
0 
 

Coherence Analysis of an “X”-shaped Aperture using Piecewise 
Diffraction 

 
by 

David Andrew-Stephen Hill 

 

____________________________ 
Copyright © David Andrew-Stephen Hill 2016 

 

A Thesis Submitted to the Faculty of the 
 

DEPARTMENT OF OPTICAL SCIENCES 
 

In Partial Fulfillment of the Requirements 
For the Degree of 

 
MASTER OF SCIENCE 

 
In the Graduate College 

 
THE UNIVERSITY OF ARIZONA 

 



1 
 

STATEMENT BY AUTHOR 

 

STATEMENT BY AUTHOR 

This thesis has been submitted in partial fulfillment of requirements for an 

advanced degree at the University of Arizona and is deposited in the University Library 

to be made available to borrowers under rules of the Library. 

Brief quotations from this thesis are allowable without special permission, 

provided that accurate acknowledgment of source is made. Requests for permission for 

extended quotation from or reproduction of this manuscript in whole or in part may be 

granted by the copyright holder. 

SIGNED: __________________ 

APPROVAL BY THESIS DIRECTOR 

This thesis has been approved on the date shown below: 

 

________________________________   ________________________ 

Tom D. Milster      Date 

Professor of Optics  



2 
 

ACKNOWLEDGEMENTS 

There are many people who have helped me throughout the development of this 

thesis to whom I am grateful. I would like to thank Tom Milster who has been a great 

mentor and inspiration during my time at the University of Arizona.  Without his support 

this project never could have succeeded.  Finally, I would like to dedicate this work to my 

mother especially and my entire family for their unconditional support. 



3 
 

TABLE OF CONTENTS 

Table of Contents………………………………………………………………………….3 

 

List of Figures…………………………………………………………………………......5 

 

List of Tables……………………………………………………………………………...8 

 

Abstract………………………………………………………………………………….7 

 

Chapter 1:  Introduction……………………………………………………………….....8 

 

Chapter 2:  History……………………………………………………………………….10 

 

Chapter 3:  Background………….………………………………………………………12 

 

Chapter 4:  Theory…………………..…………………………………………………...19 

 Setup……………………………………………………………………………..19 

 Results……………………………………………………………………………25 

 

Chapter 5:  Experimentation………………………………………………………..27 

 Setup………………………..………………………………………………….27 



4 
 

 Spatial Coherence Visibility Factor….…………………………………………..27 

 

Conclusions………………………………………………………………………………28 

 

References………………………………………………………………………………..29  



5 
 

LIST OF FIGURES 

 

Figure 1 Division of wavefront Interferometer…………...…………………………..…10 

Figure 2 YDSI Pinhole Pairs………………………………………………………….….11 

Figure 3  Michelson Interferometer…………...…………………………………………14 

Figure 4  Young’s Double Pinhole Interferometer..……………………………………..18 

Figure 5  Irradiance Profile, Visibility vs. OPD..………………………………………..19 

Figure 6 Projection Vector d…………………………………………………………….21 

Figure 7  X-Aperture and Different Pinhole Spacing……………………………...…….23 

Figure 8 Family of Hyperbolaes…………………………………………………………24 

Figure 9  Piecewise X-Aperture Model…………………………………..…….………..25 

Figure 10 Flow Chart of Simulation .......……………………………….……………….26 

Figure 11  Diffraction & Interference Irradiance Pattern…………………...…………...30 

Figure 12  Optical Design……………...…………………………………………….…..31 

Figure 13  Family of Hyperbolas Simulated..…………………………………………....32 

Figure 14  Flow Chart of Fitting Routine……………………………………………..…33 

Figure 15  Irradiance Profile Showing Column Vectors……………………………...…35 

Figure 16  Visibility vs PH separation…………………..………………………...….…36 

Figure 17 Edge Diffraction …………………………………………………………..…37 

Figure 18 Illustration of an X-Aperture with Center Block…………………………….42 

Figure 19 Image of X-Aperture……………..…………………………………………..43 



6 
 

Figure 20 X-Aperture Setup………………………………………...………………….45 

Figure 21 Gray-scale Image with X-Y Axis………….………………………………..48 

Figure 22 Results of Poorest Fit……......……………………………………………....49 

Figure 23 Results of Best Fit……..………………………………………………….…50 

Figure 24 SEM Image of Slit Width…………………………………………………....52 

Figure 25 SEM Image of Angle Measurement for 10µm Slit Width…………………...53 

Figure 26 SEM Image of Angle Measurement for 12µm Slit Width…………………...53 

Figure 27 SEM Image of X-Aperture with Center Block………………………………54  



7 
 

LIST OF TABLES 

Table 1  Design Parameters………………………………………..……...27 

Table 2  Source Diameter Error…………………………………………..28 

Table 3  X-Apertures……………………………………………………..42 

Table 4   Circular Apertures……………………………………………...44 

Table 5   Fit Results of Source Diameter………………………………...51 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

ABSTRACT 

 

The motivation of the experiment is to accurately determine the spatial coherence of a 

370nm ultraviolet light emitting diode using one single interferogram. We report a novel 

method of measuring the spatial coherence of a 370nm UV LED source without using 

complicated optics. This is done by fabricating an aperture similar to a Young’s Double 

Slit Interferometer (YDSI) on  the Maskless Lithography Tool (MLT). The aperture 

contains two slits in an otherwise opaque aperture that has the two slits at an angle 

𝜃!" = 21.6°  relative to one another in the shape of an “x” where the slit length is 2mm 

long. A simulation of the experiment is performed using theory called piecewise 

diffraction theory in a Matlab© package called OptiScan. Piecewise diffraction is the 

approximation of a surface as a collection of infinitesimal windows. When the light field 

is incident upon each window, piece-by-piece, there is a corresponding diffracted pattern 

in the observation plane. The piecewise diffracted field within the simulation yields an 

interferogram in the shape of a family of hyperbolaes in the observation plane. The 

interferogram is loaded into the Matlab script to calculate the visibility and fit that to an 

effective source size. The source size is the figure of merit for the integrity behind the 

piecewise diffraction theory. In the experiment, the x-shaped aperture is placed 2cm from 

the camera array, while the source is fixed 1m from the x-aperture. This interference 

pattern is input to a Matlab© script that fits the size of the source to the measured spatial 
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coherence visibility factor. In the fit routine, each column in the image is scanned for a 

minimum and maximum irradiance value to calculate visibility and fit that value to an 

effective source size. The results for a 10µm slit width x aperture from the simulation 

yield a 1.40mm source diameter for an actual source size of 1.5mm. The results from the 

experiment showed a 1.40mm source diameter for a 16µm slit width with an opaque 

(block) center of the aperture and 1.45mm source diameter for a 14µm slit width. In 

future work the x-aperture geometry should be fabricated with values closer to the 

modeled. Also, the dramatic effect of the temporal coherence should be subtracted as a 

factor to the calculation of visibility. 
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CHAPTER 1:  INTRODUCTION 

Spatial coherence is defined as the dependence of the correlation between two 

points in a light field due to the source size and shape. By measuring the degree of 

coherence, the spatial extent of a quasi-monochromatic incoherent extended source can 

be estimated. In this study, we present a method to measure the spatial coherence 

visibility factor, which is related to the mutual intensity, from an interferogram produced 

by an x-shaped aperture. This information is used to extract the effective source size.  

The method of measuring the spatial extent of a source in this way presents a 

simple method to determine coherence properties of a source. It is inexpensive and robust 

in design, making it a preferable alternative to techniques using multiple measurements. 

To date, the methods described in this thesis have fewer optical components in the 

measurement system, with only one stationary aperture, compared to similar 

measurement systems that have been reported. In essence, the optical system is a 

collection of multiple double pinhole interferometers with different pinhole distances 

combined into one aperture. 



11 
 

 

Figure 1: One dimensional source distribution with length L and angular subtense θ. [1] 
 

Figure 1 illustrates a simple division-of-wavefront Young’s double pinhole 

interferometer (YDPI) setup resembling the concept behind the experiment in this thesis. 

Each point on an extended, quasimonochromatic, incoherent line source with a 

wavelength λ produces a spherical wavefront that propagates to the aperture. The aperture 

samples the wavefront at two different points in space P1 and P2 separated by distance 

dph along the y-dimension. The wavefront is transmitted through the pinholes and the two 

resulting diffracted wavefronts interfere with one another to produce a fringe pattern in 

the observation plane. 
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The visibility for the example in Figure 1 is a function of the length of the line 

source Lsrc. Decreasing Lsrc decreases the maximum fringe shift and therefore increases 

visibility. The angular subtense θap is the ratio between dph and zsrc. If this parameter is 

decreased by way of increasing the distance zsrc to the source from aperture, then fringe 

visibility also increased. [1] 

The x-aperture design is closely related to a YDPI and is modeled as a collection 

of tiny pinhole pairs with diameters on the order of microns. Figure 2 below illustrates 

the modeling concept that is discussed in more detail in Chapter 4. 

 

Figure 2: X-aperture is modeled as a collection of tiny pinhole pairs. 
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The x-aperture interferometer is unique, because it contains no moving or 

expensive parts. Yet, in one measurement, it can determine the spatial coherence 

characteristics of the source. The aperture is designed in such a way that slits of the “x” 

induce many different pinhole distances in the x-direction. Diffraction from the slits in 

the x-aperture is conceptually due to a collection of small holes within the slits. The 

diffracted fields from the light holes are added linearly to create a modulated fringe 

pattern at the observation plane. In this work, a piece-wise diffraction algorithm is used to 

calculate the light pattern on the camera that results from the x-aperture. 

Chapter 2 discusses the history behind interference and its relation to spatial 

coherence. Chapter 3 discusses relevant background information to support the reader’s 

understanding of interferometry and spatial coherence, including examples of 

interferometers. Chapter 4 is the theory behind the experiment, and detailed explanation 

of the experimentation is discussed in Chapter 5. Conclusion for this thesis are presented 

in Chapter 6. 
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CHAPTER 2:  HISTORY 

In 1664, Robert Hooke, who was a British scientist, introduced the wave theory of 

light to the world.[2] A decade later, Robert Boyle, the British chemist, expanded 

Hooke’s idea of the wave theory of light. Based on these ideas, Christiaan Huygens 

published a report entitled, Treatise of Light,[3] which explained that light waves were an 

aggregate of tiny wavelets that are now referred to as Huygens wavelets. Around the 

same time, Isaac Newton focused on the contrasting idea that light was a particle 

comprised of associated wavelengths, and in 1666 Newton observed the spectrum of 

white light from the refraction of the light through a prism. Newton and Hooke rivaled 

one another, due to their ideas about the science behind light.  

Thomas Young, an English physician, focused much of his research on the 

physiological aspect of the human eye as it relates to light and color.[4] In 1793, he 

explained how the curvature of the crystalline eye lens contracts and expands, changing 

the power of the eye to accommodate human vision. Other accomplishments of Young 

were the affirmation of the human eye’s response to three primary colors and the 

phenomenon of astigmatism in the eye.  The most notable work, which is of special 

importance to the experiment described within this paper, is Young’s double-slit 

experiment.[4] In order to verify and prove his wave theory of light, he placed a card with 

a nominal width of !
!"

 of an inch in front of a tiny hole in a window to demonstrate the 

interference of light. Separation of light from the pinhole into two parts created fringes 
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when the card was inserted, and the fringes disappeared when the card was removed. The 

wave theory was then expanded to include polarized light with a glass rhombus by 

Augustin-Jean Fresnel.[5] Fresnel was also responsible for the famous equations that 

govern reflection and refraction of light based on differing refractive indices within two 

separate media.  

Young’s double slit experiment implied another physical phenomena that we now 

know as diffraction. Fresnel derived the expressions describing diffraction of 

monochromatic electromagnetic fields propagating from an aperture. Gustav Kirchoff, 

the German physicist, used Green’s theorem and James Clerk Maxwell’s electromagnetic 

equations to derive the expression for what is now known as the Kirchoff-Fresnel 

diffraction formula.[6] Scientists use this diffraction and similar formula to solve for 

diffraction patterns in the Fresnel region, i.e. close to the aperture. The linearity of these 

diffraction formulas assists in the description of the superposition of sufficiently small 

piecewise-constant elements discussed in Chapter 4 of this manuscript.  
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Young’s development of the world’s first light-wave interferometer pioneered the 

study of interferometry, which is the study of interfering light waves. Interferometers 

have been used extensively in radio astronomy and microscopy. For example, there is an 

ongoing project in South Africa building the Square Kilometer Array (SKA) radio 

telescope that will eventually become the world’s largest telescope.[7] Its baseline 

stretches from the northern parts of South Africa to Australia. Another interferometer is 

the Michelson Stellar Interferometer discovered by Albert Michelson in 1893.[8] This 

type of interferometer samples the wavefront from the light source with two mirrors and 

folds the light path with two other mirrors, as shown in Figure 3.  A Michelson Stellar 

Interferometer measures the angular separation of binary star systems, and information 

about the stars’ spatial characteristics can be extracted from such data. This 

interferometer, built on Mount Wilson in 1920, was used to measure the diameter of the 

star Betelgeuse. [9] The fringe visibility is measured as a function of h with multiple 

measurements, and the star’s angular extent is calculated from these data. The Michelson 

interferometer is conceptually similar to the x-aperture technique, except data for all 

separations are collected in a single x-aperture measurement. 
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Figure 3: Michelson Stellar Interferometer.  
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CHAPTER 3:  BACKGROUND 

Suppose two equal-amplitude plane waves propagate along directions 𝒌𝟏 and 𝒌𝟐 

described by  

U1(r,t)=Aexp[j(k1·r-ωt+ϕ1 )]  (1)  

and 

U2(r,t)=Aexp[j(k2·r-ωt+ϕ2 )],  (2) 

where 𝒌𝟏 =
!!
!
𝒌𝟏 and 𝒌𝟐 =

!!
!
𝒌!, r is the position vector, the (·) is dot product, ω is the 

radian frequency of light and ϕ is offset phase. If the medium is linear, the principle of 

superposition applies, and the waves combine by simply adding the two fields. Each 

wave has a real part and an imaginary part, and the real field of the wave is represented as 

Re{U1(r,t)}=A cos(k1·r-ωt-ϕ1) .  (3) 

 Exploiting a known identity, cos(A)+cos(B)=2 cos[(A+B)/2]cos[(A-B)/2], the 

real electric field of the combination is written as 

Re{U(r,t)}= 2Acos[1/2 (k∆·r+ϕ∆)]cos[1/2(kΣ·r-2ωt+ϕΣ)] ,  (4) 

where Δ denotes difference and Σ denotes addition of the parameter (i.e.  kΔ=k1-k2 and 

kΣ=k1+k2). The fringe irradiance is imaged onto the observation screen as the observable 

quantity and is given by   

I r =CI U r,t 2=CI A 2 1+ cos k∆∙r-ϕ∆ , (5) 

where 𝐶! =
!
!
𝑛𝑐𝜖!, 𝑛 is the medium refractive index, c is the speed of light in a vacuum, 

and 𝜖! is the permittivity of free space. 
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Note that the fringe modulation is in direction kΔ. The fringe spacing Λ is  

Λ=2π/||kΔ||.      (6) 

In Eqs. (1) through (6), effects of polarization are ignored. In this work, the angular 

substense between k1 and k2 is very small, and the beams are of like polarization. 

Therefore, any reduction in the fringe visibility resulting from polarization effects is 

insignificant and is ignored. 

One of the simplest ways to demonstrate an interference pattern is implementing a 

classic Young’s double-pinhole experiment. This type of interferometer samples the 

wavefront of a source at each of the two pinholes in the aperture (pinhole) plane, as 

shown in Figure 1. The model described here is an opaque screen with two tiny holes 

separated by a distance dph along the y-dimension. In this model, dph is small compared to 

the observation distance. The pinholes are typically on the order of microns in diameter. 

When illuminated with a plane wave, the pinholes produce approximately spherical 

wavefronts in transmission that interfere at the observation plane. For this model, the 

spherical waves at the observation plane are well approximated by k1 and k2 plane waves, 

and kΔ·r ≈ (2π/λ)·OPD. The OPD=r1-r2 is the optical path difference between the paths 

from pinhole one (r1) and pinhole two (r2) reaching the observation point, as shown in 

Figure 4. In the observation region, straight-lined equally spaced cosine fringes are 

observed that are labeled with corresponding orders defined by mλ. The integer m 

corresponds to the number of wavelengths of OPD between the pinholes and the 

observation point. Detail of the YDPI is shown in Figure 4 with respect to the OPD 
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calculation. Note that OPD = λ(m+1/2) for the center of a dark fringe and OPD=mλ for 

the center of a bright fringe, and 

Λ= !!!
!!!

 . (7) 

 

Figure 4: The basic Young's double pinhole interferometer (YDPI) represented by two 
pinholes (P1 and P2) that are separated a distance dph. Wavefronts transmitted by the 
pinholes travel along the z-direction to the observation plane. The interference pattern is 
observed at the observation plane. Each fringe is labeled with corresponding orders of 
mλ, where m is an integer.[1] 
 

For typical experiments, a camera is used to observe the fringe pattern, where 

irradiance of the fringe pattern produces pixel values. For plane waves with amplitude A, 

irradiance is the square modulus of the electromagnetic field, which is 

𝐼(𝑂𝑃𝐷)  =  𝐶! 𝑈(𝑂𝑃𝐷) !  =  2𝐶!|𝐴|![1+ cos(
!!
!
𝑂𝑃𝐷)], (8) 

where CI = (½)𝑐𝑛𝜖!.  

One of the most important characteristics of the fringe pattern is the fringe 

visibility, which is sometimes called fringe contrast. The fringe visibility is a very 
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important parameter of coherence theory that involves both spatial and temporal 

coherence. Spatial coherence is related to visibility reduction as a function of source size, 

whereas temporal coherence is related to fringe visibility as a function of source 

wavelength distribution. Visibility is defined in Figure 5 and Eq. (9), where minimum 

and maximum irradiance values of the fringe pattern are Imin and Imax, respectively. When 

the two interfering waves have unequal amplitudes or the source is not perfectly coherent, 

Imin ≠ 0 and V ˂ 1.  

 

Figure 5: Irradiance profile associated with the visibility of the fringes in observation 
space. As shown, V=0.8. 
 

In this work, the source is assumed to be nearly quasi-monochromatic, extended and 

incoherent, so only spatial coherence effects are considered. The equation relating fringe 

visibility to spatial coherence is   
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𝑉(!!!
!
) = (!!"#!!!"#)

(!!"#!!!"# )
= 2 !!!!

!!!!!
 𝜇 !"!  (!!!

!
) .   (9) 

The term µx
12 

!!!
!

 is the spatial coherence visibility factor and is the dominant 

term in the expression for the visibility of fringes when the source bandwidth is 

narrow.[1] The “x” in the spatial coherence visibility term denotes the spatial dependence 

of the source. That is, observed visibility is due to the size of the quasimonochromatic 

incoherent extended source. The “12” represents interference resulting from two sample 

points (pinholes), λ is the mean wavelength of a quasimonochromatic source, and θph is 

the angular subtense of the pinholes as seen from the source, as shown in Figure 1. A 

vector describing the direction of the pinhole orientation in the aperture plane is  

d = dph·𝒅 , (10) 

where 𝒅 is simply the unit vector in the direction defined by a line connecting the two 

pinholes (see Figure 6). It makes no practical difference in which orientation 𝒅  is 

assigned. Either 1 → 2 or 2 →1 gives the same result. In this work, the extended quasi-

monochromatic source is an incoherent continuous source distribution. The source 

emission power distribution is measured in units of Wm-2 (power per unit area) and is 

known as the radiant exitance M(xsrc, ysrc). The total irradiance pattern in the observation 

plane is calculated by integrating the differential fringe patterns created by M(xsrc, ysrc) 

from each dxsrcdysrc. The normalized source radiant exitance distribution is 

mR(xsrc,ysrc)= M(xsrc,ysrc)/ ∬ M(xsrc,ysrc)dxsrcdysrc.             (11) 
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Due to the Van Cittert-Zernike theorem and the nature of an extended 

quasimonochromatic source, the spatial coherence visibility factor at the observation 

plane is proportional to the absolute magnitude of the Fourier transform of the 

normalized source radiant exitance mR, given by 

𝜇!"! (
!!!
!

;𝒅)=|𝑭𝒅{mR(xsrc,ysrc)}|=∬mR(x,y)exp(-j2π(ξx+ηy)) dxsrc dysrc,       (12) 

where 𝜉 = !!!
!

𝛼!𝑥 + 𝛽!𝑦 ,  𝑥!"# = 𝑥!"#𝑥 + 𝑦!"#𝑦, 𝑑 = 𝛼!𝑥 + 𝛽!𝑦, and 𝛼! ,𝛽!  are 

direction cosines describing the direction of 𝒅 in the aperture plane. [1] That is, the value 

of µx
12 is determined from the origin of the two-dimensional Fourier transform in the 

direction 𝒅 at a distance 
!!!
!

. 

 

Figure 6: Illustration of the projection vector d between the displacements of two 
pinholes (black dots). 
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Different techniques have been used to measure spatial coherence of sources, 

including the use of uniformly redundant arrays.[10] One particular study uses the 

Young’s Double Pinhole Interferometer (YDPI) and an aperture with differently spaced 

pinhole pairs to measure the complex degree of spatial coherence for an incoherent quasi-

monochromatic source at a wavelength of 632.8nm. Six pinhole pairs are generated from 

a mask fabricated with four pinholes. The complex degree of spatial coherence are 

measured for pinhole distances of 1.5, 4.5, 9.0, 10.5, 13.5 and 15.0 millimeters.[11]  

Temporal coherence properties of light-emitting diodes (LEDs), including coherence 

length (the OPD distance between the fringe with maximum visibility to first region with 

minimal visibility) and the spectral coherence (spatial coherence at a particular 

frequency) were investigated for a red and green LED with wavelengths of 641nm and 

545nm. To determine the spectral coherence, Dalip Sing Mehta et al used a YDSI to 

record several different interferograms. The visibility of the fringes are measured by 

recording several interferograms for four different slit separations: 400, 800, 1100, and 

1650µm. The spectral coherence for the red LED is 0.85 at a 400µm slit separation and 

0.8 for the green LED at 500µm slit separation.[12] Popmintchev et al. uses HHG 

supercontinuum X-rays from the excitation of He-Ne gas from a 3.9 micron laser and a 

YDSI to study coherence of a supercontinum laser. Fringe visibility is measured with slit 

widths of 5µm and slit separation of 10µm. [13] An aperture called a uniformly 

redundant array (URA) has been used to measure spatial coherence of an undulator 

radiation (high energy x-rays) source at the Advanced Photon Source at Argonne 
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National Laboratory and is measured for discrete slit widths of 10, 50, 90 and 170 

microns. The URA is a complex mask that contains all the aforementioned slit widths 

with slit separations ranging from 0 to 700µm so that every slit separation acting as an 

independent YDSI for each slit width is measured only once. The mask is phase shifting 

since it exhibits a π phase shift for the metallic component of the aperture. [14] A HHG 

beam generated from a 790nm femtosecond laser was measured with 20-50µm pinholes 

in a YDPI with pinhole spacings of 142, 242, 384 and 779 microns to measure the spatial 

coherence. [15] 

The present study conducts models and experiments to determine the coherence 

effects from a near ultraviolet (NUV) LED as the diameter of the source is changed. 

Piecewise diffraction theory is used to model the system in order to determine the optimal 

distance for high sensitivity with the use of an x-shaped aperture.  
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CHAPTER 4:  THEORY 

The x-shaped aperture is effectively a collection of pinholes with varying spacing, 

as shown in Figure 7. Each position along the x direction effectively forms a YDPI, even 

though the aperture is fabricated as a double slit oriented in an x shape. 

  

 

Figure 7: Concept of the x aperture as a collection of pinholes with different spacings. 
Black represents the open portion of the aperture. 
 

Conceptually, the “x” is a collection of finely sampled pinholes with different spacings. 

Starting at xs=0 and moving in the positive xs-direction, the spacing between each pinhole 

pair becomes larger. Each pinhole pair acts as a single YDPI with its corresponding 

spacing dph, which produces a fringe pattern in the observation plane. Since each pinhole 

pair produces fringes with spacing Λ as defined by Eq. (7). At distance z0 from the 

aperture, the net effect is a fringe pattern with 

𝛬 𝑥! = !!!
!!"!!

,          (13) 



27 
 

as shown in Figure 8. The fringe lines form a family of equally-spaced hyperbolas in each 

quadrant with the coordinate axes as their asymptotes.  

The LED source is assumed to have a narrow spectral distribution that would not 

introduce any additional fringe visibility reduction from the expected OPD for each 

pinhole pair in the experiment. The bandwidth (Δλ=25nm) of the commercially available 

LED (ENGIN #LZ4-00U600) can be further limited (Δλ=10nm) using an optical filter 

(TECHSPEC Hard Coated OD 4 #65-069), if necessary. The LED operates at a mean 

wavelength of 365nm. The Δλ=25nm bandwidth corresponds to a coherence length 

𝑙! = 5.3𝜇𝑚. The ratio of the coherence length to wavelength suggests a maximum of 29 

visible fringes in the observation plane. The first ±7 orders are shown in Figure 8, which 

are the central 15 fringes. In practice, only the central 4 or 5 orders are used in the 

measurement, so temporal coherence effects are not considered. The fringe pattern is 

observed close to the aperture in the Fresnel region. 
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Figure 8: Irradiance pattern at the observation plane is a family of hyperbolas with the 
coordinate axes as their asymptotes. Λ is proportional to !

!!
 . 

 

A finite-size source produces reduced visibility as dph increases, so the fringe visibility in 

Figure 8 decreases with increasing fringe spatial frequency along the positive xs-direction 

from x0=0. This work shows how these concepts are used to accurately determine spatial 

properties of the source. The overall net effect is a decrease in visibility as the distance 

from the center of the x aperture increases. The rate of visibility decrease is proportional 

to the size of the source.  

The normalized source radiant exitance mR(xsrc, ysrc) is modeled using small, square 

piecewise continuous sections. It is assumed that each section in the source propagates 
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light coherently to the x aperture. In the aperture plane, the field is divided into small 

square sections, as shown in Figure 9.  

 

Figure 9: Model of piecewise rectangular surfaces forming the geometry of the x 
aperture in the region of the center near x0=0 (left). Illustration of a rectangular function 
and its Fourier transform, the sinc function, as a Fourier Transform pair (right). The slit 
is 2mm in length (but only the central ±6𝜇𝑚 are shown) 10 microns in width, and 𝜃!" is 
10 degrees. 

 

Piecewise diffraction is used from the aperture to the observation plane. Fields from 

each of the square aperture windows propagate to the observation plane through 

Fraunhofer diffraction, because the square windows in the x aperture are small enough 

(on the order of microns) so that the conditional Nf  (Fresnel number) ˂ 0.1 is satisfied at 
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the observation plane distance z0. Linearity of the fields allows simple addition of the 

fields from each window. The Fourier transform relationship of the Fraunhofer 

approximation implies a two-dimensional “sinc” function field distribution at the 

observation plane that is geometrically centered at the corresponding window. After 

fields from all x-aperture windows are added, the square magnitude of the result yields 

the irradiance expected from the source section. The same calculation procedure is used 

for the remaining source sections in mR with the irradiance patterns added to yield the 

total irradiance. Since the source is incoherent, there are no cross terms in combining 

irradiance patterns. A flow chart of the simulation is in Figure 9. 

 

Figure 10: Flow chart illustrating the sequence of simulating the propagation of the 
electric field from source plane to observation plane. 

 
To simulate the optical system, a model is created in the program Optiscan, which 

operates in the Matlab environment. The simulation considers several key design 

parameters for the x aperture (see Table 1):  
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Design Parameters Description 

θap (degrees) Angle between the slits 

a (µm) Slit width 

l (µm) Slit length 

Table 1: Design parameters for the x aperture. 

 

 The optical setup includes the x aperture designed with specific parameters and 

small circular disk source sizes (Dsrc) ranging from 0.5mm to 2.5mm, in 0.5mm 

increments. This incoherent quasimonochromatic source is placed at a distance of 1m 

from the x-aperture (zsrc). The source has a wavelength λ of 365 nm, and Δλ=13nm with 

an x-aperture pixel pitch of 2.1µm. The pixel pitch value derives from the resolution limit 

of the Maskless Lithography Tool (MLT) used to fabricate the aperture. [16] 

 

Discussion of Parameters 

Observation Plane Distance 

The distance from aperture to observation plane (z0) is limited by two factors. 

First, the camera (Kingfisher ICX694) for data collection restricts the propagation length 

from aperture to observation plane to a minimum distance of 2 cm. This minimum is due 

to mechanical limitations from a recession to the pixel array plane of the camera. Also, 

the visibility fit to the visibility data from the simulation becomes worse as z0 increases, 

as shown in Table 2. Initially, θap is fixed at a value of 15°, which corresponds to a range 
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of pinhole separation values dph between 0.10 mm and 0.33 mm. The slit width a is fixed 

at 10µm. The length l is fixed at 1mm. Results from the fit in Table 2 suggest that 2 cm is 

the optimal z0 based on the error of the diameter of the source from its true value, 

𝐷!""#" = 𝐷!"# − 𝐷!"#!  (14) 

 

Table 2: Results from fitting the visibility data in the simulation to the theoretical value 
showing the error in source diameter as a function of observation plane distance and 
source size. 
Slit Width 

In a YDPI or YDSI, the light undergoes two effects: diffraction and interference. 

The irradiance pattern is the combination of these two phenomena, where the slit width 

determines the angular distribution of the diffracted light and modulates the interference 

pattern at the observation screen. The interference term, as shown in Eq. (15), is 

enveloped with the diffraction term of Eq. (16). The product of the interference term and 
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the diffraction term yields the total irradiance pattern as a function of distance along the 

observation plane. In some cases an interference maximum coincides with a diffracted 

minimum, in which case no fringe for that particular order is observed. Also, the closer 

the slit width a is to the wavelength, the wider the central lobe becomes, and less light 

into the central diffraction lobe is allowed through the slit. Guided by the aforementioned 

statements and Eqs. (15)-(18), the slit width a is set to a value that optimizes w the zero-

to-zero width for the central lobe of the diffraction pattern, fit to the dimensions of the 

camera array. Consideration for the minimum feature width that can be printed by the 

MLT is also a factor in determining slit width. 

𝐼 = 𝐼! cos!
!!!! !"#!

!
  (15) 

 

𝐼 = 𝐼! sinc! 𝜋𝑎 sin !
!

   (16) 

 

𝐼!"!#$ = 𝐼!cos!
!!!! !"#!

!
sinc! 𝜋𝑎 sin !

!
   (17) 

 

𝑤 = !!!!
!

    (18) 



34 
 

 

Figure 11: The intensity pattern for a double slit interferometer. The diffraction term 
envelopes the interference term governed by the slit width and pinhole separation, 
respectively. 
 

A 10µm slit width is nearly the finest features that can be fabricated by the MLT. The 

zero-to-zero width of the central lobe is 1.46mm for a=10µm, while the camera supports 

a 12.5 (H) by 10mm (W) active area. Five diffraction orders are observed in the image 

plane. Now that the slit width is fixed, the angular separation of the slits are determined. 

 
 

Angular separation of slits 
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The value of θap is chosen such that each effective pinhole separation is small 

enough to induce interference effects at the observation plane with reasonable fringe 

spacings Λ. The initial value at determining θap is 15°, and the value is decreased to a new 

value of θap = 10° to achieve a range of pinhole separation between 0.1 mm and 0.3 mm. 

This value yields a useful diffraction pattern with enough fringes inside the dimensions of 

the camera to accurately calculate the visibility. This result is determined by obtaining a 

fringe spacing, governed by Eq. (13), to be on the order of tens of microns. The fringe 

spacing on the observation plane in the simulation has a range of [24µm, 52µm], which is 

reasonable considering the camera pixel spacing is 4.54µm.  

In summary, the parameters corresponding to observation distance, slit width and 

angular slit separation are engineered one at a time to optimize ideal experimental 

conditions. The observation distance z0 is limited to 2cm. The x aperture design 

parameters are as follows: slit width a = 10µm , slit length 𝑙 = 2𝑚𝑚, dph= 0.1mm to 

0.3mm and θap = 10°. 

The optical design includes five key components. First is the ENGIN 365nm UV 

LED (LZ4-00U600) source, which is placed directly behind a spatial filter. Placed 

approximately 1m away from the spatial filter is the x aperture. The interferogram is 

collected on a Kingfisher camera (ICX-694) which is connected to the computer. 

Appendices B and C list the source and camera specifications, respectively. A schematic 

showing the optical design is shown in Figure 12. 
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Figure 12: The optical design for coherence analysis of an x-aperture. Dimensions of the 
x aperture are greatly exaggerated in this figure. 
 

 The simulation propagates a light field through the optical design and yields a 

family of hyperbolic fringes seen in Figure 13. 
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Figure 13: Family of hyperbolaes after simulation through optical system at a 
wavelength of 365 nm. 

 

The irradiance pattern is symmetrical about the axes, so simulation of one quadrant is 

sufficient to understand characteristics of the device.  If the source is circular, then the 

appropriate model for geometry of the source is a circ function, which is defined as  

𝑚! 𝑟!"# = !
!"!

circ !!"#
!

  (19). 

The Fourier transform of Eq. (19) is the sombrero function, 

𝜇!"! (
!!!
!
) = 𝑭!!!

!

!
!"!

𝑐𝑖𝑟𝑐 !!"#
!

 = somb 𝐷 !!!
!

 (20). 

Each column in the matrix of the hyperbolic irradiance pattern is scanned for 

minimum and maximum values. These parameters are used for calculating the visibility. 

Visibility reduces when the source size Dsrc increases with 
!!!
!

  constant, as seen in Eq. 
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(20) from the dependence of the term 
!!!
!

 in the spatial coherence visibility factor. A 

Matlab© program is developed that optimizes the fit to the calculated visibility pattern 

observed in the model of the optical system in order to determine source size. A flow 

chart of the routine is shown in Figure 14, and the program is listed in Appendix A.  

 

 

Figure 14: Flow chart showing the process of the fitting routine for finding a source 
diameter. 
 

The flow chart in Figure 14 shows the process of the fitting routine in order to 

determine a source diameter. The fringe pattern generated from OptiScan is loaded into 

the fit routine as a matrix. It scans each column in the fringe pattern for intensity minima 

and maxima. If no minimum or maximum is found, then the data is discarded. If a 

corresponding peak and valley exists in the data, then it is used to calculate visibility. 

This calculation is repeated for each pinhole separation moving along the positive x0-
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direction from the origin (center of x). The sombrero or sinc pattern generated from the 

calculation of visibility is then fit to the data collected from Optiscan. The source size is 

calculated from the width of the sombrero function. Figure 15 displays two subset figures 

describing the part of the process of how the visibility is calculated from the resulting 

interferogram from OptiScan. On the left of Figure 15 is a snapshot from the sinusoid 

corresponding to the fringe pattern in column 113 of the input matrix. Notice the peaks 

and valleys associated with the minimum and maximum irradiances are used to calculate 

the visibility. On the right of the same figure is the fringe pattern showing column 113 

indicated by the vertical black line. 

 

Figure 15: The irradiance profile (as a function of OPD) of column 113 shown on the 
left. The first quadrant of the interferogram on the right is produced from the x-aperture 
for a 1.5 mm source diameter with a λ=365 nm (Δλ = 10 nm) and θap=20°.  
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Figure 16 shows the visibility curve as a function of pinhole distance for the best fit 

sombrero and sinc functions. The sinc and sombreros generated are fit to the data stored 

in OptiScan, showing a linear relationship between the pinhole separation and visibility. 

Therefore, visibility, which is used to determine coherence, decreases with increasing 

pinhole separation. Note that the x0 axis does not start from zero, due to the diffractive 

features around the origin. 

 

 

Figure 16: Results from the simulated LED showing visibility as a function of pinhole 
distance dph. The best fit sombrero and sinc functions are also shown. 
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In Figure 17, in the far right portion of the interferogram, there is a noticeable 

pattern of straight-lined equally spaced cosine modulated fringes with irradiance that 

increases linearly. This increase seems to be related to the tilt of slits in the aperture. 

Along the slit in the direction of increasing x there is an increase in intensity of the 

spurious fringes. This is visibly shown in Figure (15), which has one 10 micron width slit 

tilted at an angle of 10 degrees (θap=20°) relative to the x-axis at a wavelength of 362 nm. 

This spurious fringe may produce background in the experiment. 

 

Figure 17: (Left) One 2 mm long, 10 micron thick slit tilted at an angle of 10 degrees 
relative to the x-axis illuminated with a 362 nm wavelength. (Right) Simulation of 
Interferogram resulting from the aforementioned process. 
 

The figure of merit for fitting somb or sinc curves to the simulation is the root 

mean square (rms) variation between the visibility as a function of x0 from the simulation 

and the visbility calculated from the sinc/somb fit in Figure 14. To find the rms, a 

subroutine calculates the square root of the sum of the difference of squares between the 

fit routine’s visibility and the Optiscan© simulation with the expression,  
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𝜎!"# =
!!!!!"#

!

!
!
!!!       (21), 

where Vi are from the simulation and Vfit is the functional value from the sinc or somb 

functions. For example, results from the simulation and fitting routine of a 1.5 mm 

diameter incoherent quasimonochromatic disk source with a wavelength of 365nm 

(calculated as a weighted sum between 359 nm and 371 nm) propagating one meter away 

to an x-shaped aperture with a 10µm and then 2 cm to the observation plane, yields a 1.40 

mm diameter source, and the sinc fit for comparison yields a 1.17 mm diameter. 

In summary, OptiScan simulates the propagation of the light field transmitted 

through an x shaped aperture modeled with ten micron pinholes by varying spacing to the 

observation screen yielding a family of hyperbolaes that are symmetrical about the x and 

y axes. The first quadrant of the interferogram is scanned for minimum and maximum 

intensities to calculate visibility. The fit routine achieves a fit to 6.7% of the actual value 

in an example using a 1.50 mm source diameter. There also appears to be spurious 

straight-lined equally spaced cosine modulated fringes with increasing intensity along the 

x-axis that may contribute to noise. These fringes seem to come from the tilt related to 

one slit in the aperture. The next chapter discusses the detail in experimentation for the x-

aperture interferometer. 
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CHAPTER 5:  EXPERIMENTAL RESULTS 

 

Experimental verification of the x-aperture concept for determining effective 

source size is presented in this chapter. The first section of the chapter discusses the 

fabrication of the materials with explanation of their use. The next section covers the 

experimental setup with the results. The chapter concludes with a discussion of possible 

sources of error that contribute errors in source size fits to the spatial coherence being 

measured. 

 

Fabrication 

The x-aperture is fabricated using the MLT using chromium on glass substrates in 

the geometry of an “X” (two slits on top of one another and angled with respect to the xs-

axis). The dimensions of the slit legs are 2mm long at an angle θap=20°.  The absence of 

the chrome on the substrate corresponds with the transparent component of the aperture. 

Four different x-apertures are produced for the experiments. Two x-apertures contain slit 

widths of 10µm and two contain 12µm slit widths. One of the 10µm and one of the 12µm 
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slit width x-apertures has an entire “x” shaped geometry (transparent center section). The 

two remaining x-apertures have the center section of the “x” completely opaque or 

blocked out with no transmission of light. This blocked structure is illustrated in Figure 

18.

 

Figure 18: Illustration of X aperture without a center section (blocked). 

 
Table 3 below summarizes the x-apertures that were fabricated for the experiment. 

 

 

 

 

 

A finished 

product of an 

Label X-Aperture Slit Widths Center of X-Aperture 

S1 10 µm Blocked 

S2 10 µm  No Block 

S3 12 µm  Blocked 

S4 12 µm No Block 

Table 3:Four x-apertures fabricated. Two 10 micron apertures and two 12 micron 
apertures are presented, where one of each slit width size has a blocked center section to 
prevent any transmission of light. 
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x-aperture fabricated by the MLT is shown in Figure 19. 

 

 

 

 

 

 

Figure 19: A picture of an X-aperture that shows the relative size of the aperture. The 
remaining glass substrate not used in the experiment is covered with black electrical tape 
to prevent any unwanted transmission of light. 
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In addition to the four x-apertures, three additional circular apertures are 

fabricated with sizes of 0.5 mm, 1.0mm, and 1.5mm in diameter. These source sizes are 

listed in the Table 4. The circular apertures act as spatial filters for the source. In other 

words, the size of the LED is limited with the circular apertures to agree with the 

simulation source sizes.  

 

 

An interferogram is produced for each circular aperture listed with each of the four x-

apertures. Therefore, twelve experimental iterations are implemented to account for all 

combinations of x-apertures and source diameters.  

 

Results 

The experimental setup includes an optical track, a stage, three circular apertures, 

four x-apertures, a rectangular optical mount (2), Mounting posts (3), 365 nm UV LED 

(#LZ4-00U600), and a CCD Camera (Kingfisher ICX694) connected to a computer. The 

Label Circular Aperture Sizes 

C1 0.5 mm 

C2 1.0 mm 

C3 1.5 mm 

Table 4: Three different circular apertures that range from 0.5mm to 1.5mm. 
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LED, mounted on a block, is placed one meter away from the x-aperture. The x-aperture 

is fixed on the rectangular optical mount and that rectangular mount is fixed on a 

mounting post. The x-aperture is placed directly in front of the camera. A picture of the 

entire setup is shown in Figure 18. 

 

Figure 20: The x-aperture setup includes an optical track, UV LED, CCD camera, 
mounting post, rectangular mount, and stage. 
 

Each iteration produces a gray-scale image on the camera array, as shown in 

Figure 22. The images of the fringe pattern at the CCD camera are very similar to the 

simulations with OptiScan in Matlab, as shown in Figure 13. After measurement each 

interferogram is loaded into the fit routine. 

Due to the wavelength distribution of the source, temporal effects relating to the 

wavelength distribution of the source wash out the fringe visibility calculated in the fit 
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routine when an entire quadrant is scanned and high fringe orders m are used in the fit 

routine. Temporal coherence is the correlation between the decrease in visibility due to 

the power (frequency) spectrum of the source.  At a mean wavelength (𝜆 = 370𝑛𝑚 and 

bandwidth Δ𝜆 = 25𝑛𝑚 the coherence length, 

𝑙! =
!!

!!
 ,  (22) 

is found to be approximately 5.3µm, where the coherence length is defined by the 

distance between the fringe with maximum visibility to the fringe with minimum 

visibility. The number of fringes one can observe in this situation before the fringe 

visibility is at a minimum can be found by evaluating the ratio of the coherence length 𝑙! 

and the center wavelength 𝜆. This value evaluates to approximately fourteen fringes. As 

mentioned in Chapter 4, the initial assumption was that temporal effects, which affect y0, 

would not be significant. However, experimental results indicate that using m > 3 

significantly affect fit accuracy. Therefore, a slight modification to the fit routine script is 

implemented, where smaller y0 image area centered around the 𝑚 = 0 order fringe is 

selected. In other words, only three to five fringes above and below the x-axis, are 

included in the visibility calculation inside of the fit routine, as shown in Figure 2. To 

give the reader a better understanding of what is meant by the author, see Figure 22. 
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Figure 21: Gray-scale image of the interferogram resulting from a 1.5mm circular 
aperture and a 12 micron x-aperture with a blocked center section. The images are 
enlarged to clearly observe the fringe contrast.Two image areas were selected to be 
scanned for visibility calculation. Starting from the x0-axis (corresponding to the m=0 
fringe) a selection of three to five fringes in the y0 range above and below the x0-axis are 
scanned for calculation of visibility in the fit routine. 

 

 The stray light in the background of the images (not visible) is canceled out in 

order to not have an effect on the visibility. This cancellation is simply done by selecting 

an image area furthest away from the fringe pattern and subtracting the value of its 

irradiance from the irradiance in the image area that is scanned. 

In Figures 22 and 23, there is a side-by-side comparison of the left and right 

image areas on each side of the y0 axis and their respective fits. Figure 22 shows the 

worst fits from a 0.5mm circular aperture (C1), 12µm slit widths and an x-aperture with a 

blocked center section (S3). The image areas are trimmed to the y0 range in order to avoid 
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temporal coherence effects. Figure 23 shows the best two fits corresponding to a 1.5mm 

circular aperture (C3) and a 12µm x-aperture containing a blocked center section (S3) of 

the “x”. 

 

Figure 22: Results from the fit routine for the 0.5mm circular aperture (C1) and blocking 
the central area of the x aperture (S3). The first image area and its corresponding 
visibility fit (left). The second image area and its corresponding visibility fit (right). For 
this particular iteration, only a portion of the fringe pattern in the y0 range is selected to 
avoid temporal coherence effects. The red line corresponds to fitting a sombrero function 
to the visibility curve while the green line is a sinc function fit. The green line agrees with 
sombrero fit within ten percent so it is difficult to detect in the graph. The blue line 
resembles the data used in the fit routine. 
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Figure 23: Image area selected on fringe pattern corresponding with the 1.5mm aperture 
(C3)and blocking the central area of the x aperture (S3) (left). Quadrant 2 image of the 
area scanned for the fit routine (right), where the quadrant is reflected about the y-axis 
before scanned. The red line corresponds to fitting a sombrero function to the visibility 
curve while the green line is a sinc function fit. The green line agrees with sombrero fit 
within ten percent so it is difficult to detect in the graph. The blue line resembles the data 
used in the fit routine. 

 

Results of the fit routine are shown in Table 5. For 0.5mm source diameters (C1), 

the fit routine produces larger diameter estimates (positive error). For 1.0mm (C1)  and 

1.5mm (C3)  circular apertures, the fit produces smaller diameter estimates (negative 

error). The difference between actual source diameters and the calculated source 
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diameters from the fit routine are larger for sinc fits compared to sombrero fits. 

Interestingly, the 10µm slit with no block (S2) and the 12µm slit with no block (S4) yield 

the same fit value for the 1.0mm diameter source (C2).  Having a center section of the x-

aperture blocked, (S1) and (S3), seems to improve results. 

Source Diameter 

(mm) 

Slit Width 

(µm) 

SINC fit (mm) 

(error) 

SOMB fit (mm) 

(error) 

X-

Aperture 

Center 

0.5 (C1) 12 (S1)  0.63 (+0.13) 0.73 (+0.23) 

B
LO

C
K

 

0.5 (C1) 16 (S3) 0.81 (+0.31) 0.94 (+0.44) 

1.0 (C2) 12 (S1) 0.75 (-0.25) 0.87 (-0.13) 

1.0 (C2) 16 (S3) 0.82 (-0.18) 0.95 (-0.15) 

1.5 (C3) 12 (S1) 1.07 (-0.43) 1.26 (-0.24) 

1.5 (C3) 16 (S3) 1.20 (-0.30) 1.40 (-0.10) 

0.5 (C1) 14 (S2) N/A N/A 

N
O

 B
LO

C
K

 

0.5 (C1) 14.5 (S4) 0.609 (+0.11) 0.706 (+0.204) 

1.0 (C2) 14 (S2) 0.84 (-0.16) 0.98 (-0.02) 

1.0 (C2) 14.5 (S4) 0.84 (-0.16) 0.98 (-0.02) 

1.5 (C3) 14 (S2) 0.965 (-0.535) 1.45 (-0.05) 

1.5 (C3) 14.5 (S4) 1.09 (-0.41) 1.27 (-0.23) 
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Sources of Error 

Four sources of error are identified in the experiment that result from the 

fabrication of the x-apertures. Scanning electron microscope images in Figure 24 show 

that the slit widths are not exactly 10µm and 12µm which is the first source of error. 

There are small variations along the length of the slits, and the slit average widths are to 

be 14.3µm (10µm design) and 15.9µm (12µm design). 

 

 
Figure 24: SEM images of the 12 micron slit width x-aperture (left) and the 10 micron 
slit width aperture (right). 
 

The second source of 

error is the fabricated value 

of θ!". The SEM images of the 10µm and 12µm x-aperture with no block (S2 and S4) 

have measured θ!" values of 21.96° and 21.25°, for the 10µm and 12µm designs, 

respectively (see Figure 25 and Figure 26). The use of the expression for the tangent 

Table 4: Results from each aperture and slit combination. 
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function and a simple radian to degrees conversion determines the angle measure given a 

triangle approximation between the slits.  

 

 
Figure 25: SEM image of the 10 micron slit width x-aperture (S2). 

 
Figure 26: SEM image of the 12 micron slit width x-aperture (S4). 

 
 The third source of error is a physical connection between both slits in the 

fabrication of the x-apertures with a blocked center section (S1 and S3). This vertical 

segment is the leading suspect to the aforementioned spurious vertical diffraction lines 
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seen in multiple interferograms. The SEM image in Figure 27 displays the appearance of 

the vertical segment connecting the two slits. 

 

Figure 27: The SEM image of a vertical segment connecting the two slits near the center 
of the "x", for S1. 
 

The fourth source of error could be chromatic aberration due to the dispersion in 

the glass substrate. 

The next chapter summarizes the experimental results and discusses future work. 
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CHAPTER 6:  CONCLUSIONS  

The spatial coherence of a 370nm UV LED source is measured using a single 

interferogram generated by an x-aperture interferometer. A simulation using OptiScan 

(Matlab package) of the experiment is performed. The experimental setup includes the 

source, circular aperture placed immediately in front of the source, the x-aperture and a 

camera. The camera and x-aperture are 1m away from the source- circular aperture pair. 

Recorded interferograms are in the form of a family of hyperbolaes in each quadrant on a 

2D observation plane. From the interferogram, the visibility is measured as a function of 

position and then a fit to an equation to determine an estimate of source diameter. Results 

for the simulation fit for a slit width of 10µm (S2) and an actual source diameter of 

1.5mm (C3) yield an estimated 1.40mm source diameter. The experimental data for the 

12µm slit width (S3) for a source diameter of 1.5mm (C3) yield an estimated 1.40mm 

source size. The worst fit result is for the 0.5mm source size (C1), with the 16µm (S3) slit 

width resulting in an estimated size of 0.94mm diameter with the sombrero fit and 

0.84mm diameter for the sinc fit. 

A key difference between the experiment and simulation occurres due to the 

fabrication of the x-apertures. The slit width simulated (10 and 12 microns) is different 

from the actual slit widths fabricated (14 and 16 microns). The significant increase in 
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width of the slits spreads the diffracted pattern at the observation plane and ultimately 

changes the fringe modulation. Another source of error arises from the fabrication of the 

blocked apertures, (S1) and (S3). Instead of the slits at angle completely disconnected 

from one another, the slits are bridged together near the center of the aperture. This 

bridging may explain the spurious diffraction lines seen at higher spatial frequencies, 

which changes maxima in intensity and the visibility. The third discrepancy is in the 

calculation of the angle between the slits. Instead of 𝜃!" = 20°, 𝜃!" = 21.96° and 

𝜃!" = 21.25° for S2 and S4, respectively. Since dph is directly related to 𝜃!", the visibility 

is also altered, therefore manipulating experimental results. Finally, the temporal effects 

from the source wash out the visibility of the fringes affecting correct calculation.  

There are a few changes that can be made to the experiment that could improve 

results. First, the bridge that connects the slits in (S1) and (S3) can be removed, in order to 

free the recorded pattern of spurious diffraction lines altering the visibility. Extending the 

slits beyond 2mm could achieve better results due to the larger range of pinhole spacings. 

It would also be more accurate to achieve a slit width closer to the ones simulated. 

Future work includes fabricating more apertures and modification to the fit 

routine. For sources that are not symmetrical, adding in x-apertures in series at different 

angles would measure spatial coherence of different source points measured across the 

irregularly shaped source geometry. The reduction in visibility caused by the broad 

temporal power spectrum should also be factored into the calculation, since it has a 

dramatic effect on experimental results. One way to achieve this consideration may be to 
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define a function (one-to-one mapping) of the behavior of the temporal coherence as 

fringes transverse the y0 axis and subtract those effects from the calculation. 
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Appendix A 
 

Modeling Fit Routine: 
 
%parameters 
fid         = 100; 
Xtheta      = 83; 
z_src       = 1; 
LAMBDA      = 365e-9; 
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%process mat file 
%S       = load('flds1mmgrid9_70deg.mat'); 
%S       = load('flds1mmgrid9_70deg_5mm_z0.mat'); 
S       = load('Itotal_365LEDspectrum071415A.mat'); 
col_vec  = S.sysxvec; 
x_vec    = S.sysyvec; 
Nsamps  = length(col_vec); 
Ixt     = S.Itotal; 
  
%allowcate data vector 
contrast_vec    = []; 
l_vec           = []; 
  
for kk = 300:301; %length(col_vec) 
     
    y_vec   = Ixt(:,kk); 
    %disp(['kk = ' num2str(kk)]) 
     
    %expand data with interpolation 
    N_interp_pixels     = 8000; 
    x_vec_exp           = 
linspace(min(x_vec),max(x_vec),N_interp_pixels); 
    y_vec_exp           = interp1(x_vec,y_vec,x_vec_exp,'spline'); 
    yavg_exp            = sum(y_vec_exp)/length(y_vec_exp); 
    y_vec_exp           = y_vec_exp - yavg_exp; 
     
    Npixels     = length(y_vec_exp); 
     
    %find zero crossings 
    transition_vec      = 
find(abs(diff(sign(y_vec_exp)))>0);%sort([indx_pos(pos_transition) 
indx_neg(neg_transition)]); 
     
    %Find peaks 
    x_vec_exp_pos_peaks     = []; 
    y_vec_exp_pos_peaks     = []; 
    x_vec_exp_neg_peaks     = []; 
    y_vec_exp_neg_peaks     = []; 
    ii                      = 0; 
    if length(transition_vec)>=2 
        peak_flag               = 1; 
        while peak_flag 
            %first check leading values for pos/neg peak 
            if y_vec_exp(1) > 0 && ii == 0 %positive initial value 
                temprange       = 1:transition_vec(1); 
                if max(y_vec_exp(temprange)) > y_vec_exp(1)+eps  
%condition for peak in first segment 
                    segment_indx    = temprange; 
                    pos_peak_flag   = 1; 
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                else        %no peak detected 
                    segment_indx    = []; 
                end 
                ii      = ii+1; 
            elseif y_vec_exp(1) < 0 && ii == 0 %negative initial value 
                temprange       = 1:transition_vec(1); 
                if min(y_vec_exp(temprange)) < y_vec_exp(1)-eps  
%condition for valley in first segment 
                    segment_indx    = temprange; 
                    pos_peak_flag   = 0; 
                else        %no peak detected 
                    segment_indx    = []; 
                end 
                ii      = ii+1; 
            elseif (ii+1) <= length(transition_vec) && 
y_vec_exp(transition_vec(ii)+1) > 0 %positive full peak 
                segment_indx    = 
transition_vec(ii):transition_vec(ii+1); 
                pos_peak_flag   = 1; 
                ii      = ii+1; 
            elseif (ii+1) <= length(transition_vec) && 
y_vec_exp(transition_vec(ii)+1) < 0 %negative full peak 
                segment_indx    = 
transition_vec(ii):transition_vec(ii+1); 
                pos_peak_flag   = 0; 
                ii      = ii+1; 
            elseif ii == length(transition_vec) && 
y_vec_exp(transition_vec(ii)+1) > 0  %pos final section 
                temprange       = transition_vec(ii):length(y_vec_exp); 
                if max(y_vec_exp(temprange)) > y_vec_exp(end)  
%condition for peak in last segment 
                    segment_indx    = temprange; 
                    pos_peak_flag   = 1; 
                else        %no peak detected 
                    segment_indx    = []; 
                end 
                peak_flag   = 0; 
            elseif ii == length(transition_vec) && 
y_vec_exp(transition_vec(ii)+1) < 0  %neg final section 
                temprange       = transition_vec(ii):length(y_vec_exp); 
                if min(y_vec_exp(temprange)) < y_vec_exp(end)  
%condition for valley in last segment 
                    segment_indx    = temprange; 
                    pos_peak_flag   = 0; 
                else        %no peak detected 
                    segment_indx    = []; 
                end 
                peak_flag   = 0; 
            else 
                peak_flag       = 0; 
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                segment_indx    = []; 
            end 
             
            if ~isempty(segment_indx) 
                if pos_peak_flag 
                    x_segment       = x_vec_exp(segment_indx) ; 
                    y_segment       = y_vec_exp(segment_indx) ; 
                    x_vec_exp_pos_peaks = [x_vec_exp_pos_peaks  
x_segment(find(max(y_segment)==y_segment))]; 
                    y_vec_exp_pos_peaks = [y_vec_exp_pos_peaks  
max(y_segment)]; 
                else %negative peak 
                    x_segment       = x_vec_exp(segment_indx) ; 
                    y_segment       = y_vec_exp(segment_indx) ; 
                    x_vec_exp_neg_peaks = [x_vec_exp_neg_peaks  
x_segment(find(min(y_segment)==y_segment))]; 
                    y_vec_exp_neg_peaks = [y_vec_exp_neg_peaks  
min(y_segment)]; 
                end 
            end 
             
        end 
        figure(fid+1);plot(x_vec_exp,y_vec_exp 
+yavg_exp,x_vec_exp_pos_peaks,y_vec_exp_pos_peaks+yavg_exp,'o' ... 
            ,x_vec_exp_neg_peaks,y_vec_exp_neg_peaks+yavg_exp,'+');grid 
        axis([0 max(x_vec_exp) 0 max(Ixt(:))]) 
        title(['Peak Locations: column ' num2str(kk)]) 
        xlabel('Position (mm)') 
        ylabel('Irradiance') 
        pause(0.1) 
        if length(y_vec_exp_pos_peaks)>length(y_vec_exp_neg_peaks) 
            y_vec_exp_pos_peaks     = 
y_vec_exp_pos_peaks(1:length(y_vec_exp_neg_peaks)); 
        elseif length(y_vec_exp_pos_peaks)<length(y_vec_exp_neg_peaks) 
            y_vec_exp_neg_peaks     = 
y_vec_exp_neg_peaks(1:length(y_vec_exp_pos_peaks)); 
        end 
        contrast_peaks      = (y_vec_exp_pos_peaks - 
y_vec_exp_neg_peaks)./(y_vec_exp_pos_peaks + y_vec_exp_neg_peaks + 
2*yavg_exp); 
        contrast_vec        = [contrast_vec 
sum(contrast_peaks)/length(contrast_peaks)]; 
        l_vec               = [l_vec col_vec(kk)]; 
        if length(l_vec)>=2 
            figure(fid+2);plot(l_vec,contrast_vec);axis([min(l_vec) 
max(l_vec) 0 1]);grid 
            xlabel('Distance along measuremetn axis (m)') 
            ylabel('Visibility') 
            grid 
        end 
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    end 
     
end 
  
%fit sinc and somb to data 
d_vec           = 2*l_vec*tand(90-Xtheta); 
myerror_sinc    = @(D_src) 
sqrt(sum((abs(sinc(d_vec/z_src/LAMBDA*D_src))-contrast_vec).^2)); 
myerror_somb    = @(D_src) 
sqrt(sum((abs(somb(d_vec/z_src/LAMBDA*D_src))-contrast_vec).^2)); 
D_sinc          = fminsearch(myerror_sinc, 1e-3); 
D_somb          = fminsearch(myerror_somb, 1e-3); 
disp(['Data fit to sinc function shows diameter = ' num2str(D_sinc)]) 
disp(['Data fit to somb function shows diameter = ' num2str(D_somb)]) 
  
%graph contrast vs d and show sinc and somb 
figure(fid+3) 
plot(d_vec,contrast_vec,'-',d_vec,sinc(d_vec/z_src/LAMBDA*D_sinc),'--
',d_vec,somb(d_vec/z_src/LAMBDA*D_somb),'.' ) 
axis([min(d_vec) max(d_vec) 0 1]); 
grid 
legend('Data','Sinc','Somb') 
xlabel('PH Separation d (m)') 
ylabel('Visibility') 
 
Experimental Fit Routine: 
 
%process_contrast_vs_OPD_061815_Brush_andNoBrush.m 
  
%parameters 
fid         = 100; 
Xtheta      = 80; 
z_src       = 1; 
LAMBDA      = 370e-9; 
  
%process mat file 
%S       = load('flds1mmgrid9_70deg.mat'); 
%S       = load('flds1mmgrid9_70deg_5mm_z0.mat'); 
fname2 = '08082016_1p5mmap_noblock_10um_1m.tif'; 
X2 = imread(fname2,'tif'); %omit X2 = rgb2gray(imread(fname2,'tif')); 
figure(10);imagesc(X2); 
colormap(hot); 
axis image; 
colorbar 
%set background image area 
row_vec_bknd    = 1:200; 
col_vec_bknd    = 1:200; 
%image 1 area 
row_vec1        = 1780:1860; 
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col_vec1        = 1860:1990; 
%image 2 area  
row_vec2        = 1780:1860; 
col_vec2        =1660:1790;                           %col_vec2        = (1099-length(col_vec1)+1):1099; 
  
%define working images 
Xsmall1  = double(X2(row_vec1,col_vec1)); 
figure(5);imagesc(Xsmall1);colormap(hot);axis image;colorbar 
title('Image Area 1') 
Xsmall2  = fliplr(double(X2(row_vec2,col_vec2))); 
figure(6);imagesc(Xsmall2);colormap(hot);axis image;colorbar 
title('Image Area 2') 
col_vec     = 0:(length(col_vec1)-1); 
  
%calculate background 
Xbknd       = double(X2(row_vec_bknd,col_vec_bknd)); 
[nr,nc]     = size(Xbknd); 
avgbknd     = sum(Xbknd(:))/nr/nc; 
% S       = load('08082016_0p5mmap_block_12um_1m.tif'); 
% col_vec  = S.sysxvec; 
% x_vec    = S.sysyvec; 
% Nsamps  = length(col_vec); 
% Ixt     = S.Itotal; 
Nsamps  = length(col_vec1); 
x_vec   = 4.54e-6*(0:(length(row_vec1)-1)); 
%Ixt     = X2small-min(X2small(:)); 
[nr,nc] = size(Xsmall1); 
Ixtmat  = zeros(nr,nc,2); 
Ixtmat(:,:,1)  = Xsmall1-5600;%avgbknd; 
Ixtmat(:,:,2)  = Xsmall2-5600;%avgbknd; 
% Ixt     = X2small; 
  
  
for mm = 1:2 
     
    Ixt     = squeeze(Ixtmat(:,:,mm)); 
  
%allocate data vector 
contrast_vec    = []; 
l_vec           = []; 
  
  
  
for kk = 43:length(col_vec1); %length(col_vec) 
     
    y_vec   = Ixt(:,kk); 
    %disp(['kk = ' num2str(kk)]) 
     
    %expand data with interpolation 
    N_interp_pixels     = 8000; 
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    x_vec_exp           = linspace(min(x_vec),max(x_vec),N_interp_pixels); 
    y_vec_exp           = interp1(x_vec,y_vec,x_vec_exp,'spline'); 
    yavg_exp            = sum(y_vec_exp)/length(y_vec_exp); 
    y_vec_exp           = y_vec_exp - yavg_exp; 
     
    Npixels     = length(y_vec_exp); 
     
    %find zero crossings 
    transition_vec      = find(abs(diff(sign(y_vec_exp)))>0);%sort([indx_pos(pos_transition) 
indx_neg(neg_transition)]); 
     
    %Find peaks 
    x_vec_exp_pos_peaks     = []; 
    y_vec_exp_pos_peaks     = []; 
    x_vec_exp_neg_peaks     = []; 
    y_vec_exp_neg_peaks     = []; 
    ii                      = 0; 
    if length(transition_vec)>=2 
        peak_flag               = 1; 
        while peak_flag 
            %first check leading values for pos/neg peak 
            if y_vec_exp(1) > 0 && ii == 0 %positive initial value 
                temprange       = 1:transition_vec(1); 
                if max(y_vec_exp(temprange)) > y_vec_exp(1)+eps  %condition for peak in first segment 
                    segment_indx    = temprange; 
                    pos_peak_flag   = 1; 
                else        %no peak detected 
                    segment_indx    = []; 
                end 
                ii      = ii+1; 
            elseif y_vec_exp(1) < 0 && ii == 0 %negative initial value 
                temprange       = 1:transition_vec(1); 
                if min(y_vec_exp(temprange)) < y_vec_exp(1)-eps  %condition for valley in first segment 
                    segment_indx    = temprange; 
                    pos_peak_flag   = 0; 
                else        %no peak detected 
                    segment_indx    = []; 
                end 
                ii      = ii+1; 
            elseif (ii+1) <= length(transition_vec) && y_vec_exp(transition_vec(ii)+1) > 0 %positive full peak 
                segment_indx    = transition_vec(ii):transition_vec(ii+1); 
                pos_peak_flag   = 1; 
                ii      = ii+1; 
            elseif (ii+1) <= length(transition_vec) && y_vec_exp(transition_vec(ii)+1) < 0 %negative full peak 
                segment_indx    = transition_vec(ii):transition_vec(ii+1); 
                pos_peak_flag   = 0; 
                ii      = ii+1; 
            elseif ii == length(transition_vec) && y_vec_exp(transition_vec(ii)+1) > 0  %pos final section 
                temprange       = transition_vec(ii):length(y_vec_exp); 
                if max(y_vec_exp(temprange)) > y_vec_exp(end)  %condition for peak in last segment 
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                    segment_indx    = temprange; 
                    pos_peak_flag   = 1; 
                else        %no peak detected 
                    segment_indx    = []; 
                end 
                peak_flag   = 0; 
            elseif ii == length(transition_vec) && y_vec_exp(transition_vec(ii)+1) < 0  %neg final section 
                temprange       = transition_vec(ii):length(y_vec_exp); 
                if min(y_vec_exp(temprange)) < y_vec_exp(end)  %condition for valley in last segment 
                    segment_indx    = temprange; 
                    pos_peak_flag   = 0; 
                else        %no peak detected 
                    segment_indx    = []; 
                end 
                peak_flag   = 0; 
            else 
                peak_flag       = 0; 
                segment_indx    = []; 
            end 
             
            if ~isempty(segment_indx) 
                if pos_peak_flag 
                    x_segment       = x_vec_exp(segment_indx) ; 
                    y_segment       = y_vec_exp(segment_indx) ; 
                    x_vec_exp_pos_peaks = [x_vec_exp_pos_peaks  
x_segment(find(max(y_segment)==y_segment))]; 
                    y_vec_exp_pos_peaks = [y_vec_exp_pos_peaks  max(y_segment)]; 
                else %negative peak 
                    x_segment       = x_vec_exp(segment_indx) ; 
                    y_segment       = y_vec_exp(segment_indx) ; 
                    x_vec_exp_neg_peaks = [x_vec_exp_neg_peaks  
x_segment(find(min(y_segment)==y_segment))]; 
                    y_vec_exp_neg_peaks = [y_vec_exp_neg_peaks  min(y_segment)]; 
                end 
            end 
             
        end 
        figure(fid+1+10*(mm-1));plot(x_vec_exp,y_vec_exp 
+yavg_exp,x_vec_exp_pos_peaks,y_vec_exp_pos_peaks+yavg_exp,'o' ... 
            ,x_vec_exp_neg_peaks,y_vec_exp_neg_peaks+yavg_exp,'+');grid 
        axis([0 max(x_vec_exp) 0 max(Ixt(:))]) 
        title(['Peak Locations: column ' num2str(kk)]) 
        xlabel('Position (m)') 
        ylabel('Irradiance') 
        pause(0.1) 
        if length(y_vec_exp_pos_peaks)>length(y_vec_exp_neg_peaks) 
            y_vec_exp_pos_peaks     = y_vec_exp_pos_peaks(1:length(y_vec_exp_neg_peaks)); 
        elseif length(y_vec_exp_pos_peaks)<length(y_vec_exp_neg_peaks) 
            y_vec_exp_neg_peaks     = y_vec_exp_neg_peaks(1:length(y_vec_exp_pos_peaks)); 
        end 
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        contrast_peaks      = (y_vec_exp_pos_peaks - y_vec_exp_neg_peaks)./(y_vec_exp_pos_peaks + 
y_vec_exp_neg_peaks + 2*yavg_exp); 
        contrast_vec        = [contrast_vec sum(contrast_peaks)/length(contrast_peaks)]; 
        l_vec               = [l_vec col_vec(kk)]; 
        if length(l_vec)>=2 
            figure(fid+2);plot(l_vec,contrast_vec);axis([min(l_vec) max(l_vec) 0 1]);grid 
            xlabel('Distance along measurement axis (m)') 
            ylabel('Visibility') 
            grid 
        end 
    end 
     
end 
  
%fit sinc and somb to data 
d_vec           = 4.54e-6* 2*l_vec*tand(90-Xtheta); 
myerror_sinc    = @(D_src) sqrt(sum((abs(sinc(d_vec/z_src/LAMBDA*D_src))-contrast_vec).^2)); 
myerror_somb    = @(D_src) sqrt(sum((abs(somb(d_vec/z_src/LAMBDA*D_src))-contrast_vec).^2)); 
D_sinc          = fminsearch(myerror_sinc, 1e-3); 
D_somb          = fminsearch(myerror_somb, 1e-3); 
disp(['Data fit to sinc function shows diameter = ' num2str(D_sinc)]) 
disp(['Residual RMS error for sinc : ' num2str(myerror_sinc(D_sinc)/length(contrast_vec))]) 
disp(['Data fit to somb function shows diameter = ' num2str(D_somb)]) 
disp(['Residual RMS error for somb : ' num2str(myerror_somb(D_somb)/length(contrast_vec))]) 
  
  
%graph contrast vs d and show sinc and somb 
figure(fid+3+10*(mm-1)) 
plot(d_vec,contrast_vec,'-',d_vec,sinc(d_vec/z_src/LAMBDA*D_sinc),'--
',d_vec,somb(d_vec/z_src/LAMBDA*D_somb),'.' ) 
axis([min(d_vec) max(d_vec) 0 1]); 
grid 
legend('Data','Sinc','Somb') 
xlabel('PH Separation d (m)') 
ylabel('Visibility') 
  
end 
 

Appendix B 
Source Specifications: 
 
ENGIN 365nm UV LED 
Model #: LZ4-00U600 
Footprint: 7.0mm x 7.0mm 
Peak Wavelength: 365nm 
Bandwidth: 359nm – 371nm 
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Appendix C 
Camera Specifications: 
 
Sony Kingfisher CCD (SONY ICX694) 
Sensor: 1” Scientific CCD 
Active Pixel Resolution: 2750 x 2200 
Pixel Size: 4.54µm x 4.54µm 
Active Area: 12.49mm (H) x 9.99mm (V) 
Spectral Response: 310nm – 1100nm 
 


