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ABSTRACT

This dissertation explores the possibility of using an imaging approach to model

classical pharmacokinetic (PK) problems. The kinetic parameters which describe

the uptake rates of a drug within a biological system, are parameters of interest.

Knowledge of the drug uptake in a system is useful in expediting the drug develop-

ment process, as well as providing a dosage regimen for patients. Traditionally, the

uptake rate of a drug in a system is obtained via sampling the concentration of the

drug in a central compartment, usually the blood, and fitting the data to a curve.

In a system consisting of multiple compartments, the number of kinetic parameters

is proportional to the number of compartments, and in classical PK experiments,

the number of identifiable parameters is less than the total number of parameters.

Using an imaging approach to model classical PK problems, the support region of

each compartment within the system will be exactly known, and all the kinetic pa-

rameters are uniquely identifiable. To solve for the kinetic parameters, an indirect

approach, which is a two part process, was used. First the compartmental activity

was obtained from data, and next the kinetic parameters were estimated. The novel

aspect of the research is using listmode data to obtain the activity curves from a

system as opposed to a traditional binned approach. Using techniques from infor-

mation theoretic learning, particularly kernel density estimation, a non-parametric

probability density function for the voltage outputs on each photo-multiplier tube,

for each event, was generated on the fly, which was used in a least squares optimiza-

tion routine to estimate the compartmental activity. The estimability of the activity

curves for varying noise levels as well as time sample densities were explored. Once
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an estimate for the activity was obtained, the kinetic parameters were obtained us-

ing multiple cost functions, and the compared to each other using the mean squared

error as the figure of merit.
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CHAPTER 1

Basic Pharmacology

1.1 Overview

The field of pharmacology is the study of the interaction of a drug with a system,

and is typically divided into two sections: pharmacodynamics (PD) and pharma-

cokinetics (PK). A capable pharmacologist has an understanding of the drugs, and

the precise amount needed in order for the drug to beneficial. In the pharmaceutical

industry, knowledge of the PD/PK processes is imperative to speeding up the drug

discovery and development phase. Proper modeling allows for testing the therapeu-

tic ranges of a particular drug, and the drugs with the highest probability of success

are where resources are focused. It is a cost effective method used by large phar-

maceutical companies to maximize returns on investments, given that the cost and

time necessary to bring new drugs to market has increased [101], [69] [94]. Further-

more, integration of data from PD/PK models allows for drug development strategy

to be continuously updated, increasing the efficiency at the pre-clinical development

stages.

In this chapter we will discuss some basic pharmacodynamics, with the bulk of

the chapter devoted to pharmacokinetics. We will introduce concepts and math

using a single-compartment model, and generalize to a multi-compartment model.

Furthermore, we will investigate the use of imaging techniques and the potential

applications to classical pharmacokinetic modeling. Much of the information from

this chapter was derived from various online references as well as short courses and
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literature [77] [13] [3] [82].

1.2 Pharmacodynamics

Pharmacodynamics is primarily concerned with the effect that a drug has on a sys-

tem, with the effects directly related to the concentration of the drug at a specific

site. A drug administered to a system will cause a response, be it a therapeutic

or an unwanted one. The specific effect a drug has on a particular organ is un-

known, however knowledge of the location of the administered drug and the effect on

the surrounding organs is sufficient to model the response of the system to a drug.

Meticulous monitoring of the dose-response curve is necessary to determine when

the maximal efficacy will be achieved and what is the corresponding dose. System

variables such as age, disease, and gender for example, will complicate the effects a

drug has, causing observable shifts of the dose-response curves.

1.2.1 Drug/Receptor Binding

A drug interacts with a system by targeting and attaching to cell receptors, which are

proteins located on the surface of the cell that trigger specific responses within the

cell. To maximize the efficiency of the drug, ideally the density of receptors at the

site of interaction is large. The drug-receptor binding process is fully described by

the law of mass action given by the following expression, where k1 and k2 represent

the rate at which the binding occurs and dissociates, D represents the drug or ligand,

and R represents the receptor.

D +R k1 ↔k2 DR (1.1)

For the drug-receptor interaction, at equilibrium the rate at which the drug binds
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with the receptors and the rate at which it dissociates is equal. Hence, k2[DR] =

k1[D+R], and the equilibrium dissociation and equilibrium association constants are

kd = k2/k1 = [D + R]/[DR] and ka = 1/kd. If the total concentration of receptors

is given by Rtotal = R+DR (bound and unbound), the percentage of receptors that

bind with the drug, can be represented via a scaled form of the Michaelis-Menten

shown in equation 1.2 equation [97] [24].

fDR =
DR

R +DR
=

D

kd +D
(1.2)

Plotting scaled Michaelis-Menten Eq. 1.2 shows that as the concentration of the drug

increases, there becomes a point at which the effectiveness of the drug saturates.

Figure 1.1: Michaelis-Menten plot showing the effectiveness of a drug (binding to
receptors) as the concentration is increased.

There is a small region called the therapeutic region in which the drug is actually

useful. below the threshold the drug has no effect and above the threshold the drug

becomes toxic [95] [30] [33].
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1.2.2 Agonists and Antagonists

A high concentration of receptors is not enough to ensure an administered drug will

produce a desired response within a system. The drug itself is either categorized as

being an agonist or an antagonist. An agonist drug is designed to bind with specific

receptors in a cell and produce a positive response, while an antagonist drug binds

to specific receptors without producing any effect. It’s main purpose is to block

targeted receptors.

When dealing with agonists, there are two main characteristics, the affinity and

the efficacy, which deal with the probability the drug binds to the receptor, and the

ability for a drug to cause a response, respectively. Furthermore, when an agonist

bonds with receptors, if it produces a maximum response it is characterized as a full

agonist, as opposed to a partial agonist, which even when all receptors are occupied,

does not produce a full response. Most drugs have a high affinity, and typically

as seen in Fig. 1.1 for a specific drug, as the concentration is increased, so will

the efficacy. The rate of efficacy between different agonists will occur at different

concentrations due to the affinity of each of the agonists. A drug that reaches max

efficacy at a lower drug concentration is considered to have a higher affinity, and is

thus more potent.
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Figure 1.2: Diagram illustrating the drug dose and response. the two curves denoted
by (A) and (B), are two drugs administered to a system. (A) and (B) are two drugs
with different doses, with the same efficacy. Drug (A) a has a higher affinity, hence
it is the more potent of the two.

Antagonists also have a high affinity and tend to readily bond to receptors. How-

ever, they do not produce an effect while bonded to the receptor. They do however

compete with the agonist for the same receptor site, known as a competitive an-

tagonist, and will block the agonist from fulfilling the therapeutic requirements. A

competitive antagonist is a reversible process, and increasing the concentration of

agonists will cause the antagonist-receptor bonds to be broken. A non-competitive

antagonist, on the other hand, is an irreversible process. Non-competitive antago-

nists occupy the receptor sites, reducing the density of free receptors in a system,

reducing the efficacy of the system.
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1.3 Pharmacokinetics

Pharmacokinetics is primarily concerned with drug uptake in a system, which is

a collective term that includes the individual rates of Absorption, Distribution,

Metabolization, and Excretion (ADME). What is observed in a PK experiment is

the concentration of a particular drug in a system as a function of time. By combin-

ing the observed concentrations with a mathematical model, the ADME rates can

obtained, and more importantly, quantified. The most common type of model is the

compartmental model, which partitions the system into several sections. Further-

more, compartmental models are generally considered to be deterministic in nature

due to the fact the models are chosen such that they have the best agreement with

the observed data, and the value of the model is determined by how well the uptake

parameters are able to be extracted.

1.3.1 Compartmental Modeling in Pharmacokinetics

In order to gain some insight regarding the basic function of the the compartmental

model, a single compartmental model will first be analyzed. Consider a drug being

administered to a human subject. For simplicity, the organs, bones, vascular system,

blood, etc can be all grouped into one single compartment. The method in which the

drug is administered is not important for the moment, but will become significant as

the complexity of the model increases. However, initially the assumption that will

be made is that immediately after a drug is administered the system, the drug is

instantaneously distributed to all the individual parts of the body, and an equilibrium

state is reached. An example of a measured activity as a function of time can be

seen in Fig. 1.3.
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Figure 1.3: Diagram illustrating an example of the experimental data recorded for
the activity of a drug in time within a system.

Typically in PK experiments, the data is recorded first, then a model is selected, and

finally using a mathematical toolbox, the model is fitted to the data.

Figure 1.4: Diagram illustrating the steps involved in fitting the measured activity
data from a pharmacokinetic experiment [1].

For the activity curve in Fig. 1.3, the best choice of a model would be one that has

some sort of exponential decay.

da(t)

dt
= −ka(t) (1.3)
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The expression from Eq. 1.3 describes amount of a drug in the compartment, via a

linear, first-order elimination process, which is commonly used in PK experiments.

The variable a(t) represents to activity or concentration of the drug in the system,

and k is the first order elimination constant. As time increases, the drug will even-

tually be eliminated from the system, at a rate k, that is proportional to the amount

that remains in the system. A useful metric in PK experiments, that is also used in

pharmacodynamics, is the concentration of the drug within a system, which given

the volume of distribution and the amount of the drug administered as the input,

can be expressed as

C =
amount of drug in system

volume of system
=

a

V
(1.4)

and often, the concentration and activity will be interchanged without a loss of

generality since they only differ by a scaling factor. In an ideal situation, the drug

concentration within the compartment will be sampled at a constant rate. However

in practice, the sampling is very coarse, and does not occur in regular time intervals.

Often in clinical applications a sparse number of measurements after the drug has

been administered to a patient will be taken. Hence the concentration of the plasma

must be predicted, which is why a correct model that properly describes the system

dynamics is important. From the dynamic model given by Eq. 1.3, an expression for

the time course of the concentration can easily be solved for,

C(t) = C0 exp (−kt) (1.5)

and by taking the natural log of the expression from Eq. 1.5, a linear relationship
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can be obtained which allows for the concentration in time to be easily predicted.

lnC(t) = C0 +−kt (1.6)

Figure 1.5: Diagram illustrating the logarithm of the model predicted by the data
from Fig. 1.3.

1.4 Imaging Approach to PK Modeling

Using an imaging system such as FastSPECT II, the spatio-temporal activity dis-

tribution of a radiotracer in an object is measured. The activity distribution

f(r, t) =
∑L

l=1 al(r, t), is the sum of the individual compartments, or organs, that

make up the object. Knowledge of the support region, Sl, of each individual compart-

ment can be obtained from a CT scan a priori. This knowledge is used to integrate

over the spatial component of each compartmental activity as shown in Eq. 1.7,

al(t) =

∫
Sl

al(r, t)dr (1.7)
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which happens to be similar in form to the temporal drug concentration observed

in classical pharmacokinetics. In an imaging system, the measured f(r, t) is propor-

tional to the radioactivity of the object. The number of photons collected from the

object is proportional to the amount or concentration of the tracer within the sys-

tem. If we assume there exists a relationship between the radioactivity of the object

measured using imaging, and the concentration of the drug by sampling fluids, an

imaging approach can be used in modeling classical PK experiments. An imaging ap-

proach is desirable because it allows access to previously inaccessible compartments

within the system, which allows for a more accurate representation of the tracer

kinetics.

1.4.1 Radiotracer

The tracer used in FastSPECT II for calibration as well as the one commonly used

in imaging experiments is a technetium (99mTc) labeled radio-pharmaceutical. It is

used because of the relatively long half life (6 hours), and the relatively low patient

radiation exposure risk. Furthermore it is cheap, and easily attaches to ligands.

1.4.2 MOBY Object Phantom

The 4-D MOBY mouse model, originally developed by Paul Segars, is a program

used to generate whole body digital mouse phantoms for use in small animal imag-

ing applications. MOBY utilizes non-uniform rational b-splines or NURBS for short,

to design and model the complex surfaces to create realistic phantoms, orders of mag-

nitude better than voxelized, or pure mathematical phantoms [73]. A unique feature

of the MOBY phantom is that the cardiac and respiratory system can also be pro-

gramed in the phantom causing motion as well as anatomical variations resembling
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an actual animal. Furthermore, it is a valuable tool which allows for the evaluation

of the capabilities of an imaging system.

Using the MOBY phantom allows for the support region of each organ within the

object to be known exactly. The object can be represented by a linear combination of

the basis elements, and the voxels are partitioned into compartments. In the context

of this research, the assumption made is that the activity is constant throughout the

compartment, and the specific amount of activity contained in each compartment is

proportional to the concentration of the tracer, Cl = al/Sl. If the lth compartment

within the object contains Nl voxels, the activity in each voxel, αn∈Sl , within com-

partment l is also be constant. The object f is a vector that contains Nbasis elements,

where fn = αn. Hence, the activity in each compartment is represented as

al(t) =
∑
n∈S1

fn(t) (1.8)

where the activity of each individual voxel of the object is given by fn = al/Nl

for n ∈ Sl. To simplify the notation, an L × N matrix D is created, which is a

binary matrix that specifies the voxels within each individual compartment. Another

assumption made is that the object being imaged is stationary, and the compartment

boundaries do not change in time. The only parameter that changes is the activity

distribution in the object. The sole purpose of the matrix D is to sum up the voxels

within the individual compartments of the object, which yields the activity in each

of the compartments. This allows Eq. 1.8 to be written in a more compact form.

a(t) = Df(t) (1.9)

Given the activity is uniformly distributed in each compartment, the object can also
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be written in terms of the activity

f = D̃a (1.10)

with

D̃ = DTdiag(1/N1, 1/N2, · · · , 1/NL) (1.11)

This relationship will be used in a later section.

1.4.3 Multi-Compartmental Pharmacokinetics

In Sec. 1.3.1, the individual compartments of the system were all grouped into a single

compartment for simplicity of modeling. In a multi-compartment analysis, elements

of the system that share similar characteristics are also grouped into compartments,

which allows for a reduction in the number of parameters that need to be estimated,

while still being able to obtain information regarding the uptake of the tracer. For

example, the highly perfused organs of the body such as the heart, liver, kidney and

spleen have very similar uptake characteristics, and are typically grouped together

into a single compartment referred to as the central compartment. On the other hand,

the fat tissues, as well as the muscle tissues, and tumors, are grouped into another

compartment referred to as the peripheral compartment. A drug will enter the central

compartment, be circulated through the central and peripheral compartments, and

leave the central compartment at which it will be permanently removed from the

system.



27

Figure 1.6: Illustration showing typical organs that compose the central and pe-
ripheral compartments. This would be an example of a system modeled as a two-
compartment model.

Within a compartment, the assumption is that when the drug enters the compart-

ment is kinetically homogeneous, and the rate of flow in and out of the compartment

is the same for all of the elements within the group. In PK experiments, typically

access to only one compartment is possible, such as the blood, to which the con-

centration of the drug is measured. The advantages of using an imaging approach

to solve classical PK problems is that specific compartments within the system that

normally would be inaccessible can be studied, and the kinetics of the tracer can

be obtained. The basic pharmacokinetics equations introduced in Sec. 1.3.1 are still

applicable, and can be generalized to multiple compartments easily. Instead of a

single drug activity denoted by a(t), what will be used is a spatio-temporal vector

of activities a (r, t), where each of the elements of the vector indicate the activity
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within each individual compartment.

a(r, t) =


a1(r, t)

a2(r, t)
...

aL(r, t)

 (1.12)

With the addition of more compartments, the spatial component in the activity is

also included since the compartment occupies a three-dimensional space, within a

system. However, since the support region Sl, of each of the individual compartments

is known, the compartments are non-overlapping, and the activity remains constant

throughout the compartment, the spatial component of the activity can be integrated

out, leaving the vector of compartmental activities as a function of time only.

al (t) =

∫
Sl

al (r, t) dr (1.13)

To model the temporal tracer evolution in a system consisting of multiple com-

partments, a vectorized form of the linear kinetic differential equation from Eq. 1.3

is used.

da(t)

dt
= Ka(t) + I(t) (1.14)

The key components of Eq. 1.14 are K, and I(t), the kinetic matrix and the delivery

method of the drug into the system. Typically I(t) is a constant, bolus input, that

is administered to a single compartment.
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Kinetic Matrix

The L × L kinetic matrix, K = {ki,j : i, j = 1, · · ·L}, governs the uptake of the

drug within the system, and each of the individual elements ki,j represent the rate

of partial flow of the drug between, or out of each compartment. Depending on the

chosen system model, there will be some elements of K that will be equal to zero.

The importance of the model will be discussed in a later section, but in order for the

model to be physically realizable, there are some standard assumptions that K must

adhere to.

1. ki,j ≥ 0 for i 6= j: The off diagonal elements represent the rate of partial

flow of the drug between compartments, and are non-negative.

2. ki,i ≤ 0: The diagonal elements represent the rate of partial flow out of the

individual compartments, and are non-positive.

3. |kii,| ≥
∑

i 6=j ki,j: In order to ensure that activity within the system is con-

served, the sum of the elements of the column not including the diagonal ele-

ment, must be at most equal to the magnitude of the diagonal element.

4. det(K) 6= 0: The kinetic matrix must be invertible.

The condition that K is invertible ensures the drug entering the system does not ac-

cumulate, and eventually leaves the after being administered, and on a microscopic

level, no compartments within the system act as traps. Furthermore, K is diago-

nalizable which allows for it to be represented in terms of it’s eigenvalues λl and

eigenvectors vl. The familiar eigenvalue equation for K is written as follows, where
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the assumption shall be made the eigenvalues of K are real and positive.

Kvl = −λlvl (1.15)

Solving the kinetic equation from Eq. 1.14, yields the compartmental activity as

a function of time.

a(t) =

∫ t

0

eK(t−s)I(s)ds. (1.16)

Modeling the activity within the system requires an integration of an exponentiated

matrix, which can be approximated using either a Taylor series expansion, or Laplace

methods. The significance of rewriting the kinetic matrix in the eigenvalue basis

allows for the simplification of Eq. 1.16. The kinetic matrix written in terms of the

eigenvalues and eigenvectors is

K = VΛV−1. (1.17)

The input function in terms of the eigenvector basis is written as I(t) = Vα(t), and

Eq. 1.16 becomes

a(t) = V

∫ t

0

e−Λ(t−s)α(s)ds =
∑
l

vl

∫ t

0

e−λl(t−s)αl(s)ds (1.18)

for a system consisting of L compartments with a constant bolus input, the activity

in each compartment is a linear combination of L decaying exponential functions,

after the bolus input.
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CHAPTER 2

Gamma Ray Physics and Detectors

Before elaborating on the how imaging can be used to analyze classical PK problems,

the imaging systems and theory must be introduced. Chapter 2 is concerned with

the physics behind a gamma ray as well as the various detectors used in gamma ray

imaging applications. Chapter 3 is concerned with the theory behind the imaging

process, and Chapter 4 introduces the actual imaging system that uses concepts

discussed in Chapter 2 and Chapter 3.

2.1 Overview

Gamma-ray detectors have a variety of applications in areas ranging from clinical

and high-energy physics to homeland security. Gamma-ray detectors can be broadly

classified two main categories – spectrometers and imaging systems. At the Center

for Gamma Ray Imaging (CGRI), gamma ray detector are primarily used in imaging

systems. In a gamma-ray imaging system, the signal from a gamma-ray interaction

is converted to an electrical signal that can be recorded and further processed using

a variety of techniques to estimate properties the object being imaged.

The outline of this chapter is as follows, in order to gain some insight in how a

gamma ray imaging system works, the physics behind gamma rays and their interac-

tion with matter is discussed in Sec. 2.2. In Sec. 2.3, the different types of gamma-ray

detector are discussed, with an emphasis on the scintillator detector.
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Much of the mathematical derivations in this chapter have been derived and

discussed in greater detail in [58], [6], [5], [61], [19], [21], [10], and [76].

2.2 Interaction of Gamma Rays with Matter

Gamma rays are high-energy photons which are emitted due to nuclear processes,

with energy typically on the order of 100keV or more, and have wavelengths smaller

than 10−12 meters. Due to the high-energy associated with gamma rays, they are

classified, as ionizing radiation. A gamma-ray interaction in a material triggers a

complicated cascade of events. The gamma-ray interaction can result in either the

photon being absorbed completely (photoelectric interaction), or partially (Comp-

ton scattering), or for gamma-ray energies greater than 1022 keV the creation of

a positron-electron pair. In the next few sections these topics will be touched on

briefly.

2.2.1 Photoelectric Interaction

During a photoelectric interaction, all the energy of an incident gamma ray is trans-

ferred to an electron of an atom. Each atom has of a number of energy-levels or

shells, that might be occupied by electrons. Electrons on different shells are bound

to the nucleus with different binding energies (Eb). The gamma-rays interact more

strongly with the inner shell electrons which have higher binding energies..

A gamma-ray photon with energy Eγ, cannot interact with electrons whose bind-

ing is more than Eγ. In a photoelectric gamma-ray interaction, the interacting elec-

tron is ejected from the atom with energy Ee, leaving a vacancy in it’s place. The

kinetic energy of the ejected electron, is equal to the difference between the energy
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of the incident gamma ray photon and the binding energy of the electron.

Ee = Eγ − Eb (2.1)

The vacancy caused by the ejected electron is filled by an electron from an outer

shell, and in the process the binding energy is released in the form of X-rays (see

Fig.2.1b or Auger electrons (see Fig.2.2). The Auger electron is ejected from the

atom when an outer shell electron fills the inner shell vacancy, and energy of the

inner shell vacancy is transferred to the Auger electron. The Auger electron with

its energy higher than the ionization potential further ionizes atoms in the material.

The emitted X-ray can either escape the material, or be reabsorbed to further ionize

the material. The photoelectric effect is the most probable gamma-ray interaction

at low gamma-ray energies up to a few hundred keVs.

(a) Collision with incident gamma ray. (b) Generation of photon.

Figure 2.1: Example of a gamma ray colliding and transferring it’s energy to an
electron. The result is the electron is free from it’s shell, leaving in place a vacancy
equal to the original binding energy of the freed electron.
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Figure 2.2: Energy released from an electron in an outer shell filling an inner shell
ionizes the atom further, creating an Auger electron.

2.2.2 Compton Scattering

In a Compton scattering event, the gamma-ray photon partially transferring energy

to an electron, and scatters. The relationship between the energy of the scattered

gamma ray and the scattering angle is given by the equation below.

Esc
γ =

Ein
γ

(1 +
Einγ
mec2

(1− cos(θsc)))
(2.2)

The ejected electron has energy equal to the difference between the initial gamma-ray

energy and the energy of the scattered gamma-ray. The differential cross section from

which a photon is scattered by an electron can be described using the Klein-Nishina

formula. The Compton effect dominates gamma-ray interactions in the mid-hundred

keVs.
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Figure 2.3: Compton scattering, incident partially transfers energy to an electron.
The photon is scattered, with an energy less th/¿an the incident energy.

2.2.3 Positron-Electron Pair Production

When the incident gamma-ray energy is ≥ 1.02MeV, in the presence of a nucleaus,

the gamma-ray energy can be converted to an electron-positron pair. This type of

interaction is called pair production. The minimum energy required for pair pro-

duction is 1.022MeV, which corresponds to twice the rest energy of an electron or

positron (.511MeV).

Ethresh = 2m0c
2 +KE(e−) +KE(e+) (2.3)

When the gamma ray is exactly equivalent to twice the rest-mass energy of the

electron, a positron-electron pair is created with zero kinetic energy. Any additional

energy in the gamma-ray photon is transferred to the electron-positron pair’s kinetic

energy.
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Figure 2.4: Positron and electron pair creation given the incident gamma ray energy
is greater than 1.022MeV. Part of the kinetic energy will be transferred to the nucleus.

After either a Compton scattering event, or a photoelectric interaction, the re-

sulting high energy electron propagates in the material producing more hole-electron

pairs, and lattice vibrations which produce optical photons (light). Finally, after the

energy of the photons has reduced dramatically, the electron hole pairs recombine

via a non-radiative process and produce photons or heat.

2.2.4 Total Attenuation

When a wave enters a material, the attenuation of the wave as a function of the

penetration inside the material is given by the Beer-Lambert law.

I(x) = I0 exp(−µx) (2.4)

In the case of a homogeneous and isotropic material, the linear attenuation coefficient

equals µ = σn, where σ is the cross-sectional area of scattering events of the incident

photon, and n is the electron density in the material. For gamma-rays, the scattering

coefficient from Eq. 2.4, is the sum of the photoelectric, Compton and the pair

production cross-sections.
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2.3 Gamma Ray Detectors

In a gamma-ray detector, gamma rays are not directly recorded, rather, the gamma-

ray interaction produces a cascade of electrons and ionizes the material. This charge

produced by a gamma-ray interaction is either measured directly in semiconduc-

tor or gas detectors, or measured indirectly via scintillation photons in scintillation

detectors.

2.3.1 Gas Detector

In a gas detector, a thin wire that is positively biased, is positioned in the center of a

gas filled chamber as shown in Fig. 2.5. The gas chamber walls acts as the cathode.

When a photon is incident on the gas chamber, it ionizes the gas atoms, producing

free electrons that move towards the center anode, and positively charged ions which

move towards the cathode. This charge migration results in a current flow through

the circuit, which is recorded.

Figure 2.5: Gas detector. Gamma rays incident in the gas chamber cause ionization,
and the electrons are collected by the anode located at the center.

Depending on the applied voltage, the detector exhibits different properties as shown

in Fig. 2.6. At lower voltages, the detector becomes an ionization chamber – the

ionized electrons are collected, and the output signal is proportional to the incident

energy of the gamma ray. At higher voltages, the free electrons ionize other atoms
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as they are accelerated towards the anode. Thus, the system has a gain, but the

output current is still proportional to the energy of the incident radiation. Finally,

at very high voltages, the ionized electrons are accelerated towards the anode at such

a high velocity, that the secondary electrons produced further ionize other electrons.

The point at which the ionization of atoms occurring within the chamber saturates,

the output is independent of the initial photon energy. This is the basis behind the

Geiger-Mueller Counter, which counts the number of particles entering the tube per

second.

Figure 2.6: Trends in the output of the gas detector as the anode voltage is increased.

2.3.2 Semiconductor Detector

Semiconductor detectors have a PN diode structure which is operated in reverse

bias. When a gamma-ray interaction occurs in depleted region of the PN junction,

electron-hole pairs are produced. With the reverse bias applied to the PN junction,

the electrons are attracted towards the N region, while the holes are attracted towards
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the P region. This results in a current flow. This current flow is proportional to the

energy of the incident gamma-ray energy, and is read out by electronics for further

processing. A desirable characteristic of the semiconductor detector compared to a

gas detector, is a higher energy resolution.

Figure 2.7: Schematic of semiconductor detector operating in reverse bias. An inci-
dent gamma ray produces a current proportional to the incident gamma ray energy.

2.3.3 Scintillation Detector

A scintillator is a material that emits visible photons when it interacts with gamma-

ray photons. A scintillation gamma-ray detector consists of a scintillator, which

emits visible photons, and a low-light photon detector like Photo Multiplier Tube

(PMT), or photodiodes. Gamma-ray detectors for imaging application also have a

light pipe between the scintillator and the photodetector to spread the scintillation

photons to multiple photodetectors to improve the spatial resolution [39], [38].

The gamma ray scintillation detectors used extensively at CGRI are used as

photon counting devices and can be modeled using Poisson statistics.
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Figure 2.8: Scintillation spectrometer. A single PMT is attached to the scintillator
crystal. The incident gamma ray releases a spray of visible photons.

Scintillator Material

A gamma-ray interaction in a material produces a large number of electron-hole pairs.

These electron-hole pairs de-exite non-radiatively or radiatively. In most materials,

the radiative decay process has lower probability, however, in scintillators a large

fraction of the electron-hole pairs de-excite radiatively.

Figure 2.9: Scintillation detector. The photons released as the electrons decay to the
ground state are small in number and lie outside the visible range.

A doped scintillator material such as sodium iodide, has a small amount of dopant

such as thallium. These dopants, also called activators, add energy levels associated

with the activators within the forbidden region of the base crystal. At the activator

levels, there is a high probability of the exciton recombining radiatively. Furthermore,

the activators are chosen such that the emitted photon lies within the band gap of the

crystal. However, the scintillation process is an inefficient one, and only about 10%
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of the energy deposited from the gamma-ray photon produces optical scintillation

photons, and further only a fraction of the emitted scintillation photons are detected

by the photodetector.

Figure 2.10: Scintillation detector with impurities added. The photons released in
the decay from the activator excited state to the activator ground state are lower in
energy than in the case of the pure crystal. More important, the resulting photons
are within the visible region.

Photo-multiplier Tubes

Since the number of optical photons produced is small, the purpose of the PMT

is two-fold: to efficiently detect incoming photons, and to provide very high gain

to be able to use electronics to read the output. As shown in Fig. 2.11, the PMT

consists of a photocathode, focusing electrodes, a series of dynodes, followed by an

anode, all packed into a vacuum tube maintained externally at a high voltage. An

optical photon from the scintillation material striking the face of the PMT will eject

a photoelectron from the photocathode. The photoelectron is then focused onto a

series of plates called dynodes, which are maintained at a positive voltage relative

to the photocathode. Furthermore, each of the dynodes in the chain increases in

voltage as the chain progresses, which aids in the production of secondary electrons.

Eventually the photoelectrons will reach the anode at the end of the PMT, where

they are converted to a voltage to be processed.
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Figure 2.11: Photo-multiplier tube. The point of the PMT is two-fold: 1. amplify
the incident photon, 2. convert the signal to a digital output.

Multi-PMT Detector

In order to obtain spatial information regarding the location at which the gamma-ray

took place, an array of PMT’s must be utilized. A widely used system that utilizes

a multi-PMT configuration is the Anger camera, which consists of a scintillation

crystal and a hexgonal-array of PMT’s. The position of a scintillation event can

be estimated using Anger logic. As shown in Fig. 2.12, the basic premise behind

Anger logic uses the centroid position of the distribution of signal amplitudes from

all the PMT’s that are above threshold value to estimate the interaction position.

The expression to find the interaction position x̂, along an axis is given in Eq. 2.5.
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Figure 2.12: Basic theory of how an anger camera operates. An incident photon
is converted to multiple optical photons via the scintillation crystal. The optical
photons are then detected using the PMT’s and a weighted distribution of the PMT
outputs is obtained. The centroid of the weighted distribution is the position of
interaction of the original gamma photon.

x̂ =

∑
i xiw(xi)∑
iw(xi)

(2.5)

The cameras used at CGRI consist of a 3×3 array of PMT’s as shown in Fig. 2.13,

and a maximum likelihood (ML) method is used in order to estimate the interac-

tion position and the energy of the incident gamma-ray. Details of the maximum-

likelihood approach to position estimation will be discussed in Sec. 2.6.1.
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Figure 2.13: Detector used at CGRI consisting of a 3× 3 array of PMT’s.

2.4 Gamma-ray Imaging Systems

The gamma-ray detectors described in the previous section can be used to estimate

the position of interaction and the energy of the gamma-ray. However, the informa-

tion that we seek from a gamma-ray imaging system is the position from which the

gamma-ray was emitted. To gather information about the origin of a gamma-ray, we

must add constraints in our imaging system. Two common ways to constraint the

gamma-rays that are impinging on a detector are using a parallel-hole collimator,

and using a pinhole.

2.4.1 Parallel-Hole Collimator

The parallel-hole collimator is used in systems such as the Anger camera. The

collimator only allows gamma-ray photons with a small range of angles to interact

with the detector. The point of interaction on the gamma-ray detector and the angle

information from the collimator give us enough information to estimate the line

along which the gamma-ray was emitted. A parallel-hole collimator consisting of an

array of extremely long tubes and small diameters would provide the best spatial
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resolution, but the trade off in such a configuration would be a severe reduction in

the sensitivity, which would ultimately limit the performance of the system.

Figure 2.14: Schematic showing the effect of adding a parallel-hole collimator in front
of the detector. The parallel-hole collimator limits the angles of the source that the
detector collects. One advantage of using a parallel-hole collimator is the image on
the detector is upright.

2.4.2 Pinholes

An alternative to the parallel-hole collimator is the pinhole, which projects an in-

verted version of the object onto the detector as shown in Fig. 2.15. The point of

interaction on the gamma-ray detector and the pinhole position give us enough in-

formation estimate the line along which the gamma-ray was emitted. The spatial

resolution is typically better with a pinhole because the object of interest can be

magnified, as long as the distance from the object to pinhole is less than the pinhole

to detector distance. Hence the pinholes are desirable in imaging contexts, because

the only parameters are the diameter of the pinhole Dph, the object to pinhole dis-

tance (z1), and pinhole to detector distance (z2). As the size of the pinhole decreases,
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the spatial resolution increases at the expense of the sensitivity.

Figure 2.15: Basic imaging process of the pinhole aperture, which limits the amount
of photons allowed to pass through to the detector. The variable z1 and z2 indicate
the object to pinhole and pinhole to detector distances.

2.4.3 Multi-pinhole Systems

A system with multiple pinholes allows for an in increase in sensitivity while keeping

the pinhole the same size. However with more pinholes also comes the problem of

multiplexing, which is an overlap of the images of the object on the detector. The

problem that arises due to multiplexing is there is an uncertainty in the pinhole that

the photon passed through, hence a loss of object information. However if the system

can be constructed such that the images do not overlap, the sensitivity will increase

linearly with the number of pinholes.
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Figure 2.16: Multiplexing effect resulting in the use of multiple pinholes for imaging.

The intrinsic spatial resolution, which is the contribution to the spatial resolu-

tion from the detectors and electronics, is the ability of the detector to localize a

scintillation event on the surface of the detector. While the imaging optics in front

of the detector have a heavy bearing on the spatial resolution of the system, other

factors such as the intensity of the gamma ray, or the thickness of the scintillation

crystal are also important. Weak gamma rays with low energy cause statistical fluc-

tuations in the output of the system due to a low number of optical photons being

produced. Another key aspect that decreases the intrinsic resolution is the thickness

of the scintillation crystal. With a thicker crystal, the spread of light produced by

a scintillation event is larger, which results in a larger fluctuations in estimating the

point of interaction of the gamma ray photon.
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2.5 Statistics in the Scintillation Gamma-Ray Detector

In the previous sections, the physics of the scintillation gamma-ray detector, and

gamma-ray imaging systems were introduced. In this section, the mathematics and

statistics used to model gamma-ray imaging systems are discussed in some detail.

2.5.1 Emission of Optical Scintillation Photons

When a gamma-ray interacts in a scintillation material, it triggers a complicated

cascade process which produces optical photons. We assume that all the optical

photons are emitted isotropically from the point of gamma-ray interaction (r =

(x, y, z)). For a given gamma-ray interaction, if we assume that the optical photons

from the scintillation process are emitted independently, then we can model the total

number optical photons as a Poisson random variable Nopt.

P (Nopt|E) =
(N̄opt(E))Nopt

Nopt!
exp(−N̄opt(E)). (2.6)

Here, E is the energy deposited in the gamma-ray interaction (in keV). The aver-

age number of optical photons produced increase with the energy deposited in the

gamma-ray interaction. For small changes in the deposited gamma-ray energy, most

material can be assumed to have a linear relationship between the number of optical

photons produced and the deposited gamma-ray energy.

N̄opt = ηscE (2.7)

Here, ηsc is a material dependent constant, with units of number of photons / keV.
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2.5.2 Conversion of Scintillation Optical Photons to Photoelectrons in PMTs

The optical photons from the scintillation event are detected using PMTs. In general,

a fraction of the emitted optical photons, αj(r) will be incident on the photo-sensitive

part of the jth PMT. If we ignore all scattering and reflections, then αj(r) is given by

the solid angle subtended at the point of interaction r = (x, y, z) in the scintillator

by the jth PMT.

Additionally, in a PMT, a fraction ηj of the incident optical photons are converted

into photoelectrons. Here, ηj is the quantum efficiency of the jth PMT. A high value

of ηj is very desirable in order to maximize the signal to noise ratio. One way to

maximize ηj is to match the spectral response of the photocathode with the emission

spectra of the scintillation material.

The probability of a photon incident on the jth PMT, and the probability of a

photoelectron being produced given an optical photon reaches the jth PMT, are both

binomial selection processes. According to the binomial selection theorem – the bi-

nomial selection of a Poisson distribution yields a Poisson distribution [6]. Therefore,

the photoelectrons distribution on the jth detector for a gamma-ray interaction at r

with energy E , will also have a Poisson distribution given by

p(Nj|r, E) =
(N̄j(r, E))Nj

Nj!
exp(−N̄j(r, E)), (2.8)

where the mean N̄j(r, E) is given by

N̄j(r, E) = ηj α(r)jN̄opt(E). (2.9)

Furthermore, since the number of photoelectrons in a PMT is Poisson, and the num-

ber of photoelectrons on each PMT are independent, the multivariate representation



50

for measuring all photoelectron for all the J PMTs is given by the multinomial law.

p({Nj}|r, E) =
J∏
j=1

p(Nj(r, E)|r, E). (2.10)

2.5.3 PMT Gain and Gain Variance

The photoelectrons produced in the photocathode of a PMT represent a very small

signal, therefore, they are amplified by 4-6 orders of magnitude to produced a voltage

that can be processed with electrons. The PMT’s do not amplify all the individual

photoelectrons by the same gain, but each photoelectron is amplified by a random

gain. The PMT output is futher amplified using an electronic amplifier. If we neglect

electronic noise, and denote the PMT’s gain as GPMT and the electronics gains as

Gelec, then we can write the voltage signal as

Vj =

Nj∑
j=1

Gelec
j GPMT

j Nj. (2.11)

The total signal Vj is the sum of the statistically independent signals from many

photoelectrons [5]. By using the central limit theorem, the resulting PDF for the

voltage output V is approximately normal, and specified by the mean and variance.

If we neglect the gain variance of the PMT (noise), and combine the two gains,

Gj = Gelec
j GPMT

j , we can rewrite Eq. 2.11 as

Vj = NjGj. (2.12)

Thus, the voltage readout of the jth PMT is proportional to the number of pho-

toelectrons produced at the photocathode, where the constant of proportionality is
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the inverse of the gain of the jth PMT. NINT is an operator which returns an integer

closest to the nearest integer resulting from the division, we rewrite Eq.2.12 as

gj = NINT{ Vj
Gj

}. (2.13)

This result will be utilized in later chapters, when estimating parameters from list-

mode data.

With the output from the PMT’s given by Equation 2.13, an equivalent scaled

Poisson model of Equation 2.10 can be written as the following

p({g}|r, E) =
J∏
j=1

(N̄j)
gj

gj!
exp(−N̄j), (2.14)

which gives the probability of measuring the data g, given a gamma ray with

incident energy E interacted at position r on the detector face.

2.6 Maximum Likelihood Estimation

A probability density function of the form p(x|θ) specifies the probability that the

data x is observed given the set of parameters θ. In estimation tasks, since the data

is known, the inverse problem arises – finding the values of θ that produced the data

x. The likelihood function represents this problem, and it can be rewritten in similar

notation as Lehovich [61],

L(θ|x) = p(x|θ) (2.15)

The maximum likelihood estimation (MLE) maximizes the likelihood function to

estimate the most likely values of the parameter θ that resulted in the observed data.
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Mathematically, it can be written in terms of the underlying parameters [6].

θ̂MLE = argmax
θ

(p(x|θ)) = argmax
θ

(L(θ|x)) (2.16)

The log function is monotonic, therefore, maximizing the log-likelihood function is

equivalent to maximizing the likelihood. It can also be more efficient, for example,

if our data set consists of a set of independent and identically distributed random

variables, each with an associated PDF, taking the log of the likelihood product of

the individual PDF’s has the effect of turning the embedded products to sums. The

log function also simplifies exponents which are common in a number of PDFs.

θ̂MLE = argmax
θ

(ln(p(x|θ))) = argmax
θ

(ln(l(θ|x))). (2.17)

The score is defined as the gradient of the log-likelihood, with respect to the param-

eters,

s(θ) = ∇θln(l(θ|x)) (2.18)

The Fisher information matrix is the covariance matrix of the score. The Fij element

of the Fisher information matrix is given by the expression.

Fij = 〈sisj〉x|θ (2.19)

where the angle brackets indicate an ensemble average. The diagonal elements of the

inverse of the Fisher information matrix are the Cramèr-Rao bound. The Cramèr-

Rao bound is the lower bound on the variance of an unbiased estimator.

V ar{θ̂i} ≥ F−1(θ)ii, (2.20)
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If an estimator achieves the Cramér-Rao bound, then the estimator is said to be

efficient.

2.6.1 Position Estimation via ML Estimation

Consider a gamma ray which deposits energy E in a scintillation crystal at position r

generating detector outputs V. A multivariate normally distributed likelihood model

with mean V̄ and covariance matrix KV can be used to model it.

p(V|r, E) ≈ N (V̄(r, E),KV ) (2.21)

For a given position of interaction r and energy deposited E , the voltage outputs

from the PMT’s can be assumed to be statistically independent. However, in the

typical gamma-ray detectors, the energy and depth z are tightly coupled, and due to

noise, it is hard to accurately estimate both of them. To solve this problem, during

the calibration process, a collimated source with gamma rays of a known energy E
excite the detector along a two-dimensional grid, and the mean and covariance of

the signal are obtained for each position. The key concept is that the statistical

quantities are obtained for a two-dimensional grid, averaging over the z coordinate,

which is the depth of interaction. Furthermore, by using the normalized PMT output

from Eq. 2.13, the scaled Poisson model from Equation 2.14 can be used, and the

only parameters that need to be estimated are the two-dimensional point of interac-

tion on the detector face, rd. The corresponding simplified log-likelihood version of

Equation 2.21 can be written in the following form, which is often utilized at CGRI.

r̂MLE = argmax
θ
{ln

J∏
j=1

(
(N̄j)

gj

gj!
exp(−N̄j))}
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r̂MLE = argmax
θ
{

J∑
j=1

(gj ln N̄j(rd)− N̄j(rd))−
J∑
j=1

(gj!)}

r̂MLE ≈ argmax
θ
{

J∑
j=1

(gj ln N̄j(rd)− N̄j(rd))} (2.22)
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CHAPTER 3

Imaging Theory

3.1 Imaging Theory

The imaging process as described by Barrett and Myers [6], is a linear mapping

between Hilbert spaces. In our discussion, we will assumes the class of discrete to

discrete mappings only, which for modeling a system on the computer is typical, and

the relationship between an object and image known via the system matrix.

3.1.1 H Matrix

The system matrix is a linear, shift-invariant operator, which is a representation of

the imaging system that incorporates the imperfections from both the system due to

misalignments as well as detector non-linearities [58], and is essential for the forward

and inverse problems. The H matrix is a property of the system itself, and can

be obtained analytically [88] [8]‘[11], by Monte Carlo methods [12] [79], or directly

measured [18] [39] [78], which is the method of choice at CGRI. The advantage of

directly measuring the system matrix is the data can be saved and loaded when

convenient, which reduces the computation time. However there are disadvantages

to this method such as the requirement of a significant amount of storage space

depending on the resolution of H, and time needed to calibrate. Also, since the

system matrix is specific to the radioactive source that is used in imaging, changing

sources requires recalibrating the system.
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The system matrix is obtained by combining the Mean Detector Response Function

(MDRF) with the Point Spread Function (PSF). The MDRF is obtained by scanning

a collimated radioactive source in a two-dimensional grid of 79 × 79 points on the

detector face. The output of the MDRF measurement is used to estimate the position

of interaction via a maximum likelihood technique as discussed in Section 2.6.1. The

gamma ray detectors at CGRI utilize an array of 3 × 3 PMT tubes. However, the

spreading of light over multiple detectors ensure that the effective detector resolution

is much higher. The PSF is measured by moving a radioactive point source through

a three-dimensional 21 × 21 × 27 grid of points, which coarsely samples the field

of view of the imager. Using the response of the detectors as well as the data of

the point source at each voxel, the blur function of the hot source in space for each

detector is obtained, which become the columns of the H matrix.

Interpolating H

The object space, or columns of the H matrix, must be interpolated to achieve high

resolution. In order to interpolate the object voxels to a higher dimension, first

parameterization of the blur function on each detector by a multivariate normal dis-

tribution must be performed. A multivariate normal distribution is fully represented

by the following coefficients

• A: Amplitude,

• (µx, µy): Mean,

• (λx, λy): Major and minor eigenvalues,

• φ: Angle of rotation,
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with the associated covariance matrix, represented by

Σ = RφΣ0R
T
φ . (3.1)

Given these parameters, the Normal distribution is expressed as the following

hd(r) =
A√

(2π)y|Σ|
exp(−1

2
(r− µ)TΣ−1(r− µ)). (3.2)

As discussed in [21] [58], to increase the effective object space resolution of the imager,

the response between voxels is obtained by averaging of the Gaussian coefficients from

neighboring voxels.

3.1.2 Imaging Equation

The discrete to discrete mapping from a voxelized object f from U in L2 to a pro-

jection image g in V space expressed in operator form is given by the following

expression

g = Hf + n, (3.3)

where g is an M × 1 vector corresponding to the bins of the detector, f is an N × 1

vector representing threw object, an n is the noise in the system. As discussed in [6],

in a photon-counting detector system such as FastSPECT II, Poisson statistics are

used to describe the photon detection process, thus the noise model in the system is

also characterized by Poisson statistics.

In FastSPECT II, the object function f(r) is written as a linear combination of

the basis functions, or voxels, which can be thought of as small cubes that partition
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the field of view.

f ≈ fa(r) =
N∑
n=1

fnφn(r) (3.4)

Given the imaging equation from Eq. 3.3, using the system matrix and the mea-

sured projection data, trying to estimate the original object would require estimating

the f and n. In the presence of noise, and since the mapping of the object to a dis-

crete image space is generally not a one-to-one process, a modification of Eq. 3.3 is

represented by Eq. 3.5, where f̂ is an approximation to the original object.

g ≈H f̂ (3.5)

where f̂ is an approximation of the object which includes the noise component. An

approximation for the object, f̂ , can be obtained using iterative methods, which will

be briefly discussed below.

The Landweber algorithm in Eq. 3.6 yields an approximation for the object f̂ ,

given the matrix equation in Equation 3.5. Successful implementation of the Landwe-

ber algorithm is seen in both SPECT and CT systems [50] [102], and [106]. The

Landweber is mentioned here because it will provide a means to estimate parameters

from projection data in Sec. 5.2.1.

f̂ (k+1) = f̂ (k) + H†(g −Hf̂ (k)) (3.6)

The MLEM algorithm, is an iterative algorithm that maximizes the likelihood for

the data, which in our case is Poisson in nature. The MLEM algorithm is typically

utilized at CGRI. Some of the desirable characteristics of MLEM is that the algorithm

preserves positivity, while seeking to minimize the Kullback-Leibler distance between
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the projected object and the image data.

f̂
(k+1)
i =

f̂
(k)
i

si

∑
m

gm

(Hf̂
(k)

)m
Hm,i (3.7)

As discussed in [107] [90] [29], iterative reconstruction techniques are accurate

since they are able to incorporate system geometry, suffer less from noisy data [65],

and have a higher resolution, but come at the cost of extra computational power

needed.
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CHAPTER 4

SPECT Imaging Systems

4.1 SPECT

Single photon emission computed tomography (SPECT), is a tomographic imaging

technique that is used to image the distribution of a gamma-ray emitting isotope.

A SPECT imaging systems consists of gamma-ray detectors, and image forming

elements such as a pinhole or a parallel-hole collimators that take two-dimensional

acquisitions of a three-dimensional object. For a tomographic reconstruction of the

object, multiple projections through the object must be obtained at different angles.

This requires either the object within the field of view to be rotated, the detector

rotated around the object, or multiple detectors as at CGRI.

4.2 FastSPECT II

Four-dimensional Arizona Stationary Single-Photon Emission Computed Tomogra-

phy II, or FastSPECT II for short, is a SPECT imaging system designed for use

with small animals. FastSPECT II has 16 stationary gamma cameras, placed on two

rings, with eight cameras on each ring. Each gamma camera has one pinhole. The

object is imaged onto the gamma camera with a pinhole of 1mm diameter, placed

1.9 inches from the center of the imaging system axis, providing a magnification of

2.4X. At the center of the imaging system, the field of view is about 40mm along

each axis [21].
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4.2.1 List-Mode data from FastSPECT II

When an object is imaged, the data from each gamma ray scintillation event is saved

in a list-mode data format. The list-mode data, as shown in Fig. 4.1, consists of an

array of digitized voltage outputs for each of the 9 PMTs for each recorded event.

The header file for each of the detector specifies the number of events recorded and a

time stamp. The acquisition electronics used to save the detected scintillation events

are discussed in greater detail by Chen [21], and Furenlid [39].

Figure 4.1: Example of the listmode data obtained from a single detector. For each
PMT of the detector, and for each event there is an associated voltage.

Each of the 16 detectors in FastSPECT II records a 2-D projection image of the

object acquired at a different angle. This eliminates the need to rotate the cameras or

the object during the imaging study. In an experiment, the acquired list-mode data is

processed, which involves estimating the 2-D position from which a particular event

originated from, and creating a histogram of the events for each bin. The format

after the list-mode data has been processed is a vector, g that is M×1 elements long.

In Sec. 3.1.1, the system mapping for object to image space is being represented by
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the sensitivity matrix, hence once the data g is measured, an estimate for the original

object can be obtained using either a least squares or an iterative approach. The

drawback to using either of the approaches discussed in Sec. 3.1.1 is the amount of

information that is lost due to the data undergoing a binning process.

Using raw list-mode data has several advantages. For instance, the measured data

in the raw form is the closest representation of the actual object. When the counts

collected for each position is small, the memory footprint of the data is much smaller

compared to the case where the projection data is binned. Also, when the data is

binned, the original attribute vector is discarded, and the information regarding the

individual events is lost. Finally, in the case where the data is binned, the collection

time must be complete before binning occurs, and a reconstruction can commence.

With list-mode data, an image reconstruction can be initiated in real time as events

are being collected [14].

MLEM using Listmode Data

Object reconstruction using list-mode data can be utilized and is well studied and

has been implemented at CGRI [16], [17], [53], [61], [72], and [54]. This section

serves as a compliment to the MLEM algorithm for binned data from Eq. 3.7 from

Sec. 3.1.2.

In contrast to the binned approach, an image reconstruction using list-mode data

does not utilize a system matrix. Instead the raw PMT values are measured and

saved, and the data is represented as a set of attribute vectors {gi : i = 1, · · · , Nlist},
where each attribute vector gi gives information about an individual scintillation

event. Each individual attribute vector, consists of nine elements, one voltage output

for each PMT, or ten elements if the time stamp is included. A probability density
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function is created, which relates the object to the measured data, p(gi|f). The

object is estimated using list-mode attribute data, by utilizing a probability model

relating the PMT voltages to the object. The likelihood of measuring g given the

scintillation event i, was emitted from the the object f , is represented by

p(gi|f) =

Nbasis∑
n=1

p(gi|n)p(n|f) (4.1)

where the region associated with the basis function φn(r), will indicated by the

integer n. From Eq. 4.1 the density function p(n|f) represents the the probability

that the ith event originating from the object f is associated with the nth voxel. The

elements of fn are proportional to the strength of the signal, or the number of gamma-

ray photons being emitted from the particular voxel. Each voxel has an associated

sensitivity, which is a probability that a signal from voxel n will be detected. Hence,

a representation for the probability of an event being detected originating in voxel n

can be written as

p(n|f) =
fnsn∑Nbasis

n′=1 fn′sn′
(4.2)

The density function, p(gi|n), is the probability that an event originating from voxel

n will produce the attribute vector gi associated with the ith event.

Given the measured data, we would like to obtain a representation for the original

object. The process involves utilizing the likelihood, or the log-likelihood function

over the entire data set gi

l(̂f |gi) = log p(gi |̂f) (4.3)
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and maximizing the likelihood function over the unknown coefficients f̂

f̂ML = argmax
f̂

l(f |gi). (4.4)

The final list-mode maximum likelihood is shown below, which is derived in detail

in [14], [7], and [61].

f̂ (k+1)
n =

Nlist∑
i=1

pr(gi|n)f̂
(k)
n∑Nbasis

n′=1 pr(gi|n′)f̂ (k)
n′ sn′

(4.5)
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CHAPTER 5

Estimation of Activity Curve from Image Data

Early Pharmacokinetic modeling methodologies have evolved from single compart-

ment linear decay relationships of a zero or first order process [93] [98], to multi

compartment [57], complex stochastic models [60] [34] that incorporate random sys-

tem such as variations of heat and how it changes the solubility of the drug within

the plasma.

The models to describe the drug kinetics within a system are numer-

ous [100] [99] [75] [27], and PK models are valuable for drug development

[87] [96] [89], cancer imaging [104], as well as patient dosage regimens [92] [36] [37].

Furthermore, the applications of imaging in classical PK experiments for both

PET [44] [64] [9] an SPECT systems [83] [109], has enabled estimation of the kinetic

parameters indirectly from reconstructions [31] [32] [91] [23] [59], or directly from pro-

jection data [62] [108] [47] [49] [55] [80] [22] [63]. In current research, the estimation of

the kinetic parameters from experiments is automatically factored in to reconstruc-

tion algorithms, in what is referred to as a 4D reconstruction [2] [81] [56] that utilize

a likelihood model and estimate parameters via a ML estimation techniques [35].

The interested reader is encouraged to follow up on the following papers to

get more information regarding models, and topics related to pharmacokinet-

ics [66] [71] [105] [52].

The goal of this research is a feasibility study to determine the estimability of the

kinetic parameters using a novel approach combing an indirect approach involving
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estimating the activity curve will be estimated from raw, un-binned list-mode data,

and estimating the kinetic parameters from the activity curve. The particular model

that will be used in this research is linear vector differential equation describing the

kinetics in a dense system [75] [67].

Estimation of the activity curve will from a system using binned and list-mode

data, and estimating the kinetic parameters from the approximated activity curve

will be covered in Chapter 6.

5.1 Overview: Two Compartment Model Simulation

Using the kinetic equation from Eq. 1.18, an open two compartment model was

simulated with known kinetic parameters K. For a particular K = [−2, 2; 1, −3]

which satisfies the constraints discussed in Sec. 1.4.3, the continuous time activity

curves for each compartment are shown in Fig. 5.1. The chosen time range was

t = (1, · · · , 10) seconds, with a bolus input, I(t), into compartment 1 for total

duration of one second.
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Figure 5.1: Time activity curve for two-compartment model. Red curve represents
compartment 1 tracer kinetics, blue curve represents compartment 2 tracer kinetics.

5.1.1 Time Sample Density

For simulation purposes, the continuous time varying activity curves, from Sec. 5.1

needed to be discretized. We are interested in the tracer kinetics after the drug has

been completely administered to the system, only samples of the activity curve after

t = tinput were considered. Choosing the points to sample the activity curve has been

explored [84] [74] and the results suggest the optimal time sampling is a function of

the model itself. Since the time activity curves in our simulations are exponentially

decaying, the time step ∆t between sample points of the activity curve will also

follow an exponential type function: immediately to the right of t = tinput, ∆t will

be smallest, and increase exponentially as t = tmax as shown in Fig. 5.2.
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Figure 5.2: Near the input time cutoff tinput = 1, the activtiy curve is sampled more,
the spacing between sample points ∆t is smaller, and increases as t increases.

Observe in Fig. 5.3, for thirty time samples of the activity curve, Nt = 30, ∆t is

smaller near t = tinput = 1, and larger near t = tmax = 10.
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Figure 5.3: Sampling of the time activity curve. Near t = tinput the curve is sampled
more as opposed to near t = tmax, where the activity curve is sampled less.

5.2 Estimation of Activity from an Imaging System

5.2.1 Binned Data Approach

Using MOBY, a digital phantom was generated consisting of multiple compartments.

Each compartment of the MOBY phantom was fit to discrete time points of the time

activity curve such that the summation of all the voxels within a specific compart-

ment support region was equal to the activity al(t) in the individual compartment at

time t. Fitting the object to the activity curve was necessary for the time evolution

of the tracer within the system to be studied.



70

Figure 5.4: Example of object (liver) of interest being fit to multiple discrete time
points from the time activity curve.

al(t) =
∑
n∈Sl

fn(t) (5.1)

Reconstruction Data

Using the system H matrix, a time varying projection image was obtained following

the using the imaging equation in Sec. 3.1.2. From the projection data, a recon-

struction of the original object, at each time sample point was obtained from the
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projection data using the maximum likelihood estimation maximization algorithm

(MLEM). Once the object reconstruction was obtained, using the spatial support re-

gion knowledge at each time sample point, the compartmental activity was obtained

using Eq. 1.9, and was used to construct an approximation for the time activity

curve. In Fig. 5.5, multiple slices of reconstruction data for the MOBY phantom are

shown at a fixed time.

(a) (b)

(c) (d)

Figure 5.5: Multiple slices of the reconstruction data of the MOBY phantom at a
fixed time.

Using knowledge of the support region, the reconstruction algorithm was efficient

and converged after only a few iterations. Fig. 5.6 shows the convergence of the

activity curves for two cases, Fig. 5.6a when the number of MLEM iteration is small

(5), and Fig. 5.6b the number of iterations of the MLEM algorithm is larger (60).
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(a)

(b)

Figure 5.6: Convergence of â(t) to a(t) as the number of iterations of the MLEM
algorithm increases from (5) Fig. 5.6a to (60) Fig. 5.6b.
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Projection Data

Obtaining an approximation for the activity via projection data is the next step,

which proves advantageous for the following reasons.

1. Using the projection data removes the intermediate reconstruction step saving

processing time.

2. Using projections data maintains information that would have been further

lost during reconstruction due to binning.

In order to estimate the activity curve from the projection data, a mapping similar

to that in Eq. 1.8 needs to be constructed, which instead maps the projection data g

to the activity vector a. Let E denote the mapping from data space to compartment

space as shown below.

a = Eg (5.2)

Recall that the object to image relationship in the absence of noise is given by the

following expression.

g = Hf (5.3)

Combining Eq. 1.9, 5.2, and 3.5, an equivalent expression for D can be obtained.

a = Df = Eg = E (Hf) (5.4)

D = EH (5.5)
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For the sensitivity matrix H, we assume that each voxel within the field of view

has the potential to produce a signal on each of the detectors. If the rank of the

sensitivity matrix is such that R = M , where M is the total number of pixels on

all detectors of FastPSPECT II (M = 16 ∗ 79 ∗ 79 = 99856), Eq. 5.5, H has an

associated right-hand inverse, H−1
R , such that HH−1

R = IM. Solving for the operator

E can be done in theory, since given both D and H are known. Directly solving for

E via inverse methods would not be feasible due to storage constraints.

E = D
(
H†
) (

HH†
)−1

(5.6)

Rather than solve for E directly, an iterative method utilizing the Landweber al-

gorithm from Eq. 3.6, could be used to approximate the compartmental activity

directly. Multiplying both sides of the LWA by D from Sec. 1.4.2, an expression

yielding an approximate expression for the compartmental activity from the projec-

tion data, D, and H is obtained,

Df̂ (k+1) = Df̂ (k) + DH†
(
g −Hf̂ (k)

)
(5.7a)

â(k+1) = â(k) + DH†g −DH†Hf̂ (k) (5.7b)

â(k+1) = â(k) + DH†g −DH†HD̃â(k) (5.8)

where D̃ is given by Eq. 1.11, and is shown again below, and Nl indicates the number

of non-zero voxels within the lth compartment.

D̃ = DTdiag(1/N1, 1/N2, · · · , 1/NL) (5.9)
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5.2.2 List-Mode Data Approach

The feasibility of estimating the activity curve is explored in the following sections

using a two-compartment model with parameters discussed in Sec. 5.1.

Kernel Density Estimation

Before discussing the methods in which the activity curves were estimated

from the raw list-mode data, some basic kernel density estimation must be

introduced. This material was gathered from multiple sources and course

notes [43] [46] [110] [86] [85] [45] and [70]. Given the measured data, in order to

perform a statistical analysis, knowledge of the probability distribution which the

data was sampled from is necessary. Density estimation revolves around using the

data to estimate the PDF, Given a continuous, real valued random variable X that

can be described in terms of a probability density function p(x), the probability that

the random variable falls within a certain interval [a, b] can be expressed as

P (a ≤ X ≤ b) =

∫ b

a

p(x)dx. (5.10)

There are two main types of density estimation techniques: a parametric and a non-

parametric approach. The parametric estimation lacks flexibility since the shape

of the PDF is assumed to be a known distribution. A non-parametric approach

does not assume an initial shape of the distribution, and the shape can be entirely

constructed using the measured data only. For the research presented here, a non-

parametric approach will be explored. A well known non-parametric estimate of the

probability density function is the histogram. Multiple bins of width B partition the
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measurement space, and are typically of the form

b (x,B) =

1 (x+B (i− 1) b, x+ iB)

0 elswhere
(5.11)

where the estimate of the PDF in terms of the kernel function is given by

p̂ (x) =
1

nB

n∑
i

bB (x− xi) . (5.12)

From 5.12 above, the width of the bin, as well as the center location plays an

important factor in the shape of the estimated PDF. When the data is binned, only

the counts recorded from the object within the bin of width B are saved, and the

actual data values are discarded. Furthermore, histogramming the data yields a

discrete PDF.

An alternative to the histogram is to replace the bin with a kernel function.

Kernel density estimation, also known as the Parzen-Rosenblatt window method,

is a convenient non-parametric method to estimate the probability density function

of an independent and identically distributed (i.i.d.) random variable. In a KDE

approach, rather than a uniform bin, a smooth and continuous kernel of a specific

bandwidth σ, is placed at each of the data points. The kernel function k(u) is chosen

such that it is normalized over all space, and for convenience, it is positive and

radially symmetric. Therefore we have

∫
k(u)du = 1∫

uk(u)du = 0.

(5.13)
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Given the kernel function, k (x), the estimate for the PDF can be written as

p̂(x) =
1

N

N∑
i=1

kσ (x− xi) or (5.14a)

p̂σ(x) =
1

Nσ

N∑
i=1

k

(
x− xi
σ

)
(5.14b)

In Eq. 5.14, the choice of the kernel bandwidth is critical. Typically the bandwidth

is chosen such that the mean-square error, which is the error between the true and

estimated density, is minimized. The MSE is a method to quantify the accuracy of

our estimator, and is represented as

MSE(p̂) = E
[
(p(x)− p̂(x))2

]
=

(E [p̂(x)]− p(x))2 + E
[
(p(x)− E [p̂(x)])2

]
Bias2[p̂r(x)] + V ar[p̂(x)]

(5.15)

From Eq. 5.15, the bandwidth is highly dependent on the bias and variance of the

estimator, which can be observed as the expressions for each are expanded. First the

bias will be calculated,

E [p̂σ (x)] =
1

N

N∑
i=1

E

[
1

σ
k

(
x− xi
σ

)]
(5.16)

and using a substitution of variables u = x−xi
σ

, the expectation value from the right

hand side of Eq. 5.16 can be written as,

E

[
1

σ
k

(
x− xi
σ

)]
=

∫
(k(u)p (x− σu)) du
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which can be further simplified using a Taylor series expansion of the density in

terms of (σu).

=

∫
k(u)

(
p(x)− σup(1)(x) +

(σu)2

2
p(2)(x) +O(σ2)

)
du

Furthermore, after imposing the symmetry of the kernel from Eq. 5.13, while also

substituting µj(k) =
∫
∞ u

jk(u)du, Eq. 5.16 can be simplified to

E [p̂σ (x)] = p(x) +
σ2µ2

2
p(2)(x) +O(σ2), (5.17)

The final expression for the bias of the estimator using the simplified expression for

the mean from Eq. 5.17 can be written as

Bias [p̂σ(x)] = E [p̂σ(x)]− p(x) =
σ2µ2(x)

2
p(2)(x) +O(σ2). (5.18)

The variance of the estimator can be derived in a similar fashion.

V ar [p̂σ(x)] =
1

N

(
E

[
1

σ2
k2
(
x− xi
σ

)]
−
(
E

[
1

σ
k

(
x− xi
σ

)])2
)

(5.19)

After a change of variables, a Taylor expansion, and using the expression obtained

for the bias from Eq. 5.18, the variance can be simplified further.

V ar [p̂σ(x)] =
1

N

(
1

σ

∫ (
k2(u)p (x− σu)

)
du− (p(x) +Bias (p̂(x)))

)
=

=
1

N

(
1

σ

∫ (
k2(u)

(
p(x)− σup(1)(x) +O(σ)

))
du−

(
p(x) +O

(
σ2
))) (5.20)

We now have

V ar [p̂σ(x)] =
p(x)

Nσ
R(k) +O

(
1

Nσ

)
, (5.21)
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where R(k) =
∫
k2(u)du. Using the expressions for the bias and variance in Eq. 5.18

and 5.21, the mean-squared error in Eq. 5.15 becomes

MSE (p̂(x)) ≈ σ4µ2
2(p

(2)(x))2

4
+

1

Nσ
R(k)p(x) (5.22)

and the mean integrated square error, which is a measure of the global accuracy of

the estimator

MISE (p̂(x)) ≈ σ4µ2
2R(p(2))

4
+

1

Nσ
R(k) (5.23)

where R(p(2)) =
∫

(p(2)(x))2dx, is the measure of the roughness of the kernel. From

Eq. 5.23, it is evident that as the number of samples gets large, N → ∞, and the

bandwidth of the kernel gets small, σ → 0, the MISE tends to zero. However,

the bandwidth must go to zero at a slower rate than the increase in the sample size.

Hence, given a set number of samples, there exists an ideal bandwidth that minimizes

the MISE, in order to find it, there is a trade-off between the bias and the variance.

For our simulations research, a Gaussian kernel will be used since it is smooth, and

is easily implemented in code.

kσ(x) =
1

(2π)(d/2)
exp

(
−1

2
xTx

)
(5.24)

For a Gaussian kernel, by assuming that the underlying distribution is normal, the

optimal bandwidth can be obtained using Eq. 5.25 Silvermann’s rule which is given

by the following.

σ =

(
4σ̂5

3n

)1/5

≈ 1.06σ̂n−1/5 (5.25)

where σ̂ the standard deviation of the data. In situations where several estimations

are necessary on large data sets, subjectively choosing the bandwidth parameter
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via an automatic procedure must be performed which makes use of two types of

techniques for selecting the bandwidth parameter: a plug in method and classical

method, which makes use of various cross-validation techniques.

5.2.3 KDE Applied to LM Data

Using KDE, we can construct a distribution, p (v|d, f), representing the probability

that an object produces a vector of voltage outputs v on a particular detector d. This

is accomplished by placing a kernel at each of the voltage outputs of the list-mode

data list. Using KDE allows the data to be represented as a continuous probability

density function. Below is the representation of the probability density function,

where G(v) is a multivariate version of the Gaussian kernel from Eq. 5.24. The

detector index is represented by d, k represents the recorded event, and Kd represents

the total number of events collected on the detector.

p (v|d, f) =
1

Kd

Kd∑
k∈d

Gσ(v − vd,k) (5.26)

From the list-mode data set, we need to estimate the temporal activity curve.

Since the object is a function of the activity in each compartment, f (â), we can

represent the PDF from Eq. 5.26 in terms of the parameters of interest, p (v|d, f (â)).

The PSF calibration data from FastSPECT II is structured such that for each detec-

tor voxel combination, Jd,n events that are recorded, and for each individual event

j, a vector of voltages vj is obtained. Using KDE, we can obtain a continuous prob-

ability density function p (v|d, n)) which gives us the most probable voltage output
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from each detector-voxel combination.

p(v|d, n) =
1

Jd,n

Jd,n∑
j

Gσ(v − vd,n,j) (5.27)

By multiplying 5.27 by the object we obtain an expression which predicts the voltages

that an object with a specific activity will produce, where fn(â) = âl/Nl is the object

as a function of the compartmental activity to be estimated.

p (v|d, f (â)) =
1

Nd

Nd∑
n∈d

fn (â) p(v|d, n) (5.28)

Given the expressions for the densities in Eq. 5.26 and 5.28, a least squares method

will be used to find the activity parameters.

âLS = argmin
a

D∑
d=1

∫ (
‖p(v|d, f)− p(v|d, f (â))‖2

)
dv (5.29)

Derivation of Simplified Equation

In order to use Eq. 5.29 to estimate the compartmental activity, some simplification

is required to run as efficiently as possible.

Given a multivariate normal distribution with mean µ and variance Σ

Nx (µ,Σ) =
(

(2π)Q |Σ|
)−1/2

exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(5.30)

that is normalized over all space,

∫
Rd
Nx

(
µ̂, Σ̂

)
dx = 1 (5.31)
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the integral product of two multi-variate normal distributions can be simplified to

the following

∫
Rd
Nx (µ1,Σ1)Nx (µ2,Σ2) dx =

∫
Rd
c3Nx (µ3,Σ3) dx = c3 (5.32)

where the mean and variance of the combined product is

Σ3 =
(
Σ−11 + Σ−12

)−1
(5.33)

µ3 =
(
Σ−11 + Σ−12

)−1 (
Σ−11 µ1 + Σ−12 µ2

)
(5.34)

and the constant is

c3 = Nµ1
(µ2, (Σ1 + Σ2)) =(

(2π)Q |(Σ1 + Σ2)|
)−1/2

exp

(
−1

2
(µ1 − µ2)

T (Σ1 + Σ2)
−1 (µ1 − µ2)

)
.

(5.35)

The PDF from Eq. 5.26 and Eq. 5.28 can be written in a form similar to Eq. 5.30

p(v|d, f) =
1

Kd

Kd∑
k=1

Nv (vd,k,Σd,k) (5.36)

p(v|d, f(â)) =
1

N

N∑
n

fn(â)
1

Jd,n

Jd,n∑
j

Nv (vd,n,j,Σd,n,j) (5.37)

Returning to the least square expression from Eq. 5.29, the goal is to expand the

terms within the parenthesis, and simplify such that it could be implemented in an

simulation.

∫
(p(v|d, f)− p(v|d, f(â)))2 dv =



83

∫
|p (v|d, f)|2 dv+ (5.38a)∫

|p (v|d, f (â))|2 dv− (5.38b)

2

∫
p (v|d, f) p (v|d, f (â)) dv (5.38c)

The expression from Eq. 5.38a becomes

1

K2
d

Kd∑
k∈d

Kd∑
k∗∈d

∫
(Nv (vd,k,Σd,k)Nv (vd,k∗ ,Σd,k∗)) dv =

1

K2
d

Kd∑
k∈d

Kd∑
k∗∈d

cd,k,k∗

∫
(Nv (vd,k,k∗ ,Σd,k,k∗)) dv =

1

K2
d

Kd∑
k∈d

Kd∑
k∗∈d

(cd,k,k∗)

(5.39)

where the constant, cd,k,k∗ , is

cd,k,k∗ = Nvd,k (vd,k∗ , (Σd,k + Σd,k∗)) . (5.40)
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The expression from Eq. 5.38b becomes

1

N2

N∑
n

fn(â)
1

Jd,n

N∑
n∗

fn∗(â)
1

Jd,n∗∫ Jd,n∑
j

Jd,n∗∑
j∗

Nv (vd,n,j,Σd,n,j)Nv (vd,n∗,j∗ ,Σd,n∗,j∗)

 dv =

1

N2

N∑
n

fn(â)
1

Jd,n

N∑
n∗

fn∗(â)
1

Jd,n∗

Jd,n∑
j

Jd,n∗∑
j∗

cd,nj,(nj)∗

∫ (
Nvd,n,j

(
vd,nj,(nj)∗ ,Σd,nj,(nj)∗

))
dv =

1

N2

N∑
n

fn(â)
1

Jd,n

N∑
n∗

fn∗(â)
1

Jd,n∗

Jd,n∑
j

Jd,n∗∑
j∗

(
cd,nj,(nj)∗

)

(5.41)

where the constant, cd,nj,(nj)∗ , is

cd,nj,(nj)∗ = Nvd,n,j (vd,n∗,j∗ , (Σd,n,j + Σd,n∗,j∗)) (5.42)

And finally, the expression from Eq. 5.38c becomes

−2
1

KdN

Kd∑
k∈d

N∑
n

fn(â)
1

Jd,n

Jd,n∑
j

∫
(Nv (vd,k,Σd,k)Nv (vd,n,j,Σd,n,j)) dv =

−2
1

KdN

Kd∑
k∈d

N∑
n

fn(â)
1

Jd,n

Jd,n∑
j

∫ (
cd,k,(nj)Nvd,k (vd,k,nj,Σd,k,nj)

)
dv =

−2
1

KdN

Kd∑
k∈d

N∑
n

fn(â)
1

Jd,n

Jd,n∑
j

(
cd,k,(nj)

)
(5.43)
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where the constant cd,k,(nj), is

cd,k,(nj) = Nvd,k (vd,n,j, (Σd,k + Σd,n,j)) (5.44)

Combining the final simplified expressions for Eq. 5.39, 5.41, and 5.43, we obtain the

following for Eq. 5.29, which is a simplified representation that is easy to implement

due to the fact it deals with sums rather than integral products.

âLS = argmin
â

D∑
d=1

[
1

K2
d

Kd∑
k∈d

Kd∑
k∗∈d

(cd,k,k∗)

+
1

N2

N∑
n

fn(â)
1

Jd,n

N∑
n∗

fn∗(â)
1

Jd,n∗

Jd,n∑
j

Jd,n∗∑
j∗

(
cd,nj,(nj)∗

)
−2

1

KdN

Kd∑
k∈d

N∑
n

fn(â)
1

Jd,n

Jd,n∑
j

(
cd,k,(nj)

)
(5.45)

Next we calculate the gradient of the argument of Eq. 5.45 in order to use it in our

optimization schemes. Let Q represent the terms within the argument. The gradient

can be expressed as the following expression.

∇âQ = JT∇f̂Q (5.46)

The explicit expressions for gradient of the argument as well as the Jacobian are

shown below.

(∇fQ)n =
1

N2Jdn

[
N∑
n∗

fn∗

Jdn∗

∑
j

∑
j∗

(
cd,nj,(nj)∗

)]
−

2
1

KdNJdn

Kd∑
k∈d

Jd,n∑
j

(
cd,k,(nj)

) (5.47)
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J(â) =
∂f

∂â
(â) =


∂f1
∂â1

· · · ∂f1
∂âL

...
. . .

...

∂fN
∂â1

· · · ∂fN
∂âL

 (5.48)

J(â) =
1

(
∑

l âlNSl)
2


((
∑

l âlNâl)− â1Nâ1) −â1Nâ2 · · ·
−â2Nâ1 ((

∑
l âlNâl)− â2Nâ2) · · ·

...
...

. . .


(5.49)

5.3 Summary Statistics of PSF Calibration Data

Prior to estimating the activity curve from list-mode data, for each detector-voxel

combination, the output of each individual PMT was histogrammed, and the mean µ

and standard deviation σ of the histogram was obtained. An example of the process

to estimate µ and σ from the list-mode calibration data is shown in Fig. 5.8. Given

the geometry of FastSPECT II, certain voxels will collect more counts on a particular

detector if it is closer to the detector as indicated in Fig. 5.7. When simulating

the PSF calibration data, the number of simulated events from each detector-voxel

combination remained a percentage of the number of original events collected at each

detector-voxel in the raw PSF calibration data. Knowledge of the sensitivity of the

detector, voxels, µ and σ allowed for the list-mode data to be generated on the fly.

An example of simulated PSF calibration is shown in Fig. 5.9.
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Figure 5.7: The source is closer z2 < z1 to detector D5 resulting in more counts
collected at D5 as indicated by the number of arrows.

Figure 5.8: Histogrammed voltage output for detector d = 1, voxel n = 1355, and
PMT PMT = 9. Using MLE, the mean µ0 and standard deviation σ0 of the data
was found. The normal distribution corresponding to the estimated µ and σ is
represented by the red curve.
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Figure 5.9: Given the µ and σ, PSF calibration data of any size (total number of
counts) can be simulated.

5.4 Simulated Object List-Mode Data

Prior to generating the list-mode data for a particular object , the PSF calibration

data needed to be split in two parts:

1. The top half of the list was used as the training data set, which is required to

build the simulated list-mode object data.

2. The bottom half of the list is the testing data set, which was used to estimate

the vector of compartmental activities.

With the raw unfiltered listmode data, a bootstrapping method was used since the

PSF calibration data consists of a finite number of counts, which was tremendously
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reduced after filtering. Hence, one of the advantages of using the mean and vari-

ance of each individual PMT for each detector-voxel combination, discussed in the

previous section, to generate data is we are no longer limited by a finite number of

counts. Instead a list of any size can be generated and the system performance as a

function of Poisson noise can be analyzed since the noise is inversely proportional to

the number of counts.

To simulate the object list-mode data using the PSF calibration data requires

a few extra steps. The detector sensitivity sd representing the probability that an

event will be detected by detector d, and the voxel sensitivity sn, representing the

probability that an event recorded originated from voxel n, are needed. An exam-

ple of the detector and voxel sensitivity for the PSF calibration data are shown in

Fig. 5.10 and Fig. 5.11. Given that we want to build a list of Nevents,total, the number

of events recorded by each detector-voxel combination is given by

Nevents,d,n = PdPnNevents,list. (5.50)
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Figure 5.10: Sensitivity of each detector from FastSPECT II.

Figure 5.11: Sensitivity for all voxels within the field of view of FastSPECT II.
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To build a simulated list-mode data set, multiple events were sampled from detec-

tors and voxels that had the highest sensitivity. Once the object list-mode data is

simulated, using KDE, a Gaussian kernel is fit to each of the outputs as shown in

Eq. 5.26.

5.4.1 Bandwidth Selection

In multivariate density estimation, typically the bandwidth σ is a symmetric positive-

definite matrix that controls smoothing of the PDF pσ(v). The choice of the band-

width is the main factor that determines how well the PDF p(v) describes the data.

As discussed in the end of Sec. 5.2.2, the bandwidth can either be obtained using the

plug-in method via Silvermann’s rule of thumb, or cross-validation methods, involv-

ing minimizing the integral-square error of the PDF. A symmetric positive definite

bandwidth matrix will allow for flexibility in smoothing the data [103], and allow for

a more accurate representation of p(v). However, in our simulations we will assume

the voltage output between PMT’s is independent, and the bandwidth matrix will

be a diagonal matrix Σ = diag(σ1, · · · , σNPMT
).

Bandwidth of Output Voltages

The underlying physics of the photon counting detector adhere to Poisson statistics.

Since the voltage from each PMT is independent, and the mean and the variance of

data are equivalent, σi ≈ vi the bandwidth matrix for the jth recorded event as a

function of the detector, voxel and PMT can be represented as

Σd,n,j = diag (σd,n,j,1, σd,n,j,2, · · · , σd,n,j,NPMT
) (5.51)
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where the variance of each individual PMT according to Eq. 2.13 is written as

σd,n,j,i =
vd,n,j,i

6
. (5.52)

A diagonal matrix corresponding to a scaled versions of the PMT outputs is a more

accurate representation of the PDF since the voltages with a lower value are given

less weight than those of a higher value.

5.5 Results: Activity Curve from LM Data

An approximation for the temporal activity curve estimated from the list-mode data

was obtained by finding the solution that minimized Eq. 5.45 as a function of the:

1. sample density, and the 2. noise which is proportional to the number of counts

collected.

5.5.1 Experimental Time Sample Density Values

To generate the simulated object list mode data, the original activity curve was

sampled Nt = [4, 7, 9, 11, 13].

5.5.2 Experimental Noise Values

In the imaging system, the noise model used was Poisson, and the probability of

recording Jd,n events on detector d for a finite time interval T is given by

P (N) =
µJd,ne−µ

Jd,n
(5.53)
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The standard deviation of the Poisson distribution is given by

σJd,n ≈
√
Jd,n (5.54)

As the number of counts Jd,n increases, the average of jd,n approaches the mean µ.

By taking the ratio of the standard deviation of the Poisson and the number of counts

collected, %σJd,n = σJd,n/
√
Jd,n, as the number of counts increase, %σJd,n or percent

of standard deviation decreases, which implies a more accurate measurement [41].

For our object, a phantom consisting of Nobj = 14 voxels, a total of Nobj,list =

279515 events were collected for all voxels/detectors. Noise in the system was simu-

lated by taking a percentage of the total counts, or Nnoise = Nobj,list ·[.05, .1, .15, .2, .3]

5.5.3 Experimental Object

The object used in simulations was consisted of two compartment, of equal size and

shape, with Nc1 = 7voxels and Nc2 = 7voxels.

5.5.4 Attempts to Obtain Activity Curves

Estimates for the activity curve were made at each discrete samples point by find-

ing the best parameters that minimized Eq. 5.45. Using MATLAB, the function

fmincon() was utilized which seeks to minimize a function of multiple variables.

The advantage of using fmincon() is the bounds and linear constraints on the pa-

rameters we wish to estimate can be specified.

Local, Global Minima

The cost function used in the least squares algorithm Eq. 5.45, is a quadratic equation

which theoretically has a global minima. Ideally the global and local minima coincide,
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however in simulation, the global minima for each â(t), was located at zero.

Figure 5.12: Contour plot of the quadratic cost function from Eq. 5.45. The global
minima is located at â(t) = [0, 0], whereas the true value for this particular instance,
a(t) = [.0110, .0055] at t = 4.6420sec.

The estimate, â(t), was dependent on the initial condition chosen. Multiple

points around the global minimum as shown in Fig. 5.13, were tested to determine

the locations of local minimums in relation to the true value of the compartmental

activity at a fixed time point. Any initial points chosen were solutions to 5.45. In

fig 5.12, the surface is approximately flat, as indicated by the scale to the right of

the surface plot. In MATLAB, the change in the value of the object function during

a step needed to be manually changed to ∆steptol < 10−11, in order for the solver to

function properly.
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Figure 5.13: Multiple points were sampled near the global minimum to determine
the locations of the local minimums â(t) that satisfied Eq. 5.45. The global minimum
is indicated by the red asterisk, and the local minimums are indicated by the black
asterisk.

Recall in Sec. 5.2.1, Fig. 5.6, the estimates for the activity curves â(t) using a

binned approach were possible with less than a 10% error in relation to the actual

value a(t). This was used to constrain the range of possible values â(t) to a small

region: [(α)âl, (1 + α)âl], where α was chosen to be 10%, as shown in Fig. 5.14 .
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Figure 5.14: Upper (green) and lower bounds (black) for the possible values of âl(t).

The progression of Fig. 5.15 through Fig. 5.18, show the effect on the estimate

of the activity curve, when changing the sample density and noise from the lowest

values Nt = 4 and Nnoise = Nobj,list(.05) to the highest values, Nt = 13 and Nnoise =

Nobj,list(.3). Also, in Fig. 5.15 through Fig. 5.18, the estimate for â(t) that satisfied

Eq. 5.45, were within the bounds [(α)âl, (1 + α)âl]. However, in order to obtain

reasonable estimates for â(t), the range of possible values needed to be specified.
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(a) a(t)

(b) â(t)
a(t)

Figure 5.15: Nt = 4, Nnoise = Nobj,list(.05).
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(a) a(t)

(b) â(t)
a(t)

Figure 5.16: Nt = 4, Nnoise = Nobj,list(.3).
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(a) a(t)

(b) â(t)
a(t)

Figure 5.17: Nt = 13, Nnoise = Nobj,list(.05).
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(a) a(t)

(b) â(t)
a(t)

Figure 5.18: Nt = 13, Nnoise = Nobj,list(.3).
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CHAPTER 6

Estimation of Kinetic Parameters from Activity Curves

6.1 Estimating the Kinetic Parameters

The goal of pharmacokinetic modeling is to be able to quantify the kinetic parameters

given data from the system using a similar process as shown in Fig. 1.4. In order

to better model the uptake, a priori knowledge of the system is incorporated into

the model. An example of a priori information that would increase the chances of

success in estimating the kinetic parameters:

1. Knowledge of the number of unknowns in the model.

2. Knowledge of the spatial support region of each compartment.

6.1.1 Unknown Parameters

The number of unknown parameters depends on the type of model being used. Us-

ing the data from the experiment, the structural identifiability of the system, which

deals with whether the unknown kinetic parameters can be uniquely determined, is

explored [48] [42] [28]. Changing the dynamics of the system such as the compart-

ments that have partial flow rates between them, or whether leakage occurs at a

specific compartment changes the identifiability of the system [40] [68] [4] [27]. One

of the most complex situation that will be encountered is a dense mixture model,

consisting of L compartments within the system, with reversible transfer and elim-

ination in every compartment, and input I(t) into one compartment only, is shown
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in Fig. 6.1. In this particular example, the system is open since an external input is

fed into the system, the kinetic matrix is full rank, and all elements of the kinetic

matrix are non-zero. For a system consisting of L-compartment model, there are L2

unknowns, and of those unknowns, (2L−1) identifiable parameters and (L− 1)2 free

parameters for a system with only one accessible compartment.

Figure 6.1: PK Model consisting of L compartments. Open dense mixture model:
partial flow between each compartment, as well as out of each compartment indicated
by ki,j, with input I(t) into a single compartment.

Spatial Support Region

Knowledge of the spatial support region and the ability to estimate the kinetic pa-

rameters has been discussed by Clarkson [25] and Cobelli [27], as well as many of the

references mentioned in Sec. 6.1.1. In an imaging context, using the support region

knowledge is necessary to integrate the spatial component of the activity distribution

to obtain only the temporal activity as done in Eq. 1.13. Furthermore, knowledge

of the spatial support is imperative in reducing the number of unknowns, which in-
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creases the number of identifiable parameters. For instance, with the Mammillary

and Catenary models, which are two of the most commonly used models, shown in

Fig. 6.2 and Fig. 6.3, the number of kinetic parameters is less than L2.

Catenary Model

The Catenary model is such that the individual compartments are organized in

a interconnecting chain. There exists only flow between adjacent compartments.

The kinetic matrix corresponding to this particular model is a tridiagonal matrix

consisting (2L− 1) non-zeros values, and (3L− 1) parameters to be estimated.

Figure 6.2: Catenary Model. Input I(t) into the first compartment. Partial flow
indicated by Ki,j only occurs between adjacent compartments.

Mammillary Model

The Mammillary model is such that the peripheral compartments are all connected

to a central compartment, and a reversible rate of flow occurs between the central

compartment and each of the individual compartment only. In this model, there

exists (L− 1) unknown parameters to be estimated.
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Figure 6.3: Mammillary Model. Input I(t) into the first compartment. Partial flow
indicated by Ki,j only occurs between the central compartment (compartment 1).

6.2 Estimating K: Least Squares Approach

To find the unknown kinetic parameters, the methods outlined in [51] were used,

involving fitting the data to the rate equations, and fitting the data to the sum

of exponentials. A least squares approach was used as the primary fitting method

since it is the method typically used in classical pharmacokinetic experiments to

estimate the parameters of interest, and it is computationally easier to implement

into computer code.

The goal behind the least squares approach is to find the parameters of a model

function that best fit the measured data via a linear regression which involves min-

imizing the sum squared of the residual. In PK experiments the model is typi-

cally of the form y(ti) = f(ti, K̂) + ri. Hence the residual would be represented as

ri = y(ti) − f(ti, K̂), and a least squares solution would be one that minimizes the

L2 norm of ri.

K̂LS = argmin
K

T∑
i=1

‖ri‖2 (6.1)
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6.2.1 Residuals

In order to estimate the kinetic parameters from the measured activity curves, the

following residuals were used

1. ra = ȧ (t)− (Ka (t) + I (t))

2. rb = a (t)−
[
K
∫ T
0

(a (s) + I (s)) ds
]

3. rc = a (t)−C [exp (Λ (t))] [ones(1, L)]T

where in residual 3, C is an L× L matrix, and Λ is L× L diagonal matrix.

Fitting the Rate Equations

In regards to the expression for residual 1 and residual 2, since time activity curves

from each compartment in time are obtained experimentally, numerically finding

the derivative or the integral could be done using various methods such as finite-

difference approximation (for the derivative) or trapezoidal/Simpson’s rule (for the

integral). The potential drawback to using these methods comes from irregularities

and discontinuities caused by noisy data, which can usually be overcome by utilizing

smoothing techniques [20]. The advantage of using residual 1 and residual 2 is that

the kinetic parameters can be estimated directly, as opposed to the method from

residual 3, which requires an intermediate step, that will be discussed next.

Fitting to Sum of Exponentials

In regards to the expression from residual 3, as derived by Clarkson [26], to estimate

the kinetic parameters for t ≥ Tinput, an equivalence relationship must be setup
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between the C and the matrix of eigenvectors V to obtain K. To the right of the

input, the activity can be represented as

a(t) = exp(Kt)a(tinput) (6.2)

Recall from Eq. 1.17, K = VΛV−1. Using this relationship, Eq. 6.2 can be

written as

a(t) = V exp(Λt)V−1a(tinput) (6.3)

From Eq. 6.2, a(tinput) is unknown. By letting V−1a(tinput) = u, the we can represent

u as

u = Du[ones(1, L)]T (6.4)

where Du is a diagonal vector with u along the diagonal. Since diagonal matrices

commute, Eq. 6.3 can be written as

a(t) = VDu exp(Λt)[ones(1, L)]T (6.5)

Comparing residual 3 with Eq. 6.5, we see that C = VDu, and an estimate for K

can be obtained using the results from fitting.

CΛC−1 = VDuΛVDu
−1 = VΛV−1 = K (6.6)
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6.2.2 Estimate for Kinetic Matrix Using LM Data

The figure of merit used to determine how well the model was able to predict the

kinetic parameters was the mean-squared error (MSE).

MSE =
1

Nki 6=0

Nki 6=0∑
i=1

(k̂i − ki)2 (6.7)

MSE Using Binned Data

In Fig. 6.4 through Fig. 6.6 the results of the MSE are shown as a function of

noise and sample density when using a binned approach to estimate the kinetic

parameters. The function fmincon() in MATLAB was used to estimate the Kinetic

parameters. The constraints on K outlined in Sec. 1.4.3, were implemented into

the algorithm. Finally, the initial condition for each element ki of K, was chosen

such that k̂i = [(α)ki, (1 + α)ki], where α = 10%. The motivation for obtaining the

kinetic parameters using a binned approach was to compare the performance of each

of the residuals mentioned in Sec. 6.2.1, and to also see if similarities existed between

estimating the kinetic parameters using a binned approach vs a list-mode approach.
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Figure 6.4: Residual 1: log(MSE) of K̂.
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Figure 6.5: Residual 2: log(MSE) of K̂.
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Figure 6.6: Residual 3: log(MSE) of K̂.

MSE Using List-mode Data

In Fig. 6.7 through Fig. 6.9 the results of the MSE as a function of noise and sample

density when using a list-mode approach to estimate the kinetic parameters. The

function fmincon() in MATLAB was used to estimate the kinetic parameters. The
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constraints on K outlined in Sec. 1.4.3, were implemented into the algorithm. Finally,

the initial condition for each element ki of K, was chosen such that k̂i = [(α)ki, (1 +

α)ki], where α = 10%.

Figure 6.7: Residual 1: MSE of K̂.
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Figure 6.8: Residual 2: MSE of K̂.



113

Figure 6.9: Residual 3: MSE of K̂.
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CHAPTER 7

Conclusion

7.1 Conclusion

The format of this dissertation is as follows: Chapters 1-4 was introductory material

and relevant theory, while Chapters 5 and 6 contain mostly original material. In

Chapter 1, a brief overview of the field of classical pharmacokinetics was introduced.

This included the relevant equations for modeling the uptake of the drug within a

system, as well as an explanation of kinetic parameters, which are key in determining

the partial flow rates of a drug between compartments. A key point of this chapter

discusses how an imaging approach can be applied to solve classical PK problems.

In Chapter 2-4, the process of imaging with gamma rays was discussed, beginning

with the interaction of a gamma ray photon with a scintillation material, followed

by an overview of different types of gamma detectors used to record the interaction,

and finally the necessary elements to form an image. In Chapter 3, the object to

image relationship was described mathematically. In Chapter 4, FastSPECT II was

introduced, which is the 16 gamma camera imager used to collect the data, and the

concept of list-mode data, which is the raw electronic outputs of each of the detector

photo-multiplier tubes (PMT), was introduced.
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7.2 Summary

The kinetic parameters discussed in Chapter 1 were estimated via an indirect ap-

proach from simulated list-mode data obtained from FastSPECT II PSF calibration

data. Estimating the parameters via an indirect approach required a two part pro-

cess: first the activity curves were obtained, and from the curves a best estimate for

the kinetic parameters. In chapter 5, estimation of the activity curves from the list-

mode data was discussed, which is the novel aspect of this project. In typical indirect

approaches, the data from an imager is binned, and the parameters are obtained via

segmentation of an object reconstruction. An advantage in using list-mode data was

the amount of raw information available. Given the raw list-mode data, the task

was to determine whether the kinetic parameters could be estimated. The algorithm

to estimate the activity curves, via a least squares approach was presented, and im-

plemented into code. In Chapter 6, three different cost functions were presented in

order to estimate the kinetic parameters, and the success of each cost function was

determined by using the mean squared error as the figure of merit.

7.3 Results

A surface plot Fig. 5.12 of the cost function from Eq. 5.45 for different values of

the compartmental activity showed a global minima located at [0, 0]. In order to

estimate the compartmental activity from simulated listmode data, the range of

possible values had to be tightly constrained over a small region, within ±10% of the

true value.
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7.4 Future Work

7.4.1 Incorporate MDRF Calibration Data

The approach taken in this research was to disregard the mean detector response

(MDRF) calibration data, and only use the PSF calibration data. As discussed in

Chapter 2, the MDRF provides a means of measuring the location of the interaction

event on each detector face by maximizing the likelihood that an event originated

at a particular location. Calibrating the system using MDRF data allows for imper-

fections in the collection optics, as well as the detectors and system geometries to

be accounted for and corrected during the reconstruction process. Furthermore, the

advantages of using MDRF data is the ability to filter detected events via a likeli-

hood windowing technique as discussed by Chen [21] or more recently by Chaix [18].

Since an information theoretic learning approach was taken to generate the proba-

bility distribution for each element in the list-mode data set, the extraneous events

could have been a key source of errors in building the PDF used in simulations.

Hence, by utilizing the MDRF, and building a parametric model, as opposed to a

non-parametric model, the results could be significantly better.

7.4.2 Estimate K via a Direct Approach

Using a direct approach to estimate the kinetic parameters from raw list-mode would

decrease the time needed to run the simulation, and potentially increase the accuracy

of estimate since the kinetic parameters are estimated directly from the raw PMT

data rather than an approximated activity curve.
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7.4.3 Object

The phantom used in the experiment was a binary object consisting of only a small

number of voxels, with a known support region. In future research, having the object

boundary as a parameter that needed to be estimated as well as organs with texture

would be a step closer to modeling an actual imaging system.

Processing Time

The original plan for the research was to utilize a MOBY digital phantom to create

a realistic object, with organ compartments that filled the entire field of view, but

processing large amount of data turned out to be out of reach of the CPU, and

the entire project had to be scaled to a much smaller problem. In future work,

since this research has shown that it is possible to estimate the activity from list-

mode data, multiple compartments will be added, and the estimability of a dense

mixture model incorporating textured boundaries, could prove to be useful. Since the

total number of events recorded at each detector-voxel pair was different in size, the

process could have benefited from a GPU feature called dynamic parallelism which

allows individual threads on a device to launch more threads of different kernel

resolution without involving the CPU. Most recently Caucci [15] has explored the

use of dynamic parallelism in biomedical imaging applications.
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