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ABSTRACT 
 

 Extreme ultraviolet (XUV) frequency combs exhibit promise for enabling high-precision 

spectroscopic measurements of myriad chemical species for the first time. Coherent XUV 

radiation can be generated through high harmonic generation (HHG) in femtosecond 

enhancement cavities. HHG efficiency is limited by nonlinear phase shifts induced by residual 

intracavity plasma. The goal of this work is to gain insight regarding plasma dynamics in order 

to allay the detrimental effects of plasma interactions. Our approach is to conduct simulations of 

cavity pump-probe experiments by probing with higher-order transverse modes. We propose 

methods for estimating spatial plasma profiles, gas jet velocities, and the plasma recombination 

coefficient based on measurements of plasma-induced phase shifts. Beam distortion due to 

plasma interaction is analyzed and used as another reference for plasma dynamics. 
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CHAPTER 1: BACKGROUND 

1.1 XUV Frequency Comb Development 

Spectroscopy is an indispensable method for understanding light-matter interactions, 

atomic and molecular chemistry, and quantum effects. The development of synchrotron sources 

has pushed the limits of spectroscopic experiments by offering high-power beams over a broad 

range of wavelengths. Nevertheless, the spectral resolution of synchrotrons in the extreme 

ultraviolet region (XUV) is orders of magnitude lower than that of the visible spectrum, and the 

large facilities that house these sources are limited in accessibility. In contrast, the advent of 

phase-coherent femtosecond frequency combs revolutionized the field of precision spectroscopy 

and gave rise to sub-cycle attosecond science [1]. While extensive investigations have been 

performed using frequency combs in the visible and infrared, accurate measurements of 

transitions in the vacuum ultraviolet (VUV) and XUV have remained elusive. Recent progress in 

extending frequency combs to lower wavelengths exhibits potential for uniting XUV science and 

precision spectroscopy to enable a vast array of significant transitions to be analyzed for the first 

time with unparalleled accuracy. Such a breakthrough would advance knowledge in innumerable 

fields, including astrophysics. For example, databases of precision spectroscopic measurements 

would satisfy a need in the areas of planetary atmosphere chemistry, interstellar medium 

chemistry, and cosmology for standards with which to compare telescope data [2]. 

Initial results to develop XUV frequency combs have been promising. Our group 

previously achieved record VUV and XUV power levels of 10-77 μW over 50-150 nm through 

high harmonic generation (HHG) in a femtosecond enhancement cavity [3]. Even higher powers 

can now be realized by our Yb-doped fiber laser system. Other researchers have measured 
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transitions in Ne and Ar for the first time using an XUV frequency comb [4]. Complex 

molecules are more difficult to measure using a single comb, as the entire transition must occur 

between the spacing of two modes. Additionally, diffraction-based instruments such as gratings 

lack the resolving power to isolate individual frequency modes. Our unique approach to solve 

these problems has been to employ dual-frequency comb spectroscopy [5], a technique that has 

been successfully demonstrated in the infrared region [6]. We overlap two combs with slightly 

different repetition rates to produce a radio frequency spectrum of heterodyne beats. Each mode 

corresponds to a distinct radio frequency so that all comb components can be detected 

simultaneously. Trials with the 3rd harmonic have succeeded in discriminating individual beat 

notes and maintaining stability. 

 

1.2 XUV Frequency Comb Applications 

Molecular hydrogen (H2) and the molecular hydrogen ion (H2
+) are the simplest 

molecules in existence and consequently serve as benchmarks for quantum modeling. The 

ionization potential (IP) of H2 is presently known within 10 MHz of uncertainty [7]. In 

comparison, the energy required to ionize high-n Rydberg states of H2 is known to an uncertainty 

of less than 100 kHz [8]. Therefore, accurately determining the transitions of H2 from the ground 

state to Rydberg states would reduce the uncertainty of the IP by orders of magnitude. These 

transitions occur in the XUV near 79 nm, which could reasonably be probed by our dual-comb 

system to a precision limited only by Doppler broadening. Reducing uncertainty for the IP of H2 

would assist in refining quantum simulations of molecules. In theory, measuring the IP to a 

sufficient degree of accuracy could provide more precise values for fundamental constants, such 

as the Rydberg constant and proton-to-electron mass ratio    [9]. Evidence suggests that constants 
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such as     may vary on cosmological time scales [10]. Comparing the IP of H2 today with 

absorption spectra from distant stars would allow any time evolution of     to be identified. 

Another appealing species for spectroscopic analysis is the thorium isotope 229Th. While 

nuclear transitions typically occur on the order of keV or MeV, recent indirect measurements 

posit that 229Th undergoes an isomeric nuclear transition of only 7.8 ± 0.5 eV [11]. This 

exceptionally low-energy transition could, in principle, be probed by our dual-frequency comb 

system. Accomplishing this momentous feat would mark the first direct measurement of a 

nuclear transition by laser spectroscopy. A precision measurement of this transition would also 

make 229Th an attractive candidate for frequency and time standards. As a time standard, a 229Th 

nuclear clock would improve the efficiency of the Global Positioning System (GPS), deep-space 

navigation systems, and Internet functions that require time-synchronization. Unlike atomic 

clocks which require a vacuum chamber, a nuclear clock could consist of 229Th embedded in a 

stable crystal lattice [12], thereby increasing stability by reducing Doppler broadening. Nuclear 

time standards could also be used to detect minor fluctuations in the gravitational force induced 

by materials of varying density in the earth, permitting remote sensing for mining applications 

and seafloor mapping. 

 

1.3 HHG, Residual Plasma, and Nonlinear Cavity Response 

We generate coherent XUV radiation by performing HHG with a xenon gas target inside 

a femtosecond enhancement cavity (Fig. 1.1). A complete description of HHG is complex and 

calls for fully quantum modeling of nonlinear optics [13]. More often, a semi-classical model is 

sufficient to describe the process [14], as is the case with this work. When an intense laser pulse 

(~1013 W/cm2) is incident on a gas target, the strong electric field can suppress the Coulomb 
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barrier to permit ionization through electron tunneling (Fig. 1.2). Ionization can thereby occur for 

photon energies       much lower than the ionization potential. Monatomic gases are typically 

preferred as the ionization mechanisms of atoms are simpler than those of molecules. Following 

ionization, the free electron accelerates away from the parent ion under the influence of the 

electric field. After half of an optical cycle, the field changes direction to drive the electron back 

toward the parent ion. If the electron collides with the ion, recombination can occur, emitting 

radiation at harmonic frequencies of the fundamental beam. Acceleration and recombination 

events occur twice for every cycle of the driving laser so that harmonics are separated by a 

frequency 2   . As a result, only odd-numbered harmonics are possible.  

 

 

Figure 1.1. Schematic of intracavity HHG. The pump is an infrared femtosecond frequency comb. Numerous pulses 

circulate through the cavity and constructively interfere to enhance the power. Curved mirrors focus the beam to a 

small spot size to maximize intensity. A xenon gas jet is positioned at the plane of the cavity focus for HHG. The 

output coupler is a sapphire plate oriented at Brewster’s angle with respect to the harmonic light. IC: input coupler, 

OC: output coupler. 

 

 

Figure 1.2. Three-step model of HHG: (a) tunnel ionization, (b) acceleration, (c) recombination [15]. 

a) c) b) 
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HHG is an inefficient process owing to the low probability of electron recombination. 

Output harmonic powers are on the order of 10-6 times the power of the fundamental beam. Since 

the vast majority of electrons do not recombine, the generated plasma remains present in the gas 

jet. Depletion of the neutral gas stream reduces the number of atoms available for HHG. More 

importantly, the residual plasma induces a phase shift in the driving laser that leads to nonlinear 

effects. Nonlinearities become strong enough to impede cavity performance when the plasma-

induced phase shift is approximately half the cavity linewidth [16]. This cutoff phase shift is 

given by         , where     is the cavity finesse. 

The plasma-induced phase acquired during each round-trip causes a shift in the cavity 

resonance that leads to optical bistability (see Fig. 3.2). As the pump phase approaches the 

resonant detuning, the pulse achieves higher power levels. The increased pulse intensity leads to 

production of more plasma, which shifts the resonance further. Eventually the pulse attains its 

maximum enhancement, after which additional detuning causes a sharp drop in power. Scanning 

the pump phase in the reverse direction results in hysteresis, since significant plasma levels are 

not generated until the resonant detuning is applied. The hysteresis disrupts laser stabilization 

because servo controllers must lock to one of two possible enhancement peaks and occasionally 

fluctuate between the two. The lock is unstable, as too much detuning leads to a sharp drop in 

enhancement for which the servo cannot compensate. 

Fig. 1.3 demonstrates a decrease in maximum pulse enhancement for increasing backing 

pressures of the gas jet. As more plasma is generated, laser pulses become more chirped due to 

time-dependent phase shifts (see Section 4.1). Chirp disrupts constructive interference between 

pulses from multiple passes, which in turn reduces power enhancement. 
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Figure 1.3. Experimental frequency scans to detect pump beam resonance for several gas jet backing pressures [17]. 

Raising the gas pressure leads to more plasma formation, which increases the resonance shift and decreases pulse 

enhancement. Hysteresis is not evident because scans were performed in only one direction. 

 

1.4 Simulation Design 

 
Figure 1.4. Conceptual layout for time-resolved pump-probe measurements with higher-order modes. The Gaussian 

pump and higher-order probe are tuned to be resonant with the cavity. The pump and probe are offset by a variable 

time delay Δt. A photodiode monitors the beam outputs and feeds back to servo loops for cavity stabilization (not 

pictured). BC: beam combiner, IC: input coupler, OC: output coupler, PD: photodiode. 

 

The nonlinear response to residual plasma serves as the fundamental limit to our cavity 

performance. Through this work, we endeavor to gain intuition for plasma dynamics and the 

plasma-induced phase shift so that adverse nonlinear effects may be mitigated. If the issues 

posed by the plasma were fully rectified, we would expect a substantial improvement in HHG 

efficiency and cavity performance, limited by only the damage threshold of the mirrors. Our 
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approach is to conduct simulations of coupled laser-plasma interactions by probing with higher-

order transverse modes. 

 The simulations presented here are based on conceptual pump-probe experiments in a 

femtosecond enhancement cavity (Fig. 1.4). We assume that the cavity is perfectly mode-

matched. The pump beam is an intense femtosecond pulse of the fundamental Gaussian mode, 

which features the highest on-axis intensities for ionization of the xenon gas jet. Interaction with 

the plasma causes a shift in the pump resonance. The pump is dynamically tuned to maintain 

resonance with the cavity by compensating for the plasma-induced phase shift experienced with 

each pass. After enough passes, the pump and plasma reach steady-state. 

The probe is a weak femtosecond pulse of a higher-order transverse mode. Higher-order 

modes offer unique spatial distributions and asymmetries which can probe different portions of 

the steady-state plasma profile. Probe resonance is also shifted by the plasma. The probe is tuned 

to maintain resonance while the plasma-induced phase shift is measured. Time-resolved 

measurements of phase shifts are achieved by introducing a variable time delay between the 

pump and probe. The maximum time delay is fixed by the cavity round-trip time, which we 

assume to be 13 ns. Alternatively, a continuous wave probe could be used for time-averaged 

measurements. The plasma-induced phase shift of the probe is recorded for various higher-order 

modes, gas jet backing pressures, and time delays. The experiment is conducted in a vacuum 

chamber to limit light-matter interactions exclusively to those of the lasers with the xenon jet. 

We neglect any phase shifts caused by thermal deformations in the cavity mirrors. 

 Once the above procedure is performed in the laboratory, we will fit our simulations to 

the experimental data. Comparing theoretical and experimental results will provide information 

on previously unknown plasma dynamics, such as density profiles, velocities, and decay rates. 
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We project that our system will enable precision measurements of plasma-induced phase shifts 

with microradian resolution. With this level of sensitivity, our simulations and setup could also 

be applied to conduct supplementary investigations. The xenon gas jet could be replaced by any 

transparent gas, liquid, or solid species in order to observe the resulting nonlinear phase shift. 

One could then obtain precision measurements of nonlinear refractive indices for a breadth of 

diverse materials. 

 

1.5 Previous Experimental Results 

 Our group has already conducted several experiments related to this work. The relative 

resonance frequency shift between a Gaussian pump and a higher-order pump (HG30) was 

measured as a function of intracavity power (Fig. 1.5). A shift in frequency corresponds to a shift 

in phase by the relation:  

 

where     is the speed of light and         is the total cavity length. Increasing the power caused 

heating of the cavity mirrors. As the temperature of the curved mirrors increased, their concavity 

changed and introduced a relative phase between the two modes due to their different transverse 

profiles. Prior to ionization, the relative phase varied linearly with power. These thermal 

deformations were not considered in this current work. At high powers, ionization started to 

occur, steepening the slope of the curve relative to that of an empty cavity. This steepening 

reflected the relative plasma-induced phase shift between the modes. In the limit of zero 

intracavity power, a measurable relative phase still existed between the modes in the presence of 

a neutral gas jet. This shift was caused by slight variation in index of refraction over the portions 

of the gas jet probed by the beams. Such a shift would not occur in the simulations presented 

(1.5.1) 
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here, as the gas jet was assumed to be uniform. Nonetheless, this phase shift demonstrates the 

sensitivity of cavity measurements and also provides a linear reference that could be used to 

reduce cavity noise. 

 

Figure 1.5. Relative resonance frequency shifts between Gaussian and HG30 pumps as a function of intracavity 

power. Measurements were obtained in an empty cavity and in the presence of a xenon gas jet. The relative 

frequency shift varies linearly with power due to thermal deformations in the cavity mirrors. 

 

Time-resolved measurements of single-pass plasma generation and decay were also 

recorded for a variety of intracavity powers (Fig. 1.6). The setup for this inquiry was similar to 

that shown in Fig. 1.4, though the fundamental mode was used for both the pump and probe. 

Diminishing plasma densities were reflected by diminishing phase shifts experienced by the 

probe. As higher intracavity powers generated more plasma, the fractional decay rate due to 

three-body recombination increased (see Eq. (2.3.2)).  
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Figure 1.6. Fractional plasma decay as a function of probe delay in (a) experiment and (b) simulation. Increasing 

the probe time delay decreases the on-axis plasma density due to three-body recombination and gas flow. After      

13 ns, the subsequent pump pulse arrives to re-ionize the gas jet. The simulation was fit to experimental results by 

assuming a gas velocity of 100 m/s, a neutral gas density of 1.4 × 1023 m-3, and a plasma recombination coefficient 

of α = 1.1 × 10-15 m3/s. 
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CHAPTER 2: THEORY 

2.1 Gaussian Beam Analysis 

 Each optical element in the enhancement cavity can be modeled as a matrix [18]. The 

matrices for propagation through vacuum and reflection by a curved mirror are, respectively:  

 

 

where     is the propagation length and      is the mirror radius of curvature. If a cavity has   

optical elements, the overall ABCD matrix is calculated by multiplying the element matrices in 

order of interaction with the beam:  

 

We define the complex beam parameter as:  

 

where      is the radius of curvature of the beam wavefronts,      is the free-space wavenumber, 

and     is the  radius of the beam. After the beam propagates a distance       , the ABCD matrix 

modifies the complex beam parameter in the following manner:  

 

We are concerned primarily with the plane of the intracavity focus, where the highest intensities 

are achieved for HHG. We define this plane as    = 0 and calculate the ABCD matrix for the 

cavity starting at this point. We are interested in maintaining a stable resonator for which the 

(2.1.1) 

(2.1.2) 

(2.1.3) 

(2.1.4) 

(2.1.5) 
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field and the complex beam parameter are unchanged after every round-trip. To satisfy this 

condition,                     =          =     . Substituting into Eq. (2.1.5) and solving gives:  

 

 At the intracavity focus, the beam wavefronts are planar, meaning                 . . 

Rearranging Eq. (2.1.4) then gives:  

 

where       =          is the spot size of the beam waist. For pulsed lasers, the peak power       is 

given by:  

 

Where          is the average laser power,           is the pulse duration,         is the repetition rate, 

and C is a constant related to the pulse shape. For Gaussian pulses, C ≈ 0.94, while for sech2 

pulses, C ≈ 0.88. For simplicity, we assume square pulses (C = 1) for which the field does not 

vary over the duration of the pulse. In making this assumption, we neglect the effects of self-

phase modulation caused by the time-dependent intensity of the pulse (see Section 4.1). The peak 

on-axis pulse intensity is given by:  

  

The electric field amplitude     and on-axis field amplitude       are given by: 

 

 

where     is the refractive index (taken to be unity) and      is the permittivity of free-space. 

(2.1.6) 

(2.1.7) 

(2.1.8) 

(2.1.9) 

(2.1.10) 

(2.1.11) 
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2.2 Transverse Modes 

Transverse cavity modes are given by solutions to the paraxial wave equation [18]. For 

this analysis, we shall describe all transverse modes using Cartesian coordinates. The amplitude 

and Gouy phase of the fundamental Gaussian mode are given by:  

 

 

The fundamental mode serves as the intense pump pulse used to ionize the gas jet. Higher-order 

Hermite-Gaussian and Laguerre-Gaussian modes are used as weak probe pulses to interrogate 

the generated plasma. 

The rectangularly symmetric Hermite-Gaussian modes (Fig. 2.1) are given by:  

 

 

Where         and        represent Hermite polynomials of order      and    , respectively. We shall 

use the notation HGmn to denote a specific Hermite-Gaussian mode. The factor                        in 

Eq. (2.2.4) accounts for the stronger Gouy phase shift relative to the fundamental mode. We see 

that for      =     = 0, the fundamental Gaussian mode is recovered. 

 

 

 

 

 

(2.2.1) 

(2.2.2) 

(2.2.3) 

(2.2.4) 
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Figure 2.1. Hermite-Gaussian transverse laser mode profiles. The horizontal index m gives the number of horizontal 

field nodes, and the vertical index n gives the number of vertical field nodes. Modes for which both m and n are 

even have an on-axis peak. If either m or n is odd, the mode has an on-axis node. 

 

The cylindrically symmetric Laguerre-Gaussian modes (Fig. 2.2) are given by: 

 

 

where        represents an associated Laguerre polynomial. We shall use the notation LGpl to 

denote a specific Laguerre-Gaussian mode. The Gouy phase shift in Eq. (2.2.6) is now increased 

by a factor of                          relative to the fundamental mode. Again, for     =    = 0, the 

fundamental Gaussian mode is recovered. 

 

 

 

(2.2.5) 

(2.2.6) 
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Figure 2.2. Laguerre-Gaussian transverse laser mode profiles. The radial index p gives the number of radial field 

nodes, and the azimuthal index l describes the orbital angular momentum of the mode. Each photon has a 

momentum of       about the z-axis. A nonzero azimuthal index also gives an on-axis node, with wider nodes for 

larger values of l. 

 

2.3 Plasma Generation and Decay 

Our model for plasma generation is based on the Keldysh theory of strong field ionization 

[19]. The mechanism for ionization is specified by the Keldysh parameter, defined as: 

 

where     is the driving laser frequency,     is the electric field magnitude,         is the ionization 

potential of the gas,    is the electron charge, and       is the electron mass. Multiphoton ionization 

dominates for     >> 1, while tunnel ionization dominates for     << 1. At steady-state, our system 

operates in an intermediate ionization regime (    ≈ 1). One could instead consider implementing 

the metastable electronic state approach as an alternative ionization model [20]. 

(2.3.1) 
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 Every laser pulse ionizes a certain fraction of the neutral gas jet based on the pulse 

intensity, ranging from no ionization at low intensities to total ionization at high intensities. The 

fractional ionization distribution              is determined by using the pulse intensity distribution 

             to index a lookup table based on Fig. 2.3.   

 

Figure 2.3. Single-pass fractional ionization of xenon for 100 fs pulses centered at 1064 nm. Analysis is based on 

Keldysh theory of strong field ionization. 

 

We assume that plasma decay is dominated by three-body recombination. By this 

process, a free electron combines with a positive ion to form a neutral atom while another free 

electron stabilizes the interaction [21]. This mechanism is modeled by the equation: 

 

where     is the plasma number density and     is the recombination coefficient. Solving this 

differential equation gives the plasma density after decaying for a time   :  

 

(2.3.2) 

(2.3.3) 



 24  

For simplicity, we take the neutral gas jet to be a thin, uniform slab. Consequently, the 

plasma distribution does not vary as a function of propagation along the z-axis. The spatial 

plasma distribution after the jth pulse is given by:  

 

where    is the number density of the neutral gas jet and     is the cavity round-trip time. The first 

term gives the plasma formed by the new pulse. The second term gives the residual plasma of the 

previous pulse, which has decayed due to three-body recombination. The spatial distribution of 

neutrals after the jth pulse is given by:  

 

The first term accounts for depletion of neutrals due to ionization. The second term describes 

neutrals that were replenished by three-body recombination. For all pulse iterations, the sum of 

            and             gives the finite density of the original gas jet. 

 

2.4 Plasma-Induced Phase Shifts 

Plasma locally reduces the refractive index of the gas jet according to the equation [22]: 

  

The critical plasma density of the laser          is given by:  

 

 

 

(2.3.4) 

(2.3.5) 

(2.4.1) 

(2.4.2) 
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Above the critical plasma density, the plasma becomes opaque. For             <<          we may 

make the approximation:  

 

Due to the reduction in refractive index, the pulse acquires a phase given by:  

 

where     is the thickness of the gas jet. The integrated phase shift experienced by the entire pulse 

upon a single pass through the plasma is calculated through the following overlap integral:  

 

where              represents the field distribution of the transverse mode input to the cavity focus. 

               serves as an estimate of the detuning required to keep the cavity on-resonance by 

compensating for the nonlinear phase shift of the plasma.  

 Intense pulses also experience self-focusing caused by the nonlinear Kerr effect. The 

resulting phase shift for the pump pulse is:  

 

where      is the nonlinear index of the gas. This phase shift opposes the plasma-induced phase 

shift (               is positive,              is negative). For our assumed pulse intensities, the nonlinear 

interactions of the pulse are dominated by the effects of the plasma (               <<             ). The 

Kerr effect was neglected in probe pulses, which were assumed to be weak. The total phase of 

the pulse is given by:  

 

 

 

(2.4.3) 

(2.4.4) 

(2.4.5) 

(2.4.6) 

(2.4.7) 
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2.5 Field Propagation 

 Propagation of the electric field is described by the generalized Huygens integral in two 

dimensions: 

 

  

where the field of the previous pulse                    is propagated through the cavity to give 

                 . We employ the proper ABCD matrix elements for a cavity round-trip. The 

exponential term containing     may be separated from the integral as follows:  

 

 

We then define:  

 

  

The remaining exponential describes propagation over free space. Using the definition of a 

Fourier transform     , we have:  

 

where the paraxial propagator     is given by:  

 

(2.5.1) 

(2.5.3) 

(2.5.4) 

(2.5.5) 

(2.5.2) 

(2.5.6) 
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The electric field of the jth pulse is then:  

 

The reflection coefficient    and transmission coefficient    are defined as:  

 

  

where         is the reflectance of the input coupler and                represents all other cavity losses. 

The maximum theoretical cavity enhancement is:  

 

Based on the assumed cavity losses, a maximum theoretical enhancement of 179 was expected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.5.7) 

(2.5.8) 

(2.5.9) 

(2.5.10) 
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CHAPTER 3: RESULTS 

3.1 Stationary Gas Jet Phase Shifts 

 Through iterative cycles of propagation with the Gaussian pump, the field and plasma 

profiles reached steady-state (Fig. 3.1). The steady-state field enhancement was recorded for a 

range of phase detunings applied to the field (Fig. 3.2). When scanning across the phase, the 

steady-state field and plasma for the previous detuning were used to initialize the field and 

plasma for the new detuning.  

 

 

Figure 3.1. Buildup of the pump field and plasma profile to steady-state. For the resonant detuning of 5.1 mrad, the 

pump nearly reaches its maximum theoretical enhancement of 179. 
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Figure 3.2. Phase scans to detect pump beam resonance with and without plasma interactions. For an empty cavity, 

scanning across the phase yields a Lorentzian lineshape for power enhancement with a full width at half maximum 

of 180 kHz. Maximum buildup is achieved for zero detuning. In the presence of plasma, the resonance is shifted, 

and hysteresis in the cavity enhancement indicates optical bistability. 

 

 With the gas jet on, the pump field and plasma were built up to steady-state using the 

resonant phase detuning. A selected higher-order probe beam was then used to interrogate the 

plasma (Fig. 3.3). The probe beam was scanned across a range of phase detunings to observe the 

plasma-induced shift in the cavity resonance (Fig. 3.4). In the presence of plasma, different 

modes experienced different phase shifts based on the spatial overlap with the plasma profile. 

 

 

Figure 3.3. Normalized steady-state profiles for the Gaussian pump, a HG30 probe, and the intracavity plasma. The 

Gaussian distribution of the plasma is more confined than that of the pump. Phase shifts experienced by the probe 

are determined by the level of overlap with the plasma. In this example, the phase shift of HG30 is 0.93 mrad. 
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Figure 3.4. Phase scans to detect probe beam resonance with and without plasma interactions. For an empty cavity, 

all modes exhibit the same Lorentzian lineshape for power enhancement, with maximum buildup achieved at zero 

detuning. In the presence of plasma, HG00 experiences a stronger resonance shift than HG30 due to greater spatial 

overlap with the plasma profile. The weak probe beams have no influence on the plasma profile, precluding optical 

bistability. 

 

 Measurements of the shift in the cavity resonance were compared with the single-pass 

phase shifts predicted by Eq. (2.4.5) (Table 3.1). The predicted single-pass shift deviated from 

the actual cavity shift by a maximum of approximately 5%. We conclude that applying            

Eq. (2.4.5) is a sufficiently accurate alternative to scanning for resonance across phase detunings. 

This approximation enabled substantially faster simulations, as the pump and probe beams could 

be kept on-resonance dynamically by compensating for the estimated single-pass phase shift 

during each round-trip. 

 

 

Table 3.1. Comparison of plasma-induced resonance shifts with single-pass phase shifts predicted by Eq. (2.4.5) for 

higher-order probe beams. 

Mode Δφres (mrad) Δφpulse (mrad) Error 

HG10 0.904 0.873 3.43% 

HG20 2.072 1.969 4.97% 

HG30 0.952 0.913 4.10% 

HG11 0.159 0.156 1.89% 
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The single-pass phase shift was estimated for a variety of transverse modes used as a 

probe (Table 3.2). Modes with an on-axis node interacted with significantly less plasma and 

experienced smaller phase shifts. Since the gas jet was assumed to be uniform and stationary, 

vertical HG modes (e.g. HG01) were effectively equivalent to their horizontal counterparts. The 

phase shift of the intense Gaussian pump was smaller than that of a weak Gaussian probe due to 

an opposing phase shift caused by the nonlinear Kerr effect. Enhancement was lowest for HG20 

because of distortion caused by focusing effects (see Section 3.4). 

 

 

Table 3.2. Single-pass phase shift, corresponding frequency shift, and maximum enhancement for higher-order 

probe beams. 

Mode Δφpulse (mrad) Δνpulse (kHz) Enh 

Pump 4.9 58.5 176.53 

HG00/LG00 5.3 63.3 176.45 

HG10 0.88 10.5 177.54 

HG20 2.0 23.9 166.28 

HG30 0.93 11.1 176.64 

HG01 0.88 10.5 177.54 

HG02 2.0 23.9 166.28 

HG03 0.93 11.1 176.64 

HG11 0.16 1.91 177.62 

HG22 0.75 8.95 172.71 

LG10 3.8 45.4 176.93 

LG20 3.0 35.8 176.51 

LG30 2.5 29.8 176.88 

LG01 0.88 10.5 177.54 

LG02 0.16 1.91 177.62 

LG03 0.03 0.358 177.62 

LG11 1.2 14.3 177.51 

LG22 0.45 5.37 177.60 
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3.2 Gas Jet Velocity and Plasma Recombination 

 A more realistic model of plasma generation accounted for flow of the gas jet. The 

plasma and neutral atoms were assumed to move with a uniform velocity along a single direction 

transverse to the beam propagation. Divergence of the gas jet was neglected. Incorporating flow 

caused the residual plasma to move off-axis while decaying. For low velocities, the result was a 

smearing of the previously Gaussian plasma profile (Fig. 3.5a-b). At high velocities, the 

Gaussian plasma distributions produced by each pulse were displaced far enough during a round-

trip to be resolvable. This produced a train of diminishing, evenly spaced Gaussian density 

profiles (Fig. 3.5c). Increasing the velocity also decreased the buildup of on-axis plasma.  

 
Figure 3.5. Steady-state plasma profiles resulting from a flowing gas jet. The profiles on the left represent a fixed 

recombination coefficient of α = 2.0 × 10-15 m3/s and gas velocities of (a) 0 m/s, (b) 500 m/s, and (c) 1000 m/s. The 

profiles on the right represent a fixed gas velocity of 100 m/s and assumed recombination coefficients of                

(d) α = 2.0 × 10-15 m3/s, (e) α = 0.2 × 10-15 m3/s, and (f) α = 0 m3/s. 



 33  

 Steady-state plasma profiles were influenced by recombination rates as well. Weaker 

recombination increased plasma buildup and enabled plasma to be carried farther off-axis     

(Fig. 3.5d-f). The highest plasma-induced phase shifts in the pump thus occurred for low 

velocities and weak recombination rates (Fig. 3.6). 

 

Figure 3.6. Plasma-induced phase shifts in the Gaussian pump as a function of gas velocity for several assumed 

plasma recombination coefficients. Higher velocities and recombination rates decrease the on-axis plasma buildup, 

reducing the phase shift experienced by the pump. Probing the plasma with any mode featuring an on-axis peak 

would give similar results. 

 

 The off-axis smearing of the plasma profile uniquely affects the phase shift experienced 

by probes having a central node. Higher velocities push residual plasma farther off-axis to 

overlap more with the peaks of the mode. However, higher velocities also decrease the buildup 

of plasma as more is carried away. Balancing these two effects, these modes experience the 

largest phase shift for a single optimal velocity. The optimum velocity is characteristic of a given 

recombination rate (Fig. 3.7). Therefore, if one could vary the pressure of the gas jet with 

knowledge of its velocity to find the maximum phase shift, one could experimentally determine 

the recombination coefficient of the plasma. Alternatively, if the recombination rate were known, 

one could ascertain which gas pressure corresponds to the optimum velocity. Increasing the 
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recombination rate or the time delay between pump and probe monotonically decreases the phase 

shift for a given velocity. Repeating these measurements for a delay between the pump and probe 

would lower the phase shifts of a given recombination curve and shift the peak to lower 

velocities. Similar trends would also be evident for a continuous wave pump-probe setup, which 

would give smoother steady-state plasma profiles that do not depend on probe delay times. 

 

Figure 3.7. Plasma-induced phase shifts in a HG30 probe as a function of gas velocity for several assumed plasma 

recombination coefficients. For each recombination coefficient, a maximum phase shift is produced for a single, 

optimum velocity. The pump and probe were assumed to be coincident. Probing the plasma with any mode featuring 

an on-axis node would give similar results. 

 

 

3.3 Probe Beam Distortion 

 Any Laguerre-Gaussian mode can be expressed as a linear combination of Hermite-

Gaussian modes and vice-versa. Mathematically, both types of modes together form a complete 

set. Several mode superpositions are illustrated in Fig. 3.8. 
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Figure 3.8. Linear superpositions of Hermite-Gaussian modes [23]. (a) HG10 and HG01 combine to give LG01.      

(b) HG20 and HG02 combine to give a π/4 rotation of HG11. (c) HG11 and a π/4 rotation of HG11 combine to give 

LG02. 

 

 In the absence of gas flow, the plasma distribution has a symmetric Gaussian profile. As 

shown in Table 3.2, modes that are equivalent save for a rotation (e.g. HG10 and HG01) 

experience identical plasma-induced phase shifts. When accounting for gas jet motion, plasma is 

pushed along the direction of flow (Fig. 3.5). For horizontal flow, horizontal modes overlap with 

plasma more than vertical modes and acquire a stronger phase shift. When LG01 is used as a 

probe, the constituent HG10 and HG01 modes acquire a phase shift relative to one another. Since 

the ideal LG01 mode requires a π/2 relative phase between the constituent modes (Fig. 3.9), the 

relative phase shift due to the plasma leads to beam distortion (Fig. 3.10). The same principle 

applies to LG02, which is a superposition of HG11, HG20, and HG02. 
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Figure 3.9. Superpositions of HG10 and HG01 with a relative phase of (a) 0, (b) π/2, (c) π, and (d) 3π/2. HG10 has the 

same spatial profile as (a) and (c), save for a π/4 rotation about the propagation axis. LG01 is produced in (b) and (d). 

Plasma-induced relative phase shifts lead to steady-state beam profiles between (b) and (c) when using LG01 as a 

probe. 

 

 

 

Figure 3.10. Distorted steady-state beam profiles for LG01 (a-c) and LG02 (d-f). (a) represents a stationary gas jet 

with α = 2.0 × 10-15 m3/s (plasma in Fig. 3.5a), (b) represents a 100 m/s gas jet with α = 0.2 × 10-15 m3/s (plasma in 

Fig. 3.5e), and (c) represents a 100 m/s gas jet with no recombination (plasma in Fig. 3.5f). The same applies for (d), 

(e), and (f), respectively. As relative phase shifts increase, the Laguerre-Gaussian beams more closely resemble their 

Hermite-Gaussian constituents. The constituents of LG01 are π/2 rotations of one another, so the distorted beam is 

rotated by π/4. The constituents of LG02 are π/4 rotations of one another, so the distorted beam is rotated by π/8. 

 

 In order to quantify the magnitude of beam distortion, we define the “distortion fraction” 

as                                      (Fig. 3.11). The distortion fraction in a LG01 probe was measured for a 

series of recombination coefficients and gas jet velocities (Fig. 3.12a). Using the same gas jet 
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conditions, HG10 and HG01 were also used as probes to determine their relative phase shifts   

(Fig. 3.12b). The results are very similar to those presented in Fig. 3.7, which was to be expected 

as both LG01 and HG30 have an on-axis node. There is again an optimum velocity for which the 

plasma has maximum overlap with the HG10 constituent, giving rise to the greatest phase shift 

relative to HG01. Scanning over velocities to find the maximum distortion in LG01 thus represents 

an alternative method for determining the plasma recombination coefficient. Unlike the absolute 

phase shifts presented in Fig. 3.7, the relative phase shift between HG10 and HG01 falls to zero 

for a stationary gas jet and is more sharply peaked at the optimum velocity. Provided that 

detectors could precisely resolve beam distortion, probing with LG01 is in principle the more 

sensitive method.  

 

 
Figure 3.11. Profile of a distorted LG01 beam.         represents the maximum intensity of the beam.           represents 

a saddle point in the beam intensity. 
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Figure 3.12. (a) Distortion in a LG01 probe and (b) relative plasma-induced phase shifts between HG10 and HG01 

probes as a function of gas velocity for several assumed plasma recombination coefficients. The results demonstrate 

that distortion in LG01 is a direct consequence of relative phase shifts between the constituent HG10 and HG01 modes. 

The single-pass relative phase shifts in (b) are orders of magnitude lower than the phases required to produce the 

steady-state distortions observed in (a) and Fig. 3.10. The steady-state beam represents constructive interference of 

pulses from many round-trips, so the single-pass phase shift is magnified accordingly. 

 

3.4 Beam Focusing 

For sufficiently high pump powers, plasma-induced phase shifts can lead to distortion of 

the beam. The plasma phase profile is strongest on-axis, which has the effect of a diverging lens. 

Counterintuitively, we have found that the diverging effect of the plasma serves to focus the 

beam at the gas jet (Fig. 3.13). Our assumed cavity design responds favorably to the presence of 

a slightly negative lens at the intracavity focus. Positive feedback occurs because the increased 

intensity of the pump achieves more ionization, causing a stronger focusing effect. Once enough 

plasma is present for the focusing to be significant, a small increase in power leads to total 

ionization of all the atoms on-axis. Depletion of neutrals in the gas jet curtails the runaway self-

focusing since no additional plasma can be generated on-axis, though the plasma profile may still 

grow spatially. Beam distortion is most apparent when probing with HG20 (Fig. 3.14). This mode 

a) b) 
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is maximally sensitive to focusing because it is circularly asymmetric and the on-axis peak is 

substantially weaker than the adjacent peaks. 

 

Figure 3.13. Steady-state intensity profile of the pump beam at the intracavity focus. Higher on-axis intensities are 

achieved when the pulse interacts with the plasma than when the cavity is empty. 

 

 

Figure 3.14. Distorted steady-state beam profiles for HG20 for pump powers of (a) 19 W, (b) 21 W, and (c) 22 W. 

At low pump powers (a), the generated plasma density is too low to induce self-focusing. The steady-state probe 

closely resembles the input HG20 mode. When the pump power is high enough to generate sufficient plasma for 

focusing (b), the steady-state probe becomes more intense on-axis. At slightly higher pump powers (c), the gas jet is 

fully ionized on-axis, causing significant distortion of the probe. Further increases in pump power have little 

influence on the beam profile. 

 

Though plasma interactions appear to be beneficial based on these results, the overall 

effect of intracavity plasma is detrimental. This model neglects self-phase modulation induced 

by the plasma, which decreases pulse enhancement. The decrease in pulse intensity due to chirp 
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would compete with the increase in intensity due to focusing, making runaway ionization 

unlikely. This model is therefore most valid for pump powers low enough to avoid significant 

beam focusing. 

All results presented in Section 3.1 represent an input pump power of 21 W, for which 

the beam was subjected to plasma focusing. Consequently, simulated plasma densities and phase 

shifts were likely higher than one would observe in experiment, where pulse chirp would oppose 

focusing. The results in Sections 3.2 and 3.3 are more realistic, as an input pump power of 17 W 

was assumed and minimal focusing took place.  
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CHAPTER 4: FUTURE WORK 

4.1 Self-Phase Modulation 

 Our model assumes that the laser pulses have a square temporal profile. By neglecting the 

time-dependent intensity of the pulses, we neglect the occurrence of time-dependent phase shifts 

and self-phase modulation. Despite this assumption, experiments have confirmed that plasma-

induced self-phase modulation impedes cavity enhancement by introducing pulse chirp [17]. 

This serves as the fundamental limit to HHG efficiency in our cavity. 

 Accounting for chirp would decrease constructive interference between pulses from 

multiple passes and decrease steady-state power enhancement. Lower pulse intensities would 

reduce ionization as well as all expected phase shifts. Plasma-induced chirp serves as negative 

feedback for ionization that would compete with the positive feedback caused by the focusing 

effects discussed in Section 3.4. The Kerr effect is only significant for high intensities, so we 

may always neglect self-phase modulation in the weak probe pulses. 

 To expand our model to incorporate the effects of self-phase modulation, we modify    

Eq. (2.4.6) to give the instantaneous Kerr phase shift: 

  

where we have accounted for the time-dependent intensity of the pulse. We assume that the pulse 

has a Gaussian temporal profile: 

 

We must now set C ≈ 0.94 in Eq. (2.1.8) to reflect a Gaussian pulse shape. For linear pulse 

propagation, we convert the temporal profile into the frequency domain through an appropriate 

Fourier transform. We then apply a transfer function to model a round-trip through the cavity. 

(4.1.1) 

(4.1.2) 
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The pulse is then converted back to the time domain for simulations of time-dependent phase 

shifts caused by the plasma. This procedure must be executed in addition to the spatial 

propagation outlined in Section 2.5. By adding a third pulse dimension, we drastically increase 

the computation time of the simulations. 

 

4.2 Gas Jet Profiles 

 Further work could be performed to refine our simulations of the xenon gas jet. Our 

current model assumes that the gas is a uniform slab of a fixed thickness that flows with a single 

velocity along one direction. In reality, the density, thickness, and velocity of the gas jet are all 

functions of position. An accurate representation of the gas jet calls for rigorous simulations 

involving computational fluid dynamics. Sample results of such simulations are presented in  

Fig. 4.1.  

 

Figure 4.1. Example simulations of xenon jet (a) density and (b) velocity along the nozzle axis. The plots are based 

loosely on fits of data presented in [21]. The plane is transverse to the direction of laser propagation. The gas exits a 

nozzle of width 300 μm located at x = 0. Flow is directed along x. Density falls off like a Gaussian with distance 

from the nozzle and with distance from the center of the jet. Velocity along the gas propagation direction increases 

logarithmically with distance from the nozzle and falls off like a Gaussian with distance from the center of the jet. 

The laser should be located near the nozzle to utilize the high density of neutrals, but not so close that the beam is 

clipped.  

 

 b)  a) 
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 Deviations in the density or thickness of the gas over the spot size of the beam (≈ 20 μm) 

are unlikely to influence results noticeably. However, variation in the direction and velocity of 

gas flow would affect the steady-state plasma profiles shown in Fig. 3.5. The divergence of the 

gas jet would spread out the plasma over a larger area, which could increase the overlap with 

certain modes and raise the phase shift. Probing with higher-order modes could then become 

even more useful for studying the divergence and local velocities of the gas jet. One could also 

determine the optimal beam location that maximizes ionization while minimizing the residual 

plasma. Nonetheless, the general trends displayed in Fig. 3.7 and Fig. 3.12 are unlikely to change 

with added complexity of the gas jet. Our current model is sufficient for obtaining an estimate of 

gas velocity, plasma recombination, and plasma-induced phase shifts. 

 

4.3 Comparison with Experimental Results 

 The results presented here are not intended to formulate new analytical models of plasma 

dynamics. Absolute plasma-induced phase shifts are a function of dozens of variables, and each 

of those variables contributes uncertainty to simulation results. Minor alterations to the design of 

the gas jet nozzle can radically affect gas flow [21], which in turn changes the expected phase 

shifts. Expanding the complexity of this model in a manner that presumes experimental control 

over all system parameters would serve only to convolute the results and to obscure physically 

significant trends. Rather, the simulations are best used for constructing fits of laboratory results 

in order to gain intuition for the dependence of cavity performance on select system parameters. 

This work will attain its full utility when experiments can be conducted and analyzed in parallel 

with the simulations. In anticipation of such investigations, we have proposed methods for 

estimating spatial plasma profiles, gas jet velocities, and the plasma recombination coefficient. 
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Our approach is based on probing plasma-induced phase shifts with higher-order transverse 

modes. Elucidating intracavity plasma dynamics will reveal the most effective techniques for 

mitigating residual plasma and improving intracavity HHG efficiency. 
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