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 Abstract 

 The atmosphere distorts the spectrum of remotely sensed data, negatively 

affecting all forms of investigating Earth’s surface. To gather reliable data, it is vital that 

atmospheric corrections are accurate. The current state of the field of atmospheric 

correction does not account well for the benefits and costs of different correction 

algorithms. Ground spectral data are required to evaluate these algorithms better. This 

dissertation explores using cameras as radiometers as a means of gathering ground 

spectral data.  

 I introduce techniques to implement a camera systems for atmospheric 

correction using off the shelf parts. To aid the design of future camera systems for 

radiometric correction, methods for estimating the system error prior to construction, 

calibration and testing of the resulting camera system are explored. Simulations are used 

to investigate the relationship between the reflectance accuracy of the camera system 

and the quality of atmospheric correction. In the design phase, read noise and filter 

choice are found to be the strongest sources of system error. I explain the calibration 

methods for the camera system, showing the problems of pixel to angle calibration, and 

adapting the web camera for scientific work. The camera system is tested in the field to 

estimate its ability to recover directional reflectance from BRF data. I estimate the error 

in the system due to the experimental set up, then explore how the system error changes 

with different cameras, environmental set-ups and inversions. With these experiments, I 

learn about the importance of the dynamic range of the camera, and the input ranges 

used for the PROSAIL inversion. Evidence that the camera can perform within the 

specification set for ELM correction in this dissertation is evaluated. The analysis is 

concluded by simulating an ELM correction of a scene using various numbers of 

calibration targets, and levels of system error, to find the number of cameras needed for 

a full-scale implementation. 
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1 Introduction 

1.1 Motivation 

 In the field of remote sensing, research focuses frequently on the measurement of 

electromagnetic radiation reflected or emitted from the Earth's surface (Jensen, 2007). The 

atmosphere degrades the quality of this remotely sensed data by adding random noise, 

scattering light we desire to measure out of the field of view of a sensor, and scattering 

undesired light in from adjacent areas and the sky. While there are many methods of correcting 

for atmospheric effects, their results are inconsistent with one another. Not only does the 

magnitude of correction vary between methods (Figure 1) but  in some cases even the direction 

of correction is different, moving the estimated reflectance even further from the ground 

reference data  (Moran et al. 1992). In-situ measurements of near-nadir reflectance provide a 

way of comparing the relative quality of atmospheric correction, and a means of improving 

corrections. Taking these measurements presently can be a large and expensive undertaking 

(Sellers et al., 1988 ; Moran et al., 1992). 

 I developed software and tested off-the-shelf and custom-built cameras as a cost-

effective means of gathering ground spectral data and estimating near-nadir reflectance. Unlike 

a spectroradiometer, cameras provide a means of sampling the reflected radiance over a large 

area quickly, while being able to account for variations in reflectance across a scene. By 

measuring the bidirectional reflectance factor (BRF) and near-nadir reflectance, cameras can 

use grass areas as calibration targets to provide a reflectance estimate to be used in an empirical 

atmospheric correction, such as the empirical line method (ELM). This ELM correction could 

then be used to evaluate other corrections, providing data for choosing an appropriate 

atmospheric correction when in-situ data are more limited. 

 

1.2 Background 

 Remote sensing users are often interested in collecting and interpreting measurements 

of electromagnetic radiation (Jensen, 2007). The sun provides known illumination throughout 

the electromagnetic spectrum that reflects off objects on Earth's surface. Sensors on satellite or 

airborne platforms can then passively detect this reflected radiation. Finding the ratio between 

downwelling light and the light reflected provides the reflectance of the surface. Measuring the 

reflectance of surfaces, and finding correlations enables researchers to quantify and classify 

objects on Earth’s surface (Vincent, 1972 ; Ahern et al., 1977). However, light reaching these 
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sensors interacts with both surface objects and the atmosphere. (Otterman & Robinove, 1981). 

The atmosphere reduces the transmission of the reflected light and scatters radiance from other 

sources into the sensor (Ahern et al., 1977). This effect can be written:   

 𝐿𝑆𝑒𝑛𝑠𝑜𝑟 = 𝐿𝑅𝑇 + 𝑃 Eq (1) 

 

 Lsensor is the radiance observed by the sensor, LR is the reflected radiance in the direction 

of the sensor by an area of interest, T is the transmission of the atmosphere, and P is the path 

radiance scattered into the sensor by the atmosphere. As the atmosphere scatters more light, P 

will go up and T will go down, reducing the variation in Lsensor across a scene due to LR. This 

reduces contrast, making LR less distinct against other factors, such as digitalization or random 

 

Figure 1: Plot from a paper by Moran et al. (1992), showing the difference between estimated reflectance 
taken from Landsat images after correction, and an airborne sensor. The data taken by the airborne 
sensor are treated as ground reference data for the reflectance in this example. From left to right, the 
corrections used are: no correction, Herman-Browning code, 5S code with on-site optical depth 
measurement, three Lowtran7 models with different estimated inputs, Dark Object Subtraction, and 
three more models (5S and Two Lowtran7) based on estimating dark object reflectance. 
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system noise. The atmosphere and its effect vary with time and location (Goetz, 2009). Reduced 

transmission decreases classification accuracy by narrowing the range of digital number (DN) 

values recorded by the sensor over a scene while increased path radiance widens the range of 

values associated with any class. Different classes will have increasingly similar ranges of DN 

values, making it harder to differentiate them (Figure 2). This applies particularly to cases on 

the edges of the probability densities of two otherwise spectrally distinctive classes of objects. 

The way the atmosphere changes the spectrum of remotely sensed data can compromise efforts 

to compare classifications from different dates or places. Without the intervening atmosphere, if 

measurable factors such as sensor response and sun angle were accounted for, it would be 

possible to map a particular set of DN values from a sensor to a previously established 

classification. With an intervening  atmosphere, each classification set up must be done 

independently, since the data from each image will be distorted in different ways. This will make 

the data space for each image different, and makes it less likely that algorithmically selected 

classes will be consistent from image to image. In this way, the atmosphere negatively affects 

land-use classification (Miller, 2002), 

comparison of data from different times 

and places (Congalton, 2010), and the 

measurement of quantitative properties 

(Liang et al., 2001).  

 Researchers have developed a large 

number of methods of estimating 

atmospheric effects. To avoid the 

complication and expense of measuring the 

atmosphere's composition at the time of fly 

over, corrections are often dependent on 

mathematical approximations and value 

estimations. When deciding on a method of 

atmospheric correction to use, the relative 

quality of correction should be an 

important consideration. This is something 

not well addressed by the present 

literature.  

 

Figure 2: For two land classification classes A and B, 
given readings X, we have a probability function of 
P(X|w) of being in A or B respectively. The hatched 
area represents areas where the probabilities cross 
over. As the range of spectral readings X where the 
probability of being in a class expands, as due to 
atmospheric effects, the area where the probability of 
being in either class will increase.  Figure modified 
from one found in (Davis et al., 1978).  



23 
 

1.3 Scope of Work 

1.3.1 Intention of Research 

 Without certainty in the quality of atmospheric correction, empirical ground reflectance 

data provide a means of evaluating corrections, increasing or verifying accuracy (Gao et al., 

2009). More large-scale general studies of atmospheric correction would be desirable but tend 

to be costly, as they require knowledge of the ground, either gathered by aircraft-borne sensors, 

or a number of researchers on the ground (Sellers et al., 1988). Ground-based camera systems 

would reduce the cost of these general studies.  

 Automated systems enable continuously gathering spectral data, unlike current 

implementations of the Empirical Line Method (ELM), which use technicians in the field to take 

readings (Smith & Milton, 1999 ; Karpouzli & Malthus, 2003 ; Baugh & Groeneveld, 2008). A 

camera system splits the target into discrete elements taken over a range of angles. These data 

can approximate BRF (Nandy, 2000 ; Dymond & Trotter, 1997 ; Shell, 2005) and account for 

spatial variations such as shadows and instrumentation found within the field of view 

(Demircan et al., 2000). This is an improvement on current automated spectral monitoring 

systems, which record the entire target using a single spectroradiometer reading, reducing the 

area to a single pixel of data (Leuning et al., 2006 ; Schiller & Luvall, 1994 ; Czapla-Myers, 

2006). Some researchers have tried to account for spatial variation by moving spectrometers 

across the area of interest (Gamon et al., 2006 ; Berry et al., 1978 ; Bell et al., 2002).  A camera 

system removes the need for the tramway used by Gamon et al. and Berry et al., or the tractor 

and driver used by Bell et al., reducing the infrastructure required for monitoring spectral 

reflectance over a large area.   

 By sampling over a wide range of angles, a camera has a significant advantage over a 

conventional spectroradiometer: To take near-nadir readings of radiance with a radiometer, the 

radiometer must necessarily be pointed near-nadir. To view a large area, the radiometer must by 

necessity be either moved or aimed around the target, be very high off the ground, or have a very 

wide field view and thus mostly taking data from off-nadir angles. A camera can view its target 

at off-nadir angles, while gathering data to account for BRF effects, enabling it to see a larger 

area from a lower height, without automation, lowering the cost of implementation.  Setting the 

camera at a non-nadir position places the platform the camera or sensor is attached to outside of 

its field of view, and can help avoid self-shadowing. In order for the camera to take some near-

nadir readings, near-nadir must only be at some point within its field of view. For a wide field of 

view camera, it would be possible for it to simultaneously take readings both near-nadir and in 
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the direction of the hot spot or specular reflection, better accounting for possible BRF effects 

when a satellite-borne sensor is off-nadir. Seeing a larger section of the target enables a better 

accounting for the variation across the calibration target, improving the error budget. This is 

particularly important for a surface like vegetation,  which can vary significantly over space and 

time (K. Anderson et al., 2011).  

 This research demonstrates the validity of using a camera system to estimate reflectance 

in the field. I seek to establish the relation between system choices and system accuracy. Any 

individual implementation of a camera system would provide limited knowledge of the strengths 

and weaknesses of using camera-based systems for atmospheric correction. Exploring a number 

of implementations enabled mapping the benefits of different BRF models, targets, and spectral 

resolutions. This information shows the potential of both high end and economical solutions, 

and which sub-systems are the most critical to implementation. 

 To focus this research, the scope of this dissertation was limited to two camera systems, 

three BRF models per surface and two types of targets, listed below (Table 1). 

Table 1: Systems and Targets to be tested 

Cameras BRF Models Targets 

-Multispectral 

-Web Camera 

-Kernel Driven (AMBRALS) 

-Vegetation Property Driven 

(PROSAIL) 

-Non-Analytic Solution 

(Curve Fitting) 

-Healthy Turf Grass 

-Distressed Turf Grass 

 

1.3.2 Choice of Cameras 

 Testing was limited to light in the visible and the near infrared. This enabled the study to 

be done with one set of cameras, as it is rare  for a single sensor to be sensitive in both the visible 

and longer infrared regions (Goetz, 2009). The research was limited further to the multispectral 

bands used by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor: the blue (450-

520 nm), green (520-600 nm), red (630-690 nm) and near-infrared (NIR) (760-900 nm). While 

there is no standard spectral resolution for remote sensing systems, many satellite-borne 

sensors have bands similar to Landsat 7 ETM+, including Quickbird, IKONOS, ASTER, LISS-IV, 

SPOT and GOKTURK-2 (“ITC’s database of Satellites and Sensors,” n.d.). 

 Reflection recovery was tested using two different cameras: 1) A multispectral camera 

with bands comparable to the Landsat 7 ETM+ bands provided reflectance data that 
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corresponded directly with the reflectance needed for atmospheric correction. This represented 

the most straightforward solution to correction. The multispectral camera was built using off the 

shelf parts to keep costs down, and to demonstrate the feasibility of future low-cost 

implementations. 2) An off the shelf USB camera was tested as a cheaper, and readily available 

alternative. Outdoor security cameras already exist, and come with a very wide full field of view, 

often over 70°, and are sensitive in both the visible and the NIR. Modifications to the camera 

could be limited to spectral filtering to separate the NIR from the red.  Such cameras are 

significant to this research because they represent an opportunity to gather useful data at a very 

low cost. Inexpensive cameras are key to being able to use more cameras and calibration sites, or 

multiple cameras at the same site. They also present an opportunity to get citizens invested in 

remote sensing at a low cost, in the form of citizen science. 

 

1.3.3 Choice of Calibration Test Targets 

 My dissertation focused on a small-scale system, testing the feasibility of this line of 

research while keeping costs down. This was done by placing the cameras much closer to the 

ground, and using an ASD (Analytical Spectral Device) to act as a simulated satellite. Doing this 

enabled many more data points to be gathered than if a real satellite system had been used. It 

avoided many sources of increased costs: building and setting up multiple full-scale cameras, 

increased automation, finding and getting permission to set up at multiple sites, and finding 

ways to secure the camera system sufficiently high off the ground. 

 Using a smaller target made it easier to keep the area clear of animals, trash and people 

at the time of testing. It simplified aiming the radiometer, both in estimating geometrically 

where it was pointed and in testing the aim. The area was sufficiently small that it was possible 

to use a piece of near-Lambertian Teflon to cross-calibrate both the camera and the radiometer 

in each setup, improving accuracy and speeding up data acquisition. While changing radiance 

into reflectance using a known Lambertian surface would not be feasible for a full-scale system, 

conversion of digital numbers to reflectance is a problem with known solutions (Moran et al., 

1997), and thus was not of interest to this dissertation. 

 I focused on grass targets, as it is a common surface in any city, and very frequently free 

of people and structures. Both healthy and distressed grass were used, as they present different 

spectral profiles (Sonmez et al., 2008). Other urban targets, such as asphalt and roofing 

materials were deemed undesirable. To work as a calibration target for satellite-borne sensors, 

the chosen area must be large and uniform, which is rare for urban surfaces. The exceptions to 
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this are roads, parking lots, and airport runways, but these are frequently both painted and 

covered in vehicles, which would confound the BRF recovery process. Future tests of camera-

based systems for reflectance recovery might try additional agricultural or natural surfaces. 

Wilder grasses, shrubby bushlands, and crops with some volume structure to them would be of 

the considerable interest since these should present different BRF structures than those 

examined in this dissertation. 

 

1.3.4 Choice of Bidirectional Reflectance Factor Models 

 By its nature, a sensor used to recover near-nadir reflectance from off-nadir data 

requires some understanding of BRF. For a camera system, each pixel will view the target 

surface at a different angle, which provides ample information that can be fed into a BRF model. 

The model is then needed both to estimate reflectance angles outside the field of view of the 

camera, and to help differentiate between changes of reflectance due to view angle and changes 

due to a change in the nature of the calibration target. Two analytic models were chosen to 

compare their ability at recovering the desired near-nadir reflectance: AMBRALS (the Algorithm 

for Modeling Bidirectional Reflectance Anisotropies 

of the Land Surface); and PROSAIL, which is a 

combination of the Prospect leaf reflectance model, 

and SAIL (Scattering by Arbitrarily Inclined Leaves) 

BRF model. Both are well known in the field of 

remote sensing (Ni & Li, 2000 ; Hu et al., 1997 ; 

Wang et al., 2013 ; Si et al., 2012 ; Hilker et al., 2011 

; Darvishzadeh et al., 2008), but recover BRF in 

different ways. The AMBRALS model uses kernel 

functions (Figure 3) representing different types of 

vegetation cover, and its inversion is analytic finding 

relative weights for these covers and kernels 

(Strahler & Muller, 1996). The PROSAIL model 

(which is a combination of the PROSPECT and SAIL 

models) is more complex, using eleven input 

parameters such as the leaf area index (LAI) and 

chlorophyll content to simulate multiple 

interactions with leaves. Because of this, it is not 

 

Figure 3: Kernels used to model 
vegetation BRF, along the solar 
principle plane, for sun angles of 30º 
& 60º. The kernels are called, Thin 
(solid line), Thick (dotted), Dense 
(dash-dotted) and Sparse (dashed) 
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possible to invert the PROSAIL model analytically, I instead implemented a look-up table (LUT) 

solution.  To explore a non-analytic model for BRF, I tested curve fitting as a means of near-

nadir reflectance recovery. Physical models (both AMBRALS and PROSAIL) can be impractical 

for situations where a researcher is interested only in making a correction for the change in BRF 

across a scene (Kennedy et al., 1997). There is no need to find the BRF in all possible directions, 

nor the underlying vegetation parameters. By avoiding estimates of vegetation quantity and 

quality, this solution should be more valid for surfaces with sparse or no vegetation. I found 

early on that curve fitting was not a good match for this problem. Working over such a large 

range of azimuth and zenith angles confounded curve fitting algorithms designed for Cartesian 

inputs. 

 

1.3.5 Environmental Concerns 

 During the process of data gathering, it became apparent that this was a year with 

unusual weather with far fewer cloud-free summer days than are typical in southern Arizona. 

This was taken as an opportunity to observe how the system performed with various amounts of 

cloud cover. This would provide data more consistent with real world conditions in 

environments outside the desert.   Data from days with clouds present were sorted broadly into 

Cloudless, Peripheral, and Overhead categories. Cloudless data consisted of data taken on days 

where there were no clouds, or when clouds remained beneath the tree line. Overhead 

measurements consisted of data where there was a perceived risk of the clouds covering the sun 

during the data taking process. Peripheral data comprised all those days that did not fall into 

either of the other two categories, where there were clouds present, but were assessed to have 

only the effect of increasing the hemispherical irradiance of the scene. Images of the sky were 

recorded throughout the day so that a more rigorous classification process could be applied later 

as necessary. 

 

1.4 Dissertation Overview 

 Section 1 of this dissertation introduces the motivation for this dissertation and the 

intended scope of the work.  

 Section 2 describes previous work in the fields of atmospheric correction, measuring 

vegetation reflectance, BRF and parameters, and systems for measuring these values, and 

relates how these previous discoveries relate to and have influenced my own work.  
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 In Section 3, the process of estimating various sources of system error is discussed. The 

camera design decisions motivated by these error specifications are described, as well as the 

processes for assembling the system. The final part of Section 3 describes the process of 

calibrating the system, with a focus on laying out the processes for future work by non-

engineers.  

 Section 4 describes the field work done to test the camera system and the processing of 

the data produced. It performs several experiments to better understand the capabilities and 

limitations of a camera system and the individual components that seem to be most important. 

The limits of atmospheric correction possible by these cameras are explored through performing 

an atmospheric correction with the gathered data and simulating the results for a correction 

performed with a larger array of ground data. 

 Section 5 presents the conclusions to this paper and ideas for future work.  

 In Appendix A, I go into some additional detail on the modifications I found necessary to 

make on PROSAIL and its inversion, in order to speed the look-up table generation process. 

 

2 Theoretical Background 

2.1 Atmospheric Correction 

2.1.1 Overview 

 Atmospheric correction is a rich field of research, filled with a large variety of methods of 

doing a single task: removing the atmosphere from remotely sensed images. This research is 

motivated by a desire to better understand and improve atmospheric correction, reducing 

ambiguity over which form of atmospheric correction is best. In most engineering problems, one 

can reasonably estimate the benefits against the costs of various approaches, but this is not the 

case for atmospheric correction.  

 Atmospheric correction is always important to finding the true value of ground 

reflectance, and there may be disparities in which correction is best in different instances. What 

works best over the desert, where top of atmosphere (TOA) reflectances can get to 90% (Dinter 

et al., 2009), might be different than when the starting reflectance is low, such as in ocean water 

color studies (Gao et al., 2009). This can be seen in the research of Wu, Wang, & Bauer, (2005), 

who found that the COST method of correction (Chavez, 1996), while providing good correction 

in arid environments, worked significantly less well in the NIR when they tested it in the 
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Midwest, which they attributed to increased moisture in the atmosphere. My research 

introduces a new tool for choosing between atmospheric corrections, by providing a means to 

perform long-term studies on methods of correction, and expanding research into environments 

with a wider range of climates. The next section of the dissertation explores the history of 

atmospheric correction, its varied methods, and why another tool for comparing them is 

necessary.  

 

2.1.2 Categories of Atmospheric Correction 

 Atmospheric corrections can be broadly sorted into four categories: image-based, 

spectrally-based, atmospheric modeling and those based on empirical data. Image-based 

correction techniques  use  data from the images themselves. Early examples of atmospheric 

correction were image-based, using dark objects (Vincent, 1972) and pseudo-invariant features 

(Ahern et al., 1977) to estimate path radiance. Modern image-based techniques include dark 

object subtraction (DOS) (Rowan et al., 1974), the COST method developed by Chavez (1996), 

and refined by  Wu, Wang, & Bauer (2005), and the pseudo-invariant feature method (PIF) 

(Schott et al., 1988). This form of atmospheric correction has an advantage when looking at 

historical data, where data for a more empirical form of correction may not exist. 

 Spectrally-based techniques also use data found only in the image, but focus more on the 

spectrum of the reflected light. In this category are techniques like the Regression Intersection 

Method (Crippen, 1987), which made use of the spectral principle components of homogeneous 

targets, or making the use of knowledge water absorption bands in hyperspectral data (Gao et 

al., 2009). 

 Atmospheric modeling forms of atmospheric correction work through knowledge of the 

scattering and absorption properties of the different molecules and particles within the 

atmosphere. This form of correction is based on extensive measurement of the atmosphere's 

composition and the effects this has on remotely sensed data. Models of layers of the 

atmosphere can be used to estimate the quantity of downwelling and upwelling light, as well as 

its spectral or hemispheric direction. This provides a popular method of correction for work that 

requires high precision, such as vicarious calibration (Helder, Thome, et al., 2012), however, it 

can be expensive to access these modeling programs. Examples of atmospheric modeling 

programs include 6S (Vermote & Tanré, 1997), MODTRAN (Berk et al., 2006), HATCH (Qu, 

Kindel, & Goetz, 2003), ACORN, ATCOR, FLAASH.  
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 The last group of techniques for atmospheric correction is empirical models. This 

category of atmospheric correction is of interest to this dissertation, since they have been 

verified to be very accurate, and thus can be relied upon to verify the accuracy of other 

atmospheric corrections. Atmospheric modeling programs can be empirically sound if there is 

sufficient atmospheric data taken at the time of flyover, however, this may require sonde data 

taken from an airborne platform (Berk et al., 2006). Another source of empirical data is in-situ 

measurements of reflectance. These measurements can be used with the Empirical Line Method 

(ELM) or some atmospheric modeling programs. ELM, as described by Smith & Milton (1999), 

is of particular interest to this project, since it is direct, simple and has been thoroughly 

demonstrated.  

 

2.1.3 Atmospheric Correction Using Models 

 For all models, the quality of the output depends on the input provided. In cases where 

not much is known about the atmosphere, variations in the input parameters provided can cause 

significant changes in the resulting data (Moran et al., 1992 ; Goetz et al., 1998). 

 In the Moran et al. study, they experimented with many forms of atmospheric correction 

and the different inputs that could be used for them. This included using atmospheric models 

using some ground data, atmospheric models done using seasonal assumptions, and more 

simple corrections, such as dark object subtraction. As can be seen in Figure 1, the results from 

changing models or even just inputs to a model can result in radical changes in the estimated 

reflectance of a surface. Goetz et al. (1998) demonstrated the effects of changes within a single 

modeling program, by exploring which of 13,200 MODTRAN possible models of the 

atmosphere, generated using different input parameters to MODTRAN, produced the best fit to 

ground data they had gathered. Mahiny & Turner (2007) showed the effect of four different 

atmospheric corrections on a binary woodlands / non-woodlands classification, including COST, 

PIF, and 6S. While all of the corrected images classified more woodlands than the uncorrected 

images, and found very similar quantities of woodlands, only around 27% of the new woodlands 

overlapped in all four images. Finally, in a study by Hadjimitsis & Clayton (2004) looking at the 

color of several reservoirs found that dark object subtraction, a very basic correction, 

outperformed both ATCOR and 6S when these used their standard atmospheric models. All 

these studies show that atmospheric correction based on assumptions depends on the accuracy 

of those assumptions. 
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2.1.4 Empirical Atmospheric Correction 

 It is possible to improve the accuracy of atmospheric correction with knowledge of the 

ground or atmosphere. Since my camera system is fundamentally based on measuring the 

optical properties of the ground, this section focuses on how ground reflectance data can be used 

with atmospheric correction.  

 The Empirical line method of atmospheric correction has been demonstrated by Baugh & 

Groeneveld (2008) to be valid using a large number of data points taken from an airborne 

platform and by Vaudour et al. (2008), who worked to verify the accuracy of ELM using a larger 

than average number of sites. Vaudour et al. also confirmed that ELM worked well even when 

the remotely sensed data was taken at a steep angle. Karpouzli & Malthus (2003) confirmed the 

validity of ELM at finer resolutions using IKONOS imagery. Qaid et al., (2009) also confirmed 

its accuracy in their work in Yemen. The empirical line method has been demonstrated to be 

more accurate than atmospheric modeling methods, such as ACORN and FLAASH (Miller 

2002). 

 Various authors have worked to improve ELM. ELM requires both a light and a dark 

target to generate the empirical relationship between the digital number (DN) and reflectance. 

Moran et al. (2001) worked on a refined empirical line method that used in image and radiative 

transfer methods to eliminate the need for a dark target. Farrand et al,. (1994) found good 

results with a modified ELM, which used reflectances taken from a spectral library. They 

compared this modified ELM with the LOWTRAN model, and found LOWTRAN produced 

worse results, with its output highly dependent on the atmospheric water input. Bartlett & 

Schott (2009) designed a modified ELM that compensates for clouds in the image, extending the 

usefulness of ELM. Lach & Kerekes (2008) explored how the angles of surfaces can effect ELM, 

and how to compensate for these effects. Staben et al., (2012) performed ELM with a quadratic 

fit, instead of a linear one, on data taken by WorldView-2 with good results.  

 ELM is a sound basis for verifying other atmospheric corrections. It uses data that is 

relatively easy to gather and provides superior and more consistent results than corrections 

based on assumptions. However, current methods of gathering that ground data are too time 

consuming. The focus of this dissertation is to find a faster way to sample an area to be used 

with ELM, and I focus specifically on vegetated surfaces 
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2.2 Vegetation 

2.2.1 Vegetation Reflectance and Health 

 Large uniform areas of vegetation, managed for food or recreation are common in many 

parts of the world. These areas have been shown to be valid for use with ELM (Moran et al., 

2001). Managed grass in particular has been found to be a pseudo-invariant surface, with good 

spectral and temporal stability (Clark et al., 2011).  

 A large body of literature exists studying the optical properties of vegetation. Gates et 

al.,(1965) wrote one of the early papers on the spectral properties of plants, discussing their 

reflectance, absorption, and the internal structure responsible for these properties. 

Understanding the relationship between vegetation's internal properties and its optical 

properties enables researchers to monitor vegetation health using remote sensing. One of the 

earlier studies in this field tried to classify separately blighted and healthy corn (Kumar & Silva 

1974). Since then, there has been work to relate multispectral remotely sensed data to vegetation 

quantity (Curran, 1980), chlorophyll content and nitrogen uptake (Bell et al., 2004), and water 

stress (Sonmez et al., 2008). In the aid of this process, many vegetation indices attempting to 

measure vegetation health have been generated, such as NDVI and SAVI. These have been 

cataloged in some detail by Bannari et al., (1995).  

 

2.2.2 Vegetation BRF 

 The bi-directional reflectance distribution function (BRDF) and bi-directional 

reflectance factor (BRF) of vegetation are of particular interest to this project, where reflectance 

data are taken over a range of angles. For a given set of input and output angles, BRDF is the 

percent of light reflected, while BRF is the ratio of the light reflected and the reflectance that 

would be expected for a perfect Lambertian target. The quantities can be related by the equation 

(Schaepman-Strub, 2006): 

𝐵𝑅𝐹 =  𝜋 ∗ 𝐵𝑅𝐷𝐹 Eq (2) 

 Many researchers prefer the terms BRDF. My own research has been built upon 

PROSAIL, however, which produces BRF values. I will use the two terms where appropriate for 

the work being cited. 

 In remote sensing, measuring the BRDF of vegetation is already important, as 

demonstrated by Bacour et al., (2006) normalizing remotely sensed data’s BRDF effect to aid 

monitoring vegetation cycles. I utilized this field of research to guide my own use measurements 
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of reflectance at multiple angles. BRDF measurement at different wavelengths have been used to 

characterize vegetation in the same way that measurements of at-nadir reflectance have 

(Kriebel, 1978 ; Geiger et al., 2001). Sandmeier et al. (1998a) related the physical characteristics 

of erectophile grass lawns and planophile watercress canopy to their hyperspectral BRDFs, 

using the laboratory goniometer system at the European Goniometric Facility (EGO). From data 

gathered like this, models of vegetation were developed, including the Kuusk (Nilson & Kuusk, 

1989), Walthall (Walthall et al., 1985) and Roujean (Roujean et al., 1992) models. Wanner, Li, & 

Strahler (1995) provided some approximations to these BRDF models, to enable them to be used 

in a linear, kernel driven, form (Figure 3). Kernels enable the use of a simple analytic inversion 

to the model (Lewis, 1995 ; Wanner et al., 1997). This BRDF model was used with the satellites 

MODIS and MISR and became the AMBRALS model (Strahler & Muller, 1999).  

 Improvements to BRDF modeling have continued. Jin et al. (2002) explored combining 

MODIS and MISR BRDF data to better estimate surface BRDF, demonstrating the value to 

having more data points in a BRDF estimate. Martonchik, Pinty, & Verstraete (2002) corrected 

one of the equations used by Jin et al., further improving these results. Liangrocapart & Petrou 

(2002) developed a two-layer model of BRDF, taking into account the vegetation layer and the 

bare ground or leaf litter beneath. Snyder (1998) meanwhile worked to extend the Roujean and 

Wanner models of BRDF into the thermal infrared, where these models are often much weaker. 

  BRDF models must incorporate some estimate of the hot spot in vegetation reflectance, 

which is an area of increased reflectance in the retroreflection direction. Hapke et al. (1996) 

helped define the cause of the backscattering hot spot in various surfaces. Camacho-de Coca et 

al. (2004) measured the hot spot using POLDER and HyMap on an airborne platform and did 

some modeling of this effect. They found that these results matched those found by sensors on 

satellites, showing the hot spot is a scale-free feature. Maignan et al,. (2004) used POLDER data 

to look at the BRDF of a wide range of surfaces, and compared the performance of several linear 

models, such as the Roujean and Ross-Li models used by AMBRALS, as well as a non-linear one. 

They found that none of these accounted well for the hot spot, though the Ross-Li and non-

linear models worked comparatively well. They further found that a modified Ross-Li could 

model this hot spot precisely. 

 All these BRDF models so far assume light behaves identically regardless of wavelength. 

This is clearly not the case, as all vegetation is highly reflective in the infrared, resulting in 

multiple scatterings that would not occur in the visible. To compensate, models have been 

developed which account for the spectral properties of plants and use these properties in the 
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estimation of the BRDF. A prominent example of this kind of model is PROSAIL (Jacquemoud 

et al., 2006). The spectral part of this model was built on PROSPECT, developed by Jacquemoud 

& Baret (1990). The BRF is built on the SAIL (Scattering by Arbitrarily Inclined Leaves) model 

(Verhoef, 1984). Work continues on refining these models (Feret et al., 2008) and relating 

spectral changes to biophysical changes in plants. 

 While important as a BRF model, PROSAIL has also been used as means of assessing the 

underlying vegetation health. While this is not the focus of my own work, it does present an 

additional use that would be available for a BRF camera. Many of these papers also provided 

insight to how to invert PROSAIL. Weiss et al. (2000) used SAIL and measurements at multiple 

angles to estimate Leaf Area Index (LAI) and chlorophyll content. Because of the lack of an 

analytic inverse to SAIL, they had to use a look-up table (LUT) solution. PROSAIL has inherited 

this lack of an analytic inverse (Jacquemoud et al., 2009). When Darvishzadeh et al. (2008) 

used PROSAIL to estimate LAI and chlorophyll content, they also used a LUT solution which 

they compared with results for a non-PROSAIL method (Darvishzadeh et al., 2008). L. Wang et 

al. (2013) used multiple angles, PROSAIL, and a LUT inversion to aid retrieval of vegetation 

parameters, and tried to find the optimal angles to take spectral data. Si et al. (2012) applied 

similar techniques for looking for LAI, canopy chlorophyll content and leaf chlorophyll content 

using multispectral data gathered by the MERIS satellite. They too used a LUT inversion of the 

PROSAIL model. Since there are a large number of parameters in the PROSAIL model, and 

some distinct combinations of them may produce spectrally similar profiles, work has gone into 

limiting the range of its input variables. Vohland & Jarmer (2008) found that linking Dry Matter 

Content (DMC) and the Equivalent Water Thickness (EWT) in a 1:4 ratio enabled better 

retrieval of DMC and EWT, as well as other parameters. All these papers provided guidance to 

my own LUT inversion of the PROSAIL model. 

 It is important to verify the research done in modeling BRDF or BRF for vegetation. 

Bacour et al. (2002) designed a method for the comparison of BRDF models and used it to 

compare the performance of PROSPECT when combined with four BRDF models, including 

SAIL, finding close performance except for the Kuusk model.  Methods are also important to the 

process of measuring BRDF, which is why Sandmeier et al. (1998b) did a sensitivity analysis of 

the hyperspectral BRDF of these grasses to various measurement factors, such as sampling 

rates, change in sun position and Lambertian assumptions. In a multi-year effort to compare 

and improve BRDF models of vegetation, there was Radiation transfer Model Intercomparison 

(RAMI) (Commission, 2014), which tested many models over increasingly complex surfaces. 
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 The polarization BRDF (pBRDF) is also of interest to this dissertation. Since the camera 

is wide angle, there was a question of whether Fresnel reflection would be a significant source of 

error. Work has gone into measuring pBRDF on the ground (Georgiev et al., 2011; Shell II, 

2005) and remotely (Fabienne et al., 2009), relating this to the total BRDF (Georgiev et al., 

2010; Zhang & Voss, 2009). Calculations based on these data show pBRDF should not be a 

concern for this project. 

 While much work has gone into modeling vegetation, and in spite of its stability in the 

long term (B. Clark et al., 2011) it is still important to take in-situ measurements of reflectance if 

vegetation targets are to be used in ELM. K. Anderson, Dungan, & MacArthur (2011) 

demonstrated that the hemispherical conical reflectance factors (HCRFs) of vegetation surfaces 

gathered by spectroradiometers in the field showed significant variation in the field from their 

specifications in the lab. In addition, they found that readings varied more than expected from 

instrument to instrument. This is also true of pseudo-invariant surfaces. In another study by K. 

Anderson & Milton (2006), they found that a disused airfield made of weathered concrete, 

which would generally be assumed to be a target of constant reflectance, showed both seasonal 

and daily variations in its reflectance values. These variations were ± 7% absolute reflectance 

seasonally, and ± 1.0% daily at a wavelength of 670 nm. 

 The use of measured vegetated surfaces is not completely novel to atmospheric 

correction, but is one that seems to be currently underutilized. The literature studying these 

surfaces is extensive. This dissertation makes use of this literature to extend existing techniques 

in situ for long term radiometric monitoring into a new region. 

 

2.3 In-Situ Systems 

2.3.1 Systems for BRDF Measurement 

 My proposed camera system must use its measurements to estimate BRF in order to 

relate all of the samples it takes across a scene to a single near-nadir reflectance. General 

practices for in-situ measurements of reflectance and the BRDF of vegetation were laid out by 

Robinson & Biehl (1982). Vegetation BRDF measurement is frequently done with a goniometer, 

moving a spectroradiometer in a hemisphere around a sample, such as developed by Boucher et 

al. (1999), which they used to verify the accuracy of BRDF models. Examples of goniometers 

include the  Swiss Field Goniometer system (FIGOS), and the Sandmeier Field Goniometer 

(SFG) (Sandmeier & Itten, 1999 ; S. R. Sandmeier, 1999). Jensen & Schill (2000) used the SFG 
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to find and model the BRDF of smooth cordgrass, to gather more information about its 

hyperspectral and directional properties. As goniometers can be quite expensive, Coburn & 

Peddle (2006) wrote up a method of constructing a low cost, but un-automated, goniometer 

system for either field or lab use. The use of a goniometer also limits which surfaces can have 

their BRDF measured. A SFG is around three meters tall; consequently it cannot be used to 

measure the BRDF of a forest. This motivated Dymond & Trotter (1997) to use an early BRDF 

camera to measure the BRDF of a forest from an airborne platform. Nandy, Thome, & Biggar 

(2001) used a calibrated a camera to measure the BRF of a variety of surfaces in the desert. This 

camera had filters designed to match those of Landsat 7 ETM+ and a near 180° field of view and 

included a cooling system to keep down read noise.  It turned out to be too cumbersome to 

deploy. Czapla-Myers, Thome, & Biggar (2009) tried to implement another RSG BRF camera, 

using an off the shelf consumer grade sensor. Unfortunately, this camera had proprietary and 

inherent image processing built into it, which made the BRF recovery process difficult. One 

interesting alternative way to measuring BRF was demonstrated by Thome et al. (2008), in 

which they measured BRF using a stationary one-pixel sensor. By leaving it out for months and 

letting the sun do the moving, instead of the sensor, the BRF could then be estimated. This, of 

course, assumes a very static surface. 

 While there is great trust in the radiometric resolution of spectroradiometers, Ferrero, 

Campos, & Pons (2006) demonstrated that you can achieve very good radiometric calibration of 

a camera CCD as well, as long as the temperature is controlled, and the field of view is narrow. 

We cannot place a 230 kg goniometer (Sandmeier & Itten, 1999) on top of crop plants we wish 

to measure the BRDF. This motivated Demircan et al. (2000) to use a rotated line CCD to take 

BRDF. This latter experiment also demonstrated the way that using multiple pixels can speed up 

the BRDF measuring process, as the measurements with their system took 30 seconds. Cameras 

have become important to measuring BRDF when the time taken to gather readings becomes a 

significant issue. This is an issue when measuring a time varying BRDF, like paint drying (Sun et 

al., 2007), or when taking measurements in a difficult environment, such as underwater (Voss et 

al., 2000). It should already be the case for many in-situ readings, where the sun is continuously 

moving.   

 Time is a factor for people trying to gather large quantities of data, such as people 

looking at the polarization BRDF (Shell II, 2005). Goniometers have provided BRDFs with high 

spectral resolution but are limited by their run time. To work around this runtime issue, Filip et 

al. (2013) developed a novel algorithm to sample BRDF, sparsely sampling BRDF at first, then 

taking additional samples where the rate of change is high, and therefore decreasing the large 
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number of samples typically needed to sample BRDF. This might be something to consider in 

future implementations of the BRDF inversions that I use for this camera system, as I currently 

sample at evenly spaced intervals. 

 Much work has been done to improve BRDF cameras in labs, using high dynamic range 

cameras (Kim et al., 2009), novel lighting geometries (Ghosh et al., 2010) and polarization from 

multiple light sources (Atkinson & Hancock, 2008). An item of interest for later study with this 

sort of project may be work into accounting for spatially varying BRDF (Dana & Wang, 2004).  

 Most of these BRDF cameras, including an early example from Marschner et al, (2000) 

have been built to work in the laboratory, to help improve computer graphics. Many of the in-

situ instruments for measuring vegetation BRDF for remote sensing, such as the one developed 

by Giardino & Brivio (2003), seem to still be Goniometers. This dissertation is part of an effort 

to move some of this technology from in the lab into the field with in situ camera systems.  

 

2.3.2 In-Situ Camera Systems 

 In-situ optical monitoring systems are often limited to continuous at-nadir radiance or 

irradiance. To monitor larger areas with such a sensor, Berry et al. (1978) set up such a 

radiometer to run on 150-foot wires between 50-foot towers. More recently, Gamon et al. (2006) 

set up a spectroradiometer on a rail, which samples approximately a 1 meter by 100-meter area. 

G. E. Bell et al. (2002) came up with another solution, using a radiometer and light source 

mounted on a tractor to monitor turfgrass. These approaches to monitoring large areas are 

limited by the time that can be invested in moving the sensor from place to place, and the 

infrastructure required to move them between those places. One exception to this is the system 

designed by Hilker et al. (2011) that used a rotating imaging spectroradiometer to estimate the 

chlorophyll and carotenoid content of deciduous and coniferous vegetation, and their growing 

patterns. 

 In-situ cameras provide an alternative means of monitoring optical properties. One 

example is an automatic grass monitoring system designed by Schut et al. (2002), that looks at 

3.5 m2 area with pixels on the order of one mm and hyperspectral data, trying to measure the 

percent grass versus soil and dead material. As another example, Voss & Chapin (2005) 

developed the NuRADS camera system, which was designed to measure the upwelling radiance 

distribution in ocean water, and has a field of view over 80°, 6 spectral channels, and takes 

readings in 2 minutes. NuRADS was used by Gleason et al. (2012) to measure the BRDF of 
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water. This system was later modified by Voss & Souaidia (2010), to make use of multiple 

NuRADS sensors to measure the upwelling polarization of the ocean and by Bhandari, Voss, & 

Logan (2011) to measure the downwelling polarized radiance in the ocean. An in-situ system 

from Wei et al. (2012) measures seawater radiance near the surface, with a 180° field of view. It 

takes advantage of CMOS technology to have a dynamic range of up to 9 decades. These cameras 

are all just for the measurement of BRDF or radiance though. Unlike the above systems, my 

camera system will be working over just part of the hemisphere, and will supplement the data 

gathered with existing BRDF models. 

 All the camera systems listed so far have been temperature stabilized. There is a change 

in camera responsivity with temperature, but this seems to be little noted since many cameras 

are already cooled to control other sources of noise. This effect is notable in some sensors in 

orbit, such as the Lunar Reconnaissance Orbiter Wide Angle Camera (Sato et al., 2013) and 

Landsat 5 (Helder et al., 2004). Algorithms have been developed to compensate for this effect. 

 Satellite sensors have to deal with issues of spectral mismatch in cross-calibration (P. M. 

Teillet et al., 2007). This is one of the largest sources of noise in cross-calibration (Chander, 

Helder, et al., 2013). Algorithms have been developed to compensate for this effect (Chander, 

Mishra, et al., 2013). These will guide my work if issues do arise due to the mismatch between 

my filters and the Landsat 7 ETM+ ones.  

 If it proves possible to do atmospheric correction using web camera images, it may be 

possible to pair with some of the many cameras already set up to monitor the world. Some 

existing and proposed networks of cameras are set up to monitor phenological changes 

(Richardson, et al., 2009 ; Benton, et al., 2008). Cameras are already being used to monitor 

haze and air pollution (“Camnet,” 2012). Individuals, parks, companies and universities also 

place a large number of outdoor cameras to show traffic, weather, views, or wildlife. Jacobs et al. 

(2009) have done extensive work on locating these cameras, both on the web, and their 

corresponding location in the real world. The cameras cataloged by Jacobs et al. produce around 

one terabyte of images every 2-3 days, which are then stored and accessible at AMOS (Archive of 

Many Outdoor Scenes) (“AMOS | Project Overview,” 2013). 

 

2.3.3 Vicarious Calibration Systems 

 Vicarious calibration is the process of measuring the response of sensors that we do not 

have physical access to, such as those on satellites. The processes used for ELM and vicarious 
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calibration are related. ELM compensates for the atmosphere in a single image. Vicarious 

calibration takes similar measurements of in-situ reflectance, but uses another layer of 

atmospheric correction, enabling the effects of the atmosphere to be separated from the 

properties of the sensor being calibrated. Vicarious calibration is of interest to this dissertation 

because it requires the same reflectance data ELM does. 

 Vicarious calibration is important to maintaining a continuous record of reflectance 

measurements, tracking changes in sensor sensitivity (Helder et al., 2004) and tracking artifacts 

in remotely sensed data (Helder & Ruggles, 2004). It can be used to estimate the MTF or other 

optical properties of sensors (Pagnutti et al., 2010). It maintains data continuity between 

missions, by relating the readings from previous sensors to newer ones (Helder et al., 2012), and 

improves temporal sampling by relating readings between current sensors (Thome, D’Amico, & 

Hugon, 2006) and can be done very accurately using existing methods (Thome, Mccorkel, & 

Czapla-myers, 2013). Vicarious calibration can also provide validation of data products 

produced by satellite systems (Y. Wang et al., 2011).  

 The Remote Sensing Group (RSG) at the University of Arizona has been practicing 

vicarious calibration on satellites for years (Thome et al., 2004 ; Czapla-Myers et al., 2013), and 

has helped establish standards for the practice (Helder, et al., 2012). To aid in vicarious 

calibration the RSG has designed many optical devices, to inter-calibrate radiance readings 

(Anderson, et al., 2008), automatically take at-nadir radiance readings using LED and silicon 

sensors (Czapla-Myers et al., 2012 ; Anderson et al., 2013), estimate the BRF of surfaces (Nandy, 

2000) and measure laser reflectance for the vicarious calibration of LIDAR systems (S. Biggar, 

et al. , 2004). 

 Pseudo-invariant sites are an important part of vicarious calibration (Helder et al., 

2013), with significant effort being put into identifying suitable sites manually (P. M. Teillet, et 

al., 2007 ; Chander et al., 2010 ; Angal, et al., 2011) and automatically (Helder, Basnet, & 

Morstad, 2010). To monitor these sites, a balance must be found between their suitability and 

their accessibility (Thome, Geis, & Cattrall, 2005). Different sites may be necessary depending 

on the bands being calibrated. The alkali flats of White Sands provides good stability for much 

vicarious calibration (Holmes & Thome, 2001 ; Teillet, et al., 2007),while Lake Tahoe presents a 

suitable target for calibrating thermal bands (Hook et al., 2004). Bright targets are often 

preferred, but dark targets have also been used (Parada, Thome, & Santer, 1997; Thome, et al., 

2000). If only some of the spectrum can be vicariously calibrated, it is also possible to 

intercalibrate sensors using sun glint (Hagolle, et al., 2004). In 2001, P. Teillet et al. (2001) 
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proposed a network of automated test sites to be used for the calibration of satellite sensors, 

though this appears to have never gone beyond being a proposal. There is ongoing work to 

create a calibration standard in space (Thome et al., 2010 ; Lukashin et al., 2013). This mission 

should launch in 2020 (“CLARREO,” n.d.). 

 Current vicarious calibration methods demonstrate the desirability of having a historical 

basis of ground readings to compare remotely sensed data against. However, vicarious 

calibration focuses on arid regions, where there is high uniformity and little change. In this way, 

sampling a small section can be relied upon to provide information about a larger target. This 

dissertation seeks to expand the range of existing experiments, moving techniques out of the lab, 

and out of arid regions. It seeks to expand the usefulness of the system using information 

technology, in the place of hardware, keeping costs down. It does all this in order to provide an 

improved methodology towards the validation of atmospheric correction. 

 

3 System Design and Calibration 

3.1 Overview 

 My research expands the range of a number of existing experiments: Many techniques 

developed using cameras to measure BRF are currently limited to being used in a lab 

environment. I apply the extensive work that has been done characterizing vegetation, using 

readings taken over a range of angles, to move existing techniques for monitoring in-situ 

reflectance out of arid regions. I increase the usefulness of the camera system, using information 

technology in the place of expensive hardware to keep costs down. Since there are many possible 

selections of cameras, color filters, BRF model, lenses, etc., this research characterizes how these 

choices can be made and affect the quality of the overall system. It is my hope that by doing this, 

that I can create a road map for future efforts to build in-situ cameras for atmospheric 

correction. 

 Section 3.2 explains how the BRF models used by the camera system were inverted, 

which is the first step to transforming camera images into an estimate of near-nadir reflectance. 

Section 3.3 explores how these inversions provide insight into the way sources of error in the 

camera system effect the near-nadir recovery. Sections 3.4 and 3.5 describe how the 

relationships found between sources of error and the error in the BRF recovery determined the 

camera design and Lambertian target selection. Finally, Section 3.6 explains the calibration 

process for the two camera systems. 
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3.2 BRF Model Inversion 

3.2.1 Introduction 

 BRF models provide a means of estimating directional reflectance for a given input 

radiance. BRF models are frequently built with input parameters so that they can be adjusted to 

better fit an individual instance of a surface. To make these inputs useful, a method is needed for 

finding input values  that create a model close to reality.  

 A convenient way of finding input values is to use data gathered about the reflectance of 

the real surface. This requires inverting the model, using what would be the output of the BRF 

model to estimate the input values that would provide that output. Inversions can be analytical, 

mathematically relating the measured values to a specific set of input values for the BRF model, 

frequently deriving from a least squares fit. Inversions can also be non-analytical, such as with 

look-up tables, iterative or search algorithms and artificial neural networks. 

 

3.2.2 AMBRALS Inversion 

 The AMBRALS model was developed to provide BRDF estimates from data provided by 

the MODIS and MISR satellite-borne sensors. The BRDF model is built upon a sum of multiple 

kernels that represent different surfaces and forms of scattering. It is assumed that these 

surfaces are non-interacting, and thus, can be treated as independent of each other. The BRDF 

model can be defined as  

𝐵𝑅𝐷𝐹(𝜃𝑖 , 𝜃𝑣 , 𝜙, Λ) =  ∑ 𝑓𝑘(Λ)𝐾𝑘(𝜃𝑖 , 𝜃𝑣 , 𝜙, Λ)

𝑛

𝑘=1

 

 

Eq (3) 

 Where 𝜃𝑖 is the solar zenith angle,  𝜃𝑣  is the view zenith angle, 𝜙  is the view-sun relative 

azimuth angle, Λ is the waveband, 𝐾𝑘(𝜃𝑖, 𝜃𝑣, 𝜙) is the BRDF model kernel k and 𝑓𝑘(Λ) is the 

BRDF model kernel weight (Figure 3) for parameter k in waveband Λ, (Strahler & Muller, 1999). 

N AMBRALS kernels are superimposed to find the BRDF. Usually three kernels are used: one 

with constant reflectance, representing isotropic scattering, one for volume scattering and a 

third kernel for surface scattering. The BRDF model is then fit to the l measurements of 

reflectance data 𝜌′𝑙 with weights 𝑤𝑙 by a least squares fit, to find the kernel weights 𝑓𝑘(Λ). We 
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can simplify this notation some by defining 𝐾𝑘𝑙 to be the reflectance for a particular pair 

of incident and view angles for the measurement l, so that:  

𝐵𝑅𝐷𝐹𝑙(Λ) =  ∑ 𝑓𝑘(Λ)𝐾𝑘𝑙(Λ)

𝑁

𝑘=1

 

 

Eq (4) 

 The inversion is found by first deriving matrices of based on the data. It is then possible 

to rearrange these such that they can be used to derive the values for 𝑓𝑘(Λ). 

𝑉𝑗 =  ∑
𝜌𝑙 

′ 𝐾𝑗𝑙

𝑤𝑙
≅  ∑

𝐵𝑅𝐷𝐹𝑙𝐾𝑗𝑙

𝑤𝑙
=  ∑ ∑

𝑓𝑘𝐾𝑘𝑙𝐾𝑗𝑙

𝑤𝑙
  

𝑁

𝑘=1

  

𝑁

𝑙=1

 

𝑁

𝑙=1

 

𝑁

𝑙=1

 

 

Eq (5) 

𝑀𝑗𝑘 =  ∑
𝐾𝑗𝑙𝐾𝑘𝑙

𝑤𝑙

𝑁

𝑙=1

 

Eq (6) 

 Which can then be rearranged to find the inverse: 

𝑉𝑗 =  ∑ 𝑀𝑗𝑘𝑓𝑘

𝑁

𝑘=1

 

Eq (7) 

𝑓𝑘 =  ∑ 𝑀𝑗𝑘
−1𝑉𝑗

𝑁

𝑗=1

 

Eq (8) 

 For more details on this inversion, see Strahler & Muller (1996) page 34/252. This 

inversion has the advantage of having a definite value for input parameters, so long at the matrix 

𝑀𝑗𝑘 can be inverted. 

 

3.2.3 PROSAIL Inversion 

 PROSAIL is a BRF model built on the leaf reflectance model PROSPECT, and the BRF 

model SAIL. PROSPECT is a hyperspectral model of leaf reflectance and takes into account 

chlorophyll and pigment contents. SAIL simulates multiple scatterings by arbitrarily inclined 

leaves for values of leaf density (Leaf Area Index) and the Leaf Angle Distribution. These 

combine to act as a hyperspectral vegetation BRF model. The strength of this model is that it can 

better account for the relationship between vegetation parameters and BRF effects. Increased 

reflectivity leads to multiple scatterings, consequently BRF is different in the visible, where 
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reflectance is low, vs. the NIR, where reflectance is high. BRF effects in the visible change and 

get closer to those in the NIR when vegetation becomes distressed, and reflectances in the 

visible and NIR thus become more similar. 

 PROSAIL is a program simulating multiple scattering, not a set of mathematical 

equations, and so a non-analytical inversion was necessary. Options for this inversion include 

the use of artificial neural networks, iterative algorithms and the use of look-up tables. For this 

research, I used a look-up table (LUT) inversion of the PROSAIL model. A LUT inversion 

provided the most straightforward non-analytic inversion and has been demonstrated by others 

in the field, as both artificial neural networks and iterative algorithms are complex enough to be 

fields of research unto themselves. In addition, the LUT inversion of PROSAIL has been 

demonstrated to by others in the field (Darvishzadeh et al., 2008; Si et al., 2012; L. Wang et al., 

2013). 

 For a LUT inversion, many possible example BRFs are generated, for a range of input 

values for PROSAIL. By comparing the BRF measured with the example BRFs in the LUT, it is 

possible to find input values that most closely approximate the BRF. Using these input values 

for the closest BRF, it is then possible to estimate the reflectance in other directions.  

 One advantage of the LUT inversion of PROSAIL is that it provides an opportunity to 

conform with the surface reflectance in a way that other inversions do not. Vegetated surfaces 

will have some non-uniformity to them. Simulations show that this can be a significant source of 

error in the BRF recovery, but one that can be overcome. My PROSAIL LUT inversion uses a 

number of closest BRF examples to estimate reflectance, in line with the work done by (Weiss et 

al., 2000). An average of the directional reflectance is calculated using reflectances generated for 

each example BRF in the desired range of closest estimates. By using multiple example BRFs in 

the solution, the inversion is better able to account for surfaces divided between different 

surface types, grass and soil for instance. The LUT inversion will pick grass BRF examples and 

soil BRF examples, and produce and average of those, in a way similar to how the net reflectance 

is seen by a distant sensor.  

 The main disadvantage of the LUT inversion is the size of the look-up table. Each table is 

made up of examples generated using different input values, in this case, example BRFs. A finite 

number of examples can be generated, limited by the time that can be spent generating them, 

and the space that can be dedicated to storing them. Additionally, increasing the number of 

examples in a table increases the amount of time that must be spent searching for examples that 

match the measured data.  
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 The limits on the number of examples also limit the number of input value combinations 

that we can test. It is important then to pick the input values used to generate examples that 

represent both the range of possible examples and input values well. When (Weiss et al., 2000) 

populated their look-up tables, they used 100,000 number of randomly assigned values for 

inputs. I could not find a good justification for this choice, so instead I generated example BRFs 

that were using input values spaced evenly between the minimum and maximum values (Table 

2). These minimum and maximum values taken from estimates used by Darvishzadeh et al. 

(2008) and Si et al. (2012). When the final analysis of the data was done, I changed these ranges 

based on data taken from the field (section 3.6.11: LUT Calibration). 

 

 Some of the variables in Table 2 have the same minimum and maximum values. Because 

of the eleven inputs necessary for PROSAIL, sampling the range of all possible input values 

thoroughly while maintaining a limited number of examples for the LUT is difficult. To have N 

values for each input represented in the LUT, with 11 inputs, there will be 𝑁11 possible 

combinations, and thus example BRFs to generate. For N = 2, this is 2,048 example BRFs. For N 

= 3 this is 177,147 example BRFs. Eliminating some of these inputs decreases the number of 

Table 2: List of input values used for the PROSAIL inversion, for the simulation. 

INPUT VARIABLE MINIMUM 

VALUE 

MAXIMUM 

VALUE 

LEAF AREA INDEX 4 m2 m−2 8 m2 m−2 

LEAF INCLINATION DISTRIBUTION 

FUNCTION 

20 70 

SOIL REFLECTANCE PARAMETER .5 1 

CHLOROPHYLL A AND B CONTENT 15 μg cm−2 55 μg cm−2 

LEAF STRUCTURE PARAMETER 1.5 1.9 

EQUIVALENT WATER THICKNESS .01 cm .02 cm 

DRY MATTER CONTENT .0025 g cm−2 .005 g cm−2 

CARATEONOID CONTENT 8 μg cm-2 8 μg cm-2 

BROWN CHLOROPHYLL CONTENT 0 μg cm-2 0 μg cm-2 

HOTSPOT PARAMETER .1 mm−1 .1 mm−1 

SKYLIGHT PARAMETER .1 .1 
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example BRFs that need to be generated substantially, and thus enable better sampling of input 

values elsewhere. 

 Brown chlorophyll content, the hot spot parameter, and carotenoid content were 

eliminated as an input because they have been found experimentally by other research groups to 

be fairly constant. The skylight parameter can be estimated using local measurements at the 

time of taking readings. Finally, there is the observation by (Vohland & Jarmer, 2008) that BRF 

recovery results are improved by pegging dry matter content to being 1/4 of equivalent water 

thickness. This lowers the number of variables from 11 to 6, substantially reducing the number 

of examples that need to be generated for a LUT. 

 To try and further limit the number of input values, I performed a sensitivity analysis to 

estimate the magnitude change of in the example BRF when an input value was moved from its 

maximum to minimum value for a range of other input variables. By comparing the magnitude 

of these changes, I hoped to determine if I could sample some inputs less than others. My 

results, however, showed that the remaining six variables had roughly equal weight when all the 

Landsat 7 ETM+ bands and a hemisphere of angles were considered. 

 The BRFs generated for my inversion of PROSAIL were multispectral readings at a wide 

range of angles. As an additional change to other methods I have seen implementing the LUT 

inversion for PROSAIL, I experimented with giving different weights to different parts of the 

spectrum. As stated elsewhere, this multispectral data helps better understand the underlying 

health and parameters of the vegetation being measured, which we might expect to aid in the 

BRF recovery. However, since there were three bands in the visible, and one in the NIR, I 

anticipated that this might lead to results that overweight the visible over the NIR. As the error 

in estimated reflectance tended to be greatest in the NIR, I set up my inversion such that I could 

shift the weight given to each band. This enabled me later to experiment with these weights, to 

see if adding additional weight to the NIR provided a better inversion than one where the 

weights were equal across the bands. 

 Because of the large number of example BRFs being generated for this work, additional 

work was done to optimize the run time of the example generation and match searching code. 

This work is explained in Appendix A. 
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3.3 Systems Engineering and Error Estimation 

3.3.1 Introduction 

 Proper planning is an important step to the success of any project. I took a systems 

engineering approach to this, simulating the system before designing it. This enabled me to first 

confirm the feasibility of this method of near-nadir reflectance recovery, and then to maximize 

the chances of system success while avoiding overdesigning parts unnecessarily and staying 

within the project budget. Error from different sources was estimated, and these estimates were 

used to decide the parts, calibration, and data taking methods used in the camera system. This 

section of the dissertation describes the major sources of error, the methods used to estimate 

error, how sources of error were weighed against each other, and the camera system design they 

produced. 

 

3.3.2 Finding the Error Budget Target 

 To perform the systems engineering for this project rigorously, the allowable error in 

estimated near-nadir reflectance needed a target value. Since these cameras are intended to 

perform and evaluate atmospheric correction, the relationship between a camera's error in its 

recovered near-nadir reflectance, and the quality of the resulting atmospheric correction, 

needed to be understood. Research on the empirical line method (ELM) provides guidance here, 

as it uses only in-situ spectral reflectance data to do atmospheric correction. ELM literature is 

contradictory on the requirements for ground targets (B. Clark et al., 2011 ; Smith & Milton, 

1999 ; Karpouzli & Malthus, 2003), so I relied instead on a Monte-Carlo simulation of ELM. 

These simulations enabled me to relate the quantity of cameras and the brightness of targets to 

the quality of the resulting atmospheric correction.  

 The simulation worked by comparing an empirical line generated using perfect data to 

an empirical line generated using noisy data. The simulation generated N calibration targets to 

be used in an empirical line with reflectance values. Each of these calibration targets was 

assigned an average error in the estimate of its reflectance. The error was related to the 

reflectance such that larger values of reflectance would on average have larger values of σ as 

well. This was consistent with taking real measurements of reflectance and prevented situations 

where low values of reflectance might produce readings with negative reflectance values. The 

simulation generated noisy estimates of the reflectance, and used these to generate an estimate 

of the empirical line. The simulation compared the noisy estimate with the perfect line to 

generate an RMS error for the run. The simulation would then repeat the process of generating 
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noisy estimates for the reflectance values 

1000 times to find an average value of RMS 

error for N calibration targets with 

reflectances. The simulation would record 

this value in a file along with the 

reflectances and mean error for each of the 

N targets used in the run.  

 The simulation generated 1000 

random possible set ups with different 

numbers of calibration targets, reflectances, 

and average errors. By plotting and combing 

through this data it was possible to find 

patterns in the relation between these 

values. As would be expected, larger 

numbers of cameras enable looser 

tolerances in the average error of the camera 

systems. Also in line with research on ELM, 

it is possible to get better results with fewer 

targets if there is a large difference in the reflectances of the targets (Moran et al., 2001). Results 

showed average RMS errors between the lines below 2% were uncommon, and the absolute limit 

seems to be an average of 1% RMS error between the lines. Using these results as a guide, I have 

decided that the error in the camera reflectance estimate should be below 2% (in absolute 

reflectance, so that the error in an estimate of 50% reflectance should be 50% ± 2%, not ± 1%), 

as this provides low error in the atmospheric correction while requiring a small number of 

cameras. (Figure 4) 

 

3.3.3 Metric Used for Measuring System Error 

 To aid the design process, I created a simulation of the camera system. The simulation 

measured a PROSAIL surface and sampled it according to the camera specifications, then tried 

to recover the BRF using the PROSAIL LUT inverse. A satellite reading of the PROSAIL grass 

surface was simulated, and the near-nadir reflectance estimated by the PROSAIL inverse was 

compared with this value. This was performed over a range of satellite values. These were 

combined into a root mean square as the total system error. 

  

Figure 4: A scatter plot showing how average 
allowed error in a camera system (1 sigma, % 
absolute reflectance) relates to the number of 
cameras required. The average allowed error 
also varies with the brightness of the targets, 
and on the individual camera errors. 
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 Sources of error were programmed into the simulation to measure their effect on the net 

error in the BRF recovery. Some level of error was inherent to the system and the simulation, 

and all estimations of an individual error effect for an error budget were measured from this 

base error level. When estimating these values, I used four different grass surfaces, generated 

using random input values plugged into PROSAIL, taken from within the ranges of Table 2 that 

I deemed were far enough apart to produce significantly different results. Since I did not know 

the exact health of the grass that I would eventually use, this would enable me to see how the 

performance varied with surface type, while also limiting the number of simulations I needed to 

a number that could be run in the time available. I averaged the results of the error for these 

four surfaces to find the mean value for the total system. 

 For these simulations, it was necessary to pick a set of parameters to use for generating 

the LUTs. The full scale camera system is intended to be stationary, and the sun angle will move 

with respect to it at the time of satellite pass over. In Tucson, AZ, where I ran this experiment, 

and with the Landsat 7 ETM+ satellite system, at the time of satellite pass over, this would 

account for an approximately 50° change in the azimuth angle between the sun and camera, and 

a change of approximately 30° in solar zenith angle between the summer and winter solstice. 

Since placing the camera in the direction of backscatter presents the problem of the system 

potentially casting a shadow on its target, I assumed it would be operating in the forward scatter 

direction. I further assumed that the camera system would work best when it could monitor the 

forward scatter specular reflection. As such, I ran simulations for the camera at a solar azimuth 

angle of 180°, with a solar zenith angle of 30°, to represent a best-case scenario. I also ran the 

same simulations for the camera with a solar azimuth angle or 230° and zenith angle of 60° to 

represent the seasonal difference in the stationary camera performance. 

 I found in these simulations that, as expected, the camera performed better at 180° and 

30° than it did at 230° and 60°. These changes, while significant, were not so much as to make it 

seem that the camera system would not work year round. 

 For the rest of this section, I will be making reference to, and presenting charts for the 

case of a camera set up at a solar azimuth of 180° and zenith of 30°, because the behavior of 

these two cases is nearly identical in shape, if slightly different in scale. I do list the differences 

in the resulting expected errors for both at the end in Section 3.3.14, where I discuss the final 

error budget in more detail. 
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3.3.4 Error Due to LUT Use 

 Some amount of error is inherent to the LUT inversion of PROSAIL. It is necessary when 

estimating the overall error of the system that we measure the error of individual sources, such 

as read noise and filter choice, that these are measured from these baseline sources of error. 

 It is also necessary to make some design choices for the set up of the LUT solution, both 

to implement the problem and to establish this baseline error of the system. When setting up 

this base system for the simulation, it was sensible to seek an implementation that does not 

create unnecessarily large sources of error, as this might make error from other sources less 

apparent, and would ideally also not represent the behavior of the final system. The design 

decisions that had to be made at this point included the number of samples of the image taken, 

the sampling of the input values used for PROSAIL in the LUT inversion, the number of BRFs 

used to find the average used finding in directional reflectance value, and the weights given to 

each band used in the inversion (see section 3.2.3 for more details). 

 I began with the sampling rate for the image, and the rate at which to sample the input 

values for PROSAIL. I desired an estimate of these values prior to running the small scale test, 

both to aid simulating the effects, and to understand how long I would need to set aside for 

generating the LUTs for the inversion. I began with what I thought would be a minimum value, 

sampling the image with an 11 x 11 grid, as this seemed like a minimal amount. A 3 x 3 grid to 

provide information about the direction of the change in BRF from the center, while a 5 x 5 grid 

would also provide information about whether the rate of change was increasing or decreasing. 

Since I had not assumed the angle of specular reflection and maximum value would be in the 

center of the image, an 11 x 11 grid acts as a 5 x 5 for each quadrant of the image. Testing showed 

me that this did indeed provide adequate results for the inversion. I used this for all later 

simulations. For the sampling of the PROSAIL input variables, I varied the value across the 

range explained in section 3.2.3. I had decided to sample these inputs over an even range and 

desired a number of samples that seemed a minimum for valid results. I decided that I would 

use 4 samples over the range for the input values, as this allowed for some variation between the 

minimum and maximum values, while enabling me to generate LUTs quickly enough that it was 

possible to run a range of simulations to generate other error values.  

 For the next step in this, I determined the number of BRFs to use in finding the 

directional reflectance. Since the tables in the LUT have finite resolution, using a multiple BRF 

recovered in the LUT inversion enables a finer degree of output in finding directional 

reflectance. If the measured BRF was in between two example BRFs found in the LUT, then 
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using the sum of the directional reflectance for those two would lead to better results than if we 

only used one.  Similarly, if there was a BRF that was closer to one of the two example BRFs 

mentioned above, then using a third BRF in the sum might pull the value even closer to the 

measured values. This argument can be made ad infinitum, though clearly it must also have a 

limit. If we were to apply every single example BRF used in the LUT, then we would get the same 

output regardless of the input. I set out to try and find this value experimentally, prior to 

running other simulations. It would be tempting to find the number of BRF examples to use 

every time on a case by case basis, but in the field, there will not be reference data to work 

against. After testing values between 5 and 500 LUTs used, I found that there was not a 

consistent best value to use. For the rest of these simulations, I ran them using the sum of the 13 

best matching BRFs, as this produced good results most often, and seemed enough to gain the 

benefits of the summation without muddying the results with more distant values. As something 

to test in the future, I might also weight this summation, such that the closest BRFs are better 

reflected in the final value. 

 For the final step in setting up the LUT inversion, I explored the effects of weighting the 

different Landsat 7 ETM+ bands I used in the inversion. By default, the inversion held the bands 

to be equal. As the values for the visible tended to be similar to one another, and generally vary 

less than the NIR, I was concerned that this would overweight the reflectance in the visible. I 

experimented with different weights for the NIR versus the visible and found that while this did 

not strongly change the outcome, it did improve the results for the NIR. Since the values in the 

NIR were most often the largest source of error, I gave increased weight to the NIR values. I 

found that a 3:1 ratio of weights in favor of NIR over visible light gave the best results. Placing 

additional weight into the NIR decreased the ability of the PROSAIL inverse to find matching 

values for the BRF, as it became harder for it to detect things like vegetation health. 

 

3.3.5 Error Due to Read Noise  

 Read noise is random variation in the signal produced by a detector due to quantum 

mechanic effect, and exists even in a hypothetical perfect system. This is often listed as a 

specification of the signal to noise ratio for the system, measured in decibels. Read noise can be 

reduced by cooling the system, or mitigated by increasing the number of images taken and 

averaging over them. In the case of measuring BRF, the effects of read noise can also be reduced 

by increasing the number of samples from the image taken, as BRF is generally a smooth 

function. I chose not to work with a cooled system because for low-cost cameras in the field, 
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cooling will not be an option. 

As a result, the system 

tolerance allowed for read 

noise had to be loose. 

However, Figure 5 shows 

how even a small percent of 

read noise would cause the 

signal to be drowned out for 

the signal.  

 

3.3.6 Error Due to Error in Angle Measurement 

 Error from measuring the camera system angles with respect to the zenith and azimuth 

angles of the camera was considered to be a priority, as an accurate estimate of BRF requires 

knowledge of the angles from which readings are being taken. This source of system error was 

broken into two parts: Knowledge of the azimuth and zenith angles of the camera, and 

knowledge of the roll of the camera system with respect to the optical axis (Figure 6). Error in 

the zenith angle estimate was anticipated to be low, as it is quite easy to measure with a digital 

level. The azimuth angle was considered more difficult since it requires knowing the compass 

direction of the camera  system, which is much more difficult to measure. Digital compasses 

require daily calibration while analog compasses have limitations in their precision. In addition, 

there is difficulty in setting up to measure this value, given local magnetic fields, and distortion 

of the magnetic field by equipment. I explain this more in Section 4.1.3. Simulations found the 

tolerances for the setup and measurement of the azimuth 

and zenith angles to be fairly loose, particularly in the 

azimuth direction (Figure 7).  

 The zenith angle reflects what we would expect for a 

Lambertian surface, that the brightness is different 

depending on viewing angle, but changes smoothly with 

the angle. Azimuth also represents what we know about 

surfaces in general. 
Figure 6: The roll, pitch and yaw 
angles for the camera. 

Figure 5: Simulated results for the change in system error as a 
function of the read noise. Read noise measured here as a percent of 
the signal.  
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  There is increased reflectance in 

the camera view around the direction of 

forward and backscatter; in other 

directions, the reflectance tends to 

remain symmetric. As the sun angle is 

known, the results of the inversion will 

reflect a knowledge of the solar angle, 

rather than an incorrect measurement of 

azimuth. 

 This system error analysis 

showed that while it was necessary to 

measure zenith angle it would drive the 

design. It was easy for a digital level to 

come within 1 degree of certainty in the 

zenith angle of the camera. The azimuth 

specifications of ± 5° did end up driving 

system planning, since analog compasses 

have a finite level of accuracy, and 

magnetic fields and local and 

equipment's effects on the compass need 

to be planned around. These specifications also drove the time available for taking readings, as it 

was desirable for the sun to stay within the specification while taking readings for all the color 

bands. The angular distance traveled by the sun naturally varies with time of year and time of 

day. In order for the sun angle to stay within this specification, it was necessary to get all the 

readings for all colors within a span of 5 minutes.  

 The camera roll was treated as a source of error within the parameters specified for the 

azimuth and zenith error. The roll angle of the camera system was a weaker source of error than 

the estimate of the camera's azimuth and zenith angles, though a change in the roll would 

change for both the phi and azimuth angles measured (Figure 8). The slope of the ground with 

respect to the camera was treated as being identical to the tilt of the camera with respect to the 

ground, due to symmetry.  

 The estimation of camera roll was deemed to be something that could be easily 

measured, and would have to be, but not an item that would drive the design. The ground slope 

Figure 7: Simulated results for the change in system 
error as a function of the misalignment of the camera 
system in the azimuth and zenith angle with respect to 
the estimated azimuth and zenith angles. 
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would also have to be measured, but would not drive the design of the system. I specified that I 

should have an estimate of this value to within half a degree, for both the ground tilt and the 

camera roll. 

 

3.3.7 Error Due to Pixel Angle Estimate 

 As in the previous section, the angles of BRF that each pixel is measuring must be known 

in order to reconstruct the BRF from the image generated by a camera. To do this, it is necessary 

both to know which way the camera is oriented, as in the previous section, and what the change 

in the angles is as we move across the pixels in the image plane.  

 I simulated this error by approximating it as an error in the estimate of the field of view 

of the system, extrapolating the view angles from that as a linear function. This changed all the 

angles in the camera by different amounts, while at the same time doing so in a mathematically 

simple and repeatable way. This simulation provided an estimate of the tolerance of the system 

to this sort of error, without exploring all the possible ways that the pixel to angle relationship 

may be wrong. I ignored effects like 

distortion, since distortion in the image is 

not a source of error, so long as it is 

accounted for.  

 In simulating this effect, it was 

possible to see that this source of error 

acts like camera roll, in that a small error 

in the field of view estimate causes a large 

change in the error of the system (Figure 

9). This corresponds to the way that, like 

roll, changing the field of view does not 

cause the readings to move along the 

BRF surface, but rather distorts the 

entire estimate.  

 As a result, the specification for 

this had to be tighter than the estimate of 

azimuth and zenith direction of the 

cameras. The field of view needed to be 

Figure 8: Estimates in the maximum change in the 
azimuth and zenith angles (in degrees), produced by 
changes in the roll angle of the camera. 



54 
 

known at ± 1.5° in either the azimuth 

or zenith directions of the camera 

readings. Even this value was pushing 

the error budget. I sought to get well 

below this value.  

 One factor that was not 

included in this is that there is some 

error in the estimate of the angle for 

each pixel and that this may not be a 

linear relationship. In Section 3.6.2 

we can see that the fit for the angle to 

pixel ratio is such that there are 

values both above and below it. 

 

3.3.8 Error Due to Digitization 

 It is necessary at some point 

to save our data as a digital number. 

Usually, this limitation is stated as 

the maximum number of bits. If read 

noise is low or averaged away, the 

digitalization will define the maximum 

radiometric resolution possible for the 

camera system. 

 To simulate this effect, 

assumed the measured reflectances 

spanned the range of values from 0% 

to 100%, and that these would 

discretize according to the number of 

bits of the system, such that for an 8-

bit image, there were steps of 

approximately 0.4% reflectance, and 

for a 10-bit image there were steps of 

approximately 0.1% reflectance.  

Figure 9: Simulated results for the change in system error 
as a function of the misestimate of the field of view of the 
camera system in the azimuth and zenith directions (in 
degrees). 

Figure 10: Simulated results for the change in system error 
as a function of the digitization of the image. 
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 In running this simulation, I found that after 10 bits, this was not a significant source of 

error (Figure 10). At 8 bits, it was a minor source of error. Any digitization less than that would 

produce a large amount of error. Since 8 bits is an industry minimum, even for consumer web 

cameras, this specification should not drive the design or selection of the camera.  

 

3.3.9 Error Due to Spot Size 

 When using an imaging system, a point source will not image to an exact point in the 

image plane. How much a point is allowed to spread out, while still providing us with good 

information is something that must be estimated for each system. As BRF is smooth and 

continuous, I expected that this would be a loose specification. 

 To estimate this as a source of error, I took a BRF generated by PROSAIL, taken over a 

hemisphere, and applied a mean value convolution to it. After applying the convolution, I then 

found the mean difference between the smoothed and unsmoothed data. By changing the size of 

this mean value convolution, and with an estimate of the pixel-to-angle ratio, I could estimate 

the effects of spot size on the BRF. 

 I found spot size was not a constraint on this system. Simulations produced the 

surprising result that even spots comparable in size to the camera sensor did not have a 

detrimental effect on the BRF. While this is consistent with the observation above that we expect 

that smoothing a smooth function to have minimal effects, this a larger effect than expected. 

Consequently, it was approached with some caution. While spot size would not be a driver of the 

system design, it was something that merited more research on its effects on the complete 

system. 

 

3.3.10 Error Due to Filter Choices 

 Error due to the range of filters of the transmission of light was likely in this experiment. 

When interference filters are used at an angle, they will be transparent at a range of 

wavelengths, λ, determined by the equation: 

𝜆(𝛼) = 𝜆0
√1 −  

sin2(𝛼)

𝑛2
 

Eq (9) 
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 Where α is the angle of incidence, n is the index of refraction of the medium, λ0 is the 

wavelength of transmission for light at a normal angle of incidence. Interference filters are 

designed to only allow through light at a specified wavelength. When the angle of incidence to 

the filter is increased, the effective spacing of the reflective surfaces is increased, and the range 

of light transmitted shifts (Figure 11).  

 Using this formula, and an estimate of the refractive index of the glass as n = 1.5, for a 

change in view angle of 30°, there is an approximately 5% change in the wavelength transmitted 

by the filter. The blue band, for instance, this would mean a change in the center mean of 

transmission of 24 nm, for a band that is 60 nm wide. It would change the width by of the band 

by 3 nm, as the short and long wavelengths of transmission change different amounts.   

 The shift in the spectral transmission of light with view angle is a problem when used 

with a large field of view system. One way to 

compensate for this effect is to design the system so 

that the light passes through the filter when it is at a 

near 90-degree angle of incidence. In this case, that 

was not possible since this camera system was 

designed to be used with off the shelf parts. 

Performing lens design for a wide field of view 

system with off the shelf lenses with room for a filter 

wheel in the center fell outside the scope of this 

project. In addition, this would be impossible with 

the web camera system. It was desirable to find a 

solution that would enable the filters to be in front of the lenses.  

 In order for the filters in front of the lenses provide a consistent range of color 

transmission, it was necessary to work with colored glass filters. This meant that while the 

quantity of transparency would change at off angles, again due to a change in thickness, there 

would be no change in the spectral range of the light transmitted. The disadvantage of working 

with commercial off the shelf colored glass filters is that they have a limited set of frequency 

transmissions available. As can be seen in Figure 12, many of the cut-on and cut-off frequencies 

can be very similar. These cut-on and cut-off frequencies are not sharp, so a filter that is 

advertised as a 780 nm longpass filter has more than 10% transmission at 750 nm.   

 Both these problems meant that there would be some inherent level of difference 

between the filters chosen for the cameras, and the Landsat 7 ETM+ bands themselves.  I 

Figure 11: As the angle of incidence, α, 
increases, the effective spacing of an 
interference filter increases. 
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programmed my PROSAIL simulation to estimate this effect by producing reflectances over a 

specified spectral range. I kept this as a linear sum over the range of spectral reflectance values, 

rather than accounting for the slope of the filter's transmission over the spectral range. The 

simulation would then use reflectances taken at one spectral range for the LUTs, and another set 

for the simulated readings taken. I experimented with both the filter transmission range being 

wider or narrower than desired, 

and the center mean of the filter 

transmission range being offset 

from the desired center.  

 I found with this analysis 

that error for the filter range 

depended most strongly on 

avoiding certain spectral 

landmarks. In the design of the 

camera system, it was necessary to 

avoid having the NIR filter avoid 

the red edge in the red (Figure 13), 

or its readings would be 

consistently low. For similar 

reasons, the red band needed to Figure 13: Examples of vegetation reflectance, over several 
levels of moisture content. (Davis et al., 1978) 

Figure 12: Example of the transmission of several filters available from Edmund Optics. Figure taken from 
their online catalog (“Colored Glass Bandpass Filters,” n.d.) 
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avoid crossing the red edge into the NIR. There were similar, but small effects from the blue 

band coming too close to the hump of increased reflectance in the green. 

 

3.3.11 Error Due to Fall-Off Estimate 

 As the angle increases between the object and image, there is a fall off in brightness, due 

to the change in the projected areas of the source and detector. The combined effect gives rise to 

the cos4 law, written: 

 𝐸𝛼

𝐸0

=  cos4 𝛼 

 

Eq (10) 

 Where α is the angle of incident light, E0 would be irradiance for an image parallel to the 

object plane, and Eα is the irradiance on the tilted plane. Because of differences in lens design, 

there will be some variation from this relationship. An important factor for this experiment was 

to separate the change in pixel DN due to the lens from the change in DN due to of the surface 

BRF. As camera system is designed to have a wide field of view, there will be considerable fall 

off. 

 To simulate this effect, my simulation took readings of the ground using a cos4 falloff, 

and took the readings for the simulated input that were a percent off the cos4 falloff. As can be 

seen in Figure 14, if the falloff is not measured to within 1%, it will rapidly dominate the error 

budget. 

 

Figure 14: Simulated results for the change in system error as a 
function of the misestimate for falloff. 



59 
 

3.3.12 Error Due to Linearity 

 The digital number produced by the camera is not guaranteed to linearly change with the 

irradiance falling on it. Some estimate of the linearity must be made in order to confirm this 

relation. This simulation worked by incorrectly scaling the data, and finding how this affected 

the PROSAIL inverse (Figure 15). Error due to thermal response was treated as an extension of 

the linearity calibration. This was a dominant source of error, and like the lens falloff, one that 

needed to be measured and calibrated for. 

 

3.3.13 Error Due to Spatial Sampling 

 For most of this simulation, it was assumed that the PROSAIL surface being sampled for 

the BRF recovery uniformly had the same PROSAIL input parameters across it. A real grass 

surface though could be expected to have some variation in its health. One reason for using the 

camera to measure BRF over a large area would be to account for variations such as sections of 

grass that might be distressed due to lack of water, or trampling. However, while the camera 

helps account for this variation in surface BRF, it is also necessary to understand the limits of 

this process. This part of the simulation generated random input values for PROSAIL, within 

limits outlined in Table 2, and 

arranged them as a checkerboard, 

to act as a worst case assumption 

for a varying surface. As I did not 

know the rate of change that could 

be expected for a real grass surface, 

I experimented with checkboard 

grass surfaces with different ranges 

of variation, and different rates of 

change across the surface. The error 

estimate in used for Table 3 was 

derived from a median value for 

these different combinations. 

 

Figure 15: Simulated results for the change in system error as 
a function of the misestimate of the linearity of the camera. 
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3.3.14 Error Budget and Observations 

  The values for error derived in the previous sections were used to produced the 

following error budget (Table 3).  

Table 3: Error budget for the camera 

  Solar φ = 180 Solar φ = 230 

Error Source Value Allowed ΔRMSE 

Computation Error - 0.49% 0.27% 

Read Noise 0.06% 1.00% 1.13% 

Digitization 10 bits or more 0.03% 0.00% 

NIR Filter 750-950 0.02% 0.10% 

NIR Filter Uncertainty ± 5 nm 0.08% 0.06% 

Dark Current - 0.00% 0.00% 

Spot Size - 0.00% 0.00% 

Linearity Estimate ± 2% 0.65% 0.80% 

Lens Fall-off Estimate ± 2% 0.23% 0.28% 

Zenith FFOV Error ± 1.5° 0.51% 0.27% 

Azimuth FOV Error ± 1.5° 0.46% 0.35% 

Sun Angle Estimate 3° 0.11% 0.25% 

Zenith Misalignment ± 5° 0.41% 0.76% 

Azimuth Misalignment ± 5° 0.03% 0.20% 

Field Variation - 0.46% 1.21% 

DN to Reflectance ± 2% 0.65% 0.80% 

    

 

Total Error 5.13% 6.46% 

 

RSS Error 1.74% 2.25% 

  

 While the read noise for the camera is specified to be quite low and is a driver of the 

design of the system, this can be compensated for by increasing the number of pixels sampled. 

The filters need to be selected so as to avoid the red edge in the NIR but are otherwise loosely 

specified. The digitalization is not very tight, and all other specifications for the camera are 
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nominally free. The important drivers of the camera design will be in measuring the set up of the 

camera, as with zenith and azimuth misalignment, and in the calibration of the camera. This 

knowledge helped with the camera selection, by eliminating the need for a high-end system, and 

demonstrating feasibility for the use of the web camera. It ensured that proper time was put into 

planning the calibration and the necessary steps for the field work. 

 

3.4 Camera Design 

3.4.1 Overview 

 With the error parameters estimated, it was now necessary to select cameras and 

components that met the specifications. Many of the specifications were fairly loose, or based on 

the calibration. This provided a broad range of camera options to select from. Other parts of the 

camera like the color filters were part of the system to be designed, but not built into the camera 

or lens. It was possible to let these be independent of other camera choices. This is fortunate for 

the future of camera systems designed to measure BRF and near-nadir reflectance, as it means 

that the cameras selected need not be expensive ones; This also made it necessary to find 

secondary reasons that the camera was suitable for this experiment. These sections provide 

guidance into how selections may be made. 

3.4.2 Scientific Camera Selection 

  To provide more control over the spectral sensitivity of the camera, I selected a 

panchromatic camera. A camera with a c-mount was preferred, as this provided compatibility 

with a wide range of possible lenses, particularly inexpensive ones designed for use with security 

cameras (see section 3.4.3 for more details on why this was desirable). A low number of pixels 

was also desirable. Both the LUTs generated for the inverse and the images of the turf grass as a 

calibration target would take up hard drive space. Since it was impractical to run the inversion 

process using even a few thousand sampled pixels, a smaller array was desirable. A smaller pixel 

array also made it possible to take multiple redundant images in the same time as a larger array, 

to decrease the read noise. It was thus undesirable to pay for a more expensive camera with a 

higher resolution. A final consideration was compatibility. A Point Grey Blackfly was selected as 

the scientific camera for this experiment, as it met these specifications and the ones from the 

error budget, and because I was familiar with integrating Point Grey cameras with Matlab.   
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3.4.3 Lens Selection 

 Lens blur was not a strong source of error, so there was no requirement placed on the 

quality of the lens for the scientific camera system. A standard consumer grade security camera 

c-mount lens was selected. Security camera lenses are designed to work in the visible during the 

day, and the near infrared at night, requiring them to provide adequate lens properties in both 

spectral regions. By selecting a consumer grade lens, it was possible to purchase several 

different options, as the most expensive one purchased was $10.50. Lenses for security cameras 

tend to be poorly specified, providing little information about parameters like distortion. In 

addition, there are mixed conventions for even specifying the focal length of the lens. In some 

instances, it is the actual focal length of the optical system. In others the focal length that would 

produce the equivalent field of view for an older and larger analog sensor. For this small scale 

experiment, it was necessary to get close to the turfgrass, so the near point of the lens was 

important but also unspecified by manufacturers. While blur was not an issue, having a different 

amount of blur depending on the set-up was undesirable, as this would add unaccounted for 

variation between experiments. 

 After testing several lenses, one was selected on the basis of the location of the entrance 

pupil. While all the lenses had a similar field of view, this field of view begins at the entrance 

pupil of the system. If the entrance pupil was located too far back in the lens system, then the 

rings to hold the filters would cause vignetting in the image. The lens selected showed some 

distortion, had the correct field of view, a close near point, and the ability to adjust the focus. 

 

3.4.4 Web Camera Selection 

 The web camera for this project was selected on three primary criteria. The first was 

whether the camera had a similar field of view to the scientific camera. This would enable the 

data taken by the two cameras to be more easily compared. The second criterion was 

compatibility. Many security cameras produce an analog signal which needs interpretation 

before being read by a digital system. This presented a problem of finding hardware and 

software that would enable Matlab to operate the camera, and collect the signals produced. 

Since most modern cameras use CCD or CMOS sensors to detect the light. This created a 

situation where there would be digital to analog processing taking place in the camera before it 

had to be processed from analog to digital again at the computer. The noise effects of this 

unnecessary double conversion were unknown. For both these reasons, a camera with a digital 

output was desirable. The third and most important criterion was whether it was possible to 
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control automatic features on the camera. Automatic adjustments to brightness, gain and 

contrast of the image would make it difficult or impossible to compare images taken using 

different lens filters, as the settings might change each time between them.  

 I researched web cameras for which it was possible to manipulate their input parameters 

and found several that tied for the largest number of features it was possible to control. I 

selected a Creative Live! Cam Sync HD 720P Webcam. This was one of the least expensive 

cameras as well, which enabled me to put some budget aside in case I needed to try another 

camera later. This also proved useful, since it enabled me to iterate through the modification 

process, ordering a new camera after I had discovered ways of permanently breaking the camera 

in the modification process. 

 

3.4.5 Web Camera Modification 

 The modification of the web camera was necessary in order to make it work in the near 

infrared. While CCD detectors area sensitive in this region, 

NIR light is often filtered out to make the sensor output 

more similar to what is visible to the human eye. This 

would not have been an issue if a security camera had been 

chosen, since they are designed to work in the NIR; 

however, since I could not find one that was digital, 

affordable, and guaranteed that I would be able to adjust 

its settings such as contrast and gain, a web camera for 

Figure 16: Circuits inside the web camera, with the lens 
system glued to the board (center) 

Figure 17: Examples of images 
from the web camera (A) with its 
original filters, (B) with the NIR 
filter removed and (C) with a 600 
nm cut off filter. Vignetting in (C) 
is due to the lens holder used for 
this demonstration. 
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video chat was substituted. It was necessary to remove the NIR filter from the camera.   

 The first step to removing the NIR filter was to open the camera (Figure 16). Inside, it 

appeared that it would be possible to unscrew the lens from the camera, but this did not turn out 

to be the case. This screw provided some focus control. The lens system was attached to the CCD 

and circuit board using glue, and not any threading mechanism. This meant removing the lens 

required cutting and breaking the optics from the board. After doing this, I found the NIR 

blocking window behind the lens, 

glued to the optics. This required 

breaking another component and 

required some practice to remove in a 

way that did not scratch the other 

optics. 

 After removing the NIR filter, I 

glued the optics back onto the circuit 

board. I aligned this by hand, while 

monitoring the focus and vignetting 

through the output of the camera. As 

can be seen in Figure 32, there was 

some misalignment in this process, 

causing the lens falloff to be offset, 

and dark in one corner. Since blur was 

not a concern (section 3.3.9) and lens 

falloff was measured and accounted 

for (section 3.6.7), this was not 

considered a significant source of 

error for the process. Figure 17 shows 

the change in the image resulting from 

this process, combined with the filters 

selected in section 3.4.6. Some minor 

additional modifications were 

necessary in order to attach the web 

camera to the rails. This involved 

drilling a hole in the base, so that it 

Figure 18: The web camera would start at a default 
gain, seen in image (a). When set to automatic mode, it 
would change to gain setting (b). Resetting it to manual 
mode would set it to gain setting (c), between those seen 
in (a) and (b). Restarting the web camera would 
consistently return it to the settings in (a). 
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could be attached to a 1/2 inch diameter pole with a screw, and cropping off plastic parts that 

interfered with the mounting.  

 Late in the process of modification, I discovered an additional gain setting that is not 

accessible directly by the software operating the camera, but instead was adjusted when the 

camera was set to automatic.  Setting the camera to automatic would not change any of the 

values for the observable settings of the camera once they had been given fixed values, but 

would for the rest of any session operating the camera adjust a hidden dial for the gain of the 

system. Repeated experiments over strong changes in brightness showed that if the camera was 

left in manual mode, this hidden gain dial would stay steady. Curiously, turning the camera to 

automatic mode, and then back to manual would leave the gain at some middle value between 

that provided by the automatic setting and the default setting in manual mode (Figure 18). As it 

was desirable to have a lower gain setting (see the section 3.4.6 for details), I took to resetting 

the web camera between automatic and manual before each set of readings taken from the 

turfgrass. While this would have been problematic with an absolutely calibrated system, using a 

near Lambertian target for the DN to reflectance conversion enabled me to take advantage of 

this feature of the web camera.  

 

3.4.6 Colored Glass Filter Selection 

 For the scientific camera, the goal was to match the relative spectal response used by the 

Landsat 7 ETM+ satellite. To this end, it was necessary to use two filters, one in front of the 

other. One acted as the cut-on filter, while the other would act as the cut-off filter. For the web 

camera, with which I did not have knowledge of the Bayer filter built into the CCD, this was not 

an approximation that I could make. Instead, in that case, it was necessary to provide filters that 

would separate the NIR readings from the color readings. The light from the outdoor scene also 

flooded the sensor for the web camera, even at its lowest shutter setting, likely because it was 

designed for indoor use. To compensate for this, neutral density filters were also necessary.  

 As mentioned in the section on filter choice error (3.3.10), the primary driver for the 

selection of filters was to have the blue avoid the spectral 'hump' present  in the green in 

vegetation, and for the red and NIR not to cross the red edge in the NIR region. This meant the 

blue band needed to cut off by 525 nm, and the red and NIR to cut off and on respectively before 

and after 750 nm. 
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 There are a limited number of 

readily available blue glass filters, and 

it was difficult to find a combination 

that both provided transmission at the 

required values and did not provide 

transmission in the NIR. The quantity 

of light in the NIR would be up to 10 

times more than that in the blue, so 

transmission in the NIR would be 

significantly detrimental to the 

accuracy of the measured blue reflectance. It was not possible to compensate for this by adding a 

third filter to the system, as this would have begun to cause vignetting in the system due to the 

wide field of view. An additional concern when selecting filters was that it was possible to create 

combinations that cut on and off at the desired frequencies, but let through very little light. As 

the blue band is already in a part of the spectrum that both reflects very little light (Figure 13) 

and does not produce much response in the sensor (Figure 19), there was a risk of substantially 

decreasing the signal to noise for this band.  

 Thorlabs provided exact specifications for its filters on its website. Using the numbers 

they provided, I tested combinations for their combined transmissions. Finding pairs for the 

other color bands, green, red and NIR, was simpler. While it was necessary to avoid the red edge 

in the NIR, there were filters readily available to do this. 

Table 4: Colored glass filters used by the camera system. 

Camera 1 Cut-On Filter Cut-Off Filter 

Blue Band FGL-435 FBG-25 

Green Band FGL-530 FBG-39 

Red Band FGL-610 FBG-37 

NIR Band FGL-780 None 

Camera 2   

Color Bands NB-10B  FGB-37 

NIR Band FLG-780 NB-20B 

 

 For the NIR, only a cut-on filter was used, as the response of the scientific camera goes to 

zero as it approaches 900 nm (Figure 19). 

Figure 19: Quantum efficiency for the scientific camera. 
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 As stated before, with the web 

camera, it was only possible to sort 

readings into those taken in the NIR 

spectrum, and those in the visible 

spectrum, with no simple way to know 

the extent of the Bayer filter. It was 

necessary to filter out the majority of the 

light in this case. As we can see in Figure 

20, less than 0.1% of the light is 

transmitted by the filters. Given the 

amount of noise in the resulting image, 

it is likely that the web camera sensor 

has considerable gain already built into 

it. 

  

3.4.7 ASD Mounting and 

Distances 

 A Teflon target was used to 

convert the ASD data from digital 

numbers to reflectance, thus the area 

the ASD could view was limited by the size of the Teflon target. To ensure the area viewed by the 

ASD and Teflon target were well matched, I calculated the area the ASD would view on the 

ground, and confirmed this value with an experiment.  

 An 8° field of view optic was attached to the ASD. This enabled the ASD to measure a 

large area while staying relatively close to the ground. I calculated that it would view an area 25 

centimeters in diameter when it was at a height of 91 cm. The ASD optic made use of a pistol 

grip that was attached to a camera tripod using a 30 centimeter long 1/4 inch by 20 threaded 

pole. The pole enabled the ASD optic to be far enough from the base of the tripod that the feet of 

the tripod were not visible to the ASD or the camera while data was being gathered. 

 I tested the calculated field of view by aiming the ASD on the tripod at a large sheet of 

paper in a dark setting. A commercial 1 mW 532 nm laser mounted on another tripod was aimed 

at the paper. When inside the field of view of the ASD, the reflected laser light generated a 

distinctive response on the ASD's readout. By moving the laser across the paper systematically, 

Figure 20: Measured transmission for the filters used by 
the scientific and web camera. 
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and marking the places where it stopped being visible to the ASD, I was able to map out the area 

seen by the ASD. I repeated this experiment for the ASD at 0°, 15° and 30°, and confirmed in all 

cases is stayed within a 1 foot square area, consistent with the size of the Teflon target. 

3.4.8 Camera Mounting and Distances 

 The camera system’s field of view needed to overlap with the area viewed by the ASD as 

much as possible. This ensured that any disagreement between the camera system's estimate of 

near-nadir reflectance and the ASD's measurement was due to a failure of the camera, and not 

differences in the areas viewed by the cameras and ASD. My original intent was to have the 

camera and the ASD cover the exact same area. A large high-quality target proved unavailable, 

and would have required placing the ASD a considerable distance off the ground. Having 

complete overlap for the smaller target placed the camera less than a foot from the ground. This 

was undesirable as it raised concerns of adjacency effects and self-shadowing, as well as 

requiring unusual mounting to provide a tripod of sufficient width to support the camera, but 

with negligible height.  

 Simulations showed error due to the difference in the area covered by the camera and 

the area covered ASD varied with the amount of variation of the surface, with more uniform 

surfaces producing less error. The camera covering roughly 4 times the area of the ASD was 

found to balance the error and the 

camera distance.  

 The cameras were mounted 

side by side. This limited the number 

of angles that had to be measured for 

each setup, and made the data taken 

by the cameras more comparable, by 

ensuring that the two cameras were 

being tested on the same surface at 

the same angle in the same weather 

conditions. To maximize this 

crossover, it was desirable to keep 

the cameras as close together as 

possible. An arrangement was found 

where the distance was minimized 

while avoiding overlap in the filter 
Figure 21: Mounted camera box, with fan and cameras 
inside. 
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wheels and the bodies of the cameras. This placed the center of the web camera lens 2.5 cm 

above and 5 cm to the left of the optical axis of the scientific camera.  

 The cameras were mounted to two connected rails. One rail was then mounted to a 

tripod.  The tripod was secured to a 20-pound weight for stability. To limit the amount of stray 

light in the system, a box was constructed that could block the light from coming in from 5 sides 

(Figure 21), and was mounted on the rails with the cameras. The exterior surfaces away from the 

camera and ASD and target were kept white to help keep the system cool, while other surfaces 

were painted matte black with a commercial grade paint. The box was vented, with a fan 

mounted inside to help the temperature of the cameras stay below the point where they no 

longer operated. 

 

3.5 Lambertian Target  

 The disadvantage of using a reflective target to provide calibration between the digital 

number and the reflectance is that it requires knowledge of the BRF of the surface. This BRF was 

measured by the University of Arizona Remote Sensing group in their blacklab, using a well 

known silicon filter radiometer and comparing a Spectralon panel with NIST calibration. This 

gave measurements of the Teflon's at nadir reflectance for angles of incidence between 10° and 

85° at 5°  increments, and at 402 nm, 455 nm, 503 nm, 554 nm, 651 nm, 699 nm, 801 nm, 846 

nm, and 951 nm. I fit a second degree sine function to this data (Figure 22), which in all cases 

provided an R2 value of over 0.99.  The Teflon, as can be seen here, is within 90% of Lambertian 

behavior from 10° to 65°, the maximum angle 

Figure 22: Measured BRF and a fit of the Teflon 
target used to convert from digital number to 
reflectance. 

Figure 23: Comparison of the BRF fit for the four 
spectral bands used. 
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that the camera viewed it. As these measurements were for the reflectance measured at nadir, 

for an off angle incident ray, where both the source of light and the view angle were off-nadir, it 

was necessary to approximate the BRF using these data. This was done by assuming that all BRF 

reflectance could be scaled by the factors in Figure 23. In section 4.2.2 I discuss evidence that 

this is not true.  

  

3.6 System Calibration 

3.6.1 Introduction 

 To be useful scientifically, the readout from a detector must be related to the parameter 

that is being measured. Without this step, readings are numbers without scale or context, 

providing no information. Within this research, calibration was necessary to change a grid of 

digital numbers produced by a camera into an estimation of BRF. To do that, each pixel needed 

to be related first to a view angle, and then to a system of BRF angles related to the ground and 

sun. The digital numbers produced for these grids had to be investigated for artifacts that might 

distort the data. Linearity had to be checked to ensure that digital numbers could be accurately 

mapped to estimates of detected radiance. Differences in the sensitivity of each pixel of the 

detector and stray light in the system had to be accounted for. Since the system was uncooled, 

the change in detector response due to temperature fluctuations was measured. Because a 

Teflon square was used for the cross-calibration of the cameras and ASD, the BRF for the Teflon 

had to be measured. 

 This section is intended to provide both an accounting for how I performed this 

calibration and guidelines in how they can be performed. In order for researchers of remotely 

sensed data to make use of camera systems for BRF and near nadir reflectance measurement, it 

may be necessary to find ways to perform the calibration without advanced equipment. Often, 

the people interested in gathering and using remotely sensed data do not have the engineering 

background or resources available to perform the sort of optical system calibration that would 

be more standard for a camera system like this. As such, it is necessary to design a calibration 

method that would be available for them and rigorously prove that they work. We can see 

examples of why this would need to be the case in comparing how professional Lambertian paint 

is manufactured and applied versus how people who actually have to work in the field do it 

(Knighton & Bugbee, 2005). 
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 It was not possible for me to do design or find simple calibration methods in all 

instances, but I hope that the work I have done here can provide a start to such a line of 

research.  

 

3.6.2 Pixel to Degree Conversion 

 BRF is a measure of both reflectance values and their angular distribution. To use a 

camera as a means of measuring BRF, it is fundamentally necessary to understand the 

relationship between the pixels and the angles they are viewing. The relationship between pixel 

number and view angle can be established by comparing the pixel location of an object with its 

physical location. The physical location is defined by both the distance from the camera to the 

object along the optical axis, and the distance of the object from the optical axis (Figure 24). To 

establish a rigorous understanding of the view angle, we need to map this relationship for many 

positions and pixel numbers. To provide a large number of points of known radial distance, I 

used a checkerboard for this calibration. While there exist a number of targets specifically 

designed for scientific calibration, these tend to be designed for a narrower field of view systems. 

By using a larger target, I was able to keep the target in focus while making larger changes in 

distance.  

 The checkerboard provided a grid of 49 points of known distance. The pixel coordinates 

of the checkerboard points in the image were found using Matlab's detectCheckerboardPoints() 

function (Figure 25). This provided coordinates for the points that were accurate and repeatable.  

Figure 24: It is possible to find the 
view angle α by finding the 
trigonometric relation between 
the distance along the optical axis 
D to the object, and the radial 
distance R perpendicular to the 
optical axis, along the object 
plane. 

Figure 25: An example of an image of the checkerboard 
taken with the web camera. Circles represent the corner 
points found using Matlab's detectCheckerboardPoints() 
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Matlab's detectCheckerboardPoints() function would sometimes fail to find the checkerboard 

points in an image on the first run, but could be forced to run over and over till it did find them, 

if it was possible to. In some cases, a point would not be found by the 100th run of 

detectCheckerboardPoints(). That point was dropped from the analysis of that image. Each 

checkerboard point was manually assigned a number to track it across all the images. 

 These checkerboard squares were measured using a digital caliper and found to have a 

size of 39.8mm. As the camera was moved towards the checkerboard, grid points were lost when 

they moved off the image, or when Matlab could no longer detect them. Images were taken every 

1cm, to provide a large number of images, while keeping the uncertainty of the camera location 

small relative to the size of the step. For the scientific camera, it was possible to take 25 images 

from distances of 44mm to 20mm before detectCheckerboardPoints() was not longer able to 

find any of the checkerboard points. The web camera had 23 images between 45mm and 23mm 

where checkerboard points could be found. This provided, across all the images, 769 points of 

known distance for the scientific camera, and 744 for the web camera.  

 Each camera's field of view was tested separately, rather than in the side by side 

configuration used when taking data. This allowed the cameras to be centered with respect to 

the center of the checkerboard, and for confirmation that the checkerboard stayed in the center 

as the camera was moved forwards and backwards. The latter test confirmed that the camera 

was aligned with the rail and that estimates of the view angles and distance to the board were 

accurate. The checkerboard was lit by ambient diffuse light to avoid specular reflections 

confusing the checkerboard grid detection. Both cameras were tested at the resolution used for 

the BRF experiment.  

 The distance used in the field of view is measured from the principal plane of the 

imaging system, and not from the physical camera. Since all measurements along the optical 

axis must be done compared to a physical component of the camera, this distance D must be 

then modified to by a distance Δ to find the distance between the calibration object and the 

principle plane. Using this combined distance, and knowledge of the height of the object, h, we 

can find the view angle, α, using the trigonometric relation: 

 
tan(𝜃) =  

ℎ

𝐷 +  ∆
  

Eq (11)  

 To find Δ, we can compare two images, making use of the assumption that for low 

amounts of distortion, we can find a constant C, relating the angular size of an object to its 

image size in pixels, such that: 
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𝐶 =

𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒(𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠)

𝑂𝑏𝑗𝑒𝑐𝑡 𝑆𝑖𝑧𝑒(𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒𝑠)
 

 

Eq (12) 

 Using images taken at different distances D1 and D2, we can find a value of Δ that allows 

for a constant ratio C, such that: 

 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 (𝐷1)

𝑂𝑏𝑗𝑒𝑐𝑡 𝑆𝑖𝑧𝑒(𝐷1)
=  

𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒(𝐷2)

𝑂𝑏𝑗𝑒𝑐𝑡 𝑆𝑖𝑧𝑒(𝐷2)
 

Eq (13)  

 

 Which can be rearranged  

 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 (𝐷1)

𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒(𝐷2)
=  

𝑂𝑏𝑗𝑒𝑐𝑡 𝑆𝑖𝑧𝑒(𝐷1)

𝑂𝑏𝑗𝑒𝑐𝑡 𝑆𝑖𝑧𝑒(𝐷2)
 

Eq (14) 

 

 The ratio of the two image sizes remains constant regardless of the value of Δ, leaving 

only the object ratio dependent on Δ. 

 
 (

ℎ

𝐷1 +  𝛥
)  (

ℎ

𝐷2 +  𝛥
) ⁄   

Eq (15) 

   

 The value for Δ can then be solved numerically, by testing values of Δ till one is found 

where the object size ratio matches the image size ratio (Figure 26: By varying the value for Δ, a 

ratio of the angular object sizes can be found that equals the ratio of the image locations in 

pixels.). 

 The image size ratio 

between two images was found by 

taking the ratio of the average size 

of a side of a checkerboard square 

in pixels for each image. Only the 

average value of the center four 

checkerboard squares was taken, 

as these would be the squares 

with the least distortion. The 

linearity assumption built into Eq 

(12) breaks down with distortion 

as the pixel size of an object 

Figure 26: By varying the value for Δ, a ratio of the angular 
object sizes can be found that equals the ratio of the image 
locations in pixels. 
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becomes dependent on its location in the image, and not its physical size. 

 The object ratio was estimated for many values of Δ, and then the delta that produced a 

minimum difference between the image and object ratios was found. Estimates for delta were 

found using all image pairs 6cm or further apart. Smaller distances between the images were 

ignored. They provided values of Δ that could be twice the value of those found at further 

distances. The average value of the estimated deltas was then calculated, giving a value of 

4.4mm ± 1.6mm for the scientific camera, and -8.7mm ± 1.1mm for the web camera. This value 

was confirmed to provide a measured field of view within 1% of the field of view found using the 

fit between pixels and radial angle found below. 

 The checkerboard points were also used to find the distance R across the object plane. 

The squares had a measured spacing of 39.8mm. Their position could be accurately estimated 

using knowledge of the slope of the board and the distance from the center of the board from the 

optical axis.  

 While the camera was aligned with the center of the board such that the center point 

stayed constant between images, some variation still existed due to misalignment and variations 

in setting up. This variation was on the order of ± 5 pixels for the scientific camera, and ± 3 

pixels for the web camera. The pixel distance between the center of the board and the center of 

the field of view of the camera was then converted to a physical change in the location of the 

Figure 27: An example of the difference between the fits for the web camera data, 
using a linear fit and a second degree polynomial. The fits are very similar up to 
around 400 pixels, at which point the linear fit begins to diverge from the data. 
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checkerboard points using average pixels per square, and the known physical size of the squares. 

The slope of the board along the x-y plane was measured using the checkboard points. The slope 

value found using two checkerboard points on the same row varied with the distance of the 

checkerboard points from the center of the board. This was true both for points further along the 

row and points in different rows further from the center one. This is consistent with there being 

distortion in the image. The slope of the board was found using the center four squares and their 

nine corner points to avoid issues due to the distortion, but still have a reasonable sampling to 

eliminate error due to pixelation. Each image was assigned its own slope to account for variation 

in the set up between images. For the web camera, these slopes were very small, with a mean 

value of 0.02° ± 0.02°. For the scientific camera was there was a larger slope, but lower 

variation, with a mean angle of 0.97° ± 0.01°. Once the slope and center of the board were 

found, finding the physical radial distance of the checkerboard points could be found 

geometrically. 

  Having established values for R and D for all the corner points, these were then used to 

find a fit for the relationship between radial pixel distance and radial angle. To provide a 

physical solution, this fit was constrained to having a zero angle at zero pixels from the center. A 

second-degree polynomial was found to produce an estimate of the full field of view for the 

camera more consistent with the measured full field of view than a linear fit (Figure 27). This 

was the case for both the scientific and web camera, though more strongly for the web camera. 

Figure 28 and Table 5 show that while the second order term is quite small, the effects are quite 

noticeable.  

Table 5: The fitted equations for the scientific camera (Eq (16)), and the web camera (Eq (17)).  

 𝛼 =  3.9 ∗ 10−6 ∗  𝑅2 +  0.054 ∗ 𝑅 Eq (16) 

 𝛼 = −6.9 ∗ 10−6 ∗  𝑅2 + 0.054 ∗ 𝑅 Eq (17) 

   

 The fit for the scientific camera has a root mean square error (RMSE) of 0.14° and a 

maximum deviation from the fit of 0.55°, while the web camera's fit has an RMSE 0.18° with a 

maximum deviation from the fit of 0.61°. This is well within the allowed error in the field of view 

estimate  of 1.5° (see section 3.3.6). The linear fits have larger RMSE values of 0.16° and 0.28°, 

with deviations from the measured field of view of 0.55°and 1.24°. These are still within the 

specification, but is an unnecessary source of error in testing the system. 

 



76 
 

 

 

 

 

 

Figure 28: Diagram of the second degree polynomial fits for both the scientific camera 
and the web camera. Both pixel number and angle are measured radially from the 
center of the image.  
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3.6.3 Converting to Spherical Coordinates  

 A radial fit provided a large number of points with which to confirm the quality of the 

relationship between the pixel number and angle produced. There is nothing unusual about 

assuming radial symmetry to a lens system. BRF, however, is measured in spherical coordinates. 

It is necessary then to convert the relationship between pixels and angles further into a 

relationship between how the pixel's angle breaks down into azimuth and zenith components of 

the BRF (Figure 30).  

 θ and φ cannot be treated as completely independent of each other in this conversion. 

While this would be approximately true for a narrow field of view system, in a wide field of view 

of the system this is not the case. Figure 29 shows how from the camera's point of view, a change 

in y is equivalent to a change in θ, while a change in x is a change in φ. This is not always the 

case though, since x and y are Cartesian coordinates, and φ and θ are spherical coordinates. For 

a large value of y, a change in x will also be a change in θ.  

 To perform this conversion, I constructed an arbitrary set of Cartesian coordinates in 

image space. We start with the pixel distances from the center of the sensor, 𝑚𝑥 and 𝑛𝑦:    

 
𝑚𝑥 =  𝑚 − 

𝑙𝑥 + 1

2
 

Eq (18) 

 
𝑛𝑦 =  𝑛 −  

𝑙𝑦 + 1

2
 

 

 Where 𝑚 and 𝑛 and the pixel numbers measured from the top left corner, and 𝑙𝑥 and 𝑙𝑦 

Figure 30: Picture illustrating the sun zenith 
angle θs, the camera zenith angle θc, and the 
azimuth angle φ measured between the solar 
plane and the camera. 

Figure 29: Illustration of how θ and φ 
change with the location of a point in a 
camera's field of view. 
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are the length of the pixel array in x and y respectively. From this we can find the radial pixel distance:  

𝑟𝑝𝑖𝑥 =  √𝑚𝑥
2 + 𝑛𝑦

2  
Eq (19) 

 This provides a value to be plugged into the fit developed in section 3.6.2, providing an angle, α. 

This angle, in turn, provides an estimate of how far the pixel coordinates along the sensor must be from a 

theoretical thin lens system. 

𝑧 =  
𝑟𝑝𝑖𝑥

tan−1 𝛼
 Eq (20) 

 There is an opportunity at this point to account for the camera's roll angle, β. Roll refers 

here to rotation of the camera system itself around the optical axis, which changes both the 

values of θ and φ, and is described in more detail in section 3.3.6. It is possible to include the 

roll of the camera by rotating the pixel Cartesian coordinates 𝑚𝑥 and 𝑛𝑦 around the optical axis. 

This rotation is done using the following equations. 

 The rotated Cartesian coordinates generated were then converted into spherical 

coordinates, providing values for the change in θ and φ, and a radial distance which can be 

ignored.  

 𝛥𝜑 = tan−1( 𝑛′𝑦 𝑚′𝑥⁄ ) Eq (21) 

 
𝛥𝜃 = tan−1( 𝑧 √𝑛′𝑦

2
+ 𝑚′𝑥

2
⁄ ) 

Eq (22) 

 
𝑟 = √𝑛′𝑦

2
+ 𝑚′𝑥

2
+ 𝑧2 

Eq (23) 

 While careful conversion to Δθ and Δφ and accounting for roll angle were small sources 

of error in my set up, it desirable to ensure that methods of estimating their effect are 

established so that future camera systems would have a method of accounting for them. 

 

3.6.4 Changing View Angles into Ground and BRF Angles 

 Once a value of Δθ and Δφ are associated with each pixel of the camera, it is necessary to 

translate them into the reference frame for the BRF models. The first step for this is to find at 

which angles the camera is viewing the ground in a common coordinate system. In doing this, 

we will want to differentiate between the spherical coordinates, which are measured as an 

elevation angles and an azimuth from an axis, and BRF coordinates, which are measured as a 

zenith angles and an azimuth from the solar plane. One reason for having two coordinate 

systems is that this latter azimuth will change with time as the sun moves. To differentiate 
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between these two coordinate systems, I will denote the spherical elevation and azimuth with Θ 

and Φ respectively, while BRF zenith and azimuth will be denoted θ and φ. 

 For the spherical coordinates, I picked a right-handed coordinate system with the x-axis 

lined up with North, and the y-axis with West. Rotation in Φ is measured in degrees West of 

North, while Θ is an elevation angle. To convert from camera view angles to spherical 

coordinates, we use the equations: 

 𝛩 = 90° − (𝜃𝑐𝑒𝑛𝑡 + 𝛥𝜃) Eq (24) 

 𝛷 = 𝜑𝑐𝑒𝑛𝑡 − ∆𝜑 Eq (25) 

 

 Where 𝜃𝑐𝑒𝑛𝑡 and 𝜑𝑐𝑒𝑛𝑡 are the orientation of the camera, in zenith and azimuth angles measured 

in degrees. These coordinates can then be converted into BRF coordinates using the formulas: 

 𝜃 = 90° −  𝛩 Eq (26) 

 𝜑 = −(𝛷 − 𝜑𝑠𝑢𝑛) Eq (27) 

 

 

3.6.5 Accounting for Ground Slope 

 In assessing sources of system error, one of the tightest constraints was the slope of the 

ground with respect to the camera. BRF is a measure of both reflectance values and their 

angular relations. Tilting the camera changes the relation between the θ and φ angles measured 

by the camera. Unlike an error measuring the orientation of the camera with respect to θ and φ, 

the slope of the camera will have a different effect on the angles measured for each pixel of the 

camera, with pixels further from the center having the most error. The fundamental 

relationships between θ and φ change. 

 The angle for the ground was estimated using measurements of the slope of the Teflon 

square before each set of readings for the camera was taken, in both the north/south direction, 

and in the east/west direction. This measurement was repeated before each reading was taken 

since in some cases, it was observed that there would be a difference of up to half a degree 

between measurements, likely due to some difference in how the grass settled under the Teflon 

plate. It has been assumed here that the average of these values for the Teflon slope provides a 

good approximation of the underlying ground and grass slope.  

 The camera's view angles for the ground from section 2.6.3 were then adjusted to 

compensate for the slope of the ground, as were estimates of the sun angle. This was done by 
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rotating the coordinate frame of the existing spherical coordinates around x and y using the 

vector equations:  

𝑅𝑥 = [

1 0 0
0 cos (𝑟𝑥) −sin (𝑟𝑥)

0 sin (𝑟𝑥) cos (𝑟𝑥)
] 

Eq (28) 

𝑅𝑦 = [

cos (𝑟𝑦) 0 sin (𝑟𝑦)

0 1 0
sin (𝑟𝑦) 0 cos (𝑟𝑦)

] 

Eq (29) 

𝑅𝑛= 𝑅𝑥 ∗ 𝑅𝑦 Eq (30) 

 

 Where Rx is the rotation matrix for clockwise rotation around the axis pointing North, 

for a rotation of rx degrees. Similarly, Ry is the rotation matrix for clockwise rotation around the 

axis pointing West, for a rotation of ry degrees. Rn is the combination of these two rotation 

matrices. Care needs to be taken here, since the values measured for Teflon slope represent a 

rotation of the coordinate system, while the equations above are rotations of a vector in a 

coordinate system. These types of rotation are the same, but are in opposite directions, so that 

rotation of around the x-axis or rx is a rotation of the coordinate system around the x-axis of -rx. 

 To apply these equations to spherical coordinates, each value of θ and φ used in the 

measurement of BRF was assigned a set of Cartesian coordinates on a unit sphere, with r = 1, 

using the conversion equations: 

𝑥 = 𝑟 ∗ cos(𝛩) ∗ cos (𝛷) Eq (31) 

𝑦 = 𝑟 ∗ cos(𝛩) ∗ sin (𝛷) Eq (32) 

𝑧 = 𝑟 ∗ sin (𝛷) Eq (33) 

 These Cartesian coordinates could then be rotated around the x- and y-axes, where x 

represented north, and y west, using the rotation matrix from eq # 

[
𝑥′ 
𝑦′

𝑧′

] = 𝑅𝑛 ∗ [
𝑥
𝑦
𝑧

] 
Eq (34) 

  After the Cartesian coordinates are rotated properly, they can be converted back into 

spherical coordinates using the equations: 

𝛷 = tan−1( 𝑦′ 𝑥′⁄ ) Eq (35) 

𝛩 = tan−1( 𝑧′ √𝑦′2 + 𝑥′2⁄ ) Eq (36) 

𝑟 = √𝑦′2 + 𝑥′2 + 𝑧′2 

 

Eq (37) 



81 
 

 It is not necessary here to find the value for r, the radius of the spherical components, 

since we are only interested in the azimuth and elevation of the rotated system. Confirming that 

the radius is still 1 is a means of checking this rotation was performed correctly. 

 It was necessary to do compensate for the tilt of the ground as a separate step from the 

roll of the camera, since the roll of the camera, β, is in the coordinate system of the camera, 

which will be rotated in both θ and φ directions with respect to the coordinate system ground. 

This makes combining these rotations into a single step a more complicated geometry problem 

than applying two rotations to the individual coordinate systems.  

 Performing this translation enables more accurately estimating the effects of performing 

this correction than with equation _. A ±1° slope in ground slope can change the zenith angle 

viewed by the camera by half a degree or more, while changing the azimuth direction by ±2° 

(Table 6). This change in azimuth uses much of allowed error in estimating Azimuth (described 

in Section 3.3.6), demonstrating why it is necessary to know the ground slope for this form of 

camera system. This will be important to future iterations of the system which might have a less 

ideal surface. 
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 Table 6: Example of changes in the view angles, and field of view widths of the scientific camera when 
measuring a tilted ground surface. Table lists camera angles viewed when image is sampled at a rate of 3 
times x 3 times. Camera aimed at 180° azimuth, with sun at a 135° azimuth. 

 

No 

Rotation 

    FOV 

Zenith  60.81 60.98 60.81  

  44.97 44.97 44.97  

  29.19 29.02 29.19  

FOV  31.61 31.97 31.61  

      

Azimuth  202.65 225.03 247.35 44.69 

  203.38 225.03 246.62 43.24 

  202.65 225.03 247.35 44.69 

  

  rx = 1   FOV    ry = 1   FOV 

Zenith  61.19 60.99 60.43   Zenith  59.88 59.98 59.88  

  45.35 44.98 44.61     44.05 43.97 44.05  

  29.59 29.03 28.83     28.27 28.02 28.27  

FOV  31.60 31.95 31.6041   FOV  31.61 31.97 31.61  

             

Azimuth  200.32 222.65 245.00 44.68  Azimuth  200.73 223.32 245.86 45.13 

  200.64 222.20 243.85 43.22    201.30 223.32 245.29 43.99 

  199.20 221.40 243.85 44.65    200.24 223.32 246.34 46.10 

             

  rx = -1   FOV    ry = -1   FOV 

Zenith  60.43 60.99 61.19   Zenith  61.73 61.98 61.73  

  44.61 44.98 45.35     45.90 45.97 45.90  

  28.83 29.03 29.59     30.12 30.02 30.12  

FOV  31.60 31.95 31.60   FOV  31.61 31.97 31.61  

             

Azimuth  204.88 227.29 249.57 44.68  Azimuth  204.69 226.85 248.96 44.27 

  206.03 227.74 249.25 43.22    205.57 226.85 248.08 42.52 

  206.04 228.54 250.69 44.65    205.14 226.85 248.51 43.38 
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3.6.6 Camera Misalignment 

 For the main camera near-nadir reflectance 

recovery experiment, the two cameras were fastened 

to an optical rail side by side, and the rail was used 

to measure the roll, zenith, and azimuth angles 

(Figure 31). Before these angles could be used to 

change the view angles into global BRF angles, it was 

necessary to estimate the camera's alignment with 

the rail. The scientific multispectral camera and the 

web camera had their alignment with the rail 

confirmed, as described in the calibration section 

3.6.2. However, the web camera was knocked out of 

alignment early during testing. Due to schedule 

constraints, this misalignment had to be tolerated 

and measured later.  

 To measure the misalignment of the web 

camera, I found the pixel distance between the 

images taken by the two cameras for a small light 

source at a large distance from the cameras. Since 

there was a physical gap between the two cameras, points close to the camera system would 

show up in different pixels. To do this experiment, I first had to find the distance necessary to 

have a light source show up in the both center pixels for the two camera sensors if they had been 

perfectly aligned. To solve this, I estimated the angular difference between two pixels in both the 

scientific camera and the web camera. The value I found was 0.025°. This angle was then used 

to find the distance, D, for a triangle such that: 

tan(0.025°) =
3.8 𝑐𝑚

𝐷
 

Eq (38) 

 Which gives a distance of approximately 90 meters. To perform this experiment, I set up 

the cameras outside at night in a controlled area. I centered the field of view of the scientific 

camera on a light source 100 meters away. Since the light source had some size in the images, I 

used centroiding software to find the center of the light source in each image. To do this it was 

necessary to turn the image into a binary image, where all points below a certain threshold were 

black, and all above it were white. I tried these with multiple levels of brightness, to confirm that 

the center found was the same regardless of the parameters I put in. The variation I found in 

Figure 31: Measuring the zenith and 
azimuth angles with respect to the optical 
rail. 
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these values was less than a pixel. I repeated this experiment with three different light sources of 

different brightness to confirm that this was also not a factor. The variation I found due to this 

was also less than a pixel. 

 In this way, I could directly measure the pixel difference between the two images 

directly. The value I found for this was that the center of the image from the second camera was 

approximately 64 pixels to the left and 91.5 pixels above what was expected if the two cameras 

were perfectly aligned.  Using the calibrations from section 3.6.2, this gives an angular 

difference between the two cameras of +4.8° in the zenith direction and -3.5° in the azimuth 

direction. When combined with uncertainty in the knowledge of the direction that the camera is 

facing, this is outside the specification for knowing the angle of the camera to within 5°. Since 

this is the case, we know that this was a necessary step for getting useful information out of the 

web camera. 

 To measure if there was also a roll angle associated with this misalignment, several 

images of the Teflon on the ground were examined, and a slope for it across the image was 

found. By comparing the slope across several images, it was found that the web camera also had 

a change in its roll angle of approximately 0.3°. 

 

3.6.7 Measuring Lens Falloff 

 A camera viewing a uniformly illuminated object will not produce a uniformly 

illuminated image. Generally, as view angles increases, the illumination will decrease. I 

measured this effect for my cameras in order to differentiate between changes in measured 

radiance due to target BRF and those due to the lens falloff. 

 My plan was to use the flat field produced by a large aperture integrating sphere to 

approximate a Lambertian surface, and to measure the difference between the field measured, 

and the cos4 effect expected in the thin lens approximation. However, set up for the test showed 

a problem with this approach: A uniform Lambertian should be brightest when viewed at an 

angle perpendicular to the surface. I assumed that the camera could be ensured to be 

perpendicular to this surface by finding the point where readings were at a maximum. The 

camera was visually aligned to be perpendicular to the output of the integrating sphere, then its 

angle was adjusted to find the maximum. Two maximums were found, at approximately ± 10° 

from the visual approximation of alignment with the integrating sphere. These maximums were 

approximately 10% brighter than when the system was visually aligned. That there were two 
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maximums, as well as the angular difference between them and a reasonable alignment showed 

that approximating that the output of the integrating sphere as being Lambertian was a mistake. 

 To compensate for this, I instead consistently aligned the cameras with a fixed point in 

front of the integrating sphere and measured the irregularity of the integrating sphere output by 

taking measurements with the ASD over a range of angles. Table 7 lists the angles used. 

Measurements were more densely packed for central angles since this was where the large 

irregularity was. Wider angles also resulted in hitting the edge of the sphere. The angles listed in 

Table 7 are the angles measured for the orientation of the ASD. These angles were then 

translated into theta and phi angles in a manner similar to that used in section 3.6.5. 

 As I do know the mechanics for this behavior, I sought the best fit, which was a 4th-

degree polynomial function (Figure 32). Rather than being Lambertian, the output of the sphere 

was approximately uniform with some variation across the surface, with an offset from the 

center in the peak of the function. 

Table 7: List of angles measured to estimate the uniformity of integrating sphere  output.  

Pitch Yaw 

0° 0°, ± 3°, ± 6°, ± 9°, ± 12°, ± 15°, ± 18°, ± 21°, ± 24°, ± 27°, ± 30°, ± 33° 

± 5° 0°, ± 5°, ± 10°, ± 15°, ± 20°,± 25°, ± 30° 

± 13° 0°, ± 5°, ± 10°, ± 15°, ± 20°,± 25°, ± 30° 

± 20° 0°, ± 5°, ± 10°, ± 15°, ± 20° 

 

 I also performed a fit on the color data over a range of angles, going for a lowess fit using 

a quadratic function, which gave me a fit with R2 of 0.9998 for the scientific camera and 0.966 

for the web camera (Figure 32). Assuming an approximately uniform output for the integration 

sphere, it can be seen here that the scientific camera and lens has something approaching the 

power of cosine drop off that we would expect with a lens system. The web camera system has an 

odd drop off in the direction of negative theta. This is consistent with a misalignment of the lens, 

which could have happened in section 3.4.5: Web Camera Modification. With this in mind, it 

would be good for future web camera systems to be selected for easier modification and 

alignment of their lens system. 
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3.6.8 Linearity Calibration 

 The linearity of the cameras was tested using two methods: Changing the number of the 

bulbs in the integrating sphere, and changing the settings on the camera. For the scientific 

camera, it was possible to change the shutter speed, directly affecting the time the sensor was 

exposed to light. For the web camera, the relevant parameter that could be changed was the 

exposure value. There were complications with this latter calibration, which I will explore more 

at the end of this section.  

 Due to time constraints, it was only possible to take these data points with 1, 2, 6 and 10 

bulbs when measuring with different numbers of bulbs in the sphere. Each bulb provided 

approximately the same irradiance. We can see that the linear fit for both cameras is fairly good 

for the limited number of points available.  Adjusting the shutter speed of the camera provided 

more levels of incoming flux to confirm this linearity (Figure 33). This test was performed 

during the multiple bulb measurements, providing additional data to reinforce the linearity of 

the data. We can see that for the scientific camera that these fits are generally good, with an R2 

of 1 (Figure 34).  It was planned that if there was non-linearity in this data, it would be necessary 

to adjust the DN values for that, but this step was not necessary.  

 Performing this calibration also confirmed the actual shutter speed of the camera, which 

could be adjusted to an arbitrary precision, but would 'snap' to an exact value. This experiment 

enabled finding what these exact shutter speeds were.  

 For the web camera, adjusting the camera settings to confirm the linearity was more 

difficult. Since the web camera had fewer digital levels and had a smaller dynamic range, it was 

Figure 32: Fits for the measurements of green band for the sphere uniformity, scientific camera falloff, and 
web camera falloff, for pixel numbers measured from the top left corner. All plots are scaled here by the value 
found at an azimuth and zenith angle of o°. 
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more difficult to get accurate readings over a large range of values. The relationship between the 

web camera 'exposure' and the readings is clearly non-linear (Figure 34). 

 If the exposure used by the web camera is the exposure value as used in photography, 

then we would expect the data to fit the equation:  

𝐸𝑉 = log2

𝑓
#⁄

𝑡
 

Eq (39) 

 Where EV is the exposure value, f/# is the f-number and t is the exposure time in 

seconds. This can then be rearranged to be: 

𝑡 =

𝑓
#⁄

2𝐸𝑉
       

Eq (40) 

Figure 33: Linearity fit for the number of integrating sphere bulbs used  for the web camera in the NIR 
(left) and the scientific camera in the green (right). 

Figure 34: Linearity fit using the camera exposure settings for the web camera in the NIR (left) and the 
scientific camera in the green (right). 
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 This is the reverse of the web camera's behavior, where increasing the exposure value 

provides more light to the system. 

 For an alternate definition of exposure is given by Greivenkamp (2004): 

𝐻 = 𝐸′𝑡 Eq (41) 

 Where H is the exposure (measured in J/m2), E' is the image plane irradiance (in W/m2), 

and t is time (in seconds). This should provide a linear relationship between the web camera 

readings, and the 'Exposure' setting, but this is also not the case. It is unclear here what the 

exposure setting is changing inside the web camera. 

 It was not possible to find a fit that consistently worked between all the ranges of values 

taken. As a result, the higher exposure values for the camera cannot be used to evaluate the 

linearity of the system, and the estimate made with the bulbs was necessarily the limit to what 

could be done.  

 This also meant that while it was theoretically possible to use multiple exposure values 

for the web camera in order to increase its effective dynamic range, in practice this required 

more analysis behavior of the exposure values used by this camera. Examining these processes 

for the web camera was instructive in reasons not to use web cameras for scientific work: While 

they might save costs individually, the time lost in adapting them, and learning their internal 

mechanisms is almost certainly a net loss for a project.  

3.6.9 Temperature Response Relation Calibration 

 There are two parts to accounting for the effects of temperature on the response of the 

camera: The dark current of the camera, consisting of electrons generated by the sensor due to 

the ambient temperature energy and the change in sensor response with respect to the change in 

temperature. The latter is a less known source of noise since its effects tend to be minor, and are 

mitigated when measurement systems are in an environment with a controlled temperature. 

Research on this subject tends to show up most frequently for space fairing sensors. As the 

fluctuations of temperatures in the desert can also be fairly severe, I accounted for them for my 

camera system as well.  

 Measuring the temperature of the sensor, both in the field and in the calibration was 

done with a Thorlabs TSP01 USB Temperature and Humidity Data Logger, with external probes 

attached to the exterior of both cameras. This sensor provided a software suit to measure and 

record the temperature of the probes, with an accuracy of ± 0.5° C.  It did not integrate with 

Matlab, but produced text files that could be imported. It was not necessary to absolutely 
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calibrate the temperature sensor. Since it was used in all the readings taken, it would provide the 

necessary measurement of the relative change in temperature, which could then be correlated 

with the response of the sensor. 

 As the probes were attached externally to the cameras, instead of internally, directly on 

the sensor, there would be a delay between a change in external temperature and that of the 

internal temperature. The delay between temperature changes can be estimated using a chart of 

the response versus temperature using a steady source of light. Measurements of the external 

temperature should flatten out before the response change does. We can measure this 

difference. It was observed that the difference between the points where they flatten was 

negligible. To make sure this delay was not an issue with the field readings, the temperature 

used for calibrating those readings was the average over the entire time that readings were 

taken. 

 Heating and cooling the camera system for this experiment also focused on finding a low 

cost and readily available method of testing. The temperature of the camera system and the ASD 

was adjusted using a Nesco American Harvest FD-61WHC, employing cardboard to contain the 

hot air and provide insulation. While this heat source is designed for dehydrating food items, it 

was found to provide a large and steady temperature change, when compared to other consumer 

grade items. Cardboard, while unconventional, provided adequate insulation, and was easy to 

rebuild into shapes conducive for testing the camera system while incorporating the heating 

element. Providing holes for the cameras did not significantly change the range of temperatures 

that the heat source could produce. At its max settings, it produced temperatures for the 

cameras in excess of 55°C, which was the maximum specified temperature for the cameras, and 

which matched well with the possible temperatures in southern Arizona. At its lowest setting, 

the heating element provided cooling to the camera system by blowing air on it, lowering the 

temperature to the range of 40°C, depending on the ambient temperature around the camera 

system.  By alternating between these settings, it was possible to consistently produce a wide 

range of temperatures.  

 For the dark current calibration, I blocked the input to the sensor while recording their 

output at various temperatures. For the ASD, and scientific camera, it was possible to black 

them out using lens caps. For the web camera, which did not have a lens tube, it was necessary 

to wrap it in black foil. When the difference in signal was measured for all these sensors at the 

maximum and minimum temperatures, there was a negligible difference in the dark current. For 

the web camera there was no signal, regardless of temperature. For the scientific camera, and 
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the ASD, there was a change in the signal of just a couple DN, with a signal in the thousands. I 

decided that adjusting for the dark current with respect to the temperature was overworking the 

problem in this case, and treated the value as a constant. 

 For the response vs temperature calibration, I made use of an integrating sphere owned 

by the Remote Sensing Group. This provided a means of having steady, near-Lambertian light 

source. For a more low cost and readily available options, there has also been research into 

using sunlight as a source (Thome et al., 2008), and blue sky calibrations (Dymond & Trotter, 

1997) for cameras. Researching those further fell outside the scope of this project.  

 With the camera and the ASD, temperature changes were measured using two bulbs in 

the integrating sphere. This provided enough light in order to be significantly above the dark 

current, without flooding the web camera.  For the cameras, the digital number assigned was the 

average measured over the center 50 pixels for the sensor. The center pixels were found to 

provide a steadier signal than an average taken over the entire sensor. The lens array was also 

left on both cameras for these readings. It was impractical to remove the lens array for the web 

camera, and this kept the methods consistent between the two cameras.  

 When measuring the change in response, I observed that this had a spectral aspect to it. 

With the scientific camera, the readings in the blue, green and red went down when the 

temperature increased, while the NIR had a positive change in readings when the temperature 

increased. For the web camera, only the blue had a negative change in readings when 

temperature increased, while the green, red and NIR all had positive changes. The ASD had all 

positive changes. For all cases, the change in the NIR is more positive than the change for the 

blue.  

 The amount of change was generally very small, as can be seen in Table 8.  

Table 8: Estimates of the % change in signal per degree Celsius. 

 Blue Green Red NIR 

Scientific Camera -0.5% 
 

-0.1% -0.3% 0.2% 

Web Camera -0.18% 0.07% 0.07% 0.07% 

ASD 0.025% 0.025% 0.038% 0.033% 

 

 For the ASD, and the web camera, these changes in response were small enough that 

they might be neglected. For the scientific camera, they were large enough to affect the data 
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when there could be a 15°C change in temperature over the course of a day. Changes in the blue, 

green and red would be negative while the NIR would be positive as temperatures increased. 

This would improve the apparent health of the grass as the temperature increased, as might be 

measured by the NDVI. 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑉𝐼𝑆)

(𝑁𝐼𝑅 + 𝑉𝐼𝑆)
 

Eq (42) 

 Where NIR and VIS are the measured reflectance in the near infrared and visible. 

 

3.6.10 Digital Number to Reflectance Conversion 

 To convert the measurements made by the cameras and ASD into estimates of 

reflectance, it was necessary to perform a calibration between the digital numbers and 

reflectance. This may be done by absolutely calibrating the system, or reading by reading. In the 

latter case, a near-Lambertian target with reflectance near 100% is used to estimate the 

downwelling light, and is then ratioed with the light reflected from the surface being measured, 

such as turfgrass. 

𝑅𝐿𝐴𝑀𝐵

𝑅𝑆𝑈𝑅𝐹

=
𝐷𝑁𝐿𝐴𝑀𝐵

𝐷𝑁𝑆𝑈𝑅𝐹

 
Eq (43) 

 Where RLAMB and RSURF are the reflectances of the Lambertian and the surface whose 

reflectance we are trying to measure, and DNLAMB and DNSURF are the digital numbers our 

radiometer measures. Ideally, the downwelling radiation measured should be only the direct 

solar radiation, but in practice it will be the global irradiance. 

 For absolute radiometric calibration of the cameras, the DN produced by the camera is 

associated with a known radiance. This method is of interest to the project, because it is the one 

that would have to be used by an end user of a fully developed camera system for radiometric 

calibration. Absolute radiometric calibration requires an estimate of the downwelling radiation 

to provide an estimate of the reflectance. Since this would have required additional equipment 

or work on the atmospheric analysis, I decided against this route for the preliminary testing of 

the system. I explored the option more in the section 4.2.7. 

 For this experiment, I used a sheet of Teflon as a near Lambertian reflector. This sheet of 

Teflon is described in more detail in section 3.5. At the beginning of the day the Teflon sheet was 

placed in the field of view of the ASD. This was confirmed by shading the area from direct 

sunlight and  using a consumer grade 1 mW 532 nm laser mounted on a tripod. The laser's point 
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produced a distinctive peak in the readings when within the field of view of the ASD. After all 

parts of the Teflon were confirmed to be within the field of view of the ASD, the position was 

marked, and the camera was aimed to also have the Teflon within its field of view. 

 The ASD readings were converted to a reflectance estimate using Eq (43), modified 

according to the non-Lambertian behavior noted in Figure 23. The cameras used a similar 

process, but the Teflon did not fill their field of view, so it was necessary to use the falloff data 

derived in section 3.6.7 to estimate the digital number that would be measured in the sections of 

the field of view without the Teflon. 

 

4 System Evaluation 

4.1 Field Work 

4.1.1 Introduction 

 One method of evaluating the quality of BRF models, and their inversions, is to compare 

the root mean square error between an actual BRF and an estimated BRF over the hemisphere 

of possible input and output angles (Roujean, Leroy, & Deschamps, 1992 ; Hu et al., 1997 ; 

Liangrocapart & Petrou, 2002). This method did not meet the needs of this project since it 

required either acquiring or building and testing a goniometer, both challenging tasks. In 

addition, satellite systems often view the Earth from a limited set of angles. SPOT, IKONOS, 

LISS-IV, Quickbird, and ASTER are all capable of viewing the earth off-nadir, but all do so by 

less than 31º. All these satellites have sun-synchronous orbits, which will limit the possible sun 

angles in an image. Similarly, the camera system is likely to view the calibration target from an 

angle closer to the ground for practical reasons. Since BRFs and their models can change 

significantly at steep angles (Figure 3), it makes little sense to give equal weight to steep sun and 

sensor angles which are both less likely to occur in practice, and more likely to produce 

inaccurate estimates of at-sensor radiance. Doing so would unnecessarily reject camera systems 

that would work under operational conditions.  Thus, as others have done, I took measurements 

at a limited number of angles, based on those that are likely and logical to exist (Goodin, Gao, & 

Henebry, 2004 ; Gianelle & Guastella, 2007). Simulations I performed to examine the PROSAIL 

BRF, as in section 3.3, recovering the reflectance for zenith angles between 0º and 30º found 

the largest error in recovery to be either at-nadir or at a zenith angle of 30º, with all other angles 

producing values between those extremes. For my testing, I focused on data taken at 30º, since 
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placing the ASD sensor at zenith produced self-shadowing problems that would have been 

difficult to account for. 

4.1.2 Metric for System Quality 

 This experiment was kept small scale to enable testing the feasibility of the use of 

cameras for radiometric correction while keeping the investment of time and money reasonable. 

For a grass target, a large patch of Princess Bermuda turfgrass was selected. Princess Bermuda 

turfgrass was ideal for the small scale experiment since it is a planophile breed of grass with 

small leaves, which prevented the grass from having large amounts of self-shadowing. This was 

a concern, since in a full-scale camera system, looking at something closer to 30 by 30 meter 

plot of tended, would not be expected to have to deal with this problem. Princess Bermuda is 

quite thick, which provided a high LAI, and prevented soil from showing through. 

 The grass existed at a site owned and maintained by the Karsten Turfgrass Center of the 

University of Arizona and was used with their kind permission. It was regularly mowed and 

fertilized to maintain uniform greenness throughout the months measurements were being 

taken. While the mowing did mean that the length of the grass did change some days between 

readings, this was preferable to the grass becoming long to the point of being a volume 

structure.  

 Each day where measurements were taken, a different patch of grass was selected for the 

readings being taken that day: healthy grass or distressed grass. While taking readings from the 

same target on consecutive days would have been desirable, to eliminate natural variation in 

grass health as a potential source of unaccounted for variability, proved impossible due to 

intermittent weather. In addition, taking data often distressed the patch of grass surrounding 

that used for the calibration target, through periodic covering with the Teflon and foot traffic 

around the equipment. 

 The area used for a small scale grass calibration target was constrained by the size of the 

Lambertian object available for converting the ASD data from digital numbers to reflectance. A 

specially manufactured 1-foot square Teflon target was selected for this. Simulations showed 

that depending on the level of surface variability (see section 3.3.13), that it was important for 

the camera to cover as much area in common as possible, otherwise the area sampled by the 

ASD may not be representative of the area sampled by the camera system.  

 The majority of these experiments were done on the scientific camera, as the results from 

the web camera were disappointing. Since it took time to grow each look-up table, and it was 
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necessary to grow different look-up tables for each camera, due to their differing fields of view, it 

did not make sense to confirm or compare the poor performance of the web camera in all 

instances. 

 To measure the range of error in the system, it is necessary to take more than one 

reading in a similar setup. With the sparsity of clear sky days, it was frequently not possible to 

take readings at similar angles for days in a row. Instead, it is necessary to compare readings 

throughout the day. As the sun advances across the sky, there will be different solar zenith and 

azimuth angles. It is hoped that this will change things enough that the weaknesses of the 

system will be exposed. The mean value difference and the standard deviation of the difference 

over the course of a day will be the values reported here, and used to evaluate the overall system 

quality. 

 

4.1.3 Measuring Zenith, Azimuth, and Roll Angles 

 I used a Suunto MC-2G compass to align the camera and ASD with the desired angles 

East of North. This was a two-step process because of distortions in the magnetic field caused by 

the equipment itself. In the first step, the compass was held well away from the equipment and 

used to sight a distant object at the correct azimuth. If no convenient object was present, I would 

create one by attaching a colored cloth to the fence surrounding the Karsten Turfgrass Center. 

Once an object at the correct azimuth was found or created, it was possible to take the compass, 

place it alongside the camera or ASD, and shift them until the compass again sighted the object. 

The local magnetic field was 10° 2' E  ± 0° 20', and was included in the estimate of Azimuth. 

 After the azimuth was determined, I would find the roll angle of the camera and ASD. 

This was done by placing the rails of the camera system and the head ASD so that they were 

level with respect to the zenith angle, then measuring their roll angle. Attempts were made to 

decrease this roll angle to within less than half a degree by adjusting the height of the legs of the 

tripods. It was necessary after this step to again check the azimuth angle again. This was iterated 

until the roll angle was within ± 0.2°. After this, the zenith angle of the camera and ASD were 

adjusted to 45° ± 0.2° and 30° ± 0.2° respectively. 
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4.2 BRF Experiments 

4.2.1 PROSAIL LUT Range Calibration 

 In simulations, it was possible to see that both the range of the LUT used, and the 

number of BRF examples averaged in the recovery influenced the accuracy of the recovered 

reflectance. As a part of the analysis, I decided to confirm this behavior with the measured data. 

This provided an opportunity to confirm the range of inputs used for the PROSAIL inversion 

were calibrated to provide optimal data from the measured data. 

 To limit the number of look-up tables that needed to be generated, I began this process 

by looking at the data produced over several days, focusing on a single time of day, 11:30. This 

placed the sun high in the sky, which would minimize the effects of the non-Lambertian nature 

of the Teflon. Since clouds tended to get stronger as the day went on, this provided the clearest 

set of data to compare between. I examined both distressed grass and healthy grass with the 

camera at several different angles with respect to the ASD, focusing on clear days. I began by 

exploring the effects of the spatial sampling rate and the blur of the image on the resulting 

PROSAIL BRF recovery.  

 I performed the experiment using a mean of the 15 closest BRFs found to estimate the 

reflectance that should be observed by the ASD (see section 3.2.2 for more details on using 

multiple BRFs in the PROSAIL inversion). Experience with the simulation of this system 

indicated that it provided enough samples to take advantage of the averaging power of the BRF 

recovery algorithm. At the same time, this provided few enough examples that there should be 

significant changes in the resulting BRF estimate if some change to the LUT generation process 

should reorder which tables were closest to the readings. I confirmed this was also the case with 

the field data. 

 The result of these analyses was to find that the blur and sampling had no substantial 

effect on the resulting BRF estimate. Blur had very little effect on the output. No blur or a 

blurring via a mean value convolution of the image using a 15 x 15 grid did not substantially 

change the resulting BRF values produced. This was unexpected, as there were concerns that it 

was possible to sample a self-shadowed point, and thus find an incorrect estimate of BRF.  

 Testing the sampling rate lead to inconsistent results. I tested the results from the series 

of surfaces mentioned earlier with the PROSAIL program and a sampling rate of 1 x 1, 3 x 3 and 

5 x 5, to confirm that when more pixels were added, the values converged on one that was 

closest to the expected value.  This was not the result I found. Instead, I found cases where 1 x 1, 
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3 x 3 and 5 x 5 image sampling were each the best answer. After a very small number of samples 

of the image, the estimate of BRF provided converged on a single value, which did not always 

happen to be the right value. Sampling a single center pixel, and a 3 x 3 grid both provided 

substantially different values, but samples taken on odd grids of 5 x 5 to 31 x 31 provided very 

little change in the recovered BRF for PROSAIL. Some minor variation in the numbers after this 

point indicates that the additional samples were enough in order to rearrange the BRFs that 

were considered closest, but there was not enough to produce significant changes in the BRF 

estimates produced.  

 I needed a metric to determine which was the proper number of image samples to use in 

the rest of the analysis. I narrowed down the options to an image sampling rate of 3 x 3 or 5 x 5. 

Sampling only the center pixel defeated the purpose of using a camera system, while rates 

higher than 5 x 5 produced results consistent with the 5 x 5 sampling, so there was no reason to 

use these. As in section 3.2.3, where I set up the LUTs for the simulation step of this 

dissertation, a sampling the image in a 3 x 3 grid provided samples in each corner of the image, 

which would provide knowledge of the direction of the BRF. A 5 x 5 sampling of the image would 

provide both knowledge of the direction of change for BRF, as well as an estimate of its rate of 

change. A 5 x 5 image sampling rate also provided the result closest to the fixed values that came 

after. 

 One concern with the fixed values was that they might be an artifact of the LUT 

inversion.  I had found in my early experimentation with the field data that in some cases it was 

possible for an extreme outlier data point to cause the LUT inversion to fixate on a particular 

solution, even if this solution was wrong. It was possible that by expanding the sampling rate, 

the chances of sampling one of these outliers increased, and was forcing the inversion into a 

fixed answer. Further investigation into this problem in the inversion is merited. 

 A 3 x 3 sampling of the image required generating 64% fewer estimates in PROSAIL than 

did a 5 x 5 sampling of the image. Since these two samplings produced similar values, sampling 

the image with the 3 x 3 grid provided an opportunity to sample the possible inputs for 

PROSAIL more finely or over a larger range, which could provide improved estimates for the 

BRF. The initial analysis showed that the default PROSAIL values used from Table 2 did not 

cover distressed grass well. It was not possible for the inversion with the initial range specified 

for to find input values that produced reflectances in the red that were near or above those in the 

green. To represent these values, it was necessary to increase the range of the input values used 

for the chlorophyll content and the water content of the leaves. This produced worse results for 
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the healthy grass though. To compensate for this I added to the number of tables sampled in the 

range for the leaf water content.  

 I experimented with the possible input ranges and their sampling rates that would be 

possible if I used a smaller sampling rate for the images. I began in this part to experiment with 

sampling the input values at different rates. The performance was improved in some cases by 

increasing the sampling rate, as with the leaf area index, and the chlorophyll content. In 

experimenting with values that I had previously held to a constant single value, carotenoid 

content, brown pigment, and the hotspot parameter, only small effects were found by varying 

these parameters.  I found through experimentation that some performance improvement could 

be made by varying across skylight. This doubled the number of tables it was necessary to 

generate, though. To compensate for the increased number of tables, I also experimented with 

decreasing the sampling rate of various inputs. I found little effect for decreasing the sampling 

rate for the soil reflectance. I ended up with the sample ranges and rates listed in Table 9. 

Table 9: A list of the input values used for PROSAIL in the experiment comparing increased sampling of the 
image versus increased sampling of the PROSAIL input values. 

INPUT VARIABLE MIN 

VALUE 

MAX  

VALUE 

SAMPLED 

INPUTS 

LEAF AREA INDEX 2 10 6 

LEAF INCLINATION DISTRIBUTION 

FUNCTION 

10 80 4 

SOIL REFLECTANCE PARAMETER 0.2 0.8 3 

CHLOROPHYLL A AND B CONTENT 5 80 6 

LEAF STRUCTURE PARAMETER 1.1 1.9 4 

EQUIVALENT WATER THICKNESS 0.001 0.03 6 

DRY MATTER CONTENT 0.00025 0.0075 6* 

CARATONOID CONTENT 8 8 1 

BROWN CHLOROPHYLL CONTENT 0 0 1 

HOTSPOT PARAMETER 0.1 0.1 1 

SKYLIGHT PARAMETER 0.075 0.125 2 

  

 I performed an experiment to choose between the sampling the image at a higher rate, 

and sampling the input values for PROSAIL at a higher rate. I looked at data taken with the 

camera at a 45° angle with respect to the ASD, for both healthy and distressed grass, as this 
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would provide the most insight to when the system was working under non-ideal circumstances, 

and when a greater range of values for the inputs might benefit it the most. 

Table 10: Change in the estimated performance due to image sampling rate, when viewing healthy and 
distressed grass with ASD azimuth angle of 180° East of North and camera azimuth of 225° East of North. 
Mean Error is the difference in the reflectance measured by the ASD and the reflectance estimated by the 
camera system in the direction in the ASD. Reflectance estimates and measurements were generated 
throughout the day and the mean error is the mean of the error in these data. Similarly, the STD is the 
standard deviation in these data taken throughout the day. These errors are further split into an error for 
the NIR and an average of the error found for all three of the visible bands. These errors are expressed as the 
linear change in the reflectance, R (or ρ), rather than the percent change in the readings. 

 Image Sampling Mean Visible 

Error 

Mean NIR 

Error 

STD Visible STD NIR 

Healthy 

Grass 

3 x 3 0.96% R 6.5% R 0.58% R 2.8% R 

5 x 5 0.79% R 6.5% R 0.22% R 2.3% R 

Distressed 

Grass 

3 x 3 5.7% R 7.8% R 1.6% R 5.2% R 

5 x 5 4.8% R 6.9% R 0.74% R 5.2% R 

 

 I found that the increased ranges for PROSAIL input values improved the results for the 

cameras. However, the performance increase from the increased sampling for the image was 

greater than the performance increase from the increased sampling of the PROSAIL input 

ranges. As a result of this experiment, I focused on sampling a 5 x 5 grid of the image, and with a 

blur of a 5 x 5 mean value. While blurring the image did not show itself to significantly improve 

the process, it was mathematically simple to do, and avoided concerns for self-shadowed pixels. 

I did not vary over the skylight parameter in this case because it required generating too many 

example BRFs. 

 The final value to adjust in the PROSAIL inversion was to adjust the weights given to 

each band. Unlike in the simulated case, I found that providing unequal weights to the visible 

and NIR was significantly detrimental to the overall results of the inversion. The visible 

reflectances produced by the field data showed considerably more variation than the simulation 

data, particularly in the red and green bands. This made them more important in processing the 

field data than they were with the simulation. I gave the bands equal weights within the 

PROSAIL inverse.  

 

4.2.2 Effect of Sun Angle on Recovery 

 It became evident while first examining the data that the Teflon target had a non-

Lambertian specular reflection in the forward scatter direction (Figure 35). As a ratio of digital 
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numbers was used to find the reflectance (Eq 

(43)), increased reflectance in the forward 

direction by the Teflon artificially lowered the 

estimated turfgrass reflectance for both the 

cameras and the ASD. When there was an 

azimuth offset between the detectors, the 

specular reflection would result in 

diminished readings for one and not the 

other (Figure 35). This decreased the 

correlation of the reflectance estimates for 

the two detectors, increasing the system 

error.  

 The mean change in the reflectance 

measured by the ASD over the course of a day 

was 9.2% reflectance for the NIR band, while 

the mean change for the visible bands was 

1.6% reflectance. The error in reflectance 

estimates due to the Teflon target's specular 

reflection made it difficult to evaluate the 

absolute error in the system due to the 

camera design. However, it is possible to 

evaluate the relative error of the different 

configurations. To aid the comparison of data 

taken on different days, I limited the data 

points I examined to those that had been 

taken at a time of day that crossed over all the available data sets, and took the same number of 

data points from each set. This placed the sun in a common region for all of the data sets, 

preventing changes in the mean error of the system that would be due to a change in the range 

of sun angles used. Table 11 shows how this range change effects the estimated error. Excluding 

wider solar angles, which this data would not have in common with other sets, produces a higher 

average error for the system. 

 

 

Figure 35: Estimates of the NIR reflectance, found 
for the ASD using a simple ratio, and found using 
PROSAIL for the scientific camera. Azimuth is 
measured here from the forward scatter direction 
of the solar plane. Example is healthy grass with 
the camera at a 45°  azimuth angle with respect to 
the ASD. Data from left to right was taken from 
10am to 2pm. 
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Table 11: Change in the estimated performance due to the sun range used, when viewing healthy  grass with 
ASD azimuth angle of 180° East of North and camera azimuth of 225° East of North. The definition of error 
used here is further explained in Table 10. 

 Mean Visible Error Mean NIR Error STD Visible STD NIR 

Full Data Range 0.79% R 6.53% R 0.22% R 2.32% R 

Limited Data Range 0.83% R 6.65% R 0.27% R 2.87% R 

 

4.2.3 Effects of Camera Angle on Recovery 

 I examined the results of viewing the grass at various angles to better understand this as 

a source of error (Table 12). As could be expected from section 4.2.2, the mean error in both the 

visible and NIR range increased with the difference in azimuth angles for the cameras and the 

ASD. 

Table 12: Change in the estimated performance due to camera view angles, when viewing healthy  grass 
with ASD azimuth angle of 180° East of North and camera view azimuths of 180, 225 and 270° East of 
North. The definition of error used here is further explained in Table 10. 

Camera Angle Mean Visible Error Mean NIR Error STD Visible STD NIR 

0° 0.39% R 1.36% R 0.12% R 1.31% R 

45° 0.83% R   6.65% R 0.27% R 2.87% R 

90° 3.5% R 15.18 %R 0.2% R 1.91% R 

 

 The standard deviation over the range of readings taken is not as high as might be 

expected. While the accuracy is lower at the higher difference in azimuth angles, the resulting 

reflectance estimates cluster, giving it high precision. It is possible the system could be 

calibrated to better account for the mean error which is either due to specular reflection or some 

element of the camera system.  

 The data set taken with a 0° difference in the azimuths for the cameras and ASD should 

have the least amount of error due to the Teflon's specular reflection. For this data set, both the 

visible and the NIR are within the specifications set for the system to be considered successful 

(see section 3.3.2). If we consider only the standard deviation in the difference between the 

estimated reflectances for the ASD and the scientific camera, and assume that the offset can be 
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calibrated for, then both the 0° and 90°  azimuth difference data sets are within the 

specifications required for success. It is likely that the 45° data set would be within this 

specification, if not for the angle of specular reflection also crossing the cameras field of view 

over the hours analyzed (Figure 35). Future work is merited to confirm these results in cases 

where specular reflection could be avoided or accounted for. 

 

4.2.4 Camera Comparison 

 To understand the limits of cameras to find BRF, I experimented with both a scientific 

camera and a web camera. I began with the average reflectance values recovered in a best case 

scenario, where the camera and the ASD are at the same azimuth angle, and viewing healthy 

grass.  

Table 13: Camera performance comparison when viewing healthy grass with camera and ASD azimuth 
angles of 180° East of North. The definition of error used here is further explained in Table 10. 

 Mean Visible Error Mean NIR Error STD Visible STD NIR 

Scientific Camera 0.39% R 1.36% R 0.12% R 1.31% R 

Web Camera 1.23% R 9.24% R 0.25% R 2.80% R 

 

 The web camera's performance across the board is worse than the scientific camera, but 

is particularly poor in the NIR.  To better understand the limits of the web camera 

implementation of the BRF camera system, I examined its performance with healthy and 

distressed grass, with a 45° angle between the camera and ASD.  

Table 14: Camera performance comparison when viewing healthy grass with ASD azimuth angle of 180° 
East of North and camera azimuth of 225° East of North. The definition of error used here is further 
explained in Table 10. 

 Mean Visible Error Mean NIR Error STD Visible STD NIR 

Scientific Camera 0.83% R   6.65% R 0.27% R 2.87% R 

Web Camera 2.45% R 10.74%R 0.76% R 6.24% R 

Table 15: Camera performance comparison when viewing distressed grass with ASD azimuth angle of 180° 
East of North and camera azimuth of 225° East of North. The definition of error used here is further 
explained in Table 10. 

 Mean Visible Error Mean NIR Error STD Visible STD NIR 

Scientific Camera 4.02% R 7.58% R 0.50% R 4.94% R 

Web Camera 5.11% R 14.24% R 0.62% R 6.28% R 
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 The web camera continues to produce poor results in both these cases. With the 

distressed grass, the reflectances produced by the web camera are closer to those of the scientific 

camera than in other cases. This is possibly because of the limitations of the PROSAIL inverse. 

The errors in this case are already high, and the finite size and range of the LUT inverse limit 

how far the estimated reflectance can be moved from the measured data. Examining the data 

used to produce the reflectance estimates for the web camera, I identified three sources of 

performance issue: Camera dynamic range, interaction with the PROSAIL LUT inverse, and 

read noise.  

 Dynamic range was not included in the simulations as a possible source of error, but is 

the most clear source of error within the web camera data. The web camera data was taken at 

two different exposure settings. At 

the higher exposure setting, there 

are cases where the DNs produced 

reach the maximum possible value 

of 255 when viewing the Teflon. 

Because DN for the peak 

reflectance of the Teflon should be 

higher than the recorded value, the 

estimated reflectance for the 

vegetation will be too high. This can 

be observed in Figure 36, where 

there are reflectance values as high 

as 20% in the green. If the lower 

exposure setting for the web 

camera was used, in many cases the 

measured DN for the turfgrass was 

zero. Thus, at the lower exposure 

setting, many of the reflectances 

are also in error, and too low.  

 This leads to the second 

source of error I listed: interaction 

with the PROSAIL LUT inverse. 

One of the strengths of the 

Figure 36: Contour maps of the estimated reflectance across a 
set of samples for the scientific camera and web camera. Data 
point is one taken at noon using healthy grass, with camera 
and ASD azimuth angles of 180° East of North.  
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PROSAIL inverse is that the reflectance bands are interdependent, based off the physical 

reflectance mechanics of vegetation. As such, a non-physical reflectance such as 20% or 0% 

reflectance in the green makes it impossible to find an example BRF in the PROSAIL LUT that 

closely matches the reflectance data. Because of this, even if the reflectance data for other bands 

does not hit the top or bottom of the dynamic range, one band doing so will reduce the quality of 

the reflectance recovered for all the bands. For this analysis, I found that the numbers produced 

by the higher exposure value produced better results.  

 To demonstrate that overestimating the green reflectance was a significant source of 

error in the other bands as well, I reran the PROSAIL inverse on the web camera reflectance 

data, with no weight given to data from the green band (Table 16).  This improved the 

performance across the visible spectrum, including in the green band, with both healthy and 

distressed grass. For unknown reasons, excluding the green band from the inversion also 

produced slightly worse results in the NIR. 

Table 16: PROSAIL inversion comparison, run with and without reflectance from the green band. Performed 
on healthy and distressed grass with ASD azimuth angle of 180° East of North and camera azimuth of 225° 
East of North. The definition of error used here is further explained in Table 10. 

Healthy Grass Mean Visible Error Mean NIR Error STD Visible STD NIR 

With Green R Data 2.45% R 10.74%R 0.76% R   6.24% R 

Without Green R Data 0.73% R 11.45% R 0.17% R 6.27% R 

Distressed Grass Mean Visible Error Mean NIR Error STD Visible STD NIR 

With Green R Data 5.11% R 14.24% R 0.62% R 6.28% R 

Without Green R Data 4.00% R 16.61% R 0.17% R 6.30% R 

 

 The final source of noise I noticed in the web camera reflectance data was read noise. 

This random noise in the web camera readings is visibly high, even with the blur convolution 

applied to it (Figure 36). Both the cameras have some fluctuations in their reflectance values, 

but the web camera in particular jumps between 22% and 8% reflectance without a pattern.  

 

4.2.5 Environmental Effects on Reflectance Recovery 

 An additional concern with the BRF camera is the site where it is set up and the weather 

conditions when it is being operated. Grass has good temporal stability and uniformity in its 

spectral signature when it is maintained (B. Clark et al., 2011), and can be used for calibration 
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provided that it is monitored (P. M. Teillet et al., 2007). However, when turfgrass is not 

maintained it can have considerable changes in reflectance, due to wear and water stress. 

 One motivation for this research is to move surface monitoring out of the desert to learn 

more about the atmosphere in other regions. This makes the camera performance in the 

presence of clouds of interest. It is possible that the increased non-direct light would defeat the 

BRF recovery. I contrast here the recovery with healthy and distressed grass, and clear days with 

days with overhead clouds. These classifications were made, as per Figure 37 and Figure 38. 

Table 17: Scientific camera viewing healthy and distressed  under different cloud conditions grass with the 
ASD aimed at 180° East of North, and the camera aimed at 225° East of North. The definition of error used 
here is further explained in Table 10. 

Healthy Grass Mean Visible Error Mean NIR Error STD Visible STD NIR 

Clear Day 0.83% R   6.65% R 0.27% R 2.87% R 

Overhead Clouds 0.76% R 6.91% R 0.27% R 3.11% R 

Distressed Grass     

Clear Day 4.02% R 7.58% R 0.50% R 4.94% R 

Overhead Clouds 4.58% R 7.72% R 0.61% R 5.19% R 

 

 The PROSAIL LUT inversion I implemented is less capable of modeling distressed grass 

than healthy grass. The majority of the change in error between healthy and distressed grass is 

in the visible range. PROSAIL was unable to compensate for the increased reflectance in the 

green and red for distressed vegetation. This may have been due to the range of inputs used to 

generate the LUTs, though experiments to a better range for input variables did not succeed. As 

an additional experiment, I tested the linked values of Equivalent Water Thickness and Dry 

Matter Content. I fixed these values to each other, based on the work by (Vohland & Jarmer, 

2008), to keep the size of the LUTs down. I repeated the analysis for the distressed grass, 

Figure 37: Examples of healthy (left) and distressed grass (right) 
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changing the ratio between Equivalent Water Thickness and Dry Matter Content from 1/4 to 

1/2, and found that this produced no better results. Exploring the capacity for PROSAIL to be 

compatible with distressed grass is an area for future research.  

 Having clouds overhead had little impact on the data quality. This is not because the data 

is unchanged; there are discrepancies in the ASD reflectance between the data sets of up to 6% 

for readings taken at the same time of day. It is not an artifact in this case of the data already 

having a maximum in error, as it was the case with the web camera data viewing distressed 

grass. This may be a result of finding reflectance using the ratio method. Measuring the Teflon 

before each reading set should provide some information about the skylight as well, and any 

decreased transmission that might result. Cloud cover's effect on estimated BRF is a problem 

that should be looked into in more detail in a case where absolute radiometric calibration is 

available. 

 

4.2.6 Quality of AMBRALS Correction  

 The analysis so far has been for BRF data. AMBRALS is instead a BRDF function. The 

BRF of a surface is a measure of its percent reflectance as compared to an ideal Lambertian. 

BRDF is the measure of the percent of light reflected from one direction to a second direction. 

The quantities are related, but not the same. Thus, before making use of the AMBRALS 

inversion, it is necessary to convert the BRF data I have been using into BRDF data. This can be 

done with Eq (2), which is just linear multiplication by π. After the BRDF numbers are 

calculated, we can convert these back to BRF numbers using the same equation. As the 

AMBRALS algorithm is a set of linear equations, these steps cancel out, and can be skipped.   

Figure 38: Examples of Clear weather (left) and Overhead clouds (right) 



106 
 

 To begin the analysis of the quality of 

AMBRALS as an inversion in for the camera 

system, I sought proper image sampling rate 

for this algorithm. As there were no example 

BRFs to generate, it was possible to sample at 

a much higher rate than was possible with the 

PROSAIL algorithm. As can be seen in Figure 

39, increasing the sampling rate does not 

consistently improve the quality of the 

resulting inversion. The error is smaller in the 

visible bands, but shows a similar pattern, 

where some higher sampling rates produce 

more error than a lower rate. Sampling 201 x 

201 pixels of the image also produced poor 

results. All this indicated that no sampling rate could be relied upon to produce quality results 

across all sets. To perform the analysis, I selected a sampling rate of 19 x 19, as this had the best 

performance across the bands in the initial analysis.  

Table 18: Inversion performance comparison when viewing healthy grass with ASD azimuth angle of 180° 
East of North and camera azimuth of 180° East of North. The definition of error used here is further 
explained in Table 10. 

 Mean Visible Error Mean NIR Error STD Visible STD NIR 

PROSAIL 0.39% R 1.36% R 0.12% R 1.31% R 

AMBRALS 0.83% R           6.73% R 0.15% R 2.31% R 

Table 19: Inversion performance comparison when viewing healthy grass with ASD azimuth angle of 180° 
East of North and camera azimuth of 270° East of North. The definition of error used here is further 
explained in Table 10. 

 Mean Visible Error Mean NIR Error STD Visible STD NIR 

PROSAIL 3.5% R 15.18% R 0.2% R 1.91% R 

AMBRALS 5.01% R 8.65% R 0.74% R 2.00% R 

Table 20: Inversion performance comparison when viewing distressed grass with ASD azimuth angle of 
180° East of North and camera azimuth of 135° East of North. The definition of error used here is further 
explained in Table 10. 

 Mean Visible Error Mean NIR Error STD Visible STD NIR 

PROSAIL 4.02% R 7.58% R 0.50% R 4.94% R 

AMBRALS 6.56% R             7.74% R 4.56% R 4.56% R 

 

Figure 39: Mean and STD of NIR error taken over 
the common range of times used, for image 
sampling rates of 5 x 5, 7 x 7, 9 x 9 etc. Data for 
healthy grass with the ASD aimed at 180° East of 
North, and the camera aimed at 225° East of 
North. 
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 AMBRALS in general performed less well than PROSAIL. In some cases there were non-

physical results with AMBRALS, where the surface was predicted to have a negative BRDF. 

AMBRALS did outperform PROSAIL in the NIR with distressed turfgrass, where AMBRALS 

performs nominally better, and when the healthy grass is viewed with a difference in azimuth 

angle of 90°. As discussed in the previous section, it is possible that PROSAIL's performance is 

due to the calibration of its LUTs, and could outperform AMBRALS with additional work. 

 

4.2.7 Absolute Calibration Experiment 

 Two methods were tested for converting the digital numbers found with the camera and 

the ASD into estimates of reflectance: ratioing the reflectance of a near-Lambertian target and 

the grass surface, and radiometric calibration of the cameras and ASD. The latter is consistent 

with what an end user would want to use in the field.  

   The integrating sphere was used for the radiometric calibration, as it has strong 

temporal stability, and a known output. This enabled the calibration of both the cameras and the 

ASD at the same time. To find the irradiance incident on the detector, E', we use the camera 

equation: 

𝐸′ =  𝜋𝐿(𝑁𝐴)2 Eq (44) 

 Where L is the radiance of the sphere, and NA is the numerical aperture of the camera 

system. A confounding factor in this process is that with a webcamera, elements like the NA of 

the system may not be known. Thus I sought to develop a calibration that was independent of 

knowledge of the intrinsic properties of the camera.  

 There is significant disparity between the spectrum of the sphere and the sun (Figure 

40). The camera using one of its filters when illuminated by the sphere produces a DN that we 

may estimate by summing over the range of wavelengths, λ:  

𝐷𝑁𝑆𝑝ℎ𝑒𝑟𝑒 =  ∫ 𝐿(𝜆)𝑆𝑝ℎ𝑒𝑟𝑒 ∗ 𝑅(𝜆)𝑆𝑒𝑛𝑠𝑜𝑟 ∗  𝑇(𝜆)𝑠𝑦𝑠𝑡𝑒𝑚 𝑑𝜆
∞

0

 
Eq (45) 

 Where L(λ) is the spectral radiance on the sensor, R(λ) is the spectral responsivity of the 

sensor to light, having units of radiance per DN, and T(λ) is the spectral transmission of the 

camera, which is unitless and accounts for both filter transmission, and system light loss. There 

will be a similar equation for the response of the camera when illuminated by the sun. 

𝐷𝑁𝑆𝑢𝑛 =  ∫ 𝐿(𝜆)𝑆𝑢𝑛 ∗ 𝑅(𝜆)𝑆𝑒𝑛𝑠𝑜𝑟 ∗  𝑇(𝜆)𝑠𝑦𝑠𝑡𝑒𝑚 𝑑𝜆
∞

0

 
Eq (46) 
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 If we take the ratio of the sun and sphere DNs then, we have: 

𝐷𝑁𝑆𝑢𝑛

𝐷𝑁𝑆𝑝ℎ𝑒𝑟𝑒

=  
∫ 𝐿(𝜆)𝑆𝑢𝑛 ∗ 𝑅(𝜆)𝑆𝑒𝑛𝑠𝑜𝑟 ∗  𝑇(𝜆)𝑠𝑦𝑠𝑡𝑒𝑚  𝑑𝜆

∞

0

∫ 𝐿(𝜆)𝑆𝑝ℎ𝑒𝑟𝑒 ∗ 𝑅(𝜆)𝑆𝑒𝑛𝑠𝑜𝑟 ∗  𝑇(𝜆)𝑠𝑦𝑠𝑡𝑒𝑚  𝑑𝜆
∞

0

 
Eq (47) 

 Which I rearrange:  

𝐷𝑁𝑆𝑢𝑛 =  𝐷𝑁𝑆𝑝ℎ𝑒𝑟𝑒

∫ 𝐿(𝜆)𝑆𝑢𝑛 ∗ 𝑅(𝜆)𝑆𝑒𝑛𝑠𝑜𝑟 ∗  𝑇(𝜆)𝑠𝑦𝑠𝑡𝑒𝑚  𝑑𝜆
∞

0

∫ 𝐿(𝜆)𝑆𝑝ℎ𝑒𝑟𝑒 ∗ 𝑅(𝜆)𝑆𝑒𝑛𝑠𝑜𝑟 ∗  𝑇(𝜆)𝑠𝑦𝑠𝑡𝑒𝑚  𝑑𝜆
∞

0

 
Eq (48) 

 For this camera system, the transmission filters will cut off all frequencies above λ2 and 

below λ1. If we assume that over this range that response and transmission are approximately 

constant over the transmitted spectral range, we can simplify Eq (48) by pulling R and T out of 

the integral and canceling them:  

𝐷𝑁𝑆𝑢𝑛 =  𝐷𝑁𝑆𝑝ℎ𝑒𝑟𝑒

∫ 𝐿(𝜆)𝑆𝑢𝑛 𝑑𝜆
λ2

λ1

∫ 𝐿(𝜆)𝑆𝑝ℎ𝑒𝑟𝑒  𝑑𝜆
λ2

λ1

 

 

Eq (49) 

 The DN here depends on the band being measured. I attempted to absolutely calibrate 

the camera using the data I had taken, and these equations. 

 To find the reflectance from an absolute calibration, it was also necessary to estimate the 

downwelling solar radiation. I found this value using the program SMARTS, downloaded from 

Figure 40: The peaks for the sphere and the solar spectrum are about 400 nm apart, 
necessitating a relationship between the DN generated during calibration and the DN 
generated by the sun. 
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the National Renewable Energy Laboratory. SMARTS was designed by C. Gueymard (1995, 

2001) to provide estimates of the value for the solar spectrum for various estimates of the 

atmospheric composition. It was possible to run SMARTS by providing values of the 

atmospheric composition, such as humidity, which were recorded nearby by both the sensors on 

the site, and at the university. Values which were unknown could be estimated using an average 

atmosphere. 

 The reflectance values produced by this experiment were not of use: The reflectances 

derived this way were generally far too low, and did not show the distinct increase in NIR 

reflectivity expected (Figure 13) This latter problem was more significant, since it meant that 

there was a non-linear error.  

  Further examination of the problem also undermined the equations used. The 

approximation that over the range filter transmission, that response and transmission are close 

to constant, could only be true with two assumptions: 1) the response and transmission stay 

close to the same value across the range being summed while 2), the range is limited because the 

transmission or response go to zero. Clearly these both cannot be true, except for a narrow filter 

with a very sharp cut-on and cut-off. As discussed in section 3.4.6, this is not the case for colored 

glass filters. It was assumed that even if this did not give a precise radiometric calibration, it 

would provide an estimate of the quality of this technique, though this does not seem to have 

been the case. 

 It is possible there was some bug in the code that prevented this calibration from 

working, but due to time constraints, this could not be perused more deeply. I consider this a 

warning that the absolute radiometric calibration of the camera can be more complicated than 

anticipated. My experience leads me to believe that this is not a good direction of research in 

particular for the web camera, as trying to absolutely calibrate it further demonstrated that its 

settings are mysterious and unreliable. 

 

4.2.8 Conclusions 

 The error of the results produced for these measurements was worse than projected. 

Some measured values for the ASD also seem to not reflect reality well. This seems to be in part 

be due to the limits of using the digital number ratio to convert to reflectance. 

 There are two type of error in systems: Consistent offset, as seems to be the case with the 

data taken, and random variation. If the error is random variation, then the issue is that the 
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system must be redesigned or rethought to work. If the error is an offset by a consistent amount, 

then calibration of the system can bring the estimated value better in line with the measured 

values.  

 Another persistent source of error is the greenness of the grass, which seems to be very 

high, with a BRF of up to 15%. It is quite possible this originates from the fact that the turfgrass 

is treated in order to increase its greenness. This may violate the parameters assumed for the 

PROSAIL program. The PROSAIL program also did not respond well to the distressed grass, 

never producing a value of reflectance where the green and red have equal reflectance, as we'd 

expect. This may also be a failing of PROSAIL, where there is an expectation for the vegetation 

to be healthy. It also seems to be where the AMBRALS model breaks down, so this may not be 

an uncommon problem in the field, and should be investigated in more detail. 

 

4.3 Empirical Line Algorithm 

4.3.1 Introduction 

 In this section, I demonstrate how to perform an ELM correction. The data points used 

for this correction were limited to those gathered for other parts of this experiment. The quality 

of this correction is thus limited, as in a full scale system there would be additional cameras to 

have readings taken from all the surfaces at the time of satellite flyover. I make use of a soil 

target for this example. While this is a surface that neither of my existing BRDF recovery codes 

is calibrated for, it does provide a necessary bright target for the ELM correction.  

 To place the effects of the resulting correction in context, I performed a COST correction 

on the same data set. COST was chosen for this comparison as it is also a simple correction and 

has been a standard for atmospheric correction when in-situ data is not available (Allan, 

Hamilton, Hicks, & Brabyn, 2011; De Santis & Chuvieco, 2007; Foody et al., 2001; Islam, 

Yamaguchi, & Ogawa, 2001; Nguyen, Glenn, Nagler, & Scott, 2015; Rahman, Csaplovics, & 

Koch, 2005).  I compare the resulting ground reflectance and spectral signature separability of 

the two corrections. 

 

4.3.2 Data Set 

 An area roughly centered on the Karsten Turfgrass Center was selected for this 

atmospheric correction (Figure 41), as this was where data were taken, and a wide variety of 
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surfaces are available adjacent to the center, ranging from agricultural to urban. The data were 

offset from Turfgrass Center to reach some areas of interest  

 Data from the Pleiades-1A satellite was selected for this demonstration. It provided a 

high enough spatial resolution to contain multiple pixels to sample from the areas measured in 

the BRF tests. In addition, Pleiades-1A has bands similar to those used by the camera system 

and Landsat 7 ETM+ and had good temporal crossover with when the readings were taken. The 

image was taken at an angle of 11.2 degrees, which lowered the uncertainty in the reflectance by 

being near-nadir.  

  

4.3.3 ELM Correction 

 To perform an ELM correction, at least two targets are necessary: a light target and a 

dark target. Moran et al. (2001) showed that it was possible to perform an ELM correction using 

only a light target, and an estimate of the haze. For this example, to increase the robustness of 

the ELM correction, I used reflectance estimates of a grass target, a soil target, and an estimate 

of the haze in the image. 

Figure 41: A false color map of area used for the example ELM correction. 
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 Estimating the reflectance of the grass is a 

process that I have already explored in depth in section 

4.2. Because of the forward scattering bias found in the 

Teflon target used for estimating reflectance, 

reflectance values were obtained using readings taken 

at times when the forward scatter into the camera was 

at a minimum. Readings were taken of the reflectance 

of the grass for five days in the week before the satellite 

overpass. There are stable reflectance estimates in the 

readings for four of these days with one reading acting 

as an outlier to all the others. This outlier was 

discarded, and a spectral reflectance in the direction of 

the satellite was estimated using an average of the 

remaining reflectance estimates.  

Table 21: The estimated reflectance in the direction of the satellite for the four spectral bands, and their 
mean with outlier 9/24 excluded. 

 
Sept. 23 Sept. 24 Sept. 25 Sept. 28 Sept. 29 

Mean w/o 

Sept. 24 

Blue 4.11% 3.54% 4.05% 4.00% 4.16% 4.08% 

Green 11.37% 18.23% 10.31% 13.12% 11.56% 11.59% 

Red 4.81% 12.16% 4.48% 6.40% 4.91% 5.15% 

NIR 75.12% 65.53% 69.28% 75.44% 71.12% 72.74% 

 

 The next step in using ELM with the turfgrass was to find the DN associated with it. The 

reflectance measurements above were made in a variety of locations on a square of turfgrass at 

the Karsten Turfgrass Center. I took the mean of the DN from this surface for use in the ELM 

correction (Figure 42)  

 As a second point for this empirical line, I examine image haze. ELM relies on a bright 

object and a dark object. In the absence of a dark object, it is possible to use the DN associated 

with an object of zero reflectance (Moran et al., 2001). However, the selection of a dark object 

can have significant impacts on the effects of haze (Campbell, 1993) (Figure 43).  I used the 

histogram method of estimating the haze in the image, as this enabled me to find the average 

darkest pixels across the scene (P. M. Teillet & Fedosejevs, 1995). 

Figure 42: False color of turfgrass 
area used to estimate DN and 
Reflectance. Layer order is Red, Green, 
Blue, NIR. 
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 Close inspection of the spectral histogram shows that while there is a significant drop off 

in DN values, there exists a nearly continuous spectrum of DN all the way to zero (Figure 44). 

The haze in the image must be greater than zero, thus it is necessary to pick a significance 

threshold for the DN related to haze. P. M. Teillet & Fedosejevs (1995) recommend a threshold 

of 1000 DN per bin, while Bucher (2004) recommends that we exclude the lowest 0.1% of DN 

values. As the recommendation by Bucher represents a more general function, I estimated the 

threshold this created.  

 To avoid additional processing of the DN associated with the image, I assumed an 

approximately Gaussian distribution to the DNs. Using the ERF function: 

𝐸𝑅𝐹(𝑥) =  
1

√𝜋
∫ 𝑒−𝑡2

𝑥

−𝑥

𝑑𝑡 
Eq (50) 

 Which represents the integral over a Gaussian of mean 0 and variance 1/2, it can be 

shown that excluding the lowest 0.1% of values would place the bin desired to be approximately 

3.3σ from the center. Plugging this value in turn into a normal function with σ = 1: 

𝑓(𝑥) =  
1

√2𝜋
𝑒− 

𝑥2

2  
Eq (51) 

 

 It can be shown that at x = 3.3σ the height of the normal function is ~1/234 the height of 

the peak of the value. Using this relationship as a guideline, I estimated the significance 

threshold for the four bands using their peak values (Table 22). The cut off frequency for each 

band is in fact near the 1,000 DN 

Figure 43: The mean DN per band  for several 
shadows contained within the scene to be 
corrected. 

Figure 44: A hsistogram of the blue values for 
the example image, demonstrating the 
significant falloff at around 300 DN, but still 
near continuous values to zero. 
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recommended by P. M. Teillet & Fedosejevss, providing confidence that these are in fact the 

proper cut off values. 

Table 22: The cut off frequencies estimated for each band found using the 1:234 peak to edge ratio, and the 
Haze DN estimated by this histogram cut off. 

Band Blue Green Red NIR 

Cut off Frequency 1,378 1,189 927 628 

Haze DN 265 238 173 213 

 

 The reflectance of the darkest surface for these darkest pixels was set to 1%, in line with 

the observation by Moran et al. (2001) that there is rarely a completely black object in the scene. 

 Soil provided a bright target for the visible spectrum for this ELM correction. BRF 

readings were taken in the days after the satellite overpass, both on days when the soil was dry 

and on days when it was wet. As extensive readings were not taken of the soil reflectance at the 

Karsten Turfgrass Center, and the BRF recovery algorithms were not calibrated to be used with 

it, some work was necessary to determine the best reflectance estimate.  

 The measured soil BRF values were then run through both the PROSAIL and AMBRALS 

code. Experiments were performed to see if altering the range of PROSAIL input values used 

from the defaults generated for the grass targets would improve the soil recovery estimates. 

Changing the range of input values for the LUTS generated for the PROSAIL reflectance 

recovery was found to produce unpredictable results. Additionally, the PROSAIL estimates did 

not change significantly with the soil moisture, where there was a significant change in soil 

brightness.  

 The reflectance estimates created with these new LUTs were compared with ASD 

readings taken at the same time as the camera measurements. I found a set of PROSAIL input 

values that reflected the surface properties and produced good estimates of the ground 

reflectance measured by the ASD. These inputs were then used with the BRF data already 

measured by the camera to estimate the reflectance in the direction of the satellite sensor. 

Another estimate of the reflectance in the direction of the satellite was made using the 

AMBRALS code. There was little agreement between the PROSAIL and AMBRALS values, or 

between the AMBRALS values for the two days where soil BRF readings were taken (Table 23). 
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Table 23: Reflectance estimates in the direction of the satellite for the two days readings were soil take using 
both PROSAIL and AMBRALS, as well as the reflectance estimate produced by COST for comparison. 

 PROSAIL 

(Oct. 3rd) 

PROSAIL 

(Oct. 8th) 

AMBRALS 

(Oct. 3rd) 

AMBRALS 

(Oct. 8th) 

Mean  COST 

Estimate 

Blue 18.76 18.76 26.37 30.3 23.54 24.4 

Green 21.61 21.61 30.23 32.43 26.47 26.4 

Red 25.84 25.84 33.1 38.5 30.82 31.4 

NIR 33.39 33.364 55.73 36.51 39.74 39.3 

 

 As these numbers did not generally agree, I 

compared the numbers produced by AMBRALS and 

PROSAIL to the reflectance estimates produced by a 

COST correction to the image (see section 4.3.4). The 

average spectral difference between the COST corrected 

reflectance on the soil area and the estimates produced 

using the BRF data was approximately equal in all cases. 

PROSAIL had the correct line shape but was 

consistently below the COST estimates. AMBRALS 

values were closer to the correct average reflectance but 

had the wrong line shape. As no one correction stood 

out as better than another, I took the mean value of the 

four estimates and found that it produced values within 

5% of those of COST. Placing these values into a fit of 

the data also produced a good fit to the existing values found for the haze and grass, particularly 

for the green band. Digital numbers for the soil were derived in the same manner as for the 

turfgrass surface (Figure 45).  

 Having derived digital numbers and reflectance values for the two surfaces and the haze, 

it was then possible to perform a linear fit to the data, finding the slope, a, and intercept, b,  

relating the reflectance, R, to the DN (Figure 46). 

𝑅 = 𝑎 ∗ 𝐷𝑁 + 𝑏 Eq (52) 

4.3.4 Cost Correction 

 A COST correction was also performed on the image to compare the results to the quality 

of the ELM correction performed for the previous section. COST was chosen for this comparison 

since it is a simple correction and a standard for professionals . 

Figure 45: False color of soil area 
used to estimate DN and Reflectance. 
Layer order is Red, Green, Blue, NIR. 
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 The COST algorithm was developed by Chavez as a means of providing a cost-effective 

atmospheric correction when in-situ readings are not available (Chavez, 1996). This would 

provide a means of radiometrically correcting remotely sensed data where it is impossible to 

take in-situ readings, such as historic data. COST was an improvement on the Dark Object 

Subtraction (DOS) algorithm. While DOS accounts for the additive effects of haze in an image, 

COST also takes into account the multiplicative effects of atmospheric transmission. 

 Both COST and DOS are built off the following equation relating the surface reflectance, 

R, to atmospheric and radiometric properties: 

𝑅 =  
𝜋(𝐿𝑠𝑎𝑡 − 𝐿ℎ𝑎𝑧𝑒)

𝜏𝑣 ∗ (𝐸0 ∗ 𝐶𝑜𝑠(𝜃𝑧) ∗ 𝜏𝑧 + 𝐸𝑑𝑜𝑤𝑛)
 

Eq (53) 

  Where Lsat is the radiance in measured by the satellite, and Lhaze is the radiance scattered 

by the atmosphere in the direction of the satellite. τv and τz are respectively the atmospheric 

transmittances from the ground to the sensor, and from the top of the atmosphere to the 

ground. E0 is the solar spectral irradiance at the top of the atmosphere for the day when the 

readings were taken. θz is the zenith angle of the sun, and thus Cos(θz) accounts for the ground 

Figure 46: Fits relating the DN to Reflectance values for the four spectral bands using the data derived 
above. 
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angle with respect to a plane normal to the sun's irradiance. Edown is the downwelling irradiance 

due to atmospheric scattering. 

 To derive the reflectance of the surface from the DN found by the satellite, we must first 

transform the DN measured into an estimate of the radiance on the sensor, Lsat, using the gain 

and bias of the sensor. These variables are measured via onboard calibration units and by 

vicarious calibration. This equation is most often written: 

𝐿 =  𝐷𝑁 ∗ 𝐺𝑎𝑖𝑛 − 𝐵𝑖𝑎𝑠 Eq (54) 

 Though there are also instances of other definitions (ASTRIUM, 2012; Chavez, 1996). 

The correct equation to use is the one defined for the satellite data available.  

 The COST algorithm is a simplification of Eq (53), designed to use only the image data 

and metadata, without in-situ readings. Lsat, Eo, and θz will all be known, and Lhaze can be derived 

from the image itself.  This can be found using Eq (54) and by finding the DN associated with 

the haze, as is explained in Section 4.3.3. This leaves to be found values for the variables Edown, 

τv, and τz.  

 To remove Edown from the equation, Chavez estimates it to be 0. τv and τz are more 

difficult to find, with 

𝜏𝑣  =  𝑒𝑥𝑝(−𝑡 ∗ 𝑠𝑒𝑐(𝜃𝑣)) 

 

Eq (55) 

𝜏𝑧  =  𝑒𝑥𝑝(−𝑡 ∗ 𝑠𝑒𝑐(𝜃𝑧)) 

 

Eq (56) 

 Where t is the optical thickness of the atmosphere and θv and θz are the view angle of the 

sensor and sun zenith angles. If we were then to set τv and τz equal to 1, this would be Dark 

Object Subtraction. Instead, Chavez makes the empirical observation that τz is often very close in 

value to cos(θz). Similarly, θv can be approximated with cos(θv). This enables finding the surface 

reflectance without an estimate of the atmospheric thickness, giving us the equation: 

𝑅 =  
𝜋(𝐿𝑠𝑎𝑡 − 𝐿ℎ𝑎𝑧𝑒)

(𝐸0 ∗ 𝐶𝑜𝑠2(𝜃𝑧) ∗ 𝐶𝑜𝑠(𝜃𝑣)
 

 

Eq (57) 

 Chavez further modifies this equation by setting cos(θv) = 1, which is true for cases where 

we are viewing the scene from at nadir. As this is not the case for the data gathered using the 

Pleiades satellite, I do not make this approximation. 
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4.3.5 Comparison of Reflectance Statistics 

 A comparison of the images produced by the COST and ELM corrections shows that 

while they produce similar values, the ELM correction has higher reflectance values across the 

image in the green and NIR, with more similar reflectances to COST in the blue and red. The 

range of reflectance values is also larger in the ELM image than in the COST image (Table 24) 

Table 24: The mean and standard deviation of the four bands of the COST corrected and ELM corrected 
image. 

 Blue Green Red NIR 

μELM 16.57 19.40 19.64 34.80 

μCOST 16.97 17.60 19.85 30.30 

σELM 12.06 12.81 13.71 17.17 

σCOST  11.27 12.22 13.74 14.65 

 

 ELM correction differs most from the COST correction in the blue band for bright 

targets. In the green and NIR it differs for bright targets and to a lesser extent vegetation. The 

red behaves in the opposite manner and has stronger reflectance for COST than ELM in areas 

that would typically be dark in both images: roads, grass, etc. (Figure 48).   

 The ELM and COST corrections are very similar for the red band. The difference between 

the two corrections less than 0.3% reflectance (Figure 47). For the green band, ELM produces 

values of reflectance that are consistently above those produced by the COST correction. This is 

an unexpected result since the fit for the green band for the ELM correction is one the closest 

produced (Figure 46) and two of the points in that fit, the haze DN and the soil reflectance, are 

shared with those in the COST correction. The ELM blue band finds values of reflectance both 

above and below those produced by COST in different areas. This implies that there is a 

difference in both the offset and slope between the ELM and COST corrections. Finally, in the 

NIR band, we see the largest scale and range of difference values between ELM and COST, and 

the majority of these differences are ELM estimating a reflectance higher than that of COST. The 

NIR will generally produce the largest differences, being frequently the most reflective of the 

bands. 

 COST and ELM in this correction have produced significantly different numbers, despite 

sharing the same dark value, and nearly the same values for the soil reflectance. The average 
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reflectance values for the ELM correction are higher than the average values for the COST 

correction. In addition, the reflectances are spread over a larger range for the ELM correction. 

 

Figure 47: Histograms of the difference images produced by subtracting the ELM correction from the COST 
correction. 
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4.3.6 Spectral Signature Separability 

 The spectral signature separability is used to estimate the difficulty differentiating 

between two spectral signatures. I examine two different measures of signature separability: The 

Euclidean distance, which represents a linear distance between the two signatures, and the 

divergence, which represents how a well a maximum likelihood classification could differentiate 

between the signatures.  To examine the signature separability differences in the context of these 

images, I selected four surfaces for three different surface types (Table 25) 

Table 25: Surfaces used for measuring the spectral signature separability, grouped into surface type. 

Vegetation Soil Urban 

Turfgrass 

Field Grass 

Crops 

Trees 

Soil 

Sand 

Plowed Dirt 

Scrubby Desert 

Gravel 

Parking Lot 

Bright Roof 

Dark Roof 

 

 Surfaces that would be difficult to differentiate spectrally were preferred. As an example, 

I compared the signatures of heavily maintained turfgrass of the Karsten Turfgrass center and of 

several fields of grass used as soccer fields and school play areas.  

 Example areas were selected for each surface arbitrarily. The separability statistics for 

the surface types were computed by taking the average separability of every combination of 

surfaces within the surface type. For all three surface types in this example, ELM's Euclidean 

distance was larger than COST's, while COST's divergence was stronger than ELM's. While 

ELM's results have a wider spectral spread than COST, there is also a blurring of the classes. The 

peaks of the signatures are further apart for ELM, but the signatures are also wider and become 

wider faster than they move apart. This happens with all three surface types: For vegetation, 

where the spectral distances are low, to urban, where the spectral distance is fairly large.  The 

superior correction for performing a classification will depend on the decision rule selected for 

the image classification process.  
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Table 26: A comparison of the spectral separability of the ELM and COST corrections performed on the data 
set. 

 Vegetation Soil Urban 

ELM COST ELM COST ELM COST 

Euclidean Distance 15.22 13.08 19.4712 17.93 75.5361 69.96 

Divergence 20.47 38.74 71.5133 90.44 601.1 672.80 

   

4.3.7 Conclusions 

 The ELM correction gives answers that are similar to the COST algorithm, both in terms 

of the raw statistics, and in the potential performance of classification of the image. It is 

impossible to say which correction is more accurate without additional spectral ground data 

taken at the time of satellite flyover. Though differences exist between the corrections, these 

results indicate that even for ground data of limited accuracy that it is possible to do an accurate 

correction using ELM. In the next section I confirm this through simulation. 

 

4.4 Atmospheric Simulation 

4.4.1 Introduction 

 To further relate the research in this paper on camera systems to their purpose on 

improving remotely sensed images, in this section I simulate the effect of using noisy data to 

performing an ELM correction on a real image. In the previous section, I explored how to use 

my own data to perform an ELM correction. In section 3.3.2, I simulated the effects of creating 

an empirical line using noisy data, to measure how far an empirical line created with noisy data 

would be from the true line. Here I use simulated readings from Landsat 8 OLI data, forcing the 

simulated ELM correction to be performed on sites that can be found within the image, rather 

than ideal ones. This clarifies the quantity and types of sites that would be most important 

within a full-scale system.  

 

4.4.2 Data Set 

 I used Landsat 8 OLI data of Tucson and the surrounding area for this simulation, 

limiting the area to a square 60 km around the center of Tucson (Figure 49). Landsat 8 OLI data 

were a natural choice for this experiment, as the full-scale camera system is intended for use 

with Landsat 7 ETM+, Landsat 8 OLI, or similar satellites-borne sensors. Using a 60 km square 

enabled me to examine a large number of pixels while retaining a reasonable simulation time. 
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Two clear days were selected for use: July 1st, 2015, and August 4th, 2015. Clear days were 

preferred to ensure that poor numbers were not the result of only selecting calibration sites that 

happened to have increased haze. Using more than one day provided assurance that the results 

would not be unique to that day. Landsat 8 OLI data within this date range provided both 

uncorrected and atmospherically corrected data of the same area. 

  

Figure 49: False color image of the area of Tucson used for the ELM simulation. 



124 
 

4.4.3 Methods 

 For an empirical line correction, both the surface reflectance and top of atmosphere 

(TOA) digital number for some pixels must be known. For this simulation, I used numbers 

provided by the TOA and surface reflectance products available for Landsat 8 OLI data.  

Calibration targets were selected from four categories: water, vegetation, soil and bright roofs 

(such as for a large mall). Single pixels were selected to represent each site to better simulate 

what would be possible to measure using a single camera site. All targets were selected to 

provide at least 9 surrounding pixels of the same class. This was necessary as in a full-scale 

system, a large target is necessary to ensure that the 30 m Landsat pixel and the area measured 

cross over without spectral mixing. Pixels were selected from the same area for both images 

when possible. As the data taken in June and August showed different phenology, different 

vegetation areas were sometimes assessed for each date.  

 The simulation of ELM took as inputs the number of each site category to be used in the 

correction, and the average error of any estimate of the reflectance to be assigned to the 

measurements. Example sites within the class were selected at random and then assigned 

reflectance values based on the Landsat surface reflectance product. The reflectance from the 

Landsat surface product for each band of each site was independently modified by adding a 

value from a normal function with 0 mean and standard deviation equal to the error entered at 

the start. These modified reflectance values and a haze value generated as in section 4.3.3 were 

used to compute lines for each band relating DN to reflectance for each of the four bands. 

 This ELM correction was then applied to the TOA image, changing it to a reflectance 

image. The values for this ELM corrected reflectance image were subtracted from the Landsat 

surface reflectance product for the same area, producing a difference image. The mean and RMS 

difference were calculated from this image, and treated as the RMS error in the simulated  This 

process was repeated 200 times for the number of water, vegetation, soil and bright roofs sites 

and the error value selected, to find an average value independent of the individual sites picked 

in each pass of the simulation (Figure 50). 
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4.4.4 Comparative Setups 

 I examined both the average and RMS error between the images. The average error 

between the two images in the visible tended to be substantially lower than the RMS error, 

showing that the ELM correction provided values both above and below that of the Landsat 

surface reflectance product. I use the RMS error value for the rest of this analysis to represent 

the maximum error. The errors produced by the two dates were also considerably different. The 

error in the visible bands for the data taken on August 4th was significantly higher than the 

error present in the data for July 1st, with the opposite was true in the NIR. I use the average 

RMS error of these two dates for the rest of the analysis of this simulation. 

 I began by analyzing the simulation in situations where no error was introduced into the 

reflectance readings in order to understand the baseline performance of the ELM correction. I 

found there was an inherent amount of error between the image produced by ELM and the 

Landsat surface reflectance product and the amount of error between the images depended 

strongly on the surfaces used for the correction. Each surface type provided a different amount 

Figure 50: Flow chart of ELM simulation. 
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of correction to the TOA DN image. 

Examining how each surface corrects 

these data on its own, using the haze as 

a dark point, we can see that the soil 

provides the best correction on its own, 

followed by the bright roof and then 

vegetation. The dark water provides the 

worst correction on its own by a large 

margin (Figure 51). This is expected, as 

a correction with two dark targets will 

have large changes in the slope of the 

empirical line for small changes in the 

DN or reflectance estimate. The 

vegetation is unique in providing a better 

correction in the NIR than in the visible 

spectrum, which is consistent with the 

above observation and with it being 

much less reflective in the visible.  

 For a comparison, I instead 

starting with an ELM correction 

performed using one of each surface 

type, and removing one at a time from 

the correction. Each surface type when removed produced a similar amount of error when 

removed from the correction (Figure 52). Removing the soil or the vegetation target worsens the 

image by a similar amount, with the bright roof providing a slightly larger change. The largest 

change comes from removing the dark water, showing its importance, even if it does not provide 

the best correction on its own.  

 The error between the two images can be further decreased by increasing the number of 

sites used (Figure 53). There does appear to be an upper limit to the amount of correction that is 

possible, at around an RMS error in reflectance measurements of 1.5%. Increasing the number 

of soil targets appears to be more helpful to the correction than increasing the number of 

vegetation targets, but both improve the correction.  
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Figure 52: RMS error in the ELM correction when all 
surfaces are used, and when the surface listed is 
removed from the correction. 
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Figure 51: RMS error in the ELM correction when 
performed using only the using only the surface type 
listed, and the haze values. 
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 Next I tried introducing 

error into the system, to see its 

effect on the quality of the 

recovered correction. The 

correction is surprisingly 

resilient as error in the 

measured reflectance is 

increased, provided there are 

enough samples to begin with 

(Figure 54). With just four 

sites, one of each surface class, 

there is a change in the RMS 

error in the ELM correction of 

0.5% reflectance, for a change in the mean error in surface reflectance from 0% to 5% 

reflectance. With more sites, there is a similar change in the RMS error in the correction, though 

they begin with a smaller values.  This result is consistent with the expectation from section 

3.3.2's simulation, that as the quality of the measurements decreases the resulting atmospheric 

correction can be improved by increasing the number of sites monitored. 

4.4.5 Discussion 

 This simulation shows 

that it is possible to create a 

good atmospheric correction 

using a number of surface 

reflectance estimates and that 

the quantity of estimates is far 

more significant than the 

quality of the estimates. 

Introducing noise to the 

reflectance estimates does 

impact the resulting 

atmospheric correction, but 

only by a fraction of a percent of 

the reflectance measured. This 

is promising for the use of 

Figure 54: RMS error for the combined bands in the ELM 
correction. The error in the measured reflectance readings is 
increased for an ELM correction performed using A) a single soil 
target, B) One bright roof, dark water, soil and vegetation target, 
C) One bright roof and dark water target, with four vegetation and 
three soil, D) One bright roof and dark water target, with seven 
vegetation and three soil. 

Figure 53: RMS error in the ELM correction when the number of 
dark and bright targets are held constant at one, and the number of 
vegetation and soil targets are increased. 
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cameras in estimating reflectance, as it shows that exacting measurements of the surface 

reflectance are unnecessary. This simulation also demonstrates the need to begin an 

investigation the potential for cameras to measure the reflectance of new surfaces with different 

reflectances such as water and bright roofs.  

 

5 Conclusions 

5.1 Conclusion 

 For this dissertation, I have explored the process for designing, calibrating and testing a 

BRF camera system. My goal in this has been to take existing work on empirical atmospheric 

correction, vegetation BRF and in-situ cameras, and expand their range and overlap. I take 

cameras and techniques are being used in labs and move them into the field. I use of work on 

vegetation BRF and modify it to be used with a camera system, rather than a single pixel 

hyperspectral sensor. I seek to take the empirical line method of atmospheric correction and 

move it from a niche process for a limited amount of high precision results to one where it can 

be automated. 

 I examined the process of building the camera system both in simulation and practice. 

My initial modeling of the empirical line method showed that an estimate the directional 

reflectance of a surface within 2% reflectance was required to perform ELM with a reasonable 

number of sites and cameras. Using this specification, I explain the methods of system design, 

and selecting parts based off that design that enable meeting this specification, providing lists of 

my specifications and selected components. I find in the process of that much of the error 

inherent in the system comes from the calibration and set-up of the camera system in the field. I 

have listed ways to calibrate the system, with some focus on finding the azimuth and zenith 

angles of a camera system crossing multiple coordinate systems.  

 Experiments with the camera system demonstrate its strengths and limitations. I found 

that the Teflon block used for the digital number to reflectance conversion had significant 

specular reflection, which undermined finding the absolute error of the system. Specular 

reflection contributed a change of 9.2% reflectance for the NIR band, with a mean of change 

1.6% for the visible bands.  Despite being unable to evaluate the absolute error of the system, 

there was an opportunity to learn more about the relative limits of the system. In the process, I 

discovered aspects that may negatively impact performance. In the design phase, the read noise 

and filter choice were the strongest influences on the quality of the final product. The calibration 
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demonstrated the problems of pixel to angle calibration, and adapting the web camera for 

scientific work, both physically, and with its software. In the experimental phase, I discovered 

the importance of the dynamic range of the camera. This was not an element that I had included 

in the simulations, but processing of the web camera data demonstrated that a narrow dynamic 

range can impact system error by limiting the range of reflectances that can be measured at the 

same time. I also learned more of the limits of the PROSAIL and AMBRALS inversions. The 

PROSAIL inversion needs additional research into the range of parameters to use, while the 

AMBRALS inversion showed unexpectedly poor performance, with non-physical reflectances in 

some cases. The experimental results points toward the potential for a full scale system 

performing within the specifications required for ELM. Before a full scale system can be 

implemented, more work will have to be done on the absolute calibration. 

 Performing an ELM correction with the data available and comparing it with a COST 

correction demonstrated that an ELM correction performed with even limited data provides a 

correction comparable to an established correction. The project ended by returning to 

simulations of the effects of ELM correction on the atmosphere, to understand what the limits of 

the camera system's utility in the field using available sites. The results indicate it would take 

fewer cameras than expected to do this form of correction than expected, but that a larger 

diversity of sites would be desirable. 

 

5.2 Intellectual Merit 

 The atmosphere degrades the quality of remotely sensed data gathered by satellite-borne 

sensors. The atmospheric correction for these data will influence quality of data available to all 

lines of remote sensing. As such, it is important to understand as much as possible about 

atmospheric correction. My research seeks to provide a path to learning more about the quality 

of atmospheric correction.  

 The full scale camera system will need sites to use as ground targets. Fortunately, many 

long-term research projects already maintain and monitor sites. Cameras could be set up at 

these sites and contribute both direct monitoring and corrected remotely sensed data, providing 

the researchers maintain the land with additional sources of information. Possible existing 

research sites include the Long Term Environmental Research (LTER) network sites (Knapp et 

al., 2012), those used by SpecNet (Gamon et al., 2006) or AmeriFlux (Law, 2007), or temporary 

sites, such as those used by the WiSARD Network (Yang et al., 2005). This work could also be 
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paired with other existing camera networks like AMOS (“AMOS | Project Overview,” 2013) and 

Camnet (“Camnet,” 2012) or phenological cameras (Richardson et al., 2009 ; Benton et al., 

2008). While not originally an intent of this research, the current implementation of the 

PROSAIL BRF inversion produces measurements of vegetation quality. This would enable the 

camera system to be of use to and potentially pair up with non-scientific ventures, such as park 

and golf course management, or farming.  

 My camera system would complement research on methods of atmospheric correction 

using both radiative transfer codes and empirical ground reflectance data. These hybrid 

methods have been suggested (Gao et al., 2009; Clark et al., 1995),  but not pursued deeply. This 

is likely due to the current high costs in time and resources of gathering ground reflectance data.  

By gathering ground reflectance data over long periods, my camera system could lower these 

costs, and promote more research into means of improving atmospheric correction. 

 My camera system will reduce the work needed for atmospheric correction. It could be 

used with ELM, a straightforward correction requiring only basic math once ground spectral 

data is available. For researchers interested in using remotely sensed data, but not well versed in 

atmospheric correction algorithms, my camera system and ELM could provide easy access to 

well-corrected data. If ELM is not used, and the camera is instead used in a validation capacity, 

having ground spectral data will still decrease the effort verifying that an atmospheric correction 

is accurate. In addition, the camera system will not need experts to set up or maintain, enabling 

it to be shipped to distant places. Low cost ground data could complement the expanding field of 

low cost satellites (Bouwmeester & Guo, 2010; Salas et al., 2014; Woellert et al., 2011). 

 

5.3 Broader Impacts and Future Work 

 This system is expected to simplify atmospheric correction, improving the quality of 

remote sensing. It may be of significant use to goniometry, by further demonstrating a method 

of taking readings from multiple angles at the same time in the field. Similarly, work done 

characterizing turfgrass will complement BRF research. The camera system may aid in the 

vicarious calibration of satellite-borne sensors, which needs both high quality atmospheric 

correction, and spectral monitoring of sites (S. F. Biggar et al., 2003). My simulations of ELM 

seem to point to a larger trend in atmospheric correction: that a very large number of poor 

estimates of pixel value can lead to an adequate overall correction. There are a very large 
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number of methods of atmospheric correction, and this may be worth investigating further as a 

unifying principle. 

 The system should assist in networking remote sensing with other monitoring networks 

and the broader community. Remote sensing can currently be done largely with little or no 

interaction with the non-scientific community. If a camera is located on land not owned by the 

university or NASA or a similar agency, it necessitates some level of interaction with the non-

scientific community. If a camera system were to be placed in a public place such a large school 

field, it would be an opportunity for engaging citizen scientists and marketing remote sensing, a 

somewhat hidden field, to the next generation of engineers. 

 Several areas of this dissertation merit further research. The absolute error for the 

camera system could be more thoroughly investigated by conducting tests using a more 

lambertian reference target during a period with fewer cloudy days. Additional BRF recovery 

testing could be performed using soil as a target, and an appropriate model and method of BRF 

recovery found. As the final simulations of ELM demonstrated the value of using surfaces 

beyond soil and vegetation, these surfaces should also be investigated for their BRF recovery 

potential. Absolute calibration of the camera, while a known process, should also be explored as 

should the stability of its calibration in the field, as it is a necessary step for outdoor use. Finally, 

additional BRF recovery methods, such as curve fitting, could be explored. 
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Appendix A 

PROSAIL Code Improvements 

PROSAIL Run Speed  

 PROSAIL's run time determined much of the analysis that I was able to do for this 

dissertation. It affected both the number of simulations I could do to test the system and the 

number of LUTs I would be able to generate for the final analysis. As such, it was imperative that 

I get it to run as fast as possible, if I could. 

 I ran Matlab's built in runtime tool to better understand the sections of the PROSAIL 

code that were called the most often and took the longest. Fortunately, I found that the majority 

of the run time was actually tied up in one subroutine, tav.m. After examining this code, I found 

that it took in a single input angle, and a large string of preloaded constants that did not change 

with the input values to PROSAIL. It then ran extensive and time consuming calculations on 

these before 

returning a single 

value.  

 Since this 

calculation was so 

frequently repeated 

and had a single 

varying input, it was 

apparent that I could 

calculate these 

values once, and 

then implement a 

look-up table 

solution for the 

values of tav.m. This 

limited the 

resolution of the 

values produced, but 

if a sufficiently large 

number of input 
Figure 55: Absolute difference between the reflectance bands found for 10,000 
randomly generated sets of PROSAIL input values, run with the modified and 
original tav.m code. 
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angles were used, this effect could be mitigated. Since this is a program that is run very 

frequently, running it enough to generate a fine resolution look-up table could be justified. 

 In my initial experiment with this, I generated 1,000 input values for theta between 0 

and 90° to generate the look-up table for tav.m. I then took a copy PROSAIL with the tav.m 

look-up solution, and the original PROSAIL code, and generated random values for the input to 

place in them. By running both versions of PROSAIL with these random inputs, I could compare 

their outputs to see if using the look-up table solution for finding the values of tav.m had a 

significant effect on the output of the PROSAIL program. After running 10,000 of these 

simulations, I found that they only changed the values of reflectance bands by 0.01% (Figure 55) 

in a few cases. Further investigation of 

these instances demonstrated that 

these examples only happened when 

the input and output angles of 

reflectance were over 89°. Since this is 

outside the range of inputs that I 

intended to use, I decided that this 

was good enough for the program I 

was running, and should be good 

enough in most other instances as 

well. The mean run time difference for 

the PROSAIL runs with the modified 

code was 36.9% of that of the 

PROSAIL code running the original 

tav.m (Figure 56) 

 

PROSAIL LUT Search Algorithm 

 For the PROSAIL LUT inversion, it is necessary to sort the example BRFs generated to 

find those that are closest to measured reflectance data. The comparison between the measured 

reflectance BRF, and the BRF generated by PROSAIL is fixed. Thus, any speed gain to be done 

here is to be done by improving upon the sorting algorithm. There are a number of sorting 

algorithms, each with their own merits. For the PROSAIL inversion, I selected the Insertion Sort 

algorithm. 

Figure 56: % Difference in run time for the original tav.m 
code, and my modified version, for 10,000 runs with 
randomly generated inputs. 
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 Insertion sort is one of the simplest sorting algorithms. Insertion sort works by 

comparing an item in with the one immediately before it in-1, according to a metric. If the metric 

is higher for in than it is for in-1, then the items are switched. Insertion sort repeats this swapping 

until in either reaches the top of the list or it encounters an item with a higher metric. By 

applying this algorithm to each item in the list from top to bottom, the items can be sorted 

according to the metric. This metric could be an alphabetical order, or as in this case, a measure 

of how close two BRF functions are to each other. 

 Insertion sort is not the fastest algorithm if it is used on a random set of data However, 

the analysis for this project often involved running repeated searches through the same set of 

examples BRFs with slightly different inputs. Insertion sort is one of the fastest search 

algorithms when working on nearly sorted data. By keeping a list of the BRFs that had been 

closest to the reference BRF input to the LUT inversion, it was possible to take advantage of this 

feature. This meant that the analysis would run slowly the first time, but quickly for any 

subsequent analysis. For future research, a camera with a pseudo-invariant field of view could 

make use of this technique to speed the analysis between days of data. 
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