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Abstract 
 

Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is 

one of the hallmarks of the disease. Pathology diagnosis of HF is based on textural change 

in the liver as a lobular collagen network that develops within portal triads. The scale of 

collagen lobules is characteristically on order of 1mm, which close to the resolution limit 

of in vivo Gd-enhanced MRI. 

In this work the methods to collect training and testing images for a Hotelling 

observer are covered.  An observer based on local texture analysis is trained and tested 

using wet-tissue phantoms. The technique is used to optimize the MRI sequence based on 

task performance.   

The final method developed is a two stage model observer to classify fibrotic and 

healthy tissue in both phantoms and in vivo MRI images.  The first stage observer tests for 

the presence of local texture.  Test statistics from the first observer are used to train the 

second stage observer to globally sample the local observer results. A decision of the 

disease class is made for an entire MRI image slice using test statistics collected from the 

second observer. The techniques are tested on wet-tissue phantoms and in vivo clinical 

patient data. 
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1.  Introduction 
 

The early detection of hepatic fibrosis (HF), as a result of chronic liver disease (CLD), 

is a significant need for patients and physicians. In this body of work, we combine magnetic 

resonance imaging (MRI) with statistical observers introduce a novel non-invasive method 

to stage liver disease.  This introduction is an overview of the function of the liver, we 

target features that will be used for detection of HF, and current methods to stage HF.  A 

basic introduction to MRI is provided as well, highlighting the methods for achieving 

contrast in images.  The concepts of detection and classification with model observers is 

introduced along with basics of statistical decision theory.  The properties of the linear and 

quadratic Hotelling Observer are described in this chapter. Finally, techniques for local 

texture analysis are discussed.  The goal of this chapter is to present the tools that are 

necessary to understand the experiments described in the subsequent chapters. 

1.1   The Liver and its Function 
 

As the largest internal organ in the human body, the liver is responsible for multiple 

tasks including: regulation of the hepatobiliary system; working with the stomach, 

gallbladder, and pancreas in digestion, removing toxins from the blood and lymph systems; 

synthesizing albumin and clotting factors for use throughout the body and storage of a 

variety of necessary molecular components including vitamins and minerals.1,2  Blood is 

supplied to the liver from both the hepatic artery and hepatic portal vein.  After blood is 

transported through the liver, it exits through the hepatic vein to the inferior vena cava and 
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back into the circulatory system.2  Figure 1.1.1 shows the basic anatomy of the liver, 

including the basic operating unit, the hepatic lobule. 

The boundary of the hepatic lobules is defined by a network of portal venules and 

arterioles.  It is observed that these lobules range in size from approximately 0.8 mm to 1.5 

mm in diameter. Each hepatic lobule contains groupings of the liver’s basic physiological 

cells, the hepatocytes, which filter incoming blood on its way to the hepatic vein. 

Hepatocytes perform the liver’s primary function of filtering nutrients and toxins from the 

blood for either storage or excretion from the body.  If blood flow to the hepatocytes is 

restricted, this can lead to liver failure. One condition that can impede blood flow is hepatic 

fibrosis which is discussed in later sections. 
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      From OpenStax1 

Figure 1.1.1: A macroscopic to microscopic view of the liver showing the general liver 

shape and the arrangement of lobules.  The hepatocytes are located within the lobules.1 

 

 

 

 



22 

 

 

1.2  Chronic Liver Disease and Hepatic Fibrosis 
 

In the US in 2013 alone, 11.5 deaths out of 100,000 were related to CLD, making it 

the 12th in rank ordering of causes of death.3  Many different diseases fall under the 

description of CLD.  For example, CLD includes damage from drugs, such as alcohol, that 

strain the liver.4,5  CLD also includes viral hepatitis, which comprises a variety of viral 

infections that attack the liver.  Non-alcoholic steatohepatitis (NASH) is a condition the 

liver falls into when a patient is consuming a high-fat diet.6,7  The hallmark symptom of 

these diseases is HF. If treatment is not given to a patient, the liver will likely progress to 

cirrhosis and the likelihood for hepatocellular carcinoma or liver failure greatly increases. 

 CLDs damage the liver in various ways, however, they all share the common result 

of the accumulation of an extracellular matrix (ECM) of collagen through the liver.4  Figure 

1.2.1 shows images of healthy and cirrhotic liver samples collected at the University of 

Arizona Banner-Health Center.  All human studies were performed under informed consent 

with a protocol approved by the University of Arizona Institutional Review Board. Figure 

1.2.1 (A) shows a healthy liver and has no ECM in the tissue. Figure 1.2.1 (B) is a 

photograph of a pathology slide taken from a biopsy of the liver in Figure 1.2.1 (A). In 

Figure 1.2.1 (C), the ECM has infiltrated the entire volume of the liver and a tumor has 

developed in the upper section.    Figure 1.2.2 shows the same slide as Figure 1.2.1 D, but 

with the collagen network outlined for emphasis.  These are the features pathologists look 
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for when assessing fibrosis content.  The pathology slides confirm that the healthy liver 

has no signs of an ECM whereas the cirrhotic liver has an ECM surrounding the lobules.  

In the presence of the ECM, liver function is inhibited, putting a patient at risk for disease.   

 

Figure 1.2.1: (A) Photograph of a healthy formalin fixed liver from autopsy and (B) an 

H&E pathology slide from biopsy.  (C) Photograph of a cirrhotic liver recovered from 

autopsy and (D) an H&E pathology slide from biopsy. 
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Figure 1.2.2: H&E pathology slide from biopsy from Figure 1.2.1 D with the collagen 

network highlighted 

 

  

0.8325 mm 
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1.3  Needle Biopsy as the Gold Standard of Detection 
 

The gold standard for diagnosis for HF is a needle biopsy.6,8–15  Needle biopsy is an 

invasive surgical procedure where a 1mm3  tissue sample is taken from a patient’s liver.  

The biopsy sample is fixed and sectioned for a pathologist to observe under a microscope.  

The basic stain used by pathologists is an H&E stain, which enhances the nuclei of the 

cells.  A trichrome stain is used to mark collagen if the pathologist requires the additional 

contrast in order to make a diagnosis. 

Biopsy offers a high-resolution image of the tissue, allowing a pathologist to observe 

the state of the tissue and report findings on fat content, carcinoma, and iron content, etc., 

along with HF.  The disadvantages of biopsy are poor sampling of the subject as well as 

the risk for procedural complication.6,10,11,14,16–18  The liver weighs approximately 1.3 kg in 

adults.  The 1mm3 biopsy collected represents 1/50,000 of the entire liver.  This large under-

sampling has the chance of missing a region of the liver with early stage HF and sampling 

only healthy tissue, resulting in a false negative.  In addition, pathologists only have tools 

to make a semi-quantitative diagnosis.  Pathologists make calls based on pre-determined 

scales agreed upon by the practicing community.11,12  Grading on these scales requires 

extensive training for pathologists and there is an inevitability of variation between 

pathologists.   

 When the pathologist reports the degree of HF to the physician there are different 

scales used to interpret the patient’s status.  One that has become popular with both 
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pathologists and radiologists is the METAVIR score.11,15,19–21  The METAVIR score 

conveys the fibrotic content of the liver and is independent of other features.11  It is a five 

stage score, ranging from healthy with no fibrosis present as F0, to the end stage of the 

disease, cirrhosis, with a score of F4.  The intermediate stages characterize points in the 

progression of the ECM as more damage is done to the liver.12  The earliest stage where 

fibrosis is present is F1, where HF is characterized by the ECM developing around the 

portal veins and arteries.11,12  These are the lattice points of the lobule structure and HF will 

progress if left untreated.  F2 is defined as the fibrosis from the portal veins branching into 

septa in the lobule lattice.11,12  At this point, the start of an ECM lattice is observable.  Once 

the septa branches begin to bridge the ECM between portal veins, this is described as F3.  

Once the ECM is fully connected, and the lobules are completely circumscribed by the 

ECM, the state of cirrhosis is reported and the METAVIR score is F4.11,12  Figure 1.3.1 

shows the progression of these stages. 

Histopathology methods are capable of producing images with cellular resolution.  

As mentioned in section 1.2, the scale of fibrosis is 1-5mm.  However, the low sampling 

rate of biopsy and variance in pathologist observers results in inconsistencies between 

diagnoses a risk of under reporting.   

It is the goal of this dissertation to develop an alternative to needle biopsy performed 

in clinical practices.  However, due to its ability to provide high-resolution images to a 
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well-trained pathologist, and acceptance by the medical community, biopsy will serve as 

the gold standard for the experiments described in the forthcoming chapters. 

 

 

Figure 1.3.1 Representation of the METAVIR scoring system.  Collagen is the black 

lined connecting portal veins. 
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1.4  Treatments for Chronic Liver Disease and Hepatic Fibrosis 
 

Some diseases in the liver are treatable with changes in patient behavior, such as 

abstaining from alcohol in the case of alcoholic liver disease, or reducing weight in the 

presence of non-alcoholic fatty liver disease (NAFLD).22  In other cases, it is necessary to 

identify and treat the cause of  HF and not HF directly, such as with alcoholism.22  Some 

drug treatments use anti-inflammatory drugs, however they do not directly treat fibrosis.22   

 Many different treatments have been attempted to reverse HF with various success 

rates.  There are numerous pharmacological agents with both direct and indirect effects on 

fibrosis, but none have emerged as an ideal treatment.23  Some drugs inhibit angiotensin II, 

such as Losartan.23,24 Another group of drugs use interferon-α to treat damage to the liver, 

but there is limited documented success in human studies.25–28 Another therapy is 

pentoxifylline, which has shown to affect down-regulation  of collagen formation and other 

factors effecting HF.23,29,30 A large summary of therapeutic options is available in Pinzani 

et al.23 

 CLD and HF are treatable diseases for patients if caught early.  Biopsy, 

magnetic resonance elastography, and delayed phase contrast-enhanced MRI are all 

used for tracking the progression of CLD, however, an early non-invasive 

quantitative detection and screening method does not currently exist.  The earlier 

the disease is caught the more treatment options are at the disposal of physicians.   
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1.5  Magnetic Resonance Imaging 
 

Magnetic Resonance Imaging (MRI) is a powerful, still-developing, clinical imaging 

modality capable of non-invasively collecting tomographic images with strong soft tissue 

contrast.14,31  MRI takes advantage of the presence of hydrogen nuclei in the body and 

recovers the response of the nuclear spin to changes in a locally generated magnetic field. 

MRI is possible due to nuclear magnetic resonance (NMR), a phenomenon 

discovered in 1937 by Isidor Rabi, for which the Nobel prize was awarded in 1944.  Rabi 

discovered the magnetic moment of the nucleus.  NMR is a quantum physics phenomenon, 

but it is possible to understand MRI from a classical approach.  The connection between 

the quantum and classical mechanics of NMR and MRI is possible by use of Ehrenfest’s 

theorem applied to a collection of hydrogen nuclei.  Ehrenfest’s theorem states that the 

expectation values of quantum systems that correspond to classical variables obey classical 

laws of motion.31–33 

It is often stated that the hydrogen nuclei behave like spinning tops, however this is 

only what the systems looks like when Ehrenfest’s theorem is applied to a population of 

hydrogen atoms.32   

The hydrogen atom consists of a proton in the nucleus and single electron; both 

particles are Fermions with spin ½. A spin ½ particle has only two possible eigenstates, 

spin up or spin down with respect to an externally defined z-axis.  When the hydrogen 

atoms are in the body, it is the expectation value of the orientation of the spin angular 
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momentum that is observed, and the result indeed processes like a spinning top in a 

gravitational field.  However, what is truly occurring is the ratio of the states the hydrogen 

nuclei occupy are changing.  The dynamics of spin angular momentum in an externally 

applied magnetic field are the basis of the NMR technique.   

MRI is based on the NMR phenomenon of hydrogen atoms. The hydrogen atom 

consists of a proton in its nucleus and thus, has angular momentum, Ψ⃗⃗⃗ , the arrow denotes 

a vector, and a magnetic moment, 𝜇 , 

𝜇 = 𝛾Ψ⃗⃗⃗ . 33 

( 1.5.1 ) 

where, γ, a scalar, is the gyromagnetic ratio and has units of radians per second per tesla. 

If a collection of nuclei, 𝑁𝐴, are in a volume, the microscopic magnetizations are 

summed to construct a bulk magnetization moment vector, 

�⃗⃗� 0 = ∑ 𝜇 𝑛

𝑁𝐴

𝑛=1

. 

( 1.5.2 ) 

When the bulk magnetic moment enters a magnetic field, 𝐵0
⃗⃗⃗⃗  ⃗, 𝑀0

⃗⃗ ⃗⃗  ⃗, will rotate with an 

angular velocity,  

𝜔0 = 𝛾𝐵0, 31,33 

( 1.5.3 ) 
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known as the Larmor frequency.  𝐵0 is the magnitude of the stationary magnetic field. 

Equation 1.5.3 has units of radians per second.  When converted to cycles per second an 

equivalent expression for the Larmor frequency is, 

𝜈0 =
𝛾𝐵0

2𝜋
. 

( 1.5.4 ) 

Knowledge of the Larmor frequency is useful for multiple reasons. First, and most 

important the radio frequency (RF) pulse that is used to excite the spins out of equilibrium, 

described later in this chapter, must have the same frequency as the Larmor frequency in 

order to observe the NMR phenomenon. The second advantage is that the Larmor 

frequency helps simplifying the mathematical formulations used to explain the NMR 

signal.  The signals of the magnetization in the laboratory (stationary) frame of reference 

are dependent on the Larmor frequency, however if the frame of reference rotates at the 

Larmor frequency, the equations governing the signal will simplify. 

 So far, in our discussion, the spins are in equilibrium with 𝑀0 along the direction 

of 𝐵0 (typically defined along the z-axis). In order to observe 𝑀0
⃗⃗⃗⃗ ⃗⃗ , a temporary perturbation 

in the energy of the system is introduced to force the spins out of equilibrium. This is 

accomplished with an RF pulse, with frequency equal to the Larmor frequency, applied 

perpendicular to the external magnetic field.  The RF pulse is capable of flipping the spins 

by an angle 𝛼 (the flip angle, FA) from the z-axis into the transverse X-Y plane yielding a 

transverse component to the magnetization, 𝑀𝑥𝑦
⃗⃗ ⃗⃗ ⃗⃗  ⃗, defined as: 
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𝑀𝑥𝑦
⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  𝑀0

⃗⃗ ⃗⃗  ⃗𝑠𝑖𝑛𝛼𝑒𝑖𝜙 . 33 

( 1.5.5 ) 

Once the RF pulse is turned off a receiver will detect the electro-magnetic field (emf) signal 

generated in the transverse plane.  

Two relaxation mechanisms have an impact on the detected signal.  The first is the 

longitudinal relaxation, 𝑇1, which is an exponential recovery along z representing the move 

back toward equilibrium.  The longitudinal magnetization is given by, 

𝑀𝒛(𝑡) = 𝑀0 (1 − (1 − cos𝛼)𝑒
−𝑡

𝑇1
⁄ ) 31 

( 1.5.6 ) 

and is dependent on both FA, and 𝑇1.  The relaxation of the transverse magnetization is 

characterized by 𝑇2 and is a measure of the dephasing of all the spins in the transverse 

plane, 

𝑀𝑥𝑦
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) = 𝑀0

⃗⃗ ⃗⃗  ⃗ sin 𝛼 𝑒𝑖𝜙𝑒
−

𝑡

𝑇2
∗
. 33 

( 1.5.7 ) 

𝑇1 and 𝑇2 are properties of the material in the magnetic field and offer two of the three 

main contrast mechanisms for MRI images. They have units of time, often reported in 

milliseconds, 𝑡 in this section is time.  The third type of contrast mechanism is proton 

density.  By setting up different pulse sequences, images can have very different contrast 

between anatomical features. 
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 During transverse relaxation, the collection of spins will process at different rates 

due to interactions with the fluctuating magnetic fields generated by neighboring spins (𝑇2) 

or local static fields (𝑇2
†
).  𝑇2

∗
is a combination of the two relaxation phenomena: 

1

𝑇2
∗ =

1

𝑇2
+

1

𝑇2
† 

( 1.5.8 ) 

Dephasing due to 𝑇2
†
 relaxation can be reversed using a spin-echo experiment.31,33 

Dephasing due to 𝑇2 cannot be rephased and the loss of signal is determined by the time 

between the excitation of spins into the transverse plane and the mid-point of signal 

detection (known as the time to-echo or TE) as well as the tissue properties.   

MR images, as previously mentioned, have three different sources of contrast: 𝑇1, 

𝑇2, and proton density.  The MRI pulse sequence parameters determine what property 

dominates the signal of the observed image.   

In order to recover a 𝑇1-weighted image, a sample is excited rapidly, multiple times.  

The repetition time, TR, is the time between which the spins’ successive excitations into 

the transverse plane. TR is set at a time close to the 𝑇1 value of the sample in a 𝑇1-weighted 

image.  In order to minimize the effect of the 𝑇2 relaxation, the 𝑇𝐸 is kept short.  

Recovering a 𝑇2-weighted image requires 𝑇𝐸 to be set approximately to the value of 𝑇2 in 

the sample, while keeping a long 𝑇𝑅.  This allows the effect on the signal to decay 

according to 𝑇2, creating contrast in the 𝑇2 realm.   
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The final contrast is proton density, which requires 𝑀𝐳 to fully recover back to 𝑀0 

before each RF excitation.  This is accomplished with a long 𝑇𝑅 and a short 𝑇𝐸  (to 

minimize 𝑇𝟐-decay effects). The result is a signal that reflects the different proportions of 

hydrogen atoms within a voxel of tissue. 𝑇𝑅, 𝑇𝐸, and FA are three major variables 

controlled in an MRI pulse sequence.  The precise arrangement of RF pulses and magnetic 

gradients are integral to MR image acquisition. An example of a gradient echo pulse 

sequence is shown in Figure 1.5.1.  
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Figure 1.5.1: Example of a gradient echo MRI pulse sequence. The pulse sequence is 

repeatad using several RF excitations to record the adequate frequency data to reconstruct 

an image.  
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MRI data are collected by using magnetic field gradients which linearly change the 

frequency of the spins with locations. The signal collected in MRI contains the frequency 

content (K-space) of the object and the magnetic field gradient waveforms describe what 

K-space points are collected in time.  A typical 2D gradient echo pulse sequence begins 

with an RF pulse that is calibrated to flip the spins to the prescribed FA as measured from 

the z-axis defined by the start portion of the magnetic field. This pulse is played while 

applying a slice-selective gradient, 𝐺𝑧 , to select the slice plane.  To encode spatial 

frequency data in 𝑘𝐱,𝑘𝐲  in the slice plane, the 𝐺𝑟𝑒𝑎𝑑 and 𝐺𝑝ℎ𝑎𝑠𝑒 magnetic field gradients are 

used.  𝐺𝑟𝑒𝑎𝑑, 𝐺𝑝ℎ𝑎𝑠𝑒, are first turned on simultaneously to move to the (-𝑘𝒙𝒎𝒂𝒙
, 𝑘𝒚𝒎𝒂𝒙

) 

position. 𝐺𝑝ℎ𝑎𝑠𝑒is then turned off and the polarity of 𝐺𝑟𝑒𝑎𝑑 is reverse to read-out a 𝑘𝐲 line 

in K-space. After readout a strong gradient is applied to diphase any remaining signal in 

the transverse plane before the next FA excitation. This is repeated several times until all 

𝑘𝐲 lines are read. Figure 1.5.1 shows the two main pulse sequence parameters, TE and TR.  

The TE time defines the halfway point of the RF excitation to where half the signal is 

recorded to.  TR is the time between FA excitations. Once all K-space data are obtained 

inverse Fourier methods are often employed to reconstruct the image.  There is extensive 

research in the field of reconstruction and we will refer the reader to.34–36 For this 

dissertation we use reconstruction methods provided by Siemens on its Skyra scanner. The 

sequence in Figure 1.5.1 is for a 2D-scan, the scans in this dissertation are performed with 

a 3D-gradient echo pulse sequence.  The major differences between a 2D and 3D pulse 
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sequence is a wide bandwidth for the RF pulse to excite the 3D volume of interest and a 

phase encoding gradient applied along 𝐺𝑍.   

While it is possible to retrieve contrast from a sample by use of manipulating MRI 

pulse sequences, it is also possible to temporarily enhance the contrast of the properties of 

the sample by use of contrast agents which are injected into a patient.  Gadolinium (Gd), a 

rare earth metal ion, chelated with a stable molecule is commonly used in MRI contrast 

agents and was introduced in 1984.31,33  Gd based contrast agents have an effect of 

shortening the 𝑇𝟏 of water molecules that are in contact with it. Gd based agents also 

shorten the 𝑇𝟐 of the molecules in the surrounding volume. However, since 𝑇𝟏 is usually 

much greater than 𝑇𝟐 in tissue and the difference in 𝑇𝟏 and 𝑇𝟐 for Gd is smaller, a greater 

percent change is observed in 𝑇𝟏 values. In HF MRI applications Gd based contrast agents 

are used increase contrast in the 𝑇𝟏 realm. The inverse of the observed 𝑇𝟏 relaxation is 

equal to the sum of the inverses of the relaxation of the components, 

𝟏

𝑻1𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅

=
𝟏

𝑻1𝑻𝒊𝒔𝒔𝒖𝒆

+
𝟏

𝑻1𝑮𝒅

. 31 

( 1.5.9 ) 

1.6  MRI as an Alternative to Biopsy 
 

Delayed-phase Gd-enhanced MRI (DE-MRI) is capable of producing significant 

contrast between fibrotic and normal liver tissue, presumably due to accumulation of 

contrast agent in the extracellular space.37,38   
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Clinical MRI with breath holds and advanced pulse sequences are capable of resolving 

features near the apparent size of lobules associated with HF.  Figure 1.6.1 shows one 

comparison of data collected from DE-MRI at the University of Arizona Medical Imaging 

center at 1.5T.  It is clear from these images that DE-MRI is capable of producing contrast 

between healthy and diseased patients, which an experienced radiologist can detect at the 

late-stages cases of severe HF.  
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Figure 1.6.1: Examples of liver DE-MRI from in vivo scans.  (A) Image from a healthy 

patient and no ECM is present.  (B) Image from a patient with cirrhosis, an ECM is 

across the entire organ. 

  

(A) (B) 
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However, staging of HF based on DE-MRI images in the early stages of disease is 

much more difficult and requires specialized training of the radiologist.14,39  As with 

pathologists, radiologists are subject to variability between readers.  Radiologists look for 

gross versions of the same features pathologists look for in biopsy slides.39,40  MRI provides 

the advantage over biopsy of sampling the entire liver volume, but without quantitative 

statistical analysis, the results are limited by many of the same drawbacks pathologists face 

in deciding on a score that describes the overall liver state. 

Despite its invasive nature and potential complications biopsy the gold standard for 

diagnosing HF.  Due to the ability to treat early HF and CLD, a globally sampled non-

invasive test for fibrosis is valuable to both physicians and patients.  MRI is capable of 

producing images with soft tissue contrast the is sensitive to the infiltration of the ECM 

associated with HF; it is the quantitative image-science tools that still need development.14  

1.7  Magnetic Resonance Elastography 
 

One approach to using MRI to assess HF quantitatively is via magnetic resonance 

elastography (MRE). MRE is based on the observation that as the ECM spreads throughout 

the liver, the stiffness of the liver increases.  This is why external-palpation has traditionally 

been used as a basic detection of disease liver tissue.41  MRE was developed by Ehman et 

al.  at the Mayo to display liver stiffness data in a map (often displaying values estimated 
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above a 95% confidence interval).  Displaying the data as a map similar to an MRI image 

allows a radiologist to combine their knowledge of anatomy with observations made from 

stiffness maps.  A map highlighting likely regions of HF with quantitative data are a 

potentially useful tool for the MRI clinic that illustrates CAD, computer-aided diagnosis.  

MRE uses MRI to analyze an externally-generated shear wave that is administered 

via the patient’s abdomen to estimate the stiffness of the liver.16,42,43  The stiffness is 

estimated from the deformation in response to the pressure waves and is temporally 

measured with a phase-sensitive MRI technique.44–47 

MRE-derived liver stiffness and extent of fibrosis has been shown to be positively 

correlated, however a study by Cast́era et al.  observed that one in five liver stiffness 

measurements fail to produce reliable results.48  The technique is also difficult to 

implement, sometimes leads to inconclusive images, and can be expensive to add to an MR 

clinic’s workflow.  While MRE is often effective at quantifying liver stiffness, it is 

insensitive to the change of texture in early stages of HF, less than or equal to F2 disease. 

46,45,48,49   

MRE has made many advances, yet is still seen as a developing method14.  MRE 

only observes a feature that correlates with the structure present.  It is not a direct 

measurement of presence of a texture that pathologists and radiologists can view with 

imaging approaches.  Therefore, a quantitative, local measurement of HF texture with 

broad sampling across the liver would represent a major advance towards early detection 
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and would allow monitoring of response to therapies and lifestyle changes designed to 

reverse collagen infiltration. 

1.8  Statistical Decisions for Imaging 
 

In order to aid a radiologist in staging HF, a well-defined method to make unbiased 

decisions is desirable.  Statistical decision theory is useful to provide a framework to 

develop mathematical observers to perform the task of staging liver fibrosis from MRI 

images.  We review first the concepts of the optimal linear observer, the quadratic observer, 

and classification tasks that are necessary for the work presented in following chapters. 

 An imaging system, optical or otherwise, is designed to produce information in 

which features are extracted by an observer, human or mathematical.  An imaging system 

can be represented as,  

𝑔 = 𝓗𝑓  

( 1.8.1 ) 

Where vector 𝑔  is an image collected from object vector 𝑓  from imaging system 𝓗, 

represented as a matrix in the case of a voxelized representation of an object or an integral 

transformation in the case of a continuous object.  Often a desired task to perform is to use 

𝑔  to classify the object as a member of one category or another.   

In the simplest classification task the single question asked of an observer is if a 

signal present or not.  If a signal is not present, this is often described as the signal absent, 
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noted as state or hypothesis 𝐻0, while signal present is noted as  𝐻1.  The goal in this 

dissertation is to develop a model observer to perform the task of analyzing images 

collected from MRI.  When constructing an observer, the goal is to maximize task 

performance using available statistical information.50–52 

To build many of the arguments for the multidimensional problem, we begin with 

a two dimensional demonstrational problem consisting of just two pixels.  A mathematical 

observer will have a form 𝑡(𝑔 ) and produce a scalar result known as a test statistic.  Now, 

𝑡 is the test statistic and has units related to the image data in 𝑔 . The maximum performance 

of an observer is to fully separate images into the correct hypothesis groups based on 

imposing the test statistics to a threshold 𝑡𝑐.50  A simplified picture of this task is shown in 

Figure 1.8.1. 

The result of a single experiment based on Figure 1.8.1 has four possible outcomes. 

An object will either be a member of the signal absent or signal present classes, and is 

classified by 𝑡(𝑔 )  as a member of one or the other.  The four possible outcomes are 

highlighted in Table 1.8.1.  A perfect observer will only report true positive and true 

negatives.  However, some fraction of false positives and false negatives are almost always 

unavoidable in real medical imaging data50. 
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 𝐻1 is true 𝐻0 is true 

Decide 𝐻1 is true True Positive False Positive 

Decide 𝐻0 is true False Negative True Negative 

Table 1.8.1: Possible decision outcomes 

 

 

 

Figure 1.8.1: A two pixel system separated by test statistic 𝑡(𝑔 ) 

statistic  

   

  

𝐻0 

𝐻1 
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A threshold for 𝑡(𝑔 ) must be chosen to separate results into the categories 𝐷0 and 

𝐷1.  The statistics of 𝐷0 and 𝐷1 relative to 𝐻0 and 𝐻1will determine the sensitivity and 

specificity of the observer.  The total number of experiments is equal to the sum of all true 

positive, false positive, true negative, and false negative decisions.  If the number of 

experiments is large, the true- and false- positive fractions approach to the underlying 

probabilities are given by: 

𝑇𝑃𝐹 = Pr(𝐷1|𝐻1) =
𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑁
 

( 1.8.2 ) 

𝑇𝑁𝐹 = Pr(𝐷0|𝐻0) =
𝑁𝑇𝑁

𝑁𝑇𝑁 + 𝑁𝐹𝑃
  

( 1.8.3 ) 

𝐹𝑃𝐹 = Pr(𝐷1|𝐻0) =
𝑁𝐹𝑃

𝑁𝑇𝑁 + 𝑁𝐹𝑃
= 1 − 𝑇𝑁𝐹  

( 1.8.4 ) 

𝐹𝑁𝐹 = Pr(𝐷0|𝐻1) =
𝑁𝑇𝑁

𝑁𝑇𝑃+𝑁𝐹𝑁
= 1 − 𝑇𝑃𝐹 . 50 

( 1.8.5 ) 

 

The TPF is the sensitivity, which is appropriate, since a high sensitivity is associated 

with the ability to effectively detect the presence of the non-normal state.  TNF is the 

specificity.  A test with high specificity is one with a low fraction of false positive 

outcomes.  How one sets a threshold to choose an acceptable sensitivity and specificity to 
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operate an observer at is not the focus of this dissertation.  That decision relies on 

information not always available, such as the relative “costs” associated with over-

diagnosing versus under-diagnosing disease. 

 Using the results of repeated experiments, the probability density functions are 

generated as function on 𝑡(𝑔 ).   An example of this is shown in Figure 1.8.2 where it is 

clear the TPF, FPF, TNF, and FNF are all fractional areas under the probability density 

curves: 
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Figure 1.8.2 Example of the probability density functions for a test statistic 

with two hypothesis and one threshold.  The TNF, FNF, FPF, and TPF are 

labeled based on the threshold. 

FNF 

FPF 

TPF TNF 

𝑡𝑐  

𝑝𝑟 (𝑡(𝑔 )|𝐻1) 

𝑝𝑟 (𝑡(𝑔 )|𝐻0) 
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𝑇𝑃𝐹 = Pr (𝑡 ≥ 𝑡𝑐|𝐻1) 

( 1.8.6 ) 

𝐹𝑃𝐹 = Pr(𝑡 ≥ 𝑡𝑐|𝐻0) 

( 1.8.7 ) 

𝑇𝑁𝐹 = 1 − FPF 

( 1.8.8 ) 

𝑇𝑃𝐹 = 1 − TPF. 

( 1.8.9 ) 

 

Equations ( 1.8.6 )  and ( 1.8.7 ) are dependent on 𝑡𝑐, a decision threshold for the observer.  

Plotting the TPF as a function of FPF at every possible 𝑡𝑐 will generate a plot known as the 

receiver operator characteristic curve (ROC curve).  The ROC curve is a measure of the 

performance of the observer and is one possible figure of merit.  An example ROC curve 

based on Figure 1.8.2 is given in Figure 1.8.3.  The separation of the two probability 

distribution functions results in the curve’s shape.  
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Figure 1.8.3 An Example ROC Curve 
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Figure 1.8.4 (A) The images are nearly identical with an observer resulting in an AUROC 

≈ 0.5 (B) The images are significantly different, resulting in an almost perfect separation 

with an AUROC ≈ 1 

  

𝑝𝑟 (𝑡(𝑔 )|𝐻0) 

𝑝𝑟 (𝑡(𝑔 )|𝐻0) 

𝑝𝑟 (𝑡(𝑔 )|𝐻1) 

𝑝𝑟 (𝑡(𝑔 )|𝐻1) 
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Figure 1.8.5 (A) ROC curve resulting from the probability density functions illustrated in 

Figure 1.8.4 (A), (B) ROC curve resulting from the probability density functions 

illustrated in Figure 1.8.4 (B) 

  

1 

0 
0 1 0.5 

0.5 

FPF 

TPF 

(B)  

(A)  
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A figure of merit function that characterizes the ROC curve and thereby the efficacy 

of the imaging method and observer is measure of the area-under-the-receiver-operator-

characteristic-curve (AUROC or AUC for short).  The AUROC is the integral of the ROC 

curve: 

𝐴𝑈𝑅𝑂𝐶 = ∫ 𝑇𝑃𝐹(𝐹𝑃𝐹)𝑑𝐹𝑃𝐹
1

0

 

( 1.8.10 ) 

Based on the integral and limits of the ROC curve it is clear the maximum value of 

the AUC is 1.0 and minimum value is 0.  An AUROC equal to 1 represents a complete 

separation of the two probability density functions and perfect performance.  Figure 1.8.4 

(A) is an example of an imaging method and observer that are performing no better than a  

“coin flip” or “random guess.”  The two distribution functions are nearly on top of one 

another.  For each decision threshold, the observer finds equal probability of whether the 

object in one class or the other.  The ROC curve for this experiment is shown in Figure 

1.8.5 (A) and the AUROC value is approximately 0.5. 

An optimal imaging method and observer would have results similar to the 

probability density functions shown in Figure 1.8.4 (B) where the PDF’s have almost no 

overlap, resulting in an ROC curve similar to Figure 1.8.5 (B).  If an AUROC below 0.5 is 

recovered, there is a sign error in the observer function i.e. one should change the decision 

from 𝑡(𝑔 ) ≥ 𝑡𝑐 to 𝑡(𝑔 ) ≤ 𝑡𝑐 or vice versa. 
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1.9  Mathematical Observers 
 

If complete statistics are known about the signal absent and signal present cases, which 

is usually never true, an optimal decision strategy is possible. Is has been shown to be that 

a ratio of the probability densities on the data given the signal absent and signal present 

hypotheses, 

Λ(𝑔 )

𝐷1

>
<
𝐷0

Pr (𝑡(𝑔 )|𝐻0)

Pr (𝑡(𝑔 )|𝐻1)
, 

( 1.9.1 ) 

leads to an optical decision strategy.50,52 This is known as the likelihood ratio and requires 

entire knowledge of the system statistics including variability in objects and the noise 

characteristics of the imaging system. The maximum-likelihood criteria, Neyman-Pearson 

criterion, minimum average cost, and minimum error detector are all decision strategies 

that lead to the conclusion to choose 𝐻1 if, 

Λ(𝑔 ) > Λ𝑐 

( 1.9.2 ) 

where Λ𝑐  is the threshold associated with the test statistic50. A test that takes the form of 

1.9.2 is a likelihood-ratio test and is the form of the theoretically ideal observer. 

 Recovering the ideal observer for a classification task is a difficult procedure and 

often requires knowledge that is generally impossible to measure or estimate accurately. 
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Since the AUC is a measure of the overlap and separation of the probability density 

functions describes the observer acting on the data, it can be used as a basis for choosing 

the observer.  The ideal linear observer is one that maximizes the signal-to-noise-ratio of 

the test statistic, defined as, 

𝑆𝑁𝑅 =
〈𝑡(𝑔 )〉1 − 〈𝑡(𝑔 )〉0

√1
2𝜎1

2 +
1
2𝜎0

2

. 

( 1.9.3 ) 

We will show in the next section that the Hotelling observer is the ideal linear 

observer when the data have normal statistics.  The true SNR of a task cannot be known, 

unless the true statistics of the system are known, but comparing the SNR of two observers 

is one method to determine which performs closer to the ideal observer. 

1.10  The Hotelling Observer as the Ideal Linear Observer 
 

In the previous section, we discussed the figures of merit for observers where full 

knowledge of the statistics is known.  However, in practice there is limited knowledge of 

the variability between patients and statistics of the MRI imaging system, and the initial 

hypothesis is that the data are linear.  A linear discriminant generates an observer that 

converts multidimensional data into a scalar test statistic via an inner product, 
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 𝑡(𝑔 ) = �⃗⃗� †𝑔 . 50,53 

( 1.10.1 ) 

The square of the SNR of this observer is governed by equation ( 1.9.3 ): 

𝑆𝑁𝑅2 =
(〈𝑡(𝑔 )〉1 − 〈𝑡(𝑔 )〉0)

2

1
2𝜎1

2 +
1
2𝜎0

2
. 

( 1.10.2 ) 

The numerator of 1.1010.2 is charecterized by a difference in the means of the signal absent 

and the signal present image data: 

〈𝑡(𝑔 )〉0 = 〈�⃗⃗� †𝑔 〉0 = �⃗⃗� †〈𝑔 〉0 

〈𝑡(𝑔 )〉1 = 〈�⃗⃗� †𝑔 〉1 = �⃗⃗� †〈𝑔 〉1 

〈𝑡(𝑔 )〉1 − 〈𝑡(𝑔 )〉0 = �⃗⃗� †[〈𝑔 〉1 − 〈𝑔 〉0] = �⃗⃗� †∆𝑔̅̅̅̅  

∆𝑔⃗⃗⃗⃗  ⃗̅̅ ̅̅
𝑚 = 〈𝑔𝑚⃗⃗ ⃗⃗  ⃗〉1 − 〈𝑔𝑚⃗⃗ ⃗⃗  ⃗〉0. 53 

( 1.10.3 ) 

Where the brackets represent the expectation value of the mth pixel in the image 𝑔.  The 

denominator is recognized as the average of the variances.  The variance of an image is 

characterized by the covariance matrix K, 

𝐾𝑚𝑛 = 〈(𝑔𝑚 − 〈𝑔𝑚〉0)(𝑔𝑛 − 〈𝑔𝑛〉0)〉0. 
53 

( 1.10.4 ) 

Where 𝐾𝑚𝑛 is the covariance matrix element of the mth row and nth column. The SNR, 

defined by terms of equations ( 1.10.3 ) and ( 1.10.4 ) is, 
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𝑆𝑁𝑅2 =
(�⃗⃗� †∆𝑔⃗⃗⃗⃗  ⃗̅̅ ̅̅ )

2

�⃗⃗� †𝑲�⃗⃗� 
. 

( 1.10.5 ) 

The linear observer that maximizes the SNR is the Hotelling observer.  To maximize the 

SNR, one initially takes the natural logarithm, a monotonic transformation that does not 

move the location of the minima or maxima, 

ln (𝑆𝑁𝑅
𝜏
2) = ln(�⃗⃗⃗� 

𝒕
∆𝑔⃗⃗ ⃗⃗  ⃗̅̅ ̅̅

)
2

− ln �⃗⃗⃗� 
𝒕
(
1

2
(𝑲𝟎 + 𝑲𝟏)) �⃗⃗⃗�  

( 1.10.6 ) 

where the average covariance is presented as the average of the two separate covariance 

matrices from hypothesis data.  To maximize SNR, the gradient is taken with respect to 𝒘 and 

setting the it to 0, 

(
𝟏

𝟐
(𝑲𝟎 + 𝑲𝟏)) �⃗⃗�  = [

�⃗⃗� 𝒕(
𝟏

𝟐
(𝑲𝟎+𝑲𝟏))�⃗⃗� 

�⃗⃗� 𝒕∆�⃗� ̅̅ ̅̅ ] ∆𝑔⃗⃗⃗⃗  ⃗̅̅ ̅̅
.   

( 1.10.7 ) 

The coefficient to  ∆𝒈̅̅ ̅̅  in equation 1.10.8 is a scalar that is set to 1, 

[
 
 
 
 �⃗⃗� 𝒕 (

1
2
(𝑲𝟎 + 𝑲𝟏)) �⃗⃗� 

�⃗⃗� 𝒕∆𝑔 ̅̅ ̅̅

]
 
 
 
 

= 𝟏, 

�⃗⃗� 𝒕 (
𝟏

𝟐
(𝑲𝟎 + 𝑲𝟏)) �⃗⃗� = �⃗⃗� 𝒕∆𝑔⃗⃗⃗⃗  ⃗̅̅ ̅̅ , 

(
𝟏

𝟐
(𝑲𝟎 + 𝑲𝟏)) �⃗⃗� = ∆𝑔⃗⃗⃗⃗  ⃗̅̅ ̅̅ , 
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 and the Hotelling observer is defined as  

�⃗⃗� = [
1

2
(𝑲1 + 𝑲0)]

−1

∆𝑔⃗⃗⃗⃗  ⃗̅̅ ̅̅
.   

( 1.10.8 ) 

A benefit of the Hotelling observer is only first-order (means) and second-order 

(covariance) statistics are necessary to define the observer.  This is beneficial, since often 

one does not have knowledge of the underlying probability densities of the hypothesis data 

and most instead estimate them from training data.  The Hotelling observer is also known 

as the pre-whitened matched filter in the field of electrical engineering, due to the step 

involving the matched filter, ∆𝑔⃗⃗⃗⃗  ⃗̅̅ ̅̅
, and what is referred to as a pre-whitening step, that uses 

the average covariance matrix as weights for the matched filter.50,51,53  The Hotelling 

observer is the ideal observer when the data are Gaussian, there is a difference in the means, 

and the covariance matrices are equal.  The Hotelling observer maximizes the SNR, 

equation 1.9.2 for these types of images.  If image data does not meet these requirements, 

then a different observer may perform better. 

1.11  The Quadratic Observer 
 

One method to recover an observer is through the likelihood ratio of the conditional 

probability of two classes.  We continue to assume the data are Gaussian, but now we 

consider the situation that the covariance matrices are not equal. 

𝑝𝑟(𝑡|𝐻0) =
1

𝜎0√2𝜋
𝑒

−(𝑡−𝜇0)
2

2𝜎0
2
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𝑝𝑟(𝑡|𝐻1) =
1

𝜎1√2𝜋
𝑒

−(𝑡−𝜇1)2

2𝜎1
2

 

( 1.11.1 ) 

These PDF’s are used to write a likelihood ratio as from 1.9.1 

1

𝜎1√2𝜋
𝑒

−(𝑡−𝜇1)
2

2𝜎1
2

1

𝜎0√2𝜋
𝑒

−(𝑡−𝜇0)2

2𝜎0
2

>
<

   Λ . 

( 1.11.2 ) 

To find a threshold, 𝑡, the natural logarithm, of both sides is taken, 

ln (
𝜎0

𝜎1
) −

(𝑡 − 𝜇1)
2

2𝜎1
2 +

(𝑡 − 𝜇0)
2

2𝜎0
2   

>
<

  ln(Λ), 

 

ln (
𝜎0

𝜎1
) −

𝑡2 − 2𝑡𝜇1 + 𝜇1
2

2𝜎1
2 +

𝑡2 − 2𝑡𝜇0 + 𝜇0
2

2𝜎0
2   

>
<

   λ , 

 

ln (
𝜎0

𝜎1
) +

𝑡2

2𝜎0
2 −

𝑡2

2𝜎1
2 +

2𝑡𝜇1

2𝜎1
2 −

2𝑡𝜇0

2𝜎0
2 −

𝜇1
2

2𝜎1
2 +

𝜇0
2

2𝜎0
2   

>
<

   λ , 

 

ln (
𝜎0

𝜎1
) +

𝑡2

2
(

1

𝜎0
2 −

1

𝜎1
2) + 𝑡 (

𝜇1

𝜎1
2 −

𝜇0

𝜎0
2) + (

𝜇0
2

2𝜎0
2 −

𝜇1
2

2𝜎1
2)  

>
<

   λ . 

( 1.11.3 ) 

The ROC curve is insensitive to monotonic transformations, allowing assumptions to be 

made that simplify the observer50.  If we normalize and shift such that 𝜎0 = 1 and 𝜇0 = 0, 

equation ( 1.11.3 simplifies to, 

ln (
1

𝜎1
) +

𝑡2

2
(1 −

1

𝜎1
2) + 𝑡 (

𝜇1

𝜎1
2 −

0

1
) + (

0

2
−

𝜇1
2

2𝜎1
2)  

>
<

   λ ,  
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ln (
1

𝜎1
) +

𝑡2

2
(1 −

1

𝜎1
2) + 𝑡

𝜇1

𝜎1
2 −

𝜇1
2

2𝜎1
2   

>
<

   λ. 

( 1.11.4 ) 

A term in ( 1.11.4 with no dependence on t is equivalent to a shift, and has no effect on the 

ROC.  The decision by a quadratic observer is, 

𝑡2

2
(1 −

1

𝜎1
2) + 𝑡

𝜇1

𝜎1
2  

>
<

   λ. 

( 1.11.5 ) 

The quadratic observer template is found with similar steps, starting by assuming data are 

Gaussian, with its own covariance matrix, 

𝑝𝑟(𝑔 |𝐻𝑛) = [(2𝜋)𝑀 det(𝑲𝑛)]
−1

2⁄ exp [
−1

2
(𝑔 − 𝑔 ̅𝑛)

𝑡
𝑲−1(𝑔 − 𝑔 ̅𝑛)], 

( 1.11.6 ) 

and takes the natural logarithm of the ratio of the two likelihoods, 

𝑡(𝑔 ) = 𝑙𝑛 (
𝑝𝑟(𝑔 |𝐻1)

𝑝𝑟(𝑔 |𝐻0)
) = 

ln(det(𝑲𝟎)
−1 2⁄ ) − ln(det(𝑲1)

−1 2⁄ ) + 

1

2
(𝑔 − 𝑔 0̅̅ ̅)

𝑡
𝑲𝟎

−1(𝑔 − 𝑔 0̅̅ ̅) −
1

2
(𝑔 − 𝑔 1̅̅ ̅)𝑡𝑲𝟏

−1(𝑔 − 𝑔 1̅̅ ̅). 

( 1.11.7 ) 

The determinant of the inverse of 𝑲0 and 𝑲1 are both assumed to be small compared to the 

remainder of the observer.  These terms are ignored, resulting in the final form of the 

quadratic observer, 
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𝑡(𝑔 ) =
1

2
(𝑔 − 𝑔 0̅̅ ̅)

𝑡
𝑲𝟎

−1(𝑔 − 𝑔 0̅̅ ̅) −
1

2
(𝑔 − 𝑔 1̅̅ ̅)𝑡𝑲𝟏

−1(𝑔 − 𝑔 1̅̅ ̅). 

( 1.11.8 ) 

As with the Hotelling observer, the quadratic observer only needs knowledge of the first- 

and second- order statistics to compute a test statistic.  It is thus efficient to test the 

quadratic observer at the same time as testing a Hotelling observer, since both require the 

same first- and second-order statistics recovered from training data. 

 If the data are Gaussian, have different means, and different covariance matrices, 

then the quadratic observer will maximize the SNR, and will be the ideal observer.  It is 

often a bad assumption that the image data are Gaussian, but it is a good starting point.  If 

these methods do not work, then exploring alternative observers with simpler statistics is a 

valid option.  Examples of these are the channelized Hoteling observer or channelized 

quadratic observer.54 

1.12  Local Texture Analysis 
 

The ECM associated with HF has a repeating cellular structure with characteristic 

dimensions on the order of 1-5mm.  The liver is a three dimensional object and the lobules 

are locally close to a crystalline formation, but without long range order.  The ECM defines 

this space and results in contrast between the tissue and the ECM in DE-MRI.  Normal 

liver has little structure and images appear less textured.   
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 The Hotelling and quadratic observers depend on sampling the mean of the two 

classes to train the observers.  To perform local texture analysis, one starts at a random 

location in the object and select independent, non-overlapping, adjacent ROI’s.  The texture 

from HF also has a random size and distribution.  The texture across ROI’s may not stay 

in phase across the entire liver, which will lead to the mean of texture washing out across 

many observations.   

 Local texture analysis with autocorrelation or wavelet analysis emphasizes changes 

in texture in the ROI and removes the effects of the local shifts and rotations in the image 

data.  Texture is identified by the local cellular structure, not a global arrangement of the 

collagen “lattice”.   

1.12.1  2D Autocorrelation 

 

The first analysis method tested is the 2D discrete autocorrelation (2DAC), a special 

case of the 2D discrete cross-correlation.  The 2DAC is a measure of a function’s self-

similarity.  For a MxN image vector 𝑓 , the 2DAC is given as: 

𝑅′
𝑘,𝑙 = ∑ ∑𝑓𝑚,𝑛

𝑁

𝑛=1

𝑀

𝑚=1

𝑓∗
𝑚−𝑘+1,𝑛−𝑙+1

         
1 ≤ 𝑘 ≤ 2𝑀 − 1
1 ≤ 𝑙 ≤ 2𝑁 − 1

 

𝑅𝑘,𝑙 =
𝑅′𝑘,𝑙

𝑅′𝑚𝑎𝑥
. 

( 1.12.1 ) 

The autocorrelation function yields a larger output vector than the input vector.  A 𝑁𝑥𝑁 

image yields a 2𝑁 − 1𝑥2𝑁 − 1 2DAC.  For example, the autocorrelation function for a 
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7x7 pixel image yields an output with a size of 13x13 pixels and a characteristics 2-D 

pyramidal background.   

1.12.2  The 2D Discrete Circular Autocorrelation 

 

Even though it has symmetry, the training requirement for a 2DAC is large compared 

to the initial image it starts with.  One method to reduce the training requirement size is to 

use a local texture analysis operator whose output is the same size as the input.  The 2D 

discrete circular autocorrelation (2DCC) provides this result, 

𝑆′𝑘,𝑙 = ∑ ∑ 𝑓𝑚,𝑛

𝑁

𝑛=1

𝑀

𝑚=1

𝑓𝑚−𝑘+1𝜎(𝑀),𝑛−𝑙+1𝜎(𝑁)
∗             

1 ≤ 𝑘 ≤ 𝑀
1 ≤ 𝑙 ≤ 𝑁

, 

𝑆 =
𝑆′𝑘,𝑙

𝑆′𝑚𝑎𝑥
. 

( 1.12.2 ) 

The 2DAC is also measure of self-similarity as a function of 2D offset, but the measure 

wraps, due to the modulo shift also removing the lag-dependent background.  The result is 

a NxN image has an NxN 2DCC and will have a smaller training requirement than the 

analysis performed by the 2DAC. 

1.12.3  Wavelet Analysis 

 

While an autocorrelation is effective for detecting a cellular texture in an image, the 

infiltration of HF also changes the frequency spectrum of the image.  One start to this 

approach would begin with a Fourier transform.  However, a Fourier transform frequency 

analysis generally applies effectively to an entire image.  In a clinical MRI image, the 2D 
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Fourier transform would include information from any location in the plane of the image.  

Instead, a method sensitive to a local change in frequency is needed to detect the presence 

of the ECM. 

The wavelet transform (WT) converts the signal into a function of two variables, one 

associated with frequency and the other with location, 𝑓(𝑥 ) is transformed into �⃗⃗� (𝑎, 𝑏) in 

which 𝑎 is associated with frequency content and 𝑏 contains spatial information.  The 1-D 

wavelet transform is given by: 

�⃗⃗� (𝑎, 𝑏) =  
1

√𝑎
∫ 𝑓(𝑥 )ℎ∗ (

𝑥 − 𝑏

𝑎
)𝑑𝑥

∞

−∞

 

( 1.12.3 ) 

where 𝑓(𝑥 ) is the analyzed image and ℎ(𝑥) is the chosen wavelet.  Valid wavelet functions 

have limiting conditions.  First, the wavelet and function must not have infinite integrals.  

Second, it is preferred that𝑓 (𝑥) is recoverable by an inverse wavelet transform.  This limits 

the family of wavelets to an orthonormal set: 

∫ ℎ𝑚𝑛
∗(𝑡 )

∞

−∞

ℎ𝑚′𝑛′
∗(𝑡 )𝑑𝑡 = 𝛿𝑚𝑚′𝛿𝑛𝑛′. 

( 1.12.4 ) 

Due to the complexity of the problem of analyzing liver tissue with MRI images, a simple 

wavelet is desired to ensure the features extracted from the wavelet transform are properties 

of the image and not of the chosen wavelet.  With this consideration, the Haar wavelet was 
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chosen to analyze the target images.  The data analyzed is real and positive and so are the 

wavelets.  The sampling points must be chosen as: 

𝑎𝑗 = 2−𝑗 , 

(  1.12.5 ) 

𝑏𝑗𝑘 = 2−𝑗𝑘. 

(  1.12.6 ) 

The wavelet is defined as: 

ℎ𝑗𝑘(𝑡 ) =
1

√𝑎𝑗
ℎ (

𝑡 −𝑏𝑗𝑘

𝑎𝑗
) = 2

𝑗

2ℎ(2𝑗𝑡 − 𝑘). 

( 1.12.7 ) 

The wavelet transform is then: 

𝜔𝑗𝑘 = 𝑤(𝑎𝑗, 𝑏𝑗𝑘) = ∫ 𝑓(𝑡 )
∞

−∞

ℎ𝑗𝑘
∗ (𝑡 )𝑑𝑡. 

( 1.12.8 ) 

However, this is not useful unless 𝑓 (𝑡) is in vector form.  A low pass filter to be applied to 

𝑓  to down sample the function.  A high pass filter representing the wavelet is applied to 

retrieve the wavelet coefficients for the same level,  

𝑓𝑘
𝑗−1

= ∑ 𝑓2𝑘+𝑛
𝑗

2𝑁−1

𝑛=0

𝑙𝑛 , 

( 1.12.9 ) 
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𝑤𝑘
𝑗−1

= ∑ 𝑓2𝑘+𝑛
𝑗

2𝑁−1

𝑛=0

ℎ𝑛 . 

( 1.12.10 ) 

Where the Haar wavelet filters are defined as: 

𝑙 =
1

√2
[1 1] , ℎ =

1

√2
[1 −1]  

(  1.12.11 ) 

The DWT is a separable transform, meaning the expansion into 2D involves performing 

the 1D DWT sequentially to the rows and then the columns of the image 𝑓 .   

The 2D wavelet coefficients are often associated with the low pass, horizontal, 

vertical, and diagonal coefficients.  The filters are applied to the matrix in both directions, 

and much more efficient methods are used to actually retrieve the coefficients.  However, 

each group of coefficients can be illustrated through four separate operations: 

 

 

(1) 𝑤𝑙,𝑙 = 𝑓𝑘,𝑚
𝑗−1

= ∑ ∑ 𝑙𝑛𝑙𝑚𝑓2𝑘+𝑛,2𝑘+𝑚
𝑗

2𝑁−1

𝑚=0

2𝑁−1

𝑛=0

 

(2) 𝑤𝑙,ℎ = ∑ ∑ 𝑙𝑛ℎ𝑓2𝑘+𝑛,2𝑘+𝑚
𝑗

2𝑁−1

𝑚=0

2𝑁−1

𝑛=0
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(3) 𝑤ℎ,𝑙 = ∑ ∑ ℎ𝑛𝑙𝑚𝑓2𝑘+𝑛,2𝑘+𝑚
𝑗

2𝑁−1

𝑚=0

2𝑁−1

𝑛=0

 

(4) 𝑤ℎ,ℎ = ∑ ∑ 𝑙𝑛𝑙𝑚𝑓2𝑘+𝑛,2𝑘+𝑚
𝑗

2𝑁−1

𝑚=0

.

2𝑁−1

𝑛=0

 

( 1.12.12 ) 

𝑁 is the number of pairs in the wavelet, which for the Haar wavelet is 𝑁 = 2.  Many 

wavelet transforms will refer to each group of coefficients as the approximation, horizontal, 

vertical, and diagonal coefficients respectively.  𝑗 is associated with the number of times a 

function can be down sampled before reaching a DC value.  For a vector of length 8,  𝑗 =

3, therefore it is possible to recover 3 levels.   

1.13  Goal of the Following Work 
 

We have presented the tools necessary to discuss the experiments and results of training 

and testing mathematical observers to detect texture in the liver from DE-MRI images.  The 

primary goal is to train an observer and test the 2DAC and 2DCC as viable texture analysis 

methods.  For computer-aided detection of HF. 
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2.  Designing a Phantom 
 

The hallmark of hepatic fibrosis is the emergence of collagen that progresses from 

portal veins, and bridges to form a network of fibrous tissue.  As the collagen burden 

increases, the liver tissue becomes dominated by the introduced texture.  The microscopic 

structure underlying this texture is the feature pathologists use to assess liver fibrosis in 

biopsy samples.  Developing mathematical (computer) observers that perform texture 

analysis to detect hepatic fibrosis requires training and testing data that includes known-

normal and known-diseased livers.  There are two options to obtain that data. One option 

is to collect patient data from biopsy-confirmed patients, and build training and testing data 

from libraries of clinical scans.  The other option is to use phantoms that mimic the images 

of in-vivo Gd-enhanced delayed-phase MRI in the liver.  The first option is expensive, time 

consuming, and requires that at least some biopsies are carried out on healthy livers.  The 

second option is much less expensive, and allows repeated experiments without the tissue 

changing over time.   

2.1  Observation of Livers from Autopsy 
 

Early in the project, clinical scans were collected, and eventually it was suggested to 

recover a liver from autopsy and place it in the scanner to collect images.  Tissue collected 

from autopsy is fixed in formalin to prevent the tissue from deteriorating without the blood 

supply of the body. 



68 

 

 

Figure 2.1.1: (A) & (B)Photos of phantom recovered from autopsy.  (C) & (D) MRI of 

phantoms.  The images highlight the preservation of contrast of fibrosis associated with 

HF. 
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When the formalin-fixed tissue is imaged in the MRI, we find contrast between fibrosis 

and tissue, similar to contrast observed in in-vivo DE-MRI.  Figure 2.1.1 shows two of the 

first tissues collected from autopsy.  Figure 2.1.1 (A) is a photo of a liver confirmed with 

biopsy as stage F1 on the METAVIR scale.  Figure 2.1.1 (B) is a photo of a liver confirmed 

with biopsy as METAVIR stage F4, and is thus cirrhotic.  Figure 2.1.1 (C) and (D) are 

slices from 3D gradient echo sequences at TR/TE/FA 9.79ms/4.44ms/15° with fat 

suppression SPAIR.  The resolution in these images are 0.35x0.35x0.35mm3 which is 

possible due to the lack of motion and possibility of for long scan times. 

 Visually these results are promising.  A radiologist confirmed the MRI images of 

formalin-fixed tissue, shown in Figure 2.3.1, do replicate the contrast associated with HF 

in CE-MRI.  A quantitative comparison is necessary to confirm these findings on the way 

to training an observer sensitive to a change in local texture associated with HF. 

2.2  Validation of Texture in Formalin-Fixed Tissue Phantoms 
 

A valid phantom consistently replicates results of in vivo imaging.  With initial 

phantoms recovered, we designed a test based on work done by Burgess et al. to confirm 

that the texture in ex vivo phantoms is consistent with and substantially similar to images 

from in vivo scans. 55,56 

We recover formalin-fixed, one-inch-thick slices of liver from autopsies performed at 

the University of Arizona Department of Pathology.  Figure 2.3.1 shows a comparison of 
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typical images from liver phantoms imaged with a 3D gradient echo sequence (TR/TE/FA 

=9.79ms/4.44ms/43°) to in vivo images of patient (TR/TE/FA= 3.51ms/2.20ms/10°). 

Burgess showed that radially-averaged 2D power spectra of breast tissue images are 

repeatable and have a characteristic slope in a log-log plot of the power versus spatial 

frequency. 56   The method utilizes the discrete 2D Fourier Transform (DFT) of a ROI, 

calculation of the power via the square modulus, and an averaging procedure along radial 

directions.  This technique is also implemented by Metheany et al, and similar techniques 

are used in ultrasound by Wagner et al., who use the power spectra to describe local texture 

in tissue. 57,58  This technique has also been extended to ultrasound images of liver tissue.59 

The textures of the images of the formalin fixed liver phantom to in-vivo Gd-enhanced 

liver images are compared using power spectral analyses of the pixelated images.  A 41x41 

pixel ROI, 𝑥, in each liver is selected to ensure only image data fully inside the liver is 

analyzed.  This size is selected to sample short and long range power spectra frequencies.  

As suggested by Burgess, a 2D Hanning taper window with a width of 41 pixels is applied 

to the image. The Hanning window is given as:  

𝑞𝑛,𝑚 =
1

4
(1 − 𝑐𝑜𝑠 (2𝜋

𝑛

𝑁
))(1 − 𝑐𝑜𝑠 (2𝜋

𝑚

𝑀
)) , 0 ≤ 𝑛 ≤ 𝑁  0 ≤ 𝑚 ≤ 𝑀. 56 

( 2.2.1 ) 

The power spectra of the images were computed as the square moduli of the discrete 

Fourier transform (DFT), 



71 

 

𝝌𝑘,𝑙 = ∑ ∑ 𝑥𝑛.𝑚𝑞
𝑛,𝑚

exp (−
2𝜋𝑖𝑛𝑘

𝑁
)exp (−

2𝜋𝑖𝑚𝑘

𝑀
)

𝑀−1

𝑚=0

.

𝑁−1

𝑛=0

 

( 2.2.2 ) 

The Hanning window reduces the effect of high ringing frequency terms introduced by 

truncation at the ROI boundaries in the DFT.   

Radial averaging is performed with a grid of 400 lines originating at the DC component 

of a 41x41 𝝌 and covering the angular range from 0 to 2π, by calculating the nearest 

Cartesian point neighbor to each of a set of regularly spaced points along the radial line. 

2.3  Results of the Phantom Texture Validation Test 
 

Figure 2.3.2, which shows four ex vivo tissue phantom samples and the respective 

ROI’s for which the power spectra is calculated.  Figure 2.3.3 is the collection of in vivo 

images and ROI’s that were analyzed.  The radially averaged power spectra are plotted on 

a log, log scale in shown in Figure 2.3.4, of the formalin-fixed ex vivo phantoms to the Gd-

enhanced in vivo patient power spectra follow very similar trends.  Comparing the mean of 

the fitted slopes and their standard deviation we conclude that the image data of the liver 

tissue phantoms have similar textural content and contrast as the Gd-enhanced in vivo 

images.   

With this conclusion, we can perform local textural analysis of liver fibrosis using the 

formalin-fixed phantoms as a surrogate task, and later translate the methods to images 

acquired on patients in vivo. 
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Figure 2.3.1: A comparison highlighting the comparable contrast between ex-vivo 

phantoms and in-vivo patient images.  The formalin fixed F4 phantom has an extensive 

collagen network that has contrast between the tissue and collagen similar to the in-vivo 

image shown  
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Figure 2.3.2: A & B are in plane images of an ex vivo F0 and F1 livers respectively.  C & 

D are in plane images of an ex vivo F4 liver.  Next to each image is the respective ROI 

for which radial power spectra were calculated. 
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Figure 2.3.3:A & B are in plane images of an in vivo F0 patient liver.  C & D are in plane 

images of an in vivo F4 patient liver.  Next to each image is the respective ROI for which 

radial power spectra were calculated. 
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Figure 2.3.4: (A) Log of the average power spectra ±2σ of in vivo and (B)  ex vivo 

healthy and diseased liver tissue, plotted against a log frequency scale with ± 2σ. 
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3.  Training and Testing a Linear Observer 
 

With a valid phantom confirmed from experiments covered in Chapter 2, a Hotelling 

template based on local texture analysis described in sections 1.12.1 and 1.12.2 is trained 

and tested on phantom images.  We present the requirements to take images, prepare the 

data for analysis, train the observer with first and second order statistics and present 

experimental results.   

3.1  MRI of Phantoms 
 

An MRI sequence similar to in vivo gadolinium enhanced MRI (DE-MRI) is used in 

order to replicate the in vivo HF features and in order to ease translation to the clinic.  The 

phantoms were imaged on a SIEMENS 3T Skyra with a TR/TEI/FA = 9.79ms/4.44ms/15°.  

With these parameters, images are collected at an isotropic resolution of 0.35mm3.  The 

grid necessary for this scan is 768x760 pixels in-plane and 96 slices in the z-direction.  All 

images were collected at room temperature (22º C).  The total scan time at one FA is 

approximately 25 minutes.  All phantoms were imaged with the same scan parameters to 

ensure that the contrast between the samples is consistent.  A model observer cannot easily 

be trained with data taken at different resolutions, so the experiment was set up to ensure 

there is no change in resolution between scans.  The phantoms range in thickness from 1 

to 2.5 cm.  Imaging with a small slice thickness prevents errors from partial volume 

entering the image.  Figure 3.1.1 provides representative slices from each phantom.  The 

sequence is almost capable of reproducing texture associates with fibrosis that is seen in 
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biopsy results.

 

Figure 3.1.1: A and B are the F0 and F1 phantoms collected for the null hypothesis, C 

and D are the F4 phantoms.  These are selections of the image data sets used to train and 

test the Hotelling observers. 
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3.2  Biopsy Results 
 

Dr.  Bhattacharyya, MD, the head of the Pathology Department at the University of 

Arizona College of Medicine collaborated with us in this research and assisted with the 

project by staging the biopsies on the METAVIR scale.  To train the normal class of the 

observer, a F0 and F1 liver were recovered from autopsy.  For the diseased case, two livers 

recovered from autopsy had all biopsies diagnosed as F4.  Only livers with homogenous 

results were selected for training and testing observers.  Eight biopsies were collected from 

each phantom.  

Optical images from biopsy samples from each of the four phantoms are shown in 

Figure 3.2.11. Images are collected on a video microscope. Figure 3.2.11 A is a slide taken 

from an  F0 liver and has no fibrosis in the tissue as observed by our radiologist. Figure 

3.2.11 B is from an F1 liver and has mild fibrosis around the portal veins. Figure 3.2.11 C 

and D are from cirrhotic livers, and were identified as F4.  The ECM is seen creating large 

boundaries around the lobules with the hepatocytes inside. 

The current method for securing phantoms first requires consent of the attending 

physician(s) of an autopsy that the liver tissue can be released to us.  During the autopsy, a 

1-inch-thick slice of the liver is cut from the organ and fixed in 10% neutral buffer formalin 

until the tissue is fixed, requiring about 3-4 days.  After the tissue is fixed, eight biopsies 

are collected as triage specimens and taken to produce histological slides.  The turn-around 

for slides is at least two weeks.  After slides are picked up, we can schedule a read with Dr.  
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Bhattacharyya, whose expertise was critical to this project.  The time between recovering 

a phantom and the read to determine the class can take about 1 month.  This has been 

sufficient for this project, but may require additional resources in continuing work. 

 

 

Figure 3.2.1: (A) Biopsy from 3.2.1 (A),  (B) Biopsy from 3.2.1 (B),  (C) Biopsy from 

3.2.1 (C),  (D) Biopsy from 3.2.1 (D),  liver phantoms diagnosed by the pathologist 
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3.3  Thresholding to Remove Effects of Veins 
 

Images of both ex vivo and in vivo tissue contain vasculature features of the liver.  

In both of these cases, the vessels will add texture to the image, however, it is not 

texture associated with fibrosis.  Large vessels in F4 tissue completely contained in the 

ROI image will register as images with no texture, looking like F0 tissue to an observer.  

Smaller vessels in F0 tissue could be confused for strands of collagen associated with 

F4. 

In in vivo imaging, Gd accumulates in the blood and, if a scan is taken early, there 

is high signal in the blood vessels.  When working with ex vivo phantoms, vessels are 

dark, either containing air or formalin, depending on how the phantom is prepared.  In 

either case, removing these features is a crucial step to ensure that the observer is 

trained on statistics from liver tissue and not vasculature. 

The scope of this dissertation does not cover automatic segmentation.  While there 

are many effective methods to complete the task of automatic segmentation, a simple 

approach was used to segment major blood vessels and background from phantom 

images.  The solution selected is basic thresholding with visual confirmation by a 

trained human.  Results for healthy phantoms are shown in Figure 3.3.1 and diseased 

livers in Figure 3.3.2.  Some pixels not part of the phantom do survive the thresholding, 

but will not survive a second stage threshold which is applied during texture analysis.  
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Every ROI is confirmed to contain data from the liver by rejecting data containing 

values equal to the background of each respective slice. The images show the removal 

of low signal background from the MRI scan.  Features due to fibrosis are not detectable 

in these images due to the high brightness setting of the images. 

 

Figure 3.3.1: (A) and (C) are F1 and F0 phantoms before thresholding, (C) and (D) are 

the results of applying the threshold. 

(A) (B) 

(C) (D) 
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Figure 3.3.2: (A) and (C) are F4 phantoms before thresholding, (C) and (D) are the 

results of applying the threshold. 
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3.4  Normalization 
 

The Hotelling observer described in section 1.10 is dependent on the matched filter, 

𝑠 = 𝑔1⃗⃗⃗⃗ ̅̅ ̅ − 𝑔0⃗⃗⃗⃗ ̅̅ ̅, 

( 3.4.1 ) 

which suggests different DC offsets or gains in data acquisition would greatly impact the 

performance of the observer.  To remove bias of the DC offsets and gains, a normalization 

method was applied before an observer is trained or tested. 

 MRI suffers from artifacts from partial volume, and the effects of limited 

resolution.  There are also coil sensitivities that will impact the recovered signal on a slice-

by-slice basis.  In fact, coil placement can heavily impact the final image recovered and 

there is an inevitable patient to patient variability in the amount of Gd contrast agent 

injected and accumulated in the liver.  The observation of slice-by-slice variation suggests 

that the normalization needs to be applied on a slice-by-slice basis. 

 The calculation of the observer depends on measuring the mean and covariance of 

the image data associated with the object.  To remove the systematic effects, strategy of 

slice-by-slice, zero-mean, unit-variance was chosen to act as our normalization method.  A 

threshold was applied to the DICOM image vector 𝐺  of size m x n x z as described in 

section 3.3 and it has the mean of each slice removed from it.  The mean is calculated from 

pixels that are not the background, 
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𝐺𝑧
̅̅ ̅ =

∑ ∑ 𝐺𝑚𝑛𝑧 , 𝐺𝑚𝑛𝑧
𝑁
𝑛

𝑀
𝑚=1 ≠ 𝑚𝑖𝑛(𝐺𝑚𝑛𝑧)

𝑀′
,𝑀′ = ∑𝐺𝑚𝑛𝑧 ≠ 𝑚𝑖𝑛(𝐺𝑚𝑛𝑧). 

( 3.4.2 ) 

The same data used to calculate the mean is used to calculate the variance.  This 

information is used to create the normalized data set, 

𝐺′⃗⃗  ⃗
𝑧,𝑁𝑜𝑟𝑚 =

𝐺 𝑧 − 𝐺 𝑧
̅̅ ̅

𝜎𝐺 𝑧

, 

( 3.4.3 ) 

where 𝜎𝐺𝑧
 is the standard deviation of the liver pixel values. To see the impact of this 

normalization, we compare the histograms of the data collected in a phantom before and 

after normalization.  Results are shown in  

Figure 3.5.1: A single slice from a F4 phantom and it’s pixel values before normalization 

 and Figure 3.5.2.  The histograms omit the data not normalized, i.e. the background.  We 

use this method to normalize all data, whether it is used to train or test an observer. 

3.5  Training an Observer 
 

Training a linear Hotelling observer requires careful consideration to ensure the 

template is only trained on features in local texture content.  The observer is linear in, 𝑔 , 

putting requirements on how the DICOM data are handled.   

The size of the observer ROI is important to consider.  A large observer samples more 

tissue and therefore might include more HF, but this is balanced with the training 
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requirements on the observer.  For that reason, we chose to limit our local texture analysis 

to 7x7 and 9x9 pixel regions.   

Once the phantoms are divided by class, the normalized DICOMs are used to train the 

observer.  What follows is a detailed account of training the null or healthy class of the 

observer. 
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Figure 3.5.1: A single slice from a F4 phantom and it’s pixel values before normalization 
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Figure 3.5.2 A single slice from a F4 phantom and it’s pixel values after normalization 
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For the F0 phantom, there is a 3D image data set of size PxQxZ.  Across each slice 

z, an image PxQ is normalized to zero mean, unit variance.  Any regions including 

background data are eliminated via thresholding.  This ensures only liver data trains the 

observer. 

Training images are sampled with independently gridded ROI’s to avoid bias from 

overlapping.  A value, N, is chosen for the size of the template for which B training data 

sets are selected from the training data: 

𝑔 01
= 𝐺′⃗⃗  ⃗

0𝑝:𝑝+(N−1),𝑞:𝑞+(N−1)
 

𝑔 02
= 𝐺′⃗⃗  ⃗

0𝑝+N:𝑝+N+(N−1),𝑞+N:𝑞+𝑝+N+(N−1)
 

𝑔 0b
= 𝐺′⃗⃗  ⃗

0[𝑝+𝑁(𝑏−1)]:[𝑝+𝑁(𝑏−1)+(𝑁−1)]:[𝑞+𝑁(𝑏−1)]:[𝑞+𝑁(𝑏−1)+(𝑁−1)]
. 

( 3.5.1 ) 

To test either analysis method, each gridded region is analyzed with either the 2DAC or 

2DCC as introduced in 1.12 . 

To train the observer it is important to ensure that the covariance matrices meet 

minimum sampling requirements.  The requirement for a 7x7 ROI for a 2DAC is 3,528, 

and the 2DCC requires 288 independent samples per covariance matrix.  The phantom in 

Figure 3.1.1A has 248,439 independent grid ROIs, Figure 3.1.1B has 56,865, Figure 3.1.1C 

has 127,150, and Figure 3.1.1D has 49,858 regions.  Thus, each phantom contains more 

than enough data to train the covariance matrix with either local texture analysis for a 7x7 
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region.  The requirement for a 9x9 ROI for a 2DAC is 10,368 and the 2DCC requires 800 

independent grid ROI’s. There is still adequate training data with a 9x9 ROI. 

 

Once the training set for class 0 is collected, the training set of class 1 is collected 

repeating equations 2.9-2.11.  With the training sets, we can calculate the components of 

the linear Hotelling observers for each analysis method, 

 

�̂�𝑘,𝑙 =
∑ 𝑅𝑘,𝑙𝑦

𝑌
𝑦=1

𝑌
              �̂�𝑘,𝑙 =

∑ 𝑆𝑘,𝑙𝑦
𝑌
𝑦=1

𝑌
  

( 3.5.2 ) 

The matrix is flattened from a two dimensional matrix to a one dimensional vector: 

�⃗� 𝜀 = �̂�𝑘,𝑙          
1 ≤ 𝑘 ≤ 𝐾
1 ≤ 𝑙 ≤ 𝐿

                           𝑆 𝜀 = �̂�𝑘,𝑙         
1 ≤ 𝑘 ≤ 𝐾
1 ≤ 𝑙 ≤ 𝐿

, 

( 3.5.3 ) 

Where K and L are selected to only collect data before the center point of the 

autocorrelation analysis and 휀 is the component of the texture analysis ranging from one to 

the final unique element. The training data are also used to calculate the covariance matrix 

for each class 

𝐾0𝑖,𝑗
=

1

𝑌 − 1
∑|�⃗� 𝑖 − �⃗� ̅|

𝑡

|�⃗� 𝑗 − �⃗� ̅|

𝑌

𝑖=1

.   

( 3.5.4 ) 
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With the measurement of the mean vector and covariance matrix for each class and with 

either the 2D discrete autocorrelation or the 2D discrete circular correlation analysis, a 

linear Hotelling observer is calculated. 

With these results a Hotelling observer is calculated based on either local 2D 

autocorrelation, 2D circular autocorrelation, or wavelet coefficients, 

𝑤2𝐷𝐴𝐶 = (
𝑲0𝑅

+ 𝑲1𝑅

2
)

−1

(�⃗� ̅1 − �⃗� ̅0), 

( 3.5.5 ) 

𝑤2𝐷𝐶𝐶 = (
𝑲0𝑆

+ 𝑲1𝑆

2
)

−1

(𝑆 ̅1 − 𝑆 ̅0), 

( 3.5.6 ) 

𝑤𝑊𝑇 = (
𝑲0𝜔

+ 𝑲1𝜔

2
)

−1

(�⃗⃗� ̅1 − �⃗⃗� ̅0). 

( 3.5.7 ) 

 

3.6  Hotelling Observer Results 
 

To confirm that a trained Hotelling observer is effective when applied to testing data, 

only image data from one liver is allowed to represent the training class for training an 

observer.  With four phantoms, it is possible to train four independent Hotelling observers, 

each phantom corresponds to phantoms found in Figure 3.1.1.   
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Both the 2DAC and 2DCC are normalized and symmetric, leading to the possibility to 

leave out the 0,0 point in the data and rejecting the second half of the 2DCC and 2DAC 

result.  For a 7x7 ROI, the 2DAC is 13x13 and 2DCC is 7x7.  This results in the need for 

only the first 84 points for the 2DAC template and the first 24 points of the 2DCC. 

Each local texture analysis is performed on selected ROIs.  To train the observer, the 

mean of the local texture analysis data are calculated.  Figure 3.6.1 and Figure 3.6.2 show 

the mean of the 2DAC and 2DCC data from each phantom, respectively.  The data that is 

used to calculate mean also is used to compute covariance matrices, shown in Figure 3.6.3 

and Figure 3.6.4 for the 2DAC and 2DCC, respectively.  A human observer can see a 

difference between the mean data computed from the healthy and diseased livers.   

1D representation of templates calculated from training data are shown in Figure 3.6.5 

and Figure 3.6.6 for the 2DAC and 2DCC respectively.  For each combination of livers 

used to train a template, the template is applied to the other two phantoms as testing data.  

The templates from both texture analysis methods exhibit rotational symmetry as expected 

from texture analysis methods.  For all training data, we find the templates to be highly 

reproducible. 
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Figure 3.6.1: Mean data from 2DAC texture analysis from each phantom. 3.1.1 (A) and 

(B) are the F0 and F1 livers and 3.1.1 (C) and (D) are diseased livers 
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Figure 3.6.2: Mean data from 2DCC texture analysis from each phantom. 3.1.1 (A) and 

(B) are the F0 and F1 livers and 3.1.1 (C) and (D) are diseased livers 
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Figure 3.6.3: Covariance data from 2DAC texture analysis from each phantom 
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Figure 3.6.4:  Covariance data from 2DCC texture analysis from each phantom 
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Figure 3.6.5: 1D representation of the Hotelling template of each combination of training 

data resulting from a 2DAC texture analysis 
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Figure 3.6.6: 1D representation of the Hotelling template of each combination of training 

data resulting from a 2DCC texture analysis 

0 5 10 15 20 25
-20

0

20

Template from Combination 1

O
b
s
e
rv

e
r 

A
U

Observer Index

0 5 10 15 20 25
-20

0

20

Template from Combination 1

O
b
s
e
rv

e
r 

A
U

Observer Index

0 5 10 15 20 25
-20

0

20

Template from Combination 1

O
b
s
e
rv

e
r 

A
U

Observer Index

0 5 10 15 20 25
-20

0

20

Template from Combination 1

O
b
s
e
rv

e
r 

A
U

Observer Index



98 

 

 

The third texture analysis method applied to our data is a local wavelet transform.  

A 7x7 ROI will have edge effects from the wavelet transform, so an 8x8 ROI was analyzed 

for the Hotelling Observer.  The Haar wavelet is sensitive to boundaries, and the visual 

interpretation of the means and templates are more difficult to understand.  Also to only be 

sensitive to changes in local texture, the template was trained on the magnitude of the 

wavelet transform coefficients. The 8x8 ROI results in a 64-pixel observer.   

The means are shown in Figure 3.6.7.  One notices immediately that the data from 

the normal livers, from Figure 3.1.1 (A) and 3.1.1 (B) have a gap between them.  The 

fibrotic livers from Figure 3.1.1 (C) and Figure 3.1.1 (D) appear very similar. The 

covariance matrices from each data set are shown in Figure 3.6.8.  Finally, the four 

independent templates are shown in Figure 3.6.9.  The templates appear to have different 

characteristics, suggesting limited reproducibility. 
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Figure 3.6.7: Mean wavelet analysis data from the four phantoms 
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Figure 3.6.8: Covariance matrices for the four phantoms based on a local wavelet 

transform 
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Figure 3.6.9: Four independent templates based on local wavelet analysis for the 

collected phantoms 
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3.7  Testing an Observer 
 

With a trained linear Hotelling observer �⃗⃗� , the steps to test the ability to separate two 

classes are very similar to the training process.  Recovering a test statistic requires taking 

the inner product of the template with image data collected and processed in the same 

method �⃗⃗�   is trained: 

𝑡(𝑔 ) = �⃗⃗� ′𝑔.⃗⃗  ⃗ 

(  3.7.1 ) 

To evaluate a local texture analysis such as the 2D discrete autocorrelation or 2D 

discrete circular autocorrelation, the vector is replaced with the respective analysis method, 

𝑡(�⃗� ) = �⃗⃗� ′
2𝐷𝐴𝐶 �⃗� ,                 𝑡(𝑆 ) = �⃗⃗� ′

2𝐷𝐶𝐶𝑆 .  

(  3.7.2 ) 

To test the Hotelling observer, an independent testing set drawn from the individual classes 

is necessary.  F0 and F4 livers that were not part of the training set test were used as the 

testing data sets. 

Following similar steps to training the observer for the F0 phantom, there is a 3D 

image data set 𝐺′ of size PxQxZ.  For each slice z, there is an image 𝐺 of size PxQ on 

which the local texture analysis is performed.  An ROI the same size as the training ROI is 

stepped across the testing data. A sliding window has advantages, first, more test statistics 

are calculated to estimate the ROC curve. Second, the sliding window shows local changes 
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in the test statistic across the liver which will allow us to build a computer-aided diagnostic 

tool, which will be described in section 3.9. Finally, while training the observer requires 

the data to be statistically independent, this constraint is not necessary for testing a 

mathematical observer. The test statistics of consecutive ROI’s are independent of one 

another.  The testing data set is therefore much larger than the training data set.  Applying 

the sliding window is as follows: 

𝑔 01
= 𝐺′⃗⃗  ⃗

0𝑝:𝑝+(N−1),𝑞:𝑞+(N−1)
 

𝑔 02
= 𝐺′⃗⃗  ⃗

0𝑝+1:𝑝+1+(N−1),𝑞+1:𝑞+1+(N−1)
 

.

.

.
 

𝑔 0b
= 𝐺′⃗⃗  ⃗

0𝑝+b−1:𝑝+b+N−2,𝑞+b−1:𝑞+b+N−2
. 

( 3.7.3 ) 

For each local region, the image matrix is flattened and both cross-correlation analysis 

methods are applied and the test statistic is extracted: 
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𝑡(�⃗� 01
) = �⃗⃗� ′�⃗� 01

 

𝑡(�⃗� 02
) = �⃗⃗� ′�⃗� 02

 

.

.

.
 

𝑡(�⃗� 0b
) = �⃗⃗� ′�⃗� 0b

. 

( 3.7.4 ) 

After evaluating each region across the testing data set for class 0, the steps are repeated 

for a class 1 testing data set. 

Equation 3.7.3 provides steps for an 𝑁𝑥𝑁 pixel area, however, only a 7x7 and 9x9 

pixel regions were tested with cross-correlation techniques.   

The two test statistic distributions, corresponding to HF present and absent, are 

plotted in a histogram on the same linear scale.  ROC analysis is performed by moving a 

threshold and determining what fraction of the test statistic is less than the threshold.  If it 

is, than that local region is determined to be healthy or part of the null hypothesis50,60.  

Sliding the threshold across the full range of the test statistics allows the measurement of 

false positive fraction (FPF) and true positive fraction (TPF) and the receiver operator 

characteristic (ROC) curve to be plotted.50   
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3.8  Results of Testing the Observer 
 

As mentioned above, to apply the observer, an inner product is computed between the 

template and the testing data taken from the liver phantoms not used to train the observer.    

Data from phantoms used for testing data are selected through a sliding window ROI.  As 

a result, the phantom from Figure 3.1.1A has 7,686,034 separate 7x7 regions a template 

based on either local texture analysis can analyze.  The phantom from Figure 3.1.1B has 

2,952,176 regions; the phantom from Figure 3.1.1C has 6,053,726 regions and the phantom 

from Figure 3.1.1D has 2,503,899 regions. 

The test statistics from each ROI are placed in a histogram according to the training 

data set they originate from. Each histogram is normalized to an area of one to recover a 

probability density function (PDF).  The PDF’s for the 2DAC and 2DCC are shown in 

Figure 3.8.1 and Figure 3.8.2, respectively.  It is clear that the healthy and diseased groups 

have significant differences in the locations, shapes and widths of their PDFs.   

Using the test-statistic density functions, ROC analysis was used to calculate the true 

positive and false positive fractions, resulting in an ROC curve.  Figure 3.8.3 shows the 

AUROC and ROC’s for the four experiments utilizing a local 2DAC.  Figure 3.8.4 shows 

the results for a 2DCC.  The AUROC’s for both experiments are consistent with each other 

and the 2DCC performs as well as the 2DAC even though the template is only a third of 

the size and requires less training data. 
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Figure 3.8.1: Histograms of test statistic PDFs from testing data resulting from each 

Hotelling template applied to testing data for 2DAC texture analysis 
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Figure 3.8.2: Histograms of test statistic PDF’s from testing data resulting from each 

Hotelling template applied to testing data for 2DCC texture analysis 
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Figure 3.8.3 Mean ROC and mean AUC±2σ using a 2DAC template 

 

Figure 3.8.4: Mean ROC and mean AUC±2σ using a 2DCC template 
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The AUC values for the observer based on the wavelet transform performed about 

as well as the observers based on autocorrelation analysis.  The histograms for the four 

combinations of training data are shown in Figure 3.8.5, the average ROC curve is shown 

in Figure 3.8.6. The AUC value is higher than the other two methods of texture analysis, 

but the templates are not reproducible, which will require more investigation into the 

improved performance in future work. 

 

 

Figure 3.8.5: Histograms of test statistics from testing data resulting from each Hotelling 

template applied to testing data for wavelet transform analysis 
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Figure 3.8.6: Mean ROC and mean AUC ±2σ using a wavelet transform template 
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3.9  Test Statistic Maps 
 

Traditionally, a Hotelling observer is applied to testing data and ROC analysis is 

performed to determine the sensitivity and specificity of the observer.  Our observer works 

on an ROI much smaller than the area of the image, allowing the creation of maps similar 

to what an MRE exam provides to a radiologist.   

The sliding window for testing an observer retrieves an image which has a local texture 

analysis performed on it.  The observer is applied to the analyzed image: 

𝑡(�⃗� 0b
) = �⃗⃗� ′�⃗� 0b

. 

( 3.9.1 ) 

The image 𝒈0b
 is associated with �⃗� 0b

.  The center of the ROI of has an index p, q, z.  The 

indices are collected into an array: 

𝐼𝑏 = [𝑝𝑏 𝑞𝑏  𝑧𝑏]. 

( 3.9.2 ) 

A null image, Τ⃗⃗   that is the same size as 𝐺′⃗⃗⃗⃗ is created, and pixels are filled in with test 

statistics associated with the index they were collected from: 

Τ⃗⃗ (𝑝𝑏 𝑞𝑏 𝑧𝑏) =  𝑡(�⃗� 0b
). 

( 3.9.3 ) 

The test statistic map Τ⃗⃗   shows the value of all test statistics at the location to where 

they are computed from.  These maps highlight areas where the observer detected a high 
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probability that an ROI is part of the signal present hypothesis.  The collection of high test 

statistic values highlight areas of suspected fibrosis in an image, guiding a human observer 

to apply extra focus in indicated regions of the liver. 

We suggest that textural data can aid a radiologist through what we refer to as test 

statistic maps.  Figure 3.9.1 and Figure 3.9.2 show the two different texture analysis 

techniques applied to the same liver slices across the same 7x7 pixel regions using the 

templates from the first combination of training and testing data.  Figure 3.9.4 and Figure 

3.9.5 show a comparison of the 2DAC and 2DCC techniques using the template from 

combination 2.  These maps, combined with a radiologist’s knowledge of the delayed phase 

MRI image, create a powerful method to locate and identify liver fibrosis.  The holes in the 

maps are primarily a result of local vasculature structure.  In these regions the template was 

neither trained with the data nor used to test a model observer. 
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Figure 3.9.1 Test statistic maps generated from the Hotelling observer from Combination 

1 utilizing a 2DAC texture analysis for (A) an F0 liver and (B) F4 liver 
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Figure 3.9.2: Test statistic maps generated from the Hotelling observer from Combination 

1 utilizing a 2DCC texture analysis for (A) an F0 liver and (B) F4 liver 
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Figure 3.9.3 Test statistic maps generated from the Hotelling observer from Combination 

1 utilizing a wavelet texture analysis for (A) an F0 liver and (B) F4 liver 
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Figure 3.9.4: Test statistic maps generated from the Hotelling observer from Combination 

2 utilizing a 2DAC texture analysis for (A) an F1 liver and (B) F4 liver 
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Figure 3.9.5: Test statistic maps generated from the Hotelling observer from Combination 

2 utilizing a 2DCC texture analysis for (A) an F1 liver and (B) F4 liver 
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Figure 3.9.6 Test statistic maps generated from the Hotelling observer from Combination 

2 utilizing a wavelet texture analysis for (A) an F1 liver and (B) F4 liver 
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3.10  Limited Training for an Observer 
 

The development of a mathematical observer requires sampling the data to measure the 

first and second order statistics of the data.  The covariance matrix is a crucial component 

of the trained Hotelling observer.  An NxN image has a covariance matrix N2xN2.  The 

covariance matrix is also symmetrical, requiring N2/2 independent measurements to sample 

the matrix effectively.  When building an experiment, there may be shortages of training 

data.   

Initial experiments are conducted on ROI’s 7x7 pixels. We then expanded the ROI area 

from 7x7 to 9x9 in order to test the effect of including more of the textured signal.  With a 

9x9 ROI, the training requirements increase as well.  For a 2D autocorrelation, the 

covariance matrix is 144x144 elements, requiring 10,368 independent measurements, and 

the 2DCC results in a covariance matrix 40x40, which requires 800 independent 

measurements to train a covariance matrix.  With the samples available, the phantom in 

Figure 3.1.1 A has 144,798 9x9 ROIs, Figure 3.1.1 B has 27,496 ROIs, the phantom in 

Figure 3.1.1 C has 63,521 independent ROIs, and Figure 3.1.1 D has 28,133 independent 

ROIs.   

Before testing a covariance matrix for a 9x9 ROI, we test observers based on a 7x7 ROI 

with under-sampled covariance matrices.  Using the 2DCC, the performance of the   
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Figure 3.10.1: Mean Template ±2σ based on different amounts of training data.  The 

observer does not degrade as the sample size decreases and mean ROC’s ±2σ from 

respective covariance sampling sizes. 
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Figure 3.10.2 Mean Template ±2σ based on different amounts of training data.  The 

observer does not degrade as the sample size decreases and mean ROC’s ±2σ from 

respective covariance sampling sizes. 
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templates using 10x the sampling requirement, the minimum training requirement and half 

the training requirement were evaluated. 

The templates shown in Figure 3.10.1 and Figure 3.10.2 are from each sampling 

population.  The templates have some variance, but appear sensitive to similar features.  

Each template is applied to testing data sets and ROC analysis recovers an AUC in Figure 

3.10.1 and Figure 3.10.2.  The AUC’s have an error range of less than 0.1.  A well trained 

covariance matrix is required for observer work. 

Following this result, the four combinations of training data were used to calculate four 

observers that were tested on the four independent testing groups for a 9x9 ROI.  The ROC 

results are shown in Figure 3.10.3 for the 2DAC analysis, and Figure 3.10.4 for the 2DCC 

analysis. 

While the covariance matrix for some combinations is under trained for the 2DAC, the 

2DCC was always appropriately trained.  The AUC results show a modest improvement in 

observer performance with a larger ROI.  This result is expected in the larger ROI because 

more data from the fibrotic structure is sampled by the observer and the feature is repeated 

throughout the liver. If the ROI continues to increase, eventually, long range features will 

influence the observer.  Also, if too large an ROI is used, larger areas of the image will be 

ignored surrounding the vasculature of the liver. 
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Figure 3.10.3: Mean ROC ±2σ results for a 9x9 local analysis region using a 2DAC 

 

Figure 3.10.4: Mean ROC ±2σ results for a 9x9 local analysis region using a 2DCC 
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3.11  Conclusions from Chapter 3 
 

In this chapter we describe how MRI can be used to image phantoms that replicate 

images containing HF in delayed phase DE-MRI.  The phantoms are autopsy liver sections 

fixed in formalin and have multiple tissue samples evaluated by a trained pathologist.  We 

developed a method to remove background and normalize the data. 

We discussed the details of how to train and test an observer and showed results with 

strong AUC values.  Finally, we introduced a novel approach to mapping test statistic 

values with the intent of guiding a radiologist to identify local HF.  We tested the 

reproducibility of observers based on the amount of training data. 

The template based on the wavelet transform performs as well as the autocorrelation 

templates.  One drawback is the additional time required for this analysis, which is 

currently the slowest analysis method with respect to total computation time.  It is possible 

to decrease the computation time, but since the autocorrelation technique is performing 

equally well, there is no need to spend resources trying to improve the code. Finally, 

increasing the ROI size increased the performance of the texture analysis observer, but 

requires additional training data that is not always available. 
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4.  Optimizing the MRI Sequence 
 

In clinical MRI, the operator has control over the TR, TE, and FA. The operators receive 

radiologist feedback to confirm if the sequence is collecting images with diagnostically 

acceptable contrast.16,38  The image sequences used by radiologists are not necessarily ideal 

for performing the quantitative task of separating images of F0 and F4 liver images with a 

mathematical observer.38,61  Our goal is to use task-based performance assessment using 

the linear ideal (Hotelling) observer to determine the ideal parameters for maximizing 

sensitivity to fibrotic structures in MR imaging.   

The TR, TE, and FA parameters directly contribute to the contrast of an MR image.  

However, TR and TE also directly impact the scan time of the image sequence.  Increasing 

the duration of the MR acquisition in the abdomen is not desirable due to increased artifacts 

from motion associated with the patient’s breathing.  Changing the FA also affects overall 

contrast, but without significantly impacting the length of the sequence.  For this reason, 

we focused on determining the ideal FA for the MR sequence that will be used to assess 

HF. 

We use area-under-the-receiver-operator-characteristic curve (AUROC) as the figure 

of merit, and present results of a study to find the optimal FA for detecting HF in liver 

phantoms.  This optimization method is translatable to the clinical setting. 
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4.1  MRI of the Phantoms 
 

All images in this optimization study are collected on a Siemens 3T Skyra MRI using 

the Siemens flex body imaging coil with a 3D gradient-echo T1-weighted imaging 

sequence (3D VIBE, Siemens) with TR/TE=9.79ms/4.44ms and a range of FAs available 

from ~10° to ~50°.  FAs available are based on hardware limitations.  A field-of-view 

(FOV) of 26.5x26.2x3.36cm with a sampling matrix of 768x760x96 was selected, resulting 

in images with isotropic resolution of 0.35mm3.  All images were collected at room 

temperature (22º C).  The total scan time at one FA was approximately 25 minutes. 

 Before training the mathematical observer to perform the task of HF-detection on 

liver tissue, a basic threshold was implemented to remove areas of the image that contained 

blood vessels from the analysis as shown in section 3.3 .  We found this to be a necessary 

step in developing the observer technique. 

Each phantom was imaged at five FA’s: 8, 15, 19, 30, and 45 in order.  

Selected slices from each phantom at 19 are shown in Figure 4.1.1 The images suggest 

that there is visible contrast between the ECM and liver tissue in the F4 livers that appears 

at the expected length scale associated with fibrosis.  The images from the F0 and F1 

phantoms appear to lack the texture associated with ECM in the images and the liver tissue 

appears uniform in signal throughout a majority of the tissue. 
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Figure 4.1.1 Representative slice images of (A) F0, (B) F1, (C) and (D) F4 phantoms at a 

19° FA.  Image resolution is 0.35mm3 isotropic. 
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4.2  Training Mathematical Observers 
 

The set of local 2DCCs from the F0 and F1 phantoms comprise our null hypothesis, or 

signal absent data, for training a mathematical observer.  The 2DCCs from the two F4 

phantoms comprise the signal present data.  To avoid bias in the results, only one phantom 

was used to train the observer; the other phantom was selected as the testing data.  With 

four phantoms, two in each hypothesis class, we can derive and test 4 independent 

observers to check for reproducibility.  The linear observers for each FA are shown in 

flattened 1D form in Figure 4.2.1.  We found that the templates all detected the same 

features, regardless of choice of training and testing data and FA – namely the peaks in the 

2DCC function associated with the ECM cell size.    

The Hotelling observer has a template form �⃗⃗�  which one can visualize, whereas the 

quadratic observer does not.  The quadratic observer is an extension of the linear observer 

and performs better when  𝑲0 ≠ 𝑲1.  The sample covariance matrices for each FA for a 

representative signal absent and signal present training combination are shown in  

Figure 4.2.2. It is clear from the figures that the covariance matrices have similar 

features that one can visually distinguish, but they are not strictly equal to one another 

between the two classes. 
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Figure 4.2.1: Average template ± σ variation between different training and testing data 

combinations for each acquired FA. 
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.   

Figure 4.2.2: A-E shows the sample covariance matrices for a representative set of 

training data at each FA 
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4.3  Results and Optimization 
 

The four phantoms allow for four different combinations of training and testing data. 

For each combination, ROC analysis was performed and the AUROC for each combination 

was calculated as a function of FA.  Figure 4.3.3 shows the AUC as a function of FA for 

each combination of training and testing data.  Each combination has similar behavior with 

a peak around 23°.  The mean relative AUROC was plotted as a function of FA in Figure 

4.3.3, after a minimal least squares error shift to remove systematic variation between 

training and testing combinations.  The plot of these values for the quadratic observers are 

shown in Figure 4.3.4.  The optimal FA was chosen based on maximizing the AUROC.  

The optimal FA for both the linear and quadratic observers was found to be near 24.    
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Figure 4.3.1: AUC as a function of FA for the four independent combinations of training 

and testing data using the linear observer 
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Figure 4.3.2: AUC as a function of FA for the four independent combinations of training 

and testing data using the quadratic observer 
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Figure 4.3.3: Plot of the relative AUROC for a linear observer as a function of FA. 

 

Figure 4.3.4: Plot of the relative AUROC for a quadratic observer as a function of FA. 
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4.4  Quadratic and Linear Observer Performance Comparison 
 

An unexpected result of this experiment was a decrease of the AUC when the quadratic 

observer was applied to the data. This is unexpected because when the covariance matrices 

of the classes are compared in  

Figure 4.2.2, they are not equal as required by the assumptions for the Hotelling 

observer to be the idea observer.   

To confirm this result, a linear and quadratic observer were tested using the same 

testing and training data.  The observers were trained and tested on independently gridded 

ROI’s. One healthy and one diseased liver were used as signal absent and signal present 

imaging sets. The trained means and covariance matrices are shown in Figure 4.4.1 and 

Figure 4.4.2.  These means and covariances are similar to previously discussed data.  

The PDF’s on the test statistics from the same training data are highlighted in Figure 

4.4.3 and Figure 4.4.4 for the linear and quadratic observer respectively.  The SNR of the 

linear observer is 1.15, and 0.63 for the quadratic observer.  The linear Hotelling observer 

performs better than the quadratic observer, confirming the difference in the AUC between 

the two observers noted in the parameter optimization experiment. 
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Figure 4.4.1: Trained means for signal absent and signal present data 

  

0 5 10 15 20 25

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Observer Index

2
D

 C
ir
c
u
la

r 
A

u
to

c
o
rr

e
la

ti
o
n
 V

a
lu

e
Mean of Training Data

 

 

Signal Absent data

Signal Present Data



137 

 

 

 

Figure 4.4.2: Trained covariance matrices for signal absent and signal present data 
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Figure 4.4.3: PDF’s collected from the linear observer. The SNR is equal to 1.16, all the 

test statistics are shown in this plot. 
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Figure 4.4.4: PDF’s collected from the quadratic observer. The SNR is equal to 0.63.   
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4.5  Conclusions Regarding Optimization 
 

Task-based optimization of MRI acquisition sequence parameters can be carried out 

whenever a model observer is applied to the MRI images and an AUC value can be 

computed. This method has general utility for a variety of clinical applications where a 

choice of a particular sequence is largely histological and not based on quantitative 

assessment.   

The method of isolating an imaging parameter and comparing AUC’s based on the 

same observer is also transferrable to many other imaging modalities. 
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5.  A Two Stage Observer 
 

5.1  Introduction to the Two Stage Observer 
 

In previous chapters a model observer was developed to determine the HF class of a 

small ROI in the liver.  This is shown for 7x7 and 9x9 pixel ROI’s in Chapter 3.  The results 

are sensitive to regional coil sensitivities and heterogeneity of structures in the liver due to 

natural variation.  Test statistic maps create a feature map for a radiologist to determine 

areas of possible fibrosis, but this is still a set of local evaluations.   

This chapter develops the method to stage larger regions cirrhotic livers based on the 

whole set of test statistics recovered from a liver.  The first stage observer assesses local 

texture analysis, while the second stage observer makes decisions based on global data.  

5.2  Training a Two Stage Observer 
 

Training a two stage observer requires the collection of enough images to meet training 

requirements for HF and non-HF covariance matrices. In Chapter 3, the 2DCC was chosen 

as the easiest observer to work with, given its successful AUC results and light 

computational requirements. We start this experiment with four phantoms that provide all 

of the training and testing data by separating slices. 

A F0 and F4 liver 3D dataset is selected to train both the first and second stage observer.  

The 3D image is a matrix of size MxNxZ and is divided into two sets by Z.  Slices were 
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normalized using methods in  Chapter 3.4 and a local 2DCC is applied to adjacent 7x7 

pixel ROIs as outlined in Chapter 3.5 The local texture data are used to train the first stage 

observer, 

𝑤1⃗⃗ ⃗⃗  = (
𝑲1𝑆

+ 𝑲0𝑆

2
)

−1

(𝑆 1
̅ − 𝑆 0

̅ ). 

( 5.2.1 ) 

 The first stage observer is applied to the second half of the training data set and a 

new image 𝑔𝑧,𝑞
′ , where z is the image slice and q is the known class of the training data.  

The new image is generated from application of the first stage observer to the training data, 

𝑡(𝑔𝑧,𝑞
′⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 𝑤1⃗⃗ ⃗⃗  

′
𝑆𝑚,𝑛,𝑧
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 

( 5.2.2 ) 

𝑔𝑧,𝑞
′  exists in 𝜏-space and is normalized to an area of one to recover a probability density 

function as a function of the test statistic.   

 Channelizing the image is one method to reduce the dimensionality of the problem.  

Ten channels were selected across 𝜏-space and all values outside the channels were 

ignored. 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 were selected based on the results of equation 5.2.2.  The 10 

channels are selected at even intervals between the 𝑡 and 𝑡𝑚𝑎𝑥 , 

𝑔𝑧,𝑞
′′⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑤1⃗⃗ ⃗⃗  

′
𝑆𝑚,𝑛,𝑧
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∈ [𝑡1,𝑡,… , 𝑡], 𝜏𝑚𝑖𝑛 = 𝑡, 𝑡𝑚𝑎𝑥 = 𝑡10. 

( 5.2.3 ) 

Image 𝑔𝑧,𝑞
′′⃗⃗ ⃗⃗ ⃗⃗  ⃗ is used to train the second-stage Hotelling observer,  
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𝑤2⃗⃗⃗⃗  ⃗ = (
𝑲𝟎

′′ + 𝑲𝟏
′′

2
)

−1

(𝑔1
′′⃗⃗⃗⃗  ⃗̅̅ ̅̅

− 𝑔0
′′⃗⃗⃗⃗  ⃗̅̅ ̅̅
 ). 

( 5.2.4 ) 

5.3  Testing a Two Stage Observer 
 

Testing 𝑤1⃗⃗ ⃗⃗   and 𝑤2⃗⃗⃗⃗  ⃗ is more straightforward than training 𝑤1⃗⃗ ⃗⃗   and 𝑤2⃗⃗⃗⃗  ⃗. An independent 

3D data set MxNxZ of an F0 and F4 liver were collected.  Using the method in Chapter 

3.7 each MRI slice is evaluated by 𝑤1⃗⃗ ⃗⃗   to create a new image 𝑔𝑧,𝑞
′⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝑔𝑧,𝑞

′⃗⃗ ⃗⃗ ⃗⃗  ⃗ is divided into the 

same channels between 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 to generate 𝑔𝑧,𝑞
′′⃗⃗ ⃗⃗ ⃗⃗  ⃗.  The final scalar test statistic 

represents the evaluation of the local texture analysis results across an entire slice of an 

MRI image, 

𝑡𝑞(𝑔𝑧,𝑞
′′⃗⃗ ⃗⃗ ⃗⃗  ⃗) = 𝑤2⃗⃗⃗⃗  ⃗′𝑔𝑧,𝑞

′′⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

( 5.3.1 ) 

ROC analysis was performed over 𝜏𝑞 to recover the AUC as the figure of merit for the 

overall classification of the slice. 
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5.4  Results of Training the First Stage Observer 
 

Training data was based on one liver of size MxNxZ slices.  The initial observer was 

trained on half the slices available, making the training data size, M x N x Z/2. Slices were 

normalized using the methods in Chapter 3.4 4.  The local 2DCC is applied to adjacent 

ROI’s, and a Hotelling observer was trained using the same methods as in Chapter 3.5 The 

data were used to train the first stage observer, 

𝑤1⃗⃗ ⃗⃗  = (
𝑲𝟏𝑺

+ 𝑲𝟎𝑺

2
)

−1

(𝑆 ̅1 − 𝑆 ̅0) 

( 5.4.1 ) 

Figure 5.4.1 shows the template, based on a 2DCC, recovered from half the training 

data recovered from one F0 and one F4 phantom.  Visually comparing this template to ones 

previously calculated, there is no change evident due to the smaller training, but still full 

rank data set. 

The template was then applied to the other half of the phantom images, treating them 

as testing data.  The technique for testing the observer was outlined in Chapter 3.7 .  For 

each slice a histogram of the test statistics was recovered.  These histograms are shown in 

Figure 5.4.2.  Each slice has similar number of analyzed ROIs. 

To use the curves as data, additional normalization is needed.  The observer must 

be independent to the number of ROI’s in the region.  Also, outliers must be eliminated 
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from the data.  To account for these two issues, each curve associated with a slice of MRI 

data was normalized to have an area equal to one.  Also, outliers were eliminated based on 

results of the training histograms.  The results for each slice, z, are plotted in histograms 

across 10,000 bins in Figure 5.4.2.  We selected 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 based on these results.  For 

this data, 𝜏𝑚𝑖𝑛 was selected as 4, and 𝑡𝑚𝑎𝑥 was selected as 14.   

The training requirement for the second stage observer is based on the number of 

bins selected for the histogram after the application of the first template. We cannot collect 

enough training data for an observer based on 10,000 points.  To avoid this, the first stage 

testing data was binned into 10 channels of equal width along the test statistic axis.   

The histograms for the 16 slices are shown in Figure 5.4.3.  These curves were used 

to train the second stage Hotelling observer.  Figure 5.4.4 shows the means of the two 

classes, 𝑔0
′⃗⃗⃗⃗  and 𝑔1

′⃗⃗⃗⃗ .  Figure 5.4.5 shows the covariance matrices of each class, 𝑲𝟎
′  and 𝑲𝟏

′ .  

These data are used to train the second stage Hotelling observer from equation 5.4.2. 

The channelized template is shown in Figure 5.4.6.  With the observers in Figure 

5.4.1 and Figure 5.4.6, testing data are used to determine if the two classes are separable 

on an slice-by-slice bases. 
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Figure 5.4.1: 7x7 ROI 2DCCTemplate recovered using half of the training data available. 
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Figure 5.4.2: Histogram of test statistics for 16 slices of testing data. 
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Figure 5.4.3: Histograms of each slice from first stage observer training results.  These 

curves are used to train the second stage observer 

 

 

Figure 5.4.4: Means of normalized slice data 
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Figure 5.4.5: Covariance matrix data for each class for the second stage observer 

 

 

 

Figure 5.4.6: The second stage observer for one combination 
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5.5  Results of Testing the Two Stage Observer 
 

Trained observers were tested on independent liver phantoms.  Observers were applied 

to all available the slices in the healthy and diseased phantoms, which is phantom 

dependent.  The slice data was normalized to an area of one, and the outlying test statistics 

were ignored.  The result of applying the first stage observer, in Figure 5.4.1, are shown in 

Figure 5.5.1.   

 The second stage observer is applied to each histogram curve, resulting in a single 

scalar test statistic that represents the HF status of the entire slice.  These results are shown 

for Combination 1-4 if Figure 5.5.2.  ROC analysis was performed on the results of all the 

combinations, the AUC was equal to one for all the combinations of data.  This means full 

separation between F0/F1 and F4 tissue is achievable by the two stage model observer in 

tissue phantoms. 

 This technique is expandable to not only slices of MRI data, but regions selected 

by a radiologist.  Each slice is normalized based on area, making various size regions 

compatible with the two stage observer.  A two stage observer is a promising tool to call 

an entire slice of the liver or entire liver as healthy or diseased.   
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Figure 5.5.1: Application of first stage observer to independent testing data 
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Figure 5.5.2: Results for four combinations of independent training and testing data.  All 

four AUC’s equal 1.0. 
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6.  Translation of the Observer Technique to the Clinic 
 

In the final part of this dissertation, necessary steps are outlined to translate the 

mathematical observers developed in the previous chapters to clinical images.  This chapter 

includes an exploration of the minimum resolution required to perform the task of detecting 

fibrosis and the steps necessary to carry out imaging in the clinic and collecting training 

data from patient volunteers 

6.1  Minimal Acceptable Resolution 
 

Training and testing observer with the phantoms allows the use of high resolution 

imaging.  Indeed, phantoms were imaged at 0.35mm3 isotropic resolution.  This resolution 

is not achievable in abdominal MRI in the clinic at this time.  The extracellular matrix in 

cirrhosis is observable in lower resolution images, but there is noise and loss of sensitivity.  

To assess the impact of the reduced resolution, images of the phantoms with various in-

plane resolutions and slice thicknesses were acquired and observers were trained and 

tested. 

The resolution of the images collected were at slice thicknesses of one, two, and three 

millimeters.  The in-plane resolutions tested were 0.35mm2, 0.70mm2, and 1.40mm2.  

Figure 6.1.1, Figure 6.1.2, and Figure 6.1.3 show the average templates based on slice 

thickness for each in plane resolution setting.  The 0.35mm2 in-plane resolution templates 

are not affected by slice thickness. However, as the resolution is degraded, the templates 
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are increasingly affected.  An in-plane resolution of 0.70mm2 suffers some sensitivity to 

slice thickness.  The templates trained at 1.4mm2 in plane resolution have the most change 

with respect to an increase in slice thickness.   

 The templates were also trained for 9x9 ROI 2DCC and 8x8 ROI wavelet analyses.  

Similar effects on templates were seen with the increase in slice thickness for reduced in-

plane resolutions. 
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Figure 6.1.1: 7x7 ROI Templates from scans with 0.35mm2 in plane resolution 

 

Figure 6.1.2: 7x7 ROI templates from scans with 0.70mm2 in plane resolution 
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Figure 6.1.3: 7x7 ROI templates from scans with 1.40mm2 in plane resolution 
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6.2  Testing Results  
 

 At each resolution at which images were collected, four sets of training and testing data 

were used and AUC’s were measured as the figure of merit.  Average AUC values for low 

resolution observer experiments.  Each table shows a different texture analysis method. 

Table 6.2.1 shows the average AUC and standard deviation of the training and testing data 

for different texture analysis methods.  Two texture analysis methods were used: 2D 

circular autocorrelation and wavelet transform.  The 2DCC was applied to two different 

ROI sizes: 7x7 and 9x9.  The wavelet transform was only performed with one template 

size.  To avoid down sampling an odd number of pixels, the next possible template size for 

a wavelet based texture analysis was 16x16 pixels, resulting in a 256x256 covariance 

matrix.  This is a large training requirement for the limited amount of data that is collected 

at the time of the experiment.  The results confirm that the AUC performance decreases 

drastically as the in-plane resolution is degraded.   
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7x7 Circular Autocorrelation 

Template Slice Thickness 

In Plane Resolution 1mm 2mm 3mm 

0.35mm x 0.35mm 0.76±0.04 0.76±0.08 0.63±0.08 

0.70mm x 0.70mm 0.67±0.11 0.53±0.01 0.49±0.08 

1.40mm x 1.40mm 0.49±0.02 0.35±0.12 0.39±0.10 

 

9x9 Circular Autocorrelation 

Template Slice Thickness 

In plane resolution 1mm 2mm 3mm 

0.35mm x 0.35mm 0.79±0.07 0.75±0.07 0.66±0.11 

0.70mm x 0.70mm 0.71±0.13 0.58±0.04 0.51±0.08 

1.4mm x 1.4mm 0.50±0.11 0.41±0.08 0.39±0.16 

 

8x8 Wavelet Linear 

Template Slice Thickness 

In plane resolution 1mm 2mm 3mm 

0.35mm x 0.35mm 0.87±0.03 0.85±0.04 0.73±0.05 

0.70mm x 0.70mm 0.68±0.02 0.61±0.04 0.52±0.06 

1.40mm x 1.40mm 0.53±0.06 0.43±0.03 0.43±0.09 

 

Table 6.2.1: Average AUC values for low resolution observer experiments.  Each table 

shows a different texture analysis method. 

 

In conclusion, for an observer based on autocorrelation texture analysis to be 

effective, the resolution of the images must be close to the size of the features of the texture.  

Improving the volumetric resolution will increase the observer’s ability to separate classes.  
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6.3  In Vivo MRI Parameters 
 

Results from section 6.2 show a severe decline in observer performance as resolution 

decreases.  The need for a diagnostically-acceptable SNR limits the resolution of a clinical 

MRI image along with breath hold time and other factors.  An axial delayed phase, no 

GRAPPA sequence with TR/TE/α of 3.13ms/1.23ms/9° was used.  The FOV was 

38.0x29.8cm with an acquisition matrix of 352x276 pixels.  The scan was taken over 32 

slices with 3mm thickness.  The in-plane resolution was 1.08x1.08mm2 and the scan time 

is approximately 20 seconds.   

Normally an MR tech will select the ROI, which sets the number of pixels for the 

clinical scan.  The mathematical observer is trained to sample features at the resolution of 

the images.  If the observer is trained at one resolution and images are collected at a 

different resolution, either the image data or observer must be re-sampled to the limiting 

image set.  It is desirable to avoid this situation; therefore, the images should be acquired 

with the same parameters for all patients.  This will limit potential test subjects if their 

abdomen is larger than the ROI, which would result in aliasing artifacts.  Despite these 

challenges, in-vivo images were collected from 4 patients.  The gold standard for this study 

was the radiologist report.  A biopsy for a healthy patient is an unnecessary procedure and 

is not possible to collect.  Cirrhotic patients have confirmation from the written reports 
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which also have patient history.  While this is not ideal for an observer study, it is the best 

possible in-vivo data set we can currently collect. 

6.4  In Vivo Imaging Results 
 

Patients were either selected from previous examinations and volunteered for 

additional scanning, or the sequence was added to existing clinical examinations.  We 

collect images from two patients where the report confirmed that the liver was healthy, and 

two patients whose reports confirmed cirrhosis.  A selected slice from each patient is shown 

in Figure 6.4.1.  Figure 6.4.1 (A) and (B) constitute the signal absent group and Figure 

6.4.2 (A) and (B) constitute the signal present group.  
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(A)                                                                            (B) 

 

Figure 6.4.1: (A) and (B) are MRI slices from patients that were diagnosed with healthy 

liver tissue. 

                               (A)                                                                      (B) 

 

Figure 6.4.2: (A) and (B) are MRI slice images from patients diagnosed as having 

cirrhosis or chronic liver disease   
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6.5  Training the Observer 
 

In vivo contrast enhanced MRI results in images with signal due to contrast agent in 

the vasculature and ECM. Healthy tissues in Figure 6.4.1 have contrast agent in the 

vasculature. Cirrhotic tissues in Figure 6.4.2 have contrast agent in the ECM of the cirrhotic 

livers, and have contrast agent in the blood vessels.  The template is based on a change in 

texture of the liver, and boundaries between vessels and tissue will lead to confusion in the 

observer.  Manual segmentation was used to remove the vessels from each image slice 

before training the observer.  This method requires training by a radiologist.  It is a 

successful method for initial experiments to show the capabilities of local texture analysis 

of HF in vivo, but an automated method will be required for computer-aided diagnosis. 

The result of manual segmentation for one slice in each patient data set is shown in 

Figure 6.5.1.  With the segmented livers, the same process of training the observer as 

described in Section 3.5 to 3.6 was used to train the observer for the in vivo images.  After 

segmentation, the gridded ROI selection was used to measure the means and covariance 

matrices of the signal absent and signal present data for a 7x7 pixel 2D circular 

autocorrelation.  The resulting means are shown in Figure 6.5.2 and resulting covariance 

matrices in Figure 6.5.3.  These data were used to compute the Hotelling observer for this 

system. The 1D representation is highlighted in Figure 6.5.4.  With a trained observer, 

independent testing data are used to validate the observer.   
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Figure 6.5.1: Results of a manual segmentation to remove vasculature from four patient 

data sets 

(A) (B) 

(C) (D) 
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Figure 6.5.2: Signal absent and signal present means for a 2D circular autocorrelation 

local texture analysis 
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Figure 6.5.3: Signal absent and signal present covariance matrices  
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Figure 6.5.4: 1D representation of the Hotelling observer based on a local 2D circular 

autocorrelation texture analysis of in vivo data 
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6.6  Testing the Observer with In Vivo Data 
 

With four livers, four combinations of independent training and testing data were 

possible.  One liver from each class is responsible for either training or testing.  The 

templates were applied to testing data and four ROC curves were recovered.  Figure 6.7.1 

shows the results from all four combinations along with an average ROC curve.   

We also created test statistic maps for these data using the method outlined in section 

3.9. Figure 6.7.2, Figure 6.7.3, Figure 6.7.4 and Figure 6.7.5 show the test statistic maps 

from each combination of training and testing data. 

6.7  Discussion of In Vivo Results 
 

The AUC values for the in vivo results are lower than the phantom experiments.  There 

are multiple factors that impact this result.  First, the segmentation is a very difficult task 

to perform by hand.  If segmentation is poor, the observer will train on undesired features, 

such as blood vessels.  

The test statistic maps still may be of use to a human reader, but are expected to improve 

further with additional training data. 
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Figure 6.7.1: ROC results for individual trials and combined 
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Figure 6.7.2: Test statistic maps for combination 1 
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Figure 6.7.3: Test statistic maps for combination 2  
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Figure 6.7.4 Test statistic maps for combination 3 
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Figure 6.7.5 Test statistic maps for combination 4 
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6.8  Training and Testing a Two-Stage Observer with In Vivo Data 
  

Inspired by the initial success of the phantom results, the two stage observer method 

from Chapter 5 was applied to the same in-vivo data in the previous section. To train the 

two observers, the 3D image training data was divided into two groups.  The first half of 

the data was used to train the first stage observer and was tested on the second half of the 

image set.  The results of the testing of the first stage observer were used to train the 

second stage channelized observer. As before, the channel boundaries were selected 

manually. The first and second stage observers are shown in Figure 6.8.1 for all four 

combinations.  

The trained templates were applied to the independent testing data in each of the four 

combinations.  For each MRI slice, a scalar test statistic is recovered and plotted with 

respect to the fibrosis stage of the liver. Figure 6.8.2 shows the results for the four 

combinations.  The minimum AUC value is 0.931 and two combinations achieve almost 

perfect separation. This is a strong suggestion that the methods outlined in Chapter 5 can 

have success in clinical applications.   
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 Figure 6.8.1: First and  second stage Hotelling observers recovered for four 

combinations of in vivo testing and training data 
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Figure 6.8.2: Two-stage observer results for four combinations of in vivo testing and 

training data with their AUC values 
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6.9  Conclusions for Chapter 6 
 

Completing the translation of these techniques from phantoms to clinical application 

requires more data to train and test observer methods.  These first experiments were 

completed with limited training and testing data, and compromised were made 

concerning how to handle the training and testing of the observers.   

 With that consideration, these observers performed at a high success rate with in 

vivo data.  The local texture analysis observer performance decreased relative to the 

phantoms and the two stage observer performance decreased slightly.  Two factors 

impacting these results are the decrease in image resolution achievable in in vivo images 

and imperfect segmentation.  Lower resolution reduces sensitivities to the presence of 

fibrotic content, while poor segmentation leaves textured data in healthy tissue as 

diseased tissue that hurts specificity.  Improved segmentation will increase the 

effectiveness of these observers.  We conclude, the experiments performed in phantom 

studies in Chapters 3 through 5 are worth repeating in a larger in vivo study. 
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7.  Conclusions  
 

7.1  Summary of Results 
 

In this dissertation, a mathematical observer technique was explored as a method to 

stage hepatic fibrosis in MRI images.  MRI is emerging as a tool to diagnose chronic liver 

disease, with MRE currently in use as a an FDA-approved method to detect change in liver 

stiffness.  However, MRE is only sensitive to the overall stiffness, which may not be 

sensitive to the presence of an early ECM.  Radiologists who read MR images would like 

to detect the ECM to perform the same task pathologists carry out when working with 

biopsy slides.   

Both radiologists and pathologists are attempting to detect a change in texture.  In this 

dissertation, a tool was developed and used to train a linear Hotelling observer.  

Experiments in texture analysis were carried out with phantoms that were found to replicate 

the contrast of in vivo abdominal images.  The phantom used is formalin fixed liver tissue 

taken from autopsy.  A gradient echo T1 weighted sequence was used and images were 

analyzed with local texture analysis. 

Local texture analysis performed by a 2D circular autocorrelation and wavelet analysis 

were found to be effective methods to detect the presence of HF.  Both methods separate 

the early and late stage diseases effectively.  The 2D circular autocorrelation has the 

smallest training data requirement, which may be beneficial to those who work with limited 
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data sets.  Researchers must balance the training requirements for sample covariance 

matrices to achieve texture analysis methods that are effective enough for a radiologist to 

make a reliable call. 

We used task-based performance evaluation to select an optimal MRI parameter by 

repeating measurements of the objects multiple times while varying the acquisition 

parameter, the FA. MRI offers many additional parameters that can be optimized to 

increase the performance of clinical tasks. Combining quantitative image analysis with 

optimization will result in better MRI sequences, as these techniques move into clinical 

applications. 

Test-statistic maps are introduced as a means to visualize the result of an observer 

assessing local texture.  Our images correlate fibrotic structure with spatial location, 

allowing a radiologist to locate possible areas of fibrosis quickly. These results were 

validated through the use of a two stage observer. 

The two-stage observer histograms the test statistic values from the local texture 

analysis into channels for a second observer to make a decision about an entire slice in an 

MRI image. This is a powerful tool to evaluate a large area of tissue and will be what is 

necessary to detect F2 and F3 HF. 

In the final part of this dissertation we applied all of the techniques we tested on 

phantoms on in vivo data.  A minimal acceptable resolution was determined and an MRI 
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sequence was added to clinical examinations to collect patient data.  The performance of 

the local texture analysis observer decreased when in vivo data was used. 

Nevertheless, when the two stage observer was applied to in vivo data, the AUC of the 

experiment ranged from 0.996 to 1.0.  This level of separation supports our technique, but 

is also a sign that separation of F0 and F4 is much easier than finding early stage disease.   

While it will be beneficial to collect more data the number of eligible patients is low and 

no additional in vivo studies are available at the conclusion of this dissertation. 

7.2  Future Work 
 

The continuation of the translation of these techniques from phantom experiments to 

clinical techniques should be the main goal for the next step in this project.  A major 

drawback of the observer technique is the fact that resolution between patients can change 

if a consistent sequence implementation is not adhered to by the MR technicians.  Scans 

that will use texture analysis need the best possible resolution. MRI clinics will have to 

train the technicians and incorporate appropriate sequences in order to build on these 

techniques. 

Additionally, investigation into an acceptable gold standard for identifying healthy 

patients is necessary, since collecting a biopsy is not possible from a healthy volunteer.  

One suggestion is to attach a liver MRI at delayed phase to patients undergoing kidney 

scans.  Another possible gold standard is to use young patients, under 40, who are identified 
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as relatively healthy.  A specially trained radiologist could, perhaps, confirm these findings 

with an evaluation of the liver MRIs. 

Higher resolution MR sequences will only improve the texture analysis techniques, 

providing samples of the ECM in early and mid-stages of hepatic fibrosis.  

Chapter 4 laid out a procedure for finding optimal MRI settings in phantoms.  This can 

be expanded to clinical practice with the help of volunteers.  With injections, scans at 

various delay times can determine the optimal time delay after Gd injection. While testing 

for optimal delay, scans can have various FA’s.  One could plot AUC as a function of FA 

and time after injection. This would lead to an improved protocol for task-based 

classification of HF. 

Much of the continuing work involves identifying and collecting images from patient 

volunteers.  Another crucial step to improve the data analysis is automated effective 

segmentation of major vessels and their removal from the liver images. Without this tool, 

the technique is dependent on manual segmentation, a time-consuming process subject to 

user variability.  
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