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ABSTRACT 

 High speed ray tracing for a headlamp lens and advanced algorithms for ray analysis are 

investigated.  

 First, the basics of ray tracing, Algorithm to search intersection points between a ray and 

surfaces and refraction are reviewed, including intersection search for a ray with aspheric 

surfaces. A spherical surface, a plane surface, and a point cloud are reviewed as objects. Snell’s 

law is introduced from Fermat’s principle in 2D. Then, it extended to three dimensional spaces.  

  Second, photometry is reviewed for the post processing of ray tracing, due to the  

convolution effect of its area. 

 To accelerate ray tracing, the Nvidia GPU and CUDA platform of general purpose 

computing is evaluated in this study. Its architecture and memory architecture is unique. In 

addition, Mathematica is used in this study for file IO and graphic output with unique CUDA 

interface.  

Then, the each ray tracing method is validated using a spherical lens, aspherical lens, and 

a headlamp lens. From the comparison, the double precision floating Nagata triangular patch 

method is best in accuracy. Acceleration of ray tracing using CUDA was successful having 2 

times implement in 362 million rays traced, compared to commercially available ray trace 

packages under the same computing resources. 
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CHAPTER 1: INTRODUCTION 

1.1 Ray Tracing 

Ray tracing is the most basic operation of geometrical optics. In the Oxford dictionary, 

the meaning of ray tracing is described as ”The calculation of the path taken by a ray of light 

through an optical system such as a lens or a telescope; an instance of this” [8]. In optics, there 

are several computational light models. One is physical optics which deals with light as a wave. 

Another is geometrical optics. Third is quantum optics based approach. Geometrical optics deals 

with light as rays. Rays propagate straight through homogeneous media and are bent by optical 

elements, lenses and mirrors and such large macroscopic structure, wave optics and quantum 

nature of light is ignored, thus, ray tracing is the most important and basic calculation for optics.  

 

1.2 Headlamp for Automotive 

 Nowadays, automobile headlamps employs complex illumination optics. The Ford 

model T had headlamps even though it was developed over 100 years ago. In recent years, 

automobiles use projector-type headlamps which can produce flexible yet accurate illumination 

distribution. Such projector-type lenses for headlamp have tiny features on its exit surface to 

diverge a part of rays as seen in figure 1-1. Moreover, the headlamp light distribution is regulated 

by law in each country. Figure 1-2 shows one of the light distribution patterns made from 

regulation in Federal Motor Vehicle Safety Standard (FMVSS) which is regulated and controlled 

by National Highway Traffic Safety Administration for automobiles in the United States [10]. 

Plots of minimum indicate lower limit of intensity in candela. Plots of maximum indicate upper 

limit of intensity in candela. The top half is about 100× smaller than the bottom half, and these 

are separated by a transition zone. In addition, the regulation also specifies a slope of the 

intensity change over the transition region. Therefore, to achieve accurate illumination 

distribution complying the regulation, a precise optical design is required which is manufactured 
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to tight tolerances. This design requires many rays tracing and thus consumes time. Reducing 

calculation time consquently time to deliver product is essential to reduce cost. Therefore, the 

objective for this study is achieving high-speed ray tracing for headlamp illumination. 

 

Figure 1-1. Projector-type headlamp lens 

 

Figure 1-2. Light distribution pattern requirements in FMVSS [10] 
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Figure 1-3. Actual light distribution model of headlamp 

1.3 Previous Work 

There is a lot of previous work for acceleration of ray tracing however many of them are 

ray tracing for rendering images. There is a gap between ray tracing for rendering images and ray 

tracing for optical design and simulation because the required accuracy is different. Mauch et al. 

reported GPU accelerated ray tracing for optical simulation using NVIDIA OptiX which is 

general ray tracing engine [1]. OptiX is mainly for rendering a photorealistic image. Thus, it uses 

single precision floating point variables in its calculation. Mauch notes that “This precision is 

commonly not sufficient for scientific optical simulations, especially if wavefront properties are 

to be modeled.” Therefore, they added double precision floating point variables for ray position 

and direction in the user defined data structure of OptiX to maintain enough calculation accuracy 

for optical simulation. Since the GPU has spread to general purpose processing, NVIDIA 

recognized necessity of incorporating double precision floating point to improve the performance, 

and accuracy so NVIDIA has supported double precision floating point in their GPU of 2.0.[2] 

This study uses the full double precision floating point precision CUDA ray tracing is discussed 

and achieved. 

 

1.4 Outline of Thesis 

In this study, we analyze basic ray tracing and the acceleration of calculation speeds 

using a GPU for optical illumination simulation, to facilitate the tracing of billions of rays using 
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the automotive headlamp system as the target model. First, we will describe the basics of ray 

tracing, consisting of intersection point search and refraction calculations. Intersection searching 

has some variation that is classified by object shape. Plane surfaces are the simplest objects and 

will be addressed first. Spherical surfaces and complex surfaces will described later. After that, a 

method for the acceleration of intersection finding is described. Then, refraction calculations are 

described. Understanding photometry is required for the illumination power calculation. 

Photometric units and measurement are described. After that, parallel computing using NVIDIA 

GPU also known as CUDA is described. Then, the result of validation of ray tracing program is 

described. Finally, summary and future works are described. 

     

CHAPTER 2: RAY TRACING 

2.1 Intersection Point Searching 

Ray tracing consists of two-parts; searching for the Intersection point between a ray and 

an object surface, and a refraction calculation at the point. First, intersection searching 

calculation is described in following. In this study, three-dimensional space coordination is used 

and described as figure 2-1. In the normal case, rays travels along the +z direction. Vectors are 

indicated with bold text in sentences and with an overhead arrow in equations. 

 

Figure 2-1. Global coodinates for three-dimensional space 
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2.1.1 Intersection point between a Ray and a Plane Surface 

 The simplest object for intersection with a ray is a plane surface. The ray in three-

dimensional space can be described as, 

 x = x0 + 𝑡𝑘𝑥, (2.1) 

 y = y0 + 𝑡𝑘𝑦, (2.2) 

 z = z0 + 𝑡𝑘𝑧, (2.3) 

where {x0, y0, z0} is the initial position of the ray. t is distance from {x0, y0, z0}. {kx,  ky,  kz} is a 

unit directional vector. The plane surface that contains a point {a, b, c} can be described as, 

 nx(x − a) + ny(y − b) + nz(𝑧 − 𝑐) = 0, (2.4) 

where {nx, ny, nz} is a normal vector of the surface. Equation (2.1), (2.2), and (2.3) can be 

substituted into equation (2.4) and solved for t,  

 
t =

−𝑛𝑥𝑥0 + 𝑛𝑥𝑎 − 𝑛𝑦𝑦0 + 𝑛𝑦𝑏 − 𝑛𝑧𝑧0 + 𝑛𝑧𝑐

𝑛𝑥𝑘𝑥 + 𝑛𝑦𝑘𝑦 + 𝑛𝑧𝑘𝑧
. (2.5) 

From t, the intersection point {x, y, z} can be derived by substitution of t into equation (2.1), 

(2.2), and (2.3).  

 

Figure 2-2.Intersection point between a ray and a plane surface 
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2.1.2 Intersection point between a Ray and a Spherical Surface 

 The intersection between a ray and a spherical surface can be determined as follows. p is 

vector from the center of the sphere to the surface of the sphere,  

 |𝑝| = 𝑟, (2.6) 

where r is the radius of the spherical surface. Furthermore,  

 |𝑝| = −𝑠 + 𝐼 + 𝑡�⃗⃗�, (2.7) 

where s is a vector from the origin of the space to the origin of the sphere and I is an initial 

position of the ray, t is a constant, and k is a directional vector of the ray. Substitute equation 

(2.6) into equation (2.7) and take square of both sides,  

 𝑡2 (|�⃗⃗�|
2

) + 𝑡(−2𝑠 ∙ �⃗⃗� + 2�⃗⃗� ∙ 𝐼) + (|𝑠|2 − 2𝑠 ∙ 𝐼 + |𝐼|
2

− 𝑟2) = 0. 

, 

(2.8) 

Since equation (2.8) is a quadratic function of t, 

 

t =
−(−2𝑠 ∙ �⃗⃗� + 2�⃗⃗� ∙ 𝐼) ± √(−2𝑠 ∙ �⃗⃗� + 2�⃗⃗� ∙ 𝐼)

2
− 4 (|�⃗⃗�|

2
) (|𝑠|2 − 2𝑠 ∙ 𝐼 + |𝐼|

2
− 𝑟2)

2 (|�⃗⃗�|
2

)
. 

(2.9) 

The equation indicates that t has two answers. The smaller t is for the closer intersection points 

which are on the front surface of the sphere, and the larger  is for farther intersection on the back 

surface of the sphere. If t is an imaginary number, it indicates that the ray does not intersect with 

the spherical surface but misses. 

 

Figure 2-3.Intersection point between a ray and a spherical surface 
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2.1.3 Intersection point between a Ray and a Complex surface 

 Actual surface models in ray tracing are often more complex surfaces than plane 

surfaces and spherical surfaces. In this study, point clouds are used to express complex shaped 

surfaces because these are often used to communicate complex shapes from CAD programs. 

Each point has a three-dimensional coordinates and an associated normal vector. The points are 

addressed as an array and express the complex shaped surfaces. To find the Intersection point 

between a ray and the surface, p which is a vector from the initial point to a point in the cloud is 

compared with a propagation vector k. If the p points the same direction with k, the ray hit the 

point. Mathematically, evaluation value f can be calculated by cross product as, 

 
f =

pmn⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × �̂�

|pmn⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |
= sinθpmnk , 

(2.10) 

where pmn is the vector from the initial point to the point located at m
th
 in horizontal and n

th
 in 

vertical in the point cloud. θpmnk is the angle between pmn and k. In the simplest algorithm, the 

evaluation values for all points in the point cloud are evaluated with a brute force attack. The 

point which has the smallest evaluation value is the nearest point from the Intersection point 

between the ray and the surface. When the evaluation value is not zero, interpolation using points 

in the nearby points are required. A variety of interpolation methods are described in the 

following section. Since this evaluation method requires a calculation for all points, much 

unnecessary calculation is performed. If a point cloud consists of 100 by 100 points, the 

calculation of the nearest point requires 10,000 loops. 
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Figure 2-4. Intersection point between a ray and point cloud, a set of points lying on an optical 

surface, with an associated grid or surface normals 

 

2.1.4 Accelerated Searching Algorithm for Intersection point between a Ray and a 

Complex Surface 

 In order to accelerate calculation speed to find the nearest point, many algorithms have 

been invented. The k-dimensional tree, called k-d tree is one of the major nearest neighbor 

algorithms. The k-d tree is a space-dividing algorithm. In each step, space is divided at its 

median value of points. Figure 2-5 shows an example of a k-d tree for one dimension. In this 

study, we use a two-dimensional evenly spaced grid points which form a point cloud. Thus, 

space is divided at the mid point in x and y-direction for each step. By applying this algorithm, 

the nearest candidate points are decreased by 25% in each step. When a point cloud consists of 

100 by 100 points, only seven loops are needed to determine the nearest point. Since space is 

divided by half in each step, the required loop number can be estimated as, 

 2Q = M, (2.11) 

where, Q is required loop number and M is the number of the points in a cloud. The equation 

solves, 
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Q =

log10 M

log10 2
 , 

(2.12) 

Therefore, calculation time is reduced dramatically over the brute force algorithm which is 

described in the previous section. 

 

 

Figure 2-5. k-d tree example 

 

2.1.5 Introducing Nagata Patch for Triangular Patches to Interpolate 

Quadratically 

 Nagata introduced a simple quadratic interpolation algorithm from vicinity points and 

normal vectors which is known as the Nagata patch. [12] In this paper, a key result from that 

paper is described. Figure 2-6 shows interpolation of a triangular patch using the normal vectors 

in his paper. Locations of these vicinity points are described with 3D position vector X00, X10, 

and X11. Normal vectors at each point are described as n00, n10, and n11. η and ξ are parameters in 

the interpolation equation and indicate the normalized position along the vectors from X00 to X10 

and from X10 to X11. The quadratic interpolated point is described as, 

 X⃗⃗⃗(η, ξ) = X⃗⃗⃗00(1 − 𝜂) + X⃗⃗⃗10(𝜂 − 𝜉) + X⃗⃗⃗11𝜉 − c⃗1(1 − 𝜂)(𝜂 − 𝜉) −

c⃗2(𝜂 − 𝜉)𝜉 − c⃗3(1 − 𝜂)𝜉 . 

(2.13) 

c1, c2 and c3 are curvature parameters and defined as, 

 c⃗1 ≡ c⃗(d⃗⃗⃗1, n⃗⃗⃗00, n⃗⃗⃗10)  , (2.14) 

 c⃗2 ≡ c⃗(d⃗⃗⃗2, n⃗⃗⃗10, n⃗⃗⃗11)  , (2.15) 
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 c⃗3 ≡ c⃗(d⃗⃗⃗3, n⃗⃗⃗00, n⃗⃗⃗11)   . (2.16) 

where, c is function and defined as, 

 
c⃗m(d⃗⃗m, n⃗⃗a,  n⃗⃗b) = {

∆dm

1−∆c
�⃗� +

d

Δc
Δ�⃗�  (𝑐 ≠ ±1)

{0,0,0}  (𝑐 = ±1).
  

(2.17) 

where ν is an average of the normal vectors and ∆ν is deviation of the normal vectors. 

 𝜈ab = ( n⃗⃗⃗a +  n⃗⃗⃗b)/2  , (2.18) 

 Δ𝜈ab = ( n⃗⃗⃗a −  n⃗⃗⃗b)/2  . (2.19) 

d and Δ are defined as, 

 dm = d⃗⃗m

T
�⃗⃗�ab  , (2.20) 

 Δdm = d⃗⃗m

T
Δ�⃗⃗�ab . (2.21) 

Each d is defined as, 

 d⃗⃗1 = X⃗⃗⃗10 − X⃗⃗⃗00  , (2.22) 

 d⃗⃗2 = X⃗⃗⃗11 − X⃗⃗⃗10  , (2.23) 

 d⃗⃗3 = X⃗⃗⃗11 − X⃗⃗⃗00  . (2.24) 

c and Δc are defined as  

 cab = 1 − 2Δcab , (2.25) 

 Δcab = n⃗⃗a
T

Δ�⃗⃗�ab . (2.26) 

In addition, the normal vectors at the interpolated point can be calculated by taking partial 

derivative of X respect to η and ξ as, 

 
X⃗⃗⃗𝜂 =

𝜕�⃗⃗�

𝜕𝜂
= d⃗⃗1 + c⃗1{(𝜂 − 𝜉) − (1 − 𝜂)} + (c⃗3 − c⃗2)𝜉 ,  

(2.27) 

 
X⃗⃗⃗𝜉 =

𝜕�⃗�

𝜕𝜉
= d⃗⃗2 + c⃗2{𝜉 − (𝜂 − 𝜉)} + (c⃗1 − c⃗3)(1 − 𝜂) . 

(2.28) 

The normal vector at η and ξ are calculated as, 

 
n⃗⃗(𝜂, 𝜉) =

𝜕�⃗⃗⃗�

𝜕𝜂
×

𝜕�⃗⃗⃗�

𝜕𝜉
 , 

(2.29) 
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Figure 2-6. Triangular patch [12] 

2.1.6 Introducing Nagata Patch for Quadrilateral Patch to Interpolate 

Quadratically 

 Nagata also introduced quadratic interpolation for quadrilateral patches. [12] Figure 2-7 

shows interpolation of a quadrilateral patch using the normal vectors in his paper. The notation is 

similar to the previous triangular patch. Quadratic interpolation for the quadrilateral patch is 

described as, 

 X⃗⃗⃗(η, ξ) = X⃗⃗⃗00 + (d⃗⃗1 − c⃗1)𝜂 + (d⃗⃗4 − c⃗4)𝜉 + (d⃗⃗2 − d⃗⃗4 + c⃗1 − c⃗2 − c⃗3 +

c⃗4)𝜂𝜉 + c⃗1𝜂2 + c⃗4𝜉2 + (c⃗3 − c⃗1)𝜂2𝜉 + (c⃗2 − c⃗4)𝜂𝜉2 . 

(2.30) 

Each d is defined as, 

 d⃗⃗1 = X⃗⃗⃗10 − X⃗⃗⃗00  , (2.31) 

 d⃗⃗2 = X⃗⃗⃗11 − X⃗⃗⃗10  , (2.32) 

 d⃗⃗3 = X⃗⃗⃗11 − X⃗⃗⃗01  . (2.33) 

 d⃗⃗4 = X⃗⃗⃗01 − X⃗⃗⃗00  . (2.34) 

The partial derivative of X with respect to η and ξ are described as 

 X⃗⃗⃗𝜂 =
𝜕�⃗⃗�

𝜕𝜂
= (d⃗⃗1 − c⃗1) + (d⃗⃗2 − d⃗⃗4 + c⃗1 − c⃗2 − c⃗3 + c⃗4)𝜉 + 2c⃗1𝜂 + c⃗4𝜉2 +

2(c⃗3 − c⃗1)𝜂𝜉 + (c⃗2 − c⃗4)𝜉2 ,  

(2.35) 
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X⃗⃗⃗𝜉 =

𝜕�⃗�

𝜕𝜉
= (d⃗⃗4 − c⃗4) + (d⃗⃗2 − d⃗⃗4 + c⃗1 − c⃗2 − c⃗3 + c⃗4)𝜂 + 2c⃗4𝜉 + (c⃗3 − c⃗1)𝜂2

+ 2(c⃗2 − c⃗4)𝜂𝜉 . 

(2.36) 

The normal vector at η and ξ are calculated as, 

 
n⃗⃗(𝜂, 𝜉) =

𝜕�⃗⃗⃗�

𝜕𝜂
×

𝜕�⃗⃗⃗�

𝜕𝜉
 . 

(2.37) 

In this study, the point clouds consist of linear spaced grid of points. Therefore, the quadrilateral 

patch is appropriate. Both triangular patch and quadrilateral patch interpolation methods were 

tried and compared. 

 

Figure 2-7. Quadrilateral patch [12] 

2.2 Refraction 

The second step in ray tracing calculation is refraction, the bending of rays at the 

boundaries of surfaces. Refraction depends on the angle of incidence and the materials before 

and after the surface. In this section, refraction principle is described. 

2.2.1 Fermat’s Principle and Snell’s Law 

 Fermat’s principle describes why rays travel straight and are bent at a surface boundary. 

Dereniak & Dereniak (2008) states that “Fermat’s principle states that light rays of given 

frequency traverse the path between tow given points in the least amount of time” [11]. To solve 

mathematically, a path of the ray from point A to point B is considered as figure 2-8. 
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Figure 2-8. Light path for Fermat’s principle 

Total time from point A to point B is the sum of the distance divided by velocity. 

 τtotal =
Z

𝑣𝑛
+

Z

𝑣𝑛′
 . (2.38) 

The velocity of light in medium whose refractive index is n and n’ is 

 𝑣n =
𝑐

n
   ,    𝑣n′ =

𝑐

n′
  , (2.39) 

where, c is the speed of light in vacuum space. 

Hence total time is 

 τtotal =
Zn

𝑐
+

Zn′

𝑐
 . (2.40) 

Since optical path length (OPL) from A to B is equivalent to velocity times time 

 OPL = 𝑐τtotal = Zn + Zn′. (2.41) 

From figure 8, using Pythagoras’s theorem,  

 Z2 = h2 + (d − x)2. (2.42) 

 Z′2 = h′2 + 𝑥2. (2.43) 

Substituting (2.42) and (2.43) into (2.41), 
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 OPL = √h2 + (d − x)2n + √h′2 + 𝑥2n′. (2.44) 

To find the minimum OPL, set the partial derivative with respect to x equal to zero, 

 
𝜕OPL

𝜕x
= −

n(d − x)

√h2 + (d − x)2
+

𝑛′𝑥

√h′2 + x2
= 0 . (2.45) 

Rearranging (2.45), 

  n
(d − x)

√h2 + (d − x)2
= n′

𝑥

√h′2 + x2
  , (2.46) 

  n sin θ = n′ sin θ′  , (2.47) 

Equation (2.47) is called Snell’s law and describes how a ray is bent at the boundary. 

 

2.2.2 Snell’s Law in Three-Dimensional Space 

 Objects and rays are defined in three-dimensional space for ray tracing, so Snell’s law is 

expanded into three-dimensional space. In figure 2-9, an incident ray unit vector is shown as i. A 

unit refracted exiting ray vector is shown as r. n shows the unit normal vector at the boundary. a 

and b are orthogonal unit vectors with n and orthogonal each other.  From trigonometry, 

 r̂ = â sin θ′ − n̂ cos θ′. (2.48) 

Since a, b, and c are orthogonal,  

 

â = n̂ × b̂ = n̂ × (
i⃗ × n̂

sin θ
) =

1

sin θ
{(n̂ ∙ n̂)î − (n̂ ∙ î)n̂}

=
1

sin θ
{î − (n̂ ∙ î)n̂}. 

(2.49) 

Substitute Snell’s law (2.47) into (2.49), 

 â =
n

n′ sin θ'
{î − (n̂ ∙ î)n̂}. (2.50) 

From trigonometry, 

 cosθ = −î ∙ n̂  . (2.51) 

From Pythagoras’s identity, 
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 sin2θ = 1 − cos2θ = 1 − (−î ∙ n̂)
2

   . (2.52) 

Substitute Snell’s law (2.47) into (2.52), 

 (
n′

n
)

2

sin2θ′ = 1 − (−î ∙ n̂)
2

   . (2.53) 

 
sin2θ′ = (

n

n′
)

2

{1 − (−î ∙ n̂)
2

 }  . 
(2.54) 

From Pythagoras’s identity, 

 cos2θ′ = 1 − (
n

n′
)

2

{1 − (−î ∙ n̂)
2

 } , 
(2.55) 

 

cos θ′ = √1 − (
n

n′
)

2

{1 − (−î ∙ n̂)
2

 } . 

(2.56) 

Substitute (2.50) and (2.56)into (2.48), 

 

r̂ =
n

n′sin θ'
{î − (n̂ ∙ î)n̂} sin θ′ − n̂ √1 − (

n

n′
)

2

{1 − (−î ∙ n̂)
2

 } 

    =
n

n′ {î − (n̂ ∙ î)n̂} − n̂ √1 − (
n

n′
)

2

{1 − (−î ∙ n̂)
2

 } 

    =
n

n′
î −

n

n′ [(n̂ ∙ î) + √(
n′

n
)

2

− {1 − (−î ∙ n̂)
2

 }  ] n̂ 

    =
n

n′
î −

n

n′ [(n̂ ∙ î) + √(
n′

n
)

2

− 1 + (n̂ ∙ î)
2
 ] n̂ 

(2.57) 

Now, refracted vector r is described with refractive indices, the incident vector, and the surface 

normal vector. When the square root in equation (2.57) is negative, the ray cannot refract at the 

boundary, so the ray is reflected. 
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Figure 2-9.  Snell’s law in three-dimensional spaces 

 

2.2.3 Refractive Index 

 Refractive index is a parameter of refraction and defines how rays are slow down in 

medium. The refractive index n is given by 

 
n =

𝑐

𝑣
 , 

(2.58) 

where, c is the speed of light in vacuum and v is the speed of light in a medium. Since light is an 

electromagnetic wave, its propagation speed differs when in a vacuum compared to when it 

propagates in a medium. Thus, the refractive index depends on the material of the medium and 

wavelength of light. The refractive index differs for different wavelengths, this effect is called 

dispersion. There are some calculation models of dispersion such as the Sellmeier equation and 

Cauchy’s equation [4]. The Sellmeier equation is more accurate than Cauchy’s equation over 

wider wavelength ranges. For example, Schott AG, a manufacturer of optical glass materials and 

Zemax OpticStudio, a major optical design and simulation software package, both use the 

Sellmeier equation. Therefore, the Sellmeier equation is used for calculation of dispersion in this 

study as well. The Sellmeier equation is described as, 
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n2(λ) − 1 =

B∙λ2

λ2 − C
   . 

(2.59) 

Since this refractive index equation is simple, it can be easily calculated inside of a ray tracing 

program. 

CHAPTER 3: PHOTOMETRY 

 Photometry means measuring light in accordance with the human eye response. For 

illumination optics, photometric units are usually used because the application typically relates to 

assisting human observation. 

3.1 Photometrical Units 

 Since the photometry units are based on the human eye response, its units are different 

from radiometric units. Table 3-1 shows a comparison of the radiometric units and photometric 

units. Photometric units can be converted from radiometric units using the human eye response 

function. The human eye response is defined by the International Commission on Illumination 

(CIE). Figure 3-1 shows the photopic luminous efficiency function in CIE 1931. By multiplying 

luminous efficiency functions to radiometric measurement, a photometric measurement is 

calculated. As described in figure 1-1, an illumination distribution is described in luminous 

intensity whose unit is the candela [cd]. Since the LED output is usually described in radiometric 

units, it must be converted in the optical simulation. 
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Table 3-1. Radiometric units and photometric units 

 Radiometric unit Photometric unit 

Energy Q J T 

Flux Φ J/s, W lm 

Exitance M W/m
2
 lx = lm/m

2
 

Irradiance/ Illuminance E W/m
2
 lx= lm/m

2
 

Radiant intensity/ 

Luminous intensity I 

W/sr cd = lm/sr 

 

 

Figure 3-1. Photopic luminous efficiency function K(λ) (CIE1931) 

 

3.2 Photometer  

 A photometer is used to measure luminous intensity. The National Highway Trafic 

Safety Administration describes standard measurement setup of headlamp illumination 

distribution for FMVSS 108 in figure 3-2.[3] The measurement equipment has two goniometer 

stages that change the azimuth angle and polar angle in order to change the angle of lamp 

vertically and horizontally. Then, the photometer which is placed at a certain distance, receives 

light from the lamp and quantizes the flux of the light. Figure 3-3 shows a photometer with its 



31 
 

detection are noted. From the size of the detection area and the distance between the lamp and 

the detectors, the solid angle Ω is calculated as, 

 
∫ dΩ = ∬ sinθcosθdθdϕ , 

(3.1) 

where θ is the angle of the cone from the light source to the detector surface. φ is the angle of 

circumference direction of the cone. In this case, φ is equal to 2π radians, 

 
Ω = 2π ∫ sinθcosθdθ = 2𝜋 (−

1

2
cos2 θ|

0

𝜃

) = 𝜋(− cos2 𝜃 + 1) 

= 𝜋 sin2 𝜃  [sr]. 

(3.2) 

Since θ is calculated from r, the detector’s radius and d, the distance between the light source and 

the detector, 

 
Ω = 𝜋 sin2(tan−1

r

d
) [sr] . 

(3.3) 

The measured flux at the photometer is divided by the solid angle Ω. Intensity is  

 

I =
Φ

Ω
=

Φ

𝜋 sin2(tan−1 r
d

)
 [W/sr] . 

(3.4) 

This is converted to luminous intensity using the luminous efficiency function K figure 3-1, 

 

Il = K I =
KΦ

𝜋 sin2(tan−1 r
d

)
 [lm/sr = cd] . 

(3.5) 
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Figure 3-2. Photometry test setup [3] 

 

 

Figure 3-3. Active area of a photometer 

 

3.3 Convolution 

 Since the photometer has a certain area, πr
2
 for a circular area, convolution is required 

at the detector surface in the simulation. In the optical simulation, an energy value is defined for 

each ray. The energy of rays which reach the detector surface located at a certain distance from 
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the lamp are found by dividing the energy of rays hitting the same space with a certain size as a 

grid. This is called data binning. As a result, the energies in each ray are converted to the 

energies in each box in the grid. After that, because of the photometer has an area as described, 

the binning data is processed with 2D convolution to get a simulation result, to simulate the 

measurement. Figure 3-4 shows the processing model. 

 

Fig 3-4. 2D Binning and convolution 

CHAPTER 4: CUDA PROGRAMING 

In this chapter, CUDA, a popular parallel computing method provided by NVIDIA is 

described.  

4.1 GPU Architecture 

  GPU is an acronym for Graphic Processing Unit. GPUs are circuits developed for image 

processing in computers. GPUs are more specialized for parallel computing than CPUs, which 

gives an advantage for image processing, especially when creating images in real-time in 

computer games. Recently, GPUs are commonly for parallel computing in high-performance 

computing, such as machine learning, because these applications are a good fit for parallel 

processing. According to NVIDIA, the GeForce GTX970, one of their mid-range GPUs have 

1664 cores, whose base clock is 1050MHz. [13] Even though the speed of each core in a GPU is 

slower than of a CPU, it has hundreds of times as many cores. As a result, the GPU provides 

massive processing power compared to a CPU.  

0.1 0.1 0.2 0.1 0 0.2 0.6 0.5 0.3 0.2

0 0.2 0.1 0 0.1 0.4 0.5 0.5 0.5 0.2
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0.1 0.2 0 0.1 0 * 0.5 0.6 0.3 0.5 0.4

0.1 0.2 0 0.2 0.2 0.4 0.5 0.4 0.5 0.4

ConvolutionBinning

1

1 1 1

1
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4.2 GPU Memory Architecture 

 GPUs have their own memory that is independent of system memory. Since the standard 

program uses system memory, data which is needed for processing in a GPU must be copied 

from system memory to the GPU memory before processing in the GPU. Then, data must be 

copied from the GPUs memory to the system memory. This account for additional processing 

times compared to executing program in CPU. Therefore, memory management, especially 

reducing time for copying data between the GPU memory and system memory is a key 

consideration when creating a high-speed program. As shown in figure 4-1, a GPU has three 

types of memories which are independent of the system memory: a global memory, a shared 

memory, and a local memory. Access permissions for each memory are different. The local 

memory can only be used  inside of a thread. It cannot be accessed from any other threads. The 

shared memory can be shared with other threads in the same block. The global memory can be 

shared with other threads in the same GPU. The block and the grid are described in next section.  
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Figure 4-1. Memory hierarchy of CUDA[2] 

4.3 CUDA 

 NVIDIA describes CUDA as “a general purpose parallel computing platform and 

programming model that leverages the parallel compute engine in NVIDIA GPUs to solve many 

complex computational problems in a more efficient way than on a CPU.”[2] CUDA consists of 

a driver, a compiler, and APIs. The driver is interface software which connects a device to the 

system for use in the operating system. The compiler transforms program code into machine 

code. The CUDA compiler is compatible with the C and C++ and expanded for calculation in 

GPU. APIs provide program sets which makes it easy to programming effectively. In CUDA, 

code running on a single core is called a thread. CUDA manages several threads as a group 

called a block. Several blocks are managed as a grid. The block and the grid can be set in one 

dimension, two dimensions, or three dimensions when the CUDA program is launched. Its 
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maximum size depends on the GPU specification. The configuration of block and grid should be 

considered for effective processing in CUDA. The purpose of CUDA is to provide functions that 

allow for parallel computing. 

 

4.4 CUDA with Mathematica 

 In this study, Mathematica is used for programing because it has a variety of input and 

output interfaces including files, graphics, and CUDA interfaces. Mathematica has a set of 

memory management functions and interfaces for CUDA called CUDALink. The memory 

management function makes it easy to copy data from the system memory to the GPU memory. 

In the C language, data size and data type have to be defined explicitly when the data is copied 

from a system memory to a GPU memory. However, the memory management function in 

Mathematica provides data typing automatically. Figure 4-2 shows a comparison of a sample 

data copying program in C and Mathematica.  

 

Figure 4-2. Comparison of data copying program in C and Mathematica 

 

In addition, the interface for CUDA provides a way to make a program with CUDA and use it as 

a function in Mathematica. Because such a CUDA program can be used as a Mathematica 

function, it is easily associated with other Mathematica functions. Since Mathematica has a large 

number of built-in functions such as file input and output and 2D or 3D graphics output, CUDA 
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programing in Mathematica reduces development volume; thus it is easier than CUDA 

programing in the C language.  

CHAPTER 5: VALIDATION TESTS 

All tests were done in Microsoft Windows 10 (64 bit) using 16GB of DDR4 RAM, 

running on Intel Core i5-6500 CPU at 3.2GHz with Wolfram Mathematica 11.0.1.0. A Nvidia 

GeForce GTX970 whose core clock is 1050MHz and has 1664 CUDA cores with 4GB of 

GDDR5 RAM is used for CUDA.  

5.1 Spherical Lens (Plano-convex lens) 

First, ray tracing of a plano-convex spherical lens was done for validation of programs.  

5.1.1 Model Analysis with OpticStudio 

 The plano-convex lens was analyzed by OpticStudio for reference. Figure 5-1 shows the 

model with a radius of curvature is 25mm and thickness of 3mm. The diameter of the lens is 

12mm. The lens is made of PMMA whose refractive index is 1.49 at λ=589.3nm. A focal plane 

position is optimized for minimization of spot radius located at 48.867mm from the plane surface. 

Figure 5-2 shows spot diagram of this optical system with a spot size is about 0.18mm. 

 

 

Figure 5-1. Spherical lens test layout 
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Figure 5-2. Spot diagram of a spherical lens using OpticStudio 

5.1.2 CUDA Ray Tracing for a Spherical Surface and a Plane Surfaces 

  The same plano-convex lens was analyzed by the CUDA ray tracing program. First, 

intersection search is performed by solving the equation in section 2-1-2 for the Intersection 

point between a ray and a sphere and in section 2-1-1 for the Intersection point between a ray and 

a plane. Figure 5-3 shows a spot diagram from the result made with 11,500 rays. The spot size is 

about 0.18mm and matches with the result from OpticStudio. 

    

Double precision float   Single precision float 

Figure 5-3. Spot diagram of a spherical lens using CUDA ray tracing (Non-interpolation)  
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5.1.3 CUDA Ray Tracing for a Point Cloud Surface and a Plane Surfaces (Linear 

Interpolation) 

 The same plano-convex lens was analyzed by CUDA ray tracing again. The spherical 

surface was represented by a point could of 241 times 241 points for the spherical surface. Plane 

surfaces were used for the second surface and the focal plane. Figure 5-4 shows spot diagrams of 

ray tracing result. Even rays in spot diagram are discretized, the spot size is same as reference 

OpticStudio result.  

  

Double precision float   Single precision float 

Figure 5-4. Spot diagram of a spherical lens using CUDA ray tracing (Linear interpolation) 

 

5.1.4 CUDA Ray Tracing for a Point Cloud Surface and a Plane Surface (Nagata 

Triangular Patch Interpolation) 

 The same plano-convex lens from the last section was analyzed by CUDA ray tracing 

with Nagata triangular patches for interpolation of the point cloud. Figure 5-5 shows spot 

diagrams of the result. It is more similar to the non-interpolation result in figure 5-3. Therefore, 

there are fewer errors with this interpolation method than in linear interpolation in figure 5-4. In 

addition, the result of the double precision float is smoother than the result of the single precision 

float indicating that double precision simulation is more accurate than single precision simulation. 
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Double precision float   Single precision float 

Figure 5-5. Spot diagram of a spherical lens using CUDA ray tracing (Nagata triangular patch) 

 

5.1.5 CUDA Ray Tracing for a Point Cloud Surface and a Plane Surface (Nagata 

Quadrilateral Patch Interpolation) 

The same plano-convex lens used in the last sections was analyzed by CUDA ray tracing 

with Nagata quadrilateral patches for interpolation. Figure 5-6 shows a spot diagram of the result 

but it still does not closely match figure 5.3, the exact result. Rays are more concentrated at the 

center part, so the spot size is smaller than other interpolation results. Moreover, the result of the 

double precision float is smoother than the result of the single precision float as it was with the 

previous tests. This indicates that double precision simulation is more accurate than single 

precision simulation. 
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Double precision float   Single precision float 

Figure 5-6. Spot diagram of a spherical lens using CUDA ray tracing (Nagata quadrilateral 

patch) 

 

5.1.6 Comparison of Results 

 To compare the results of each calculation, data for a single ray path data are 

summarized in table 3-1 and 3-2. Position describes the ray position at each surface in 3D. 

Direction describes the ray propagation direction as direction cosines for the ray following each 

surface in 3D. S1 and S2 indicate front and back surface of the lens. Some of the errors can be 

seen at the focal plane. As expected, the result of double precision interpolation coincides with 

the result of OpticStudio. Since noninterpolation method is the direct calculation of the 

Intersection point between a spherical surface and a ray, the error comes from only rounding 

error. Therefore, double precision noninterpolation calculation should be in the most accurate.  

This result is from a simulation using spherical surface, so linear interpolation has many errors. 

Surprisingly, errors in Nagata quadrilateral patch are larger than errors in Nagata triangular patch 

even though points in the point cloud are allocated as a quadrilateral grid. This comparison 

shows that double precision noninterpolation method and double precision Nagata triangular 

patch are a good method for ray tracing for our program. 
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Table 5-1. Comparison of calculation accuracy for ray position (Spherical lens) 

 

 

  

Initial positon S1 (Spherical) S2 (Plane) Focal plane

x 5.350840 5.350840 5.178050 -0.059388

y -0.726987 -0.726987 -0.703511 0.008069

z 0.000000 10.590170 13.000000 61.867000

x 5.350840 5.350840 5.178050 -0.059388

y -0.726987 -0.726987 -0.703511 0.008069

z 0.000000 10.590166 13.000000 61.867000

x 5.350840 5.350840 5.178050 -0.059388

y -0.726987 -0.726987 -0.703511 0.008069

z 0.000000 10.590166 13.000000 61.867001

x 5.350840 5.350840 5.177566 -0.074684

y -0.726987 -0.726987 -0.703525 0.007644

z 0.000000 10.590180 13.000000 61.867000

x 5.350840 5.350840 5.177566 -0.074684

y -0.726987 -0.726987 -0.703525 0.007644

z 0.000000 10.590179 13.000000 61.867001

x 5.350840 5.350699 5.177912 -0.059383

y -0.726987 -0.726992 -0.703516 0.008068

z 0.000000 10.590135 13.000000 61.867000

x 5.350840 5.350701 5.177920 -0.059168

y -0.726987 -0.727030 -0.703556 0.007952

z 0.000000 10.590137 13.000000 61.867001

x 5.350840 5.350699 5.178212 -0.049942

y -0.726987 -0.726992 -0.703557 0.006786

z 0.000000 10.590135 13.000000 61.867000

x 5.350840 5.350698 5.178223 -0.049553

y -0.726987 -0.726950 -0.703517 0.006754

z 0.000000 10.590134 13.000000 61.867001

Single Precision

Nagat triangular patch

interpolation

Double Precision

Nagat quadrilateral

patch interpolation

Single Precision

Nagat quadrilateral

patch interpolation

OpticStudio

Double Precision

Non interpolation

Single Precision

Non interpolation

Double Precision

Linear interpolation

Single Precision

Linear interpolation

Double Precision

Nagat triangular patch

interpolation
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Table 5-2. Comparison of calculation accuracy for ray direction (Spherical lens) 

 

 

5.2 Aspherical Lens (Plano-convex lens) 

5.2.1 Model Analysis with OpticStudio 

 Second, an aspherical lens was analyzed for validation of the program. Aspherical lenses 

reduce aberration compare to spherical lenses. Therefore, the spot size becomes smaller. The 

most common equation for the sag of an aspherical radically symmetric surfaces are described as 

a conic plus polynomial terms, 

 
sag(r) =

r2/R

1 + √1 − (K + 1) (
r2

R2)

+ ∑ α2mr2m

M

m=1

 . 
(3.6) 

Initial positon S1 (Spherical) S2 (Plane) Focal plane

l 0.000000 -0.071515 -0.106556 -0.106556

m 0.000000 0.009716 0.014477 0.014477

n 1.000000 0.997392 0.994201 0.994201

l 0.000000 -0.071515 -0.106556 -0.106556

m 0.000000 0.009716 0.014477 0.014477

n 1.000000 0.997392 0.994201 0.994201

l 0.000000 -0.071515 -0.106556 -0.106556

m 0.000000 0.009716 0.014477 0.014477

n 1.000000 0.997392 0.994201 0.994201

l 0.000000 -0.071715 -0.106854 -0.106854

m 0.000000 0.009710 0.014468 0.014468

n 1.000000 0.997378 0.994169 0.994169

l 0.000000 -0.071715 -0.106854 -0.106854

m 0.000000 0.009710 0.014468 0.014468

n 1.000000 0.997378 0.994170 0.994169

l 0.000000 -0.071513 -0.106553 -0.106553

m 0.000000 0.009716 0.014477 0.014477

n 1.000000 0.997392 0.994202 0.994202

l 0.000000 -0.071510 -0.106549 -0.106549

m 0.000000 0.009715 0.014476 0.014476

n 1.000000 0.997393 0.994202 0.994202

l 0.000000 -0.071390 -0.106369 -0.106369

m 0.000000 0.009700 0.014452 0.014452

n 1.000000 0.997401 0.994222 0.994222

l 0.000000 -0.071385 -0.106362 -0.106362

m 0.000000 0.009699 0.014451 0.014451

n 1.000000 0.997402 0.994222 0.994222

Double Precision

Nagat triangular patch

interpolation

Single Precision

Nagat triangular patch

interpolation

Double Precision

Nagat quadrilateral patch

interpolation

Single Precision

Nagat quadrilateral patch

interpolation

OpticStudio

Double Precision

Non interpolation

Single Precision

Non interpolation

Double Precision

Linear interpolation

Single Precision

Linear interpolation
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where, K is conic constant. R is the base radius of curvature. Figure 5-6 shows the lens model for 

a lens with a plane surface and asphere. Its radius of base curvature is 12.5 mm. Its thickness is 

3.343mm. The diameter of the lens is 12mm. The lens is made of PMMA whose refractive index 

is 1.49 at λ=589.3nm. The focal plane position is optimized for minimization of spot radius 

located at 23.168mm from plane surface. Figure 5-7 shows spot diagram of this optical system. 

From the spot diagram, spot size is less than 0.001mm. 

 

Figure 5-7. Aspherical lens test layout 

 

Figure 5-8. Spot diagram of an aspherical lens using OpticStudio 

  

5.2.2 CUDA Ray Tracing for a Point Cloud Surface and a Plane Surface (Linear 

Interpolation) 

The same aspherical lens used in the last sections was analyzed by CUDA ray tracing 

with the aspheric surface described as a point cloud with 241 times 241 points. Plane surfaces 

were used for the second surface and the focal plane. Figure 5-8 shows a spot diagram of ray 
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tracing result with linear interpolation, showing some errors in the result. The spot size almost 

0.004mm across, much bigger than the spot size calculated with OpticStudio. In addition, the 

spot is not radially symmetric, but concentrated near X and Y axes. 

  

Double precision float   Single precision float 

Figure 5-9. Spot diagram of an aspherical lens using CUDA ray tracing (Linear interpolation) 

 

5.2.3 CUDA Ray Tracing for a Point Cloud Surface and a Plane Surface (Nagata 

Triangular Patch Interpolation) 

 The same aspherical lens used in the last sections was analyzed by CUDA ray tracing 

with Nagata triangular patch interpolation. Surfaces conditions were same as the previous 

simulation which used linear interpolation. Figure 5-9 shows the results. The spot size is about 

0.004 mm which is smaller than the spot of the linear interpolation simulation. Therefore, this 

simulation method is more accurate than the linear interpolation method. 
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Double precision float   Single precision float 

Figure 5-10. Spot diagram of an aspherical lens using CUDA ray tracing (Nagata triangular 

patch) 

 

5.2.4 CUDA Ray Tracing for a Point Cloud Surface and a Plane Surface (Nagata 

Quadrilateral Patch Interpolation) 

 Then, the same aspherical lens used in the last sections was analyzed again using CUDA 

ray tracing with Nagata quadrilateral patch interpolation. Figure 5-11 shows a spot diagram of 

the result. For both single and double precision float case, the spot size is bigger than the spot 

size of triangular patch interpolation. In addition, the result of the double precision float is 

smoother than the result of the single precision float. 
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Double precision float   Single precision float 

Figure 5-11. Spot diagram of an aspherical lens using CUDA ray tracing (Nagata quadrilateral 

patch) 

 

5.2.5 Comparison of Results 

 Similar to the spherical lens test comparison, a ray path data is summarized in table 5-3 

and 5-4 to compare each method.  
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Table 5-3. Comparison of calculation accuracy for ray position (Aspherical lens) 

 

Table 5-4. Comparison of calculation accuracy for ray direction (Aspherical lens) 

 

Initial positon S1 (Spherical) S2 (Plane) Focal plane

x 5.350840 5.350840 5.041318 -0.000078

y -0.726987 -0.726987 -0.684934 0.000011

z 0.000000 11.195890 13.342890 36.511000

x 5.350840 5.350840 5.040385 -0.017106

y -0.726987 -0.726987 -0.684947 -0.000107

z 0.000000 11.195919 13.343000 36.511000

x 5.350840 5.350840 5.040384 -0.017107

y -0.726987 -0.726987 -0.684947 -0.000107

z 0.000000 11.195918 13.343000 36.511002

x 5.350840 5.350327 5.040702 -0.002295

y -0.726987 -0.727010 -0.684938 0.000310

z 0.000000 11.195662 13.343000 36.511000

x 5.350840 5.350326 5.040702 -0.002267

y -0.726987 -0.727060 -0.684994 0.000158

z 0.000000 11.195664 13.343000 36.511002

x 5.350840 5.350327 5.041234 0.007145

y -0.726987 -0.727012 -0.685012 -0.000974

z 0.000000 11.195662 13.343000 36.511000

x 5.350840 5.350327 5.041241 0.007262

y -0.726987 -0.726961 -0.684967 -0.001025

z 0.000000 11.195660 13.343000 36.511002

Single Precision

Nagat triangular patch

interpolation

Double Precision

Nagat quadrilateral

patch interpolation

Single Precision

Nagat quadrilateral

patch interpolation

OpticStudio

Double Precision

Linear interpolation

Single Precision

Linear interpolation

Double Precision

Nagat triangular patch

interpolation

Initial positon S1 (Spherical) S2 (Plane) Focal plane

l 0.000000 -0.142663 -0.212536 -0.212536

m 0.000000 0.019383 0.028876 0.028876

n 1.000000 0.989582 0.976726 0.976726

l 0.000000 -0.143079 -0.213185 -0.213185

m 0.000000 0.019374 0.028868 0.028868

n 1.000000 0.989522 0.976585 0.976585

l 0.000000 -0.143079 -0.213185 -0.213185

m 0.000000 0.019374 0.028868 0.028868

n 1.000000 0.989522 0.976585 0.976585

l 0.000000 -0.142688 -0.212602 -0.212602

m 0.000000 0.019389 0.028889 0.028889

n 1.000000 0.989578 0.976712 0.976712

l 0.000000 -0.142687 -0.212601 -0.212601

m 0.000000 0.019386 0.028884 0.028884

n 1.000000 0.989578 0.976712 0.976712

l 0.000000 -0.142447 -0.212243 -0.212243

m 0.000000 0.019356 0.028840 0.028840

n 1.000000 0.989613 0.976791 0.976791

l 0.000000 -0.142444 -0.212239 -0.212239

m 0.000000 0.019353 0.028836 0.028836

n 1.000000 0.989614 0.976792 0.976792

Double Precision

Nagat triangular patch

interpolation

Single Precision

Nagat triangular patch

interpolation

Double Precision

Nagat quadrilateral patch

interpolation

Single Precision

Nagat quadrilateral patch

interpolation

OpticStudio

Double Precision

Linear interpolation

Single Precision

Linear interpolation
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5.3 Headlamp Lens and Starting ray set 

 Finally, a projector-type headlamp lens was analyzed by the ray tracing algorithm. 

Figure 5-12 shows a projector headlamp system. It consists of a LED, a reflector, and a projector 

lens.  In this study, ray sets right are after reflector were prepared and used for simulation.  

 

Figure 5-12. Projector type LED headlamp simulation layout 

 

5.3.1 Simulation Using SPEOS 

 For reference, the lens was analyzed by SPEOS CAA V5 Based from OPTIS (La Farlède, 

France), an illumination simulation software used for automotive lighting. SPEOS runs on 

CATIA from Dassault systems (Vélizy-Villacoublay, France), a 3D CAD program can read 

CATIA model files and import other 3D models such as step file. The simulation was done with 

a 3D CATIA model of the lens. Figure 5-13 shows a contour plot of simulation result. The 

transition region is well described. 
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Figure 5-13. Result of ray tracing with SPEOS 

 

5.3.2 Simulation Using OpticStudio 

 The lens used in the last sections was analyzed again using OpticStudio. Since 

OpticStudio can import 3D CAD file directly, the lens model expressed as STEP file was used. 

Since OpticStudio takes much time to tracing a lot of rays, only 5,000,000 parts of rays were 

analyzed. Figure 5-14 shows a result from an OpticStudio simulation. A characteristic 

distribution is the cut line which is known as the transition region and is located around 

horizontal axis line seen in the figure 5-14 simulation result. However, result is noisy because 

only a part of rays was analyzed. 

 

 

Figure 5-14. Result of ray tracing with OpticStudio (5,000,000 rays) 
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5.3.3 Simulation Using CUDA Ray Tracing for a Point Cloud Surface (Linear 

Interpolation) 

 Next, the lens used in the last sections was analyzed again using CUDA ray tracing with 

linear interpolation of the point cloud. Since previous spherical and aspherical lens tests showed 

that the single precision float algorithm is not accurate enough for this application, only double 

precision float algorithm was used. Figure 5-15 shows the result of CUDA ray tracing with linear 

interpolation. The cut line is clear in the result. 

 

Figure 5-15. Result of ray tracing with CUDA ray tracing (Linear interpolation) 

 

5.3.4 Simulation Using CUDA Ray Tracing for a Point Cloud Surface (Nagata 

Triangular Patch) 

 Next, the lens used in the last sections was analyzed again using CUDA ray tracing with 

Nagata triangular patch interpolation. Figure 5-16 shows result of the simulation. The cut line 

was characterized similarly with previous simulation. Detail of the comparison will be described 

in the following section. 
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Figure 5-16. Result of ray tracing with CUDA ray tracing (Nagata triangular interpolation) 

 

5.3.5 Simulation Using CUDA Ray Tracing for a Point Cloud Surface (Nagata 

Quadrilateral Patch) 

 The lens used in the last sections was analyzed again using CUDA ray tracing with 

Nagata quadrilateral patch interpolation as well. Figure 5-17 shows result of the simulation. The 

cut line was characterized similarly with previous simulation. Detail of the comparison is 

described in following section. 

 

Figure 5-17. Result of ray tracing with CUDA ray tracing (Nagata quadrilateral interpolation) 

 

5.3.6 Comparison of Results between OpticStudio and CUDA Ray Tracing 

 Since ray tracing with OpticStudio was done with 5,000,000 parts of rays, each CUDA 

ray tracing with same ray condition were done and compared with them. The results of 
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comparison are shown in figure 5-18 and 5-19. Figure 5-18 shows intensity distribution at x=0 

degree. Figure 5-19 shows intensity distribution at x=2.5 degree. Since the number of traced ray 

was limited, results were noisy, but those distributions look similar. 

 

Figure 5-18. Comparison of headlamp simulation of OpticStudio and CUDA ray tracing at 

x=0[deg] 

 

Figure 5-19. Comparison of headlamp simulation of OpticStudio and CUDA ray tracing at 

x=2.5[deg] 
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5.3.7 Comparison of Results between SPEOS and CUDA Ray Tracing 

 The result of the simulation using SPEOS was compared with the results of simulation 

using CUDA ray tracing using full ray set of 362,000,000 incident rays. The results of 

comparison are shown in figure 5-20 and 5-21. Figure 5-20 shows intensity distribution at x=0 

degree. Figure 5-21 shows intensity distribution at x=2.5 degree. The slope of transition in 

SPEOS result is larger than it in CUDA ray tracing. 

 

Figure 5-20. Comparison of headlamp simulation of SPEOS and CUDA ray tracing at x=0[deg] 

 

 

Figure 5-21. Comparison of headlamp simulation of SPEOS and CUDA ray tracing at 

x=2.5[deg] 
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5.4 Comparison of Calculation Speed 

 To confirm the effectiveness of ray tracing using CUDA, the calculation time for a 

single surface by each method was compared. Figure 5-22 shows calculation time of each CUDA 

ray tracing methods with 250,000 rays and single surface. In the case of using Non-interpolation 

and a plane surface, the calculation speed is faster than other methods. However, it takes less 

than 0.5 second in all cases. Most of time was spent for initializing CUDA.  

 

 

Figure 5-22. Comparison of calculation speed of each interpolation method for 250,000 rays and 

a single surface and a single point cloud surface 

 

 Figure 5-23 shows the calculation time using double precision float Nagata triangular 

interpolation method. This algorithm provided the best accuracy in our CUDA raytracing method. 

The result indicates that time consumption minus 0.15 seconds is approximately proportional to 

the number of rays. In addition, most of the time is spent initializing CUDA driver and copying 
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data from the system memory to the GPU memory, which includes preparing data and output 

memory allocation.  

 

 

Figure 5-23. Calculation speed for changing number of input rays (Double precision Nagata 

triangular patch interpolation) 

CHAPTER 6: CONCLUSION 

6.1 Summary 

 Several types of intersection searching methods and refraction calculations in 3-

dimensional space were reviewed in Chapter 2. The Intersection point between a ray and plane 

and Intersection point between a ray and a spherical surface can be solved directly using 

equations. Closed form have been implemented to find the Intersection point between a ray and 

complex surfaces represented by point clouds. The k-d tree method was described for 

accelerating the process of finding the nearest points to a ray intersect for intersection searching. 

When using a point cloud, an interpolation is needed for estimation of the position between 
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provided points. Linear interpolation, Nagata triangular patch quadric interpolation, and Nagata 

quadrilateral patch quadric interpolation were analyzed.  

 Chapter 3 reviewed photometric units compared with radiometric units. When the 

photometer is used for measurement of illumination, the results include the convolution with the 

detector aperture, so the basics of convolution were also reviewed. 

 The key to acceleration calculation speed is parallelizing the ray tracing calculations 

using CUDA, a parallel computing platform provided by Nvidia and reviewed in chapter 4. 

CUDA requires memory management separate from system memory. In addition, Mathematica 

was used to provide a variety of useful interface function was used for this study, which 

convenient. 

 Finally, ray tracing results using each interpolation method were described, and their 

accuracies were discussed. The first test case was the simplest layout, which was converging a 

collimated beam using a plano-convex spherical lens. The second test case was used a plano-

convex aspherical lens instead of the spherical lens. Both results indicate that the double float 

precision Nagata triangular patch interpolation in the most accurate. Finally, the headlamp lens 

simulation which was a main objective of this study was done.  

6.2 Future Work 

 An accelerated ray tracing method using CUDA for models with spherical surfaces, 

plane surfaces, and point clouds with linear and quadratic interpolation have been developed in 

this study. High-speed ray tracing was achieved. However, some errors were documented from 

interpolation. One of solution that reduces errors from interpolation is using exact surface 

equations in the models so that interpolation is not required. Specifically, if the CAD model can 

be used for the simulation directly, interpolations might not be necessary. For example, STEP 

files which are regulated by International Organization for Standardization are used in many 

CAD programs. The STEP file format and interface APIs are publically disclosed. Therefore, to 

reducing errors in CUDA ray tracing, it will be best to use STEP files.  
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APPENDIX A: FLOW CHART OF CODES 

Intersection Search with the Brute Force Attack 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copy P.C. data to GPU 

CUDATrace P.C. 

Calculate sine θ between ray and each point 

Pick near points 

(Small sine points) 

Calculate normal vector of the surface 

consists of the 3 near points 

Interpolate intersection point 

Calculate refraction 

Interpolate normal vector from 4 normal 

vectors of 4 near points  

: GPU 

: CPU 

Parallelize 
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Intersection Search with the K-d Tree (with Linear Interpolation) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Copy P.C. data to GPU 

CUDATrace P.C. 

Find nearest point by using k-d tree 

Pick 4 near points 

(pick points around nearest point) 

Calculate normal vector of the surface 

consists of the 3 near points 

Interpolate intersection point from the 

surface  

Calculate refraction 

Interpolate normal vector from 4 normal 

vectors of 4 near points  

Parallelize 

: GPU 

: CPU 
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Intersection Search with the K-d Tree (with Nagata Patch Interpolation) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Copy P.C. data to GPU 

CUDATrace P.C. 

Find nearest point by using k-d tree 

Pick 3 or 4 near points 

(pick points around nearest point) 

Calculate temporal linear interpolate 

intersection from normal vector of the 

surface consists of the 3 near points 

Interpolate intersection by Nagata patch 

consists of 3 or 4 near points 

Calculate refraction 

Interpolate normal vector by Nagata patch 

consists of 3 or 4 near points 

Parallelize 

: GPU 

: CPU 
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APPENDIX B: INPUT FORMAT FOR COMMANDS WRITTEN IN 

MATHEMATICA 

1. Ray tracing with sphere surface 

CUDATraceSphered[rayin, radius, vertex, aptype, apsize, mat1, mat2]  (Double precision) 

CUDATraceSpheref[rayin, radius, vertex, aptype, apsize, mat1, mat2]  (Single precision) 

 

rayin: input ray array. Format is {{x , y , z , kx, ky, kz, λ, P},{x , y , z , kx, ky, kz, λ, P},...} 

 x,y,z indicate initial position of  ray in mm. kx, ky, kz indicate ray direction. (direction cosine.) 

λ is wavelength in nm. P is flux of ray in watt. 

radius: radius of curvature in mm. 

vertex: vertex position in mm. {xv, yv, zv} 

aptype: Aperture type. 0 is rectangular aperture. 1 is circular aperture. 

apsize: Aperture size. {xmin, xmax, ymin, ymax} if aptype=0. {r, 0, 0, 0} if aptype=1. 

mat1: Material before surface. 0 is Air. 1 is PMMA. 

mat2: Material after surface. 0 is Air. 1 is PMMA. 

 

2. Ray tracing with plane surface 

CUDATracePlaned[rayin, normalvector, origin, mat1, mat2] (Double precision) 

CUDATracePlanef[rayin, normalvector, origin, mat1, mat2] (Single precision) 

 

normalvector: Surface normal vector {nx, ny, nz} (direction cosine) 

origin: A point on the surface. {x, y, z} 
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3. Ray tracing with point cloud (Brute Force algorithm, linear interpolation) 

CUDATracePCd[rayin, pc, pcnv, mat1, mat2, hmax, wmax]  (Double precision) 

CUDATracePCf[rayin, pc, pcnv, mat1, mat2, hmax, wmax] (Single precision) 

pc: Point Cloud. {{x0, y0, z0},{x1, y1, z1},...}. Point should be start from left upper (maximum 

x and maximum y) and equal space grid. z=0 indicate out of aperture. To define aperture, z=0 are 

required at most outer perimeter of point cloud. Dimension of list should be {hmax*wmax,3}. 

After {xmax, ymin, z}, {xmax-1 incriment, ymax, z} is followed.  

 

pcnv: Normal vectors of points. It correspond to point cloud. 

hmax: Number of points in y direction 

wmax: Number of points in x direction 

 

4. Ray tracing with point cloud (k-d tree algorithm, linear interpolation) 

CUDATracePCd2[rayin, pc, pcnv, mat1, mat2, hmax, wmax] (Double precision) 

CUDATracePCf2[rayin, pc, pcnv, mat1, mat2, hmax, wmax] (Single precision) 

 

5. Ray tracing with point cloud (k-d tree algorithm, Nagata triangular patch interpolation) 

CUDATracePCd3[rayin, pc, pcnv, mat1, mat2, hmax, wmax] (Double precision) 

CUDATracePCf3[rayin, pc, pcnv, mat1, mat2, hmax, wmax] (Single precision) 
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6. Ray tracing with point cloud (k-d tree algorithm, Nagata quadrilateral patch interpolation) 

CUDATracePCd4[rayin, pc, pcnv, mat1, mat2, hmax, wmax] (Double precision) 

CUDATracePCf4[rayin, pc, pcnv, mat1, mat2, hmax, wmax] (Single precision) 

 

7. Binning and Convolution  

CUDABinConv[rayin3, xmin, xmax, xincr, ymin, ymax, yincr, radius, distance] 

rayin3: 2D rayset. {x,y,P} 

xmin,xmax,xincr: x of output grid size in degree. (Minimum, Maximum, Increment) 

ymin,ymax,yincr: y of output grid size in degree. (Minimum, Maximum, Increment) 

radius: detector radius 

distance: distance between the lens and the detector 
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