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ABSTRACT 

 

Two optical design scenarios—imaging and illumination—were investigated for their use of 

Cartesian- and polar-based functions to generate freeform optical surfaces. 

 

The imaging scenario investigated a single-element, refracting freeform surface that converts an 

on-axis object field to an off-axis image point. XY polynomials (Cartesian but not orthogonal) and 

Zernike polynomials (Polar and orthogonal) were the two different function sets used to 

manipulate the surfaces to achieve the freeform imaging scenarios. The investigation discovered 

that the results between both function sets did not differ enough to single out a more effective 

surface type. However, the results did indicate that the Zernike function set typically required 

fewer coefficients to converge on an optimal imaging solution. 

 

The illumination scenario utilized an architectural lighting situation surrounding the Rothko 

exhibit for Green on Blue at the University of Arizona Museum of Art. The source location was 

fixed to the light track in the exhibit space and pointed in many different orientations towards the 

painting. For each orientation, a point cloud of a freeform optical surface was generated such that 

the painting surface was illuminated with uniform and low-level light. For each of these generated 

point clouds, a Legendre (Cartesian and orthogonal) and a Zernike (polar and orthogonal) fitting 

function was applied, and the convergence results were compared. In general, it was found that, 

after the 20th included fit term, the Legendre function resulted in a smaller RMS fit error than the 

Zernike function. However, if the light source was pointed near the center of the painting, the 

Zernike function converged on a solution with fewer fit terms than Legendre. 

 

Amidst the imaging scenario, a definition for the extent to which a surface was freeform, or the 

“freeformity”, was given. This definition proved to be an effective solution when the image size 

was compared for an F/3.33, F/4, F/5, and F/6.67 system for a range of different image focusing 

heights: the image size trends for each F-number overlapped, indicating a universal freeform term. 

 

In addition, a recursive formula for Cartesian Zernike polynomials was defined, which was used 

to generate an infinite number of Zernike terms using one single recursive expression. 
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1. Introduction 

 

It is strategic for an optical engineer to understand the mathematical representation of optical 

surfaces. The two-dimensional, axially symmetric function for a conic surface is a widely-used 

definition for such surfaces, provided in Equation (1-1) and (1-2) [11]. 

 

Radially-defined: 

 
𝑧𝑐𝑜𝑛𝑖𝑐(𝜌) =

𝜌2

𝑅 + √𝑅2 − (1 + 𝜅)𝜌2
 

(1-1) 

 

Cartesian-defined: 

 
𝑧𝑐𝑜𝑛𝑖𝑐(𝑥, 𝑦) =

𝑥2 + 𝑦2

𝑅 + √𝑅2 − (1 + 𝜅)(𝑥2 + 𝑦2)
 

(1-2) 

 

𝜅 = −𝑒2 

𝑒 = surface eccentricity 

𝑅 = surface radius of curvature 

𝜌 = √𝑥2 + 𝑦2 = normalized radial distance lateral from the optical axis 

𝑧 = surface height in the direction of the optical axis 

 

 

These equations can be used to define a wide variety of optical surfaces, from reflectors to 

refractors alike. However, they cannot represent freeform surfaces, which are defined by being 

deviated from axial or line symmetry [13]. For these surfaces, a function that can introduce 

asymmetry must be used. 

 

In optics, a commonly used parametrization function is one defined by Frits Zernike [26]. It 

involves two-dimensional orthogonal polynomials defined in polar coordinates that are separable 

in radial and azimuthal component, where the azimuthal component allows for the function to 

become rotationally asymmetric. 
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Other available functions include those defined in Cartesian coordinates, such as Legendre, XY, 

Bernstein, or Chebyshev polynomials. 

 

To properly approach the parametrization of freeform surfaces with the previously mentioned 

functions, it is beneficial to understand the number of polynomials required to provide an accurate 

representation of the original surface. The following discussion will explore this, and will also 

delve into understanding the extent to which more asymmetric freeforms will change the number 

of polynomials required for parametrizing. 

 

Freeform surfaces were generated for imaging and illumination scenarios. The imaging freeform 

generation involved adding polynomials to an initial conic surface, while the illumination freeform 

surfaces were defined exclusively by the aforementioned polynomial functions. 
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2. Imaging Design Scenario 

 

When applied to imaging scenarios, freeform surfaces map object rays to an image that differs 

from what would be produced by a traditional axially symmetric optical system. 

 

This analysis was done for a refractive imaging system, but it could also be explored with reflective 

freeform surfaces [15]. Reflective imaging systems do not encounter the dispersion effects that 

refractive imaging systems do. But, the freeform generation follows the same principles. 

 

The optical design software, CODE V 11.0 from Synopsys, Inc. was used to optimize the freeform 

system to generate freeform scenarios. 

 

 

 

2.1. Defining Freeformity for Refractive Imaging Systems 

Lens design is governed by two rays: the marginal ray and the chief ray. There exists an infinite 

number of each of these rays, as they are defined by any ray that passes through the margin of the 

stop aperture and any ray that passes from the center of the stop to the maximum field of view 

image. Due to axial symmetry, traditional lens design only traces one of each ray. 

 

However, freeform systems no longer have that axial symmetry, which requires the selection of 

new marginal and chief rays. 

 

In the following discussion, the tilted optical axis ray is referred to as the image ray and the original 

optical axis is referred to as the parent optical axis. For the functionality of the given equations, 

the image ray slope must be positive. See Figure 2.1-1 for a schematic describing the important 

parameters that drive the following discussion. 
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Figure 2.1-1—Preliminary drawing depicting the freeformity parameters of an imaging 

system 

𝑢𝐼 = image ray slope 

𝑢𝑢𝑝𝑝𝑒𝑟 = upper marginal ray slope 

𝑢𝑙𝑜𝑤𝑒𝑟 = lower marginal ray slope 

 

For freeform optics, the two marginal rays differ because of the introduced asymmetry. One way 

to quantify this introduced asymmetry is to define the difference between the two rays. This can 

be done by defining the angular separation from the image ray to each marginal ray, as seen in 

Equations (2-1) and (2-2). 

 

 𝜃𝑢𝑝𝑝𝑒𝑟 = tan−1(𝑢𝐼) − tan−1(𝑢𝑢𝑝𝑝𝑒𝑟) (2-1) 

 

 𝜃𝑙𝑜𝑤𝑒𝑟 = tan−1(𝑢𝑙𝑜𝑤𝑒𝑟) − tan−1(𝑢𝐼) (2-2) 

 

An expression for the asymmetry cannot simply be determined by taking the ratio between the two 

angular separations because they both exist in angular space. Thus, another metric must be 

explored. 

 

These angular extents can be extended back to the freeform surface to form a tilted “freeform 

plane” that intersects the parent optical axis and the freeform surface aperture. See Figure 2.1-2. 

 z 

axis of 

asymmetry 
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Figure 2.1-2—Demonstrating the upper and lower marginal ray projected distances on the 

tilted freeform plane (dupper > dlower) 

 

This plane allows for a distance magnitude-based ratio to define the asymmetry, which results in 

a variation of the desired angular ratios. See Equations (2-3) through (2-5). 

 

 𝑑𝑢𝑝𝑝𝑒𝑟 = �̅� tan(𝜃𝑢𝑝𝑝𝑒𝑟) (2-3) 

 

 𝑑𝑙𝑜𝑤𝑒𝑟 = �̅� tan(𝜃𝑙𝑜𝑤𝑒𝑟) (2-4) 

 

�̅� = distance from freeform aperture center to the image point 

 

 
𝐹 =

𝑑𝑢𝑝𝑝𝑒𝑟

𝑑𝑙𝑜𝑤𝑒𝑟
=

�̅� tan(𝜃𝑢𝑝𝑝𝑒𝑟)

�̅� tan(𝜃𝑙𝑜𝑤𝑒𝑟)
=

tan(𝜃𝑢𝑝𝑝𝑒𝑟)

tan(𝜃𝑙𝑜𝑤𝑒𝑟)
 

(2-5) 

 

With Equation (2-5), an initial freeformity parameter is defined. However, it is imaging to a tilted 

plane at the image plane. To correct this, Lambert’s cosine law is applied, seen in Equation (2-6). 

 

 𝐹𝑖𝑚𝑎𝑔𝑖𝑛𝑔 = 𝐹 ∙ cos(tan−1(𝑢𝐼)) (2-6) 

 

If a system is axially symmetric and focuses to an on-axis image, the freeformity is 1. As the image 

is moved further off-axis, the freeformity becomes greater than 1. 
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2.2. Functional Fitting of Imaging Freeforms 

The options for fitting and making freeform imaging surfaces are confined to what is available in 

CODE V. Starting with a baseline definition of a conic surface, which has axial symmetry about 

the optical axis, extra polynomial coefficients must be added on top of this surface to allow for the 

optimization to mitigate off-axis aberration effects. 

 

Of all the provided surface types in CODE V, Zernike and XY polynomials were selected such 

that a polar and a Cartesian basis space would be represented in the analysis. CODE V provides a 

maximum of 66 Zernike and 65 XY polynomial coefficients. 

 

Table 2-1—First term of each two-dimensional polynomial order for XY and Zernike 

2-D Polynomial Order XY Zernike 

0 none 1 

1 1 2 

2 3 4 

3 6 7 

4 10 11 

5 15 16 

6 21 22 

7 28 29 

8 36 37 

9 45 46 

10 55 56 

 

 

The Zernike surface requires a normalization radius to maintain orthonormality, while the XY 

polynomial function can be optimized without it because its polynomials are not orthogonal. 
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2.2.1. Zernike Polynomials 

 

The definition for the Zernike polynomials is given in Equation (2-7) and (2-8) [26]. 

 

 𝑍𝑛
𝑚(𝜌, 𝜑) = 𝑅𝑛

𝑚(𝜌) cos(𝑚𝜑) (2-7) 

 

 𝑍𝑛
−𝑚(𝜌, 𝜑) = 𝑅𝑛

𝑚(𝜌) sin(𝑚𝜑) (2-8) 

 

𝜌 = normalized aperture radius, transverse from optical axis 

𝜑 = azimuthal angle, where 𝜑 = 0° is along the x-axis 

𝑅𝑛
𝑚(𝜌) = Zernike radial polynomials 

 

 

The Zernike radial polynomials, 𝑅𝑛
𝑚(𝜌), are expressed in Equation (2-9) [26]. 

 

 
𝑅𝑛

𝑚(𝜌) = ∑
(−1)𝑘(2𝑛 − 𝑚 − 𝑘)!

𝑘! (𝑛 − 𝑘)! (𝑛 − 𝑚 − 𝑘)!
𝜌2(𝑛−𝑘)−𝑚

𝑛−𝑚

𝑘=0

 
(2-9) 

 

 

CODE V defines Zernike polynomial surfaces with Equation (2-10), which is a combination of 

Equation (1-1) and the Zernike polynomials defined above. 

 

 

𝑓𝑍𝑒𝑟𝑛𝑖𝑘𝑒(𝑎𝑗; 𝜌, 𝜑) = 𝑧𝑐𝑜𝑛𝑖𝑐(𝜌) + [∑ ∑ 𝑎𝑛,2𝑘−𝑛𝑍𝑛
2𝑘−𝑛(𝜌, 𝜑)

𝑛

𝑘=0

10

𝑛=0

] 
(2-10) 

 

𝑎 = Zernike coefficient 
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2.2.2. XY Polynomials 

 

CODE V defines XY polynomial surfaces with Equation (2-11), which involves Equation (1-2). 

The complete XY polynomial surface type is defined by Equation (2-12). 

 

 

𝑓𝑋𝑌(𝑎𝑚,𝑛; 𝑥, 𝑦) = 𝑧𝑐𝑜𝑛𝑖𝑐(𝑥, 𝑦) + ∑ 𝑎𝑗𝑥𝑚𝑦𝑛

66

𝑗=2

 

(2-11) 

 

 
𝑗 =

(𝑚 + 𝑛)2 + 𝑚 + 3𝑛

2
+ 1 (2-12) 

 

 

𝑎𝑗 = 𝑗𝑡ℎ XY coefficient 
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2.3. Imaging with Refractive Freeform Surfaces 

Freeform surfaces can be used with refractive imaging to focus on-axis collimated object rays to 

an off-axis image point (see Figure 2.3-1). 

 

 

Figure 2.3-1—System configuration for refractive imaging freeform 

 

To approach this concept, the freeform system was initialized with parameters that define a 

traditional, axially-symmetric optical system, called parent parameters. Then, it was optimized 

such that the same longitudinal focal distance was maintained while forcing the rays to focus at 

the desired transverse focus height at a point off-axis. The process of forcing the rays off axis 

involved adding tilt to the surface and deviating from a typical aspheric surface definition. 

 

For insight into which basis space, polar or Cartesian, better-modeled freeform refractive imaging 

systems, two optimizations were performed on this system. One added Zernike polynomials to the 

baseline conic surface (defined in polar coordinates) while the other added XY polynomials 

(defined in Cartesian coordinates). Refer to Section 2.2 for their mathematical descriptions. 

  



 

 21 

2.3.1. System Initialization Parameters 

 

The axially-symmetric optical system used for this case study was a 100-mm focal length BK7 

plano-convex positive lens with a conic convex surface. The lens was designed for a wavelength 

of 587.6 nm and had its aperture stop at the planar surface. 

 

Given these specifications, the radius of curvature of the second surface was -51.68 mm [5]. And, 

the eccentricity of the conic was selected such that it was equivalent to the refractive index 

preceding the surface, which produced a conic constant of -2.33 [6]. 

 

The lens prescription and lens layout for the parameters defined above is shown in Figure 2.3-2 

and Figure 2.3-3, respectively. 

 

 

Figure 2.3-2—Lens prescription for on-axis configuration, 10-mm diameter entrance pupil 

 

 

Figure 2.3-3—Lens layout for on-axis configuration, 25-mm diameter entrance pupil 
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Since the first surface of the lens was planar, the element thickness did not impact the effective 

focal length. It did, however, constrain the amount of tilt that could be introduced to the freeform 

surface. If the lens is too thin and the tilt is too large, a negative edge thickness could result, 

effectively creating an unrealistic manufacturing scenario. Therefore, a lens thickness of 15 mm 

was selected, which allowed for a possible 50° tilt if the entrance pupil diameter was the maximum 

of 25 mm. 

 

The requirements used to confine the parameters for each generated imaging system are given in 

Table 2-2. 

 

Table 2-2—Refractive imaging system requirements 

Design Wavelength 587.6 nm 

Lens Element Material N-BK7 

Lens Element Thickness 15 mm 

Longitudinal Distance to Focal Plane 
 

(NOTE—This is not the system focal length, which changes as the 

optical axis ray tilts. This is the axial back focal distance.) 

100 mm 

Object Distance Infinity 

Maximum Allowed Y-Tilt of the Freeform Surface −50° < 𝛼𝑆 < 50° 

Minimum Allowed Conic Constant of the Freeform Surface > −10 

Entrance Pupil Diameter 

Varied, description 

provided in  

Table 2-3 

Object Field Angle 

Focus Height (Global Y Coordinate in the Image Plane) 
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2.3.2. Test Parameters 

 

The focus height drives the asymmetry, which increases the freeformity. To maintain similar 

freefomity results for systems with different F-numbers, the maximum focus height was selected 

to be dependent upon the entrance pupil size. 

 

The performed tests assessed the effect that the parent F-number and focus height have on the 

image quality for both polynomial surface types of the element specified in Section 2.3.1. 

 

2.3.2.1. On-Axis Object Field 

 

Table 2-3 describes the specific test parameters for a system with one on-axis object field. 

 

Table 2-3—Test parameters for on-axis refractive imaging 

Parameter Minimum Value Increment Maximum Value 

Entrance Pupil Diameter 10 mm 5 mm 30 mm 

Focus Height 0 1 mm 2𝐷𝐸𝑃 

 

The maximum focus height was twice the entrance pupil diameter to select an extreme off-axis 

case. With this pre-allocation, the focus height was normalized to the radius of the entrance pupil 

to compare the image quality results to the normalized focus heights for the different F-numbers. 

 

2.3.2.2. System with a Field of View 

 

The system was also tested for its ability to converge on solutions that have multiple object field 

angles, which results in a field of view. It must be specified that this nomenclature for field of view 

is not the same as the axially-symmetric-defined field of view. Rather, it refers to the maximum 

object angle deviation from the on-axis object field, or, in other words, the maximum object field 

angle. 
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For this scenario, there were three traced object fields: the on-axis field, a field at the full extent, 

and a field angle that was 70% of the field of view angle. 

 

Object field details and other important parameters for this test case can be seen in Table 2-4. 

 

Table 2-4—Test parameters for freeform refractive imaging with a field of view 

Parameter Minimum Value Increment Maximum Value 

Entrance Pupil Diameter 15 mm 5 mm 30 mm 

Object Ray at Full Extent 1° 1° 4° 

Object Ray at 70% Extent 0.7° 0.7° 2.8° 

Focus Height 0 1 mm 𝐷𝐸𝑃 

 

 

A focus height of the entrance pupil diameter was selected to force the rays to extend beyond the 

height of the entrance pupil radius. This maximum value was indeed smaller than that of the on-

axis object field case, which was due to this imaging scenario’s severe degradation in performance 

when attempting to converge on solutions beyond 𝐷𝐸𝑃.  
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2.3.3. Optimization Approach 

 

To understand the abilities that Zernike and XY polynomials have with creating freeform lenses, 

the behavior of certain coefficients must be understood. The approach discussed in this section 

involves incrementally adding coefficients as optimization variables when computing the freeform 

surface, effectively producing image quality data as a function of coefficients added. 

 

Ultimately, this analysis aims to contribute to a rule of thumb suggesting the minimum number of 

coefficients required of each surface type to design a diffraction-limited freeform imaging system 

for various imaging scenarios. 

 

The optimization variables are listed in Table 2-5. 

 

Table 2-5—Freeform initializations, used as variables for optimizing surface tilt 

Parameter Initial Value 

Radius of Curvature -51.68 mm 

Conic Constant -2.33 

Surface Y-Tilt 0° 

All Polynomial Coefficients 0 

 

 

When performing a design for a specific test parameter, the CODE V automatic design tool was 

allowed to cycle up to 25 times until it reached its “converged solution”. 

 

For the design that consisted of only the on-axis object field, the automatic design tool was run 

once. If the system consisted of multiple object field angles, the automatic design tool was run 

three times to ensure a converged and representative solution. 
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Convergence is based upon changing input variables to “improve [system] performance according 

to a ray-based error function while controlling [the optimization] process according to user-

specific constraints” [17]. The user-specific constraints were defined by the requirements provided 

in Table 2-2. 

 

To enforce consistency in the tilt of the freeform surface with each imaging scenario, the design 

was split into two steps. The first step is illustrated in Figure 2.3-4. It calculated the optimal tilt for 

the given imaging scenario by running an optimization with every polynomial coefficient varied. 

This tilt was likely not the optimal tilt for the given scenario, but it provided a sufficient 

initialization, which was more stably corrected with the 𝑦 polynomial term that are available in 

both the Zernike and the XY polynomial surface types. 

 

 

NOTE—See Table 2-5 for the variable initializations. 

Figure 2.3-4—Procedure for optimizing the freeform surface tilt 

 

With a stable tilt appropriated, the second design step is articulated in Figure 2.3-5, which 

demonstrate how the Zernike and XY polynomials were optimized, respectively. 

 

 

Figure 2.3-5—Procedure for optimizing XY polynomials for coefficients 1 through 65 and 

Zernike polynomials for coefficients 2 through 66 

 

For both XY and Zernike polynomials, the normalization radius was set as the entrance pupil 

aperture radius. 
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One design process produced the image quality metrics for all generated freeforms, including the 

optimizations that used as little as three coefficients to as many as all 65 coefficients. This exact 

design process was then repeated for each of the test parameters discussed in Section 2.3.2. 

 

2.3.4. Results Using a Scaled Focus Height Approach 

 

The image quality metrics assessed in this section consist of the RMS spot size, the modulation 

transfer function (MTF) amplitude at 25% of the spatial cutoff frequency, and the MTF amplitude 

at 10 line pairs per mm. The RMS spot size, referred to as image size in this section, indicates the 

ability for the design to converge on a solution. The MTF amplitudes indicate the image sharpness. 

 

The spatial cutoff frequency used to represent MTF results was computed for each parent F-

number with Equation (2-13) [4]. 

 

 
𝜉𝑐 =

1

𝜆(𝐹/#)
 

(2-13) 

 

The diffraction limited image size was computed with the Rayleigh criterion, giving the Airy disk 

diameter, seen in Equation (2-14) [5]. 

 

 𝐷𝐴𝑖𝑟𝑦 = 2.44𝜆(𝐹/#) (2-14) 

 

Before delving into the results using freeformity, the refractive imaging scenario was assessed for 

the results as a function of the focus height normalized to the entrance pupil aperture radius, 

according to Equation (2-15). 

 

 
𝐻𝑠𝑐𝑎𝑙𝑒𝑑 =

2ℎ𝑖

𝐷𝐸𝑃
 

(2-15) 

 

This allows for systems with different parent F-numbers to be compared equivalently because each 

test scenario designs for a maximum focus height dependent on the entrance pupil aperture radius. 
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2.3.4.1. On-Axis Object Field 

 

The lens layout for one of the most extreme on-axis object scenarios can be seen in Figure 2.3-6. 

 

 

Figure 2.3-6—Lens layout for a single on-axis object with a 25-mm entrance pupil diameter 

and an focus height of 50 mm (the maximum for the 25-mm EPD) 

 

Figure 2.1-1 demonstrates the number of terms that it took for each polynomial type in this analysis 

to converge on a diffraction-limited image size. In general, the results between XY and Zernike 

polynomials were similar with regard to the number of coefficients required. The fitting functions 

utilized similar polynomials for the first few polynomial orders, which likely contributed to these 

similarities. 
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Figure 2.3-7—Number of Zernike and XY coefficients required for imaging convergence 

on a diffraction-limited RMS image size as a function of normalized focus height 

 

The similarities might also be attributable to an effective aspheric surface that can still focus the 

image despite surface tilt. If this was the case, the impact of the XY and Zernike polynomials is 

reduced. 

 

See Table 2-6 for a continued description of the results seen in Figure 2.3-7. 

 

Table 2-6—Number of coefficients needed for refractive imaging convergence 

Parent  

F-number 
Required XY 

Corresponding 

Polynomial Order 

Required Zernike 

(withholding piston) 

Corresponding 

Polynomial Order 

3.33 24 6 23 [24] 6 

4 21 6 21 [22] 6 

5 19 5 19 [20] 5 

6.67 13 4 12 [13] 4 

10 10 4 9 [10] 3 
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Figure 2.3-8 details the impact of fourth, fifth, sixth, and eighth order polynomials on image size. 

It demonstrates that sixth order polynomials were able to converge on a diffraction-limited solution 

for both surface types. It also highlights the Zernike polynomials’ superior ability to converge on 

smaller image sizes than the XY polynomials once fifth order polynomials were utilized. 

 

 

 

Figure 2.3-8—Examining the effect that adding polynomial orders has on the scaled RMS 

image size (when normalized to the Airy disk diameter, any value <1 is diffraction-limited) 
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2.3.4.2. System with a Field of View 

 

The lens layout for one of the field of view scenarios is shown in Figure 2.3-9. 

 

 

Figure 2.3-9—Freeform lens with a 25-mm EPD, a 25-mm focus height from the on-axis 

object, and with the largest object field angle of 1° 

 

Figure 2.3-10 shows the image size for each different object field (on-axis, 70% field, full field) 

involved in each field of view scenario (1° FOV, 2° FOV, 3° FOV, and 4° FOV). As expected 

when going off-axis, the image size increased as the focus height increased. 

 

While the image sizes for the 70% object field was comparable to the Airy disk diameter, the image 

sizes for the other two object fields made these lens systems impractical for any system that desires 

a focused image. However, this freeform setup was effective in redirecting on-axis object rays to 

an off-axis location. 
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Figure 2.3-10—Minimized scaled image size as a function of normalized focus height for 

the system with a field of view, arranged vertically by increasing FOV (any value <1 is 

diffraction-limited) 
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Figure 2.3-11 represents the number of XY and Zernike terms it took to achieve the image size 

obtained in Figure 2.3-10. In general, the number of required terms was between 30 and 40, which 

corresponded to seventh to eighth order polynomials. 

 

  

Figure 2.3-11—Term that converges on minimized image size as a function of normalized 

focus height, for the system with a field of view and arranged vertically by increasing FOV 
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the image size trends, the 70% extent object field was likely usable, but the other two fields (on-

axis and full extent) had significantly lower contrast, which reduced the system’s overall ability. 

It should be noted that the MTF remained stable for a range of 0 to 1 𝐻𝑠𝑐𝑎𝑙𝑒𝑑, which was where 

the focus height had yet to depart the boundary on the image plane defined by the entrance pupil. 

 

  

Figure 2.3-12—MTF at 0.25 of the spatial cutoff frequency as a function of the normalized 

focus height, for the system with a field of view and arranged vertically by increasing FOV 

For plots describing the terms that converged on these MTF values, see Appendix, Figure 5.1-1. 
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Lastly, the MTF amplitudes for a spatial frequency of 10 line pairs per mm is demonstrated in 

Figure 2.3-13. As the F/# increased and as the focus height neared its extreme value, the MTF 

degraded much like it did in Figure 2.3-12. 

 

  

Figure 2.3-13—MTF amplitude at 10 line pairs per mm as a function of the normalized 

focus height, for the system with a field of view and arranged vertically by increasing FOV 

For plots describing the terms that converge on these MTF values, see Appendix, Figure 5.1-2. 
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2.3.5. Results Using the General Freeformity Definition 

 

2.3.5.1. Freeformity Results for Designs with a Field of View 

 

Figure 2.3-14 demonstrates the image size as a function of freeformity. It is the same plot as Figure 

2.3-10, but with the x-axis scaled to reflect the freeformity definition. 

 

  

Figure 2.3-14—Image size as a function of freeformity, arranged by increasing field of view 
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The results seen in Figure 2.3-14 aim to verify the discussion in Section 2.1. With the overlapping 

image size plots for the various F-numbers, the plot does just that. The overlapping plots indicate 

a successful freeformity definition independent of the parent F/# and solely dependent on focus 

height. 

 

The MTF trends with the 10 lp/mm spatial frequency was not included in this section because it is 

a fixed spatial frequency and does not scale with a change to the system F-number, which would 

show no significance as the freeformity changes. 
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Finally, Figure 2.3-15 shows the MTF trend for the 25% of the cutoff spatial frequency plotted as 

a function of the freeformity. Although these results do not overlap like those in Figure 2.3-14, the 

trend of general similarity further indicates that the freeformity definition is valid. 

 

  

Figure 2.3-15—MTF for 0.25 of the spatial cutoff frequency as a function of freeformity, 

for the system with a field of view and arranged vertically by increasing FOV 
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2.4. Conclusions 

Because the test runs were performed with an automated process, the automatic designs used to 

optimize the imaging scenarios may not represent the best possible results, so there is error 

associated with the image quality metrics. However, the trends are exceedingly important. 

 

The overall results of the study indicate that neither XY nor Zernike polynomials are capable of 

being used to design a robust single-element freeform focusing lens. While the Zernike 

polynomials often resulted in utilizing fewer terms to converge on a solution, the solution was still 

not effective. 

 

This could, of course be an artifact of the design goal, which was rather aggressively trying to 

perform near diffraction limits for a single-element lens system that has no other means of 

compensating for aberrations. 

 

Concerning the dispute about which basis space better defines freeform surfaces, Cartesian or 

Zernike, there have certainly been many academic investigations into the subject of lens design 

with freeform surfaces. Milena Nikolic and her fellow authors studied an optical design for a head-

worn displays in which she optimized with Legendre, Zernike, Q-Legendre, and Forbes 

polynomials [15]. She convincingly found that the Cartesian basis spaces converged on a better 

MTF and RMS spot size when compared to the polar basis space of the Zernike polynomials. With 

that said, the XY polynomials are not orthogonal polynomials, and therefore are not representative 

of a polynomial surface type that could compete with the Zernike polynomials. Should this analysis 

be repeated, an investigation into another polynomial type should be considered a high priority. 
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3. Illumination Design Scenario 

 

The museum community utilizes freeform optical surfaces to better control the illumination of 

their exhibits [27]. Architectural lighting designs optimize for brightness uniformity to enhance 

observer experience and for reduced flux levels to prevent damage to the illuminated surfaces. 

 

3.1. Case Study Description 

Green on Blue by Mark Rothko resides at The University of Arizona Museum of Art, pictured in 

Figure 3.1-1. The exhibit is enclosed in a walled feature to draw the observer into an intimate 

viewing experience (see Figure 3.2-1). To effectively illuminate the full enclosure, the museum is 

collaborating with the College of Optical Sciences to reduce the light levels in the viewing space 

while maximizing the uniformity across the painting and onto the wall surrounding it. 

 

 

NOTE—Photo courtesy of Nathan Saxton/University of Arizona Museum of Art. Picture 

provided by UANews at https://uanews.arizona.edu/story/a-light-touch-for-museum-artwork. 

Figure 3.1-1—Green on Blue on display at the University of Arizona Museum of Art 

https://uanews.arizona.edu/story/a-light-touch-for-museum-artwork
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3.2. Generating Illumination Freeform Optics 

The LightTools 8.4 software package, from Synopsys, Inc., was used to generate these freeform 

illumination surfaces. This software takes input system requirements for the source and the target 

as well as a desired optical surface type (refractive or reflective) and tailors the surface accordingly. 

The tailoring creates a map along the freefrom with surface normal vectors that extend to the target 

to achieve the desired target distribution. It then creates a three-dimensional surface using B-spline 

surface interpolation. 

 

In this design space, the source is defined as the origin. As for the coordinate system, the vector in 

the opposite direction of the surface normal is the z axis, and, the horizontal and vertical axes are 

x and y, respectively. 

 

Here, the source is hung from the already-existing light track in the ceiling. It is longitudinally 

displaced by 1.25 meters and vertically displaced from the painting center by 3.175 meters. 

 

The painting itself is 2.286 meters tall and is placed 0.254 meters above the floor, as demonstrated 

in Figure 3.2-1. The target’s vertical dimension is the summation of the two: 2.794 meters. 

 

The target’s horizontal dimension is the combination of the 1.626-meter painting width and the 

0.419-meter wall space to its left and right (not labelled in the schematic). This amounts to a target 

horizontal dimension of 2.464 meters. 
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Figure 3.2-1—Anticipated design configuration for the illumination freeform 

 

In general, a significant influence on the freeform surface shape is the vector defining the pointing 

angle of the source, as well as the emission cone angle defining the angular extent. Equation (3-1) 

depicts the nominal pointing vector y-angle arising from the source’s locational displacement from 

the center of the painting. 

 

 
𝜃𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = tan−1 (

𝛥𝑦𝑇,𝑐𝑒𝑛𝑡𝑒𝑟

𝛥𝑧𝑇,𝑐𝑒𝑛𝑡𝑒𝑟
) = tan−1 (

−3175 𝑚𝑚

1250 𝑚𝑚
) = −68.51° 

(3-1) 

 

Additionally, the spacing between the source and the freeform must be initialized, effectively 

defining the preliminary width and height of the freeform. And, finally, the source type must be 

defined. Typically, the design module utilizes a Lambertian isotropic source. However, the 

 z 

 x 

  y 
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optimization results reached in the following sections replaced it with a 0.25 mm2 extended source 

with the same emission cone angle. As a result, the freeform surface calculation was generated 

with a more realistic light source. 

 

From these input parameters, the design module prepared a preliminary optical surface that 

resulted in a target lacking brightness in the outer corners of its spatial distribution [18]. To counter 

this low uniformity, the freeform surface was calculated such that the rays in the central angular 

distribution of the source were displaced toward the edges of the target spatial map [7]. This 

effectively reduced the target intensity in the center while increasing it on the outer edges. 

 

The actual freeform calculation involved manipulating the optical surface until a uniform map of 

target rays was reverse-ray-traced to a single point at the source location [3]; [10]. 

 

The output of this freeform optical surface was merely a shape defined by an x-y-z point cloud. 

This shape is not optimized for a real illumination system in which the source was extended to a 

realistically sized LED. To perform this realistic source optimization, the shape must be fitted to 

some differentiable function, which is discussed in the following section.  
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3.3. Functional Fitting of Illumination Freeform Surfaces 

Contrary to the polynomials used in Section 2, the fitting of the point clouds designed for this 

illumination scenario did not utilize a baseline aspheric surface. Instead, they were fit with 

Legendre and Zernike polynomials, which are both orthogonal functions. The property of 

orthogonality is crucial for fitting because it involves the combination of linearly independent 

polynomials, and it ensures a resulting continuous function that is infinitely differentiable [14]. 

 

Two-dimensional Legendre polynomials are separable in their x and y components, while two-

dimensional Zernike polynomials are separable in their radial and azimuthal components. Since 

the point cloud is given in x-y-z coordinates, it is easiest to remain in the same Cartesian coordinate 

system when generating the fit function. Therefore, the Zernike polynomials were converted to a 

Cartesian coordinate system, which is discussed in detail in Section 3.3.1. 

 

The fitting was performed in MATLAB by inputting the x and y matrices of the freeform point 

cloud as independent variables, and the z matrix as the dependent variable. Since the desire was to 

understand the number of polynomials it takes to fit certain freeform surfaces, each freeform point 

cloud was fit starting with six polynomials, then the number of used polynomials is incremented 

by one until 100 polynomials were involved in the fit. It was done incrementally to observe the 

ability for the function to converge on a minimum RMS error solution for every single added term. 

 

For each converged surface solution, the RMS and peak-to-valley (PV) error in the fit was 

collected. Low RMS error is an indication of proper fit convergence. However, fitting functions 

tend to oscillate or “ring” at the surface’s edges, which is described by Runge phenomenon [9]. 

This ringing is not captured well with RMS error, but it is well-described by peak-to-valley error. 

The ringing effect is mitigated as higher order polynomial terms are added, but evidence of it could 

be lost without assessing the PV error of the fit. 

 

Despite converting the Zernike function to a Cartesian formula, it still resides within a polar-based 

basis space. As a result, the function may not be able to efficiently converge on a result for surfaces 

that are significantly asymmetric.  
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3.3.1. Zernike Polynomials 

 

The conventional definition for Zernike polynomials was defined in Equations (2-7) through (2-9). 

These equations are orthogonal over the unit circle, but separable in a polar coordinate system, 

which relies on an origin point [19]. For optics that are rotationally symmetric about the optical 

axis, the origin point is straightforward. But, when a surface is freeform, the origin point becomes 

more difficult to isolate, which degrades the convergence ability of the fitting function. This 

assertion implies that the polar-based fitting functions will not converge as well as Cartesian-based 

when fitting more-freeform surfaces. 

 

The method by which Zernike polynomials are converted to a Cartesian coordinate system is 

defined throughout the duration of this section. 

 

The conventional polar-to-Cartesian conversion is shown in Equation (3-2) through (3-4) [19]. 

 

 𝜌2 = 𝑥2 + 𝑦2 (3-2) 

 

 𝑥 = 𝜌 cos(𝜑) (3-3) 

 

 𝑦 = 𝜌 sin(𝜑) (3-4) 

 

To start, a re-written recursive solution for the radial polynomials is given in Equation (3-5) [25]. 

 

 
𝑅𝑛

𝑚(𝜌) = [ ∑
(−1)𝑘(2𝑛 − 𝑚 − 𝑘)!

𝑘! (𝑛 − 𝑘)! (𝑛 − 𝑚 − 𝑘)!
𝜌2(𝑛−𝑚−𝑘)

𝑛−𝑚

𝑘=0

] ∙ 𝜌𝑚 
(3-5) 

 

This expression allows for the separation of the 𝑚𝑡ℎ order radial component (𝜌𝑚), which can 

directly pair with the 𝑚𝑡ℎ order azimuthal component (cos(𝑚𝜑) or sin(𝑚𝜑)) when the radial 

polynomial is included with the full Zernike polynomial equation, 𝑍𝑛
𝑚 and 𝑍𝑛

−𝑚. This combination 

can be seen in Equations (3-9) (positive 𝑚) and (3-11) (negative 𝑚). 
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For notational ease, a separate radial polynomial, ℛ, is used to define a new recursive relationship. 

 

 𝑅𝑛
𝑚(𝜌) = ℛ𝑛

𝑚(𝜌) ∙ 𝜌𝑚 (3-6) 

 

 
ℛ𝑛

𝑚(𝜌) = ∑
(−1)𝑘(2𝑛 − 𝑚 − 𝑘)!

𝑘! (𝑛 − 𝑘)! (𝑛 − 𝑚 − 𝑘)!
(𝜌2)(𝑛−𝑚−𝑘)

𝑛−𝑚

𝑘=0

 
(3-7) 

 

 

The new radial polynomial contains only even exponents of 𝜌, so it can be easily converted to 

Cartesian coordinates, demonstrated in Equation (3-8). 

 

 
ℛ𝑛

𝑚(𝑥, 𝑦) = ∑
(−1)𝑘(2𝑛 − 𝑚 − 𝑘)!

𝑘! (𝑛 − 𝑘)! (𝑛 − 𝑚 − 𝑘)!
(𝑥2 + 𝑦2)(𝑛−𝑚−𝑘)

𝑛−𝑚

𝑘=0

 
(3-8) 

 

 

The Zernike polynomials can now be rewritten as Equations (3-9) through (3-12). 

 

 

 𝑍𝑛
𝑚(𝜌, 𝜑) = ℛ𝑛

𝑚(𝜌) ∙ 𝜃𝑚 (3-9) 

 

 𝜃𝑚 = 𝜌𝑚 cos(𝑚𝜑) (3-10) 

 

 

 

 𝑍𝑛
−𝑚(𝜌, 𝜑) = ℛ𝑛

𝑚(𝜌) ∙ 𝜃−𝑚 (3-11) 

 

 𝜃−𝑚 = 𝜌𝑚 sin(𝑚𝜑) (3-12) 
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The multiple angle formula, shown in Equations (3-13) and (3-14), provides a straightforward 

recursive relationship for 𝜃𝑚 and 𝜃−𝑚 [21]. 

 

 

cos(𝑚𝜑) = ∑(−1)𝑘  (
𝑚
2𝑘

) cos𝑚−2𝑘(𝜑) sin2k(𝜑)

𝑚
2

𝑘=0

 
(3-13) 

 

 

 

sin(𝑚𝜑) = ∑ (−1)𝑘  (
𝑚

2𝑘 + 1
) cos𝑚−2𝑘−1(𝜑) sin2k+1(𝜑)

𝑚−1
2

𝑘=0

 
(3-14) 

 

 

 

Using the multiple angle formula, the recursive Cartesian solution for 𝜃𝑚 is represented in 

Equation (3-18). 

 

 𝜃𝑚(𝜌, 𝜑) = 𝜌𝑚 cos(𝑚𝜑) (3-15) 

 

 

𝜃𝑚(𝜌, 𝜑) = 𝜌𝑚 ∑(−1)𝑘  (
𝑚
2𝑘

) cos𝑚−2𝑘(𝜑) sin2𝑘(𝜑)

𝑚
2

𝑘=0

 
(3-16) 

 

 

𝜃𝑚(𝜌, 𝜑) = ∑(−1)𝑘  (
𝑚
2𝑘

)  𝜌𝑚−2𝑘 cos𝑚−2𝑘(𝜑)  𝜌2𝑘 sin2𝑘(𝜑)

𝑚
2

𝑘=0

 
(3-17) 

 

 

 

𝜃𝑚(𝑥, 𝑦) = ∑(−1)𝑘  (
𝑚
2𝑘

) 𝑥𝑚−2𝑘 𝑦2𝑘

𝑚
2

𝑘=0

 
(3-18) 
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And, the recursive Cartesian solution for 𝜃−𝑚 is represented in Equation (3-22). 

 

 𝜃−𝑚(𝜌, 𝜑) = 𝜌𝑚 sin(𝑚𝜑) (3-19) 

 

 

𝜃−𝑚(𝜌, 𝜑) = 𝜌𝑚  ∑ (−1)𝑘  (
𝑚

2𝑘 + 1
) cos𝑚−2𝑘−1(𝜑) sin2k+1(𝜑)

𝑚−1
2

𝑘=0

 
(3-20) 

 

 

𝜃−𝑚(𝜌, 𝜑) = ∑ (−1)𝑘  (
𝑚

2𝑘 + 1
) 𝜌𝑚−2𝑘−1 cos𝑚−2𝑘−1(𝜑) 𝜌2𝑘+1 sin2k+1(𝜑)

𝑚−1
2

𝑘=0

 
(3-21) 

 

 

 

𝜃−𝑚(𝑥, 𝑦) = ∑ (−1)𝑘  (
𝑚

2𝑘 + 1
) 𝑥𝑚−2𝑘−1 𝑦2𝑘+1

𝑚−1
2

𝑘=0

 
(3-22) 

 

 

 

Finally, the recursive Cartesian Zernike polynomial formulas have been deduced, seen in 

Equations (3-23) and (3-24). Refer to Equations (3-8), (3-18), and (3-22) for the definitions of 

ℛ𝑛
𝑚(𝑥, 𝑦), 𝜃𝑚(𝑥, 𝑦), and 𝜃−𝑚(𝑥, 𝑦), respectively. 

 

 

 𝑍𝑛
𝑚(𝑥, 𝑦) = ℛ𝑛

𝑚(𝑥, 𝑦) ∙ 𝜃𝑚(𝑥, 𝑦) (3-23) 

 

 

 𝑍𝑛
−𝑚(𝑥, 𝑦) = ℛ𝑛

𝑚(𝑥, 𝑦) ∙ 𝜃−𝑚(𝑥, 𝑦) (3-24) 
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To utilize Zernike polynomials for fitting surfaces in an orthonormal basis space, the input 

Cartesian coordinates must be normalized by the dimensions of the freeform surface, seen in 

Equations (3-25) and (3-26), where 𝑤𝑥 and 𝑤𝑦 are the maximum width dimensions in x and y, 

respectively. 

 

 
𝑍𝑛

𝑚(𝑥, 𝑦) = ℛ𝑛
𝑚 (

𝑥

𝑤𝑥
,

𝑦

𝑤𝑦
) ∙ 𝜃𝑚 (

𝑥

𝑤𝑥
,

𝑦

𝑤𝑦
) 

(3-25) 

 

 

 
𝑍𝑛

−𝑚(𝑥, 𝑦) = ℛ𝑛
𝑚 (

𝑥

𝑤𝑥
,

𝑦

𝑤𝑦
) ∙ 𝜃−𝑚 (

𝑥

𝑤𝑥
,

𝑦

𝑤𝑦
) 

(3-26) 

 

 

 

Finally, the generating function that can replace polar Zernike polynomials with Cartesian Zernike 

polynomials is demonstrated in Equation (3-27). 

 

𝑓(𝑥, 𝑦) = ∑ [( ∑ ∑ 𝑎𝑗𝑍𝑛
(−1)𝑘𝑚(𝑥, 𝑦)

1

𝑘=0

𝑛

𝑚=1

) + 𝑎(𝑛+1)2  𝑍𝑛
0(𝑥, 𝑦)]

∞

𝑛=0

 
(3-27) 

 

 

The 𝑗𝑡ℎ coefficient is given by Equation (3-30). 

 

𝑗 = (𝑛 + 1)2 − 2𝑚 + 𝑘 (3-28) 
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Table 3-1—Cartesian symmetry of first 16 Zernike polynomials [12] 

Term 

# 

Polynomial Order, 

𝒏 

Zernike Polynomial 

𝒁𝒋 = 𝓡𝒓 ∙ 𝜽𝒑 

Symmetry 

in 𝒙 

Symmetry 

in 𝒚 

1 0 𝑍1 = ℛ0
0 ∙ 𝜃0 even even 

2 1 𝑍2 = ℛ1
1 ∙ 𝜃1 odd even 

3 1 𝑍3 = ℛ1
1 ∙ 𝜃−1 even odd 

4 1 𝑍4 = ℛ1
0 ∙ 𝜃0 even even 

5 2 𝑍5 = ℛ2
2 ∙ 𝜃2 even even 

6 2 𝑍6 = ℛ2
2 ∙ 𝜃−2 odd odd 

7 2 𝑍7 = ℛ2
1 ∙ 𝜃1 odd even 

8 2 𝑍8 = ℛ2
1 ∙ 𝜃−1 even odd 

9 2 𝑍9 = ℛ2
0 ∙ 𝜃0 even even 

10 3 𝑍10 = ℛ3
3 ∙ 𝜃3 odd even 

11 3 𝑍11 = ℛ3
3 ∙ 𝜃−3 even odd 

12 3 𝑍12 = ℛ3
2 ∙ 𝜃2 even even 

13 3 𝑍13 = ℛ3
2 ∙ 𝜃−2 odd odd 

14 3 𝑍14 = ℛ3
1 ∙ 𝜃1 odd even 

15 3 𝑍15 = ℛ3
1 ∙ 𝜃−1 even odd 

16 3 𝑍16 = ℛ3
0 ∙ 𝜃0 even even 
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3.3.2. Legendre Polynomials 

 

To form higher order polynomials, Legendre polynomials satisfy the recurrence relationship 

described in Equation (3-29), while the first two Legendre polynomials are defined in Equation 

(3-30) [1]. 

 

 

 (𝑛 + 1)𝐿𝑛+1(𝑥) = 𝑥(2𝑛 + 1)𝐿𝑛(𝑥) − 𝑛𝐿𝑛−1(𝑥) (3-29) 

 

 

 𝐿0(𝑥) = 1, 𝐿1(𝑥) = 𝑥 (3-30) 

 

 

 

Legendre polynomials in two-dimensions can be written as the combination of two polynomials 

separable in Cartesian coordinates, seen in Equation (3-31) [12]. The first 10 two-dimensional 

Legendre polynomials are found in Table 3-2. 

 

 

 𝑄𝑗(𝑥, 𝑦) = 𝐿𝑙(𝑥) ∙ 𝐿𝑚(𝑦) (3-31) 

 

 

 

The 𝑗𝑡ℎ coefficient is given by Equation (3-32). 

 

 

 
𝑗 =

(𝑙 + 𝑚)2 + 𝑙 + 3𝑚

2
+ 1 (3-32) 
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Table 3-2—Cartesian symmetry of first 10 Legendre polynomials [12] 

Term 

# 

Polynomial Order 

𝒏 = 𝒍 + 𝒎 

Legendre Polynomial 

𝑸𝒋(𝒙, 𝒚) = 𝑳𝒍(𝒙) ∙ 𝑳𝒎(𝒚) 

Symmetry 

in 𝒙 

Symmetry 

in 𝒚 

1 0 𝑄1(𝑥, 𝑦) = 𝐿0(𝑥) ∙ 𝐿0(𝑦) even even 

2 1 𝑄2(𝑥, 𝑦) = 𝐿1(𝑥) ∙ 𝐿0(𝑦) odd even 

3 1 𝑄3(𝑥, 𝑦) = 𝐿0(𝑥) ∙ 𝐿1(𝑦) even odd 

4 2 𝑄4(𝑥, 𝑦) = 𝐿2(𝑥) ∙ 𝐿0(𝑦) even even 

5 2 𝑄5(𝑥, 𝑦) = 𝐿1(𝑥) ∙ 𝐿1(𝑦) odd odd 

6 2 𝑄6(𝑥, 𝑦) = 𝐿0(𝑥) ∙ 𝐿2(𝑦) even even 

7 3 𝑄7(𝑥, 𝑦) = 𝐿3(𝑥) ∙ 𝐿0(𝑦) odd even 

8 3 𝑄8(𝑥, 𝑦) = 𝐿2(𝑥) ∙ 𝐿1(𝑦) even odd 

9 3 𝑄9(𝑥, 𝑦) = 𝐿1(𝑥) ∙ 𝐿2(𝑦) odd even 

10 3 𝑄10(𝑥, 𝑦) = 𝐿0(𝑥) ∙ 𝐿3(𝑦) even odd 

 

 

To properly use these polynomials in the intended orthonormal basis space, the input x and y 

variables are normalized by the x- and y-dimensions of the freeform, seen in Equation (3-33). 

 

 
𝑄𝑗(𝑥, 𝑦) = 𝐿𝑙 (

𝑥

𝑤𝑥
) ∙ 𝐿𝑚 (

𝑦

𝑤𝑦
) 

(3-33) 

 

Finally, the Legendre expansion for the freeform surface is found in Equation … 

 

 
𝑓(𝑥, 𝑦) = ∑ 𝑎𝑗𝑄𝑗(𝑥, 𝑦)

∞

𝑗=1

 

(3-34) 
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3.3.3. Leveraging Symmetry to Improve Computational Efficiency 

 

If even-symmetry is present in a system, odd-symmetric polynomials are not needed. 

Unfortunately, the symmetry of a curve is not immediately recognized by a fitting algorithm, so it 

will utilize every given polynomial to converge on a solution, including those that are odd-

symmetric. This means that any fitting polynomial with odd-symmetry about the axis under 

consideration will be competing with the much-needed even polynomials during optimization, 

which is computationally expensive because the fit is wasting effort by utilizing terms that will not 

contribute to convergence. 

 

To reduce computation efforts for this case study, it was recognized that these freeform surfaces 

have plane symmetry about the x-axis. Therefore, each surface’s odd polynomial terms are zeroed 

in the fit function to cancel their contributions. 

 

It is straightforward to apply this to Legendre functions since these two-dimensional polynomials 

are structured from the multiplication of an 𝑥-polynomial and a 𝑦-polynomial. With this math, the 

fitting algorithm simply includes two-dimensional terms that have odd exponents for the 𝑥-

polynomial. 

 

For Zernike functions, the odd-𝑥 polynomials arise from the odd-𝑚 azimuthal polynomials for the 

𝜃𝑚 term and from the even-𝑚 azimuthal polynomials for the 𝜃−𝑚 term. 
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3.4. Illumination with Refractive Freeforms 

The refractive illumination system requirements, guided by the discussion in Section 3.2, are 

provided in Table 3-3. Additionally, this refractive optical element will include a Cartesian oval at 

the first refracting surface to increase the source collection angle without affecting the refraction 

of the freeform surface [13]; [18]. See the effect it has on the collection cone angle in Table 3-4. 

 

Table 3-3—Design constraints for refractive illumination scenario 

The source shall be placed at the horizontal center of the painting. 

Utilize a Cartesian oval for the first surface of the optic. The surface vertex shall be displaced 

by 6mm and have a virtual source z offset of 2mm. 

Design wavelength 550 nm 

Refractive index of freeform material 1.5896 

Source vertical (y) displacement (from painting center) 3175 mm 

Source longitudinal (z) distance from the face of the painting 1250 mm 

Distance from source to freeform surface 15 mm 

Minimum target uniformity 10% 

Horizontal source pointing direction (x angle) 0° 

Vertical source pointing direction (y angle) Varies, specifics 

provided in 

Table 3-5 Source full emission cone angle 

 

 

Table 3-4—Effect of including Cartesian oval in the refractive illumination design 

Cone Angle Accepted by Freeform New Cone Angle with Cartesian Oval 

70° 94.94° 

75° 100.66° 

80° 106.256° 

85° 111.738° 

90° 117.116° 
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To understand the asymmetry properties of the freeform shape as the source is pointed at different 

vertical locations along the target, the freeform surfaces were designed with the parameters listed 

in Table 3-5. 

 

Table 3-5—Specifics of refractive illumination varied parameters 

Parameter Minimum Value Increment Maximum Value 

Vertical Source Pointing Direction 

(y angle) 
42.5 degrees 2.5 degrees 80 degrees 

Source Full Emission Cone Angle 

Accepted by the Freeform 
70 degrees 5 degrees 90 degrees 

 

 

A ray trace of a generated freeform refracting optic is shown in Figure 3.4-1. The resulting target 

distribution is shown in Figure 3.4-2. 

 

 
Figure 3.4-1—Refractive illumination freeform with the source at a -50º Y-tilt and a 70° 

collection cone angle 

 z 

  y 

 z 

  y 
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Figure 3.4-2—Target illumination map for a refractive freeform with a -57.5º source Y-tilt 

and 94.9º emission cone (70° cone collected by the freeform). 2 billion rays were traced. 

 

A closer look at the symmetry properties of the freeform can be observed in Figure 3.4-3. 

 

 

Figure 3.4-3—X and Y symmetry properties of the refractive freeform 

 

3.4.1. Functional Fitting Results 

 

Each generated freeform surface was then fit according to the process described in Section 3.3, 

which removed odd-x polynomial terms and fits for an incrementing number of included 

coefficients. 
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Figure 3.4-4 demonstrates the typical RMS and PV error trends for a fit surface as a function of 

the number polynomial terms added. These trends demonstrate that the Legendre fitting function 

is more capable of converging on a smaller RMS and PV error beyond the first 20 coefficients. 

This figure represents the freeform optic that demonstrated the most optimal illumination 

efficiency (see the calculation for this in Appendix, Section 5.2.1.1). 

 

 

Figure 3.4-4—Fit behavior of the freeform for a 57.5º source Y-tilt and 70º cone angle 

accepted by the freeform 
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Upon further examination of these trends, the freeform shape becomes more apparent. Figure 3.4-5 

isolates the RMS error of the two fit functions and highlights what occurs when introducing new 

polynomial orders. Table 3-6 describes terms causing a significant reduction in the RMS error. 

 

 

NOTE—Black circles represent terms that introduce a larger y-exponent. 

Figure 3.4-5—RMS error trends, highlighting the effect of adding new polynomial orders 

 

Table 3-6—Terms that significantly reduce the RMS error in the computed fit surface 

Legendre Zernike 

Term Polynomial Significance Term Polynomial Significance 

8 𝐿2(𝑥) ∙ 𝐿1(𝑦) 
1st order 𝑦 terms, 

2nd order 𝑥 terms 
9 6𝜌4 − 6𝜌2 + 1 quartic surface 

11 𝐿4(𝑥) ∙ 𝐿0(𝑦) 4th order 𝑥 terms 11 𝜌3 sin(3𝜑) 3rd order 𝑦 term 

15 𝐿0(𝑥) ∙ 𝐿4(𝑦) 4th order 𝑦 terms 17 𝜌4 cos(4𝜑) 
4th order 𝑦 term, 

4th order 𝑥 term 

19 𝐿2(𝑥) ∙ 𝐿3(𝑦) 
3rd order 𝑦 terms, 

2nd order 𝑥 terms 
27 𝜌5 sin(5𝜑) 5th order 𝑦 term 

28 𝐿0(𝑥) ∙ 𝐿6(𝑦) 6th order 𝑦 terms 37 𝜌6 cos(6𝜑) 
6th order 𝑦 term, 

6th order 𝑥 term 
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The results in Table 3-6 indicate that the freeform is quartic in x and y because the most significant 

RMS reduction is at the 11th and 15th Legendre polynomial (quartic x and quartic y, respectively), 

and at the 17th Zernike polynomials (quartic x and y). The y shape is also heavily impacted by the 

inclusion of other even-exponent terms, which indicates that there is some level of symmetry along 

the surface’s tilted axis introduced by the first order y polynomial. 

 

Another artifact of Figure 3.4-4 and Figure 3.4-5 is that the Zernike trend flat-lines after a 

significant RMS error decline, while the Legendre trend uses the intermediary fitting terms to 

converge on a smaller RMS solution. This means that the intermediary Zernike fit terms are not 

needed for RMS convergence, while the Legendre fit requires a significant number of its other 

polynomials to minimize the RMS error. 

 

The PV error trends follow a similar behavior to the RMS error trends, particularly when 

introducing a new polynomial order. See this effect in Figure 3.4-6. 

 

 

NOTE—Black circles represent the last term of a polynomial order. 

Figure 3.4-6—PV error trends when new polynomial orders are introduced 

 

 

0 10 20 30 40 50

Number of Coefficients Used

0

100

200

300

400

500

600

700

800

900

1000

P
V

 E
rr

o
r 

[m
ic

ro
n

s]

PV Error

Legendre Polynomials

0 10 20 30 40 50

Number of Coefficients Used

0

200

400

600

800

1000

1200

P
V

 E
rr

o
r 

[m
ic

ro
n

s]

PV Error

Zernike Polynomials



 

 60 

For all other generated refractive freeform point clouds, the same type of analysis in Figure 3.4-4 

was performed to observe the effect of adding new polynomial orders. To keep the remaining 

discussion brief, a specific source emission cone angle was selected. 

 

For each source emission cone angle, the RMS and PV errors of a full 100-coefficient fit were 

compared amongst all source pointing angles (42.5°, 50°, … , 80°) — the pointing angle with the 

smallest error was selected from each. These results are presented in Figure 3.4-7. The plots on 

the left demonstrate the pointing angle that produces the minimized RMS and PV error for each 

emission cone angle, and the plots on the right demonstrate the smallest achievable RMS and PV 

errors for each emission cone angle. 

 

 

Figure 3.4-7—Demonstrating the effect that source emission cone angle has on the fit error 

of the refractive illumination freeforms (RMS, PV error results from a fit using 100 terms) 
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As indicated in Figure 3.4-7, a smaller cone angle provides better convergence. Therefore, all 

freeform point clouds with a 94.9° cone angle drive the remaining discussions. 

 

The desire was to observe the effect that the pointing angle has on the fit. Figure 3.4-8 shows the 

RMS error results for freeform fits done with 17, 37, 66, and 100 used coefficients for point clouds 

made for a 94.9° source emission cone angle. The used coefficient amounts other than 100 were 

selected because both Zernike and Legendre have up to fourth order polynomials for 17 used terms, 

sixth order polynomials for 37 used terms, and eighth order polynomials for 66 used terms. 

 

 

Figure 3.4-8—Examining the refractive illumination freeform RMS error as a function of 

the source point angle for the inclusion of different polynomial orders 

 

The RMS error trends demonstrate that the Zernike fit has better convergence when the source 

pointing angle is near that of the nominal source point direction, as defined in Equation (3-1) (if 

the source were to be pointed at the center of the painting). This indicates that the freeform surfaces 

generated for near-nominal source point directions may be more rotationally or elliptically defined 

due to its high level of convergence with Zernike polynomials, a polar-based function. 

 

However, the Legendre convergence is overall more effective once the fits reach 8th order 

polynomials. And, the Legendre fit optimal pointing angle is positively-deviated from the nominal 

point direction. Considering this illumination scenario, the freeform optic must direct more light 

to the bottom of the target. Therefore, this optic’s point cloud must be shaped such that it re-directs 

light below the pointing angle (see Figure 3.4-10). This freeform shape is significantly less 

rotationally symmetric, which results in a better Cartesian-based fitting convergence. 
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Figure 3.4-9 demonstrates the PV error results for the same scenario. Like the trend for RMS error, 

the Legendre fit converges on a smaller PV error once 8th order polynomials are used. However, 

the PV error for Legendre does not differ much from the Zernike when the fit solely consists of 

lower-order polynomial terms. 

 

 

Figure 3.4-9—Examining the refractive illumination freeform PV error as a function of the 

source point angle for different coefficient amounts 

 

To investigate the reason why both PV and RMS error are different when deviating from the 

nominal source point direction, the x and y cross-sections are investigated in Figure 3.4-10, and 

Figure 3.4-11, and Figure 3.4-12. 

 

The figures clearly demonstrate the extent to which the surfaces deviate from axial symmetry. For 

the -67.5° y-tilt, the closest to the nominal point direction, the freeform is the most line-symmetric 

about y, which likely indicates why it works well for Zernike polynomials. Because of the y-

symmetry, it can define a base origin location somewhere near its polar axis frame. 

 

However, as the pointing direction deviates from the optimal point angle, the freeform shape also 

deviates greatly from line symmetry and the Zernike fit cannot compensate as well as Legendre 

can due to the complexity of the new origin location. 

  

-80 -70 -60 -50 -40

Source Point Angle (deg)

0

10

20

30

40

50

60

70

R
M

S
 E

rr
o
r 

[7
m

]

94.9° Emission Cone

17 Used Coefficients

-80 -70 -60 -50 -40

Source Point Angle (deg)

0

2

4

6

8

10

12

14

R
M

S
 E

rr
o
r 

[7
m

]

94.9° Emission Cone

37 Used Coefficients

-80 -70 -60 -50 -40

Source Point Angle (deg)

0

1

2

3

4

R
M

S
 E

rr
o
r 

[7
m

]

94.9° Emission Cone

66 Used Coefficients

-80 -70 -60 -50 -40

Source Point Angle (deg)

0

0.5

1

1.5

2

2.5

R
M

S
 E

rr
o
r 

[7
m

]

94.9° Emission Cone

100 Used Coefficients

Legendre Fit

Zernike Fit

Nominal Source

Point Direction

-80 -70 -60 -50 -40

Source Point Angle (deg)

0

100

200

300

400

500

P
V

 E
rr

o
r 

[7
m

]

94.9° Emission Cone

17 Used Coefficients

-80 -70 -60 -50 -40

Source Point Angle (deg)

0

50

100

150

P
V

 E
rr

o
r 

[7
m

]
94.9° Emission Cone

37 Used Coefficients

-80 -70 -60 -50 -40

Source Point Angle (deg)

0

10

20

30

40

50

60

P
V

 E
rr

o
r 

[7
m

]

94.9° Emission Cone

66 Used Coefficients

-80 -70 -60 -50 -40

Source Point Angle (deg)

0

10

20

30

40

P
V

 E
rr

o
r 

[7
m

]

94.9° Emission Cone

100 Used Coefficients

Legendre Fit

Zernike Fit

Nominal Source

Point Direction



 

 63 

 

Figure 3.4-10—Freeform for source with -60° y-tilt and 70° cone (best Legendre RMS) 

 

 

 

Figure 3.4-11—Freeform for source with -67.5° y-tilt and 70° cone (best Legendre RMS) 

 

 

 

Figure 3.4-12—Freeform for source with -80° y-tilt and 70° cone (best Legendre RMS) 
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3.5. Illumination with Reflective Freeforms 

 

There are several options for illuminating with reflective freeforms if the systems are well-defined 

by edge rays. Koshel offers two classes of conic systems that employ edge-ray designs: elliptical 

and hyperbolic [8]. Elliptical conic surfaces have a real exit-ray bundle caustic, while hyperbolic 

have a virtual caustic [23]. 

 

While it is possible to pursue these efforts with an elliptical conic, this case study selected a 

hyperbolic design to prevent the source rays from crossing over at a real caustic. 

 

Winston, Miñano, and Benítez explore a rigorous hyperbolic surface solution using a spherically 

symmetric point source to illuminate a target plane with a predetermined intensity distribution 

[23]. However, this approach is defined for an axially symmetric concentrator, which cannot 

uniformly illuminate the tilted target plane that is present in the Rothko illumination case study.  

 

Instead, a tailored edge-ray design must tailor the hyperbolic surface to project the exiting 

illumination wavefront onto the target plane [8]. This involves diverging from classical reflector 

designs and entering the world of freeform surfaces. LightTools goes through this process in its 

freeform design algorithm. 

 

 

 

3.5.1. Defining Reflective Illumination Design Constraints 

 

The reflective illumination design is similar to the refractive design, but the source must be pointed 

in different directions such that a reflection may occur. The specific requirements are listed in 

Table 3-7. 
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Table 3-7—Design constraints for reflective illumination scenario 

The source shall be positioned such that it does not block any rays reflected toward the target. 

The exit ray bundle shall not crossover, or the exit ray bundle shall be virtual. 

The source shall be positioned at the horizontal center of the painting. 

Design Wavelength 550 nm 

Source Height Position (Y) 3175 mm 

Source Distance from the Face of the Painting (Z) 1250 mm 

Spacing from Source to Freeform Surface 25 mm 

Minimum Target Uniformity 10% 

Horizontal Source Pointing Direction (X or horizontal angle) 0 degrees 

Vertical Source Pointing Direction (Y or vertical angle) Varies, specifics 

provided in Table 

3-8 Source Full Emission Cone Angle 

 

 

As in the refractive scenario, the parameters were varied to observe the effect that this has on the 

freeform shape. These varied parameters are described in Table 3-8. 

 

Table 3-8—Specifics of reflective illumination varied parameters 

Source Position 

Relative to Freeform 
Parameter 

Minimum 

Value 
Increment 

Maximum 

Value 

Reverse-Oriented 

Source 

(see Figure 3.5-1) 

Vertical Source Pointing 

Direction (Y angle) 
180 degrees 2.5 degrees 195 degrees 

Source Full Emission 

Cone Angle 
70 degrees 10 degrees 120 degrees 

Forward-Oriented 

Source 

(see Figure 3.5-2) 

Vertical Source Pointing 

Direction (Y angle) 
37.5 degrees 2.5 degrees 60 degrees 

Source Full Emission 

Cone Angle 
70 degrees 10 degrees 120 degrees 
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The ray trace for the reverse-oriented and forward-oriented reflective illumination designs can be 

found in Figure 3.5-1 and Figure 3.5-2, respectively. 

 

 
Figure 3.5-1—Reflective illumination freeform with a reverse-oriented source, 185º Y-tilt 

 

 

 
Figure 3.5-2—Reflective illumination freeform with a forward-oriented source, 42.5º Y-tilt 
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3.5.2. A Reflective Illumination System Optimized with a Reverse-

Oriented Isotropic Source 

 

The illumination efficiency analysis (discussed in the Appendix, Section 5.3.1) for this scenario 

indicates that the best point angle to use is 185° with a 100° emission cone angle. The resulting 

target map can be seen in Figure 3.5-3. 

 

 

Figure 3.5-3—Target illuminance map for a reflective freeform optic with a 185º Y-tilted 

source and a 100º emission cone angle. There were 2 billion rays traced. 

 

3.5.2.1. Functional Fitting Results 

 

As in the refractive case, the RMS and PV error was impacted by the addition of new polynomial 

terms. Looking at the Zernike fit behavior, the RMS error significantly decreased when the next 

higher order y-polynomial was added, as seen in the right-side plot of Figure 3.5-4. Conversely, 

the Legendre fit did not depend solely on the addition of new y-polynomials to reduce the RMS 

error. Instead, the RMS error decreased when other intermediate polynomial terms are introduced. 

The intermediate polynomial terms of the Zernike function were still significant because they 

corrected for PV error, as seen in Figure 3.5-5. 
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NOTE 1—Black circles represent terms that introduce a larger y-exponent. 

NOTE 2—Other circles represent terms that reduce RMS error. See Table 3-9. 

Figure 3.5-4—RMS error trends, highlighting the effect of adding new polynomial orders 

 

 

 

NOTE 1—Black circles represent terms that introduce a larger y-exponent. 

NOTE 2—Other circles represent terms that reduce RMS error. See Table 3-9. 

Figure 3.5-5—PV error trends when new polynomial orders are introduced 
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Table 3-9 highlights the polynomial types that caused significant change in the RMS and PV error. 

In general, a significant change in the Legendre trend occurs when the next large-exponent y 

polynomial is added. Significant changes in the Zernike trend occurs for the addition of each new 

azimuthal polynomial, which constitutes the addition of new y-polynomial orders. 

 

Table 3-9—Terms that significantly reduce the RMS error in the computed fit surface 

Legendre Zernike 

Term Polynomial Significance Term Polynomial Significance 

10 𝐿0(𝑥) ∙ 𝐿3(𝑦) 3rd order 𝑦 terms 8 (3𝜌2 − 2)𝜌 sin(𝜑) 
circular parabola 

multiplied by 𝑦 

15 𝐿0(𝑥) ∙ 𝐿4(𝑦) 4th order 𝑦 terms 11 𝜌3 sin(3𝜑) 3rd order 𝑦 term 

19 𝐿2(𝑥) ∙ 𝐿3(𝑦) 
3rd order 𝑦 terms, 

2nd order 𝑥 terms 
17 𝜌4 cos(4𝜑) 

4th order 𝑦 term, 

4th order 𝑥 term 

21 𝐿0(𝑥) ∙ 𝐿5(𝑦) 5th order 𝑦 terms 27 𝜌5 sin(5𝜑) 5th order 𝑦 term 

26 𝐿2(𝑥) ∙ 𝐿4(𝑦) 
4th order 𝑦 terms, 

2nd order 𝑥 terms 
37 𝜌6 cos(6𝜑) 

6th order 𝑦 term, 

6th order 𝑥 term 

34 𝐿2(𝑥) ∙ 𝐿5(𝑦) 
5th order 𝑦 terms, 

2nd order 𝑥 terms 
51 𝜌7 sin(7𝜑) 7th order 𝑦 term 

43 𝐿2(𝑥) ∙ 𝐿6(𝑦) 
6th order 𝑦 terms, 

2nd order 𝑥 terms 
65 𝜌8 cos(8𝜑) 

8th order 𝑦 term, 

8th order 𝑥 term 

   83 𝜌9 sin(9𝜑) 9th order 𝑦 term 

 

 

Figure 3.5-6 demonstrates the RMS error convergence as a function of the pointing angle for the 

freeforms designed for a 100° emission cone, which, per the Appendix Section 5.3.1, had the 

highest illumination efficiency. The trends indicate that the smaller the point angle, or the closer 

it is to horizontal, the better the RMS error convergence. And, yet again, the Legendre polynomials 

converged upon a better fit than the Zernike polynomials, indicating an inability for the rotational 

basis space to isolate an effective origin point. 
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Figure 3.5-6—RMS error convergence trends as a function of source pointing angle for the 

reverse-oriented reflective illumination freeform optics 

 

The PV error trends, presented in Figure 3.5-7  followed the same behavior as the RMS error 

trends. 

 

 

Figure 3.5-7—PV error convergence trends as a function of source pointing angle for the 

reverse-oriented reflective illumination freeform optics 

 

To assess the asymmetry in these optics, the point clouds are displayed in Figure 3.5-8, Figure 

3.5-9, and Figure 3.5-10, arranged in the order of increasing tilt. As clearly shown in Figure 3.5-10, 

the size of the freeform drastically increase to accommodate for the necessity to bend lower edge 

rays back towards the lower portion of the target, which results in a more asymmetric shape. The 

variation in the y dimension is minimal, which prevents many of the lower order even polynomials 

from making an impact. 
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Figure 3.5-8—Point cloud for reflective freeform with 180° y-tilt and 100° cone 

 

 

Figure 3.5-9—Point cloud for reflective freeform with 187.5° y-tilt and 100° cone 

 

 

Figure 3.5-10—Point cloud for reflective freeform with 195° y-tilt and 100° cone 
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3.5.3. A Reflective Illumination System Optimized with a Forward-

Oriented Isotropic Source 

 

The computation for the best illumination efficiency (see Appendix, 5.4.1) finds that the freeform 

with a 42.5° pointing angle and 120° emission cone is the most efficient. See the target plane 

distribution in Figure 3.5-11. However, LightTools could not compute this freeform for all point 

angles due to its large emission cone, so the following analysis discusses a freeform designed for 

a 90° emission cone. 

 

 

Figure 3.5-11—Target illuminance map for a reflective illumination freeform optic with a 

42.5º Y-tilted source and a 120º emission cone angle 

 

3.5.3.1. Functional Fitting Results 

 

Refer to the Appendix, Section 5.4.2 to see the RMS and PV error trends as a function of the 100 

coefficients used. 

 

Figure 3.5-12 demonstrates the RMS and PV error convergence as a function of the emission cone 

angle. As the other freeform types demonstrated, and as does this freeform type, the fits converge 

on a smaller RMS and PV error as the cone angle increases. 
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Figure 3.5-12—Fit convergence trends as a function of source emission cone angle for the 

forward-oriented reflective illumination freeform optics 

 

Figure 3.5-13 and Figure 3.5-14 demonstrate the ability for fits to converge on the RMS and PV 

error, respectively, when the source point angle is varied and the emission cone angle is fixed to 

90°. The Legendre behavior, like the other freeforms, converges on a better RMS solution. For this 

case, the fit behavior improved when the source pointed further upward. From an illumination 

perspective, this is logical because it requires less surface tailoring to get the rays to reflect towards 

the target plane if the pointing direction is exactly 180° rotated from the nominal pointing 

direction. 

 

 

Figure 3.5-13—RMS error convergence trends as a function of source pointing angle for 

the forward-oriented reflective illumination freeform optics 
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Figure 3.5-14—PV error convergence trends as a function of source pointing angle for the 

forward-oriented reflective illumination freeform optics 

 

Finally, Figure 3.5-15, Figure 3.5-16, and Figure 3.5-17 display the freeform surfaces in order of 

increasing pointing angle. The point clouds look very similar, but change in their z-height, which 

follows the idea that the surface requires more tailoring when the pointing angle is far away from 

the nominal pointing direction. 

 

 

Figure 3.5-15—Point cloud for reflective freeform with 37.5° y-tilt and 90° cone 
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Figure 3.5-16—Point cloud for reflective freeform with 50° y-tilt and 90° cone 

 

 

Figure 3.5-17—Point cloud for reflective freeform with 60° y-tilt and 90° cone 

 

  



 

 76 

3.6. Conclusions 

 

To assess the convergence ability for each illumination scenario, Figure 3.6-1 demonstrates the 

number of terms it takes to converge on an RMS error of 5 µm, while Figure 3.6-2 demonstrates 

the same trend for an RMS error convergence of 1 µm. As it turns out, there are not many terms 

required to converge on a 5 µm RMS error. 

 

For the refractive freeform, there are several design options in which fewer Zernike terms are 

required for 5 µm RMS convergence as opposed to the Legendre fit, which centralized around the 

nominal point direction for the source. 

 

 
Figure 3.6-1—Number of terms required to converge on sub-5 µm RMS error 

 

 
Figure 3.6-2—Number of terms required to converge on sub-1µm RMS error 
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Figure 3.6-3—Number of terms required to converge on sub-5µm RMS error for the 

illumination freeform surfaces, representing only the used coefficients (due to the removal 

of all odd-x coefficients) 

 

 

 
Figure 3.6-4—Number of terms required to converge on sub-1µm RMS error for the 

illumination freeform surfaces, representing only the used coefficients (due to the removal 

of all odd-x coefficients) 
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4. Summary 

 

This analysis brings to light several new ideas: A complete definition for recursive Cartesian 

Zernike polynomials is introduced, and a brief definition for imaging freeformity that utilizes 

differences between the upper and lower marginal rays was defended. 

 

Unfortunately, the findings of the imaging investigation were inconclusive, as the difference 

between the XY and Zernike polynomials were not noticeable. The next steps for this investigation 

should be to apply this freeform imaging system to an actual application, and add necessary lens 

elements to correct for the numerous off-axis aberrations occurring. Any future investigations of 

this freeform scenario should also exclusively involve orthogonal polynomials to ensure that the 

fitting function is a combination of linearly independent polynomials. Lastly, it could prove useful 

to remove the underlying conic surface to allow for the freeform shape to emerge on its own. 

 

As for the illumination investigation, the results were useful. The Legendre fit was found to be 

more effective than the Zernike fit after 20 used coefficients. But, the Zernike fit still proves 

effective if the source pointing direction of the fitted freeform is close to that of the nominal source 

point direction (when the source points directly at the center of the painting). To improve this 

analysis, a fit should be done in which non-contributing terms (other than odd-x terms) are 

removed. Also, a surface optimization for an extended, real source should be performed to 

determine whether the real ray trace is more effective with a Legendre fit or with a Zernike fit. 

 

Overall, more work is needed to argue whether Cartesian or polar coordinates more effectively fit 

to freeform surfaces, but the illumination results presented here begin a good discussion. 
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5. Appendix 

5.1. Refractive Imaging 

 

  

Figure 5.1-1—Term that converges on maximum MTF for 0.25 of the spatial cutoff 

frequency as a function of normalized focus height, for the system with a field of view and 

arranged vertically by increasing FOV 
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Figure 5.1-2— Term that converges on maximum MTF amplitude at 10 line pairs per mm, 

for the system with a field of view and arranged vertically by increasing FOV 
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Figure 5.1-3— Term that converges on minimum image size as a function of freeformity, 

for the system with a field of view and arranged vertically by increasing FOV 
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Figure 5.1-4—Term that converges on maximum MTF amplitude for 0.25 of the spatial 

cutoff frequency as a function of freeformity, for the system with a field of view and 

arranged vertically by increasing FOV 

 

When the freeformity increased, the best convergence only required up to the 10th term, as seen 

in the above Figure 5.1-4. 
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5.2. Refractive Illumination 

 

5.2.1.1. Ray-Trace Results 

 

Figure 5.2-1 demonstrates that illumination characteristics on the target map for the refractive 

illumination results. 

 

 

Figure 5.2-1—Illumination characteristics for the refractive freeform optics 

 

The average target illuminance is defined by the average of the illuminance contained within the 

dimensions defined by the Rothko target. The standard deviation is calculated with the same. 

 

The target exterior is defined by the target distribution that resides outside of the dimensional 

confines of the Rothko painting. 
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Equation (5-1) defines a metric, the effective illuminance, that defines how effective the 

distribution on the target is for the source pointing angle. It encompasses the average illuminance, 

standard deviation, and the amount of light incident on the outside of the painting. 

 

 𝐸𝑒𝑓𝑓 = 𝜇𝑇 − 𝜎𝑇 − 𝜇𝑒𝑥𝑡 (5-1) 

 

 

Figure 5.2-2—Effective illumination levels of the target for the refractive freeform optics 

 

Now, this does not take into account that the 94.9° cone may be more effective at distributing light 

because it has a smaller average illuminance due to it distributing less light. Therefore, Equation 

(5-2) is used in its place to single out the illumination efficiency of each freeform. See the results 

using this equation in Figure 5.2-3. 
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(5-2) 
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Figure 5.2-3—Normalized illumination efficiency for the refractive freeform optics 
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5.3. Reflective Illumination, Reverse-Oriented Source 

5.3.1. Ray-Trace Results 

Following the same discussion as Section 5.2.1.1, the following figures represent the illumination 

efficiency of this design scenario. 

 

Figure 5.3-1—Illumination characteristics, reflective freeform, reverse-oriented source 

 
Figure 5.3-2—Effective target illuminance, reflective freeform, reverse-oriented source 
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Figure 5.3-3—Normalized illumination efficiency for the reflective freeform with the 

reverse-oriented source 
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5.3.2. Functional Fitting Results 

 

 

Figure 5.3-4—Fit behavior of the 185º (reverse-oriented) source Y-tilt, 100º emission cone 
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5.4. Reflective Illumination, Forward-Oriented Source 

5.4.1. Ray-Trace Results 

 

Figure 5.4-1—Illumination characteristics, reflective freeform, forward-oriented source 

 

Figure 5.4-2—Effective target illuminance, reflective freeform, forward-oriented source 
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Figure 5.4-3—Normalized illumination efficiency for the reflective freeform with the 

forward-oriented source 
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5.4.2. Functional Fitting Results 

 

 

Figure 5.4-4—Fit behavior of the 42.5º (forward-oriented) source Y-tilt, 120º emission cone 
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Figure 5.4-5—Legendre fit trends for varying point angle 
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Figure 5.4-6—Zernike fit trends for varying point angle 
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