becomes plane 

symmetric with the direction of the plane of symmetry i


 in +y direction. The plane of 

symmetry, which is also the tangential plane, would be the y-z plane. The sagittal plane 

would be a set of planes containing the OAR and perpendicular to the tangential plane. The 

OAR is incident on the surface at an angle of incidence I and an angle of refraction I’. The 

tilt of the surface leads to a field displacement  in the +y direction, i.e., the i


 direction. 

The local axis, which is the axis of symmetry, is defined as an axis passing through the top 

of  , the center of the pupil, and the center of curvature of the tilted surface. α is the slope 

of the local axis with respect to the original optical axis. In axial symmetry systems, the 

OAR and the local axis coincide, where the common axis is the optical axis.  
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Buchroeder performs aberration expansion based on the local axis so that the 

effective field vector is ( )H 
 

, where 


 is  

 0sin
.

sin

AI n I
i i i i

u i n i A


                

       

   

 
(3.22) 

In Eq. (3.22), 


 is normalized by i


. A  is the refraction invariant of chief ray before 

surface tilt, and 0A  is defined as sin( )n I . When the aberration expansion is made based 

on the OAR, the effective field vector would be ( )H 
 

. Figure 3.13 shows the effective 

field vectors for the field vector H


 in general direction. 

 
Figure 3.13 The effective field vector based on (a) the OAR and (b) the local axis  

In this chapter, the polarization aberrations will be expanded about the OAR [60]. 

( )H 
 

 will be used to replace H


 in equations from Eq. (3.12) to Eq. (3.16): 

   
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   

0 1 2

3 1

2

( ), ( )

                           ( ) ( )                                 

                           ( ) ( )

A H P A P A P H A
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     

   

   

         

        
       

        

     

    

3                           ( ) ( ),P A H H 


      
   

 

(3.23) 
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       1 2 3( ), ( ) ( ) ( ) ,                H H H H                    
         

 (3.24) 

       1 2 3( ), 2 ( ) ( ) ( ) ,  a H H H H                        
         

 (3.25) 

        22

1 2 3( ), 2 ( ) ( ) ,b H a a H a a H                      
          

 (3.26) 

and 

       
     

1 2

2 3

( ), ( )

                              ( ) ( ) ( ) .       

c H a b a b H

a H b a H b H

        

     

           

         

        

       
 

(3.27) 

By substituting Eqs. (3.23) to (3.27) into Eqs. (3.10) and (3.11), and combining Eq. (3.22) 

with the coefficients in Table 3.1, the polarization aberration functions, oE


 and eE


, for 

plane symmetric optical systems are derived as 

          2
, , , , , ,

, , , , ,                                      
bi i H i H i HoE i H A i H e

     
 
     

          

 
(3.28) 

and 

            2 1
, , , , , ,

2 42
, , , , , , ,

ai i H i H i H
e

cE i H i H A i H e
     
   



              

             

 
(3.29) 

where  

  

       
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         
 
                       

                

          

      
  

      

        

 

(3.30) 
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and ( , , )A i H 
  

 is ( , , )A i H b
  

. ( , , )A i H 
  

 is the field amplitude function at the exit 

pupil. A


 is the input field amplitude at the entrance pupil of the optical system with q 

surfaces, and it is a known optical field. The polarization state distribution of A


 over the 

pupil can be plane symmetric, double plane symmetric or axial symmetric with respect to 

the OAR of the system. P0, P1, P2, P3, P4, and P5 are the polarization aberration coefficients 

for piston, defocus, tilt, quadratic piston, field displacement, and linear piston common 

apodizations. These are scalar aberrations and are independent of the polarization state of 

the incoming field A


. On the other hand, ∆P0, ∆P1, ∆P2, ∆P3, ∆P4, and ∆P5 are the 

polarization aberration coefficients for diattenuations. These terms are vector aberrations 

and are dependent of the polarization state of the incoming field A


 from Eq. (3.30). They 

would alter the orientation of the incoming field A


. After deriving the formulas of oE


 and 

eE


, the refraction invariants A  and A need to be redefined so that they can be applied to 

the plane symmetric systems. All these polarization aberration coefficients are listed in 

Table 3.2. A  and A in Table 3.2 are slightly different from A  and A in Table 3.1 due to the 

cos( )I  factor for the refraction invariant in a plane symmetric system. In addition, the first 

order ray slope and ray height are measured relative to the OAR, not relative to the optical 

axis. The total aberrations of a plane symmetric system can be decomposed into surface 

contributions, which helps to analyze and optimize the system. 

Similar to axial symmetric polarization aberrations, in Eqs. (3.28) and (3.29), 

 , ,i H 
 

 represents the phase change common to oE


 and eE


 fields, while 
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 , ,a i H 
 

 and  , ,b i H 
 

 are the retardance functions of eE


 and oE


 fields, 

respectively.  , ,c i H 
 

 is also a retardance function. However, the difference is that it 

does not affect the phase, but the amplitude of the eE


 field. The amplitude of the eE


 field 

is strongly apodized by the retardance function  , ,c i H 
 

. These functions at the exit 

pupil are defined as 

            0 1 2 3 4 5, , ,  i H H H H i i H                     
          

 (3.31) 

 
         
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

             

  

        


 

(3.32) 
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    
 

(3.33) 

and 
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     .a H b i    
 

 

(3.34) 

From Eq. (3.31) to Eq. (3.34),  , ,i H 
 

 and  , ,a i H 
 

 have nothing to do with the 

polarization state of the input field A


, while  , ,b i H 
 

 and  , ,c i H 
 

 are relevant 

because of the presence of a
 . δ0, δ1, δ2, δ3, δ4, and δ5 are the polarization aberration 

coefficients for constant piston, defocus, tilt, quadratic piston, field displacement, and 
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linear piston common phase changes, which are related to the first order properties of the 

optical system. ∆δ0, ∆δ1, ∆δ2, ∆δ3, ∆δ4, and ∆δ5 are the polarization aberration coefficients 

for retardance. All these polarization aberration coefficients are listed in Table 3.2, too. If 

the plane symmetric system includes reflective surfaces, the reflection-related coefficients 

are required, which are the same as those shown at the bottom of Table 3.1 for axial 

symmetric systems. The aberrations of axial symmetric systems are part of the plane 

symmetric aberrations, and they are shown as a subgroup. In Figure 3.12, when tilt is zero, 

or the angle of incidence I is zero, all the polarization aberration functions are back to the 

polarization aberration functions for axial symmetric systems.  

Same as Section 3.2, the polarization aberration functions are based on the 

assumptions of paraxial approximation and second order approximation. Absorption and 

dichroism of light are neglected. For paraxial optics, the wavefront aberrations do not exist, 

but the polarization aberrations do exist. These paraxial assumptions limit the angles of 

incidence to 30 degrees and the retardance to 30 degrees. The tilt angles of components in 

a plane symmetric system are also limited to 15 degrees. Further discussion of the 

limitations on the angle of incidence will be shown in Section 3.4.1.  

When the tilts are small enough, the tilts of the object, image and pupil planes can 

be neglected. In Eq. (3.7), the diattenuation related coefficient ∆t is relatively small 

compared with the amplitude coefficient T, and the refraction invariant A is also small 

under paraxial approximation. Thus, the direction of the optical field E


 does not deviate 

too much from the incident optical field E


. For instance, if n is 1 and n’ is 1.5, the 
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coefficient T is 0.8. However, ∆t is only 0.056, and A2 is 0.32 if i is 0.57. T∆tA2 is 0.014, 

which is almost two orders of magnitude smaller than T. Therefore, this term can be 

neglected. Similarly, if the surface is an uncoated aluminum, the coefficient R is 0.973. 

However, ∆r is only -0.028 such that R∆rA2 is only -0.009 if A2 is 0.32. This R∆rA2 term 

is two orders of magnitude less than the R term, so the R∆rA2 term is negligible. Hence, 

the vector a


 is approximately parallel to E


, which is A


 in Eq. (3.30) for both refractive 

and reflection systems. In this chapter, a


 is set as a fixed unit vector of A


 to simplify the 

calculation.  

If input polarization E


 is a uniform linearly polarized optical field with amplitude 

A


 equal to i

, the optical field amplitude A


 at the exit pupil would be   

  
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          

        

 

(3.35) 

It is a superposition of the nR


 fields, 1R


 to 12R


 in Figure 3.4. Another point worth 

mentioned is that polar coordinate system is utilized here to describe the aberrations, 

because most optical systems are constructed by axial symmetric components, such as 

spherical lenses. If the system involves plane symmetric components, such as cylindrical 

lenses, it would be more convenient to use Cartesian coordinate system. This theory does 

apply to systems with plane symmetric components. 
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Table 3.2 Polarization aberration coefficients for a plane symmetric optical system with q surfaces 
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3.4 Discussion of Polarization Aberration Functions and Examples 

In this section, the assumptions used in deriving the formulas are reviewed in detail. 

After understanding the limitations imposed by these assumptions, two examples of 

polarization aberrations in plane symmetric systems will be shown and discussed.  

3.4.1 The assumptions and approximations 

The paraxial region of polarization aberrations is usually larger than the paraxial 

region of wavefront aberrations. In the paraxial region, the angle of incidence   at a given 

curved surface can be expressed as   i    as shown in Figure 3.14(a). This is the key 

to expressing the second order approximation of the Fresnel equations as Eq. (3.5) and Eq. 

(3.6). Meanwhile, this implies that the polarization aberration functions would not be 

applicable to highly aspherical surfaces, such as the components 104 and 105 of the camera 

lens system in Figure 3.14(b) [95]. 

  
Figure 3.14 The angle of incidence varies with the pupil position 
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Figure 3.15 shows (a) amplitude and (b) phase of the transmission curves for the 

quarter-wave MgF2 coating on BK7 substrate. The Taylor expansion of Fresnel equations 

with first two terms fits the original equations well in the range of 30° (0.52 rad) angle of 

incidence. When the angle of incidence increases to 45° (0.79 rad), the |ts| fitting error is 

up to 0.6%, which may be acceptable in the simulation for simple optical systems. In terms 

of phase as shown in Figure 3.15(b), even though there is a small phase difference ∆δ 

between p and s lights from the original Fresnel equations, there is no phase difference 

under second order approximation.  

 
Figure 3.15 The transmission curves of quarter-wave MgF2 coating on BK7 substrate 
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Figure 3.16 The reflection curves of uncoated aluminum mirror 

Figure 3.16 shows (a) amplitude and (b) phase of the reflection curves for a bare 

aluminum mirror. The Taylor expansion of Fresnel equations with first two terms fits the 

original equations well within 34° (0.6 rad) angle of incidence. When the angle of incidence 

is increased to 45° (0.79 rad), the |rp| fitting error is about 0.2%, which is better than that 

of MgF2. Therefore, the mirror systems have a wider range of acceptable angles of 

incidence. 

Eq. (3.8) shows the equation of 1
oE


 before and after the second order 

approximation.   2 2cos A
   

    

 
 can be approximated to 1 within a 1% error range 

only when ∆δ is within 
12


 and i is 0.79. In this chapter, instead of approximating sin( )I  

as I, sin( )I  is kept in Eq. (3.22) to count the tilt angle effect of the optical component more 

accurately and to make the equation more stable. sin( )I  is approximated to I within a 1% 

error range as I is within 15° (0.26 rad). The acceptable error range will vary depending on 
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the complexity of the optical system to be simulated. In general, a huge tilt would not be 

accepted for an imaging optical system. Since the errors are cumulative, the more surfaces 

in the system, the larger the total accumulated error. In this case, the acceptable error for 

each single surface in the system is relatively small. Figure 3.17 shows a singlet lens tilted 

clockwise with respect to the x axis at different angles. The input is a uniform y-polarized 

light. The amplitudes of the output field with different tilt angles are calculated from the 

equations in Section 3.3. Compared with the field amplitude results from CODE V 

polarization ray tracing, the percentage difference is shown in Figure 3.17(b). When the 

tilt angle I is within 15°, the difference is within 1%. 

 
Figure 3.17 Tilt angle of a singlet v.s. the field amplitude difference 

3.4.2 The polarization aberrations of a tilted singlet lens 

In this section, the simplest system is studied to understand the polarization 

aberration functions. The singlet in Figure 3.17 is adopted and analyzed. It is an uncoated 

BK7 lens with f-number of 2.4, and an additional field is added as 10 mm. The lens is tilted 

by 15°. Figure 3.18 shows the tilted lens and the field points for simulations. Due to the 

Scheimpflug principle, the image plane is tilted counterclockwise. E


 is a uniform linearly 
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polarized optical field with amplitude A


 equal to i

, which is +1 y


. The optical field 

amplitude A


 at the exit pupil can be computed from Eq. (3.35).  

 
Figure 3.18 15° tilt lens and the field points 

When the field H


 is (0,1), A


 is decomposed into the related nR


 fields as shown 

in Figure 3.19. The numbers on top of each subplot are the magnitudes of the coefficients. 

All subplots are drawn at the same scale, except for the P0 plot.  

 

Figure 3.19 Decomposition of the amplitude field of the 15° tilt lens 
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Figure 3.20 Decomposition of the amplitude field of the 0° tilt lens 

If the tilt of lens is removed, the system becomes an axial symmetric system. 'A


 

with (0,1)H 


 is decomposed into the related nR


 fields as shown in Figure 3.20. Among 

the scalar apodization terms, the constant piston P0 dominates, and the defocus P1 comes 

second. In the vector diattenuation aberration terms, the defocus ∆P1 dominates. ∆P2 and 

∆P3 terms represent tilt and quadratic piston of vector diattenuations, respectively. 

Comparing  

Figure 3.19 and Figure 3.20, the tilt of lens ends up with more polarization 

aberration terms. In scalar apodizations, field displacement P4 and linear piston P5 show 

up. On the other hand, in vector diattenuations, constant piston ∆P0, field displacement ∆P4, 

and linear piston ∆P5 are introduced. For this simple system, even though there are more 

non-zero terms, the dominant terms are still P0 and ∆P1. The defocus apodization P1 and 
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the defocus diattenuation ∆P1 hardly change with the tilt of the lens. P2 and ∆P2 become 

larger with the tilt, while P3 and ∆P3 become an order of magnitude larger with the tilt. 

 

Figure 3.21 Pupil maps of 𝐴′ across the field 𝐻ሬሬ⃗  

Figure 3.21 shows the pupil maps of 'A


 across the field H


 for the 15° tilt lens. 

Each number indicates the maximum value of 'A


 in the specific pupil map. Compared to 

the input field A


, the output field 'A


 does not change significantly across the field H


 and 

the pupil 


. In order to see the polarization aberrations more easily, qT A


 is subtracted 

from 'A


. qT A


 is in the constant piston P0 term in Figure 3.20, and it is the input field 

multiplied by the cumulated transmission coefficients of normal incidence.  
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Figure 3.22 Pupil maps of (𝐴ᇱ − 𝑇௤𝐴) across the field 𝐻ሬሬ⃗  

Figure 3.22 shows the polarization aberrations before and after the tilt of the lens. 

The dominant term qT A


 is removed from the maps. In Figure 3.22(a), since the 

polarization aberration is dominated by the apodization defocus and diattenuation defocus, 

the aberration patterns look similar throughout the field. The center of aberration field is 

located at the center of object field. The patterns are plane symmetric about i


 because of 

the plane symmetry property of the input field A


. In Figure 3.22(b), the aberration patterns 

are heavily influenced by the tilt because 


 is added into H


. Moreover, since 


 is in + y


 

direction, the center of the aberration field would be shifted downward, which is consistent 

with the schematic plot shown in Figure 3.12. To understand the accuracy of the 

polarization aberration functions, a comparison is made with the polarization pupil map in 

CODE V. Figure 3.23 shows the amplitude and orientation differences of the output field 
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'A


 when the lens is tilted by 15°. The number above the subplot represents the maximum 

difference in the pupil. For both Figure 3.23(a) and (b), the difference increases with field 

H


. The amplitude difference is about 1%, while the orientation difference is less than 1.6°. 

The maximum orientation difference occurs in the sagittal plane. For skew rays, the 

orientation difference is larger. In CODE V, the polarization data is displayed in the 

collimated polarization coordinate system, which is the x, y, z coordinates of the surface. 

The difference of the local coordinate systems could cause the difference of the orientation 

of the output field.  

 
Figure 3.23 Comparisons of polarization pupil maps 

3.4.3 The polarization aberrations of tilted mirrors 

In order to understand the polarization aberrations of a plane symmetric system 

with retardance, the CODE V example file called ‘three mirror anastigmat’ is adopted. The 
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original system has three perfect mirrors without any polarization effect. Therefore, a built-

in coating ‘REFL_al_450nm_700nm’ is added to these three mirror surfaces to make them 

become bare aluminum mirrors. The refractive index of aluminum can be found in the 

CODE V coating file, and it is inserted into the reflective polarization coefficients in Table 

3.1. The mirrors are tilted and decentered, which makes the system plane symmetric about 

the y-z plane as shown in Figure 3.24. The optical axis ray (OAR) is shown in blue, and it 

is the reference axis of the polarization aberration functions. The incident angles of the 

optical axis ray at the mirrors M1, M2 and M3 are -18.6°, 21.9° and -7.7°, respectively. As 

shown in the figure, the incidence angle spread of M1 is about the same as that of M2, and 

the incidence angle spread of M3 is relatively small. Thus, the polarization aberrations of 

M1 and M2 would be larger than M3. Moreover, because there is an intermediate image 

point after M2, the field is flipped at image plane, and the center of the aberration field will 

be moved downward, rather than upward. The field points of interest are shown in Figure 

3.24(b), with a maximum field height of 2.5 mm.  

Same as the previous section, input field E


 is a uniform linearly polarized with 

amplitude A


 equal to i

, which is +1 y


. When the field H


 is (0,1), 'A


 is decomposed into 

the related nR


 fields as shown in Figure 3.25. The number on top of each subplot is the 

value of the coefficient. All subplots are drawn at the same scale, except for the P0 plot. 

Among the scalar apodization terms, the constant piston P0 dominates, and the field 

displacement P4 comes second. In the vector diattenuation aberration terms, the defocus 

∆P1 dominates. 
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             (a) System layout                                        (b) Field points 

 
(c) Lens data 

Figure 3.24 Three mirror anastigmat 

 

 

Figure 3.25 Decomposition of the 𝐸ሬ⃗ ௢ amplitude field 
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Figure 3.26 Aberration coefficient diagram: (a) apodization (b) diattenuation 

Figure 3.26 shows the apodization and diattenuation aberration coefficients for 

each mirror. M1 has larger aperture and larger angle of incidence, so the aberrations are 

larger. M2's aperture is small, but the angle of incidence is still large. Therefore, the 

polarization aberration contribution of M2 is more than that of M3. Since these mirrors are 

with retardance, the eE


 field also exists. Figure 3.27 shows the amplitude distribution of 

oE


 and eE


. eE


 is roughly one-eighth the magnitude of oE


. The number on top of each 

pupil map indicates the maximum amplitude value in the specific pupil map. After 

subtracting qR A


 from 'A


, the polarization aberrations of the three mirror system is shown 

in Figure 3.28. The aberration pattern is plane symmetric, and the center of the aberration 

field is moved downward.  
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Figure 3.27 Pupil maps of (a) 𝐸ሬ⃗ ௢and (b) 𝐸ሬ⃗ ௘ amplitudes across the field 𝐻ሬሬ⃗  

 
Figure 3.28 Pupil maps of (𝐴ᇱ − 𝑅௤𝐴) across the field 𝐻ሬሬ⃗  
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Combining oE


, eE


, and their corresponding phases, the polarization pupil map is 

shown as Figure 3.29. Larger ellipticity in the upper periphery of the pupil is due to the 

larger angle of incidence. The figure is plotted at field point =(0,1)H


. 

  

Figure 3.29 Polarization pupil map 

Figure 3.30 illustrates the common phase function  , ,i H 
 

 and the retardance 

aberration functions  , ,a i H 
 

,  , ,b i H 
 

,  , ,c i H 
 

. They are dominated by 

field displacement phase δ4 term, defocus phase ∆δ1 term, constant astigmatism ∆δ1 term, 

anamorphism ∆δ1 term, respectively. Figure 3.31 shows the common phase function and 

the retardance aberration coefficients for each mirror. Most of aberrations is contributed 

from M1. 
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Figure 3.30 Common phase function and the retardance aberration functions 

 

 
Figure 3.31 Aberration coefficient diagram: (a) common phase (b) retardance 

To understand the accuracy of the polarization aberration functions, a comparison 

is made with the polarization pupil map in CODE V. Figure 3.32 shows the magnitude and 

orientation differences of the output field o eE E
 

. Orientation is the tilt angle of the major 
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axis of the ellipse. Each small number indicates the maximum difference in the pupil. For 

both Figure 3.32 (a) and (b), the difference at the bottom field is the smallest. Larger the 

field, higher the difference. The magnitude difference is within 2.5%, while the orientation 

difference is within 1.3°. 

 

Figure 3.32 Comparisons of polarization pupil maps 

3.5 Conclusions 

In this chapter, the origin of polarization aberrations is discussed, and the 

polarization aberrations are classified into two major categories: physical and geometrical. 

After discussing the origins of polarization aberrations, a short review of the prior methods 

to calculate and analyze the polarization in optical systems is presented. A newly proposed 

polarization aberration theory by Sasián is reviewed in Section 3.2. Then the polarization 

aberration theory for plane symmetric optical systems is derived in Section 3.3. By utilizing 



78 
 

the new polarization aberration theory, the polarization aberrations of two examples are 

demonstrated and analyzed in Section 3.4.  

Based on the paraxial and second-order approximation, the polarization aberrations 

are the sum of the contributions from each surface. It makes this new polarization 

aberration theory easier to be realized and utilized. Although it is only a second order 

polarization aberration function, it still has good matching with CODE V real ray tracing. 

The magnitude difference is less than 2.5%, while the orientation difference is within 1.6°. 

This theory provides insight of polarization aberration surface by surface and enables a 

new merit function for polarization aberration optimization in the future.   
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4. Closing Remarks 

This dissertation presented a new adaptive dispersion formula and a set of 

polarization aberration functions for plane symmetric optical systems. These two studies 

extend existing aberration theory, provide insight to the correction of chromatic change of 

focus, and enable a new method to analyze polarization aberrations. 

The new adaptive dispersion formula rationalizes the correction of chromatic 

aberration per spectrum order. A coefficient K in the adaptive dispersion formula permits 

the convergence and makes the formula adaptive to each type of glass. The adaptive 

formula provides an average refractive index error of 2.91×10-6, while Buchdahl formula 

and Sellmeier formula have refractive index errors of 3.63×10-6 and 3.82×10-6 on average 

respectively. The adaptive formula coefficients when multiplied by the sag of a lens 

provide directly the amount of chromatic change of focus as primary, secondary, tertiary, 

etc. spectra.  

In the second half of the dissertation, the polarization aberration functions for axial 

symmetric optical systems were reviewed and the polarization aberration functions for 

plane symmetric optical systems were developed. Instead of using Jones matrix or 

polarization ray tracing, a set of polarization aberration functions was constructed to 

describe polarization aberrations. The polarization aberrations of an optical system with 

tilted lens element and of an optical system with plane symmetric reflective optics were 

demonstrated. The polarization aberration functions up to second order shows good 
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matching with the polarization ray tracing of CODE V in paraxial region. The magnitude 

difference is within 2.5%, while the orientation difference is within 1.6°. 

As for future work, we can extend the application of the adaptive dispersion 

formula to the correction for chromatic change of magnification of thin lenses. Moreover, 

we can extend the application of the adaptive dispersion formula to the correction for 

general chromatic aberrations of thick lenses. In terms of plane symmetric polarization 

aberrations, we can enhance the accuracy of the aberration functions by including the 

higher order terms, for example the 4th order terms. In addition, since the polarization 

aberrations were provided in the analytical form, we can create corresponding merit 

functions and minimize the polarization aberrations of an optical system during the 

optimization.  
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Appendix A: Index Fitting Comparison 

                (Errors are in units of 10-6) 

Number Glass Glascode 
Adaptive Formula Buchdahl Sellmeier Adaptive Formula 

six coefficients (q=4) six coefficients (j=5) six coefficients (i=3) four coefficients (q=2) 
Max error RMS error Max error RMS error Max error RMS error Max error RMS error 

1 F2 620364.360 3.28 1.66 3.48 1.67 3.67 1.78 3.66 1.78 

2 F2HT 620364.360 3.28 1.66 3.48 1.67 3.67 1.78 3.66 1.78 

3 F5 603380.347 2.43 1.30 2.52 1.31 2.63 1.67 2.41 1.34 

4 K10 501564.252 0.82 0.47 2.00 1.20 3.09 1.64 2.68 1.50 

5 K7 511604.253 3.28 1.71 3.22 1.71 3.89 2.34 3.29 2.17 

6 KZFS12 696363.384 1.63 0.90 2.74 1.83 2.51 1.77 1.90 1.29 

7 LAFN7 750350.438 1.20 0.63 1.55 0.66 2.00 1.48 1.27 0.91 

8 LF5 581409.322 3.88 2.27 3.86 2.25 3.90 2.71 3.88 2.28 

9 LLF1 548458.294 2.10 1.15 5.93 2.88 4.91 2.35 4.24 2.25 

10 N-BAF10 670471.375 2.22 1.01 3.25 2.15 3.42 2.15 2.27 1.30 

11 N-BAF4 606437.289 3.88 1.80 4.47 2.71 4.44 2.79 4.50 2.93 

12 N-BAF51 652450.333 1.42 0.66 2.22 1.27 2.54 1.58 1.60 0.93 

13 N-BAF52 609466.305 2.49 1.57 3.41 1.87 3.69 2.55 3.65 2.18 

14 N-BAK1 573576.319 3.06 1.40 3.74 2.10 4.02 2.27 3.53 2.10 

15 N-BAK2 540597.286 2.65 1.64 3.28 2.20 3.27 2.19 2.68 1.86 

16 N-BAK4 569560.305 1.52 0.87 1.42 0.86 3.90 2.68 3.30 1.82 

17 N-BALF4 580539.311 2.43 1.46 3.72 1.57 3.90 2.21 3.12 1.53 

18 N-BALF5 547536.261 1.01 0.53 1.10 0.65 3.76 2.54 2.77 1.61 

19 N-BASF2 664360.315 2.61 1.24 2.78 1.29 3.20 1.99 2.96 1.28 

20 N-BASF64 704394.320 1.91 0.84 4.30 1.91 2.62 1.86 2.48 1.86 

21 N-BK10 498670.239 2.37 1.43 3.81 2.30 4.27 2.83 3.83 2.37 

22 N-BK7 517642.251 1.74 0.91 2.79 1.40 3.64 2.07 3.14 1.81 

23 N-BK7HT 517642.251 1.74 0.91 2.79 1.40 3.64 2.07 3.14 1.81 

24 N-F2 620364.265 2.48 1.21 3.45 1.99 2.82 1.75 2.47 1.74 

25 N-FK5 487704.245 3.28 1.82 3.49 1.84 3.94 2.31 3.67 2.17 

26 N-FK51A 487845.368 2.00 0.98 2.96 1.83 2.95 1.93 2.21 1.63 

27 N-K5 522595.259 2.98 1.44 3.00 1.41 4.50 2.68 2.80 1.52 

28 N-KF9 523515.250 3.24 1.89 3.62 2.32 3.69 2.35 3.27 2.34 

29 N-KZFS11 638424.320 3.38 2.28 4.30 2.68 4.48 3.11 4.30 2.89 

30 N-KZFS2 558540.255 1.92 1.14 3.23 1.90 4.10 2.75 3.59 2.69 

31 N-KZFS4 613445.300 3.21 1.57 3.38 2.08 3.44 2.28 3.19 2.39 

32 N-KZFS5 654397.304 3.70 1.79 4.24 2.21 4.28 2.28 4.18 2.33 

33 N-KZFS8 720347.320 3.41 1.92 3.89 2.22 4.11 2.52 3.83 2.09 

34 N-LAF2 744449.430 3.48 1.59 5.45 2.13 4.45 2.14 4.18 2.08 

35 N-LAF21 788475.428 1.54 0.74 3.48 2.04 3.17 1.83 2.03 1.37 

36 N-LAF33 786441.436 5.35 3.94 7.59 3.42 4.78 3.37 4.78 3.47 

37 N-LAF34 773496.424 3.29 1.86 3.65 2.02 3.98 2.68 3.49 1.96 

38 N-LAF35 743494.412 3.78 2.33 4.76 3.11 4.11 2.82 4.12 2.83 

39 N-LAF36 800424.443 3.66 2.48 3.67 2.49 4.29 3.09 3.90 2.82 

40 N-LAF7 749348.373 3.83 2.08 4.01 2.10 4.07 2.34 4.02 2.22 

41 N-LAK10 720506.369 2.45 1.21 4.01 2.67 4.24 2.75 3.80 2.66 

42 N-LAK12 678552.410 1.76 1.04 2.90 2.03 4.10 2.41 2.58 1.71 

43 N-LAK14 697554.363 2.51 1.19 3.27 1.83 3.89 2.20 2.52 1.34 

44 N-LAK21 640601.374 4.60 2.80 6.39 3.09 4.62 2.87 4.51 2.67 

45 N-LAK22 651559.377 3.42 1.74 3.66 1.76 4.45 2.43 3.95 1.86 
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46 N-LAK33A 754523.422 2.66 1.51 3.69 2.40 4.28 2.76 2.93 2.12 

47 N-LAK33B 755523.422 1.79 1.22 2.09 1.37 4.33 2.39 2.27 1.65 

48 N-LAK34 729545.402 2.47 1.22 2.84 1.56 2.79 1.55 2.66 1.42 

49 N-LAK7 652585.384 3.13 1.98 3.44 2.09 4.87 3.18 3.62 2.38 

50 N-LAK8 713538.375 4.11 3.00 4.18 3.02 4.41 3.60 4.26 3.58 

51 N-LAK9 691547.351 2.18 1.09 2.19 1.08 2.20 1.09 2.27 1.24 

52 N-LASF31A 883408.551 4.28 2.56 4.30 2.60 4.40 2.86 4.42 2.77 

53 N-LASF40 834373.443 3.38 2.05 5.96 2.59 3.79 2.45 3.67 2.15 

54 N-LASF41 835431.485 2.06 1.05 2.21 1.24 3.49 1.98 2.52 1.56 

55 N-LASF43 806406.426 3.26 1.60 4.30 2.77 3.81 2.22 3.85 2.35 

56 N-LASF44 804465.444 3.77 2.08 4.02 2.07 3.69 2.08 3.79 2.17 

57 N-LASF45 801350.363 3.51 1.69 3.75 2.37 3.55 2.10 3.21 1.85 

58 N-LASF45HT 801350.363 3.51 1.69 3.75 2.37 3.55 2.10 3.21 1.85 

59 N-LASF46A 904313.445 2.06 1.11 2.11 1.11 2.72 1.62 2.06 1.32 

60 N-LASF46B 904313.451 2.11 1.03 2.25 1.10 2.68 1.86 2.38 1.35 

61 N-LASF9 850322.441 3.46 1.63 3.89 1.97 4.02 2.78 4.03 2.30 

62 N-LASF9HT 850322.441 3.46 1.63 3.89 1.97 4.02 2.78 4.03 2.30 

63 N-PK51 529770.386 3.38 1.92 3.47 1.98 4.25 2.93 3.60 2.10 

64 N-PK52A 497816.370 3.91 2.42 4.86 2.90 4.20 2.91 3.92 2.41 

65 N-PSK3 552635.291 4.85 2.75 5.01 3.67 4.90 3.25 4.66 2.93 

66 N-PSK53A 618634.357 4.38 2.79 5.34 2.84 4.31 2.60 4.29 2.62 

67 N-SF1 717296.303 1.51 0.74 2.51 1.60 2.16 1.43 2.21 1.64 

68 N-SF10 728285.305 2.09 1.06 1.97 0.99 4.16 2.69 3.89 2.59 

69 N-SF11 785257.322 3.52 2.13 3.94 2.72 3.97 2.87 4.11 2.51 

70 N-SF14 762265.312 2.76 1.60 2.90 1.84 2.96 1.85 2.99 1.74 

71 N-SF15 699302.292 3.43 1.92 3.51 1.92 4.05 2.68 3.51 2.49 

72 N-SF2 648338.272 3.33 1.78 5.02 2.76 3.71 2.41 3.53 1.98 

73 N-SF4 755274.315 3.10 1.59 4.05 2.78 3.90 2.55 3.76 2.78 

74 N-SF5 673323.286 4.33 2.32 4.45 2.93 4.34 2.93 4.33 2.49 

75 N-SF57 847238.353 3.01 1.58 5.53 2.62 3.97 2.45 4.52 3.60 

76 N-SF57HT 847238.353 3.01 1.58 5.53 2.62 3.97 2.45 4.52 3.60 

77 N-SF57HTultra 847238.353 3.01 1.58 5.53 2.62 3.97 2.45 4.52 3.60 

78 N-SF6 805254.337 2.91 1.67 3.16 1.79 3.31 2.13 3.04 2.04 

79 N-SF66 923209.400 1.93 1.18 3.01 1.63 4.01 2.60 3.65 1.83 

80 N-SF6HT 805254.337 2.91 1.67 3.16 1.79 3.31 2.13 3.04 2.04 

81 N-SF6HTultra 805254.337 2.91 1.67 3.16 1.79 3.31 2.13 3.04 2.04 

82 N-SF8 689313.290 4.50 1.95 5.08 3.30 4.68 3.00 4.49 2.46 

83 N-SK11 564608.308 2.46 1.44 2.86 1.53 3.63 2.15 2.52 1.60 

84 N-SK14 603606.344 2.92 1.73 3.09 1.84 4.05 2.67 2.94 1.74 

85 N-SK16 620603.358 2.28 1.14 3.44 1.88 3.68 2.03 2.51 1.98 

86 N-SK2 607567.355 3.58 1.92 3.80 2.39 3.63 2.35 3.63 2.34 

87 N-SK2HT 607567.355 3.58 1.92 3.80 2.39 3.63 2.35 3.63 2.34 

88 N-SK4 613586.354 3.58 2.16 3.79 2.34 4.55 3.06 3.49 2.28 

89 N-SK5 589613.330 2.71 1.61 2.77 1.71 2.82 1.98 2.75 1.77 

90 N-SSK2 622533.353 2.47 1.54 4.95 3.10 4.57 2.80 4.18 2.69 

91 N-SSK5 658509.371 3.39 1.78 3.63 1.89 4.90 3.02 4.63 3.14 

92 N-SSK8 618498.327 0.75 0.47 1.02 0.53 2.66 1.74 0.79 0.40 

93 N-ZK7 508612.249 2.07 0.99 3.33 1.54 3.44 1.98 3.19 1.56 

94 P-LAF37 755457.399 3.26 1.70 4.88 3.06 4.11 2.50 3.65 2.34 

95 P-LAK35 693532.385 4.62 2.38 4.62 3.22 4.62 3.19 4.02 2.43 

96 P-LASF47 806409.454 2.43 1.33 4.13 2.30 4.14 2.82 3.96 2.48 

97 P-LASF50 809405.454 3.40 1.98 4.51 2.86 3.54 2.84 3.40 2.51 
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98 P-LASF51 810409.458 2.29 1.11 2.51 1.76 4.53 3.21 2.46 1.72 

99 P-PK53 527662.283 1.49 0.75 1.54 0.74 2.94 1.92 1.60 1.08 

100 P-SF67 907214.424 2.16 1.49 3.19 1.84 3.50 2.23 2.74 1.84 

101 P-SF68 005210.619 3.99 2.22 4.28 2.30 4.50 2.66 4.08 2.44 

102 P-SF69 723292.293 2.07 1.39 3.33 2.05 3.33 2.49 4.08 2.78 

103 P-SF8 689313.290 4.31 2.12 4.31 2.12 4.58 2.68 4.36 2.23 

104 P-SK57 587596.301 1.66 0.82 2.10 1.11 2.67 1.51 1.68 1.13 

105 P-SK58A 589612.297 2.98 1.56 3.06 2.26 3.90 2.52 2.81 1.64 

106 P-SK60 610579.308 2.06 1.26 2.98 1.92 3.57 2.38 2.96 2.04 

107 SF1 717295.446 1.71 0.83 4.45 2.64 4.78 3.10 3.70 2.63 

108 SF10 728284.428 1.92 1.00 1.90 1.00 2.94 1.82 1.85 1.18 

109 SF2 648339.386 2.94 1.51 4.31 2.37 4.05 2.37 3.87 2.13 

110 SF4 755276.479 2.66 1.53 4.90 2.47 3.52 2.06 3.56 2.09 

111 SF5 673322.407 1.72 1.08 2.85 1.52 3.19 2.30 2.87 1.79 

112 SF56A 785261.492 3.71 1.92 3.84 2.02 4.49 2.77 4.17 2.71 

113 SF57 847238.551 4.51 2.59 4.75 2.60 4.87 2.69 4.86 2.68 

114 SF6 805254.518 3.99 2.21 4.15 2.27 4.28 2.43 4.23 2.27 

115 SF6HT 805254.518 3.99 2.21 4.15 2.27 4.28 2.43 4.23 2.27 

116 SF57HTultra 847238.551 4.51 2.59 4.75 2.60 4.87 2.69 4.86 2.68 

117 P-BK7 516641.243 4.78 2.50 4.88 2.74 5.02 3.05 4.63 2.69 

118 P-SK57Q1 586595.301 1.61 0.80 1.95 1.04 3.92 2.19 1.71 0.90 

119 SF11 785258.474 3.37 1.95 3.40 2.08 3.74 2.49 3.40 2.17 

Average 2.91 1.60 3.63 2.06 3.82 2.40 3.38 2.10 

Maximum 5.35 3.94 7.59 3.67 5.02 3.60 4.86 3.60 
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Appendix B: Coefficients of the Adaptive Dispersion Formula 

Glass Glascode RMS error Max error n0 A1 A2 A3 K 

 F2   620364.360 1.78×10-6 3.66×10-6 1.6240797991  -0.0175823138 0.0084939540  -0.0039437159 0.4482924521  

 F2HT   620364.360 1.78×10-6 3.66×10-6 1.6240797991  -0.0175823138 0.0084939540  -0.0039437159 0.4482924521  

 F5   603380.347 1.34×10-6 2.41×10-6 1.6071803097  -0.0163564579 0.0078466009  -0.0036212272 0.4427577747  

 K10   501564.252 1.50×10-6 2.68×10-6 1.5034895779  -0.0091235644 0.0039963730  -0.0017361587 0.4078457752  

 K7   511604.253 2.17×10-6 3.29×10-6 1.5131399068  -0.0086740087 0.0037429354  -0.0016023252 0.4056074727  

 KZFS12   696363.384 1.29×10-6 1.90×10-6 1.7005486953  -0.0197559775 0.0093812806  -0.0043473655 0.4481076563  

 LAFN7   750350.438 9.14×10-7 1.27×10-6 1.7545809783  -0.0221108140 0.0106482744  -0.0049607472 0.4508494797  

 LF5   581409.322 2.28×10-6 3.88×10-6 1.5848200074  -0.0146682637 0.0069250085  -0.0031571546 0.4438275348  

 LLF1   548458.294 2.25×10-6 4.24×10-6 1.5509865723  -0.0123292334 0.0057038704  -0.0025694851 0.4278574641  

 N-BAF10   670471.375 1.30×10-6 2.27×10-6 1.6734077339  -0.0146314049 0.0067350023  -0.0030083033 0.4184418426  

 N-BAF4   606437.289 2.93×10-6 4.50×10-6 1.6089700000  -0.0142513307 0.0066758774  -0.0030899162 0.4489441850  

 N-BAF51   652450.333 9.32×10-7 1.60×10-6 1.6556884323  -0.0149422042 0.0069230748  -0.0030925600 0.4325816755  

 N-BAF52   609466.305 2.18×10-6 3.65×10-6 1.6117303475  -0.0134213158 0.0062205045  -0.0028584367 0.4353441662  

 N-BAK1   573576.319 2.10×10-6 3.53×10-6 1.5748684175  -0.0102142823 0.0045090173  -0.0019318776 0.3974743819  

 N-BAK2   540597.286 1.86×10-6 2.68×10-6 1.5421182517  -0.0092770487 0.0040325181  -0.0017255081 0.3991595342  

 N-BAK4   569560.305 1.82×10-6 3.30×10-6 1.5712484846  -0.0104272578 0.0046121424  -0.0020063385 0.3988090023  

 N-BALF4   580539.311 1.53×10-6 3.12×10-6 1.5821197901  -0.0110506897 0.0049349611  -0.0021552280 0.4052109538  

 N-BALF5   547536.261 1.61×10-6 2.77×10-6 1.5498197672  -0.0104818527 0.0046568148  -0.0020542052 0.4205205555  

 N-BASF2   664360.315 1.28×10-6 2.96×10-6 1.6688298093  -0.0190288069 0.0092672742  -0.0043988202 0.4668742354  

 N-BASF64   704394.320 1.86×10-6 2.48×10-6 1.7082375202  -0.0184101344 0.0087455915  -0.0040350268 0.4456748237  

 N-BK10   498670.239 2.37×10-6 3.83×10-6 1.4995991678  -0.0076080500 0.0031294407  -0.0013115008 0.4099663546  

 N-BK7   517642.251 1.81×10-6 3.14×10-6 1.5187231399  -0.0082423581 0.0034670871  -0.0014780390 0.3974299435  

 N-BK7HT   517642.251 1.81×10-6 3.14×10-6 1.5187231399  -0.0082423581 0.0034670871  -0.0014780390 0.3974299435  

 N-F2   620364.265 1.74×10-6 2.47×10-6 1.6240782200  -0.0175375790 0.0085327633  -0.0040691987 0.4626006523  

 N-FK5   487704.245 2.17×10-6 3.67×10-6 1.4891433546  -0.0070749426 0.0029242500  -0.0012380608 0.3878920217  

 N-FK51A   487845.368 1.63×10-6 2.21×10-6 1.4879384712  -0.0059068330 0.0025012656  -0.0010359913 0.3978994474  

 N-K5   522595.259 1.52×10-6 2.80×10-6 1.5245807456  -0.0090111084 0.0039395844  -0.0016908912 0.3866981131  

 N-KF9   523515.250 2.34×10-6 3.27×10-6 1.5258800000  -0.0104309431 0.0046704198  -0.0020642972 0.4244169031  

 N-KZFS11   638424.320 2.89×10-6 4.30×10-6 1.6413242990  -0.0154572218 0.0070346488  -0.0031457015 0.4230841877  

 N-KZFS2   558540.255 2.69×10-6 3.59×10-6 1.5608222151  -0.0105831111 0.0045506329  -0.0019952453 0.4022202377  

 N-KZFS4   613445.300 2.39×10-6 3.19×10-6 1.6166379532  -0.0141662241 0.0064133615  -0.0028566578 0.4241695233  

 N-KZFS5   654397.304 2.33×10-6 4.18×10-6 1.6580319954  -0.0169592996 0.0079307729  -0.0036180985 0.4386297262  

 N-KZFS8   720347.320 2.09×10-6 3.83×10-6 1.7253900494  -0.0214061476 0.0103181948  -0.0048140744 0.4541137462  

 N-LAF2   744449.430 2.08×10-6 4.18×10-6 1.7479141848  -0.0170786547 0.0079119642  -0.0035306274 0.4249444175  

 N-LAF21   788475.428 1.37×10-6 2.03×10-6 1.7919481935  -0.0170562102 0.0076843951  -0.0033672363 0.4116980367  

 N-LAF33   786441.436 3.47×10-6 4.78×10-6 1.7900660801  -0.0183571038 0.0084291848  -0.0037395177 0.4218431160  

 N-LAF34   773496.424 1.96×10-6 3.49×10-6 1.7762100245  -0.0160040393 0.0071242383  -0.0030743615 0.4106525593  

 N-LAF35   743494.412 2.83×10-6 4.12×10-6 1.7468832604  -0.0154632354 0.0069000200  -0.0029916440 0.4100218811  

 N-LAF36   800424.443 2.82×10-6 3.90×10-6 1.8040010107  -0.0194328917 0.0090132934  -0.0040182910 0.4233518032  

 N-LAF7   749348.373 2.22×10-6 4.02×10-6 1.7545912843  -0.0221911537 0.0108482702  -0.0051582917 0.4622501307  

 N-LAK10   720506.369 2.66×10-6 3.80×10-6 1.7234138048  -0.0146021328 0.0064801613  -0.0028433140 0.4128374690  

 N-LAK12   678552.410 1.71×10-6 2.58×10-6 1.6808292470  -0.0126183772 0.0055720885  -0.0023795962 0.4066088872  

 N-LAK14   697554.363 1.34×10-6 2.52×10-6 1.6997984685  -0.0128899178 0.0055939978  -0.0024150832 0.3941892855  

 N-LAK21   640601.374 2.67×10-6 4.51×10-6 1.6430358364  -0.0109236519 0.0047088586  -0.0020110762 0.3964884655  

 N-LAK22   651559.377 1.86×10-6 3.95×10-6 1.6539097399  -0.0119713859 0.0052531461  -0.0022351247 0.4042704109  

 N-LAK33A   754523.422 2.12×10-6 2.93×10-6 1.7573686605  -0.0148093737 0.0065100946  -0.0028006122 0.4019279072  

 N-LAK33B   755523.422 1.65×10-6 2.27×10-6 1.7584399026  -0.0148281003 0.0065248273  -0.0027987086 0.4003245782  

 N-LAK34   729545.402 1.42×10-6 2.66×10-6 1.7323497295  -0.0137290651 0.0059757891  -0.0025575582 0.4005969717  
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 N-LAK7   652585.384 2.38×10-6 3.62×10-6 1.6542514454  -0.0114215539 0.0049705738  -0.0021254437 0.3969798108  

 N-LAK8   713538.375 3.58×10-6 4.26×10-6 1.7161614145  -0.0135852197 0.0059145425  -0.0025517617 0.4059622891  

 N-LAK9   691547.351 1.24×10-6 2.27×10-6 1.6940115384  -0.0129596539 0.0056502437  -0.0024259547 0.4001959413  

 N-LASF31A   883408.551 2.77×10-6 4.42×10-6 1.8881497912  -0.0223239746 0.0103835965  -0.0046024807 0.4246510081  

 N-LASF40   834373.443 2.15×10-6 3.67×10-6 1.8393463295  -0.0230499782 0.0110098574  -0.0050670836 0.4455959336  

 N-LASF41   835431.485 1.56×10-6 2.52×10-6 1.8396100240  -0.0199259586 0.0091887920  -0.0040816782 0.4151730367  

 N-LASF43   806406.426 2.35×10-6 3.85×10-6 1.8108138516  -0.0204352429 0.0095477611  -0.0043317186 0.4358174637  

 N-LASF44   804465.444 2.17×10-6 3.79×10-6 1.8083168468  -0.0177885085 0.0080527492  -0.0035226800 0.4141207665  

 N-LASF45   801350.363 1.85×10-6 3.21×10-6 1.8064973588  -0.0236284241 0.0114749033  -0.0053604504 0.4553623015  

 N-LASF45HT   801350.363 1.85×10-6 3.21×10-6 1.8064973588  -0.0236284241 0.0114749033  -0.0053604504 0.4553623015  

 N-LASF46A   904313.445 1.32×10-6 2.06×10-6 1.9104801688  -0.0297682566 0.0147601775  -0.0070924658 0.4678151691  

 N-LASF46B   904313.451 1.35×10-6 2.38×10-6 1.9104797602  -0.0297723294 0.0147625982  -0.0070857369 0.4697218911  

 N-LASF9   850322.441 2.30×10-6 4.03×10-6 1.8565004002  -0.0272843484 0.0134976739  -0.0064046011 0.4635574992  

 N-LASF9HT   850322.441 2.30×10-6 4.03×10-6 1.8565004002  -0.0272843484 0.0134976739  -0.0064046011 0.4635574992  

 N-PK51   529770.386 2.10×10-6 3.60×10-6 1.5301899032  -0.0070469975 0.0030663974  -0.0012900414 0.3729718287  

 N-PK52A   497816.370 2.41×10-6 3.92×10-6 1.4984539223  -0.0062437463 0.0026704784  -0.0011152830 0.3927810524  

 N-PSK3   552635.291 2.93×10-6 4.66×10-6 1.5543987948  -0.0089117869 0.0037826892  -0.0016127198 0.3916571115  

 N-PSK53A   618634.357 2.62×10-6 4.29×10-6 1.6203270362  -0.0100073946 0.0043369290  -0.0018381774 0.3958477681  

 N-SF1   717296.303 1.64×10-6 2.21×10-6 1.7230788269  -0.0250007314 0.0125931085  -0.0061644584 0.4821995426  

 N-SF10   728285.305 2.59×10-6 3.89×10-6 1.7343038849  -0.0263505052 0.0133516971  -0.0065732515 0.4861876415  

 N-SF11   785257.322 2.51×10-6 4.11×10-6 1.7919200000  -0.0315657761 0.0163134114  -0.0081839607 0.4944769557  

 N-SF14   762265.312 1.74×10-6 2.99×10-6 1.7685897572  -0.0296622769 0.0152156956  -0.0075658155 0.4917808625  

 N-SF15   699302.292 2.49×10-6 3.51×10-6 1.7043827912  -0.0238757709 0.0120198221  -0.0059115440 0.4835039445  

 N-SF2   648338.272 1.98×10-6 3.53×10-6 1.6522164739  -0.0197434765 0.0097451050  -0.0047122747 0.4738179230  

 N-SF4   755274.315 2.78×10-6 3.76×10-6 1.7616369437  -0.0284894428 0.0145433323  -0.0071858803 0.4878705757  

 N-SF5   673323.286 2.49×10-6 4.33×10-6 1.6776343059  -0.0215085407 0.0107121320  -0.0052180846 0.4748545923  

 N-SF57   847238.353 3.60×10-6 4.52×10-6 1.8550367462  -0.0367928657 0.0192509780  -0.0097598378 0.5014084332  

 N-SF57HT   847238.353 3.60×10-6 4.52×10-6 1.8550367462  -0.0367928657 0.0192509780  -0.0097598378 0.5014084332  

 N-SF57HTultra  847238.353 3.60×10-6 4.52×10-6 1.8550367462  -0.0367928657 0.0192509780  -0.0097598378 0.5014084332  

 N-SF6   805254.337 2.04×10-6 3.04×10-6 1.8126623578  -0.0328088917 0.0169627325  -0.0084838800 0.4947014643  

 N-SF66   923209.400 1.83×10-6 3.65×10-6 1.9332201486  -0.0456971971 0.0247350682  -0.0130189356 0.5176941936  

 N-SF6HT   805254.337 2.04×10-6 3.04×10-6 1.8126623578  -0.0328088917 0.0169627325  -0.0084838800 0.4947014643  

 N-SF6HTultra   805254.337 2.04×10-6 3.04×10-6 1.8126623578  -0.0328088917 0.0169627325  -0.0084838800 0.4947014643  

 N-SF8   689313.290 2.46×10-6 4.49×10-6 1.6941344935  -0.0227092735 0.0113339902  -0.0055031458 0.4792410058  

 N-SK11   564608.308 1.60×10-6 2.52×10-6 1.5660520675  -0.0095066046 0.0040949137  -0.0017498076 0.3988303987  

 N-SK14   603606.344 1.74×10-6 2.94×10-6 1.6054800754  -0.0102048365 0.0044362849  -0.0018956243 0.3826164796  

 N-SK16   620603.358 1.98×10-6 2.51×10-6 1.6228624360  -0.0105476923 0.0045565682  -0.0019402184 0.3920703755  

 N-SK2   607567.355 2.34×10-6 3.63×10-6 1.6099400000  -0.0110169758 0.0048474263  -0.0020665778 0.4061529096  

 N-SK2HT   607567.355 2.34×10-6 3.63×10-6 1.6099400000  -0.0110169758 0.0048474263  -0.0020665778 0.4061529096  

 N-SK4   613586.354 2.28×10-6 3.49×10-6 1.6152090894  -0.0107268018 0.0046713623  -0.0019892246 0.4079237707  

 N-SK5   589613.330 1.77×10-6 2.75×10-6 1.5914218317  -0.0098581724 0.0042420575  -0.0018057184 0.3935720756  

 N-SSK2   622533.353 2.69×10-6 4.18×10-6 1.6250758231  -0.0120033423 0.0053553333  -0.0023291464 0.4126290985  

 N-SSK5   658509.371 3.14×10-6 4.63×10-6 1.6615195367  -0.0133057042 0.0060148119  -0.0026419345 0.4196164336  

 N-SSK8   618498.327 3.99×10-7 7.85×10-7 1.6206797598  -0.0127492837 0.0057887464  -0.0025663579 0.4264524196  

 N-ZK7   508612.249 1.56×10-6 3.19×10-6 1.5104529557  -0.0085050550 0.0036146531  -0.0015493998 0.3924702190  

 P-LAF37   755457.399 2.34×10-6 3.65×10-6 1.7594363524  -0.0170154717 0.0077258232  -0.0034043649 0.4205756039  

 P-LAK35   693532.385 2.43×10-6 4.02×10-6 1.6966069692  -0.0133961653 0.0059178072  -0.0025330305 0.3998896170  

 P-LASF47   806409.454 2.48×10-6 3.96×10-6 1.8107823352  -0.0202929799 0.0094293900  -0.0042274169 0.4276709640  

 P-LASF50   809405.454 2.51×10-6 3.40×10-6 1.8133478395  -0.0205836749 0.0095863317  -0.0042985416 0.4286654841  

 P-LASF51   810409.458 1.72×10-6 2.46×10-6 1.8147024567  -0.0203723091 0.0094742139  -0.0042526537 0.4242012288  

 P-PK53   527662.283 1.08×10-6 1.60×10-6 1.5287999800  -0.0081646983 0.0035075032  -0.0014782476 0.4024669957  

 P-SF67   907214.424 1.84×10-6 2.74×10-6 1.9167497560  -0.0438093270 0.0234355380  -0.0121713319 0.5128849601  
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 P-SF68   005210.619 2.44×10-6 4.08×10-6 2.0164282808  -0.0495261178 0.0268141690  -0.0140133414 0.5189147100  

 P-SF69   723292.293 2.78×10-6 4.08×10-6 1.7283340779  -0.0255088982 0.0128853952  -0.0063373237 0.4840822427  

 P-SF8   689313.290 2.23×10-6 4.36×10-6 1.6941400000  -0.0227468286 0.0113447715  -0.0055057557 0.4763035534  

 P-SK57   587596.301 1.13×10-6 1.68×10-6 1.5893496888  -0.0100981864 0.0043386314  -0.0018531204 0.4040121040  

 P-SK58A   589612.297 1.64×10-6 2.81×10-6 1.5914279257  -0.0098714641 0.0042065606  -0.0017878009 0.4047998467  

 P-SK60   610579.308 2.04×10-6 2.96×10-6 1.6128621970  -0.0108037708 0.0047022991  -0.0020306725 0.3873713228  

 SF1   717295.446 2.63×10-6 3.70×10-6 1.7231035149  -0.0251075648 0.0125673193  -0.0060116902 0.4684927413  

 SF10   728284.428 1.18×10-6 1.85×10-6 1.7343009663  -0.0264741281 0.0134132004  -0.0065434517 0.4772122719  

 SF2   648339.386 2.13×10-6 3.87×10-6 1.6522188635  -0.0197458634 0.0096586395  -0.0045314966 0.4578003217  

 SF4   755276.479 2.09×10-6 3.56×10-6 1.7616668940  -0.0283017569 0.0143404014  -0.0069289516 0.4729264041  

 SF5   673322.407 1.79×10-6 2.87×10-6 1.6776403965  -0.0215611103 0.0106447023  -0.0050363143 0.4570775817  

 SF56A   785261.492 2.71×10-6 4.17×10-6 1.7918016534  -0.0311111204 0.0159366038  -0.0078093522 0.4832333224  

 SF57   847238.551 2.68×10-6 4.86×10-6 1.8550397739  -0.0367631734 0.0190886727  -0.0094507361 0.4897632624  

 SF6   805254.518 2.27×10-6 4.23×10-6 1.8126501801  -0.0327353528 0.0168108397  -0.0082324129 0.4817036949  

 SF6HT   805254.518 2.27×10-6 4.23×10-6 1.8126501801  -0.0327353528 0.0168108397  -0.0082324129 0.4817036949  

 SF57HTultra   847238.551 2.68×10-6 4.86×10-6 1.8550397739  -0.0367631734 0.0190886727  -0.0094507361 0.4897632624  

 P-BK7   516641.243 2.69×10-6 4.63×10-6 1.5183229791  -0.0082480646 0.0034688389  -0.0014755126 0.3865069532  

 P-SK57Q1   586595.301 9.05×10-7 1.71×10-6 1.5883500000  -0.0100982056 0.0043350336  -0.0018536461 0.4077352577  

 SF11   785258.474 2.17×10-6 3.40×10-6 1.7919001379  -0.0314861864 0.0162653267  -0.0080970464 0.4920624633  
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