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Abstract

An important problem in quantum information theory is finding the best possible perfor-
mance of the optical communication channel employing suitable codewords, receiver design,
and constellation optimization techniques. Many receiver designs have been studied in the
past to discriminate Phase-Shift Keying (PSK) quantum states that are used to encode
information before transmitting over the communication channel. Among many types of
quantum states, there has been significant work on the use of coherent states for encoding
information. Previous work has sought to improve the communication performance in terms
of various metrics such as error probability of state discrimination and capacities by em-
ploying a number of quantum states such as coherent states and squeezed-displaced states.
In this thesis, we provide optimal receiver design employing coherent states and squeezed-
displaced states to maximize the mutual information and lower the error probability of
state discrimination. In the case of pure coherent states, we derive an alternative channel
capacity of phase-shift keying coherent state with a realizable displacement receiver by max-
imizing mutual information over symbol priors and pre-detection displacement. We find that
the capacity is higher than the capacity achieved by maximizing mutual information over
symbol prior but with zero displacements. The overall scheme demonstrates designing an
improved, yet easy-to-implement receiver for better communication performance by tuning
it at different photon number regime. We also explore the use of squeezing operations with
a displacement receiver for state discrimination. Our calculation demonstrates that we see
no performance improvement in terms of the probability of error of state discrimination or
mutual information using displacement receivers when optimal squeezing on the transmitter
side is used. In addition, we also study the receiver design scheme for QPSK modulation
where squeezing is employed at the receiver side. We find that using the squeezing operation
on the receiver side provides an advantage in terms of increased mutual information for the
low-photon number regime compared to when no squeezing is used.

In the later part of the thesis, we study entanglement-assisted communication using two-
mode squeezing vacuum. The use of pre-shared entanglement in entanglement-assisted com-
munication provides a superior alternative to classical communication specifically in the low
brightness regime and highly noisy environment. In this thesis, we analyze the performance
of a few low-complexity receivers that employ optical parametric amplifiers. In the sim-
ulation, we demonstrate that receiver designs with an entanglement-assisted scheme using
phase-shift-keying modulation can outperform classical capacities. We describe a newly
proposed 2x2 optical hybrid receiver for entanglement-assisted communication whose per-
formance is roughly 10% better in terms of error probability as compared to previously
proposed optical parametric amplifier-based receivers. Further, we find that using unequal
priors for BPSK provides approximately three times the advantage over equal priors in terms
of information rate.

xiv
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Introduction

“ Light in the form of its most fundamental unit photon has been an elixir of
life since the beginning of the universe. Today light has been engineered for
its utilities in communication, sensing, and computing. Its fundamental unit
photon is the carrier of information, possessing numerous degrees of freedom in-
cluding frequency, phase, arrival time, polarization, orbital angular momentum,
linear momentum, entanglement, etc. Manipulating photons has proved to be a
valuable resource for many applications ranging from communication systems to
security and cryptography. ”With the advancement in physical sciences, the ways in which we share information have

tremendously changed. Along with the radio waves, light is being used in communication,
sensing, and computing. Its application ranges from use in fiber optics, medical sciences,
smart transportation, military, and satellite communication. However, due to its fundamen-
tal nature, an optical detector adds noise while making any measurement at the time of
information extraction. This degrades the quality of the information received at other ends.
Fortunately, light can be manipulated in the optical domain in such a way that detection
can be made in an efficient manner so as to maximize the information received at the other
end. Finding optimal ways of detection requires rigorous knowledge of estimation theory,
quantum information, quantum estimation theory, optical receivers, detection theory, and
optical sensing.

Since quantum theory forbids physical measurements that will allow an observer to gather
enough evidence to distinguish non-orthogonal states, the operational measurements are
designed to depend on statistics of measurement for distinguishing states. Broadly, there
are three measures of distinguishability used: (i) error probability estimation by means of
statistical overlap, (ii) the mutual information or capacity - the amount of information that
we can recover that may tell us the identity of the state, (iii) the Kulback-Leibler relative
information. In this thesis, we only adopt the first two measures of distinguishability for
optimal receiver design.

1.1 Layout of the thesis

This thesis proposes a numerically optimized receiver design for classical communication
using quantum states. The rest of the thesis is outlined as follows. In Chapter 2, we present

1
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some background material and literature to understand the contribution of the chapters to
follow. In Chapter 3, we discuss coherent state discrimination of information encoded using
PSK modulation. We use coherent states to create PSK states. In terms of distinguishabil-
ity as mentioned at the beginning of this Chapter, we aim to maximize mutual information
for classical communication using PSK modulation. We propose an optimal receiver design
based on state displacement operation and provide numerical results to support its advantage
over the previously proposed design. In Chapter 4, we discuss the design of a receiver that
employs squeezing operation either at the transmitter side or at the receiver side. From our
numerical study, we conclude that squeezing doesn’t offer any advantage in terms of reduc-
ing the error probability of state discrimination or maximizing mutual information when the
squeezing operation is employed on the transmitter side. However, we see increased mutual
information when squeezing is employed on the receiver side. In Chapter 5, we first review
the concept of quantum entanglement and entanglement-assisted communication. Next, we
present a quantum receiver design for entanglement assisted (EA) classical communication
where we assess the receiver’s performance in terms of error probability and mutual infor-
mation for BPSK state discrimination. Our proposed EA receiver design outperforms the
previously proposed receiver design for EA classical communication.

Notations used in the Thesis

|·〉 represents ket-notation in the quantum-mechanical formulation which is equivalent to a
vector notation in linear algebra. 〈·| is the Hermitian conjugate of the vector and is usually
referred to as bra-notation. Scalar product of two vectors |γ〉 and |ψ〉 is denoted by 〈ψ|γ〉.
Further, ket notation |α〉 is also used to represent a coherent state of amplitude α ∈ C.
We use Greek letters α, β, γ, ψ to represent the amplitude of coherent states. j is used to
denote an imaginary unit or a complex number

√
−1. φ is used to represent the phase of the

electromagnetic laser beam. X and Y are used to denote random variables denoting input
states and detected states respectively. τ is used for beamsplitter’s transmittivity while η
is used for photodetector’s efficiency. N and its suffixed versions are used to denote the
mean photo number while Π is used to denote a measurement operator. H(·) is used to
denote Shannon’s entropy and I(·, ·) is used to denote mutual information. Probabilities are
denoted by p while conditional probabilities are denoted by pY |X , conditioned on Y given
X. ⊗ is used to denote tensor products. H is Hilbert spaces. Superscript † symbol is used to
denote the Hermitian conjugate of a matrix. 〈·〉 is expectation operator. N is a set of natural
numbers, R is set notation for real numbers while C is a set notation for complex numbers. E
is used to denote average of a quantity. These notations are as per standard notation found
in quantum optics and quantum communication literature (Cariolaro, 2015)(Gerry et al.,
2005). Additionally, we also assume that the information is not degraded due to thermal
noise or other channel noise.

Rahul Kumar Bhadani – The University of Arizona
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Background and Literature Review

“ Optical communication systems are now enabling us to look beyond what naked
eyes are able to perceive. In the search of unknowns, the light is taking us far
beyond our physical limits, something that our ancestors had only imagined. ”

2.1 The concept of ‘information’

In this section, we introduce the mathematical theory of information and target a philo-
sophical question of what does it mean to have information with the help of mathematics.
Information is considered as a sequence of some symbols transmitted via a medium called
channel. We motivate this by asking ourselves, what does it mean to have one bit of infor-
mation. It may seem like a philosophical question, but it can be answered intuitively as well
as formally using mathematical tools. A bit is considered the smallest unit of information
that can be used to convey binary information that takes only two values. For example,
tossing a coin with prior knowledge that two sides of the coin are different and equally likely.

But mathematically, we can consider information to be a fraction. For example, tossing a
coin that has a tail on both sides (and we know it), doesn’t provide any information. In
this case, we have zero bit of information. Now consider a biased coin with a 75% chance
of getting head and 25% of getting tail. In this case, when tossing a coin results in the tail,
we are not transmitting the whole one bit but zero bit. The reason behind this is that we
already provided a priori information that coin is biased. However, now it is a lot harder to
tell how much information was resulted from the outcome of coin-toss.

Formalism behind this was developed by Claude Shannon, who is considered the father
of information theory (Shannon, 1953). He stated that the fundamental concept behind
information theory is entropy, which represents the amount of uncertainty in a string of
symbols, given some knowledge of the distribution of the symbols. We discuss this concept
in the next section.

2.1.1 Information Theory for photon detection

Information theory is an elegant mathematical construct, dealing with the transmission
of symbols, provides an understanding of uncertainty embedded in those symbols given

3
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their distributions. As an example, consider {0, 1, 2, 3} are communicated in binary as
{0, 1, 10, 11}. If all digits are equally likely, then it takes 6

4 = 1.5 bits on an average to
communicate one digit. We have any alternative scheme: digits 0 and 1 are equally likely
but 2 and 3 are 2 times and 4 times likely, respectively. Then

x+ x+ 2x+ 4x = 1⇒ x =
1

8

It means 0 and 1 occur at probability of 1
8 , 2 at 1

4 and 3 at 1
8 . In order to optimize the

number of bits required for transmission, we may want to encode digits with high probability
with a fewer number of bits:

2↔ 0, 3↔ 1, 0↔ 10, 1↔ 11

Hence, we see that it takes

1

2
× 1 +

1

4
× 1 +

1

8
× 2 +

1

8
× 2 = 1.25

bits to communicate a single digit. This concept is referred to as entropy, the average
number of bits required to transmit a packet of information. In this section, we build up
a mathematical aptitude for information theory to optimize information transmission and
other related concepts using probability theory and a famous Shannon’s information
theory.

2.1.1.1 Entropy and Shannon’s Information Theory

Suppose we have a variable X that takes on one of n values with different probabilities:

♣ p1, p2, · · · , pn be the probabilities of n values.
♣ Let H – on an average – be the measure of amount of uncertainty removed by revealing

the value of the random variable.
♣ H should satisfy the following condition:

F H is continuous at every pi.
F H is maximum when pi = 1

n .
♣ If choices are broken down into successive choices, then value of the measure H i.e. the

amount of uncertainty revealed is the weight sum of the value of the two new choices.
Example:

H(
1

2
,
1

3
,
1

6
) = H(

1

2
,
1

2
) + (

1

2
)H(

2

3
,
1

3
)

The only function that satisfies the conditions for H mentioned above is

H(X) = −
n∑
i=1

pi log2 pi (2.1)

Rahul Kumar Bhadani – The University of Arizona
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2.1.1.2 Definiton of Entropy

Let P be a probability measure living on some space (Ω,F), where Ω is the set of outcomes,
and F is the set of events, i.e. the collection of subsets of Ω on which P is defined. X is a
discrete random variable that satisfies:

X : Ω→ X , X ∈ R (2.2)

where X is a discrete/countable set and X−1(x) ∈ F ∀x ∈ X . Thus all random variables
are assumed to be discrete in our discussion. The random variable X induces probability
measure pX on (X , 2X ), where 2X is the set of all subsets of X . For any event E that is a
subset of X , i.e E ∈ X ,

px(E) :=
∑
x∈E

P ({ω ∈ Ω : X(ω) = x}) (2.3)

For simplicity, we denote pX by p and {ω ∈ Ω : X(ω) = x} by {X = x}. If f is a real valued
function on X , then expected value Ep(f) is defined as

Ep(f) =
∑
x∈X

p(x)f(x) (2.4)

Definition 2.1. For a random variable X with values in the discrete subset X ∈ R, its
entropy H(X) is defined as

H(X) = −
∑

x∈X :p(x)6=0

p(x) log2 p(x) (2.5)

As log2 p(x) defines a random variable on X (omitting the point of probability 0), the entropy
of X is equivalently the expected value:

H(X) = Ep(− log2 p). (2.6)

It is not hard to guess from (2.6) that the larger the entropy, the more uncertainty there is
about the values of X. For example, X = Ω = {1, 2, · · · , N} and P has uniform distribution
on Ω i.e. p(ω) = 1

N ∀ω ∈ Ω, then any bijection X : Ω→ X satisfies H(X) = log2N , since
pX(x) = 1

N ∀x ∈ X . Using the method of Lagrange’s multipliers, the min value of the
function p = (p1, p2, · · · , pN ) 7→

∑
{p:pj 6=0} pj log2 pj subject to constraint

∑
j pj = 1 is

achieved when pj = 1
N ∀j. Hence, given Ω,X and p, the maximum value of entropy

is achieved when all values in X are equally likely. This argument shows that for any
probability space (Ω, P ), and any random variable X with values in finite site X consisiting
of N elements,

0 ≤ H(X) ≤ log2N. (2.7)

Rahul Kumar Bhadani – The University of Arizona
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Here, log2N is the number of digits needed to represent all integers between 0 and N in
binary. If X is constant and p(x) ∈ {0, 1} i.e. the probability is either 0 or 1, then

H(X) = −0× log2(0)− 1× log2(1)

= lim
y→0+

y log2(y)− 1 · 0

= 0

(2.8)

In this case, we find that there is no uncertainty about possible values of X.

Entropy can also be defined in terms of a probability p on N, the set of positive integers
given by

H(p) = −
∑

j∈N:p(j)6=0

p(j) log2 p(j). (2.9)

2.1.2 Poisson point process

Consider quasi-monochromatic laser light pulse with constant angular frequency ω0 and
phase φ

Ẽ(r, t) = E(r, t)e(−jω0,t+φ), t ∈ (0, T ]

= ψ(r)s(t)e(−jω0,t+φ), r ≡ (x, y)
(2.10)

where ψ(r) is spatial mode and s(t) is temporal mode of Electric field E(r, t), but it should
be noted that spatial and temporal dependence may not be factorizable in general. Equation
(2.10) reasonably approximates an ideal single-mode laser operating well above threshold.
The intensity I of the beam is proportional to the square of the amplitude. We also assume
no intensity fluctuations and average photon flux to be constant in time. It is considered
there must be statistical fluctuations in the stream of photons on a short time scale due to
the discrete nature of photons.

Now, with the above assumptions, we show that the arrival of photons is a Poisson point
process. Let N(t) be the number of arrivals of photons before time t. Let K is the random
variable used to denote N(t). We are interested in finding out p[K = k] = PK [k] that is
total number of arrivals k given k ∈ Z. If events occur at a rate λ per second then in time
t, it is λt. Before we proceed, we should keep in mind two assumptions hold in this regard:

1. Outcome in each subinterval is a Bernoulli trial. It is because the probability of finding
k photons is equivalent to finding one photon in k time segments and no photons in
(n− k) time segments, in any possible order, where n is the number of trials.

2. Whether or not an event occurs in a subinterval is independent of the outcomes in
other intervals. That is, these Bernoulli trials are independent.

Thus the counting process N(t) can be approximated by the binomial distribution that
counts the number of successes in the n Bernoulli trials. Thus the expected number of event

Rahul Kumar Bhadani – The University of Arizona
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occurrences in time interval [0, t] is given by np. Thus λt = np. If there are n Bernoulli
trials, then k successes i.e. k arrivals is given by

P (K = k) =

(
n

k

)
pk(1− p)n−k

P (K = k) =

(
n

k

)(
λt

n

)k(
1−

λt

n

)n−k
=

n!

(n− k)!k!

λktk

nk

(
1−

λt

n

)n(
1−

λt

n

)−k
=

n!

(n− k)!nk
λktk

k!

(
1−

λt

n

)n(
1−

λt

n

)−k
=
n(n− 1) · · · (n− k + 1)

nk
λktk

k!

(
1−

λt

n

)n(
1−

λt

n

)−k
=
nk + (Polynomial of order k-1 or less)

nk
λktk

k!

(
1−

λt

n

)n(
1−

λt

n

)−k
=

(
1 +

(Polynomial of order k-1 or less)
nk

)
λktk

k!

(
1−

λt

n

)n(
1−

λt

n

)−k
(2.11)

As n→∞,

P (K = k) = lim
n→∞

(
1 +

(Polynomial of order k-1 or less)
nk

)
λktk

k!

(
1−

λt

n

)n(
1−

λt

n

)−k
= 1 ·

λktk

k!
lim
n→∞

(
1−

λt

n

)n
lim
n→∞

(
1−

λt

n

)−k
(As lim

n→∞
f(x)g(x) = lim

n→∞
f(x) lim

n→∞
g(x) )

=
(λt)k

k!
e−λt · 1

(As lim
x→∞

(
1 +

a

x

)x
= ea)

(2.12)

If the mean number of arrivals from time t = 0 time t = T is N then, N = λT substituting
t = T for total time T and N = λT in above equation, we have:

P (K = k) =
Nk

k
e−N =

e−NNk

k!
(2.13)

Thus we see that photon arrivals follow Poisson point process. A Poisson point process
satisfies following property:
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• N(0) = 0
• ∃λ > 0 such that for any 0 ≤ t1 ≤ t2,E[N(t2)−N(t1)] = λ(t2 − t1).

2.2 Bra- and Ket-notations

In quantum mechanics, Bra-ket notation is a standard notation for describing quantum
states, composed of angle brackets and vertical bars. It is so-called because inner product
of two states is calculated by bra, and ket as 〈φ|ψ〉 where 〈φ| is bra and |ψ〉 is ket. The
expression 〈φ|ψ〉 is typically interpreted as the probability amplitude for the state ψ to
collapse into the state φ. To understand the significance of notation, let’s consider a vector
A ∈ R3. The vector A can be written using any set of basis vectors and corresponding
coordinate system. Informally basis vectors are like "building blocks of a vector", they are
added together to make a vector, and the coordinates are the number of basis vectors in
each direction. An elaborate discussion about the basis vector can be found out in the
textbook (Axler, 1997). Using the most common Cartesian basis, vector A can be written
as

A = Axex +Ayey +Azez

= Ax

1
0
0

+Ay

0
1
0

+Az

0
0
1


=

AxAy
Az


(2.14)

where ex, ey, ez are the Cartesian basis vectors. Generalizing it to N-dimension, a vector A
can be written as

A =

N∑
n=1

Anen =


A1

A2
...
AN

 (2.15)

Even more generally, A can be a vector in a complex Hilbert space. Some Hilbert spaces, like
Cn, have finite dimensions, while others have infinite dimensions. In an infinite-dimensional
space, the column-vector representation of A would be a list of infinitely many complex
numbers. In bra-ket notation, Equation (2.14) can be written as

Rahul Kumar Bhadani – The University of Arizona
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|A〉 = Ax |ex〉+Ay |ey〉+Az |ez〉 =

AxAy
Az

 (2.16)

Similarly, this can be extended to N-dimensional vectors.

Inner products: In braket notation, inner products of A and B can be written as 〈A|B〉

and 〈A|B〉 = A∗1B1 + A∗2B2 + A∗3B3 + · · · =
[
A∗1 A∗2 A3 · · · A∗N

]

B1

B2
...
BN

. From this

notation, it is obvious that bra notation 〈A| denotes a row vector, |B〉 denotes a column
vector and bra next to ket denotes matrix multiplication.

Outer product: A convenient way to define linear operators on H is given by the outer
product |φ〉 〈ψ|. |φ〉 〈ψ| denotes the rank-one operator that maps the ket |ρ〉 to the ket
|φ〉 〈ψ|ρ〉 where 〈ψ|ρ〉 is scalar multiplying the vector |φ〉. Further, conjugate transpose of
bra is equal to ket and vice-versa, i.e., 〈A|† = |A〉. In quantum mechanics, it is common
practice to write down kets that have an infinite norm, i.e. non-normalizable wavefunc-
tions. Examples include states whose wavefunctions are Dirac delta functions or infinite
plane waves. These do not, technically, belong to the Hilbert space itself. However, the
definition of "Hilbert space" can be broadened to accommodate these states (refer to the
Gelfand–Naimark–Segal construction or rigged Hilbert spaces). The bra-ket notation contin-
ues to work analogously in this broader context. Banach spaces are a different generalization
of Hilbert spaces. In a Banach space B, the vectors may be notated by kets and the continu-
ous linear functionals by bras. Over any vector space without topology, we may also notate
the vectors by kets and the linear functionals by bras. In these more general contexts, the
bracket does not have the meaning of an inner product, because the Riesz representation
theorem does not apply (Goodrich, 1970).

2.2.1 Usage of braket in quantum mechanics

Wave functions and other quantum states can be represented as vectors in a complex Hilbert
space. In bra-ket notation, for example, an electron might be in the state |ψ〉. Quantum
superpositions can be described as vector sums of the constituent states. An electron in the
state |1〉 + i |2〉 is in a quantum superposition of |1〉 and |2〉. The description of complete
knowledge of a system is termed as pure state of the system. The pure state of a system
is described by a column vector or |ψ〉 in ket-notation. |ψ〉 is a unit-norm column vector
and 〈ψ| is its complex conjugate which is a unit-norm row vector. The unit-norm condition

Rahul Kumar Bhadani – The University of Arizona
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is defined by 〈ψ|ψ〉 = 1. For example, a qubit (two-level system) can be written as |ψ〉 =

α |0〉 + β |1〉 where |0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
are orthonormal basis. The unit-norm is given

by 〈ψ|ψ〉 = |α|2 + |β|2 = 1.

2.2.2 Measurements in Quantum System

Measurements in Quantum mechanics mean applying some form of operation on qubits to
get classical bits. This is pictorially represented in Figure 2.1

M
Classical bit

Collapsed
Quantum State

Figure 2.1: Measuring a Quantum bit

To understand the measurements in a quantum system, we need to look at two postulates:

• Postulate 1: If you have an isolated quantum system, there exists a complex vector-
space with an inner-product attached to that system, called the state space.

• Postulate 2: Give a closed quantum system, the evolution of the system is governed
by a unitary transformation ∣∣ψ′〉 = U |ψ〉

where U is a unitary matrix1. In general, for continuous system, the unitary transfor-
mation is given by Equation (2.30).

Hence, the description of measurement in terms of the measurement operators should be
taken as a postulate of quantum mechanics. That is, it cannot be derived, but instead
defines the mathematical structure of quantum mechanics.

2.2.3 Projective measurements (Von Neumann measurements)

If we measure a quantum state along some orthonormal basis |0〉 and |1〉 as discussed in
Section 2.2.1, then we can treat the measurement as ‘normal measurement’ or ‘regular mea-
surement’. However, if we want to represent the quantum state along with some other basis,
then we have to first project the quantum state onto the measurement basis vectors. The
new measurement of the given quantum state is called projective measurement (also known
as Von Neumann measurements) and the length of the projection on the basis vector gives

1Unitary matrix is a matrix whose product with its adjoint yields the identity matrix.
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us the probability of collapsing to that basis vector. Formally, Von Neumann measurement
on a state is described by a set of unit-norm orthonormal vectors

{|wk〉}, 〈wk|wj〉 = δkj (2.17)

In this case, if a state |ψ〉 is measured , the k-th outcome appears with probability pk =
| 〈wk|ψ〉 |2.
As an example, we will represent a qubit’s state in different orthonormal bases. First, we
define a 450 rotated basis

|±〉 =
|0〉 ± |1〉
√

2
(2.18)

Then we express a state |ψ〉 as

|ψ〉 = α |0〉+ β |1〉 = γ |+〉+ δ |−〉 (2.19)

1. Write down γ and δ in terms α and β.
2. What are the probabilities of measurement outcomes when measured in the {0, 1}

basis, and when measured in {+,−}.
Equation 2.18 can be broken down into two Equations as

|+〉 =
|0〉+ |1〉
√

2
(2.20)

|−〉 =
|0〉 − |1〉
√

2
(2.21)

From Equations 2.20 and 2.21, we can get :

|0〉 =
1
√

2
(|+〉+ |−〉) (2.22)

|1〉 =
1
√

2
(|+〉 − |−〉) (2.23)

Putting RHS of these Equations in 2.19,

α
1
√

2
(|+〉+ |−〉) + β

1
√

2
(|+〉 − |−〉) = γ |+〉+ δ |−〉

|+〉
(
α
√

2
+

β
√

2

)
+ |−〉

(
α
√

2
−

β
√

2

)
= γ |+〉+ δ |−〉

(2.24)
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Comparing both sides, we get

γ =

(
α
√

2
+

β
√

2

)
δ =

(
α
√

2
−

β
√

2

) (2.25)

In {0, 1} basis:

p0 = | 〈0|ψ〉 |2 = | 〈0|α |0〉+ β |1〉〉 |2 = |α|2 (2.26)

Similarly,

p1 = | 〈1|ψ〉 |2 = | 〈1|α |0〉+ β |1〉〉 |2 = |β|2 (2.27)

In {+,−} basis,

p+ =

∣∣∣∣ 〈+|ψ〉 |2 = |

〈
+

∣∣∣∣∣|+〉
(
α
√

2
+

β
√

2

)
+ |−〉

(
α
√

2
−

β
√

2

)〉 ∣∣∣∣2
=

∣∣∣∣( α
√

2
+

β
√

2

)∣∣∣∣2
(2.28)

and,

p− =

∣∣∣∣ 〈−|ψ〉 |2 = |

〈
−

∣∣∣∣∣|+〉
(
α
√

2
+

β
√

2

)
+ |−〉

(
α
√

2
−

β
√

2

)〉 ∣∣∣∣2
=

∣∣∣∣( α
√

2
−

β
√

2

)∣∣∣∣2
(2.29)

2.3 Laser pulses and detection of photon

Although photons (in free space) have a definite energy, momentum relation, photons are
not ‘objects’ in the sense of individual localizable classical particles. As a result, the classical
theory fails to account for the detection of photons. However, using canonical quantization,
based on Hamiltonian form, state vectors, and Schrödinger equations, we can “predict” states
of photons. In this case, states of photons are described by (normalized) state vectors |Ψ〉
which are elements of a Hilbert space H with a scalar product

〈Ψ1|Ψ2〉 = 〈Ψ2|Ψ1〉∗ .
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A detail discussion on state vectors and their quantum mechanical aspects can be found
in (Griffiths and Schroeter, 2018; Milonni and Eberly, 2010). Initially, the system is supposed
to be in state |Ψ0〉 = |Ψ(t)〉, Then, sequence of state |Ψ(t)〉 which the system runs through
as a function of time is governed by Schrödinger equation

i~
∂ |Ψ(t)〉
∂t

= Ĥ |Ψ(t)〉 (2.30)

where Ĥ denotes Hamiltonian ≡ energy of the system. State vectors |Ψ〉 describe pure states
with zero entropy. The stationary states of a free harmonic oscillator |n〉 , n = 0, 1, · · ·
are eigenstates of the number operator N̂ = â†â where a represent the dynamical variables
of the electromagnetic field (EMF). In addition, they are non-degenerate, orthogonal, and
normalizable, 〈m|n〉 = δm,n. They define

â†â = n |n〉
â |n〉 =

√
n |n− 1〉

â† |n〉 =
√
n+ 1 |n+ 1〉

(2.31)

These operators are also called as ladder operators, because repeated operations on a par-
ticular energy eigenstate create the ladder of all other states, with â† we climb up, whereas
with â we climb down the ladder.

2.3.1 State of Quantum System

The nature of the photon can be well understood using quantum mechanics. Although
unintuitive, quantum mechanics describes concrete features of the world as we know it
which has been proven repeatedly through experiments such as double-slit experiments,
photoelectric effect, and black-body radiation. If we take a system as quantum, it is described
by a complex function Ψ which varies with position and time. Ψ called as a wave function
that does not depend on the momentum of the particle. The wave function encodes all
the information about the system, although in a probabilistic sense. |Ψ(x, t)|2dx is the
probability that a measurement of the position of the particle yields a result in the interval
x→ x+dx. The total probability of finding the particle somewhere along the real axis must
be unity and is given by

||Ψ||2 =

∫
|Ψ(x, t)|2dx = 1 (2.32)

A function such that its integral along the real axis is finite can be normalized by multiplying
by an appropriate constant. Two wave functions that differ by an arbitrary factor c ∈ C
describes the same physical system.
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2.4 Coherent state (ideal single mode laser)

We are interested in a special state in which the fields vary sinusoidally in space and time
with time-independent uncertainties in quadrature amplitude with ∆X1 = ∆X2 = 1

2 and
∆X1∆X2 = 1

4 . These states are called as Gaussian ground state wavefunctions. In number
states, these states are given by

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn
√
n!
|n〉 , α = xc + ipc

xc corresponds to classical position operator, pc corresponds to classic momnetum operator.
(2.33)

|α〉 are called coherent states. |α〉 states have number of interesting properties such as

• |α〉 is an eigenstate of the destructor operator

â |α〉 = α |α〉

where a is a non-hermitian operator and α = |α|eiφ ∈ C is a complex number and
corresponds to the complex wave amplitude in classical optics. Thus coherent states
are wave-like states of the electromagnetic oscillator.

• α−states can be generated by unitary displacement operator D̂:

|α〉 = D̂(α) |0〉

D̂(α) = eαâ
†−α∗â = e−

1
2
|α|2eαâ

†
e−αâ

D̂†âD̂ = â+ α
(2.34)

• Time independence is obtained by replacing α by α(t):

|α, t〉 = eiφ(t) |α(t)〉

For a free oscillator, α(t) = αe−iωt.
• Although the α-eigenvalues form a continuous spectrum, the |α〉 states are normalized

but they are not orthogonal. Moreover, the set |α〉 states is complete and forms a
convenient basis for an almost classical description of laser physics.

Expectation values, uncertainties of the electric field and photon number and probability to
measure n photons(omitting the polarization index) are

Ẽ(r, t) = 〈α(t)|Ê(t)|α(t)〉
= −2E0|α| sin(kr− ωkt+ φ)

(2.35)

(∆Ẽ)2 = E2
0 (2.36)
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〈
N̂
〉

= |α|2 = N

= (∆N̂)2
(2.37)

pk = | 〈k|α〉 |2 = e−N
Nk

k!
(2.38)

Also, α = |α|eiφ and N = |α|2 ⇒ |α| =
√
N . Hence,

α =
√
Nejφ (2.39)

where N is the mean photon number, also given by

N =

∫ T

0

∫
A
|Ẽ(r, t)|2drdt

=

∫ T

0

∫
A
|E(r, t)|2drdt (Using (2.10))

(2.40)

where A is aperture area. It should be noted that no detector can accurately measure the
field E(r, t). Here the relative amount of fluctuation in the electric field decreases with
increasing amplitudes. In above equations, pk denotes a Poisson distribution with mean
photon number N = |α|2 and uncertainty (∆k)2 = N . Thus in a coherent state, photon
behaves like they were uncorrelated classical objects. In contrast to naive expectations, the
photons in a single-mode laser and well above threshold arrive randomly; in practice, they
don’t ride on electric field maxima.

2.4.1 Ideal photon detection of square pulse

Consider an optical square pulse2 as shown in Figure 2.2. s(t) is the temporal shape of the
pulse with the unit of

√
photon/s. Actually, s(t) is the amplitude of the electric field of the

pulse. Square of the magnitude of s(t) gives square of electric field. Integrating the square
of the magnitude of the pulse s(t) over the pulse duration gives mean number of the photon:

Figure 2.2: A Square Pulse

s(t) =

{
E, t ∈ [0, T ]

0, otherwise
(2.41)

2In reality there is no such thing as square pulse due to ripple effect and many other factors.
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λ(t) = |s(t)|2 = λ = E2, t ∈ [0, T ] (2.42)

N =

∫ T

0
λ(t)dt = λT = E2T (2.43)

Here, photon square pulse simply generates a Poisson point process where the arrival of the
photons are associated with clicks (shown with a red cross sign in Figure 2.2), i.e. these are
the timestamps when (an ideal) detector says ‘I saw a photon’. These arrival timestamps
come at the rate of λ = E2.

We are going to define one more thing in the following paragraph: α, coherent state, already
seen in Equation (2.39). We can think of α as associated with the pulse once we define the
shape of the pulse. In this case, only the complex number α is needed to describe the state
of the pulse. In this case, α =

√
N (Figure 2.3). It will be more clear in the later discussion.

Im

Re

Figure 2.3: Mean photon number

In above discussion, we didn’t include carrier phase. Along with the shape or envelope of the
optical pulse, there will always be an oscillating phase. Frequency of the oscillating phase
is the center frequency of the optical pulse. After including oscillating phase, we can write
the pulse equation as:

s(t) =

{
Eejφ, t ∈ [0, T ]

0, otherwise
(2.44)

If we want to denote the same pulse with oscillating phase, we include an additional term
ejφ as shown in Figure 2.4. It should be noted that the oscillatory part doesn’t affect the
detection statistics about the pulse. But if we want to describe the state of the pulse before
detection, we need α and φ. In general s(t) doesn’t have to be constant but can vary with
time over the same pulse duration T . In this case the, rate of arrival of the PPP will be a
function of time, i.e if the square pulse is s(t)e−jω0t+φ then detector will produce clicks at a
rate of λ(t) = |s(t)|2. Mean photon number simply will be N =

∫ T
0 λ(t)dt.
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Im

Re

Figure 2.4: Mean photon number with oscillating phase

2.5 Discrimination of States

We consider an ensemble of quantum systems with each systems on one of the N pos-
sible states given by their density operators ρ1, ρ2, · · · , ρN each with prior probabilities
p1, p2, · · · , pN such that

∑N
k=0 pk = 1. Even though an observer performing the state dis-

crimination might have full knowledge of ensemble, he doesn’t know which one of those N
states he has. To determine the state, the observer is required to make a measurement.
State discrimination is required by the observer to estimate one of the N states observers
may have.

One common strategy for state discrimination is through minimum error probability. Hel-
strom (Helstrom, 1969) outlined an optimal measurement strategy for an ensemble of two
quantum states. The optimum measurement strategy is called the Helstrom measurement
and the minimum error is referred to as the Helstrom bound. If we consider a POVM Πk

corresponding to state ρk, then as per the postulates of quantum mechanics, the probability
of guessing ρk is tr{ρΠk}, if the actual state is ρ. The guess work is correct when ρ = ρk.
In such case, the probability of correct classification is

Pc =
N∑
k=1

pj tr{ρkΠk} (2.45)

and the error probability is given by

Pe = 1− Pc (2.46)

We minimize Pe over all possible set of Πk in order to minimize the error. In some cases,
it is not possible to find optimal measurements. In such cases, we have another scheme
called square-root measurement (Eldar and Forney, 2001; Hausladen and Wootters, 1994).
For a given set of N states, we can write the following POVM elements of square-root
measurement:

Πk = pkρ
−1/2
i ρ−1/2 ∀i ∈ [1, N ] (2.47)
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where ρ =
∑N

k=1 pkρk. The POVM elements of Equation (2.47) satisfies the properties of
positivity and completeness. For most cases, minimum error probability measurement turns
to be square-root measurement.

State discrimination plays a crucial role in quantum error correction. Further, the state
discrimination of quantum states is at the center of quantum computation and communica-
tion. The strategy of state discrimination depends on the given task in quantum information
science. As an example, using state discrimination methods, we can demonstrate that quan-
tum mechanics doesn’t allow discrimination between two non-orthogonal states |ψ0〉 and
|ψ1〉. The non-discrimination of non-orthogonal states makes quantum key distribution pos-
sible (Djordjevic, 2019c).

2.6 Beamsplitter and Mixing Operation

Classically, a 50-50 beamsplitter divides the intensity of an incoming light beam into two.
However, quantum-mechanically, it won’t split each photon into two, but rather it transmits
or reflect each photon with 50% probability. A beamsplitter combines and splits two input
coherent states |α1〉 and |α2〉. A beamsplitter is represented by Unitary operator U(θ, φ)
with transmittivity τ = cos2 θ and phase φ such that input output relationship can be
written as [

β1
β2

]
= U

[
α1

α2

]
, U =

[
cos θ ejφ sin θ
sin θ −ejφ cos θ

]
(2.48)

Figure 2.5: A schematic diagram showing a beamsplitter’s operation as a displacement operator.
A beamsplitter acts as a displacement operator when a laser beam of a coherent state amplitude α1

is mixed with a strong local oscillator of amplitude α2.

The displacement operator D(β) shifts the amplitude of the coherent state as D(β) |γ〉 =
|γ + β〉. The displacement operator is realized by a beamsplitter of transmittibity τ ≈ 1 and
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a strong local oscillator of amplitude β√
1−τ (Takeoka and Sasaki, 2008). We can describe a

beamsplitter as a displacement operator as follows. Using trigonometric identities, assume

τ = cos2 θ

⇒ sin θ = ±
√

1− τ and cos θ = ±
√
τ

(2.49)

Taking only + sign without the loss of generality (negative sign just flips states on constel-
lation diagram across y-axis) and putting in Equation (2.48), we obtain:[

β1
β2

]
=

[ √
τ ejφ

√
1− τ√

1− τ −ejφ
√
τ

] [
α1

α2

]
⇒ β1 =

√
τα1 + ejφ

√
1− τα2

and, β2 =
√

1− τα1 − ejφ
√
τα2

(2.50)

To perform the displacement operation using a beamsplitter, we set φ = 0 and use a beam-
splitter with transmittivity τ close to 1 (but not exactly one, and in practice transmittivity
can never be unity). One arm of the beamsplitter is fed with desired laser beam with co-
herent state amplitude of α1 = γ while another arm is given a strong local oscillator of
amplitude α2 = β√

1−τ . Essentially with this design, we only need laser beam of the coherent
state amplitude γ as an input. Putting the input values in Equation (2.50), we obtain:

β1 = γ +
√

1− τ ·
β

√
1− τ

= γ + β

β2 = γ
√

1− τ −
β

√
1− τ

(2.51)

with an approximation of
√
τ ≈ 1. The displacement operation ignores the second output

from the beamsplitter. A schematic representation of beamsplitter acting as a displacement
operator is shown in Figure 2.5. We denote the overall displacement procedure as an operator
D(β) where β is the displacement produced on a laser beam’s coherent state amplitude after
passing through the beamsplitter.

In addition to displacement operation, the beamsplitter can be used to generate entangled
state using two-mode mixing and two-mode squeezing that we discuss in Section 2.8.

2.7 Squeezed-States

A quantum system consisting ofM bosonic modes can be described by quadrature operators
{Im, Qm}Mm=1. They can be written in vector form as x̂ =

[
I1Q1, · · · , IMQM

]>. These
quadrature operators satisfy the commutation relation

[
x̂m, x̂n

]
= 2jΩmn where Ωmn is
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mth-row, nth-column element of 2M × 2M matrix

Ω =

ω . . .
ω

 , ω =

[
0 1
−1 0

]
(2.52)

which is called symplectic form. For the quadrature operator, the first moment of x̂ repre-
sents the displacement which is given by

x = 〈x̂〉 = tr{x̂ρ} (2.53)

The elements of covariance matrix Σ is given by

σmn =
1

2

(
〈x̂m, x̂n〉+ 〈x̂n, x̂m〉

)
− 〈x̂m〉 〈x̂n〉 (2.54)

where 〈·, ·〉 is the anticommutator. The diagonal elements of covariance matrix are variances
of the quadratures given by

V (x̂i) =
〈
(x̂i)

2
〉
− 〈xi〉2 . (2.55)

The first moment i.e. mean and variance are enough to completely characterize the density
operator ρ, i.e. ρ ≡ ρ(x, V ). Thus, they represent the Gaussian states.

A squeezed state is a Gaussian state which has unequal fluctuations in quadratures: V (I) =
e2r and V (Q) = e−2r where r is squeezing amplitude. In such case, we can define a more
general version of coherent state as squeezed-displaced state given by

|z, α〉 = D(α)S(z) |0〉 , S(z) = e

1

2
(za†2−z∗a2) (2.56)

where S(z) is the squeezing operator, z = rejθ is the squeezing factor with r being squeezing
amplitude and θ being squeezing phase. In practice r is real and thus squeezing operator
simplifies to S(z) = exp

{
z(a†2 − a2)/2

}
.

When we set r = 0, squeezed state is effectively a coherent state. Squeezed states lead to
following notations:

1. |z, α〉: squeezed-displaced state
2. |0, α〉 = |α〉: coherent state
3. |z, 0〉: squeezed vacuum state

Squeezed states live in an infinite-dimensional Hilbert state. Squeezed-displaced states are
specified by Fock expansion.

The Equation (2.56) leads to following eigenvalue problem, derivation of which is provided
in (Djordjevic, 2022):

(a cosh(r)− a†ejθ sinh(r))
∣∣∣rejθ, α〉 = (α cosh(r)− α∗ejθ sinh(r))

∣∣∣rejθ, α〉 (2.57)
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If we want to represent squeezed-displaced states in terms of Fock state, we may have
following expansion:

|z, α〉 =
∑
n

Cn |n〉 (2.58)

Equation (2.58) must satisfy Equation (2.57). We can make a guess of the form of Cn as

Cn = K

(
1

2
ejθ tanh(z)

)n/2
hn(x), x ∈ C (2.59)

where K is the normalization constant and hn is the recursive function. We can find Cn by
equating coefficients of nth terms which gives the recursive function hn as

hn(x) =
2x
√
n
hn−1(x) + 2

√
n− 1

n
hn−2(x) (2.60)

h0(x) =
C0

K
(2.61)

h1(x) = 2xh0(x) (2.62)

Coefficient C0 can be obtained by solving C0 = 〈0|z, α〉 = 〈0|D(α)S(z) |0〉 which gives C0

as

C0 = (cosh(r))−1/2 exp

{
−

1

2
|α|2 +

1

2
α∗2ejθ tanh(r)

}
(2.63)

We choose h0(x) = 1 by setting K = C0. Thus the Fock state expansion of squeezed-
displaced state is

|z, α〉 = (cosh(r))−1/2 exp

{
−

1

2
|α|2 +

1

2
α∗2ejθ tanh(r)

} ∞∑
n=0

(
1

2
ejθ tanh(r)

)n/2
hn

(
β√

ejθ sinh(2r)

)
|n〉

(2.64)
where β = α cosh(r)− α∗ejθ sinh(r).

2.8 Entangled State

When two photons arrive at a beamsplitter at exactly the same time, with frequency and
polarization close enough so that they emerge from the beamsplitter with their origins
impossible to know, we get entangled photons. An entangled two-mode Gaussian state can
be prepared by passing two single-mode squeezed vacuum states with each of them squeezed
along axes orthogonal to each other into the two input ports of a 50-50 beamsplitter.
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Loosely speaking, entanglement is a type of correlation, called as Einstein-Podolsky-Rosen
(EPR) correlation that is specific to quantum mechanics. An entanglement state is defined
to be one whose quantum state cannot be factored as product states of its local constituents.
In other words, they are individual particles but inseparable as a whole. As an example,
given two basis vectors {|0〉A , |1〉A} in Hilbert space HA and {|0〉B , |1〉B} in Hilbert space
HB, then the following is an entangled state:

1
√

2
(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B) (2.65)

If a composite system is in the state (2.65), it is impossible to attribute either system A or
B a definite pure state. Even if the von Neumann entropy of the whole state is zero, the
entropy of the subsystem is greater than zero. In this sense, we can say that the systems
are entangled.

Quantum teleportation is at the heart of entanglement. Quantum teleportation tells that
once we determine the value or a state of one part of the entangled state, the state of other
part will automatically be known using some mathematical operation. If two photons come
into contact with one another, they become entangled. Later, if one photon is measured by
linear polarizer to have, say, a vertical polarization, then the other photon’s state collapses
to horizontal polarization. One important entity in teleportation is entangled qubit. The
measurement of the joint states of multiple qubits performed in the basis of four maximally
entangled states, known as Bell states or EPR states are

|ΦA〉 =
1
√

2
(|0〉 |1〉 − |1〉 |0〉)

|ΦB〉 =
1
√

2
(|0〉 |1〉+ |1〉 |0〉)

|ΦC〉 =
1
√

2
(|0〉 |0〉 − |1〉 |1〉)

|ΦD〉 =
1
√

2
(|0〉 |0〉+ |1〉 |1〉)

(2.66)

In quantum teleportation scheme, a qubit can be transmitted from one place to another
by using classical communication, given that Alice and Bob have previously received each
one half of two-qubit entangled state. For an example, if Alice has a qubit 1 in the state
|q〉1 = a |0〉1 + b |1〉1 with a and b unknown amplitude such that |a|2 + |b|2 = 1. Further,
if Alice has qubit 2 entangled to Bob’s qubit 3 being in one of the EPR states, refer to as
|Φ〉23. In this example, the goal of teleportation would be to transmit the state of qubit 1
possessed by Alice to bob. The initial state |q〉1 |Φ〉23 can be rewritten in Bell’s basis as

1

2

[
|ΦA〉12 (a |0〉3 + b |1〉3) + |ΦB〉12 (a |0〉3 − b |1〉3)

− |ΦC〉12 (a |1〉3 + b |0〉3) + |ΦD〉12 (a |1〉3 − b |0〉3)
] (2.67)
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Here, we omit the global phase term ejπ = −1. Alice can measure the joint state of qubits 1
and 2 on Bell’s basis and obtain one of the four results 00, 01, 10, 11 in the classical sense.
Irrespective of what states qubits are in, Alice’s measure will give a uniformly distributed
random two classical bits. If the measured qubits 1 and 2 are found to be in |ΦA〉12, then
Alice’s output is 00 and thus Bob’s output would be |p〉3 = a |0〉3 + b |1〉3, which is the
initial state of Alice’s |q〉1, without a need to apply for any additional transformation. If
qubits 1 and 2 are found to be in |ΦB〉, then Alice’s output is 01 and Bob’s state would be
|p〉3 = a |0〉3 − b |1〉3 which indeed differs from |q〉1. But if we apply a phase flip operation,
realized by Pauli operator UB, Bob gets the state as a |0〉3− b |1〉3 which is same as |q〉1. For
the case of C and D, Bob needs to apply a bit flip and (a bit flip + phase flip) respectively.
Hence, for successful teleportation, Alice and Bob must have some pre-shared information.

2.9 Spontaneous Parametric Downconversion

Spontaneous parametric downconversion (SPDC) is a process of generating entangled pho-
tons where a nonlinear crystal is used to split a photon into a pair of photons such that the
state of one photon is complementary to the state of another photon. Two photons generated
in the process of SPDC are called signal-idler pairs for historical reasons. SPDC process
uses a nonlinear optical phenomenon where the response of a medium to an applied optical
field is mediated by the electric polarization of the medium. If we consider a polarization

P(t) = ε0

[
χ(1)E(t) + χ(2)E2(t) + · · ·

]
(2.68)

where P is polarization, E is the electric field, and χ(n) is nonlinear susceptibility of order
n. The electric field is usually composed of one or more frequencies (Lopez-Mago, 2012;
Christ et al., 2013). For simplicity, we can assume that the electric field consists of two
frequencies ω1 and ω2 such that E(t) = E1e−jω1t + E2e−jω2t + c.c.. In our formulation, c.c.
stands for complex conjugate of the previous terms. Using second order susceptibility from
Equation (2.68), we can write an expression of nonlinear polarization as

P2(t) = ε0χ
(2)

[
E21e−2jω1t + E22e−2jω2t + 2E1E2e

−j(ω1+ω2)t

+ 2E1E
∗
2e
−j(ω1−ω2)t + c.c

]
+ 2ε0χ

(2)

[
|E1|2 + |E2|2

] (2.69)

The first term of Equation (2.69) generates two EM fields at frequencies 2ω1 and 2ω2, the
third and fourth term generates waves at frequencies called sum-frequency generation (SFG)
and difference frequency generation (DFG). For generating entanglement, we leverage DFG.
Using an optical parametric amplifier (OPA), a laser with frequency ωa is used to pump a
nonlinear crystal, and at the same time, a small EM wave with a frequency ωs is introduced
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into the medium, given ωs << ωa. Using DFG, ωi = ωa−ωs is generated, which is called as
idler. Idler stimulates the generation of fields with frequency ωs = ωa−ωi. The ωs is a signal
wave that repeats the process. The generation of idler reinforces the generation of the signal
and vice-versa. This process of generation of signal/idler pair is called stimulated emission.
It is also possible to create signal/idler pair using spontaneous emission. In spontaneous
emission, it is not possible to distinguish between idler and signal. When a nonlinear crystal
with second-order susceptibility is pumped by a laser, then there is a small probability of
order of 10−12 that the pump photon splits into signal/idler pair. The process of spontaneous
emission is shown in Figure 2.6. The interaction Hamiltonian with signal-idler pair can be

Nonlinear       Crystal Energy Conservation

Figure 2.6: Spontaneous Parametric Down-Conversion: A pump with frequency ωa is passed
through nonlinear crystal that converts photons into signal-idler pair conserving energy and mo-
mentum.

written as

Ĥ = j~[c1âsαâiγ + csâsβ âiδ] +H.C. (2.70)

where H.C. are Hermitian conjugate terms. âs and âi are annihilation operators for signal
and idler. c1 and c2 are constants related to the second order susceptibility. Consider pump
as a classical field, the quantum state evolves as |ψ(t)〉 = |ψ(0)〉 e−jĤt/~. If we expand the
quantum state and take initial state as vacuum, our state approximates to

|ψ〉 ≈ η1 |α〉 |γ〉+ η2 |β〉 |δ〉 . (2.71)

The Equation (2.71) suggests that with probability η1, one photon is in mode α and other
is in mode γ while with probability η2, one photon is in mode β while other is in mode δ.

2.10 A Review of Existing Receiver Designs Employing Co-
herent States

Photodetectors in combination with laser beams have made possible the optical communica-
tion system. The initial optical communication system mimicked radio-frequency techniques

Rahul Kumar Bhadani – The University of Arizona



Optimal Receiver Design for Quantum Communication – Page 25

(a)
(b)

(c)

Figure 2.7: Left: A simple circuitry to perform displacment using beamsplitter. Middle: One-off
pulse with |α〉 and |0〉. Right: Displaced coherent states.

and used incoherent and homodyne detection. However, for applications such as deep space
communication, the use of quantum detection gives an advantage since the received field is
weak where classical detection is not optimum. A standard communication model consists
of a transmitter, a physical channel, and a receiver. As the topic of the thesis is optimal
receiver design, in the next few paragraphs, we review some popular existing receiver design
techniques that employ coherent states.

2.10.1 Kennedy’s Receiver

Kennedy receiver (Kennedy, 1973) has the ability to distinguish between binary coherent
states. We can use the Kennedy receiver to distinguish Binary Phase Shift Keying (BPSK)
encoded states. Binary Phase Shift Keying (BPSK) is a two-phase modulation scheme,
where the 0s and 1s in a binary message are represented by two different phase states in
the carrier signal. For example, consider a square pulse with oscillating phase Eejφ with
φ = {0, π} as shown in Figure 2.8. In order to discriminate BPSK using Kennedy receiver,

Figure 2.8: Binary Phase Shift Keying.

we require perfect amplitude phase reference in theory. One way to discriminate BPSK
pulses is to apply exact displacement using a beamsplitter which translates {|−α〉 , |α〉} to
{|0〉 , |2α〉}. These displaced states will be allowed to go on detector. Assume that we count
k clicks. We define following rules for hypotheses H1 i.e. we have off pulse and H2 that is
we have on pulse, then:
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{
if k = 0, H1 is true, i.e. off pulse

if k > 0, H2 is true, i.e. on pulse
(2.72)

In the above condition, we can easily calculate the error probability. For that, let’s assume
both BPSK symbols are equally likely. When α pulse is given, then 2α goes to the detector.
In this case, probability of choosing −α pulse, given an α pulse is equivalent of P (k = 0)
in the Poisson distribution, i.e., e−|2α|2 . When −α (or 0 after displacement) goes to the
detector, the probability of declaring an α pulse is 1− e−|0|2 = 0. Since |α|2 = N , the mean
photon number is |2α|2 or 4N . Thus, error probability for discriminating BPSK pulses is

P (error) = P (H1)P (H2|H1) + P (H2)P (H1|H2)

= P (on)P (off|on) + P (off)P (on|off)

=
1

2
· e−4N +

1

2
· 0 =

1

2
e−4N

(2.73)
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Error Probability for the Kennedy receiver
for discriminating BPSK Pulses

Figure 2.9: Error probability, Pe of state discrimination for the Kennedy receiver with BPSK.

Later, in (Takeoka and Sasaki, 2008), it was shown that an additional displacement of β can
be made to further minimize the error probability of state discrimination. In such scheme,
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the displacement β is chosen optimal depending the mean photon N . In such case the error
probability is given by

Pe =
1

2
e−(2α+β)

2
+

1

2
(1− e−β2

) (2.74)

which can be minimized over β by solving the optimization problem
dPe

dβ
= 0. Error proba-

bility plot of Kennedy receiver with exact nulling and optimal nulling is given in in Figure
2.9.

2.10.2 Unambiguous State Discrimination Receiver (USD)

In USD receiver, with probability e−N , it produces an erasure (i.e., I don’t know) outcome
but with probability 1− e−N probability, it guesses the hypothesis correctly. Whenever the
receiver does make a guess (i.e. when one of the pulse slots generates a click), it knows –
without any ambiguity – which was the received state. If forced to make a decision, i.e. by
mapping the erasure to one possible input, the receiver makes mistake. The concept of USD
receiver is shown in Figure 2.10.

Figure 2.10: BPSK USD receiver design.

Thus probability of error in such case can be calculate as follows. Probability of Y = 1, if
X = 1 was sent is anything other than zero click. Hence, p1|1(1|1) = 1− e−2N . Probability
of Y = 2, if X = 2 was sent is anything other than zero click. Hence, p2|2(2|2) = 1− e−2N .
As per USD design, we if X = 1 is sent , detector will never say that |−α〉 was detected.
Thus, Probability of Y = 1, if X = 2 was sent is zero click. Hence, p2|1(2|1) = 0. Similarly,
Probability of Y = 2, if X = 1 was sent is zero click. Hence, p1|2(1|2) = 0. Thus the
transition probability matrix ((2× 3) form) is:

TPM3×2 =

[
1− e−2N 0 e−2N

0 1− e−2N e−2N

]
(2.75)

However, USD also says with probability e−2N for each input that it does not know. Now if
we force the receiver to make a random guess with equal priori it will say with 0.5 probability
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that |α〉 was transmitted. Let Hi is hypothesis that Y = i was outcome, where i = [1, 3].
Then

P (X = 1|H1) = 1

P (X = 2|H1) = 0

P (X = 1|H2) = 0

P (X = 2|H2) = 1

P (X = 1|H3) =
1

2

P (X = 2|H3) =
1

2

(2.76)

Then we can write 2× 2 transition probability matrix as:

TPM2×2 =

[
(1− e−N ) + e−2N

2
e−2N

2
e−2N

2 1− e−2N + e−2N

2

]
(2.77)

Thus error probability in this case is:

Pe =
1

2
(
e−2N

2
) +

1

2
(
e−2N

2
) =

e−2N

2
(2.78)

2.10.3 Dolinar Receiver

Sam Dolinar in 1973 (Dolinar, 1973b) proposed an adaptive receiver based on a combination
of photon-counting and feedback mechanisms. The Dolinar’s receiver theoretically achieves
Helstrom bound. However, Dolinar receiver is difficult to implement in practice.

Dolinar receiver uses multi-copy of a coherent state |α〉 such that we have

|ψ〉 = |α〉 ⊗ |α〉 ⊗ |α〉 · · · |α〉 (2.79)

as a tensor product in Hilbert space H⊗n. If we consider BPSK symbol with multi-copies
as

|ψ1〉 = |α〉 ⊗ |α〉 ⊗ |α〉 · · · |α〉
|ψ2〉 = |−α〉 ⊗ |−α〉 ⊗ |−α〉 · · · |−α〉

(2.80)

then the inner product is 〈α|−α〉 = χ and 〈ψ1|ψ2〉 = χ2 = σ. With adaptive measurement
strategy, the global optimal error probability is given by

Pe,d =
1

2

[
1−

√
1− 4p(1− p)σ2

]
(2.81)

where p is prior probability of one of the BPSK symbols. The idea behind Dolinar receiver
is illustrated in Figure 2.11.
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Displacement

Detector

Figure 2.11: A schematic of Dolinar’s Receiver

Although Dolinar’s receiver promises to achieve Helstrom Bound, delay due to introduction
by the optical-electrical feedback control may greatly affect the efficiency of Dolinar’s receiver
and in practice, Helstrom Bound may not be achievable.

In the next few chapters, we discuss optimal receiver design for realizable receivers where
information can be encoded using a number of quantum states in addition to coherent states
such as squeezed displaced states and entangled states.
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ä3
Receiver Design for Phase-shift Keying
Coherent States

“ An important problem in quantum information theory is finding the best possible
capacity of the optical communication channel employing suitable codewords,
receiver design, and constellation optimization techniques. In this chapter, we
derive an alternative channel capacity, CG, of phase-shift keying coherent state
with a realizable displacement receiver by maximizing mutual information over
symbol priors and pre-detection displacement. We find that CG is higher than
the capacity achieved by maximizing mutual information over symbol prior but
with zero displacement. The overall scheme demonstrates designing an improved,
yet easy-to-implement receiver for better communication performance by tuning
it at different photon number regime. Further, we present a comparative analysis
of CG with existing receiver designs. We extend our study to account for detector
imperfections. ”

3.1 Introduction

One of the prime goals in Quantum Information Theory (QIT) is to innovate novel code-
words, receiver design, and constellations to transmit information over a communication
channel in the best possible way with a given set of resources. In the lieu of recent develop-
ment in QIT, there are two types of communications possible: (i) transmitting a quantum
state and expecting the receiver to detect the quantum state, and (ii) use quantum states to
transmit classical information (in terms of 0s and 1s) (Hausladen et al., 1996). We call the
latter semi-classical optical communication. If quantum states are orthogonal, then in the-
ory we can distinguish quantum states with 100% certainty, and the amount of information
transmitted will be maximum. However, in practice communication systems experiences
detector imperfections, thermal noise, and turbulent channels, as a result of which orthogo-
nality of states is compromised. Coherent states are non-orthogonal states that are known
to possess loss-tolerant property. When transmitting through lossy bosonic channel merely
suffer decay in amplitude but preserving coherence (Giovannetti et al., 2004). Of all chal-
lenges, we focus mainly on the design of the quantum receiver to maximize the amount of
information transmitted. The metric of the information transmitted, called the mutual in-
formation was given by Shannon (Shannon, 1948). However, unlike classical communication,
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the notion of maximizing mutual information to obtain Channel Capacity varies in the case
of a quantum channel. In an early work (Shor, 2003), Peter W. Shor noted that depending
upon the protocol, channel usages, detection algorithm, etc, capacity can be defined in sev-
eral manners. Of all the definitions, the Holevo limit, denoted by C∞ is when the receiver
does the joint measurement over long codeword blocks. For symbol-by-symbol measurement
with post-processing, the maximum attainable capacity was given by Sam Dolinar (Dolinar,
1976). Due to the complexity in designing a receiver to attain the maximum attainable
capacity, several sub-optimal, but practical receivers were proposed for distinguishing co-
herent states (Kennedy, 1973; Vilnrotter and Rodemich, 1984; Bondurant, 1993; Takeoka
and Sasaki, 2008; Nair et al., 2014; Izumi et al., 2012; Yuan et al., 2020). The class of re-
ceivers based on displacement technique using beamsplitters and on-off photodetectors are
much simpler to understand, simpler in design, and are of low-cost.

Contribution

In this chapter, we focus on designing a displacement receiver to design an optimum symbol
constellation to maximize the mutual information. The past development so far doesn’t
deal with optimization problems concerning displacement and symbol priors simultaneously.
Our optimization procedure demonstrates that the capacity, denoted by CG, obtained from
simultaneous optimization procedure over displacement and prior probabilities achieved is
higher than one achieved with zero displacement. The overall scheme of designing a receiver
by optimizing displacement prior to detection at on-off photodetector demonstrates that the
receiver must be tuned differently at different photon number regimes to achieve the best
performance. Previous work (Kennedy, 1973; Vilnrotter and Rodemich, 1984; Bondurant,
1993; Takeoka and Sasaki, 2008; Nair et al., 2014; Izumi et al., 2012; Yuan et al., 2020) in
this regard doesn’t aim at tuning the receiver based on the photon-number regime under
which the system operates. We demonstrate, by numerical simulation, that by tuning the
receiver’s parameters to optimize the objective function, the receiver performance comes out
superior to the state-of-the-art method. The potential of such design is immense, specifically
in deep-space communication that requires extreme optimization of resources.

The rest of the chapter is organized as follows: we first provide some fundamentals of a
quantum channel for Free-Space Optical (FSO) communication as self-sufficiency for the
readers in Section 3.2. Next, we discuss our methods of calculating capacity CG concerning
displacement and symbol prior in the absence and presence of thermal noise and detector
imperfection. In the subsequent section, we present the result and provide a comparison
concerning existing ways of calculating capacity. We end our discussion with some future
goals.
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3.2 Phase-shift Keyed Coherent States, Noise models, and
Detector imperfections

After the discovery of laser, in 1963, R.J. Glauber proposed the theory of optical coher-
ence (Glauber, 1963b) which further lead to development of QIT by Helstrom (Helstrom
et al., 1970), Dolinar (Dolinar, 1973b, 1982, 1976, 1973a), Kennedy (Yuen et al., 1975; Hel-
strom and Kennedy, 1974) and various other researchers. The initial objective of QIT was
to provide a mathematical theory of information and develop methods to represent infor-
mation in an efficient way for transmission and storage. Theories were also developed to
preserve information in presence of noise and defects. After Voyager 2 (Smith et al., 1989),
Jet Propulsion Laboratory (JPL) at NASA took immense interest in QIT and its applica-
tion for deep-space communication using the free-space optical channel. In last few decades,
a number of treatise have been written and theories have been developed for applications
such as deep-space communication, (Vilnrotter and Lau, 2001) channel coding and data
compression, (Liu et al., 2019a; Ninacs et al., 2019; Liu et al., 2019b) cryptography and
encryption, (Alsina and Razavi, 2019; Djordjevic, 2019b,a; Qu and Djordjevic, 2018) and
quantum internet (Sadeghi-Zadeh et al., 2019; Das et al., 2019; Loncar and Raymer, 2019;
Asif, 2020; Pant et al., 2019) - all of them employing FSO communication channel.

In the case of semi-classical communication, the transmitted symbols are encoded by a series
of quantum states {|αi〉}, i ∈ [1,M ] where we send pure quantum states through the FSO
communication channel. At the end of the channel, a receiver performs detection by the
means of hypothesis testing. FSO quantum communication offers reliable means to transmit
both classical and quantum information. Laser lightwaves consisting of coherent states are
the most convenient way of communication in FSO. A standard coherent state (henceforth
called coherent state), denoted by ket notation |α〉 is written as

|α〉 =

∞∑
n=0

αn√
n!
e
−|α|2

2 |n〉 = e
−|α|2

2

∞∑
n=0

αn√
n!
|n〉 (3.1)

where |n〉 is a number state or a Fock state. Fock states form an orthonormal basis for
measurement that can be used in spectral decomposition. See (Gazeau, 2009), Section
2.3.1, and 2.4 for more details.

In M-ary phase-shift keyed coherent state communication, every state out of M states for
the signaling interval [0, T ] is denoted by |ψi〉 =

∣∣αej2π(i−1)/M〉 , i ∈ [1,M ]. All coherent
states |α〉 , α ∈ C form an overcomplete basis in the Hilbert space. In QIT, the existence
of a probability distribution on the states accessible to a system is defined by a statistical
operator called the density matrix :

ρ =
∑
i

pi |ψi〉 〈ψi| =
∑
i

piρi (3.2)

Rahul Kumar Bhadani – The University of Arizona



Optimal Receiver Design for Quantum Communication – Page 34

where ρi is the outer product, pi is the probability for the system to be in state |ψi〉 when
|ψ〉 is represented using orthonormal basis with

∑
pi = 1.

When using the quantum state as an information carrier, the communication is done using
an ensemble of quantum states with alphabet A = {ρ1, ρ2, · · · , ρM} through a sequence of
quantum operations representing the channel. Optical coherent states are not orthogonal
- one can attempt to minimize the overlap 〈α|β〉 between two coherent states |α〉 and |β〉.
Several receivers have been proposed in an attempt to minimize the error probability of
distinguishing quantum states or maximize the mutual information being transmitted over
the channel. In the next section, we discuss the design of displacement receivers based on
photon counting and an on-off photodetector.

3.3 Displacement Receivers with Photon-counting and On-
off Photodetector for BPSK

In semi-classical quantum communication, BPSK is represented by a pair of coherent states
differ only in phase by π radian, i.e., {|α〉 , |−α〉}. Detecting coherent states in such case
using photon-counting and on-off detector requires some form of optical operation as with
direct detection phase information can not be detected by an on-off detector. One such
operation is amplitude displacement. A displacement operation is performed using optical
circuit so as to shift the amplitude of a coherent state. A beamsplitter is used to perform
displacement operation as described in Section 2.6. For a displacement receiver to act on
BPSK, we first null out one of the two coherent state to a vacuum state followed by another
displacement operation such that {|−α〉 , |α〉} → {|0〉 , |2α〉} → {|β〉 , |2α+ β〉}. The overall
operation of a displacement receiver with BPSK is shown in Figure 3.1.

Figure 3.1: A schematic diagram of the displacement receiver with BPSK symbols. An optimized
displacement receiver uses a two-step displacement operation where one of the two coherent states
of BPSK is nulled out to a vacuum state and then displaced by β amount.

The operation of the displacement receiver is most straightforward with the BPSK symbols.
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Let X represent the input coherent state (one of two possible) {|−α〉 , |α〉} to the channel.
When the input to the channel is binary, X can be used to represent the transmission of
the pulse with either phase of 0 degrees or 180 degrees by using the corresponding coherent
state. During each symbol epoch when X is transmitted, an integer number of photons is
detected by the photodetector. Detection of photons results in real-valued output denoted
by Y at the detector that can be passed to a decoder or a simple threshold to identify the
transmitted symbol X. Recall that the statistics of photon arrival is given by the Poisson
point process:

P (K = k) =
Nk

k!
e−N k = 0, 1, 2, · · · (3.3)

i.e. the probability of detecting k photon over a given time interval is given by Equation
(3.3) when we know the mean photon number is N . The detector will see clicks when the
transmitter transmits the pulse following the Poisson point process. If we have a pulse with
a mean photon number N , then the probability of not getting any clicks as per the Poisson
point process is given by

P (no clicks) = e−N (3.4)

In case of displacement receivers, a beamsplitter and a local oscillator is used to shift BPSK
symbols to {|β〉 , |β + 2α〉} via two step process as shown in Figure 3.1, where β is the
displacement amount. The receiver tries to assess which symbol or state was transmitted by
performing quantum measurement, Π on the channel (see Section 4.3.2 of (Gazeau, 2009) for
further reading). The operator Π is described by an appropriate Positive-Operator Valued
Measurement (POVM) represented by a complete (here countable) set of positive operators
resolving the identity

∑
i Πi = Î , Πi ≥ 0 with i representing index of possible measurement

or hypothesis. For BPSK, POVM resolution unity corresponds to Π0+Π1 = Î. If hypothesis
H0 is true, i.e ρ0 corresponding to |−α〉, the measurement outcome corresponds to Π0,
otherwise Π1. For displacement receiver with on-off detector, the receiver decides in the
favor of H0 when number of click on detector is 0, otherwise H1, In practice, this operation
is equivalent to measurement operation given by Π0 and Π1. In order to write mutual
information, we first need to write probability distribution of the output Y . We can use
Bayes’ rule to write the probability distribution of Y as follows:

pY (y) = p0pY |X(y|x = 0) + p1pY |X(y|x = 1) (3.5)

where p0, p1 are the probabilities of BPSK symbols. pY |X(y = 0|x = 0) is the probability of
no clicks when |β〉 after displacement was sent. Since the photon counting follows Poisson
distribution, probability of generating no clicks, when |β〉 was trasmitted, is equal to e−|β|2

(we simply put N = |β|2 in Equation (3.4)). Similarly, pY |X(y = 0|x = 1) is the probability
of no clicks when |α〉, or |2α+ β〉 after the displacement, was transmitted, which is equal
to e−|2α+β|2 . Similarly, pY |X(y = 1|x = 0) is the conditional probability of non-zero click,
i.e., detection |α〉 when |−α〉 was transmitted which is 1 − e−|β|

2 . pY |X(y = 1|x = 1) is
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Figure 3.2: Transition probability matrix for BPSK. Transition probability matrix is used to
describe a channel visually where a connection between each possible input and output is connected
and annotated by the transition probability, mapping a particular input to an output. For example,
probability of receiving output Y = 0 when X = 0 was transmitted is given by e−|β|

2

.

the probability of non-zero clicks that detecting |α〉 when |α〉 was transmitted which is
1 − e−|2α+β|

2 . This idea is illustrated in Figure 3.2. Hence, we can write probability of
outcome Y as follows:

pY (0) = p0e
−|β|2 + p1e

−|2α+β|2 (3.6)

pY (1) = p0(1− e−|β|
2
) + p1(1− e−|2α+β|

2
) (3.7)

Based on Equations (3.6) and (3.7), conditional entropy can be written as

H(Y |X = 0) = −pY |X(Y = 0|X = 0) log2 pY |X(Y = 0|X = 0)

− pY |X(Y = 1|X = 0) log2 pY |X(Y = 1|X = 0)

= −e−β2
log2 e

−β2 − (1− e−β2
) log2(1− e−β

2
)

(3.8)

H(Y |X = 1) = −pY |X(Y = 0|X = 1) log2 pY |X(Y = 0|X = 1)

− pY |X(Y = 1|X = 1) log2 pY |X(Y = 1|X = 1)

= −e−(2α+β)2 log2(e
−(2α+β)2)− (1− e−(2α+β)2) log2(1− e−(2α+β)

2
)

(3.9)

Then conditional entropy can be used to write the mutual information IBPSK(X;Y ).
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IBPSK(X;Y ) = H(Y )−H(Y |X)

= H(Y )−
∑
i

p(X = i)H(Y |X = i)

=

[
− pY (0) log2(pY (0))− pY (1) log2(pY (1))

]
−[

p ·H(Y |X = 0) + (1− p) ·H(Y |X = 1)

]

=

 ln
(

1− e−(2α+β)
2
) (

e−(2α+β)
2

− 1
)

ln (2)
−

ln
(

e−(2α+β)
2
)

e−(2α+β)
2

ln (2)

 (p− 1)

+ p

e−β
2

ln
(

e−β
2
)

ln (2)
−

ln
(

1− e−β
2
) (

e−β
2 − 1

)
ln (2)


−

ln
((

e−(2α+β)
2

− 1
)

(p− 1)− p
(

e−β
2 − 1

)) ((
e−(2α+β)

2

− 1
)

(p− 1)− p
(

e−β
2 − 1

))
ln (2)

−
ln
(
p e−β

2 − e−(2α+β)
2

(p− 1)
) (

p e−β
2 − e−(2α+β)

2

(p− 1)
)

ln (2)
(3.10)

In our generalized displacement receiver design, we aim to derive generalized capacity CG by
maximizing mutual information over symbol prior as well as displacement amount β. Hence,
our new problem statement becomes simultaneous maximization of mutual information over
the displacement vector and prior probabilities which we denote by CG:

CG = max
pX(x),β

IBPSK(X;Y ) (3.11)

To solve the Equation (3.11) using (3.10), we take partial derivative of (3.10) with respect
to p and β and use newton’s method to numerically find the optimum solution. We calculate
the Hessian matrix to validate the maximizer.

3.3.1 Detector Imperfections

Our previous discussion has ignored the situation of imperfect detection. We now discuss
some detector imperfections and how they are modeled. For coherent states, subunity (< 1)
detection efficiency translates to an ideal detector masked by a beamsplitter with trans-
mission efficiency η < 1 (Gazeau, 2009). It can be shown that detection efficiency can be
incorporated into coherent state notation by replacing α by √ηα. Another notable imperfec-
tions is dead time. In an avalanche photodiode, a detection phenomenon must be followed
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by a quenching process to settle down electron avalanche before any further detection can
be done. The time during which quenching happens is called as dead time (Müller and Mar-
quardt, 2015). During the dead-time detector is blind to the incoming photon. However,
for a Kennedy-like receiver that makes a decision based on first photon detection, dead-time
is irrelevant. Another notable imperfection is dark count (or dark click). The dark count
rate is the average rate of counts registered without any incident photon. The dark count
statistics are Poissonian in nature, assuming dark count rate to be Nd that adds to a photon
count rate of the displaced signal, overall mean photon number becomes NT = N+Nd. The
effect of the dark count is similar to having a random displacement of the quantum state.
Dark count leads to the deformation of the signal constellation on the circle and leads to
increased mutual overlap of the signal. To determine the probability of correct detection, it
should be noted that when we include the process of the dark count, then we are dealing
with two independent Poisson processes. The resulting mean of a Poisson process consisting
of two independent Poisson process is the sum of the individual means. In such a case, the
on-off detector is described by the measurement operator (Izumi et al., 2012)

Π̂off = e−Nd
∞∑
n=0

(1− η)n |n〉 〈n|

Π̂on = Î − Π̂off

(3.12)

The transition probability matrix with dark count and detection efficiency included is de-
picted in Figure 3.3. Accordingly, we can modify Equations (3.6) and (3.7) to include the

Figure 3.3: Transition probability matrix for BPSK with sub-efficient detector and notable dark
count. Transition probability connecting possible inputs and outputs are updated to include detected
efficiency and dark count.

two parameters: η and Nd.

Figure 3.4 shows the channel capacity for BPSK in the units of bits transmitted per symbol
for the ideal case and its comparison with a few known receiver design techniques. Orange
curve is for capacity in bits transmitted per symbol for Dolinar receiver which is given by

Cd = 1 + p log2(p) + (1− p) log2(1− p) (3.13)
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Figure 3.4: BPSK channel capacity for the ideal case. We present a comparison of prior-maximized-
displacement maximized mutual information with Capacity from other receiver design in units of
bits transmitted per BPSK symbol (bits per mode).

where p = 1
2

(
1−
√

1− e−4N
)

is the prior error probability for the case of Dolinar receiver

that maximizes the mutual information with N being the mean photon number (Cario-
laro, 2015). Theoretically, Dolinar receiver is the best performing receiver known to the
date. However, its practical realization is difficult and also requires multiple copies of quan-
tum states. Green dotted-dashed curve represents capacity in bits per symbol for classical
Kennedy receiver where no attempt is made to optimize the displacement while maximizing
the mutual information. Capacity for classical Kennedy receiver with no optimum displace-
ment is given by

Ck = log2

(
1 + (1− p)pp/(1−p)

)
(3.14)

where p = e−4N is the prior probability for the case of classical Kennedy receiver. Dotted
red curve in Figure 3.4 is capacity for Unambiguous state discrimination (USD) receiver for
BPSK. Capacity for USD receiver is given by

Cu = 1− e−2N (3.15)

Purple dashed curve in Figure 3.4 represents capacity in bits per symbol for Homodyne
receiver. The capacity for Homodyne receiver is given by

Ch = 1 + p log2(p) + (1− p) log2(1− p) (3.16)

with p = 1
2erfc(

√
2N), erfc is the Gauss error function. Finally, the blue solid line curve is

the capacity obtained using prior-maximized-displacement-maximized mutual information
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that is the focus of our work. Interested readers may refer to Chapter 9 of (Cariolaro,
2015), (Chefles and Barnett, 1998; Shor, 2003; Takeoka and Guha, 2014) for a detailed dis-
cussion on derivation of capacities for Dolinar receiver, Kennedy receiver, USD receiver,
and Homodyne receiver we discussed. We note that the prior maximized-displacement max-
imized mutual information performs only subpar to the Dolinar receiver but beats other
receiver designs and does not require multiple copies of the quantum state to be transmit-
ted.

From Figure 3.5, we see the optimum displacement is quite different in two cases where (i)
we minimize one-shot error probability, (ii) we maximize mutual information. Based on this
theoretical result, we emphasize that the receiver design is influenced by the information-
processing task at hand. Optimizing a receiver to minimize symbol error probability may
not result in a capacity-maximizing setting for that same receiver and vice-versa.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
N, the mean photon number

0.0
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 that maximizes for
BPSK mutual information (optimal prior)

 that minimizes one-shot
error probability (equal prior)

Figure 3.5: This graph compares the β, optimal displacement for the Kennedy receiver, for (a) op-
timizing capacity (blue dotted), and (b) minimizing error probability assuming equal priors (orange
dashed)

3.4 Displacement reciver design for QPSK

The quadriphase-shift keying (QPSK) is composed of four coherent states with states defined
by

|αk〉 =
∣∣∣αe2πjk/4〉 k ∈ [0, 3] (3.17)

with a priori {p0, p1, p2, p3}. Unlike previous works, we do not assume equal probability.
There are several receiver designs for QPSK that have been proposed in the literature, how-
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ever, there is not enough discussion available on capacity or mutual information calculation.
In the next few paragraphs, we reproduce one of those designs - proposed by Izumi and
Sasaki (Izumi et al., 2012) and extend the existing work to obtain optimized capacity.

3.4.1 Izumi-Sasaki Design without Feedforward

Figure 3.6: QPSK signal constellation at the input. In phase-shift keying (PSK), the constellation
points are positioned with equal angular spacing around a circle. QPSK, a PSK with four points,
is denoted by four points on a circle, equispaced. Each point differs from its preceding point by a
phase of π/4.

In this section, we start with initial desgin of QPSK constellation proposed by Izumi-
Sasaki (Izumi et al., 2012). Based on coherent state considered in Equation (3.17), the
quantum states without displacement or any transformation are {|α0〉 , |α1〉 , |α2〉 , |α3〉} ≡
{|α〉 , |jα〉 , |−α〉 , |−jα〉} (see Figure 3.6).

A sequential operation of a three-port scheme is achieved by using two beamsplitters with
transmittivities τ1 and τ2 that create three additional branches at which displacement op-
eration D(βi), i ∈ [1, 3] is applied where βi are optimized displacement value. The original
Izumi-Sasaki design uses exact nulling, however, we employ optimized displacement oper-
ation and assume that the transmittivity of all beamsplitter employed in the circuitry is
τ = τ1 = τ2. The overall design is shown in Figure 3.7.

After branching from the first beamsplitter, a nulling displacing of −
√
τα0 follows an opti-

mized displacement β0. An on-off photodetector performs detection and if it doesn’t register
a click, it means the symbol α0 = α was transmitted. At this point, the probability of correct
classification is

pY |X(y = 0|x = 0) = e−η|β0|
2−Nd (3.18)
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Figure 3.7: QPSK semi-classical demodulator. In this type of receiver design, two beamsplitters
are employed where decisions are made sequentially. The first output of the first beamsplitter is
displaced twice and photo-detection is performed. If the decision is ambiguous, then observation
is moved to the other stages. At the second stage, the second output of the first beamsplitter
is fed through the first input port of the second beamsplitter, mixed with a vacuum state. The
first output of the second beamsplitter is displaced twice before performing binary decision using a
photodetector. The procedure is repeated at the third stage if the decision remains ambiguous. The
second output of the second beamsplitter is displaced twice and finally, the photodetector provides
an unambiguous decision.
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If the detector registers a non-zero click, then we look at part B of the circuit. If the second
detector doesn’t register a click, then the probability of detecting α2 = −α is

pY |X(y = 2|x = 2) =

(
1− e−Nd−η|−2

√
τα+β0|2

)
e−η|β2|

2−Nd (3.19)

If the second detector registers a non-zero click, then we move to branch C. In branch C, if
the third detector doesn’t register a click then the probability of detecting jα, when it was
actually sent, is

pY |X(y = 1|x = 1) =

(
1− e−Nd−η|j

√
τα−
√
τα+β0|2

)
×
(

1− e−Nd−η|j
√
τ
√
1−τα+

√
τ
√
1−τα+β2|2

)
× e−η|β1|2−Nd

(3.20)

and finally if detector 3 registers a click, then we declare that the state α3 was transmitted
such that

pY |X(y = 3|x = 3) =

(
1− e−Nd−η|−j

√
τα−
√
τα+β0|2

)
×
(

1− e−Nd−η|−j
√
τ
√
1−τα+

√
τ
√
1−τα+β2|2

)
×
(

1− e−Nd−η|−2j(1−τ)α+β1|2
) (3.21)

Similar to the Section 3.3, we can use Bayes’ rule to write the probability distribution of Y
for the QPSK receiver as follows:

pY (y) = p0pY |X(y|x = 0) + p1pY |X(y|x = 1)

+p2pY |X(y|x = 2) + p3pY |X(y|x = 3)
(3.22)

with
∑3

0 pi = 1. The expression for conditional entropies and mutual information is similar
to ones in Equations (3.8), (3.9), and (3.10). The generalized capacity CG is obtained by
solving the optimization problem:

CG = max
pX(x),β0,β1,β2

IQPSK(X;Y ) (3.23)

with pX(x) the prior probabilities for random variable X, i.e. {p0, p1, p2, p3} subject to∑3
0 pi = 1. In the design of QPSK receiver, we consider Nd, η, and τ to be design parameters

and hence, constant. In this case, IQPSK is function of α with optimization parameters
p0, p1, p2, p3, β0, β1, and β2. Hence the optimization problem looks like as follows:

CG = max
p0,p1,p2,p3,β0,β1,β2

f(α,Nd, η, τ ; p0, p1, p2, p3, β0, β1, β2) (3.24)

subject to constraint
∑3

0 pi = 1, and 0 ≤ pi ≤ 1.

The conditional probabilities are used to construct transition probability matrix (also known
as channel matrix in some literature) and can be used for calculating entropy and conditional

Rahul Kumar Bhadani – The University of Arizona



Optimal Receiver Design for Quantum Communication – Page 44

entropy by using Equations similar to one presented in Equations (3.8), (3.9), and (3.10).
We omit the exact expression of entropies for the case of QPSK but they can be calculated
as we calculated for BPSK. We will be able to calculate them using definitions of entropy
and conditional probability expressions presented below. In the following expressions, X
denotes a random variable corresponding to an input state and Y denotes a random variable
corresponding to the detected state.

pY |X(y = 0|x = 0) = e−η|β0|
2−Nd (3.25)

pY |X(y = 1|x = 0) =

(
1− e−Nd−η|β0|2

)
×(

1− e−Nd−η|2
√
τ
√
1−τα+β2|2

)
×

e−Nd−η|(1−τ)α−j(1−τ)α+β1|
2

(3.26)

pY |X(y = 2|x = 0) =

(
1− e−Nd−η|β0|2

)
e−Nd−η|2

√
τ
√
1−τα+β2|2 (3.27)

pY |X(y = 3|x = 0) =

(
1− e−Nd−η|β0|2

)
×(

1− e−Nd−η|2
√
τ
√
1−τα+β2|2

)(
1− e−Nd−η|(1−τ)α−j(1−τ)α+β1|2

) (3.28)

pY |X(y = 0|x = 1) = e−Nd−η|j
√
τα−
√
τα+β0|2 (3.29)

pY |X(y = 1|x = 1) =

(
1− e−Nd−η|j

√
τα−
√
τα+β0|2

)
×(

1− e−Nd−η|j
√
τ
√
1−τα+

√
τ
√
1−τα+β2|2

)
e−η|β1|

2−Nd
(3.30)

pY |X(y = 2|x = 1) =

(
1− e−Nd−η|j

√
τα−
√
τα+β0|2

)
e−Nd−η|j

√
τ
√
1−τα+

√
τ
√
1−τα+β2|2 (3.31)

pY |X(y = 3|x = 1) =

(
1− e−Nd−η|j

√
τα−
√
τα+β0|2

)
×(

1− e−Nd−η|j
√
τ
√
1−τα+

√
τ
√
1−τα+β2|2

)
×(

1− e−η|β1|2−Nd
) (3.32)

pY |X(y = 0|x = 2) = e−Nd−η|−2
√
τα+β0|2 (3.33)
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pY |X(y = 1|x = 2) =

(
1− e−Nd−η|−2

√
τα+β0|2

)
×(

1− e−η|β2|2−Nd
)
e−Nd−η|−(1−τ)α−j(1−τ)α+β1|

2

(3.34)

pY |X(y = 2|x = 2) =

(
1− e−Nd−η|−2

√
τα+β0|2

)
e−η|β2|

2−Nd (3.35)

pY |X(y = 3|x = 2) =

(
1− e−Nd−η|−2

√
τα+β0|2

)
×(

1− e−η|β2|2−Nd
)(

1− e−Nd−η|−(1−τ)α−j(1−τ)α+β1|2
) (3.36)

pY |X(y = 0|x = 3) = e−Nd−η|−j
√
τα−
√
τα+β0|2 (3.37)

pY |X(y = 1|x = 3) =

(
1− e−Nd−η|−j

√
τα−
√
τα+β0|2

)
×(

1− e−Nd−η|−j
√
τ
√
1−τα+

√
τ
√
1−τα+β2|2

)
× e−Nd−η|−2j(1−τ)α+β1|2

(3.38)

pY |X(y = 2|x = 3) =

(
1− e−Nd−η|−j

√
τα−
√
τα+β0|2

)
e−Nd−η|−j

√
τ
√
1−τα+

√
τ
√
1−τα+β2|2

(3.39)

pY |X(y = 3|x = 3) =

(
1− e−Nd−η|−j

√
τα−
√
τα+β0|2

)
×
(

1− e−Nd−η|−j
√
τ
√
1−τα+

√
τ
√
1−τα+β2|2

)(
1− e−Nd−η|−2j(1−τ)α+β1|2

)
(3.40)

Figure 3.8 shows the channel capacity for QPSK using Izumi Sasaki design in the units of
bits transmitted per symbol for zero displacements (i.e. when we maximize mutual infor-
mation only over prior and set displacement βi to zero) and its comparison with optimum
displacement using optimization method.

To solve the optimization problem (3.24), we use MATLAB’s fmincon function. fmincon,
however, aims to minimize a function, hence in our case, we minimize −IQPSK subject
constraint mentioned in Section 3.4.1. In vector form we can write optimization parameter
x ≡ (p0, p1, p2, p3, β0, β1, β2). Equality constraint for this optimization problem is

Rahul Kumar Bhadani – The University of Arizona



Optimal Receiver Design for Quantum Communication – Page 46

Aeqx = b

⇒
[
1 1 1 1 0 0 0

]


p0
p1
p2
p3
β0
β1
β2


= 1

(3.41)

and the lower bound constraint is lb =
[
0 0 0 0 −Inf −Inf

]
. The upper bound con-

straint is ub =
[
1 1 1 1 Inf Inf

]
.

We start with initial condition x0 = [0.25, 0.25, 0.25, 0.25, 0, 0, 0]. In addition to that, we
also execute few simulation with random initial points and we find out that CG, the capacity
comes out to be same with varying optimal values of priors and displacements (there may
be multiple local minima). We choose τ = 0.5, Nd = 0.0 and η = 1.0 for the purpose of
optimization.
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Figure 3.8: QPSK channel capacity using Izumi-Sasaki design. We present a comparison for
a case when displacement is zero and when displacement is optimum that maximizes the mutual
information. We observe that the receiver achieves higher capacity for low photon numbers regime
but converges for 1 to 10 photons regime.

We further performed some simulation studies on the impact of varying transmittivity τ on
the channel capacity. See Figure 3.9. For all the values of the transmittivity τ , optimal
displacement provides higher capacity. In the low photon regime, capacity is higher as the
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transmittivity is increased but at the higher photon regime, it seems τ = 0.5 provides the
best channel capacity.
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Figure 3.9: QPSK channel capacity using Izumi-Sasaki design. A comparison of the channel
capacity with varying transmittivity for null and optimal displacement. For a particular τ , optimal
displacement provides higher channel capacity. Further, in low photon numbers regime, increasing
τ increases the channel capacity, but that cannot be said in the higher photon number regime, when
we should use different parameters.

The optimal priors for maximizing mutual information in case of both, zero displacement
and optimum displacement are provided in Figure 3.10 and Figure 3.11. From Figure 3.11,
it is evident that priors we found with our optimization method may be local optima and not
the global one. In fact, fmincon function doesn’t promise to provide global optima. This is
one reason behind discontinuity in the curves presented in Figure 3.11 since fmincon merely
focuses on optimization and doesn’t care about Lipschitz continuity (Hager, 1979). Finding
global optima for a non-convex function is NP-hard, but we only strive to demonstrate that
the receiver design is influenced by the objective and there is still room for improvement by
making optimal choices such as transmittivity of beamsplitters, displacement amount and
taking into account imperfections in optical elements.

Finally, we study the impact of dark current on the channel capacity. From our study, we
observe that the higher the dark current, the lower the capacity gets. However, for optimal
displacement-optimal prior, capacity remains higher than one with zero displacement even
in the presence of the dark current. We provide a comparative illustration of capacity with
a dark current of 0.2, 0.4, 0.6, and 0.8. The relevant graph is shown in Figure 3.12.

From the analysis presented in figures 3.8-3.12, it is evident that no single choice of de-
sign parameters for a displacement receiver can work optimally in every condition. The
receiver needs to be tuned depending on the photon number regime at which the commu-
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Figure 3.10: The optimal priors that maximizes mutual information for QPSK (keeping displace-
ment null).
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Figure 3.11: The optimal priors that maximizes mutual information for QPSK (simultaneously
maximizing the displacement). We only show one in every 50 data points for clean visualization.
Discontinuities are observed in probability values as a function of the mean photon number since
the optimization routine only finds local minima. As the objective function is not convex, we do not
expect to get global optima.
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Figure 3.12: The impact of dark current on the capacity of QPSK and optimality study. Higher
the dark current, the lower the capacity we get. However, at the higher photon regime, the effect of
dark current is negligible.

nication system needs to operate, and properties of optical elements such as beamsplitter’s
transmittivity, and dark count statistics of the photodetector.

3.5 Conclusion

In this work, we proposed an optimized receiver design based on an earlier design for BPSK
and QPSK modulation formats. We compared two different strategies, one with zero dis-
placement and one with the optimal displacement that maximizes the mutual information.
Our work also demonstrated the impact of optical elements’ imperfections on the capacity
of the receiver for QPSK. Further, we conclude that the receiver needs to be tuned based
on the photon number regime, and properties of optical elements used in the optical com-
munication system. We believe that optimization methods like the one proposed here may
translate to the transmission of higher data rates over a dynamic optical link that is avail-
able for a short period. This may lead to improved communication performance over the
FSO communication channel, especially for deep-space communication. In upcoming work,
we strive to perform similar analysis beyond semi-classical quantum communication and
apply optimization methods on quantum channels. Besides, some other practical consider-
ations such as atmospheric turbulence, thermal noise, etc. remain that we may consider in
a derivative work.
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ä4
Optimal Squeezing Operation for
Displacement Receiver

“ Many receiver designs have been studied in the past to discriminate Phase-Shift
Keying (PSK) quantum states that are used to encode information before trans-
mitting over the communication channel. Among many types of quantum states,
there has been significant work on the use of coherent states for encoding infor-
mation. Previous work has sought to improve the communication performance in
terms of various metrics such as error probability of state discrimination and ca-
pacities by employing more complex quantum states such as squeezed-displaced
states. In this chapter, we use a squeezing operation with a displacement re-
ceiver for state discrimination. Our calculation demonstrates that we see no
performance improvement in terms of probability of error of state discrimina-
tion as well as mutual information using displacement receivers when optimal
squeezing parameters are used with squeezing operation on the transmitter side
for BPSK and QPSK. In addition, we also study the receiver design scheme for
QPSK modulation where squeezing is employed at the receiver side. We find that
using squeezing operation on the receiver side provides an advantage in terms of
increased mutual information for the low-photon regime compared to when no
squeezing is used. ”

4.1 Introduction

Light is considered to be in a squeezed state if its electromagnetic field strength E for some
phases Θ has quantum uncertainty smaller than that of a coherent state. Squeezing is noth-
ing but reduced uncertainty in either in-phase or quadrature components. Quantum uncer-
tainty can be quantified by performing a large number of identical measurements on identical
quantum objects such as modes of light. Historically, the squeezed state was developed as
the two-photon coherent state which is different from Glauber’s coherent state (Glauber,
1963a). In the 1960s, Glauber wrote a series of treatises on quantum-mechanical properties
of optical fields, especially focusing on coherence and correlation. He noted that photon
statistics at a few photon-level lie outside the domain of classical physics. Later on, Horace
P. Yuen presented the theory of two-photon coherent states (Yuen, 1976) which led to the
formal development of squeezed states.
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For state discrimination, a number of practical receiver designs have been proposed such
as Kennedy receiver (Kennedy, 1973), and optimal Kennedy receiver (Izumi et al., 2012)
that uses the coherent state to encode information using Binary Phase-Shift Keying (BPSK)
modulation. Later on, the work was extended to near-optimal receiver design using Quadra-
ture Phase Shift Keying (QPSK) in (Müller and Marquardt, 2015; Izumi et al., 2012) where
no attempts were made to optimize receiver design parameters. In Chapter 3, we presented
an optimal receiver design concept for BPSK and QPSK using a coherent state where we
optimized the receiver design parameters for superior performance in terms of mutual infor-
mation.

Contribution

Attempts have been made to use squeezing operation for quantum state discrimination such
as one presented in (Izumi et al., 2013). However, in (Izumi et al., 2013), the squeezing
was applied on the receiver side and required three separate squeezing operations. Further,
the study was limited to error probability calculation. In this article, we study the impact
of squeezing operation in quantum state discrimination for classical communication when
squeezing is applied on the transmitter side. Our numerical study shows that on contrary
to popular belief, squeezing offers no advantage in terms of state discrimination for optimal
displacement receivers when squeezing is performed on the transmitter side. We present
our receiver design for the case of BPSK and QPSK. We also extend (Izumi et al., 2013)
to calculate the optimal mutual information when squeezing is applied on the receiver side.
We find out that when squeezing is used on the receiver side, increased mutual information
is achieved as compared to when purely coherent states are used.

4.2 Squeezing Operation

Squeezed light is a form of non-classical light in which states cannot be described by
a mixture of coherent states. Squeezed states are characterized by measuring canonical
continuous-variable phase-space observables. The squeezing effect can be observed contin-
uously, independent of the time when the measurement is performed. The squeezing effect
is also independent of the measurement integration time. Such properties of squeezed light
can be used to enhance the sensitivity of laser interferometer or the performance of image
beyond the shot noise (Vahlbruch et al., 2005; Goda et al., 2008). Squeezed light is generally
obtained from laser radiation through parametric amplifiers.

We know that a coherent state |α〉 is completely described by a complex number α but for
a squeezed-displaced state (more commonly called squeezed state), the state is described
by two complex parameters, the displacement α and squeezing parameter z = rejθ. A
brief description on the Fock-state expansion of squeezed-displaced states is provided in
Section 2.7. Next, we discuss photon statistics for squeezed-displaced states.
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4.2.1 Photon Statistics for Squeezed-Displaced States

The probability distribution of the number of photons in a squeezed state is obtained by
squaring the coefficients in Equation (2.64). The probability of detecting k photons is given
by

pn(α, n = k) =
pn(α, n = k)∑k=n

k=0 |pn(α, n = k)|2
(4.1)

where pn(α, n = k) =

∣∣∣∣ ∣∣reiθ, α〉k ∣∣∣∣2. However, numerically, the accuracy of probability

calculation is limited to how many terms we use in the Fock state expansion. The higher the
number of Fock states, the better the accuracy. In this chapter, we use n = 30, beyond which
no significant improvement is made in terms of probability calculation. The probability
distribution of photon number in squeezed displaced state as per Equation (2.64) is given
in Figure 4.1 which is inherently sub-Poissonian.

4.3 Receiver Design with Squeezing Operation

In this section, we describe displacement receiver design for state discrimination when infor-
mation is encoded using a squeezed-displaced state at the transmitter side. We also consider
an alternative receiver design for QPSK modulation where squeezing is performed on the
receiver side. We assess the performance of the receiver in terms of the probability of error
of state discrimination and mutual information.

4.3.1 Receiver Design for BPSK State Discrimination

Extending our work from Chapter 3, we apply squeezing operation to the reference coher-
ent state at the transmitter side before applying displacement operation. Consider BPSK
constellation representing {−α, α}, on which a Gaussian unitary operation consisting of
phase-shift, displacement, and squeezing is applied and then detection of the state is per-
formed using an on-off photodetector. The transition probability matrix for such receiver
design is given in Figure 4.2. A schematic of the receiver design is provided in Figure 4.3.

4.3.2 Receiver Design for QPSK State Discrimination

We apply squeezing at the transmitted side of the displacement receiver we discussed in
Chapter 3. The signals to be discriminated are QPSK coherent states defined as

|αk〉 =
∣∣∣αe2πjk/4〉 k ∈ {0, 1, 2, 3} (4.2)
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Figure 4.1: The probability distribution of photon number in squeezed-displaced states from Equa-
tion (2.64).

A schematic diagram of the proposed receiver is shown in Figure 4.4. We also study an
alternative receiver design concept where squeezing is performed on the receiver side. In such
an alternative scheme, we require three separate squeezing operations. Figure 4.5 illustrates
the concept of such receiver design. The QPSK signal after squeezing is split into three
branches via two beamsplitters with transmittivity τ1 = τ2 = τ . A sequential operation of a
three-port scheme is achieved by using two beamsplitters with transmittivities τ1 and τ2 that
create three additional branches at which displacement operation D(βi), i ∈ [1, 3] is applied
where βi are optimized displacement value. After displacement, the signal is detected by an
on-off detector which decides if the signal is present or not.
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Figure 4.2: BPSK symbols and their displaced symbols.

1. Reference Squeezed-
displaced state

Reference
coherent state

Squeezing
Operation

Rotation Operation to generate
BPSK constellation

Figure 4.3: A schematic diagram of the displacement receiver with BPSK symbols. Squeezed-
displaced states are used to encode information using BPSK modulation.
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Figure 4.4: QPSK semi-classical demodulator with squeezing on transmitter side.

4.4 Performance Assessment of Proposed Receiver Design

4.4.1 Error Probability Calculation for BPSK

The error probability for BPSK can be written as

Pe = p0P (off|on) + p1P (on|off)

= p0P (off|on) + (1− p0)P (on|off)

= p0pn(2α+ β, n = 0)

+ (1− p0)(1− pn(β, n = 0)) ≡ f(p0, r, θ, β;α)

(4.3)

where P (off|on) is the probability of detecting 0 photons when in fact non-zero photon state
is transmitted. We consider the case of equal prior, i.e. p0 = 0.5. Since Equation (4.3) is
monotonic in p0, there is no such optimized p0 that minimizes Equation (4.3). However, we
can perform a multivariable objective approach to minimize error probability with respect
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Figure 4.5: QPSK semi-classical demodulator with squeezing on receiver side.

to r, θ, and β. Our objective function in this case is

min
r,θ,β

f(r, θ, β;α) ≡ Pe (4.4)

subject to

∞ > r ≥ 0.0

π ≥ θ ≥ −π
β ∈ [−∞,∞]

(4.5)

We compare the result of minimization to the case of a coherent state when no squeezing is
used. Note that after applying squeezing operation, the mean photon number doesn’t stay
as N = |α|2 for the coherent state |α〉 but rather is given by Ns = |α|2 + sinh2(r∗) since
squeezing on the transmitted side effectively increase the mean photon. r∗ is the optimized
squeezing amplitude. Our results show that squeezing offers no advantage in terms of error
probability when error probability is plotted against mean photon number N for the case
of coherent state and Ns for the case of the squeezed displaced state, when the comparison
is performed against then optimized coherent state case for Kennedy receiver with optimal
nulling. The corresponding plot is shown in Figure 4.6.

Rahul Kumar Bhadani – The University of Arizona



Optimal Receiver Design for Quantum Communication – Page 58

We also analyzed the case of the squeezing operation on the receiver side for BPSK. In
such a case, the mean photon number is |α|2 but the functional form of Equation (4.3)
doesn’t change since displacement operation is additive. We find out that, the result is
the same as for the case of transmission side squeezing, i.e. no improvement in optimal
error probability due to squeezing. This is primarily due to the fact the optimized
squeezing amplitude doesn’t contribute significantly to the mean photon number Ns as
shown in lower subplots of Figure 4.6.
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Figure 4.6: Optimal error probability for BPSK. We compare optimal error probability when BPSK
is encoded using coherent states vs when it is encoded using squeezed-displaced state. We find that
squeezing offers no obvious advantage. However, squeezing operation requires additional optical
elements which may complicate or introduce additional errors due to imperfect implementation.

4.4.2 Maximizing Mutual Information for BPSK

In order to calculate mutual information for BPSK, we calculate posterior pY (0) and pY (1).
The posterior probability for Y is given as

pY (0) = p0pn(β, n = 0) + p1pn(2α+ β, n = 0)

pY (1) = p0

(
1− pn(β, n = 0)

)
+ p1

(
1− pn(2α+ β, n = 0)

) (4.6)
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Next, we write condition entropy as:

H(Y |X = 0) = −pY |X(Y = 0|X = 0) log2 pY |X(Y = 0|X = 0)

− pY |X(Y = 1|X = 0) log2 pY |X(Y = 1|X = 0)

H(Y |X = 1) = −pY |X(Y = 0|X = 1) log2 pY |X(Y = 0|X = 1)

− pY |X(Y = 1|X = 1) log2 pY |X(Y = 1|X = 1)

(4.7)

Entropy for the posterior is given by

H(Y ) = −pY (0) log2(pY (0))− pY (1) log2(pY (1)) (4.8)

Finally, we can calculate mutual information as

IBPSK = H(Y )−
1∑
i=0

p(X = i)H(Y |X = i) (4.9)

IBPSK is a function of priors p0, p1, squeezing amplitude r, squeezing phase θ, and displace-
ment β0. We perform multivariate optimization (4.9) over priors, squeezing parameters, and
displacement parameters to calculate optimal mutual information. Our results indicate that
squeezing offers no advantage compared to the case when squeezing is not used. The result
is summarized in Figure 4.7. In such a case using merely coherent states are sufficient.
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Figure 4.7: A comparison of optimal mutual information (capacity) for various receiver design
schemes. We find that capacity is lower for the case when squeezing is used compared to the case
when squeezing is not used.

4.4.3 Error Probability Calculation for QPSK State Discrimination

We are interested in optimizing the parameters of displacement operation, and squeezing
operation to minimize Pe. We first consider the case when squeezing is applied on the
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transmitter side. The on-off detection process is described by the measurement operator Πi

and the correct detection of the probability is given by

PY |X(Y = i|X = i) = 〈Ψi|Πi |Ψi〉 (4.10)

From Equation (4.10), we can write average error probability as

Pe = 1−
3∑
i=0

pi · PY |X(Y = i|X = i) (4.11)

We can represent Equation (4.10) as a function q of α, r, and θ, i.e. q(α, r, θ) represents
the probability of having an *off* outcome or detecting no photons for squeezed-displaced
coherent state for quantum state

∣∣α, rejθ〉. Based on the receiver design from Figure 4.4,
our input QPSK constallation is as follows:

|Ψk〉 ≡
∣∣∣αej 2πk4 , rejθej

2πk
4
·2
〉
≡
∣∣∣αej 2πk4 , rej(θ+

2πk
4
·2)
〉
,

k ∈ {0, 1, 2, 3}
(4.12)

In our scheme, we generate QPSK constellation from reference squeezed-displaced coherent
state

∣∣α, rejθ〉 where rotation operation R(2πk4 ), k ∈ {0, 1, 2, 3} is applied to the reference
state to generate the whole constellation. The rotation operator R(θ) introduces phases θ to
the reference squeezed-displaced state. The effect of the application of the rotation operator
on the reference state is provided in (Cariolaro, 2015), Sections 7.14.5 and 11.20.

Now, we are ready to write down the probability of the current classification. Πk is the
correct classification of QPSK states given by Equation (4.12). Π0 is given by 〈Ω0|ΠA

off |Ω0〉
where Ω0 represents quantum state after optimal displacement and ΠA

off denotes measure-
ment operator for photodetector A in Figure 4.4 when photodetector detects no photon.
After splitting from the first beamsplitter, a nulling displacement −τα0 is applied then an
optimized displacement operation β0 is performed. An on-off photodetector performs detec-
tion and if no clicks are registered, then the first state was transmitted. Similarly, if α2 is
sent, the first detector won’t register a click and control will go to the second arm. If α1

is sent, then control will go to the second term and if the third detector doesn’t register a
click then X = 1 was transmitted. Finally, when all of the detectors register click one by
one then the fourth state was transmitted, and we decide that X = 3 was transmitted. The
conditional probability of correct decision is given in Equations (4.13)-(4.16).

PY |X(y = 0|x = 0) = 〈Ω0|ΠA
off |Ω0〉 = q(β0, r, θ) (4.13)

PY |X(y = 2|x = 2) =

(
1− 〈Ω2|ΠA

off |Ω2〉
)
× 〈Ω2|ΠB

off |Ω2〉

=

(
1− q(−2

√
τα+ β0, r, θ + 2π)

)
× q(β2, r, θ + 2π)

(4.14)
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PY |X(y = 1|x = 1) =

(
1− 〈Ω1|ΠA

off |Ω1〉
)

×
(

1− 〈Ω1|ΠB
off |Ω1〉

)
× 〈Ω1|ΠC

off |Ω1〉

=

(
1− q(j

√
τα−

√
τα+ β0, r, θ + π)

)
×
(

1− q(j
√
τ
√

1− τα+
√
τ
√

1− τα+ β2, r, θ + π)

)
× q(β1, r, θ + π)

(4.15)

PY |X(y = 3|x = 3) =

(
1− 〈Ω1|ΠA

off |Ω1〉
)

×
(

1− 〈Ω1|ΠB
off |Ω1〉

)
×
(

1− 〈Ω1|ΠC
off |Ω1〉

)
=

(
1− q(−j

√
τα−

√
τα+ β0, r, θ + 3π)

)
×
(

1− q(−j
√
τ
√

1− τα+
√
τ
√

1− τα+ β2, r, θ + 3π)

)
×
(

1− q(−2j(1− τ)α+ β1, r, θ + 3π)

)

(4.16)

Using Equations (4.13), (4.15), and (4.14), (4.16), we can write the expression for average
error probability by substituting them into Equation (4.11).

We assume two cases of optimization: equal priors and unequal priors. In the first case,
optimization problem is to minimize error probability Pe over r, θ, β0, β1, and β2. Thus,
we can write Pe ≡ f(r, θ, β0, β1, β2;α, τ). Thus

min
r,θ,β0,β1,β2;α,τ

f(r, θ, β0, β1, β2;α, τ)

such that
r ∈ [0,∞)

θ ∈ [−π, π]

βi ∈ [−∞,∞]

(4.17)

We choose τ = 0.5, assume the presence of no dark current and detector efficiency to be 1 for
simplicity. Further, we limit the value of r within [0,6] since it is prohibitively expensive to
achieve squeezing with amplitude greater than 6. We compare the optimal error probability
obtained from the optimization problem (4.17) to the error probability obtained by setting
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r ≈ 0, i.e. no squeezing. Similar to the error probability for BPSK state discrimination,
squeezing in the case of QPSK state discrimination doesn’t offer any advantage as shown
in Figure 4.8. Further, we perform optimization for the case of unequal priors. Note that
Equation (4.11) is monotonic in priors, hence we would not have any true optimized prior
p0 that minimizes the error probability. However, we do demonstrate that non-uniform
signaling provides a lower probability than a uniform signal. The summary of the analysis
is given in Figure 4.8.
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Figure 4.8: Optimal error probability for QPSK. We compare optimal error probability when
QPSK is encoded using coherent states vs when it is encoded using squeezed-displaced state. From
our results, we find that squeezing offers no obvious advantage. However, squeezing operation
requires additional optical elements which may complicate or introduce additional errors during
implementation. In addition, we also consider non-uniform signaling when priors are not equal. In
such a case, no true optimal prior is available. However, non-uniform signaling does provide a lower
error probability of state discrimination. We consider two cases while minimizing error probability:
(i) when priors are bounded between 0 and 1, (ii) when priors are bounded between 0.1 and 0.9. We
find that for the latter case, p0 converges to 0.7 while p1, p2, and p3 attain the value of 0.1.

We also analyzed the case of using squeezing on the receiver side for which we had three
separated squeezing operations as demonstrated in Figure 4.5. In such a case, we find out
that, squeezing operation on the receiver side does lead to a slight improvement in error
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probability as depicted in Figure 4.9.
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Figure 4.9: Optimal error probability for QPSK with squeezing operation on the receiver side. We
find out that squeezing operation on receiver side improves error probability slightly as compared
to one with purely coherent states.

4.4.4 Maximizing Mutual Information for QPSK

Similar to BPSK, we calculate the mutual information for QPSK where optimization is
performed over priors, squeezing parameters, and displacement amplitudes. For squeezing
on transmitter side, we consider two cases: (i) priors are constrained within [0,1], (ii) priors
are constrained within [0.1, 0.9]. Further, we put constrained on squeezing amplitude r to
be within [0.0, 6] for the practical reason mentioned earlier in the chapter. Similarly, we
analyze receiver design for optimal mutual information when squeezing is performed on the
receiver side. We compare the maximal mutual information achieved with the case of a
purely coherent state. We find out the when squeezing is performed on the receiver side,
optimal mutual information is higher as compared to when no squeezing is performed at all.
The result is summarized in Figure 4.10.

4.5 Discussion and Conclusion

While single-mode squeezing offers an advantage in certain cases, for example, reduced error
probability for QPSK state discrimination when squeezing is performed on the receiver side,
the performance is minuscule which comes at the cost of more complex circuitry. The
theoretical advantage demonstrated in such a case may be lost by imperfections in the optical
component used for squeezing. Based on our study, we conclude that using squeezing offers
no additional advantage for a displacement-style receiver. When squeezing is applied at
the transmitter side, the squeezing operation effectively increases the mean photon number.
In such respect, merely using a coherent state is sufficient to achieve optimal performance
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Figure 4.10: Optimal mutual information for QPSK with squeezing operation on the transmitter
side vs on the receiver side. We find out that squeezing operation on the receiver side improves
mutual information slightly as compared to when squeezing is performing on the transmitter side.
Further, we find out that as compared to the purely coherent state, mutual information is greater
increased when squeezing is performed on the receiver side. We observe sub-optimal solutions for
certain mean photon values which may be attributed to the optimization routine being stuck on
local minimal and failing to achieve global minima. Regardless, we demonstrate that it is possible
to create a receiver configuration for QPSK modulation that provides increased mutual information
when squeezing is used on the receiver side.
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as long as long receiver design parameters are optimized. However, it is possible to use
some alternative receiver design where a squeezing operation might provide a substantial
advantage. We leave the exploration of such receiver design for future work.

Studies have shown that on the contrary to single-mode squeezing, two-mode squeezing
provides a substantial advantage in terms of lower error probability and higher mutual
information (Hao et al., 2021; Djordjevic, June 2021, Article ID: 7500114; Shi et al., 2020).
Two-mode squeezing is used to facilitate entanglement-assisted communication which can
surpass ultimate classical capacity. We describe receiver design for entanglement-assisted
communication in the next chapter.
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ä5
Optimized Receiver Design for
Entanglement-Assisted Communication
using BPSK

“ The use of pre-shared entanglement in entanglement-assisted communication
provides a superior alternative to classical communication specifically in the
photon-starved regime and highly noisy environment. In this chapter, we an-
alyze the performance of a few low-complexity receivers that employ optical
parametric amplifiers. In the simulation, we demonstrate that receiver designs
with an entanglement-assisted scheme using phase-shift-keying modulation can
outperform classical capacities. We describe a newly proposed 2x2 optical hybrid
receiver for entanglement-assisted communication whose performance is roughly
10% better in terms of error probability as compared to previously proposed op-
tical parametric amplifier-based receivers. Further, we find that using unequal
priors for BPSK provides approximately three times the advantage over equal
priors in terms of information rate. ”

5.1 Introduction

Quantum Information Processing (QIP) has seen dramatic progress in recent decades with
multiple research directions towards quantum sensing, covert communication, quantum cryp-
tography, and so on. A quantum channel can be considered as transferring quantum infor-
mation from one party (commonly referred to as Alice) to another party (commonly referred
to as Bob). In the case of a perfect channel, the transfer of the quantum information remains
intact while if the channel is noisy, some changes occur to the quantum information being
transmitted. Quantum channels can also be used to carry classical information. Further, if
the channel is noisy within a certain limitation, the quantum channel can be used to share
entanglement between Alice and Bob. A pre-shared entanglement can be used to improve
classical capacity and evade an adversary, commonly known as Eve (Holevo and Werner,
2001; Holevo, 2002; Bennett et al., 2002; Shi et al., 2020; Zhuang, 2021). Recent experi-
ments have demonstrated that even in the case of entanglement breaking scenario, the rate
of entanglement assisted (EA) communication can be much larger than the communication
without entanglement (Zhang et al., 2015; Hao et al., 2021). For the Holevo Schumacher-
Westmoreland (HSW) capacity C in the classical regime, and the entanglement-assisted
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Capacity CEA, the ratio CEA
C diverge logarithmically with the inverse of the signal power

over a lossy and noisy Bosonic channel (Holevo, 2002).

Some recent efforts have been developed to propose receiver design for EA communication
where authors have used Gaussian approximation for determining bit error rate (BER) (Guha,
2009; Shi et al., 2020; Zhuang, 2021; Djordjevic, June 2021, Article ID: 7500114). The pre-
viously proposed design of the receiver is limited to a demonstration using BPSK with
repetition coding over more than 106 bosonic modes that occupy the whole C-band and a
portion of the L-band.

In this work, we analyze the receiver design for EA communication using Optical Parametric
Amplifier (OPA) and show that EA communication doesn’t need to occupy the whole C-
band. Additionally, we analyze a 2x2 optical hybrid-based receiver for EA communication
which is suitable for implementation in integrated optics and quantum nanophotonics. We
further propose an optimized hypothesis testing scheme and numerically demonstrate that
optimized receiver design provides superior communication capacity as compared to capacity
obtained without entanglement assistance. When employing the BPSK modulation format
to represent the digital information, we find that non-equal priors perform at least three
times superior in terms of information rate when compared to an equal prior encoding
scheme.

The rest of the chapter is organized as follows. In Section 5.2, we provide a brief review of
entanglement-assistance with mathematical formalism required for the rest of the chapter.
In Section 5.3, we discuss receiver design scheme followed by their evaluation in Section 5.4.

5.2 Entanglement Assisted Classical Communication Con-
cept

An entanglement state is defined to be one whose quantum state cannot be factored as
product states of its local constituents. In other words, they are individual particles but
inseparable as a whole. As an example, given two basis vectors {|0〉A , |1〉A} in Hilbert space

HA and {|0〉B , |1〉B} in Hilbert space HB, then
1
√

2
(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B) is in an

entangled state. If a composite system is in an entangled state, it is impossible to attribute
either system A or B a definite pure state. Even if the von Neumann entropy of the whole
state is zero, the entropy of the subsystem is greater than zero. In this sense, we can say
that the systems are entangled.

In Entanglement-assisted classical communication, either optic fiber or satellites can be used
to distribute the entangled states which are stored in quantum memories. On the transmitter
side, Alice transmits classical data using signal photon of entangled pair, marred by noisy
and lossy quantum channel. Bob, on the receiver side, employs idler photon of entangled
pair to make a decision about what was transmitted using an optimum quantum receiver.

Rahul Kumar Bhadani – The University of Arizona



Optimal Receiver Design for Quantum Communication – Page 69

The overall design is shown in Figure 5.1. We can assume that some error correction is
applied to quantum states to restore information transmitted and to alleviate the effect of
decoherence.

Figure 5.1: An illustration showing the concept of EA communication.

5.3 Receiver Design for EA Communication

Entanglement-assisted communication requires two-mode Gaussian states that are generated
by spontaneous parametric down-converted entangled-photon pairs. The SPDC source is a
broadband source with modes M = TmW independently and identically distributed source-
idler pair where W is phase-matching bandwidth and Tm is the measurement interval. An
SPDC process generates M independent pairs of signal-idler photons in space and time
denoted by their annihilation operation {â(m)

s , â
(m)
i }, m ∈ [1,M ], prepared in identical

entangled two-mode squeezed vacuum (TMSV) state. They can be represented in Fock
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state basis as

|ψ〉si =

∞∑
0

√
Nn
s

(Ns + 1)n+1
|n〉s |n〉i (5.1)

where Ns is the mean photon number in each of signal and idler (Mauerer et al., 2009;
Guha, 2009). TMSV belongs to a class of Gaussian states where M -modes Gaussian state
ρ̂ comprising of {â(m),m ∈ [1,M ]} modes is characterized by mean and variance of their
respective quadrature field operators such that â(m) = p̂(m) +jq̂(m). Covariance matrix for a
TMSV state is given by Equation (5.2) where I and Z are 2×2 Pauli matrices. If we consider

ΛTMSV =


2Ns + 1 0 2

√
Ns(Ns + 1) 0

0 2Ns + 1 0 2
√
Ns(Ns + 1)

2
√
Ns(Ns + 1) 0 2Ns + 1 0

0 −2
√
Ns(Ns + 1) 0 2Ns + 1


=

[
(2Ns + 1)I 2

√
Ns(Ns + 1)Z

2
√
Ns(Ns + 1)Z (2Ns + 1)I

] (5.2)

the Phase-shift keying (PSK) modulation scheme for communication, then mathematically,
we can use the unitary operator Ûθ = ejâ

†â to denote rotation of base annihilation operator
â. For transmitting information using entangled photons generated from SPDC, a signal
photon of signal-idler pair is used while idler is pre-shared before transmission happens. The
received photon mode (after passing through the communication channel) at Bob’s end is
denoted by âR = âR′e

jθ. Note that from here onwards, we drop the mode notation from
the annihilation operator for simplicity. Under the phase-encoding scheme, the covariance
matrix of the return-idler pair {âR, âI} is given by Equation (5.3) where NR = ηNs + NB,

[
(2(Ns + ηNB) + 1)I 2

√
ηNs(Ns + 1)ZRe[ejθ(Z−jX)]

2
√
ηNs(Ns + 1)Re[ejθ(Z−jX)]Z (2NR + 1)I

]
(5.3)

η being the transmittivity of Bosonic channel, and NB the mean photon number of thermal
mode. In order to transmit the information, Alice modulates the signal âs′ with the help
of a phase modulator to apply rotation θ to modulate the signal photon. The signal passes
through lossy thermal Bosonic quantum channel and is received by Bob as âR = âR′e

jθ

where âR′ is the base photon mode at the receiving end. Bob uses the idler part of the pre-
shared entanglement photon pair and an optimum quantum detector to make hypothesis
testing to decide which symbol was transmitted.
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5.3.1 OPA based receiver with threshold detection

A joint detection receiver for state discrimination of EA communication consists of an optical
parametric amplifier (OPA). At the receiver side, an Optical Parametric Amplifier (OPA)
is used to combine return-idler pair as shown in Figure 5.2. The return and idler modes are
evolved as given by Heisenberg’s picture as

û =
√
GâR +

√
G− 1â†I

v̂ =
√
GâI +

√
G− 1â†R

(5.4)

where G is gain of OPA such that G = 1 + ε, ε << 1. OPA receiver can be used to

Photon Count

Figure 5.2: Operating Principle of Optical Parametric Amplifier (OPA): At the receiver end, para-
metric amplification is applied to return-idler pair with gain G. Error probability of discrimination
is higher at û, hence the photon detection is made v̂.

combine and amplify return-idler pair using a strong local pump that gives rise to a pair of
Equations given by (5.4). At output ports, a photodetector is used to do photon counting
and a threshold detection rule is applied to make state discrimination. Let us assume
photodetector output operator as û and v̂ at two output ports which can be commonly
called as return and idler output port respectively. For each output, the mean photon
number is given by expectation

〈
û†û
〉
or
〈
v̂†v̂
〉
depending on whether threshold detection is

made at signal output port or idler output port.

The photocurrent operator and its expectation is given by Equations (5.5) and (5.6). Assum-
ing M-ary PSK modulation is imposed by the phase modulator, the return mode at return
port is given by âR = âR′e

iθ where θ is the phase shift introduced by the phase modulator.
Further, we assume mean photon number Ni = Ns for TMSV states where Ni is the mean
photon number for idler mode and Ns is the mean photon number for signal mode. In the
case of a pre-shared entangled state, the idler is assumed to be undisturbed, hence at the
receiver side, the idler mean photon number NI = Ni = Ns. However, signal mode passes
through a thermal lossy bosonic channel, hence signal mode is altered and called return
mode on the receiver side with mean photon number NR = ηNs +NB.

For practical communication, consider that information is encoded using repetition code-
words that employ Binary Phase-Shift Keying (BPSK) modulation with phases θ ∈ {0, π}.
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û†û = (
√
Gâ†R +

√
G− 1âI)(

√
GâR +

√
G− 1â†I)

= Gâ†RâR +
√
G(G− 1)â†Râ

†
I +

√
G(G− 1)âI âR + (G− 1)âI â

†
I

= Gâ†RâR + (
√
G(G− 1))(â†Râ

†
I + âI âR) + (G− 1)âI â

†
I〈

û†û
〉

= G
〈
â†RâR

〉
+ (
√
G(G− 1))(

〈
â†Râ

†
I

〉
+ 〈âI âR〉) + (G− 1)

〈
âI â
†
I

〉
= GNR +

√
G(G− 1)(ejθ + e−jθ)

√
ηNs(Ns + 1) + (G− 1)(1 +NI)

As,âR = âR′e
jθ, 〈âR′ âI〉 =

√
ηNs(Ns + 1), âI â

†
I = â†I âI + I

Further, NR = ηNs +NB after passing through a channel
with mean thermal photon number NB

NI = Ns, As, idler is per-shared

N1(θ) =
〈
û†û
〉

= G(ηNs +NB) + (G− 1)(1 +Ns) + 2 cos θ
√
G(G− 1)

√
ηNs(Ns + 1)

(5.5)

v̂†v̂ = (
√
Gâ†I +

√
G− 1âR)(

√
GâI +

√
G− 1â†R)〈

v̂†v̂
〉

= GNI + +2 cos θ
√
G(G− 1)

√
ηNs(Ns + 1) + (G− 1)(1 +NR)

N2(θ) =
〈
v̂†v̂
〉

= GNs + (G− 1)(1 + ηNs +NB) + 2 cos θ
√
G(G− 1)

√
ηNs(Ns + 1)

(5.6)

Decoding BPSK can be modeled as hypothesis testing such that detecting if H0 is true,
then BPSK symbol with θ = 0 was transmitted, and if the hypothesis H1 is true, then the
symbol with θ = π was transmitted.

To allow for efficient error correction, repeated PSK codewords consisting of M signal-idler
pairs are used in EA communication (Shi et al., 2020). In a joint-detection scheme, the
receiver mixes all M received modes and counts the total number of photons at output
ports. Under the hypothesis testing, if a total number of photons detected is N < Nth, then
H0 is true, otherwise, H1 is true. Joint detection state, in this case, becomes M-fold tensor
product ρ⊗M with identical zero-mean thermal states and per mode mean photon is given
by N1(θ) or N2(θ), depending on which output port of OPA we decide to use. Optimum
joint measurement for state discrimination requires photon counting at an output port and
decide between two hypotheses using total photon N over M modes. Under such scenario,
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the probability mass function (pmf) is negative binomial with mean MN(θ), and standard

deviation σ(θ) =
√
MN(θ)(N(θ) + 1) given by

POPA(n|θ;M) = n+M−1Cn

(
N(θ)

1+N(θ)

)n(
1

1+N(θ)

)M
(5.7)

whereN is generalized representation forN1 andN2. Equation (5.7) can be approximated as

Gaussian distribution with meanMN(θ), and standard deviation σ(θ) =
√
MN(θ)(N(θ) + 1),

for sufficiently large M . At the detector end, we use threshold detection, and decide in
the favor of H0 if the total number of photons detected is N < Nth(θ) otherwise H1 for
N ≥ Nth(θ) where Nth(θ) is the threshold number of photons which is a function of phase
θ.

5.3.2 Optical Phase Conjugation Receiver

OPA can also be used in a different fashion where return âR mode can interact with vacuum
mode âv to produce

√
Gâv +

√
G− 1â†R which becomes âc =

√
2âv + â†R for G = 2. By

mixing idler with âc using a 50-50 beamsplitter, we get two modes
1
√

2
(âc ± âI). Output

from two arms are fed to a balanced detector and difference of the detector is measured as
photocurrent. We call this Optical Phase Conjugate receiver or OPC receiver. Consider the
schematic of OPC receiver given in Figure 5.3. For the case of BPSK, the mean photon

Optical
Parametric
Amplifier

G = 2

+

-
Photodetector

Photodetector

Figure 5.3: Operating Principle of Optical Phase Conjugate (OPC) receiver: signal interacts with
vacuum followed by mixing with idler using 50-50 beamsplitter and a balanced detection is applied
using photodetectors.

operators of two output arms of beamsplitters are given by Equation (5.8).
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â†A/B âA/B =
1

2

[
(G− 1)âRâ

†
R ±
√
G− 1âRâI ±

√
G− 1â†I â

†
R + â†I âI

]
with + sign for arm A and − sign for arm B.

(5.8)

We adopt a joint-detection scheme similar to one adopted for the OPA receiver discussed in
Section 5.3.1 containing M modes for error correction. The difference of mean photon num-
ber detected at two photodetectors of OPC is converted to photocurrent with photocurrent
operator b̂ given by

b̂ = â†AâA − â
†
B âB =

√
G− 1âRâI +

√
G− 1â†I â

†
R

NOPC(θ) =
〈
b̂
〉

= 2 cos θ
√
ηNs(Ns+ 1),

as, âR = âR′e
jθ,

〈âR′ âI〉 =
√
ηNs(Ns + 1), âRâ

†
R = â†RâR + I

(5.9)

Variance σ2OPC is given by

σ2OPC(θ) =
〈
b̂2
〉
−
〈
b̂
〉2

= Ns(ηNs +NB + 1)

+ (Ns + 1)(ηNs +NB + 1)

− 2(ηNs(Ns + 1)) cos 2θ − 4(ηNs(Ns + 1)) cos2 θ

(5.10)

5.3.3 2x2 Optical Hybrid Receiver based Joint Receiver

2x2 Optical Hybrid

Balanced
Detector

Figure 5.4: Receiver configuration of a 2 × 2 optical hybrid based joint balanced detection receiver.
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In this section, we describe a practical receiver design using a 2x2 optical hybrid for EA
communication. An optical hybrid-based joint detection scheme is suitable for EA commu-
nication since it can be directly implemented in integrated optics and quantum nanopho-
tonics. For a two-dimensional constellation, a 2x2 optical hybrid receiver may be used as
shown in Figure 5.4. A detailed discussion of optical hybrid receiver design can be found
in (Djordjevic, June 2021, Article ID: 7500114) where Gaussian modulation has also been
discussed. The scattering matrix S of 2x2 optical hybrid is described by

S =

[
ejφ1
√

1− κ
√

1− κ√
1− κ ejφ2κ

]
(5.11)

with κ being the power-splitting ratio of Y-junction in a 2x2 optical hybrid. Return and
idler at the receiver is transformed based on the scattering matrix

[
ÂR
ÂI

]
= S

[
âR
âI

]
. (5.12)

With equal power splitting κ = 0.5, we can write

[
ÂR
ÂI

]
=

1
√

2

[
ejφ1 1

1 ejφ2

] [
âR
âI

]
(5.13)

For BPSK, âR = âR′e
jθ with θ ∈ {0, π}. The photocurrent operator is given by

îOH =
1

2
e−jθ(e−jφ1 − ejφ2)â†R′ âI

+
1

2
ejθ(ejφ1 − e−jφ2)â†I âR′

(5.14)

The expectation of photocurrent is given by

NOH =
〈
îOH

〉
=

1

2
e−jθ

√
ηNs(Ns + 1)(e−jφ1 − ejφ2)

+
1

2
ejθ
√
ηNs(Ns + 1)(ejφ1 − e−jφ2)

(5.15)

In this chapter, we consider a special case of 2x2 optical hybrid receiver where φ1 = 0 and
φ2 = π, for which, NOH = 2

√
ηNs(Ns + 1) cos θ. The variance of the photocurrent operator

Rahul Kumar Bhadani – The University of Arizona



Optimal Receiver Design for Quantum Communication – Page 76

is given by

σ2OH =
〈
î2OH

〉
−
〈
îOH

〉2
=

1

4
|ejφ1 − e−jφ2 |2(2NRNI +NR +NI)

+
ηNs(Ns + 1)

4

[(〈
e−2jθ

〉
− e−2jθ

)
(e−jφ1 − ejφ2)2

]
+
ηNs(Ns + 1)

4

[(〈
e2jθ

〉
− e2jθ

)
(ejφ1 − e−jφ2)2

]
−
ηNs(Ns + 1)

2
e−jθejθ|ejφ1 − e−jφ2 |2

(5.16)

For equi-prior BPSK symbols,
〈
e±2jθ

〉
= (e±2jπ + e±2j·0)/2 = 1. For non-equi prior symbols

with priors p0 and p1,
〈
e±2jθ

〉
is calculated as p0e±2jπ + p1e

±2j·0 which is still 1. Further,
regardless of phase value θ ∈ {0, π} for BPSK symbols, e±2jθ = cos 2θ. Putting these values
in Equation (5.16), we can rewrite variance of photocurrent for BPSK as

σ2OH =
1

4
|ejφ1 − e−jφ2 |2(2NRNI +NR +NI)

+
ηNs(Ns + 1)

4

[(
1− cos 2θ

)
(e−jφ1 − ejφ2)2

]
+
ηNs(Ns + 1)

4

[(
1− cos 2θ

)
(ejφ1 − e−jφ2)2

]
−
ηNs(Ns + 1)

2
|ejφ1 − e−jφ2 |2

(5.17)

For the special of φ1 = 0 and φ2 = π, the variance for BPSK is

σ2OH(θ) = (2NRNI +NR +NI)

+ 2ηNs(Ns + 1)(1− cos 2θ)− 2ηNs(Ns + 1)
(5.18)

where NR = ηNs +NB and NI = Ns.

5.4 Evaluation of Entanglement-Assisted Communication
Receivers
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5.4.1 Error Probability Calculation

The probability of error of state discrimination for the case of BPSK using OPA is given by

PE = p0POPA

(
n < Nth|θ = 0;M

)
+ p1

[
1− POPA

(
n < Nth|θ = π;M

)]
.

(5.19)

An optimum value of Nth can be found by equating individual error term in Equation

(5.19) which, for case of equi-probable symbols gives usNth(θ) =
M(σ(π)N(0) + σ(0)N(π))

(σ(π) + σ(0))
.

However, for unequal priors, the optimum thresholdNth is the one that satisfies the condition

p0POPA

(
n < Nth|θ = 0;M

)
= p1

[
1− POPA

(
n < Nth|θ = π;M

)]
.

(5.20)

We solve Equation (5.20) for Nth using grid search procedure and plug into Equation (5.19)
to calculate the error probability.

The joint detection can either be made at the idler output port or signal output port (i.e.
return port). The error probability of discrimination is higher at the return port compared
to detection made at the idler port, as shown in Figure 5.5b. As a result, our further
analysis solely focuses on making joint detection at the idler port. We find out that for the
case of non-equal priors, the mean threshold photon for BPSK discrimination is higher for
any detection made at the return output port than at the idler output port (see Figure 5.6).
Note that even though the error probability PE in Equation (5.19) is a convex function of
Nth, it is monotonic function of prior p0, as shown in Figure 5.7. Hence, there doesn’t exist
an optimum prior that minimizes the probability of error of state discrimination.

For the case of the OPC receiver, we calculate the error probability by taking Gaussian
approximation of photodetection statistics as we measure the difference of photocurrent
obtained at two arms of the beamsplitter at the detection side (Figure 5.3). The Gaussian
approximation yields the probability of error formula given by Equation (5.21)

PE = p0FOPC

(
Nth,M ·NOPC(0),

√
M · σOPC(0)

)
+ p1

[
1−FOPC

(
Nth,M ·NOPC(π),

√
M · σOPC(π)

)] (5.21)

where NOPC(θ) and σOPC are given by Equations (5.9) and (5.10) respectively, and FOPC
is cumulative distribution function of Gaussian distribution with mean M · NOPC(θ) and
standard deviation

√
M ·σOPC. Similar to the OPA receiver, we can calculate optimum Nth
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by equating two terms of Equation (5.21). From Figure 5.5a, we see that the performance of
the OPC receiver in terms of error probability in discriminating BPSK symbols is better than
that of the OPA receiver. However, for a low number of modes M , OPA receivers with non-
equi priors still perform better than OPC receivers with equal priors and perform similar
to OPC receivers with non-equal priors. Our evaluation suggests that lower complexity
receivers like OPA receivers with fewer optical components can provide superior information
retrieval with a suitable choice of prior.

The error probability of 2x2 optical hybrid can be calculated using a formula similar to one
in Equation (5.21) with mean and variance from Equations (5.15) and (5.18) respectively.
From the error probability plot in Figure 5.5a, we see that the 2x2 optical hybrid offers
roughly 10% improvement in terms of BPSK state discrimination as compared to OPC
receiver.

5.4.2 Mutual Information Calculation

Holevo capacity (Holevo and Werner, 2001; Holevo, 2002) for classical communication that
doesn’t require entanglement assistance is given by

C = g(ηNs +NB)− g(NB) (5.22)

where g(n) = (n+ 1) log2(n+ 1)− n log2(n) is the entropy of the thermal state with mean
photon number n. To write mutual information and in turn capacity for entanglement-
assisted classical communication requiring symbol-by-symbol joint detection, we are required
to calculate conditional probability distribution. Assume that the random variable X is used
to denote the received symbols, and Y is used to denote the detected symbols. We calculate
the mutual information as follows. We first calculate conditional probabilities to complete
the transition matrix. Using conditional probabilities we can calculate posteriors. Posteriors
are used to calculate conditional entropies followed by the calculation of mutual information.
The overall set of steps is provided in Equation (5.23).
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Figure 5.5: Top: Symbol-by-symbol (separable) minimum error-probability measurement on each
return-idler mode pair at idler output port. We find that unequal priors have lower error probability
as compared to BPSK symbols with equal prior. Bottom: Symbol-by-symbol (separable) minimum
error-probability measurement on each return-idler mode pair at return output port of OPA receiver.
As compared to measurement made at idler output port of the OPA receiver, error probability is
higher at the return output port of the OPA receiver.

Rahul Kumar Bhadani – The University of Arizona



Optimal Receiver Design for Quantum Communication – Page 80

0 200 400 600 800 1000
M

0

50

100

150

200

250

N
th

M vs N
th

Detection at Idler Port

p
0
 = 0.49

p
1
 = 0.51

0 200 400 600 800 1000
M

0

200

400

600

800

1000

1200

1400

N
th

M vs N th              

Detection at return output Port

p
0
 =0.49

p
1
 = 0.51

Figure 5.6: Optimal threshold for hypothesis testing at the output port of OPA as a function of
number of modes. Higher threshold is required when detection is made at the return output port
compared to the detection made at idler output port of OPA receiver.

Figure 5.7: Surface plot of PE as a function of prior p0 and threshold mean photon number Nth
from Equation (5.19) for photodetection at idler output port for OPA receiver.
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py|x(Y = 0|X = 0) = 1− POPA(n < Nth|θ = 0;M)

py|x(Y = 1|X = 1) = POPA(n < Nth|θ = π;M)

py|x(Y = 0|X = 1) = 1− POPA(n < Nth|θ = π;M)

py|x(Y = 1|X = 0) = POPA(n < Nth|θ = 0;M)

py(Y = 0) = p0py|x(Y = 0|X = 0) + p1py|x(Y = 0|X = 1)

py(Y = 1) = p0py|x(Y = 1|X = 0) + p1py|x(Y = 1|X = 1)

H(Y |X = 0) = −py|x(Y = 0|X = 0) log2(py|x(Y = 0|X = 0))

− py|x(Y = 1|X = 0) log2(py|x(Y = 1|X = 0))

H(Y |X = 1) = −py|x(Y = 0|X = 1) log 2(py|x(Y = 0|X = 1))

− py|x(Y = 1|X = 1) log2(py|x(Y = 1|X = 1))

H(Y |X) = p0H(Y |X = 0) + p1H(Y |X = 1)

H(Y ) = −py(Y = 0) log2(py(Y = 0))− py(Y = 1) log2(py(Y = 1))

I(X;Y ) = H(Y )−H(Y |X)

(5.23)

The Shannon’s capacity for transmitting classical information with our EA receivers can be
calculated by taking the maximum of mutual information over prior p and threshold mean
photon Nth, i.e.

CEA = max
p,Nth

I(X;Y ) (5.24)

We find that symbols with equal priors maximize the mutual information, as expected. We
conducted a simulation study with varying number of modes M to optimize the mutual
information as a function of the signal mean photon number transmitted over noisy Bosonic
channel with NB = 1 and transmittivity of Bosonic channel η = 0.01. In Figure 5.8, we
present a comparison of the capacity of various receiver designs proposed for the BPSK
constellation using Equation 5.24. At the same time, we also plot the capacity of the
Homodyne receiver where an average number of photons received is 4ηNs and the average
number of noisy photons is 2NB + 1. The capacity of a Homodyne receiver is given by
CH = 0.5 log2[1 + 4ηNs/(2NB + 1)]. As a reference, we also plot the Holevo capacity given
by Equation (5.22). Note that for achieving Holevo capacity we require coherent states with
Gaussian modulation. For EA communication with the BPSK constellation, we find that
all three joint receivers proposed in this chapter outperform the Holevo capacity even for a
number of modes as low as M = 10. From our analysis and results shown in Figure 5.8,
we conclude that for the proposed EA receiver design employing a joint-detection scheme, a
large number of signal-idler modes is not required. The number of modes as low as M = 10
is sufficient.
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Figure 5.8: Channel Capacity for BPSK state discrimination using different receiver schemes. We
see that entanglement assistance offers advantage in terms of increasing capacity of the channel
and beats the classical capacities such as Holevo capacity and Homodyne Capacity. We chose
transmittivity of Bosonic channel as η = 0.01 and mean background photon as NB = 1.0. In our
numerical study, classical capacity stays below 0.07 bits per channel use for mean signal photon
Ns < 1.0.
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Additionally, we also plot per mode communication rate R normalized by Holevo capacity
for classical communication C in Figure 5.9 where R is given by Equation (5.25).

R =
1 + Pe log2(Pe) + (1− Pe) log2(1− Pe)

M
(5.25)

We find that in terms of normalized communication rate, OPA and OPC receivers perform
almost three times better in the photon-starved regime when BPSK symbols with non-equal
priors are used compared to when BPSK symbols are equally likely. At the same time, 2x2
optical hybrid receivers for non-equal priors perform roughly 2.5 times as compared to BPSK
with equal priors in a photon-starved regime. Further, compared to OPA-based receiver,
2x2 optical hybrid receiver can outperform by as much as 30% in terms of information rate.

10 0 10 1 10 2

1

1.5

2

2.5

3

3.5

4

4.5 OPA receiver, Equal Prior
OPA receiver, p0 = 0.45, p1=0.55
OPC Receiver, Equal Prior
OPC receiver, p0 = 0.45, p1=0.55
2x2 Optical Hybrid, Equal Prior
2x2 Optical Hybrid: , p0 = 0.45, p1=0.55

Figure 5.9: Information rate as a function of number of modes M for EA receivers.

5.5 Discussion
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5.5.1 Gaussian Approximation to Negative Binomial Photon Statistics

Although the photodetection statistics given by OPA receivers in Equations (5.7) is negative
binomial in nature, they are computationally expensive to calculate. For a large value of
M , we can approximate the statistics to be Gaussian distribution. However, we should be
aware of how we may misinterpret the true performance of receivers due to approximation.
In Figure, we plot the CGaussian −CNB. CGaussian is the Capacity of OPA receiver discussed
in Section 5.3.1 by approximating photodetection statistics as Gaussian. CNB is the capacity
by using exact negative binomial distribution from Equation (5.7). Based on our calculation,
we make the following observations: (i) the error of approximation increases as the signal
mean photon Ns increases; (ii) with Gaussian approximation, the capacity of the channel
is over-estimated than its true value; (iii) as the number of modes increases, the error
of approximation vanishes. Our observations are presented in Figure 5.10. Even though
Gaussian approximation over-estimates the capacity, the error is in the order of 10−3 that
is small compared to the value of capacity and allows faster numerical calculation.

5.6 Concluding Remarks and Future Works

Entanglement is a unique phenomenon in quantum information science that can be lever-
aged to design new types of sensors allowing computing devices to solve problems that are
intractable by conventional computers. In communication systems, the use of entangle-
ment assistance offers a unique advantage in terms of providing a better communication
rate in a low photon-number regime. Pre-shared entanglement can be used to surpass the
performance of classical capacity and Holevo capacity in highly noisy and low-brightness
conditions. However, there are several challenges in terms of practical realization of entan-
glement such as (i) the transmission of entanglement over long-distance; and (ii) optimum
quantum receiver to achieve entanglement assisted channel capacity has not been derived
yet. Nevertheless, simulation results indicate that even when entanglement is not perfect,
EA communication based on signal-idler pair outperforms Holevo capacity and capacity of
classical channels.

In this chapter, we analyzed several low-complexity receiver designs employing optical hy-
brids and balanced detectors. We demonstrated that for BPSK modulation, 2x2 optical
hybrid-based joint detection can outperform the OPA and optical phase-conjugation re-
ceivers. Numerical results demonstrate that we don’t need a large number of signal-idler
modes to outperform Holevo and Homodyne capacity.
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Figure 5.10: Top: Capacity error in the case of OPA receiver as a result of approximating negative
binomial photodetection statistics to Gaussian. Bottom: Capacity of OPA receiver with the number
of modes M = 10. We observe that with Gaussian approximation, we overestimates the shannon’s
capacity of OPA receiver for EA communication while discriminating BPSK states.
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ä6
Conclusion

This thesis discusses the importance of parameter choices while designing a receiver for
state discrimination when information is encoded using quantum states. The approach for
detection uses a semi-classical approach with on-off photo-detection made at the receiver
end. The first novel result of the thesis includes optimal receiver design using coherent
states. Coherent states are non-orthogonal states that are building blocks of semi-classical
quantum communication as well as a precursor for fully quantum communication. Our first
result tells us that receiver needs to be tuned based on the photon number regime and
properties of optical elements used in the communication system. A practical extension to
this work can be a realization of such receivers in practice. Our receiver design uses on-off
detectors, however, photon-number resolving detectors may be used to further improve the
performance of such receiver design. In addition to that, the use of non-classical ancillary
states may deliver a lower probability of error than classical states (Nair et al., 2012).

In Chapter 4, we introduce squeezing as a non-Gaussian operation while encoding infor-
mation with phase-shift keying modulation. However, for displacement-style receivers (e.g.
Kennedy’s receiver), employing squeezing while transmitting information doesn’t provide
any additional advantage since squeezing effectively increases the mean photon being trans-
mitted. However, we see some improvement in terms of increased mutual information for
the low photon number regime when squeezing is used on the receiver side. Based on our
study, we hypothesize that a displacement-style receiver may not be an optimal choice when
squeezing operation needs to be used. There may be some other receiver design that can
perform superior as compared to displacement-style receivers.

Finally, in Chapter 5, we explored entanglement for classical communication. Pre-shared en-
tanglement facilitates many applications such as quantum-secured communication, quantum-
enhanced sensing, and quantum illumination. Pre-shared entanglement increases the reliable
transmission rate of classical information and surpasses the performance of classical capacity
and Holevo capacity in the noisy and low-brightness regime. Further, as compared to pre-
vious work, Chapter 5 provides low-complexity receiver designs for EA communication that
are practical and easier to implement. The communication protocol in EA communication
uses SPDC and beamsplitters with integrated photonics for joint detection. We show that
to surpass the classical capacity, the number of modes can be as low as 10. Finally, even
though optimum encoding for achieving EA channel capacity is known for decades (Holevo
and Werner, 2001; Holevo, 2002), very little progress has been made in the design of opti-
mum quantum receivers for EA communication. We have provided optimal receiver design
for EA communication in this thesis but an experimental demonstration of such receiver
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design is yet to be explored.

We believe that our results would pave a path to new avenues in designing receivers to
improve communication performance in conditions that involve substantial loss of photons
and noise such as covert sensing, deep-space communication, and non-invasive imaging. A
natural extension of this paper can be exploring optimality conditions for quantum receivers
which is still an open problem.
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äA
Preliminaries

A.1 Random variables and random processes

A random variable (r.v.) usually denoted by capital letters say X is a variable whose
value denotes the possible value of a random phenomenon. There are two types of random
variables

1. Discrete random variables: Discrete random variables only take countable number
of discrete values such as 0, 1, 2, 3, . . . , N . For example, discrete random variables
include the number of balls in a basket, number of players in a game, number of
envelopes for letters, etc. The probability distribution of a discrete random variable is
a list of probabilities associated with each of its possible values. It is also sometimes
called the probability function or the probability mass function (pmf). The probability
law of a discrete random variable can be described by the function defined as

p(x) = P (X = x) (A.1.1)

where P (•) is the probability of obtaining x. Properties of discrete random variables:
•
∑∞

k=0 pk[k] = 1
• Mean is calculated as E[K] =

∑∞
k=0 kpk[k]

• Variance is calculated as V[K] =
∑∞

k=0(k − E[K])2pk[k]
An important family of distribution that we are going to encounter in the context of
photon and light-detection is Poisson distribution. A pmf of Poisson distribution
is written as

p(k) = P (K = k) =
eλλk

k!
(A.1.2)

For Poisson distribution, E[K] = V[K] = λ.
2. Continuous random variables: A continuous random variable takes an infinite

number of possible values. Continuous random variables are usually measurements.
Examples include height, weight, the amount of sugar in orange, the time required to
run a mile. A continuous random variable is not defined at specific values. Instead,
it is defined over an interval of values and is represented by the area under a curve
(in advanced mathematics, this is known as an integral). The probability of observing
any single value is equal to 0 since the number of values that may be assumed by the
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random variable is infinite. The curve function denoted by p(x) is called a probability
density function or (pdf). Properties of discrete random variables:

•
∫∞
−∞ pX(x)dx = 1

• Mean is calculated as E[X] =
∫∞
−∞ xpX(x)dx

• Variance is calculated as V[X] =
∫∞
−∞(x− E[X])2pX(x)dx

The most common continuous random variable encountered in physical processes is
gaussian random variable. A pdf of Gaussian random variable is written as:

pX(x) =
1

√
2πσ2

e−
(x−µ)2

2σ2 (A.1.3)

For Gaussian distribution, E[K] = µ and V[K] = σ2.

For a rigorous treatment on random variables, interested readers may refer to Casella and
Berger (2002).

A.2 Random Processes

Random processes also known as stochastic processes helps in modeling phenomena that
evolve in time in an uncertain manner, for example, the trajectory of a finite body, stock
market index, oil prices, etc. In this section, we introduce a mathematical tool to develop
the aptitude to understand such phenomena.

Before we move forward, we define the probability space. A probability space is a triplet
(Ω,F , P ). The first component, Ω, is a nonempty set. Each element ω of Ω is called an
outcome and Ω is called the sample space. The second component, F , is a set of subsets of
Ω called events. The set of events F is assumed to be a σ-algebra1.

A.2.1 Definition of random processes

A random process X is an indexed collection X = (Xt : t ∈ T) of random variables, all on
the same probability space (Ω,F , P ). In many applications, T is a set of times. If T = Z,
or more generally, if a set consists of integers then, X is a discrete-time random processes.
If T = R or constitutes of an interval of R, then X is considered to be a continuous-time
random process. We can view random process in one of the following three ways:

1. If t is fixed, then Xt is a function of sample space Ω.
2. X is a function of T with a value of Xt(ω), t ∈ T and ω ∈ Ω.
3. For each ω fixed with ω ∈ Ω, Xt(ω) is a function of t, called the sample path corre-

sponding to ω.

1See Casella and Berger (2002) for more details on σ-algebra.
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A.2.2 Random processes describing Discrete events in continuous time
and/or space

Given the independent (time) variable set T, whose elements usually represent time, and
the set of possible outcomes S, called the state space, a random process also known as a
stochastic process is defined as a collection of random variables {X(t), t ∈ T} on the same
probability space. Random processes can be divided into four categories depending on the
continuous or discrete-nature of time variable and random variables:

1. Discrete-time, discrete-state random processes: Time variable and the state
space both are discrete. If we assume time ti to be an increasing sequence, then X(ti)
is a random sequence. If the process is Markovian, then X(ti) is a Markov chain.
Simulation techniques in stochastic chemical kinetics usually belong to this class.

2. Continuous-time, discrete-state random processes: In this case, the state space
is discrete but time variable assumes continuous range in (−∞,∞). A Markovian
process with these features is called a continuous-time Markov chain.

3. Discrete-time, continuous-state random processes: X(t) assume a continuous
range of values but time variable t is discrete.

4. Continuous-time, continuous-state random processes: In this case, both the
state space and time variables are continuous.

In this thesis, we only focus on random processes with the discrete state (or discrete events)
in continuous time (and continuous space) as photon detection is discrete even in continuous
time and/or space.

Let arrival process is denoted by I(t) and counting process is denoted by N(t). I(t) is
considered to be random arrivals while N(t) is the number of occurrences before time t.
Then,

N(t) =

∫ t

0
I(t)dt (A.2.1)

Pictorially it has been illustrated in A.1.

If arrival rate is λ(t), then mean number of arrivals is N =
∫ T
0 λ(t)dt. For a constant arrival

rate λ, mean number of arrivals in T time (unit) is N = λT .

Rahul Kumar Bhadani – The University of Arizona



Optimal Receiver Design for Quantum Communication – Page 94

0 5 10 15 20 25
0
1

Figure A.1: Arrival and Counting Process
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