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1 Introduction

1.1 An overview of select medical imaging systems

Nuclear imaging techniques are used in diagnostic medicine to show physiological functions

in the body. In these techniques (most notably Single Photon Emission Computed Tomog-

raphy, or SPECT, and Positron Emission Tomography, or PET), radiation is emitted from

a radiotracer distributed throughout the patient’s body. This is in contrast with anatom-

ical imaging systems such as computed tomography (CT) or magnetic-resonance imaging

(MRI) that probe the body with external sources.

In this report we focus on modeling pinhole SPECT imaging systems that are used in

small-animal imaging and in some human applications. SPECT is an indirect imaging

system, and can be understood as a system made up of a radiating object, camera systems

that include collimators and detectors, and a reconstruction method. The camera systems

generally acquire projection data at multiple angles around the subject. This information

is used by the image-reconstruction method to reconstruct a 3D representation of the

distribution of the radiotracer in the body. I will briefly outline some of the components

in the subsections below.

1.1.1 Radiotracers

SPECT employs injecting a direct gamma emitter. The tracers typically used in SPECT

imaging incorporate Technetium-99m (99mTc). This is a high Z tracer that emits at about

142 keV which can readily exit the body without much scatter. The half-life of this isotope

is approximately 6 hours which makes performing clinical imaging studies easy compared

to short half-life isotopes often used in PET imaging (18F often used in PET has a half-

life of 109 minutes). The 6-hour half life is still short enough to minimize the amount of

radioactive material administered to the patient.

1.1.2 SPECT Cameras

Conventionally, parallel-hole collimators (often made of lead or similar materials) are used

as the image-forming element in many SPECT systems. Due to the geometry of this

configuration, a parallel-hole collimator typically has low sensitivity, as for rays to reach
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the detector they must travel close to parallel with the collimator holes (normal to the

collimator surface). This also results in “undistorted projection images and a FOV that is

constant with distance” [1].

It has been believed that the image-forming element is the limiting factor in resolution [2],

but pinhole collimation can be used instead of parallel-hole to obtain a higher resolution.

For applications including small-animal imaging or brain imaging, pinhole collimation is

often utilized as the image-forming element.

A typical SPECT detector is a scintillation crystal coupled with a series of photodetectors.

Scintillation crystals emit visible photons after absorbing gamma rays. The visible photons

are detected by a series of photomultiplier tubes (PMTs) used to amplify the signal. The

PMT outputs can then be used to estimate the position and energy of the gamma-ray

interaction within the crystal.

1.1.3 Image Reconstruction

Image reconstruction is the process of using the SPECT projection images to reconstruct an

estimate of the distribution of the radiotracer within the body. Numerous techniques exist

for image reconstruction. In this report, I will focus on the use of maximum-likelihood,

expectation maximization (MLEM) which will be discussed in greater detail in a later

section.

2 Constructing system matrices

2.1 Linear imaging equation

SPECT imaging systems are well approximated with a linear imaging equation. Thus,

we represent the imaging equation mathematically as ~g = H~f for a noise-free system, or

~g = H~f + ~n when noise is present. For now, we will focus on the former. It should be

noted that ~g, ~f , and ~n are all vectors and H is a matrix transform representing the imaging

transform. The data ~g are used as input to the image-reconstruction algorithm.

The object ~f is anN -dimensional column vector whose values represent basis coefficients for

a continuous object. Typically, the basis function used are voxels and thus the components

of ~f are voxel values. Objects are three dimensional but ~f is represented as a column
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Figure 1: An illustration of a simple 2D system. The ‘voxelized’ rectangle on the

left represents an object. Gamma rays from the center of one voxel fan through

the pinhole to the ‘pixelized’ detector (right)

vector for mathematical convenience. You can think of ~f as a “flattened” object where all

the voxel values are placed in a ~f in a specified order. Similarly, the image data ~g and

noise ~n are also vectors (M -dimensional in this case) and represent the image data and

noise, respectively. Multiple projections are typically acquired and projection images are

generally 2 dimensional. Thus, much like ~f , there is a specified order for the elements of ~g

and ~n to represent these as column vectors. Finally, H is an M × N dimensional matrix

transform that represents how components of the object are transformed by the imaging

system to image data.

This equation is linear. Recall that an operator (in this case H) is linear if for ~g1 = H~f1

and ~g2 = H~f2 and some constant α:

~g1 + ~g2 = H(~f1 + ~f2)

α~g1 = H
[
α~f1

]
2.2 A simplified 2D system

Consider a 2D system as shown in Figure 1. The “object” (in this case, a two-dimensional

rectangular grid) is voxelized with N voxels which will be j indexed. There is a pinhole a

distance d away from the object and the detector is made of a one-dimensional array of M

pixels, i indexed.

Our initial simulations focused on creating a simulation of this simplified two-dimensional

system. We created an H matrix (M×N) where element Hij corresponds to the probability

that a ray from voxel j reaches pixel i. This matrix will be used to simulate projection

data and to help perform image reconstruction. We use the following specifications (with
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relative units):

• Size of object: 128 voxels by 128 voxels

• Number of voxels, N : 16,384

• Side length of each (square) voxel: 2

• Distance from object to pinhole: 192

• Diameter of pinhole: 0.1

• Distance from pinhole to detector: 10

• Number of pixels, M : 128

• Rays leave each voxel from the voxel center.

In the MATLAB code to create the system matrix, we first had to define a Cartesian

coordinate system, where the origin was located in the center of the pinhole.

Next, consider the angle α created by two rays, ~r1 and ~r2, leaving a voxel, where ~r1 is

the ray leaving the center of voxel j and grazing the top of the pinhole, and ~r2 is the ray

leaving the voxel and grazing the bottom of the pinhole as shown in Figure 2. We modeled

100 rays that leave the center of each voxel, spread uniformly from ~r1 to ~r2, that hit the

detector. We defined the size of the detector array by finding the vectors (from all possible

voxels) with the smallest y-coordinate at the detector plane, and the largest y-coordinate

at the detector plane. To construct the H matrix we estimated the probabilities of photons

emitted from voxel j hitting detector i by the fraction of the 100 rays that hit each detector

element. The matrix is shown as an image in Figure 3.

It should be noted that this matrix does take a lot of memory, however, it also has many

zeros and can be saved as a sparse matrix to save memory and speed up calculations.

2.3 Maximum-Likelihood Expectation Maximization

The maximum-likelihood expectation maximization (MLEM) algorithm is based on Poisson-

noise statistics and is an iterative method to produce object estimates that increase the

likelihood of the image data observed. True convergence is rarely desired with the MLEM

algorithm because of data inconsistencies due to noise. [3]
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Figure 2: Ray geometry of a simple 2D system where α represents the angle

between two rays leaving the center of a voxel and reaching the edges of a

pinhole.

Figure 3: Image representation of a system matrix for the 2D case.
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The steps of the MLEM algorithm are given by,

~f
(k+1)
j = ~f

(k)
j

1

sj

M∑
i=0

gi

(H~f (k))i
Hij

where sj is defined as

sj =
M∑
i=0

Hij

that is, sj is the “probability that a photon emitted from voxel j is detected somewhere”

[4].

We look to first create an image ~g by passing a known object through our imaging matrix.

Then, we create an initial guess for our object ~f and use the MLEM algorithm as above

with repeated iterations until there is a “reasonable” reconstructed image defined using

subjective methods. Note that in simulation, this can work with repeated trials, but in real

applications, too many iterations can create a noisy image, especially when the algorithm

is forced to reconstruct from noisy data.

2.4 Single point illuminated

What if the object is made up of only 1 illuminated voxel?

Now, we create the image of this on our 128 x 1 detector by multiplying the H matrix by

this (flattened) ~f (the forward problem).

If we run an MLEM algorithm from this object, we need a guess, so we will use a vector

of all ones as this 1st iteration (k) guess. The corresponding final object created by this

algorithm is shown in Figure 6, for various iteration numbers.

The artifacts of back-projection are shown in Figure 6, as the object is appearing as a line

instead of a point, with the line getting thinner per iteration. With projection of the 3D

object onto a 2D detector, backprojection will smear the 2D image back into the 3D space

resulting in the “streak”. No amount of MLEM iterations will truly rid the reconstruction

of this smear, so we have to consider backprojection from multiple angles.

It is interesting to note that a very similar reconstruction may have been obtained from

an object that had more than one illuminated point along the line formed by the backpro-

jection in the reconstructed object. For an object made up of only one illuminated point,

at least two viewing angles must be considered.
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Figure 4: Test object with one illuminated voxel at (50, 50). This noise-free

object will be passed through the already constructed H matrix and will be used

as a known for image reconstruction.

Figure 5: Image vector, ~g, of first test object (with one illuminated voxel) using

our H operator

2.5 Reconstruction with multiple angles

Clearly a single projection is not sufficient to accurately reconstruct the distribution of

the radiotracer. Thus, we have to consider a setup where the pinhole and detector are
9



(a) Object (b) 1 Iteration

(c) 5 Iterations (d) 20 Iterations

Figure 6: An object with a single illuminated voxel is shown in (a). MLEM

reconstructions for various iterations all show a linear streak, geometrically from

the point of detection through the pinhole and back onto the object plane.

positioned at a series of different angles around the object. (This is equivalent to rotating

the object by that angle, which is the approach we will take for this simulation.)

Consider 5 different angles equally spaced around the object. When using just these 5

angles, the single point reconstructions improve substantially as shown in Figure 7. In

these figures, the artifacts cause by the insufficient sampling seen in the previous method

(with one angle) are still apparent, but with angular directions based on the angle of the

projection. However, with as little as 3 iterations, the “streaks” are virtually unnoticeable.

With 20 iterations, there is little noticeable difference between the true object and the

reconstruction. We show the error more closely in Figure 8. The point in the object was
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(a) 1 Iteration (b) 2 Iterations

(c) 3 Iterations (d) 4 Iterations

Figure 7: Reconstructing a single-point illuminated object using MLEM

iterations, with five angular projections. With as few as 3 iterations, evidence of

the “streaked” angles seems to have disappeared, while intensity in the true

bright spot increases with each iteration.
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(a) 20 Iterations (b) Zoomed in view of error

Figure 8: 20 iterations of MLEM with five angular projections and its

reconstruction error, centered around the region of interest.

defined to be at voxel (50, 50). Looking at Figure 8b, there is no error at the actual

illuminated voxel, but there is a small error in its neighboring voxels.

2.6 Reconstructing a skull

The previous example was simple and had predictably good results. What about a more

complicated object? To study this, we utilized a cartoon image of a skull as the object to

be imaged and reconstructed (see Figure 9).

For this reconstruction, I chose to use 5 angles. The reconstructions at various iterations

of the MLEM algorithm are shown in Figure 9. Artifacts are visible after 20 iterations but

it is still easy to determine the object in the field of view.

3 Constructing system matrices: a 3D case

3.1 Setting up a 3D system

Now consider a three dimensional system illustrated in Figure 10. Each voxel is then a

three-dimensional volume of size s3. The pinhole is a circle with radius r. The detector is

made up of two-dimensional square pixels and is itself rectangular. The coordinate system
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(a) Original object (b) 1 Iteration

(c) 10 Iterations (d) 20 Iterations

Figure 9: (a) A more complicated test object to reconstruct. (b-d) MLEM

reconstructions for various iterations with five angular projections. From 10 to 20

iterations there is not noticable change in the reconstruction.

is defined as shown in Figure 10, again with the origin in the center of the pinhole. For this

more complicated system, we will no longer choose the center of voxel of ray origination,

nor will these rays spread or fan evenly through the pinhole. Instead we make the following

changes:

• Rays will originate from a random location within the cubic voxel.

• Each ray will pass through a different random location within the pinhole.

Note that a random pinhole location is found by choosing coordinate points (yr, zr) where

both of these variables are random numbers between −r and r. A new random pinhole co-
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Figure 10: 3D System

ordinate (yr, zr) is found if
√
y2r + z2r > r2. This is can insure a random spread throughout

the pinhole without a concentration in any one area.

For the 3D system, we will also use the following specifications (again, units are arbi-

trary):

• Size of object: 51 voxels by 51 voxels by 51 voxels

• Number of voxels, N : 132,651

• Side length of each (cube) voxel: 2

• Distance from object to pinhole: 15

• Radius of pinhole: 0.3

• Distance from pinhole to detector: 10

• Number of pixels on detector, M : 2601 (51×51)

• 1000 rays leave each voxel from random locations in the voxel.

The size of the detector is determined automatically by tracing rays from the center of the

corner voxels closest to the pinhole through the center of the pinhole. This ensures that

our field of view is primarily visible on the detector face.

Each column of the system matrix still represents one specific voxel. For this case, the N

voxels are ordered first in the y direction, then the x direction, then the z direction. Each

row of the matrix once again represents a particular pixel from the detector, ordered first
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by detector columns.

3.2 Verifying the matrix

Viewing the matrix for a 3D system as we did for the 2D system in Figure 3 is not as

intuitive, both because the matrix is so large and because it is mostly filled with zeros.

Instead, we utilized an alternative method in verifying the accuracy of the matrix. We

took an object with one emitting voxel. Let this voxel be in the plane of (xo = 26, yo = 26)

(where xo and yo refer to a coordinate system of the object with respect to the back

corner) and have this illuminated voxel move throughout the z direction. As the detector

is defined in the y− z plane, we expect an illuminated voxel moving as such to correspond

to a pixel moving horizontally across the center of the detector. We can do the same with

the illuminated voxel moving in the y direction. Now we expect the pixel on the detector

to move vertically (see Figure 12).

3.3 Single point illuminated

As before, we can test the system matrix with a single illuminated voxel. Let that point

be located at (20, 20, 20) on the object. We can actually run the same MLEM algorithm

as previously detailed for this 3D object.

Figure 13 shows an MLEM reconstruction with 20 iterations for this single pixel. However,

in this first run, only one angle was used. What if we rotate the object as before? Let’s

try 20 iterations with 5 angles evenly spaced around the object. Compare Figures 13 and

14. Though both of these used 20 iterations, adding 5 angles created a significantly more

accurate reconstruction. Slice 20 of the reconstruction had the highest intensity relative to

any of the other nearby slices which were fairly negligible.

3.4 Multiple illuminated points

Now consider a more complicated object. We shall try 27 symmetrically spaced illuminated

voxels in object space (illuminated with an intensity of 1) and each of these voxels sur-

rounded by an illuminated voxel with an intensity of 0.5, to simulate an intensity fall-off.

The x, y, and z planes with these 9 high intensity voxels are defined to be 21, 26, and 31.

MLEM will be performed with 20 iterations and 5 angular projections.
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(a) Voxel illuminated at zo = 17 (b) Voxel illuminated at zo = 26

(c) Voxel illuminated at zo = 35

Figure 11: Verifying the 3D matrix with an illuminated voxel moving in the z

direction. Each plot shows the image of a voxel illuminated at object point

(26, 26, zo). As expected, the illuminated point moves horizontally, due to the

definitions of the system axes.
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(a) Voxel illuminated at yo = 17 (b) Voxel illuminated at yo = 26

(c) Voxel illuminated at yo = 35

Figure 12: Verifying the 3D matrix with an illuminated voxel moving in the y

direction. Each plot shows the image of a voxel illuminated at object point

(26, yo, 26). As expected, the illuminated point moves vertically, due to the

definitions of the system axes.
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Figure 13: (a) Reconstructing a single illuminated voxel at object slice z = 20.

(b) The original object. The titles for each plot represent the z object slice

number.
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Figure 14: (a) Reconstructing a single illuminated voxel at object slice z = 20

with 5 different angles. (b) The original object. The titles for each plot represent

the z object slice number.
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Figure 15: (a) Reconstructing an object with 27 bright voxels surrounded by

dimmer voxels. (b) The original object. The titles for each plot represent the z

slice number.
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As shown in Figure 15, an intensity-varied object was reconstructed with some interesting

results. Though each of the three z object slices which had the 9-spot pattern was identical

to each other, each of these slices’ reconstructions were not. There is a general shape of

the 9-spot pattern with significant intensity fall-off surrounding each bright spot.

4 Discussion

4.1 Issues and difficulties

For these results, MATLAB R2016B was used. Calculation-wise, the most time-intensive

step of running these simulations is constructing the system matrix. Another difficulty lies

in storing the matrix. While the 2D system had an H matrix with a size 128 × 1282, or

2,097,152 elements, when made sparse it could be saved as a variable of size 2.2 kilobytes.

However, in the 3D case, we defined a system with a matrix sized 512×513, or 345,025,251

elements. (approximately 172 times more elements than the 2D system matrix). This

cannot be saved and stored through MATLAB, even when converted to a ‘sparse’ matrix

(a method which was discussed in Section 2). Instead, clever space-saving functions have to

be written which save the non-zero elements and their location in order to rebuild the matrix

rather than saving the matrix outright. However, once this matrix is rebuilt, performing

image simulations with it is trivial from a computational memory standpoint.

4.2 Next Steps

The next obvious step in the analysis is to consider the effects of detector noise on imaging

performance. Beyond that, there should be considerations made to scatter in the object

as well as in the collimator and detector system. Further goals include using lessons from

these simulations to aid in the design of imaging system geometries. To achieve this, there

will need to be modeled realistic physics of the gamma rays, especially when considering

their interaction with the pinhole collimator. From there, we could look towards multiple

bed positions to achieve a larger field of view for the SPECT system.
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