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ABSTRACT 

Optical components made of anisotropic materials, such as crystal polarizers and crystal 

waveplates, are widely used in many complex optical system, such as display systems, 

microlithography, biomedical imaging and many other optical systems, and induce more 

complex aberrations than optical components made of isotropic materials. The goal of this 

dissertation is to accurately simulate the performance of optical systems with anisotropic 

materials using polarization ray trace. This work extends the polarization ray tracing 

calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial 

and optically active materials.  

The 3D polarization ray tracing calculus is an invaluable tool for analyzing 

polarization properties of an optical system. The 3×3 polarization ray tracing P matrix 

developed for anisotropic ray trace assists tracking the 3D polarization transformations 

along a ray path with series of surfaces in an optical system. To better represent the 

anisotropic light-matter interactions, the definition of the P matrix is generalized to 

incorporate not only the polarization change at a refraction/reflection interface, but also the 

induced optical phase accumulation as light propagates through the anisotropic medium. 

This enables realistic modeling of crystalline polarization elements, such as crystal 

waveplates and crystal polarizers. The wavefront and polarization aberrations of these 

anisotropic components are more complex than those of isotropic optical components and 

can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the 

overall image.  
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One incident ray refracting or reflecting into an anisotropic medium produces two 

eigenpolarizations or eigenmodes propagating in different directions. The associated ray 

parameters of these modes necessary for the anisotropic ray trace are described in Chapter 

2. The algorithms to calculate the P matrix from these ray parameters are described in 

Chapter 3 for anisotropic ray tracing. This P matrix has the following characteristics:  

(1) Multiple P matrices are calculated to describe the polarization of the multiple 

eigenmodes at an anisotropic intercept.  

(2) Each P matrix maps the orthogonal incident basis vectors  ˆˆ ˆ, ,m nE E S  before the optical 

interface into three orthogonal exiting vectors  ˆˆ ˆ, ,m na a  m nE E S  after the interface, 

where am and an are the complex amplitude coefficients induced at the intercept. 

The ray tracing algorithms described in this dissertation handle three types of uncoated 

anisotropic interfaces isotropic/anisotropic, anisotropic/isotropic and 

anisotropic/anisotropic interfaces.  

(3) The cumulative P matrix associated with multiple surface interactions is calculated by 

multiplying individual P matrices in the order along the ray path. 

Many optical components utilize anisotropic materials to induce desired retardance. This 

important mechanism is modeled as the optical phase associated with propagation. 

(4) The optical path length OPL of an eigenpolarization along an anisotropic ray path is 

incorporated into the calculation of each P matrix. 
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Chapter 4 presents the data reduction of the P matrix of a crystal waveplate. The 

diattenuation is embedded in the singular values of P. The retardance is divided into two 

parts: (A) The physical retardance induced by OPLs and surface interactions, and (B) the 

geometrical transformation induced by geometry of a ray path, which is calculated by the 

geometrical transform Q matrix. The Q matrix of an anisotropic intercept is derived from 

the generalization of s- and p-bases at the anisotropic intercept; the p basis is not confined 

to the plane of incidence due to the anisotropic refraction or reflection.  

 Chapter 5 shows how the multiple P matrices associated with the eigenmodes 

resulting from propagation through multiple anisotropic surfaces can be combined into one 

P matrix when the multiple modes interfere in their overlapping regions. The resultant P 

matrix contains diattenuation induced at each surface interaction as well as the retardance 

due to ray propagation and total internal reflections. 

 The polarization aberrations of crystal waveplates and crystal polarizers are studied 

in Chapter 6 and Chapter 7. A wavefront simulated by a grid of rays is traced through the 

anisotropic system and the resultant grid of rays is analyzed. The analysis is complicated 

by the ray doubling effects and the partially overlapping eigen-wavefronts propagating in 

various directions. The wavefront and polarization aberrations of each eigenmode can be 

evaluated from the electric field distributions. The overall polarization at the plane of 

interest or the image quality at the image plane are affected by each of these eigen-

wavefronts. 

Isotropic materials become anisotropic due to stress, strain, or applied electric or 

magnetic fields. In Chapter 8, the P matrix for anisotropic materials is extended to ray 
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tracing in stress birefringent materials which are treated as spatially varying anisotropic 

materials. Such simulations can predict the spatial retardance variation throughout the 

stressed optical component and its effects on the point spread function and modulation 

transfer function for different incident polarizations. 

The anisotropic extension of the P matrix also applies to other anisotropic optical 

components, such as anisotropic diffractive optical elements and anisotropic thin films. It 

systematically keeps track of polarization transformation in 3D global Cartesian 

coordinates of a ray propagating through series of anisotropic and isotropic optical 

components with arbitrary orientations. The polarization ray tracing calculus with this 

generalized P matrix provides a powerful tool for optical ray trace and allows 

comprehensive analysis of complex optical system. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation of polarization ray trace 

Polarization is an important property of light utilized in many scientific studies and 

sophisticated optical systems, for example astronomical studies, atmospheric sciences, 

advanced remote sensing satellites, telecommunication systems, microlithography 

systems, liquid crystal displays, 3D cinema, and numerous other products. As these 

technologies have advanced rapidly in the last decade, there has been an increasing need 

to develop tools for accurate modeling of polarized light, to understand the sources of 

polarization aberrations, and to estimate the magnitude of the polarization effects on image 

quality. 

The capability of accurately ray tracing through anisotropic materials is not fully 

developed in current commercial ray tracing software. The goal of this dissertation is to 

develop systematic polarization ray tracing algorithms that are easy to use and understand. 

The result will assist scientists and engineers in designing better polarizers, waveplates, 

polarizing beam splitters with new choices of optical thin films, and ultimately produce 

optical systems with better performance, in particular better control of polarized light. 

 This dissertation developed three-dimensional ray tracing algorithms to 

polarization ray trace through the principal types of anisotropic materials: uniaxial, biaxial 

and optically active materials. These algorithms and methods for anisotropic analysis are 

programmed in a polarization ray tracing program, Polaris-M, which has been developed 

and is in use at the Polarization Laboratory at the University of Arizona. All the ray tracing 
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examples, polarization analysis, and the image formation simulations shown in this 

dissertation are generated using Polaris-M. 

1.2 Polarization aberrations 

The aberration of an optical system is its divergence from ideal performance. For an 

imaging system with a point source object, the ideal output is a spherical wavefront with 

uniform amplitude and polarization state.  

There are several types of aberrations. Wavefront aberrations are deviations from a 

spherical wavefront, and result from the variations of optical path length (OPL) across the 

wavefront. These variations are due to the geometry of the optical surfaces, and the laws 

of reflection and refraction. Amplitude aberrations are deviations from constant amplitude, 

and arise from the differences in transmitted flux due to reflection, refraction, and 

absorption between rays. Amplitude variations are usually referred to as apodization. 

Polarization aberrations are variations of polarizations properties of an optical 

system. Polarization change occurs at each light-surface interaction because reflection and 

transmission are functions of polarization states. For example, the s and p components of 

the light at an isotropic interface, or the ordinary and extraordinary eigenpolarizations at 

an anisotropic interface, have different reflection and transmission coefficients. Another 

example is the polarization change along ray paths when light propagates through 

anisotropic material, as shown in Figure 1.1. In this example, the anisotropic material 

decomposes light into orthogonal polarization components, which then have different 

OPLs as they passed through the anisotropic medium. 
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Figure 1.1 A ray propagates through a birefringent material. (Top) The ray decompose into two 
orthogonally polarized components, called modes, x-polarized in red and y-polarized in blue. 
(Middle) In this example, the x-polarized light has propagated 3.25λ, and the y-polarized light has 
propagated 3λ. (Bottom) The incident x- and y-polarized light combine to 45° polarized light. The 
exiting light with a quarter wave phase difference between the x and y components is right circularly 
polarized. 

   

Figure 1.2 The angles of incidence vary across the set of rays. (Left) A set of rays refracts through 
a convex lens. (Right) A grid of rays reflects from a fold mirror. 

The polarization change is function of incident angle. Across a set of rays, as shown 

in Figure 1.2, the angle of incidence at an optical surface varies, so a uniformly polarized 

input beam has polarization variations when exiting the system1,2,3. The desired output light 

of many optical systems is constant polarization across the beam with zero polarization 

change occurring. This ideal condition is associated with a set of identity Jones matrices 
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for every rays ray path. Deviations from these identity matrices are one common definition 

for the polarization aberration of an optical system. 

Wavefront aberration, which is calculated in all commercial ray tracing programs, 

is the most important aberration, because variations of OPL of small fractions of a 

wavelength can greatly reduce the image quality. The variations of amplitude and 

polarization cause much less change to the image quality than the wavefront aberrations. 

However, in high performance systems, for example when imaging and measuring 

polarization of exoplanets4,5, or focusing light through a system with high numerical 

aperture (NA) in microlithography6,7, these amplitude and polarization effects can no 

longer be ignored.  

Polarization aberration refers to the polarization variation across the wavefront. 

“Fresnel aberration” is polarization aberration due to uncoated interfaces and is calculated 

from the Fresnel equations1,8,9,10,11, such as when converging or diverging beam reflects 

from metal coated mirrors, and collimated beam refracts through uncoated lenses. Surfaces 

associated with anisotropic materials and multilayer-coated surfaces produce polarization 

aberrations with similar functional forms to the wavefront aberrations, since they arise from 

similar geometrical considerations of surface shape and angle of incidence 

variation12,13,14,15,16,17,18,19,20,21. Polarization aberrations which arise from propagation 

through anisotropic materials are more complex than those from isotropic materials due to 

ray doubling and multiple exiting wavefronts. 

The aberrations of an optical system can be measured using interferometers and 

polarimeters. The interferograms of an optical system measured by an interferometer show 
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the wavefront deviation from an ideal wavefront. Polarization aberrations can be measured 

by placing an optical system in the sample compartment of an imaging polarimeter and 

measuring images of the Jones matrices and/or Mueller matrices for a collection of ray 

paths through the optical system22,23.  

1.3 Polarization ray tracing calculus 

Polarization aberrations result from polarization variations across exit pupil of an optical 

system and affect image quality. In microlithography system with high numerical aperture, 

for example, the quality of the point spread function is affected by the polarization 

aberration to a magnitude which can affect the performance goals. These variations result 

from polarization change upon light-surface interaction characterized by Fresnel 

coefficients (complex amplitude coefficients of the eigenpolarizations) at each ray 

intercept, or light-matter interaction as light propagates through material.  

The polarization properties along the ray paths can be calculated by polarization 

ray tracing, which requires many extra ray parameters be calculated beyond those carried 

in conventional geometrical ray trace. Traditionally, geometrical ray trace calculates the 

optical path length (OPL) to determine phase in the exit pupil and image, which is a scalar 

function. OPL alone is insufficient to describe variation of polarization. Since polarization 

is fundamentally tied to the directional properties of light’s electric field relative to the 

optical materials, a higher level of ray tracing algorithm is required to effectively operate 

on the vector form of light. One example is the Jones calculus. 

The Jones calculus incorporates polarization changes as a 2×2 Jones matrix. Thus 

it naturally can represent the polarization element. Polarized light is described by a 2×1 
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Jones vector the Jones matrix operates on to represent the change of polarization24. The 

Jones matrix characterizes each light-surface or light-matter interaction and can be used to 

trace the evolution of polarization along a ray path. To interpret the polarization aberration 

associated with a ray path, the Jones matrix can be divided into diattenuation, which is 

polarization dependent reflection or transmission, and retardance, which is polarization 

dependent OPL difference. These properties can be calculated from the Jones matrix25 for 

each or a series of light-surface or light-matter interactions. 

However, the Jones calculus has some problems simulating complex systems with 

high NA. It does not describe the change of direction of the light, only the polarization 

change from the transverse plane of an incident ray to the transverse plane of an exiting 

ray. The 2D nature of the Jones calculus becomes inconvenient for light propagating in 3D. 

For example, “horizontal” and “vertical” are insufficient to fully describe the polarization 

transformation in 3D. To use the Jones matrix in ray tracing, it is necessary to separately 

carry a set of incident and exiting local coordinate systems to define and specify the Jones 

matrix at every interaction. These local coordinates define the incident and exiting 

transverse planes relative to the global coordinate system in order to perform exact 3D ray 

trace. Chapter 3 shows how easily confusion can arise when using Jones matrices to 

describe simple interactions, such as normal reflection and transmission through a half-

waveplate. Another polarization calculus, the Polarization Ray Tracing Calculus was 

recently developed to avoid the troublesome transformations between 2D and 3D during 

ray tracing, the polarization ray tracing calculus more succinctly represents the polarization 

evolution through optical systems in 3D. This calculus facilitates the polarization ray 
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tracing of light propagating in arbitrary directions. The polarization ray tracing 

calculus26,27,28,29 is explained in detail in Chapter 3. In the polarization ray tracing calculus, 

each polarization element is represented by a 3×3 polarization ray tracing (P) matrix. These 

P represents transformation of the 3×1 polarization vector (E). P also describes the 

changing ray direction directly in 3D. For system with many reflections or refractions 

which folds around in 3D, such as system with multiple fold mirrors shown in Figure 1.3, 

the polarization ray tracing calculus provides a straightforward method to handle the 

arbitrary propagations.  

 

Figure 1.3 A skew ray (yellow) reflects from two fold mirrors, M1 and M2.  

Similar to Jones matrices, the diattenuation and retardance properties of a ray can 

be calculated from the P matrix. Since the P matrix represents not only the physical change 

of the polarized light, but also the geometrical change of a ray path in 3D, the retardance 

calculated for ray paths from the P matrix will be further divided into physical retardance 

and geometrical transformation as described in Chapter 4. The physical retardance results 

from polarization dependent variation of OPL. The geometrical transformation arises from 

the geometry of the ray path and mathematically takes the form of circular retardance. It is 
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a rotation of polarization state from the entrance space to the exit space of an optical 

system, similar to circular retardance, but no retardance is actually involved. This variation 

of geometrical transformation across the exit pupil is called the skew aberration6,30,31. 

This dissertation extends the established methods of polarization ray tracing to 

optical system with anisotropic materials. At each anisotropic interface, ray doubling 

occurs. An incident ray divides into orthogonal polarizations during refraction and 

reflection. These resultant polarizations propagates in different directions, follow different 

ray paths and experience different polarization changes through the optical system. The 

reflection and refraction of the polarized light at anisotropic interfaces will be described in 

Chapter 2. Then a ray tracing method through anisotropic materials using polarization ray 

tracing calculus will be shown in Chapter 3 and Chapter 4.  

1.4 Motivation of ray tracing in anisotropic material 

The light-surface interaction and light-matter interaction associated with the anisotropic 

materials are different from those associated with the isotropic materials. The exiting rays 

at anisotropic interface have properties depending on the direction and polarization state of 

the incident light. Also, the OPL associated with light propagation within anisotropic 

material is a function of polarization state. Anisotropic materials provide optical 

phenomena which cannot be generated by isotropic material, and are essential in many 

optical systems. 

 Uniaxial materials are the most common anisotropic materials. They are used as 

retarders, polarizing optical components which generate phase shift between polarization 

states. Uniaxial materials are also used to construct polarizers, which divide wavefronts 
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based on polarization and redirect these components into different directions. The special 

properties of uniaxial crystals were first described by Erasmus Bartholin who in 1669 

discovered double refraction, as shown in Figure 1.4, when light transmitted through the 

crystal Iceland spar, which is one of the names for calcite32. In 1690, Christiaan Huygens 

developed his revolutionary wave optics theory which included a law of refraction for the 

extraordinary ray in calcite. E. L. Malus in 1808 described the image doubling through 

calcite in terms of polarized light and confirmed Huygens’ extraordinary refraction 

result33,34.  

 

Figure 1.4 Imaging doubling though a piece of calcite. 

Anisotropic materials have been used to make polarization components, such as 

polarizers, polarizing beam splitter, and retarders. The first polarizer made from a uniaxial 

material was the Nicol prism, invented in 1828 by William Nicol35,36. Since then a series 

of high performance crystal polarizers have been developed, including the Glan-Foucult 

prism, the Glan-Thompson prism, and the Glan-Taylor prism37,38,39,40,41. Another class of 

polarizing prisms are the beam splitting prisms which divide the wavefront into two 

different direction for the two polarization components; examples include the Rochon 

prism42,43 and the Wollaston prism44. Multiple crystal waveplates are often cemented 

together to achieve achromatic45,46,47,48,49,50 and athermalized46,51,52,53 retarder performance. 
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The Lyot filter is another anisotropic component which utilizes many birefringent plates to 

produce a narrow bandpass filter. The Lyot filter can be modified to an electrically tunable 

filter by rotating plates or with the use of liquid crystals to tune the transmitted wavelength. 

Uniaxial plates are often used in optical cavities for laser tuning. 

Anisotropic components play important roles in modern optical system and can be 

found in polarimeters, ellipsometers, interferometers, microscopes, medical imaging 

systems, projectors, display technologies and most other complex systems. For example, 

Figure 1.5 shows a differential interference contrast (DIC) microscope layout which 

contains two Wollaston prisms for dividing and recombining polarized wavefronts. DIC 

greatly enhances the contrast of (unstained) transparent specimens, because the image 

intensity is a function of the gradient of optical path length of the sample, and otherwise 

invisible effect.  

 

Figure 1.5 (Left) Basic setup of differential interference contrast (DIC) microscope and (right) a 
Micrasterias furcata imaged in transmitted DIC microscopy54. 

 Polarized light is also used in ophthalmology for medical diagnostics, because 

retinal cell layers tend to have a regular structure which yields measurable differences in 

the magnitude and phase of polarized light upon interaction55. The birefringence of the 

retinal Henle fibers (photoreceptor axons that go radially outward from the fovea) provides 

a reliable detection of strabismus and anisometropic amblyopia56. Also, the Laser 
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Diagnostics GDx (a scanning laser polarimeter) measures the birefringence of the optic 

nerve fiber layer which indirectly quantify its thickness, and is used in the assessment and 

monitoring of glaucoma.  

Plastic lens are commonly used in consumer products, such as cell phone camera 

lenses and in CD and DVD pick up devices as shown in Figure 1.6. Plastic lenses are 

cheaper and easier to make compared to optical glass. However, plastic lenses suffer from 

greater stress induced birefringence from the injection molding manufacturing process. In 

the CD pick up system shown in Figure 1.6, any birefringence in the plastic pick up lens 

affects the size of the point image formed on the disk. Some stress will always be present 

in molded plastic lenses, so this stress induced birefringence needs to be carefully 

controlled in order to meet specifications and produce a sufficiently small image to 

accurately read the data stored on the disk. 

 

Figure 1.6 Optical layout of an optical pickups system in a CD player57. 

To maximize the field of view (FOV) of liquid crystal displays, multilayer biaxial 

thin films are used to enhance the desired contrast for off-axis viewing. As shown in Figure 
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1.7, the off-axis aberrations of the liquid crystal cell can be compensated by layers of 

biaxial films. The aberrations are corrected by matching pairs of LC cell layers and 

compensating film layers.  

 

Figure 1.7 The off-axis aberration of the liquid crystal cell can be corrected by layers of 
compensating films. Layers connected by arrows compensate their variation of polarization with 
angle. 

 Many anisotropic optical systems have limited FOV. As the technology advanced, 

the anisotropic components are modified to incorporate larger FOV. To optimize the 

performance of these anisotropic components, accurate simulations are needed to calculate 

the on-axis and off-axis behaviors.  

1.5 Ray tracing with anisotropic materials  

Conventional ray tracing algorithm primarily calculates the OPL of a set of rays, the 

wavefront aberration, which is a scalar function. Polarization ray tracing algorithm 

calculates the amplitude, phase, OPL and polarization changes of a set of rays, which is a 

multi-dimensional calculation, an eight dimensional function if Jones matrices are used.  

The light-matter interaction (refraction or reflection) at anisotropic materials divides the 

incident ray into two eigenpolarizations or eigen-modes with distinct refractive indices and 
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mutually orthogonal polarizations propagating in two different directions. So polarization 

ray tracing through anisotropic materials results in multiple sets of exiting rays. 

In optical ray trace, a ray with wavelength λ is launched in a direction specified by 

the Poynting vector Ŝ (direction of energy) and its wavefront (constant phase) propagating 

in direction k̂, and a ray segment begins. As the ray propagates within a material for a 

certain distance, light-matter interaction took place along this ray segment, and the OPL 

associated with the ray increases. As this ray encounters an optical surface, light-surface 

interaction occurs at the ray intercept. The interaction changes the direction, the 

polarization (amplitude, phase, and orientation), and the associated refractive index of the 

ray. Next a ray with the new ray parameters is launched and proceeds toward the next ray 

intercept. If the light-surface interaction involves anisotropic material, ray doubling might 

occur, then the interaction could produce two new ray segments in transmission or 

reflection. Table 1.1 and Table 1.2 list the ray parameters and material properties necessary 

to polarization ray trace through anisotropic materials. The directional properties of 

anisotropic materials are described by 3×3 tensors rather than the one refractive index in 

isotropic material.  
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Table 1.1 Ray parameters for polarization ray trace 

Propagation vector: k̂  

Poynting vector: Ŝ  

Ray refractive index: n 

Electric field vector: Ê   

Magnetic field vector: Ĥ   

Electric field amplitude (reflection or refraction) coefficient: a 

Table 1.2 Parameters of anisotropic interface 

Dielectric and gyrotropic tensor of incident medium: ε1 and G1 

Dielectric and gyrotropic tensor of exiting medium: ε2 and G2 

Surface normal: η̂  

Many researchers have published algorithms for calculating light-matter 

interactions with anisotropic materials. Ray tracing algorithms for uniaxial interface were 

published by Stavroudis58, Swindell59, Simon60,61, Liang62, and Wang63. Algorithms which 

include biaxial interfaces were developed by Zhang64, Laudry65, Chen66, and Wang67. A 

general algorithm for anisotropic interfaces handling homogeneous uniaxial, biaxial and 

optically active materials was developed by McClain68,69. Since McClain’s algorithm is 

developed with 3×1 vector electromagnetic fields, it interacts easily with the 3×3 P matrix. 

This set of algorithm will be used as the basis for the anisotropic ray tracing extension to 

the polarization ray tracing calculus in Chapter 3.  

To simulate the propagation of a wavefront through an optical systems, a large 

number of rays are traced to sample the shape, amplitude, and polarization over a 

wavefront. For each anisotropic element, one incident wavefront yields two exiting 

wavefronts in transmission. So a system with N anisotropic elements can have 2N
 exiting 

wavefronts. Figure 1.8 shows two example grids of rays refracting through a biaxial and 
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uniaxial plates, splitting into two polarized wavefronts. Each of the wavefronts focuses at 

a different location, has different polarization state variation, and differing amounts of 

wavefront aberrations. The ray tracing result of these wavefronts are stored in the P 

matrices. Then the properties of these wavefronts, such as the wavefront aberrations, 

polarization aberrations including diattenuation and retardance, and the image quality are 

calculated from the P matrices. 

 

Figure 1.8 A converging beam converges through a biaxial KTP plate (left) and a uniaxial calcite 
plate (right). Due to ray doubling, two foci are observed, ordinary and extraordinary modes for the 
uniaxial plate, and fast and slow modes for the biaxial case.  

1.6 Image formation of polarized wavefronts 

The image quality of an imaging system can be calculated by diffraction theory using the 

wavefront calculated by polarization ray tracing. This section outlines the generalization 

of the diffraction image formation algorithms from scalar diffraction to wavefronts with 

polarization aberrations by the vector extensions to diffraction theory. These calculations 

will be utilized in Chapter 6 and Chapter 8 to evaluate the point spread functions and the 

image polarizations of optical systems with anisotropic materials. 

Consider a point object imaged through an optical system to a point image, as 

shown Figure 1.9 (left). The incident spherical wavefront is simulated by a grid of rays. 

These incident rays are traced to the image point, or for system with aberrations, the rays 
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are traced to the best focus which could be where the exiting beam has the smallest RMS 

spot (Appendix A).  

   

Figure 1.9 (Left) A point object is imaged through an optical system to a point image. (Right) The 
entrance pupil (E) of the system is the image of the stop in the object space, so it is the spherical 
surface (gray surface on the left) centered at the object point. Similarly the exit pupil (X) of the 
system is the image of the stop in the image space; a spherical surface (gray surface on the right) 
centered at the object space. 

To evaluate the wavefront aberrations and their effect on image quality, the ray 

trace calculates the OPLs of the ray paths from the entrance pupil in the object space to the 

exit pupil in the image space (Figure 1.9 right). These pupils are used because the light 

fields have well defined edges with nearly constant and slowly varying electric fields. Any 

surfaces other than the pupils will have large amplitude oscillation due to Fresnel 

diffraction. Therefore, the image quality of the lens is best evaluated by using ray tracing 

from the entrance to exit pupil, then by diffraction theory from the exit pupil to the image.  

Conventional wavefront aberration W(ρ,φ) is a scalar function describing the 

distribution of OPL across the exit pupil, 

 2
,

,
i W

e


 
       (1.1) 

where (ρ,φ) are polar coordinate for the exit pupil. An ideal wavefront with zero aberration 

has constant OPL, and produces an ideal Airy disk image. This scalar aberration function 
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needs to be generalized to an aberration matrix for representing the phase, amplitude, and 

polarization change of polarized states. 

Using the polarization ray tracing method in this dissertation, the wavefront at the 

exit pupil is also described by a grid of P matrices. The light-surface and light-matter 

interactions for each ray are combined in an overall P matrix which contains: (1) the phase 

of light propagation, which is the OPL in the traditional geometrical ray trace, and (2) the 

phase and amplitude change due to light-surface interactions, calculated from the Fresnel 

equations for uncoated isotropic interface or the thin film equations for coated surface. The 

calculations of the end-to-end P matrix for homogeneous anisotropic materials will be 

described in Chapter 3 and Chapter 4.  

Although it is advantageous to perform the ray trace using 3D algorithms, it is also 

useful to analysis the wavefront and polarization aberrations on two dimensional surfaces 

(the surface transverse to the grid of exiting rays). To do this, the grid of P matrices 

cumulated at the exit pupil are converted into a Jones pupil representation Jpupil, a grid of 

Jones matrices defined on a pair of spherical surfaces at the entrance and exit pupils12,13, 
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where r is the pupil coordinate. In the conversion from P to Jpupil, a set of local coordinate 

systems need to be defined for the Jones matrices. Two common sets of local coordinate 

systems for spherical wavefronts are shown in Appendix B. 

The Jones pupil represents the variations of polarization coupling from the incident 

wavefront to the exiting wavefront across the exit pupil for any set of incident polarized 

light. It represents the polarization couplings of two orthogonal incident states (x, y) to two 

orthogonal exiting states (x′, y′) in the form of a 2×2 matrix: 
x x y x
x y y y

   
    

. Each of 

the Jxx describes the couplings of x-polarized incident light to x-polarized exiting light, and 

Jxy describes the x-polarized incident light couples to y-polarized exiting light. These x- and 

y-polarized basis states are defined in the local coordinate system of the incident and 

exiting wavefronts. 

When the optical system involves anisotropic materials, ray doubling occurs and 

results in multiple polarized wavefronts represented by multiple Jones pupils. Each of them 

contains different polarization and wavefront aberrations. In the example shown in Figure 

1.8, two Jpupil are needed to represent the two exiting wavefronts. The algorithms for 

combining these wavefronts are presented in Chapter 5. 
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Figure 1.10 Flow charts for coherent and incoherent imaging calculations. The pupil function P 
represents the wavefront function at the exit pupil of an optical system. The spatial variable of the 
system is x; the wavelength of light is λ; the focal length of the imaging system is f. The coherent 
point spread function is cPSF; the coherent transfer function is CTF; the incoherent point spread 
function is iPSF; the optical transfer function is OTF; the modulation transfer function is MTF; and 
the phase transfer function is PSF.   is the Fourier transform operation.   is the auto-correlation 
operation.  
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Figure 1.11 The imaging calculation for polarized light. The 2ൈ2 amplitude response matrix is the 
ARM; the 4ൈ4 Mueller point spread matrix is the MPSM; the 4ൈ4 optical transfer matrix is the 
OTM; the 4ൈ4 modulation transfer matrix is the MTM; and the 4ൈ4 phase transfer matrix is the 
PTM. 

The flow charts of the algorithms for coherent and incoherent imaging of scalar 

waves, and for the imaging of system with polarization aberrations are compared in Figure 

1.10 and Figure 1.11. In conventional optics, the amplitude response function at the image 

is the Fourier transform of the pupil function. To incorporate polarization aberration, the 

amplitude response function is generalized to the amplitude response matrix ARM, which 



65 

 

is the impulse response of the Jones pupil to coherent light, the 2×2 Fourier transform 

   of Jpupil(r), 

   
   

    

   
( )

yxxxxx yx

xy yy xy yy

JJARM ARM rrr r
r

ARM ARM J Jr r r r

                          
ARM , (1.3) 

where r′ is the image plane coordinate. From the grid of ray parameters, the ARM is 

calculated by discrete Fourier transform from the Jones pupil. Each component of the Jpupil 

is a 2D array of electric field values cumulated at the pupil, and each component of the 

ARM is a 2D array characterizing the impulse response at the image plane. For coherent 

imaging, an x-polarized incident illumination produces an image with an x-polarized 

  xxJ r  and a y-polarized  xyJ r    amplitude response functions. The corresponding 

intensity point spread function is   22
xyxx JJ      , which can also be calculated with 

the Mueller point spread matrix MPSM, demonstrated in Chapter 6. 

For a point object imaged through an optical system with N anisotropic interfaces, 

there are 2N wavefronts, and thus 2N component of ARMs. Each of these wavefronts is ray 

traced separately. When their resultant ARMs overlap, they are combined. There are two 

ways to calculate the resultant image for anisotropic systems: (1) Combine the wavefronts 

in equation (1.2), then the total impulse response is calculated as in equation (1.3). Or, (2) 

keep the Jones pupils of each polarized wavefronts separate from each other, then calculate 

their impulse response separately using equation (1.3). These separate responses reside on 

top of each other. So, the total response will be the summation of the separated ARMs. 

Both of these routes give the same resultant ARM. For incoherent light or partially 
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polarized and unpolarized light source, the ARM is converted to 4×4 Mueller point spread 

matrix MPSM, which is done in the same fashion as converting a Jones matrix to a Mueller 

matrix70. Then the image of an incoherent point source specified by a set of four Stokes 

parameters is calculated by matrix multiplying the Stokes parameters to the MPSM, 

yielding the image of the point spread function in the form of Stokes parameters. 

1.7 Conclusions 

This chapter provides an overview of performing polarization ray tracing through isotropic 

and anisotropic materials using 3D polarization ray tracing calculus71,72. Using the ray 

tracing results, the polarization aberrations can be studied at individual optical surface, and 

also for a series of optical surfaces. This dissertation extends the polarization ray tracing 

calculation to optical system with anisotropic materials. Due to the ray doubling behavior 

of the anisotropic materials, the algorithm for polarization ray tracing is further generalized 

to handle the exponentially increasing number of ray segments as the number of anisotropic 

elements increased.  

The image quality of an imaging system with anisotropic materials is calculated by 

diffraction theory from the polarization ray tracing result. In this dissertation, the 

diffraction image formation of the multiple polarization-aberrated beams is handled by the 

vector extensions to diffraction theory12,13,73,74,75,76 which was discussed in section 1.6. 

Then the image quality is evaluated by the polarization impulse response function and the 

polarization point spread function. 

The modeling method provided in this dissertation can assist optical designers and 

engineers to accurately simulate the performance of optical systems with anisotropic 
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components, to gain insight of polarization variations through the system, to perform 

tolerance, and to improve the overall image quality14,15,77. 
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CHAPTER 2 BASICS OF ANISOTROPIC RAY TRACING 

2.1 Description of electromagnetic wave 

Light is a transverse electromagnetic wave, an oscillating electric and magnitude field 

propagating at the speed of light c=3×10-8m/s in vacuum. It is characterized by its electric 

field E, its magnetic field H, its displacement field D, and its induction field B by 

Maxwell’s equations9. The electromagnetic fields of a monochromatic plane wave in space 

r and time t with wavelength λ are 
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The propagation vector in a medium with refractive index n is 2 ˆn


k k . In an absorptive 

material, the complex refractive index is n+iκ, so the magnitude of the fields decay 

exponentially as light propagates. The angular frequency of the light is ω with unit rad/s, 

which is equivalent to 2πν where ν is the frequency in Hz. 

The polarization vector is a 3×1 vector defined as 
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which describes the polarization states in 3D. The field has an absolute complex magnitude 

xi
oE e  and complex components  , ,x y zE E E , where 22 2*ˆ ˆ 1yx zEE E   E E . 

Table 2.1 shows electric field oscillations in time for three example polarization vectors. 

Table 2.1 Polarization ellipses evolving in time for three polarization vectors. 

Polarization 
vector 

Viewing E 
propagating in time 

Viewing E towards k  

1
0
0

 
 
 
 

E  Linear polarization 

1
0

i 
 
 
 

E  

Right circular 
polarization (evolving 
clockwise in time as 
one looks into the 
beam) 

1
0.5
0

i
 
 
 
 

E  

Left Elliptical 
polarization (evolving 
counter-clockwise in 
time as one looks into 
the beam)  

2.2 Definition of anisotropic materials 

The types of anisotropic materials treated in this chapter are uncoated homogeneous 

biaxial, uniaxial, and optically active materials. Each of these anisotropic materials is 
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described by a dielectric tensor ε and a gyrotropic tensor G. The gyrotropic tensor is zero 

for biaxial and uniaxial materials and non-zero for optically active materials.  

 The dielectric tensor ε relates the variation of refractive index with the light’s 

polarization state by relating E to D as78,79 
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D ε E  .    (2.3) 

When an E field is applied to a crystal, the response of the material depends on the atomic 

configuration of the crystal. Under the influence of the light field, the charges respond and 

contribute to the E field. The result is the D field which includes the light’s field and a 

contribution from dipoles induced in the material. This relationship is described by the 3×3 

dielectric tensor. 

The tensor ε can always be rotated into a diagonal form, 

 
 

 

2

2

2

0 00 0
0 0 0 0
0 0

0 0

X XX

Y Y Y

Z
Z Z

n i

n i

n i


 

 

    
        
    

Dε    (2.4) 

where nX, nY, and nZ (capital subscripts) are the principal refractive indices associated with 

three orthogonal principal axes or crystal axes (CA) and κX, κY and κZ are the associated 

absorption coefficients along those three axes. Table 2.2 shows εD of isotropic, uniaxial 

and biaxial materials with their principal axes aligned with the xyz axes of a global 

coordinate system. 
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Table 2.2 Properties of biaxial, uniaxial and isotropic materials when the principal axes are aligned 
with the global coordinate system. (Yellow) The biaxial crystal has principal refractive indices nS, 
nM, and nF. (Green) The uniaxial crystal has principal refractive indices nO and nE. (Blue) The 
isotropic material has one refractive index n. 

Material Principal Label 
Principal 
Refractive index 

Diagonal Dielectric Tensor εD 

Biaxial 

Slow 

Medium 

Fast 

(nS, nM, nF) 
2 0 00 0

20 0 0 0
20 0 0 0

nSS
nM M

F nF


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

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Uniaxial 
Ordinary 

Extraordinary 

(nO,  nE) 
2 0 00 0

20 0 0 0
20 0 0 0

nOO
nO O

E nE







             

 

Isotropic Isotropic 

n 
2 0 00 0

20 0 0 0
20 0 0 0

n

n

n







             

 

Biaxial materials, such as mica and topaz, have three different principal refractive 

indices — nS for the largest index, nM, and nF for the smallest index. The refractive index 

experienced by the light varies with the direction of the light’s electric field, not its 

propagation direction. Uniaxial materials, such as calcite and rutile, have two equal 

principal refractive indices nO as the principal ordinary index, and nE as the principal 

extraordinary index, as shown in Figure 2.1. By definition a negative uniaxial crystal, such 

as calcite, has nO > nE while a positive uniaxial crystal has nO < nE. An isotropic material 

can be considered a special case of an anisotropic material with εX = εY = εZ = ε. Optical 

glasses are isotropic, as are air, water, and vacuum. The dielectric tensor of an isotropic 

material is proportional to the identity matrix; light experiences the same refractive index 



72 

 

n regardless of propagation direction and polarization state. Materials also become 

anisotropic due to stress, strain, or applied electric or magnetic fields. 

  

Figure 2.1 (Left) Principal axes for positive uniaxial material where nE>nO. (Right) Principal axes 
for negative uniaxial material where nE<nO. 

The refractive index experienced by a light ray depends on its electric field 

orientation relative to the principal axes of the material. Light linearly polarized with its 

electric field along each of the three principal axes is depicted in Figure 2.2, which shows 

that the refractive index of the light depends on its polarization, not the direction of 

propagation. The refractive index characterizes how strongly the electrons in a material 

oscillate in response to an electromagnetic wave, and governs how fast the ray 

propagates.80 

  

Figure 2.2 (Left) Light propagating along z and polarized along x experiences the refractive index 
ns. (Middle) Light propagating along z and polarized along y experiences refractive index nM. 
(Right) Light propagating along x and polarized along z experiences refractive index nF. Thus the 
refractive index depends on the light polarization, not the direction of propagation. 
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 An optic axis of an anisotropic material is a direction of propagation in which the 

light experiences zero birefringence. When light propagates along the optic axis, the 

refractive index is the same for all the E field components in the transverse plane. Uniaxial 

materials, including crystallized minerals in the tetragonal, hexagonal, and trigonal crystal 

systems78, have a single optic axis, hence the name uniaxial. Inside the crystal, the response 

of the material to the light field oscillation depends on the field orientation relative to the 

different chemical bonds. In a uniaxial calcite crystal CaCO3, all the calcium-carbon bonds 

are oriented in one direction, which is the extraordinary principal axis. The three carbon-

oxygen bonds in the carbonate radical are oriented in the perpendicular plane, shown in 

Figure 2.3. The response of the ionic calcium-carbon bond to the E field is dissimilar to 

the response of the covalent bonds in the carbonate group. Therefore driving charges along 

the calcium-carbon bond generates a different refractive index than driving charges in the 

plane of the carbonate bonds. When light propagates along the extraordinary principal axis 

of uniaxial calcite, the electric field components in the transverse plane with the three-fold 

symmetry of the carbon oxygen bonds can only experience the ordinary refractive index 

nO; the two eigenmodes are degenerate. Therefore, the optic axis of a uniaxial material is 

the extraordinary principal axis. 
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Figure 2.3 Calcite CaCO3 crystal structure with the vertical optic axis, connecting the calcium 
(blue) and carbon (purple) atoms. 

On the other hand, a biaxial material has three distinct principal indices, and there are four 

directions along two axes within the material having degenerate eigenpolarizations, as is 

explained in section 2.4. So, unlike a uniaxial material, a biaxial material has two optic 

axes. 

 The birefringence Δn is the refractive index difference between two 

eigenpolarizations propagating the same direction in an anisotropic material. The 

maximum birefringence of various biaxial and uniaxial material, nS ̶ nF and nE ̶ nO, as a 

function of wavelength are shown in Figure 2.4, Figure 2.5 and Figure 2.681,82,83,84,85,86. 
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Figure 2.4 Birefringence spectra of common positive uniaxial materials.  

 

Figure 2.5 Birefringence spectra of common negative uniaxial materials. 

 

Figure 2.6 Birefringence spectra of common biaxial materials. 

 Optically active materials have a molecular structure that induces a rotation of the 

plane of the E field oscillations as light passes through the material. The effect of optical 

activity is described by the gyrotropic tensor G in the constitutive relation, 

and ,i i   D εE G H B μ H G E      (2.5) 

where µ is the magnetic permeability tensor9,87. Organic liquids such as glucose and 

sucrose solutions are common examples of isotropic optically active liquids which induce 

birefringence, or a phase shift between left and right circularly polarized light. The two 



76 

 

circularly polarized eigenmodes have slightly different refractive indices nR and nL. Thus 

optical activity is a source of circular birefringence. The difference between these two 

indices is often characterized by the optical rotatory power α which is related to the 

gyrotropic constant g, 

2
.R Lg n n

λ λ

          (2.6) 

The corresponding gyrotopic tensor G for an optically active liquid is a diagonal tensor, 
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In general, G is a symmetric tensor with 6 independent coefficients, 
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12 22 23

13 23 33

.
g g g
g g g
g g g

 
 
 
 

G      (2.8) 

The majority of biaxial and uniaxial materials have no optical activity, so the 

gyrotropic tensor is zero. A few crystals combine uniaxial or biaxial properties with optical 

activity, such as Mercury Sulfide. In general, molecules which lack mirror symmetry are 

optically active, i.e. a molecule which cannot be superposed on its mirror image, such as 

left shoe and right shoe. 

Crystalline quartz has both uniaxial and optically active characteristics. In quartz, 

the optical activity is only significant when the light propagates near the uniaxial optic axis, 

so G for quartz has two dependent values69, 
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G       (2.9) 

where gO = ½ ( nR ̶ nL ) = 3×10-5 and gE = –1.92gO at 589nm. 

 

Figure 2.7 The side and front view of the left (red) and right (blue) circularly polarized electric field 
propagating through an optically active material. The left circularly polarized beam propagates for 
three wavelengths and the right circularly polarized beam propagates for three and a half 
wavelengths through the material yielding one half wave of circular retardance.  

A schematic of the electric field for the two circularly polarized modes propagating 

in an optically active material are shown in Figure 2.7. When linearly polarized light passes 

through the optically active material, its plane of polarization rotates steadily through the 

medium, as shown in Figure 2.8, and it exits the material with rotated orientation but still 

linearly polarized. 

 

Figure 2.8 The plane of polarization of linearly polarized light rotates at a uniform rate when 
propagating in an optically active medium. This one-and-a-half wave circular retarder generates 
270 of optical rotation. 
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 For a system defined in global xyz coordinates, the principal axes of an anisotropic 

component do not need to align with the axes. The non-diagonal dielectric and gyrotropic 

tensors of the anisotropic component are calculated by matrix rotation of the diagonal 

tensor. For principal refractive indices (nA, nB, nC) with principal axis orientations specified 

by unit vectors (vA, vB, vC), the dielectric tensor is 

12
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2

0 0

0 0

0 0

AAx Bx Cx Ax Bx Cx
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Az Bz Cz Az Bz CzC

nv v v v v v
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ε  .  (2.10) 

2.3 Eigen polarizations in anisotropic materials 

Ray tracing through anisotropic materials results in multiple rays with different 

polarizations. Within anisotropic materials, only certain polarization states can propagate 

in a given direction without change of polarization. These polarization states are the 

eigenpolarizations or eigen-modes. When light refracts into an anisotropic material, its 

energy divides into orthogonally polarized eigenmodes in a process of double refraction or 

ray splitting. An example of this ray splitting is Figure 2.9 showing the image of the text 

“POLARIS” seen through a calcite crystal. The two images have orthogonally linear 

polarization states, so either image can be selected by rotating a linear polarizer in front of 

the crystal. 
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Figure 2.9 (Left) Double refraction through a calcite rhomb. (Right) A schematic of a ray splitting 
into two modes through a uniaxial plate. The optic axis (OA) shown is 45° from vertical. The gray 
line indicates a polarization state in the plane of the page, which is the extraordinary e-mode in this 
case. The gray dot indicates a polarization state out of the page, which is the ordinary o-mode in 
this example. 

The direction of image doubling rotates as the crystal rotates, since the principal section is 

fixed with the crystal. As the crystal rotates, the principal section also rotates; the ordinary 

mode image remains fixed while the extraordinary mode image rotates around the ordinary 

image. 

 

Figure 2.10 Double refraction through a calcite rhomb. When rotating the calcite, the ordinary 
image stays fixed while the extraordinary image rotates around it. 

Figure 2.9 (right) shows the schematic of a ray refracting into a uniaxial plate in the 

principal section of the crystal, which is the plane of ray splitting. The two resultant 

eigenmodes are the ordinary o-mode and the extraordinary e-mode. The refractive indices 

associated with these two modes are no and ne. The lower case subscripts are associated 



80 

 

with the ray refractive indices as opposed to the upper case subscripts for the principal 

refractive indices of the material. Light polarized orthogonal to the optic axis, for example 

in the carbonate plane of calcite, is the o-mode and has an ordinary refractive index no 

which is always equal to the material principal refractive index nO. The e-mode is polarized 

perpendicular to the o-mode, in a plane containing the optic axis, and experiences the 

extraordinary refractive index ne which has a value between nE and nO. The birefringence 

of a ray in a uniaxial material is the refractive index difference between these two modes, 

ne ̶ no. Due to the refractive index difference, the two modes refract into the anisotropic 

material in different directions. The division of flux between these two modes is a function 

of the incident polarization state. 

Consider a ray propagating through an example anisotropic system shown in Figure 

2.11. A ray refracts from air into a biaxial KTP (Potassium titanyl phosphate, KTiOPO4) 

crystal, where the light divides into two modes, labeled as fast (f1) and slow (s1), due to 

double refraction. The fast-mode has a lower refractive index while the slow-mode has a 

higher refractive index. These two modes then refract into another biaxial crystal, 

aragonite, which has different crystal axes than the KTP. The f1 ray couples into two modes, 

f2 and s2, and similarly the s1-mode couples into f2 and s2-modes. The collective mode labels 

after propagating through KTP and Aragonite are fast-fast (f1 f2), fast-slow (f1 s2), slow-fast 

(s1 f2), and slow-slow (s1 s2). This ray doubling continues into the third biaxial crystal, mica. 

When the incident ray exits the three blocks of crystals, eight modes emerge as fff, ffs, fsf, 

fss, sff, sfs, ssf, and sss. Each f and s represent distinct electric field orientations along 

separate ray segments. The exiting polarization state and phase is found from the addition 
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(superposition) of eight waves. The optical path length, OPL, has eight different values for 

the eight partial waves, a term for the component waves derived from one incident wave. 

 

Figure 2.11 A normally incident ray propagates through three blocks of anisotropic materials (KTP, 
aragonite, and mica) each with different crystal axes orientations shown as three lines inside each 
block. One incident ray results in eight exiting rays due to three ray splitting interfaces, each with 
different sequences of polarizations and different OPLs. 

 The symbols indicating eigenmodes in different types of anisotropic material are 

listed in Table 2.3. When refracting into an isotropic material, both refracted modes (s- and 

p-states) share the same Poynting vector direction Ŝ and propagation vector direction k̂ ; 

thus the transmitted modes are degenerate with the same refractive index. Similarly for the 

reflected modes. So, after refraction, the s- and p-modes are combined and treated as a 

single mode i, denoting an isotropic mode. In isotropic optically active materials, the two 

modes are the right circularly r and left circularly l polarized modes.  
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Table 2.3 Mode labeling for exiting rays in different types of anisotropic interfaces. The s- and p-
polarizations in isotropic material have the same propagation directions and are grouped to one 
mode, isotropic. 

Anisotropic 
material 

Descriptions of eigenmodes Mode Label 

Biaxial Mode with smaller n  f-mode; fast-mode 

 Mode with larger n s-mode; slow-mode 

Uniaxial Ordinary ray o-mode 

 Extraordinary ray e-mode 

Optically active Left circularly polarized l-mode; left-mode 

 Right circularly polarized r-mode; right-mode 

Isotropic Polarized in plane of incidence p-polarization 

 Polarized out of the plane of incidence s-polarization 

 Combined s- and p-states i-mode 

General anisotropic material   

Transmission  Transmitted rays ta, tb 

Reflection  Reflected rays rc, rd 

In general, ray doubling occurs each time a beam enters into or reflects toward a 

birefringent medium, unless the polarization is aligned exactly such that only one mode is 

excited with energy. An incident ray refracting through N anisotropic interfaces results in 

a potential of 2N separate exiting rays with 2N different mode sequences. Each of these 

modes takes a different path and has its own amplitude, polarization, and OPL. To retrieve 

the properties of each of these modes, a list of ray parameters, presented in Table 2.4, are 

calculated for each ray segment during the polarization ray trace through an optical system. 

Mode label is an additional ray parameter needed for tracking ray doubling at each 

birefringent interface. The collective mode label of a resultant ray at the exit pupil describes 

the evolution of polarization along that specific ray path. Polarization ray tracing a grid of 

incident rays emerging from an incident wavefront through N anisotropic surfaces produces 
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2N separate wavefronts at the exit pupil. The exiting rays with the same mode label 

represent one of these wavefronts. By studying the properties of these rays at the exit pupil, 

one mode at a time, the wavefront aberrations (amplitude aberration, defocus, spherical 

aberration, coma, astigmatism, etc.) of each mode sequence can be analyzed and the effects 

of overlapping these wavefronts calculated. 

Table 2.4 Ray tracing parameters to be calculated for each anisotropic ray intercept to characterize 
each exiting ray. 

Parameter  Symbol 

Coordinate of ray intercept  r 

Propagation vector k̂   

Poynting vector Ŝ  

Normal to surface η̂  

Mode label  f, s, o, e, l ,r, or i 

Mode refractive index nf, ns, no, ne, nl, nr, or n 

Optical path length OPL 

Electric field vector or polarization vector Ê  

Magnetic field vector Ĥ  

Amplitude reflection or transmission coefficient a 

Polarization ray tracing matrix for a ray intercept P 

Geometrical transformation for a ray intercept Q 

2.4 Refraction and reflections at anisotropic interface 

When light strikes an optical interface, part of its energy refracts and part reflects. At an 

anisotropic intercept, the energy of the light divides into eigenmodes. The division of 

energy and the exiting ray parameters shown in Table 2.4 are calculated from the incident 

ray parameters, and the material properties before and after the interface. The algorithms 

to calculate the exiting ray parameters for polarization ray tracing in refraction and 

reflection for each exiting modes at an anisotropic intercept are described in this section. 
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These resultant ray parameters will be used in Chapter 3 to calculate their polarization ray 

tracing matrices, P, which represent polarization properties of one or a series of ray 

intercepts. The type of uncoated anisotropic interfaces described in this section include 

isotropic/anisotropic, anisotropic/isotropic, and anisotropic/anisotropic interfaces. 

Depending on the type of the interface, the number of exiting rays varies. The resultant 

fields behave differently, but the calculations are similar and can be generalized. 

The four combinations of isotropic and anisotropic interfaces along with the 

corresponding ray splitting configurations are depicted in Figure 2.1269. The incident, 

refracted, and reflected ray parameters are distinguished by their subscripts inc, t, and r 

respectively.  
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Figure 2.12 The four configurations of anisotropic interfaces are shown with corresponding 
reflected rays toward the incident medium and refracted rays into the transmitting medium for a 
given incident ray. The black arrow represents S, the Poynting vector direction, which is the 
direction of energy flow and is not necessarily the same as k, the propagation vector direction. The 
transmitted and reflected modes are identified by subscripts ta, tb, rc and rd. The three gray parallel 
lines along each ray represent the wavefronts which are perpendicular to k, but not necessarily 
perpendicular to S. (a) A ray propagating from an isotropic medium to another isotropic medium 
results in one reflected ray and one refracted ray. (b-d) If the incident medium or/and the transmitted 
medium is/are anisotropic, ray splitting occurs and the two resultant rays in each anisotropic 
material have different k and S directions. 

In an isotropic material, the refractive index remains constant and is independent of the 

polarization of the ray. The k and S vectors of the s- and p-polarizations are parallel and 

one incident ray produces one reflected and one refracted ray. In this case, the reflected 

and refracted constant phase wavefronts are perpendicular to the energy propagation 
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direction. In anisotropic materials, the surfaces of constant phase (the wavefronts) are not 

generally perpendicular to the direction of energy propagation; k and S are not aligned in 

the same direction. At anisotropic intercepts, one incident ray may result in up to four 

exiting rays, two reflected and two refracted. 

The essential steps of the anisotropic ray tracing algorithm, following McClain68,69, 

are as follows. The electromagnetic fields and tensors are represented by 3×1 vectors and 

3×3 matrices, respectively; all calculations are directly performed in 3D. The normalized 

refracted or reflected propagation vector k at an anisotropic material is 

   

   

2
2 2 2

2
2 2 2

ˆ ˆ ˆˆ ˆ ˆ
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ˆ ˆ ˆˆ ˆ ˆ

n n n n n

n n n n n

        
 
        
 

inc inc inc

inc inc inc

k k η k η η

k

k k η k η η

   (2.11) 

where n and n′ are the refractive index for the incident and the exiting rays, ˆ
inck  and k̂ are 

the normalized incident and exiting propagation vectors, and the sign of the square root is 

+ for refraction and – for reflection. The solution is complicated by the fact that k̂  is a 

function of n′. By combining the constitutive relations in equation (2.5) with Maxwell’s 

equations, the eigenvalue equations for the exiting E fields are formed, 

 2 0n i       tt Eε K G        and        2 0n i     rr Eε K G  (2.12) 

for refraction and reflection respectively, where  
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and  ˆ , ,x y zk k kk . For a non-zero exiting Et and Er, the determinant of equation (2.12) 

has to be zero, 

 2
0n i    tε K G         and       2

0.n i  rε K G    (2.14) 

Equations (2.11) and (2.14) are solved simultaneously for n′ and k. The exiting E fields are 

calculated by equation (2.12) through singular value decomposition. The exiting H and S 

fields are calculated by equation (2.15) and (2.16). 

 tn i  tt tK GH E        and        rn i r rrH EK G   (2.15) 
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Then the E, D, B, H and S fields are calculated for all exiting modes. Since highly 

transparent materials are preferred in optical systems, the absorption is assumed negligibly 

small. Extension of these methods to absorbing and dichroic materials is included in 

references 63, 64, 67, and 88.  

 The equation for OPL in anisotropic materials is generalized from its definition for 

isotropic materials in equation (2.17). OPL describes the phase accumulated along a ray 

path between optical element interfaces, and is calculated separately for each mode. The 
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physical ray path is along S which is the direction of energy flow, while the phase increases 

along k. Therefore the OPL for the ray segment is 

ˆˆOPL n   k Sl     (2.17) 

as shown in Figure 2.13. 

 

Figure 2.13 The calculation of the OPL for a ray propagating through an anisotropic material where 
S (black) and k (gray) are not aligned. The wavefronts are perpendicular to the k vector. The energy 
propagation direction is along S, which determines the location of ray intercept at the next surface. 
The OPL is the number of wavelengths between the two intercepts, the projection of the ray path l 
onto k multiplied by the refractive index of the mode. 

The fraction of the incident energy which couples into each of the four modes is 

described by the amplitude transmission coefficients (ta and tb) and the amplitude reflection 

coefficients (rc and rd), where subscripts a, b, c, and d are labels for the four split modes. 

These coefficients at an isotropic/isotropic intercept are the conventional Fresnel 

coefficients for the s- and p-polarizations. By matching the boundary conditions at the 

interface for E and H fields, all four exiting amplitude coefficients at the intercept are 

calculated using equations (2.18) through (2.22): 

1A F C ,     (2.18) 
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where 

 , , , ,
T
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 ˆ ˆ ,, , ,
T


1 inc 2 inc 1 inc 2 inc

C s E s E s H s H       (2.21) 

with subscript inc for incident fields, 

ˆ ˆ ˆand   1 2 1s k η s η s .    (2.22) 

s1•V and s2•V operate on vector V to extract the tangential and normal components of V. 

Therefore the transmitted electric field is the superposition of the two transmitted modes:  
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and the reflected electric field is 
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r rc rdE r E ERe   (2.24) 

 For the isotropic-to-isotropic interface, (nta=ntb, ˆ ˆta tbk k , ˆ ˆta tbE E ) and 

(nrc=nrd, ˆ ˆrc rdk k , and ˆ ˆrc rdE E ). Thus, equations (2.23) and (2.24) reduce to 



90 

 

   
2 ˆ

, ˆ ˆ ti n ωt

inc s p
t E et t




   
 

 
   

tk r
t

ts tp
E r E ERe  and  (2.25) 

   
2 ˆ

, .ˆ ˆ ri n ωt

inc s p
t E er r




   
 

 
   

rk r
r

rs rp
E r E ERe    (2.26) 

For rays refracting into a uniaxial medium, the a and b-modes are the o- and e-modes in 

equation (2.23). For rays refracting into an optically active medium, the resultant two 

modes are l and r-modes. It is important to note that equations (2.23) and (2.24) must be 

repeated for the orthogonally polarized incident modes to yield the four refracting or four 

reflecting modes (i.e., for biaxial-to-biaxial: ff, fs, sf, ss-modes; for uniaxial-to-uniaxial: 

oo, oe, eo, ee-modes).  

The light intensity I of a given E is calculated by multiplying |E|2 with the cross-

section scaling factor, n2cosθs2/n1cosθs1, at a ray intercept as 

22 2

1 1

cos

cos
s

s

n
I

n




 E  ,      (2.27) 

where θs is the angle of the Poynting vector, subscript 1 for parameters before the interface, 

and subscript 2 for parameters after the interface. 

When equation (2.11) yields a ray with complex k, the corresponding mode is an 

evanescent wave. The mode is totally internal reflected for a complex kt and all the energy 

is reflected with zero transmission 89. In an anisotropic material, inhibited reflection occurs 

when the reflected ray has a complex kr; then all the energy transmits with zero reflection 

90.  
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The algorithms above based on McClain explain the calculation for uncoated 

anisotropic interfaces. The calculations for layered of anisotropic slabs and anisotropic 

coatings are discussed by Mansuripur91, Abdulhalim92,93 and others94,95. 

Finally, conical refraction is a complex phenomenon in biaxial materials where 

light refracts into a continuous cone of light, not just into two modes in two directions. It 

only happens when light propagates along one of the two optic axes9,96,97 in a biaxial 

material as shown in Figure 2.14 (left). The optic axes of a biaxial material do not 

correspond to any of the principal axes. When conical refraction occurs, the eigenmodes 

experience the same refractive index98, and the solution to Maxwell’s equations becomes 

degenerate with a family of k and E pairs. The associated refracted energy forms a hollow 

cone of light as shown in Figure 2.14 (right).  

 

Figure 2.14 (Left) Orientations of the two optic axes of a biaxial material are perpendicular to the 
two circular cross sections through the index ellipsoid. (Right) A ray refracts into the direction of 
the biaxial optic axis. The incident polarizations distribute their Poynting vectors into a cone (the 
solid angle of the cone shown is exaggerated), and propagate as a cone through the biaxial crystal. 
The associated polarization (shown as the purple lines) rotates by π around the refracted cone. The 
distribution of flux around the cone depends on the distribution of incident polarization states. The 
fast, medium, and slow crystal axes are shown as the red, green and blue arrows.  
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Figure 2.15 shows measurements of conical refraction in a KTP crystal. The distribution 

of the energy depends on the incident polarization; the corresponding polarization state 

rotates around the cone through 180° and forms a ring on the next interface. Thus, due to 

conical refraction special care is required when ray tracing near the optic axes99,100. For 

example, the cone of light can be modeled as a cone of rays. 

  

Figure 2.15 A biaxial KTP crystal is setup to display conical refraction and its refracted cone is 
measured in an imaging polarimeter. The Mueller matrix image (left) and diattenuation orientation 
image (right) of the refracted cone is shown. 

2.5 External and internal refraction/reflection at a biaxial interface 

The transmission and reflection for an example anisotropic surface are shown in this 

section. Consider a KTP biaxial crystal with principal refractive indices (nF, nM, nS) = 

(1.786, 1.797, 1.902) whose principal axes are oriented along (0.690, 0.55, 0.48), (-0.03, 

0.68,-0.73) and (0.73, -0.49, -0.49), as shown in Figure 2.16. A similar analysis of this 

example KTP crystal with principal axes along global xyz axes is included in Appendix C 

for reference. 
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Figure 2.16 External (left) and internal (right) reflection and refraction of biaxial interface. 

The external and internal reflection and refraction properties are calculated using 

the algorithms of section 2.4 for a wavelength of 500 nm across a range of incident angles. 

The external reflection and refraction are isotropic/anisotropic interactions of a ray 

propagating from air to KTP. The ray reflects back to air with s- and p-polarizations, and 

refracts into KTP as fast- and slow-modes in different propagation directions, as depicted 

in Figure 2.16 (left). The internal reflection and refraction, shown in Figure 2.16 (right), 

are anisotropic/isotropic interactions of an eigenmode propagating from KTP to air. The 

ray reflects back into KTP with fast- and slow-modes having different propagation 

directions, and the ray refracts to air with s- and p-polarized components propagating in 

the same direction. These refracted and reflected modes inside the biaxial crystal do not 

necessarily lie in the plane of incidence (PoI) due to the crystal’s anisotropic structure, but 

the effect in this example is small due to the small birefringence of KTP. 

In general, the incident s- and p-polarizations can both couple to the refracted fast- 

and slow-modes in external refraction. Similarly for internal reflection, the incident fast- 

and slow-modes can both couple to the reflected fast- and slow-modes. The intensity of 

these mode couplings depends highly on the orientation of the crystal axes. As shown in 
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Appendix C, the crystal axes can be adjusted so that p-polarization couples entirely to the 

slow-mode and s-polarization couples entirely to the fast-mode or vice versa. 

First, consider the external interaction. The intensity coefficients of the air/KTP 

interface, as plotted in Figure 2.17, are the result of external dielectric reflection and 

refraction. In reflection, both s- and p-polarized states have the same reflectance at normal 

incidence. The reflectance of the s-polarization increases with angle, while the reflectance 

of the p-polarization decreases to zero at about 60° corresponding to the Brewster’s angle. 

As both states approach the Brewster’s angle, the difference of their reflectance increases, 

thus reflected diattenuation also increases. In refraction, the p-polarization couples mostly 

to the fast-mode and the s-polarization couples mostly to the slow-mode. The intensity of 

s-fast and p-slow couplings are relatively low and appear as orthogonally polarized ghosts 

or leakage when compared with the s-slow and p-fast modes. 

 

Figure 2.17 External reflection and refraction coefficients at the air/KTP interface. 

Figure 2.18 shows a fan of incident rays, from 0° to 70° reflecting from the air/KTP 

interface. At normal incidence, the s- and p-states are degenerate and both have a π phase 

shift. The intensity of the s-state increases with angle, while the intensity of the p-state 
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decreases with angle and turns around, switching to in-phase with the incident state when 

passing through Brewster’s angle with zero reflectance.  

 

Figure 2.18 A fan of rays externally reflect from an air/biaxial interface. The gray arrows are the 
incident k vectors at different incident angles. The black arrows are the corresponding reflected k 
vectors. The blue and red arrows are the polarization ellipses, the evolution of electric field, where 
the arrow head indicates the start of the electric field evolution in time. In this case, all polarization 
ellipses shown are linearly polarized. All the incident polarizations have the same magnitude. The 
length of the polarization arrow indicates the intensity of the reflected light, but are adjusted slightly 
for visualization.  

 In refraction, the crystal axis orientation of this example biaxial KTP allows energy 

to couple to both fast- and slow-modes from both s- and p-incident states. The transmitted 

fast- and slow-modes have slightly different St and lie close to, but not exactly in the PoI. 

The phase of the polarization is unchanged upon refraction for the uncoated surface, as 

shown in Figure 2.19; thus the refracted retardance is zero. As the incident angle increases, 

the transmission decreases, as opposed to increasing reflection. The p-fast and s-slow 

modes are polarized close to the incident p- and s-polarizations, respectively. The p-slow 

and s-fast modes with lower transmission have larger polarization rotations due to the 

biaxial structure.  
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Figure 2.19 A fan of rays externally refracting from an air/biaxial interface are shown in two 
perspectives for the four mode couplings. The gray arrows are the incident k vectors. The black 
and brown arrows are the refracted S vectors for the slow- and fast-modes, respectively. The blue, 
red, magenta and green arrows show the refracted polarization states in 3D and are scaled to the 
refracted flux. 

Consider left circularly polarized light incident on the example air/KTP interface 

at various angles, as shown in Figure 2.20. The reflected electric fields are 

circularly/elliptically polarized. Around normal incidence, the incident and reflected 

polarizations evolve in the same direction when viewing in 3D; left circularly polarized§ 

light reflects as right circularly polarized light. As the incident angle approaches Brewster’s 

angle, the reflected polarization elongates towards the s-polarized state. When it reaches 

                                                 

§ The left and right circular polarizations are demonstrated in Table 2.1. 
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Brewster’s angle, the reflected p component is zero, and the reflected light is completely 

s-polarized. Above the Brewster’s angle, the reflected polarization becomes elliptical 

again, but with the opposite helicity than below the Brewster’s angle; left circularly 

polarized light reflects as left circularly polarized light. Both refracted modes are linearly 

polarized, and they both rotate slightly with the refraction angle. 

 

Figure 2.20 Left circularly polarized incident light is sent to the air/biaxial interface. The gray, 
black and brown arrows are the incident, reflected and refracted rays, respectively. The purple 
ellipses are the incident and reflected polarizations. The red and blue arrows are the refracted fast 
and slow-modes. 

 As light propagates from inside the crystal back into air, it is subject to internal 

light-surface interactions. The internal reflection/refraction coupling coefficients of the 

example KTP/air interface are shown in Figure 2.21. The fast- and slow-modes couple to 

both reflected fast- and slow-modes. The critical angle is about 32°, where no light 

transmitted and all four reflected modes have about 50% couplings. 
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Figure 2.21 Internal reflection and transmission coefficients at the KTP/air interface. 

 The polarizations resulting from the internal reflection are shown in Figure 2.22. 

The incident fast- and slow-modes lie in the plane transverse to incident S, but are not in 

or orthogonal to the PoI. Below the critical angle, most of the light transmits, and the 

reflected light has a π phase change upon reflections. Above the critical angle, the reflected 

intensity increases drastically due to total internal reflection with a changing phase shift as 

function of reflection angle.  



99 

 

 

Figure 2.22 A fan of rays internally reflecting from a biaxial/air interface are shown in two 
perspectives for all four mode couplings. The gray arrows are the incident k vectors. The black 
arrows are the corresponding reflected k vectors. The blue, red, green and magenta arrows are the 
polarization ellipses. 

The refracted polarization in air shown in Figure 2.23 has non-zero s and p components 

which are coupled from both fast- and slow-modes. Since refraction through an uncoated 

dielectric surface induces zero phase change, the refracted light of a linearly polarized 

incident state is linearly polarized in between the s- and p-polarized states. 
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Figure 2.23 A fan of rays internally refracting from biaxial/air interface are shown in two 
perspectives for all four mode couplings. The gray arrows are the incident k vectors. The black 
arrows are the refracted S vectors for the refracted rays. The blue and red arrows are the polarization 
ellipses. 

2.6 Optical Indicatrix 

The refraction and reflection at anisotropic interface can be understood by a geometrical 

construction rather than the algebraic algorithm in Section 2.4. In this geometrical 

approach, the calculation of ray parameters is visualized using the index ellipsoid and 

optical indicatrix, which are very helpful for understanding wavefront aberrations. 

The E and D vectors are related by the dielectric tensor, and the energy density u 

in the electromagnetic wave,  

1
and

2
u  D ε E E D       (2.28) 

In the principal coordinates, the dielectric tensor is diagonal and the three principal axes 

are aligned with the xyz axes, 
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2 x x y y z zu n E n E n E   .    (2.30)  

So 

     

22 2

2 2 2
2 2 2

1
1/1/ 1/

yx z

yx z

EE E

u u u

nn n

    
    

         .    (2.31) 

The solutions for the electric field vector in equation (2.31) can be represented as an 

ellipsoid with semi-axes 1/nx, 1/ny, and 1/nz, as shown in Figure 2.24.  

 

Figure 2.24 The ray ellipsoid of biaxial (left), positive uniaxial (middle) and isotropic materials 

(right). The principal axes are aligned with the coordinate axes with (x, y, z) =   /, , 2E E E ux y z  

On the other hand, the electric field can be expressed in terms of the displacement field as 

2

1 2

2

1/ 0 0

or 0 1/ 0

0 0 1/

xx x

y yy

z zz

nE D
E Dn
E Dn



                      

E ε D    (2.32) 

where the inverse of ε is the impermeability tensor 
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1 2

2

1/ 0 0

0 1/ 0

0 0 1/
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n



 
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  
 
 

ε .    (2.33) 
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Then the energy density is 

22 2

2 2 2

1 1

2 2
yx z

x y z

DD D
u

n n n

 
     
 
 

E D    (2.34) 

and 

     

22 2

2 2 2
2 2 2

1

yx z

yx z

DD D

u u u

nn n

    
    

        .   (2.35) 

With equation (2.35), the dielectric tensor is visualized as an index ellipsoid shown in 

Figure 2.25, whose semi-axes are the principal refractive indices in the principal 

coordinates. The index ellipsoid is variously called the ellipsoid of wave normals, 

reciprocal ellipsoid, or index indicatrix.9,81,101,102,103 

 

Figure 2.25 The index ellipsoid of (left) biaxial, (middle) positive uniaxial, and (right) isotropic 
materials. Their principal axes are aligned with the coordinate axes with (x, y, z) =

 , , / 2D D D ux y z . 

Consider a ray normally incident onto a uniaxial crystal in Figure 2.26 which has 

the index ellipsoid rotated from the z axis by α. At normal incidence, the refracted o- and 

e-rays have the same k = (0, 0, 1). The D vectors and their corresponding refractive indices 

can be calculated geometrically using the index ellipsoid.  



103 

 

 

Figure 2.26 (Left) A ray normally incident to a block of uniaxial material. (Right) The index 
ellipsoid in the system coordinates where the optic axis is shown rotated by α from the z axis in the 
y-z plane. The blue ellipse goes through the optic axis. The red circle is perpendicular to the optics 
axis. 

The eigenmodes in the uniaxial material follow from Maxwell’s equations, 

and o    k H D k E H   (2.36) 

where ω is the light frequency in radians per second. Therefore, 

  2 .o  k Dk E      (2.37) 

With equation (2.32), 

1
2

1
,

k nk
    

 
k k

Dε D       (2.38) 

where k = nω/c and k = |k|. This reveals that the projection of ε-1D onto a plane 

perpendicular to k is the D field direction of the e-mode. Within the index ellipsoid, the 

surface orthogonal to k including the origin is the index ellipse shown in Figure 2.27. For 

the example in Figure 2.26, the index ellipse is the intersection of the x-y plane with the 

crystal’s index ellipsoid. The D fields of the two eigenmodes are along the major and minor 

axes of the index ellipse. The lengths of these two axes correspond to the eigenmode 
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refractive indices. For the e-mode, De is in the plane of the optic axis and orthogonal to k, 

as shown in Figure 2.28. And Do for the o-mode is in the plane orthogonal to De and k. 

 

Figure 2.27 (Left) For a ray with propagation vector k (purple) propagating through a negative 
uniaxial crystal, the ray index ellipse (light purple disk in the y-z plane) is the intersection of the 
plane normal to k and the optical indicatrix. (Right) The minor and major axes of the index ellipse 
correspond to the D field directions of the o- and e-modes, and the lengths of these two axes are 
the refractive indices. 

 

Figure 2.28 The index ellipse (light purple disk) in the x-y plane is normal to k (purple arrow). De 
(pink arrow) is on the pink plane in the y-z plane containing both the optic axis (dashed brown line) 
and the k vector. Do (blue arrow) is on the blue plane in the x-z plane orthogonal to the pink De 
plane. The three planes are orthogonal to each other, and both Do and De are lying on the purple 
index ellipse in the x-y plane. The brown ellipse is the great ellipse containing the optic axis. 

 A general uniaxial index ellipse for any possible k always has at least one axis with 

length nO, as shown in Figure 2.29, corresponding to the o-ray index no. For a positive 

uniaxial material, the length of the major axis is the e-mode index ne. The equation for ne 

is obtained from Figure 2.30 by projecting the index ellipsoid and the index ellipse onto a 

2D plane: 
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 

2 2

2 2 2

1 cos sin

e O En n n

 


       (2.39) 

where θ  is the angle between k and the optic axis. ne becomes nO in the limit when k is 

along the optic axis, and ne is nE when k lies in the plane orthogonal to the optic axis. 

 

Figure 2.29 Several possible index ellipses (blue) in a positive uniaxial index ellipsoid (yellow) are 
shown. (Left) The index ellipses shown contain the x axis. (Middle) The index ellipses shown 
contain the z axis. (Right) The index ellipses shown contain an axis 45° from the x axis in the x-z 
plane. 

 

Figure 2.30 (Left) A ray propagating in the y-z plane has an index ellipse (purple disk) lying in a 
plane orthogonal to k and containing the x axis. k lies at an angle θ from the optic axis along the z 
axis. (Right) The projected length of the index ellipse is the magnitude of ne(θ). 

The direction of energy S and its corresponding E field are calculated using another 

ellipsoid derived from equation (2.37) which reduces to 
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k E 0k E

   (2.40) 

where k = {kx, ky, kz}, ko=ω/c and ω is the angular frequency. For a nontrivial solution of 

E, the matrix determinant in equation (2.40) must be zero, which results in the dispersion 

relation and defines an ellipsoid called the K-surface, also called the normal surface78,104. 

For a uniaxial material, this is a function of ko: 

2 2 2 22 2 2 2 2 2 2 2

2 2 2 2 2 2

/ // / / /
01 1y o y ox o z o x o z o

O O O E E O

k k k kk k k k k k k k

n n n n n n

  
         

  
  (2.41) 

The left part of the equation is the solution for the o-mode with a spherical K-surface, while 

the right part is the solution for the e-mode with an ellipsoid K-surface. Both of these K-

surfaces are plotted in their principal axes {kx/ko, ky/ko, kz/ko} in Figure 2.31. 
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Figure 2.31 The K-surfaces and their cross sections for the o-mode (red, sphere) and the e-mode 
(blue, ellipsoid). The optic axis (dashed brown line) lies on the kz/ko axis. 

For the example shown in Figure 2.26, the K-surfaces are rotated by α, so Figure 

2.31 becomes Figure 2.32. The Poynting vector S is normal to the k-surface at the 

intersection of k. The ordinary ko is always in the same direction as So; the ordinary 

wavefront is spherical just like an isotropic wavefront. On the other hand, the extraordinary 

ke is not parallel with Se, unless ke is along the optic axis or orthogonal to it. As the energy 

follows Se, the constant phase fronts along the De field which are perpendicular to ke are 

skewed from Se, and the Ee field orthogonal to Se lies tangent to the k-surface, as shown in 

Figure 2.33. 
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Figure 2.32 The K-surfaces are oriented for the example in Figure 2.26, where the optic axis is 
rotated by α from the z axis. The Poynting vectors are normal to the k-surface. 

 

Figure 2.33 (Left) The Poynting vectors are normal to the K-surface in 2D. (Right) The incident 
energy divides into Se and So direction. Their wavefronts D, shown as the three parallel lines, are 
orthogonal to k and skewed from S. 

When a ray refracts through a birefringent interface, the refraction direction is fixed 

by the phase matching condition across the boundary for both eigenstates. The ordinary ko 

is calculated as in an isotropic medium. The extraordinary ke still obeys Snell’s law with 

consideration for its varying refractive index as a function of direction: 

 
sin sin

sin sin

inc inc o o

a einc inc e e

n n

n n

 

  




    (2.42) 
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where θa is the angle between the surface normal and the optic axis, θe is the refraction 

angle, and ne is a function of θa and θe. Equation (2.39) and (2.42) must be solved 

simultaneously for the e-mode index and refraction angle. For the normal incidence 

example, the incident and exiting K-surfaces are shown in Figure 2.34 where θinc= θo= 

θe=0. 

 

Figure 2.34 The K-surface for refraction from an isotropic material to a uniaxial material at normal 
incidence. 

To ray trace using this geometrical method requires the crystal’s principal indices, 

the principal axis orientations, and the incident k direction. The ray trace procedure is as 

follows: 

(1) Calculate the refractive indices of the two eigenstates, and their propagation directions 

using equation (2.39) and (2.42). 

(2) Use the index ellipsoid to determine D, from which E is calculated. 

(3) Use the K-surfaces to determine S. 

The refractive index of the extraordinary mode in equation (2.39) is related to the 

phase velocity: vp,e = c/ne. The surface of equal phase, the S-surface, originates from a point 

source and expands at the speed of vp along k. So the ordinary wave surface is a sphere 
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while the extraordinary wave surface is proportional to 1/ne. The energy of the light flows 

along S at ray velocity vr = vp/cos β, where β is the angle between k and S9,105,106. Figure 

2.35 shows the S-surfaces in the principal plane for positive and negative uniaxial 

materials. Consider a negative uniaxial material with k is along the optic axis; then vp,o = 

vp,e. At other propagation direction, ne<no, so vp,o<vp,e. 

 

Figure 2.35 S-surface for positive (left) and negative (right) uniaxial material. Blue for e-mode, and 
red for o-mode. The optic axis (brown) is oriented vertically. 

 The K-surface and the S-surface of the e-mode are related to each other in Figure 

2.36. Considering a k vector originating from the origin, its intercept at the K-surface 

reveals the E and S directions to be the tangent and normal of the K-surface. For this S 

direction originating from the origin, the intercept at the S-surface reveals the D and k 

directions to be the tangent and normal of the S-surface. The e-wavefront has the ellipsoidal 

shape of the S-surface, which expands along S at the ray velocity. 
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Figure 2.36 The K-surface and S-surface of the extraordinary mode in a positive uniaxial material. 

2.7 Conclusions 

The anisotropy of birefringent materials and optically active materials divides light waves 

into modes with mutually orthogonal polarizations. This ray doubling characteristic of 

anisotropic materials complicates the calculations of refracted and reflected 

electromagnetic waves at an uncoated anisotropic intercept in polarization ray tracing. Two 

algorithms were shown in this chapter to mathematically and geometrically calculate the 

ray parameters. The numerical algorithm is suitable for a computer ray trace, while the 

geometrical calculation provides intuition to understand the shape of the anisotropic 

wavefronts. 

 The polarized light interaction for an uncoated homogeneous anisotropic interface 

has similar properties to the refraction and reflection at an isotropic dielectric surface, 

except the eigen-polarizations propagate in different directions rather than in the same 

direction as with s- and p-polarizations. Also, the wavefront in an anisotropic material has 

a complex shape (orthogonal to k but not orthogonal to S) and different residual aberrations 

compared to a wavefront in an isotropic material. Further, the propagation within the 
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anisotropic material induces a phase difference between polarization states, retardance, 

which is commonly used in optical systems with anisotropic elements. 

 To study wavefront transmitted through anisotropic materials, a fan of rays should 

be traced. When tracing large grids of rays to accurately sample the multiple exiting 

wavefronts, accessing the ray properties along these ray paths through a specific surface or 

a series of surfaces is an important step in optical design. K incident rays refracting through 

N anisotropic intercepts result in K×2N
 exiting rays and 

1

2
N

n

n

K


 
 
 
  ray segments. These 

branches of ray segments can be organized by the cumulative mode label (introduced in 

Table 2.3) in a ray tree shown in Figure 2.37.  

 

Figure 2.37 A ray tree for one incident ray refracting through three uniaxial interfaces, where the 
ordinary mode is o and the extraordinary mode is e. 

This ray tree keeps track of the multiplicity of rays generated by anisotropic elements. The 

cumulative mode label identifies the individual polarized wavefront of a specific sequence 

of anisotropic energy splittings as the wavefront propagates through the series of optical 

surfaces. These mode labels accommodate the automation of ray doubling in a computer 

ray trace without imposing any assumptions, and assist in sorting the exiting rays for each 

polarized wavefront.  
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CHAPTER 3 POLARIZATION RAY TRACING P 
MATRICES FOR ANISOTROPIC RAY TRACING 

3.1 Purposes of polarization ray tracing P matrix 

The polarization ray tracing calculus is a method for preforming polarization ray tracing in 

global 3D coordinates. The purpose of the polarization ray tracing matrix, P, is to 

generalize the Jones matrix into three dimensions. This allows the calculation to avoid 

carrying the s-p local coordinate systems separately. Similar to the Jones matrix, the P 

matrix describes the polarization change upon light-surface interaction, can be used to 

cascade the interactions through consecutive surfaces, and allow the calculation of 

polarization properties of each surface as well as a sequences of surfaces. Moreover, the P 

matrix is defined directly in an xyz three dimensional coordinate system.  

The P matrix, which operates directly in 3D, is more preferable than the Jones 

matrix in ray tracing. Consider a ray normally incident on an uncoated isotropic interface 

reflects with Fresnel reflections rs = -rp for the s- and p-polarizations. This opposite sign in 

the Fresnel coefficients means the reflected p-state has an extra π phase shift compared to 

the reflected s-state. However, when viewing the system in 3D, the s- and p-polarizations 

have the same interaction with the isotropic surface, as shown in Figure 3.1 because the 

two states are degenerate at normal incidence. Thus physically, their changes of electric 

field amplitude must be the same — the same amplitude change and the same phase change 

upon reflection. The extra π is a geometrical effect due to a local coordinate flip upon 

reflection. These local coordinate systems are defined by the s-p basis in the transverse 

plane of the incident and reflected rays, shown in Figure 3.1, where the basis vectors 
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 ˆˆ ˆ, ,s p k  and  ˆˆ ˆ, ,  s p k  follow the right-hand-rule. The Fresnel reflection coefficients are 

calculated relative to these basis coordinate systems. In perfect reflection, rs = -1 and rp = 

1; in 3D, Es = -Es′ and Ep = -Ep′. The Jones matrix for this reflection, 
0 1 0

0 0 1
s

p

r
r

      
  

, 

does not clearly show the change of electric field in 3D without giving the pair of local 

bases. 

 

Figure 3.1 A ray is normally incident on a surface with k = (0, 0, 1) and reflects off the surface with 
k′ = (0, 0, -1). The transverse plane (yellow) of the rays contains a pair of local basis  ˆ ˆ,s p  for the 

incident ray and  ˆ ˆ, s p  for the reflected ray. The s- and p-polarized incident electric fields sE


 and 

pE


 reflect to 
sE


 and 
pE


. 

In this chapter, two formalisms of the P matrix are presented. Their resultant P 

matrices represent the change of E field and ray direction. The first formalism is derived 

from the Jones matrix, which contains Fresnel coefficients defined in 2D local coordinate 

systems. Therefore it involves rotations from local to global coordinate system. The second 

formalism calculates the P matrix directly from the 3D orthonormal basis, which is desired 
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for building the P matrix using only the ray parameters (S, E, a, and OPL) calculated from 

the anisotropic algorithms shown in Section 2.4. This second formalism is the basis for 

calculating the P matrix through anisotropic components to study the polarization 

aberrations of anisotropic elements, such as the angle dependence of crystal retarders and 

polarizers. 

3.2 Calculation of the P matrix from the Jones matrix 

In the polarization ray tracing calculus, all electromagnetic fields are defined with 3×1 

vectors. The polarization effects of an optical surface and the change of ray direction at an 

intercept are represented by the 3×3 P matrix. A ray refracting through an isotropic 

interface, as shown in Figure 3.2, is represented by a single P matrix. The exiting E′ after 

the interface is calculated as 

.E PE         (3.1)  

The P matrix not only maps the electric field through an intercept, it also maps the incident 

propagation vector k̂ to the exiting propagation vector ˆ k 27, 

ˆ ˆ. k P k      (3.2)  
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Figure 3.2 A ray with incident k and electric field E refracts through an optical interface with 
surface normal η. The refracted ray propagates in k′ with electric field E′. The plane of incidence 
contains k, k′ and η. 

The 3×3 P matrix can be calculated by transforming a 2×2 Jones matrix from its 

local coordinate systems to global coordinate systems. For an isotropic interface, the 

polarization change of the light is described by the Jones matrix with Fresnel coefficients**, 

ts and tp for refraction, or rs and rp for reflection, as
0

0
s

p

t
t

 
 
 

 or 
0

0
s

p

r
r

 
 
 

. These coefficients 

are functions of incidence angle as shown in Figure 3.3. The isotropic interface couples s-

polarized incident light to s-polarized exiting light with complex electric field amplitude 

change of ts or rs, p-polarized incident light to p-polarized exiting light with a complex 

                                                 

** Fresnel equations for incident refractive index n1, transmitting refractive index n2, and incident 

angle θ: 2 cos1
2 2 2cos sin1 2 1

n
ts

n n n



 


 
, 22 cos1

2 2 2 2cos sin2 1 2 1

n n
t p

n n n n



 


 
, and 

2 2 2cos sin1 2 1
2 2 2cos sin1 2 1

n n n
rs

n n n

 

 

 


 
, 

2 2 2 2cos sin2 1 2 1
2 2 2 2cos sin2 1 2 1

n n n n
rp

n n n n

  

 




 
. 



117 

 

electric field amplitude change of tp or rp, and zero s-to-p or p-to-s coupling. In general, 

the Jones matrix represents polarizing components as ss ps

sp pp

J J

J J

 
 
 

 which can have non-

zero Jsp and Jps, coupling between s- and p-polarized light. 

 

Figure 3.3  Fresnel coefficients, amplitude (left) and phase (right), for transmission and reflection 
at an air/glass interface. For external reflection from refractive index 1 to refractive index 1.5, the 
Brewster’s angle is 56.31°. At normal incidence, the reflected s- and p-polarizations have a Fresnel 
π phase shift due to a coordinate flip during reflection. 

In refraction or reflection, the incident and exiting local coordinate systems are 

pairs of three right-handed orthonormal basis vectors  ˆˆ ˆ, ,s p k  and  ˆˆ ˆ, ,  s p k ,  

   

   

ˆ ˆ ˆ, , , ,ˆ ˆ ˆ,
ˆ ˆ

ˆ ˆ ˆ, , , ,ˆ ˆ ˆ,
ˆ ˆ

x y z x y z

x y z x y z

s s s p p p

s s s p p p


    



            


k η
s p k s

k η

k η
s p k s

k η

   (3.3) 

where η̂ is the surface normal of the interface, k̂  = (kx, ky, kz) is the incident propagation 

direction and ˆ k  = (kx′, ky′, kz′) is the exiting propagation direction, as shown in Figure 3.4. 

For an isotropic interface, k̂  and p̂  lie in the PoI, while ŝ  is orthogonal to the PoI, and 

ˆ ˆ s s . 
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Figure 3.4  The incident and exiting s-p-k basis for refraction (left) and reflection (right) are shown. 
The plane of incidence (PoI) is the blue plane containing k, p, and η. 

The Jones matrix is transformed into the P matrix by an orthonormal 

transformation††. The P matrix is calculated as 

1, out 3D inP O J O      (3.4) 

where  

1

1
x x x

y y y

z z z

s p k
s p k

s p k




 
    
 

inO     (3.5) 

                                                 

†† An orthogonal transformation is a rotation from one coordinate system to another. It is performed by real 

unitary rotation matrix 

a b cx x x
a b cy y y
a b cz z z


 
 
 
 

R . R rotates global  ˆ ˆ ˆ, ,x y z  coordinate into  ˆˆ ˆ, ,a b c . Similarly R-

1 rotates  ˆˆ ˆ, ,a b c  back to  ˆ ˆ ˆ, ,x y z . 
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operates on the incident E in global Cartesian coordinate systems and calculates the  ˆˆ ˆ, ,s p k  

basis components for the incident light, (Es, Ep, 0) which is a projection of E onto the s-p 

incident local coordinate systems. The 3×3 matrix  

0

0

0 0 1

ss ps

sp pp

J J

J J

 
   
 
 

3DJ      (3.6) 

or, 

0 0
0 0

0 0 1

s

p

r
r

 
    
 

3DJ   and  
0 0

0 0

0 0 1

s

p

t
t

 
    
 

3DJ    (3.7) 

for Fresnel refraction and reflection. Equations (3.6) and (3.7) are extended Jones matrix 

which describes amplitude and phase change to the s and p components. Then the matrix 

x x x

y y y

z z z

s p k
s p k

s p k

   
         

outO      (3.8)  

rotates the resultant field from the local  ˆˆ ˆ, ,  s p k  coordinate system back to the global 

coordinate systems. 

The polarization of a ray propagating through multiple interfaces is represented by 

multiplying the P matrices in the order along the ray path as 

1

N

n
 total N N-1 n 2 1 N-n+1P P P P P P P        (3.9) 

where the ray interacts with surface 1 first and surface N last.  
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The P matrix for a single isotropic interface with equation (3.7) performs the 

following: 

ˆ ˆ ,

ˆ ˆ , and

ˆ ˆ ,

s

p

a

a

  

  



s s

p p

P E E s

P E E p

P k k

      (3.10) 

where as is rs or ts, and ap is rp or tp. In general, the P matrix representing interactions of 

multiple surfaces with non-aligned s- and p-polarizations or the P matrix derived from 

equation (3.6) with non-zero s and p coupling performs the following: 

ˆ ˆ ˆ ,

ˆ ˆ ˆ , and

ˆ ˆ .

ss sp

ps pp

J J

J J

  

  



s

p

P E s p

P E s p

P k k

     (3.11) 

Two example calculations of transforming a Jones matrix to a P matrix are presented in 

the following: a ray reflects from a metal surface and a ray transmits through a half wave 

plate.  

Consider a gold fold mirror shown in Figure 3.5. A converging beam reflected from 

the mirror is simulated as a grid of rays evenly spaced in angle. The mirror’s surface normal 

is   / 20, 1, 1  . Each ray in the grid has a different k̂ , and only one of these rays at 

the edge of field (yellow highlight in Figure 3.5) is chosen to demonstrate the P matrix 

calculation. 
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 Figure 3.5  A converging grid of rays at 765nm reflects from a gold fold mirror with refractive 
index 0.718 + 4.749i. 

The selected incident ray with k̂ = (-0.195, -0.195, 0.961) reflects from the mirror with 

reflected ˆ k = (-0.195, -0.961, 0.195), so the incident and reflected angles are both 57.184°. 

With equation (3.3), the incident ŝ= (-0.973, 0.164, -0.164) and p̂= (-0.126, -0.967, -

0.221), and the exiting ˆ s = (-0.973, 0.164, -0.164) and ˆ p = (0.126, -0.221, -0.967). The 

Fresnel reflection coefficients rs and rp are 0.992ei2.918 and 0.975e-i0.751 respectively, as 

shown in Figure 3.6.  

 

Figure 3.6  Fresnel coefficients, amplitude (left) and phase (right), for reflection at an air/gold 
interface. At normal incidence the s- and p-polarizations have a Fresnel π phase shift due to a 
coordinate flip during reflection. 

With equation (3.4), 
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12.918

0.751

0.973 0.126 0.195 0.992 0 0 0.973 0.126 0.195
0.164 0.221 0.961 0.164 0.967 0.1950 0.975 0
0.164 0.967 0.195 0.164 0.221 0.9610 0 1

0.889 0.219 0.106 0.046 0.361 0.

i

i

e

e

i i





        
                    

    


P

054
.0.361 0.054 0.314 0.137 0.863 0.039

0.106 0.046 0.655 0.628 0.314 0.137i

i
i i i
i i

 
    
 
    

 

Through the P matrix, the electric field E in the  ˆˆ ˆ, ,s p k  basis is mapped to  ˆˆ ˆ, ,s pr r  s p k . 

Since both rotation matrices, Oin and Oout, are defined by right-handed orthonormal bases, 

two of the three exiting basis, ˆ k  and ˆ p , have a π phase change due to the changing local 

coordinate systems in reflection, where ˆ k  is understood as reflection, and a π phase in ˆ p  

is added to Arg[rp]. So, the physical phase shift upon reflection for s- and p-polarizations 

are 

Arg and Arg ,rr psrs rp               (3.12) 

as shown in Figure 3.7. At normal incidence, the phase change of the degenerate s- and p-

polarizations are both 2.727 radian.  
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Figure 3.7  Phase change of electric field upon reflection at an air/gold interface. At normal 
incidence, the s- and p-polarizations are degenerate. 

Consider a ray with k̂ = (0, sin 10°, cos 10°) that passes through a half waveplate 

which has its fast axis oriented α from the local x axis, surface normal η̂= (0, sin 10°, cos 

10°), and Jones matrix 
cos2 sin2
sin 2 cos2

 
 

 
  

, as shown in Figure 3.8. The finite thickness of 

the half wave plate is ignored in this example. 

 

Figure 3.8  (Left) A half wave plate has its fast axis (pink line) oriented at α from the xlocal axis. 
(Right) The plate is tilted 10° from the z axis. A normal incident ray (brown arrow) passes through 
the tilted waveplate in the global xyz coordinate systems. 

For normal incidence, s- and p-polarizations are degenerate. ŝ  is chosen to be (1, 0, 0). 

Then p̂= (0, cos 10°, -sin 10°), calculated by equation (3.3). For this waveplate example, 
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ˆ ˆs s , ˆ ˆ p p , and ˆ ˆ k k . By equation (3.4), the P matrix representing this ray normally 

incident on the tilted waveplate is 

1

2 2 2

1 0 0 cos2 sin 2 0 1 0 0
0 cos10 sin10 sin 2 cos2 0 0 cos10 sin10
0 sin10 cos10 0 0 1 0 sin10 cos10

cos2 cos10 sin 2 sin10 sin 2

cos10 sin 2 cos 10 cos2 sin 10 cos sin 20

sin10 sin 2 co

 
 

  
  



     
          
     

          
  

      

 

P

2 2 2

.

s sin 20 cos 10 cos2 sin 10 

 
 
 
    

 

The incident p-polarization 
0

cos10
sin10

 
 
 
  

, originally oriented at π/2-α from the fast axis, is 

rotated to 
0 sin 2

cos10 cos10 cos 2
sin10 sin10 cos 2





   
     
   
     

P ,  1cos sin 2 from the fast axis. The 

incident s-polarization, originally oriented at α from the fast axis, is rotated to 

1 cos 2
0 cos10 sin 2
0 sin10 sin 2





   
    
   

    

P , 2α from the fast axis. 

 

Figure 3.9  The incident electric field Es (magenta) and Ep (blue) passes through a half wave plate 
shown in Figure 3.8 and rotates to Es′ and Ep′. 
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3.3 Calculations of the P matrix from 3D polarization vectors 

In this section, the P matrix is derived for a pair of incident and exiting modes through an 

anisotropic intercept where ray doubling occurs. For example, part of the energy of an e-

mode refracts to a fast-mode at a uniaxial/biaxial interface, or the p-polarized component 

couples to right circularly polarized light through an isotropic/optically-active interface. 

The electromagnetic fields of a pair of incident and exiting modes propagating through an 

isotropic interface and an anisotropic interface are depicted in Figure 3.10. ˆˆ ˆ ˆ  s pE E S k  

within the isotropic medium, and ˆˆ ˆ ˆ  m nE E S k  within the anisotropic medium, where 

ˆ
mE  and ˆ

nE  are orthogonal electric fields in the transverse plane of Ŝ. 

 

Figure 3.10 The incident and refracted E (gray), D (pink), k (red) and S (black) field orientations 
of an isotropic/isotropic (left) and a birefringent/birefringent (right) interface. Only p-polarization 
coupling to p-polarization is shown refracting through the isotropic interface. Only e-mode 
coupling to e-mode is shown refracting through the birefringent interface.  

In an anisotropic ray trace, two P matrices are needed to represent the two refracted 

or reflected modes at an anisotropic ray intercept because the two exiting rays take different 

paths. Since the incident and exiting eigenmodes are generally not aligned, one of the 
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incident eigenmodes can couple light into both exiting eigenmodes. The P matrix maps the 

three incident orthonormal basis vectors  ˆˆ ˆ, ,m nE E S  into three exiting vectors 

 ˆ, ,  m nE E S  associated with one eigenstate in the exiting medium along ˆ S . So, the 

conditions defining the two exiting P matrices at an anisotropic ray intercept are  

ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆand, ,

ˆ ˆ ˆ ˆ, ,

mv mw

n nv n nw

a a

a a

     
       
 

    

v m mv v w m mw w

v n nv v w n nw w

v v w w

P E E E P E E E

P E E E P E E E

P S S P S S

    (3.13) 

for refraction/reflection, where (amv, amw, anv, anw)  are the complex amplitude coefficients 

associated with the E field coupling between each pair of incident and exiting states. These 

coefficients are calculated in section 2.4. In general, the incident ˆ
mE  couples to both E′mv 

and E′mw, and ˆ
nE  couples to both E′nv and E′nw. These exiting E fields E′mv and E′nv are 

in the transverse plane of ˆvS ; E′mw and E′nw are in the transverse plane of ˆwS  in the exiting 

medium. The refracted/reflected exiting electric fields resulting from ˆ
mE  and ˆ

nE  at the 

ray intercept are 

 
2 2ˆ ˆ, ,ˆ ˆ

iωti n i n
inc

mv mw
mv mwt E ea e a e

 
 

         
k r k r

m
v w

mv mwr E EE Re   (3.14) 

and 

 
2 2ˆ ˆ, .ˆ ˆ

iωti n i n
inc

nv nw
nv nwt E ea e a e

 
 

         
k r k r

n
v w

nv nwr E EE Re   (3.15) 



127 

 

Consider the o- and e-modes with two different ˆ S  emerging from an 

isotropic/uniaxial intercept: they each have their own P matrix because ˆ ˆ o eS S . In this 

case, (m, n, v, w) in equation (3.13) are (s, p, o, e); the detailed calculations of Po and Pe 

are described in section 3.4.1. In general, ˆ
mE  can couple to both ˆ

vE  and ˆ
wE , and (amv, 

amw, anv, anw) are all non-zero. In some situations, the amplitude coefficients are set to zero 

for certain properties of the interface. For example, at an uncoated isotropic ray intercept, 

the coupling between s- and p-polarizations is zero; (m, n, v, w) = (s, p, s′, p′) and (amw, anv) 

= (asp′, aps′) = (0, 0).  Also, if a ray is incident at a uniaxial/isotropic intercept polarized in 

only one eigenmode for a given Ŝ, then (m, n, v, w) = (e, e٣, s, p) and (anv, anw) = (ae٣s, 

ae٣p) = (0, 0). This will be further explained in section 3.4.2. Since each exiting mode is in 

a particular eigenpolarization, the corresponding P matrix of the exiting mode has the form 

of a polarizer. 

By placing the three pairs of incident and exiting 3×1 vectors in matrix form, the P 

matrix is calculated as 

    1

1
, ,

, ,

, ,

, ,

, ,

, ,

ˆ ˆˆ ˆ

m x n x xm,x n,x x

m,y n,y y m y n y y

m,z n,z z m z n z z

m x n x xm,x n,x x

m,y n,y y m y n y y

m,z n,z z m z n z z

E E SE E S

E E S E E S

E E S E E S

E E SE E S

E E S E E S

E E S E E S





  

    
       

        

   
     

     

m n m nP E E S E E S



 ,

T




 


  

 (3.16) 



128 

 

where  ˆˆ ˆ
m nE E S  is a real unitary matrix, so its inverse equals its transpose. The 

amplitude coefficients for the interface are contained in  ˆ  m nE E S . 

3.4 Calculating P matrices for anisotropic interfaces  

Since the P matrix is defined for one pair of Ŝ and ˆ S , the multiple exiting modes from 

anisotropic interfaces need to be described by multiple P matrices. The derivations of the 

P matrices for the three cases of uncoated anisotropic interfaces: (1) isotropic/anisotropic, 

(2) anisotropic/isotropic, and (3) anisotropic/anisotropic interfaces in refraction and 

reflection are shown in the following sub-sections. In the derivations, the (m, n, v, w) states 

used in equation  (3.13) for each of the cases are shown in Table 3.1. In an isotropic 

medium, s- and p-modes share the same S, so the associated P matrices can be reduced to 

one P matrix (see sections 3.4.1 and 3.4.2).   

Table 3.1 The polarization states for calculating the P matrices for an uncoated interface. (m, n, v, 
w) are defined in equation (3.13). ′ indicates exiting mode. The split eigenmodes in an anisotropic 
material are described by two P matrices. However, the two P matrices for s′ and p′ exiting states 
can be combined (⇒) to one P matrix 

Interface Reflected (m, n)→v & (m, n)→w Refracted (m, n)→v & (m, n)→w 

Isotropic/ 
Isotropic 

(s, p)→s′ 

(s, p)→p′ 
⟹ (s, p)→(s′, p′) 

(s, p)→s′ 

(s, p)→p′ 
⟹ (s, p)→(s′, p′) 

Isotropic/  
Anisotropic 

(s, p)→s′ 

(s, p)→p′ 
⟹ (s, p)→(s′, p′) 

(s, p) →v 

(s, p) →w 
 

Anisotropic/ 
Isotropic 

(m, n) →v 

(m, n) →w 
 

(m, n)→s′ 

(m, n)→p′ 
⟹ (m, n)→(s′, p′) 

Anisotropic/  
Anisotropic 

(m, n) →v 

(m, n) →w 
 

(m, n) →v 

(m, n) →w 
 

3.4.1 Isotropic to anisotropic intercept 

For an isotropic incident medium, the incident eigenstates are s- and p-polarizations, 
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ˆˆ ˆˆˆ ˆand .
ˆ ˆ ˆˆ


 

 
s

s p
s

S ES η
E E

S η S E
     (3.17) 

In this case, two reflected modes reflect back to the incident isotropic medium and two 

refracted modes refract into the birefringent medium. The two reflected s- and p-modes 

share the same ˆ S , while the two refracted anisotropic modes, labeled with subscripts v 

and w, split into two directions. So, (m, n, v, w) = (s, p, s′, p′) in reflection, and (s, p, v, w) 

for refraction. If the refracting medium is biaxial, the two refracted modes are fast- and 

slow-modes; (m, n, v, w) = (s, p, fast, slow). The refraction of this case is depicted in Figure 

3.11. 

 

Figure 3.11 Mode coupling in refraction though an isotropic/anisotropic interface. The incident ray 
with orthogonal modes, labeled as n (red) and m (blue), splits into two exiting modes as v (pink) 
and w (green) in two directions. In biaxial and uniaxial materials, Ev and Ew are linearly polarized. 
In optically active materials, Ev and Ew are circularly polarized. Given a ray with a specific pair of 
k′v and S′v in an anisotropic material, the ray can only be polarized in Ev, so the orthogonal state 
Ev٣ (dashed arrow) has zero amplitude. 

The amplitude coefficients of coupling from each incident mode to each exiting 

mode are calculated in section 2.4. From equation (2.18), the transmission and reflection 

amplitude coefficients, t and r, of the exiting modes from each incident mode are 
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1 1

ˆˆ

ˆˆ
and .

pvsv

pwsw

ss ps

sp pp

tt
tt

r r
r r

 
 

 

                                          

1 p1 s

2 p2 s

1 s 1 p

2 s 2 p

s Es E

s Es EF F
s H s H

s H s H


 

 
 

   (3.18) 

With these amplitude coefficients and applying equation (3.13), the two reflected P 

matrices for the s- and p-modes should satisfy: 

ˆ ˆˆ ˆ ,,

ˆ ˆ ˆ ˆand, ,

ˆ ˆ ˆ ˆ, .

spss

ps pp

rr

r r

  
   

 
    

rp s rprs s rs

rs p rs rp p rp

rs rs rp rp

P E EP E E

P E E P E E

P S S P S S

    (3.19) 

With equation (3.16), the two P matrices for reflection are 

   
   

ˆˆ ˆˆˆ ˆ and

ˆ ˆˆ ˆ ˆ ˆ .

T

ss ps

T

sp pp

r r

r r





rs s prs rs rs

rp rp rp rp s p

P E E SE E S

P E E S E E S




   (3.20) 

Since the two reflected modes share the same pair of ˆ ˆ rs rpS S , and the couplings between 

s- and p-states are zero for an uncoated surface (rsp=rps=0). Therefore Prs and Prp are 

combined to 

   ˆ ˆˆ ˆ ˆ ˆ T

ss ppr r r rs rp r s pP E E S E E S .    (3.21) 

On the other hand, the two refracted modes split into two directions with different ˆ tS , as 

shown in Figure 3.9. Therefore, the two refracted P matrices, which cannot be combined, 

are needed to describe the two refracted modes. Ptv and Ptw satisfy  
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ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆand, ,

ˆ ˆ ˆ ˆ, ,

sv sw

pv pw

t t

t t

  
    
 

    

tv s tv tw s tw

tv p tv tw p tw

tv tv tw tw

P E E P E E

P E E P E E

P S S P S S

   (3.22) 

respectively. So, 

   
   

ˆ ˆˆ ˆ ˆ ˆ and

ˆ ˆˆ ˆ ˆ ˆ .

T

sv pv

T

sw pw

t t

t t





tv tv tv v s p

tw tw tw w s p

P E E S E E S

P E E S E E S




   (3.23) 

3.4.2 Anisotropic to isotropic intercept 

A ray in a birefringent medium with a specified k̂ and Ŝ incident on an interface is 

constrained to be in one of the two eigenmodes which is calculated for the previous ray 

intercept by equations (2.12) through (2.14). The electric field for this incident ray is ˆ
mE  

with index nm. To construct the P matrix with equations (3.13) and (3.16), a pseudo electric 

field or absert mode ˆ ˆ
n mE E conveying no power and orthogonal to ˆ

mE  is calculated as: 

ˆ ˆ
ˆ .

ˆ ˆ





m
n

m

S E
E

S E
     (3.24) 

The absent mode has no power because the orthogonal polarization has refracted into 

another direction and is described by the other P matrix. This state needs to be defined to 

properly setup the 3×3 matrices. 

The exiting modes for ˆ
mE  are the s- and p-polarized transmitted states and the two 

bi-reflected rays with ˆ
vE  and ˆ

wE .The refraction is depicted in Figure 3.12. 
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Figure 3.12 Mode coupling in refraction though an anisotropic/isotropic interface. The incident ray 
is polarized along Em (blue) and has a zero amplitude component En (red, dashed arrow). The 
incident polarization couples to the s- and p-states in the isotropic medium which are Ev (pink) and 
Ew (green) and propagate in the same direction S′. 

Inside the incident anisotropic medium, only ˆ
mE  carries non-zero amplitude,  

1

ˆ

ˆ
,

ms

mp

mv

mw

t

t

r

r



  
  
      
        

1 1

2 1

1 1

2 1

s E

s EF
s H

s H







     (3.25) 

and the amplitude coefficients from ˆ
nE , (tns, tnp, rnv, rnw) are zeros. As depicted in Figure 

3.12, the three pairs of conditions for each transmitted P matrix are: 

ˆ ˆˆ ˆ ,,

ˆ ˆˆ ˆ and ,,

ˆ ˆ ˆ ˆ, ,

mpms

npns

tt

tt

        
 

   

tp m tpts m ts

tp n tpts n ts

ts ts tp tp

P E EP E E

P E E 0P E E 0

P S S P S S

   (3.26) 

where 0 is a 3×1 zero vector. Since the transmitted medium is isotropic, ˆ ˆ ˆ  ts tpS S S , and 

the refracted P matrix is 
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   ˆ ˆˆ ˆ ˆ ˆ .
T

ms mpt t  t ts tp t m nP E E 0 S E E S    (3.27) 

The two reflected P matrices for the two rays reflecting back to the anisotropic medium are 

   
   

ˆ ˆˆ ˆ ˆ and

ˆ ˆˆ ˆ ˆ .

T

mv

T

mw

r

r





rv rv rv m n

rw rw rw m n

P E 0 S E E S

P E 0 S E E S




    (3.28) 

The calculation shown in this section is for one incident mode only. In general each incident 

mode has its own associated calculations of P matrices for transmission and reflection. 

3.4.3 Anisotropic to anisotropic intercept 

Similar to the last case, ˆ
mE  is the incident state along Ŝ, and  ˆ ˆ

n mE E  is an absent mode 

with zero energy constructed orthogonal to ˆ
mE . The four exiting modes all propagate in 

different directions. The refraction is depicted in Figure 3.13. 

 

Figure 3.13 Mode coupling in refraction though an anisotropic/anisotropic interface. The incident 
ray propagating in S is polarized along Em (blue) and has a zero amplitude component En (red, 
dashed arrow). It splits into two exiting modes as v (green) and w (pink) in two directions. Their 
orthogonal states Ev٣ and Ew٣ (dashed arrows) both have zero amplitude. 
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The amplitude coefficients associated with ˆ
mE  are calculated by (2.18), and the amplitude 

coefficients associated with ˆ
nE  are zeros. The P matrices for the two transmitted rays are: 

   
   

ˆ ˆˆ ˆ ˆ and

ˆ ˆˆ ˆ ˆ .

T

mv

T

mw

t

t





tv tv tv m n

tw tw tw m n

P E 0 S E E S

P E 0 S E E S




    (3.29) 

The P matrices for the two reflected rays are: 

   
   

ˆ ˆˆ ˆ ˆ and

ˆ ˆˆ ˆ ˆ .

T

rv

T

rw

r

r





rv rv rv m n

rw rw rw m n

P E 0 S E E S

P E 0 S E E S




    (3.30) 

3.4.4 Example 

Consider the ray doublings shown in Figure 3.14. The o-i and e-i couplings at the second 

surface are described by two P matrices. 

 

Figure 3.14 An incident ray refracts through two anisotropic interfaces to two branches of rays. A 
ray starts from an isotropic medium, splits into o- and e-modes, and refracts into oi- and ei-modes. 
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Following the one ray path from o to oi, the Poynting vector changes from ˆ
oS  to ˆ

iS , the 

o٣-mode (orthogonal states of o-mode) along ˆ
oS  has zero energy, so the coupling from o٣ 

to  o٣-i is zero. Then applying equation (3.26) as shown in section 3.4.2,  

ˆ ˆ ˆ ,

ˆ , and

ˆ ˆ .

os opt t



  







oi o s p

oi o

oi o i

P E E E

P E 0

P S S

     (3.31) 

Then, 

   ˆ ˆˆ ˆ ˆ ˆ T

os opt t  oi s p i o oP E E 0 S E E S .  (3.32) 

Similarly, 

   ˆ ˆˆ ˆ ˆ ˆ T

es ept t  ei s p i e eP E E 0 S E E S .   (3.33) 

3.5 Incorporating optical path length into P matrices 

Many optical components utilize anisotropic materials to induce a desired retardance. This 

important property can be incorporated into the P matrix. The goal of incorporating the 

OPL into the P matrix is to include the phase change of a ray segment in the amplitude of 

the two E field components. The definition of the P matrix is adjusted to map the 

orthogonal vectors  ˆˆ ˆ, ,m nE E S  to 
2 2

ˆˆ ˆ, ,
i OPL i OPL

m na e a e
 
 

 
    m nE E S , where the 

OPL of an eigenmode propagating in anisotropic material is defined in equation (2.17). In 

some applications, such as Michelson interferometer, optical coherence tomography 

(OCT), and pulse measurement, the cumulative OPL is desired for accurate simulation, and 
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the absolute OPL should be kept separately from the P matrix. In other applications, such 

as utilizing retarders to generate elliptically polarized light, only the relative phase (wrap 

around 2π) is under consideration, and the OPL can be comprised in the P matrix. This 

section will show two algorithms to include the OPL into the P matrix. Depending on the 

purpose of the analysis, one method might be better than the other, but they produce the 

same overall P matrix. These algorithms will be used in Chapter 4 to incorporate OPL to 

the P matrix representing the property of a waveplate. 

 In the first algorithm, the P matrix of the light-surface interaction and the P matrix 

related to the propagation are considered as two separate polarization changes happened 

sequentially along a ray path. At a ray intercept, Pinterface maps  ˆˆ ˆ, ,m nE E S  to 

 ˆˆ ˆ, ,m na a  m nE E S . With equation (3.16), 

  ˆ ˆˆ ˆ ˆ ˆ .
T

m na a   interface m n m nP E E S E E S    (3.34) 

As this mode propagates, the absolute phase of the mode increases through the material. 

This is represented by another P matrix, Psegment which maps  ˆˆ ˆ, ,  m nE E S  to 

2 2
ˆˆ ˆ, ,

i OPL i OPL
e e

 
 

 
    m nE E S ; 

 2 2
ˆˆ ˆ .ˆˆ ˆ

Ti OPL i OPL
e e

 
 

        segment m n
m n

P E E SE E S
  (3.35). 

Then total P matrix before the next ray intercept is:  
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    

 

2 2

2 2

ˆˆ ˆˆ ˆˆ ˆ ˆ ˆˆˆ ˆ

ˆˆ ˆ ,ˆˆ ˆ

T Ti OPL i OPL
m n

Ti OPL i OPL

m n

a ae e

a e a e

 
 

 
 

          

        

segment interface

m nm n m n
m n

m n
m n

P P

E E SE E S E E SE E S

E E SE E S



  (3.36) 

where ˆ ˆ 0m nE E , ˆ ˆ 0  mS E  and ˆ ˆ 0  nS E . So, it maps  ˆˆ ˆ, ,m nE E S  to 

2 2
ˆˆ ˆ, ,

i OPL i OPL

m na e a e
 
 

 
    m nE E S . 

When the ray propagation and the surface interaction to be combined into one P 

matrix are not in sequence, as shown in the example in section 4.3, the mapping of the 

Poynting vectors  ˆ ˆS S  needs to be completely removed from Pinterface before 

incorporating 
2

i OPL
e


 . By removing  ˆ ˆS S , the operations affect only the E field 

component. After that, the original mapping of S is added back into the final P matrix. The 

step by step procedures are: 

(1) The mapping of  ˆ ˆS S  is represented by the 3×3 matrix SD (S dyad) which is the 

outer product of Ŝ and ˆ S , 

ˆ ˆTDS S S .     (3.37) 

SD maps  ˆˆ ˆ, ,m nE E S  to  ˆ, , 0 0 S , and all other vectors orthogonal to Ŝ into 0.  

(2) The mapping of the Poynting vector is removed from Pinterface by subtracting SD.  

 interface DP P S


      (3.38) 
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which maps  ˆˆ ˆ, ,m nE E S   to  ˆ ˆ, ,m na a m nE E 0 . So P S 0

 . 

(3) By multiplying 
2

i OPL
e


  to P


,  

2
i OPL

e

P P


     (3.39) 

which maps  ˆˆ ˆ, ,m nE E S  to 
2 2

ˆ ˆ, ,
i OPL i OPL

m na e a e
 
 

 
   m nE E 0 . 

(4) Then, by adding SD back into the P matrix, the mapping of Ŝ is restored. So,  

  DP P S      (3.40) 

maps  ˆˆ ˆ, ,m nE E S  to 
2 2

ˆˆ ˆ, ,
i OPL i OPL

m na e a e
 
 

 
    m nE E S .  

Finally, the overall P matrix with both surface interactions and propagation effects is  

 
2

i OPL
e


 interface D DP SP S ,    (3.41) 

which keeps the mapping of Ŝ unchanged and incorporates the OPL effect to the electric 

fields. 

 Many intermediate P matrices are used in the steps to incorporate OPL into the 

overall P matrix. These intermediate P matrices are summarized in Table 3.2. 
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Table 3.2 Summary of the intermediate P matrices for incorporating OPL. 

Pinterface
  ˆˆ ˆ, ,m nE E S  →  ˆˆ ˆ, ,m na a  m nE E S  

Psegment  ˆˆ ˆ, ,m nE E S  → 
2 2

ˆˆ ˆ, ,
i OPL i OPL

e e
 
 

 
 
 m nE E S

 

P


  ˆˆ ˆ, ,m nE E S  →  ˆ ˆ, ,m na a m nE E 0  

P   ˆˆ ˆ, ,m nE E S  → 
2 2

ˆ ˆ, ,
i O P L i O P L

m na e a e
 
 

 
   m nE E 0

P   ˆˆ ˆ, ,m nE E S  → 
2 2

ˆˆ ˆ, ,
i O P L i O P L

m na e a e
 
 

 
    m nE E S

 

The phase of all the light components exiting an optical system, usually in the exit 

pupil, is necessary for image formation and optical transfer function calculations. These 

pupil functions, the wavefront aberration function or the Jones pupil, are inputs of Fourier 

transform algorithms, which only need the input complex numbers modulo 2π. This phase 

contribution is contained in the Psegment matrices, which are modulo 2π. Separately in 

optical design it is also important to be able to describe the exiting wavefront’s peak-to-

valley wavefront aberration, and show phase maps which are unwrapped. These are 

calculated from the separate calculation of optical path length, equation (2.17). The 

absolute optical path length is also needed in other calculations such as determining where 

the white light fringe will occur in Michelson interferometers, Fourier transform 

spectrometers, and optical coherence tomography, where the differences in optical path 

lengths between wavelengths are required 

3.6 Conclusions 

The definition of three-dimensional polarization ray tracing matrices has been extended to 

incorporate anisotropic ray tracing. The algorithms handle ray doublings and calculate the 
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P matrices for each exiting ray at various types of anisotropic interfaces. Each of these P 

matrices represents polarization coupling between eigenmodes in the incident and exiting 

materials. The Psegment matrix is introduced to incorporate optical phase change due to ray 

propagation. 

 The calculations of the P matrix shown in this chapter provide the basis to perform 

systematic ray tracing through anisotropic interfaces, and have been programmed in 

Polaris-M (a polarization ray tracing program mentioned in section 1.7) to efficiently 

model the polarization performance of anisotropic optical components. The polarization 

properties (retardance and diattenuation) along a ray path are contained in the P matrix and 

can be extracted for a specific ray intercept, for a combination of ray intercepts, through a 

series of ray segment, or for a specific eigenmode. A numerical example of calculating the 

P matrix for a biaxial plane parallel plate will be presented in Chapter 4. These methods 

can be applied to analyze complex retarders with multiple anisotropic waveplates cemented 

together. Further analysis of the P matrices for their polarization properties (retardance and 

diattenuation) will also be shown in Chapter 4. 

 This dissertation only shows the ray parameter calculations for uncoated 

anisotropic interfaces in Chapter 2 for simplicity. However, the method to build the P 

matrix shown in this chapter can also apply to build the P matrix for other optical interfaces 

with other ray tracing algorithms which split the incident ray in multiple directions with 

different polarizations, such as surfaces with anisotropic thin films, isotropic and 

anisotropic gratings, stress birefringent materials, and so on. Assumptions can be made to 
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simplify the complexity of ray doubling. An example assuming small spatial ray splitting 

in stress induced birefringent materials will be explained in detail in Chapter 8.  
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CHAPTER 4 RAY TRACING A BIAXIAL PLATES WITH 
THE P MATRIX, AND THE CALCULATION OF 
DIATTENUATION AND RETARDANCE 

4.1 Demonstrating the anisotropic ray trace with the P matrix 

In this chapter, ray tracing through an example anisotropic waveplate is numerically 

demonstrated by algorithms shown in section 2.4. An off-axis collimated wavefront 

propagates through one biaxial waveplate and results in two partially overlapping exiting 

wavefronts. The polarizations of these two overlapping wavefronts, represented by two P 

matrices, need to be combined to represent the total effects of the waveplate. The details 

of combining these two P matrices involve the incorporation of their OPLs and the 

calculation of their optical path difference (OPD), which will be shown numerically in this 

chapter. 

The polarizations of a ray path, as described by the P matrix, has a diattenuation 

and a retardance. The calculation of these polarization parameters from the P matrix will 

be demonstrated in section 4.4 and section 4.5. The diattenuation of the P matrix related to 

the maximum and minimum transmissions of an intercept or a series of intercepts is 

calculated through singular value decomposition25,27,107. The retardance of the ray path can 

be separated into two parts: physical retardance and geometrical transformation28. A 

geometrical transformation matrix, Q, for an anisotropic intercept will be introduced to 

describe the geometrical transformation. The retardance of multiple overlapping 

wavefronts is not simply phase delay between two polarized wavefronts, but is defined 

between two eigen-polarizations calculated from the combined P matrix for all the modes.  
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4.2 Ray tracing an off-axis beam through a biaxial waveplate with P matrix 

Consider a 0.5mm thick plate made of KTP (Potassium titanyl phosphate, KTiOPO4) with 

principal refractive indices (nF, nM, nS) = (1.786, 1.797, 1.902) whose principal axes are 

oriented along the (x, y, z) axes, as shown in Figure 4.1. A 500 nm incident ray propagates 

from air onto the biaxial plate at an angle. It splits into two transmissive modes, fast and 

slow, at the isotropic/anisotropic interface. The two modes reach the anisotropic/isotropic 

interface at two different directions with different optical path lengths. Then they refract 

out from the plate and propagate in the same direction again, but slightly separated. The 

crystal axes in this example is aligned with the Cartesian axes, (x, y, z), which allow the 

refraction of any incident ray in the y-z plane to occur in the PoI. 

 

Figure 4.1 A ray propagates with ˆˆ k S  from air into a KTP biaxial crystal (in pink). The entrance 
surface and the exit surface have the same surface normal η̂ = (0, 0, 1). The KTP crystal splits the 

ray in two at the exit surface with direction ˆ tfS  and ˆtsS  which are parallel in air. The plane that 

contains the PoI and the doubled rays is highlighted in gray. 

All ray parameters are calculated following the procedure in section 2.4. In air, the 

light propagation direction is 
0 0

sin sin35
cos cos35




   
     
   

   
ink  and the Poynting vector is 
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0 0
sin sin35
cos cos35




   
     
   

   
inS . The interface has 

0
0
1

 
 
 
 

η , 
1 0 0
0 1 0
0 0 1

 
 
 
 

ε , 

2

2

2

0 0

' 0 0

0 0

F

M

S

n

n

n

 
 

  
 
 

ε  

and 
0 0 0

' 0 0 0
0 0 0

 
  
 
 

G G . 

From equations (2.11) and (2.13), the resultant propagation parameters are: 

2 2

0
1ˆ sin
'

' sin
n

n





 
   
   

k  and 

2 2

2 2

0 ' sin sin
1

' sin 0 0
sin 0 0

n

nn

 




  
   

 
 

K


 

for both transmission and reflection. In transmission, based on equation (2.12), 

2 2

2 2 2 2 2

2 2 2 2

' 0 0

0.0 sin ' sin ' sin

sin ' sin sin

F

M

S

n n

n n n

n n

  

  

 
 

   
    

tE  

 Based on equation (2.14), for non-zero Et, the determinant of the matrix is zero, 

     2 22 2 2 22 2 0.cos 2' 1 2 2
1

2
'M SF S MMn nn n n nn n          

With n′>0, n′=nF or 
2

2 2
2

1' sinM
M

S

n
n n

n


 
    

 
, then nf=1.786 and ns=1.807. From 

equation (2.12), the transmission fast-mode satisfies 
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2 2 2 2 2

2 2 2 2

2 2

sin sin sin

sin sin sin
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0 0 0
0 0.970
0 0.9
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0

70 3
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 
  
 
 
 

 
  
 
 

  

 

tf
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By singular value decomposition, the matrix is further expressed as 

†
0 0 0 0 0 1 3.582 0 0 0 0 1
0 0.970 0.289 0.957 0 0. 0.078 0 0.289 0.957 0
0 0.970 3.289 0.957 0.289 0 0 0 0 0.957 0

.0.371
.289 0

       
       
       
       

   
   

The exiting state corresponds to the singular value of zero with electric field, 
1
0
0

 
 
 
 

tfE . 

From equations (2.15) and (2.16), the H and S fields are 

 
0 1.691 0.574 1 0

ˆ' 1.691 0 0 0 1.691
0.574 0 0 0 0.574

fn i
    

       
    
     

tf tf tfH K G E  , and 

0ˆ ˆ *
ˆ .0.321

ˆ ˆ * 0.947

      
     

tf tf
tf

tf tf

E H
S

E H

Re

Re
 

The transmission slow-mode satisfies 
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By singular value decomposition, 

†
0.077 0 0 0 1 0 3.583 0 0 0 1 0

0 0.294 0.983 0.286 0 0.958 0 0.077 0 0.286 0 0.958
0 0.983 3.289 0.958 0 0.286 0 0 0 0.958 0 0.2 6

.
8

       
       
       
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The exiting state corresponds to the singular value of zero with electric field 

0
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 
  
 
 

tsE . The H and S fields are 

 
0 1.714 0.574 0 1.806

ˆ ,1.714 0 0 0.958 0
0.574 0 0 0.286 0

sn i
    

      
    
    

tsts tsK + GH E  and 

0ˆ ˆ *
ˆ .0.321

ˆ ˆ * 0.947

      
     

tf tf
tf

tf tf

E H
S

E H

Re

Re
 

In reflection, nr=1, with equation (2.12), 
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2

2 2 2 2

2 2 2

0sin

sin cos

1 0 0

0 1 sin sin

0 sin

0 0 0
0 0.329 0.470
0 0.

0
470 0.671

.

r

r r

r

n

n n

n 

  

 

 
 
  
 
  

 




  



  
 



r

r

E

E

 

 By singular value decomposition, 

†
0 0 0 0 0 1 0 0 0 0 1
0 0.329 0.470 0.574 0.819 0 0 0 0 0.574 0.819 0
0 0.470 0.671 0.819 0.574 0 0 0 0 0.819 0. 4

1
.

57 0

       
       
       
       

  
  

The exiting states correspond to the singular value of zero are 
1
0
0

 
 
 
 

tsE  and 

0
0.819
0.574

 
 
 
 

rpE . Their H and S fields are 

 
0 0.819 0.574

0.819 0 0 0.819
0.574 0 0 0.574

1 0
ˆ ,0

0
rn i

    
       
    


 
    

rs r rsH K G E  

 
0 0.819 0.574

0.819 0 0 0
0.574 0

0 1
ˆ 0.819

0.5740 0
rn i

    
       
    
    




rp r rpH K G E , and 

0ˆ ˆ *
ˆ .0.574

ˆ ˆ * 0.819

      
      

r r
r

r r

E H
S

E H

Re

Re
 

The electromagnetic field vectors at the air/KTP interface is summarized in Table 4.1.  
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Table 4.1 Ray parameters at the entrance surface (external reflection/refraction). 

 Polarization k̂ Ŝ  Ê H 

Refracted 

fast 
0

0.321
0.947

 
 
 
 
 

 
0

0.321
0.947

 
 
 
 
 

 
1
0
0

 
 
 
 
 

 
0

1.691
0.574

 
 
 
 
 

 

 

slow 
0

0.317
0.948

 
 
 
 
 

 
0

0.286
0.958

 
 
 
 
 

 
0

0.958
0.286

 
 
 
 
 

  
1.806

0
0

 
 
 
 
 

 

Reflected 

s 
0

0.574
0.819

 
 
 
 
 

 
0

0.574
0.819

 
 
 
 
 

 
1
0
0

 
 
 
 
 

 
0

0.819
0.574

 
 
 
 
 




 

 

p 
0

0.574
0.819

 
 
 
 
 

 
0

0.574
0.819

 
 
 
 
 

 
0

0.819
0.574

 
 
 
 
 

 
1
0
0

 
 
 
 
 

 

Now the amplitude coefficients are calculated with the F matrix. From equation (2.18), 

0
ˆˆ ˆ sin 35

0

 
    
 
 

1 ins k η , 
0

ˆ ˆ ˆ sin 35
0

 
    
 
 

2 1s η s ,  

0.574 0 0.574 0
0 0.550 0 0.470
0 1.036 0 0.574

0.970 0.47

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

0 0 0

         
       

    
                 


 





1 tf 1 ts 1 rs 1 rp

2 tf 2 ts 2 rs 2 rp

1 tf 1 ts 1 rs 1 rp

2 tf 2 ts 2 rs 2 rp

s E s E s E s E

s E s E s E s E
F

s H s H s H s H

s H s H s H s H

   
   

,


 and 

1

0.569 0 0 0.695
0 0.715 0.586 0

1.174 0 0. 0.695
0 0.685 0.

.

1.292



 
 

  




 


 

F   

With s-polarized incident light,  
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  cos35
sin 3

1 0ˆ ˆˆ ˆ, ,0
ˆ

5ˆ 0
n i

  


 

        
   
   

in
inc,s inc,s in inc,s

in

k η
E H K G E

k η
 

ˆ
sin 35

ˆ 0
0

cos 35 sin 35

    
  

             

1 inc,s

2 inc,s
s

1 inc,s

2 inc,s

s E

s E
C

s H

s H




 and 

1

sin35 0.653
0 0

.
0 0.347

1.292 cos35 sin35

0.569 0 0 0.695
0 0.715 0.586 0

1.174 0 0. 0.695
0 0.685 0. 0

s tf

s ts

s rs

s rp

a

a
a
a



 





     
     
         

                    






s sA F C

 

With p-polarized incident light, 

0ˆ ˆ
ˆ ,cos 35

ˆ ˆ
sin 35

     
    

in inc,s
inc,p

in inc,s

k E
E

k E
  

1
ˆ ,0

0
n i

 
   
 
 

inc,p in inc,pH K G E  

ˆ
0

ˆ 0.470
,

0.574
0

    
  

              

1 inc,p

2 inc,p
p

1 inc,p

2 inc,p

s E

s E
C

s H

s H




 and 

1

0.569 0 0 0.695
0 0.715 0.586 0

1.174 0 0. 0.695
0 0.685 0

0 0
0.470 0.672

.
0.574 0

1.292 0 0.. 214

p tf

p ts

p rs

p rp

a

a

a

a









                             




             

p pA F C   

In summary, the amplitude coefficients at the entrance surface are 



150 

 

0.653
0

0.347
0

s tf

s ts

s rs

s rp

a

a
a
a









   
   
    

        

 and 

0
0.672

.
0

0.214

p tf

p ts

p rs

p rp

a

a

a

a









                    

 

Then the P matrices of the first two refracted rays are: 

, , , , , ,p, ,

,y ,y ,y , ,y ,p,y ,y

,z ,z ,z , ,z ,p,z ,z

0.653 0 0 1 0 0
0 0 0.321 0
0 0 0.947

T
s tf tf x p tf tf x tf x inc s x inc x inc x

s tf tf p tf tf tf inc s inc inc

s tf tf p tf tf tf inc s inc inc

a E a E S E E S

a E a E S E E S

a E a E S E E S

 

 

 

  
     
  
  

 
 
 
 

tfP

0.653 0 0
, andcos35 sin 35 0 0.184 0.263

0 sin 35 cos35 0 0.543 0.776

T
   
    
   

     

  

, , , , , ,p, ,

, , ,y , ,y ,p,y ,y

, , ,z , ,z ,p,z ,z

0 0 0
0 0.644 0.286
0 0.192 0.958

T
s ts ts x p ts ts x ts x inc s x inc x inc x

s ts ts y p ts ts y ts inc s inc inc

s ts ts z p ts ts z ts inc s inc inc

a E a E S E E S

a E a E S E E S

a E a E S E E S

 

 

 

  
     
  
  

 
 


 

tsP

1 0 0 0 0 0
.0 cos35 sin 35 0 0.692 0.135

0 sin 35 cos35 0 0.392 0.895

T
   
     

    
     



 

Following the same procedure of tracing the fast and slow-modes to the exit surface, the 

ray tracing parameters at the KTP/air interface are calculated and are summarized in Table 

4.2. 

Table 4.2 Ray parameters at the exit surface (internal reflection/refraction) 

Polarization k̂    Ŝ  Ê H a 

fast-s 

0
sin 35
cos35

 
 
 

 

 
0

sin 35
cos35

 
 
 

 

 
1
0
0

 
 
 
 
 

 
0

0.819
0.574

 
 
 
 
 

 1.347 
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fast-p 

0
sin 35
cos35

 
 
 

 

 
0

sin 35
cos35

 
 
 

 

 
0

0.819
0.574

 
 
 
 
 

 
1

0
0

 
 
 
 
 


 0 

slow-s 

0
sin 35
cos35

 
 
 

 

 
0

sin 35
cos35

 
 
 

 

 
1
0
0

 
 
 
 
 

 
0

0.819
0.574

 
 
 
 
 

 0 

slow-p 

0
sin 35
cos35

 
 
 

 

 
0

sin 35
cos35

 
 
 

 

 
0

0.819
0.574

 
 
 
 
 

  
1
0
0

 
 
 
 
 

 1.420 

The exiting ˆ tfS  and ˆ tsS  are equal to the incident Ŝ, since the birefringent plate is a plane 

parallel plate. The transmitted matrices at the exit interface for the two modes are 

an

1.347 0 0 0 0 0

0 0.184 0.543 0 1.279 0.217

0 0.263 0.776 0 0.546 1.018

d .

   
        


   
 

tf tsP P  

The final ray parameters for each of the polarized rays are the OPLs. The two rays 

propagate from the entrance surface to the exit surface at two different angles, and therefore 

accumulate different OPLs. In our example, the f-mode propagates 0.527981 mm along ˆ
tfS  

while s-mode propagates 0.521849 mm along ˆ
tsS . By equation (2.17), OPLtf is 0.942760 

mm and OPLts
 is 0.942464 mm inside the biaxial plate.  

 This example is set up to have the s-polarization refracts entirely to fast-mode and 

the p-polarization refracts entirely to slow-mode. The polarizations of the two ray paths are 

depicted in Figure 4.2. 
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Figure 4.2 The polarizations of the two ray paths are shown from two different perspectives. The 
s- and p-polarized components are shown as red and blue arrows, respectively. Part of the ray 
reflects with a π phase shift on both s- and p-polarizations. The refracted light splits into two modes 
where the s-polarization couples to fast-mode, and p-polarization couples to refracted slow-mode 
in this configuration. With two different propagation directions, the two modes exit the plate with 
a phase delay between them. 

4.3 Calculation of total P matrices with propagation effects 

The OPD along the ray paths of the two modes is the cause of retardance in the exiting 

beam. The one incident ray shown in Figure 4.3 (a) can represent the propagation of a 

collimated plane wave through the waveplate, and the two exiting rays (fast and slow-

modes) represent the two partially overlapping exiting plane waves. All rays of the fast-

mode have the same cumulative Ptf matrix and all rays of the slow-mode have the same 

cumulative Pts matrix. In the region where the exiting wavefronts overlap, the P matrices 

of the two modes with the same incident and exiting Ŝ can be combined. 
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Figure 4.3 (a) A collimated wavefront refracts through a birefringent plate. Two partially 
overlapping collimated beams exit the plate in the same direction. (b) Two rays of the incident 
wavefront are traced through the plate, where the s-mode (red) from the upper incident ray overlaps 
with the f-mode (blue) from the lower incident ray. (c) The resultant split rays have a displacement 
of a


 between the two exiting modes, which contributes to the OPL difference between the two 
modes outside of the waveplate. 

For the rays in the partially overlapping region, as shown in Figure 4.3 (b), due to 

the shear between the two exiting beams, two different modes from two separated incident 

rays exit as one ray at the exit surface. Technically, two rays will be traced which exit 

superposed to explicitly show the OPD contribution due to the shear. However, since the 

waveplate induces the same effect on these two incident rays, the ray tracing results from 

tracing one of the incident ray provide sufficient information to analyze the overall effect 

of the waveplate. 

The separation between the two incident rays depends on the thickness of the plate 

such that the rays are closer together with thinner plates. As illustrated in Figure 4.3 (c), 

there is an optical path Δt outside of the waveplate that needs to be accounted for in addition 

to the OPL within the birefringent plate, where 

ˆΔt a S
 .      (4.1) 
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In our example, Δt  = (0, 0.02018 mm, 0) ∙ (0, sin 35°, cos 35°) = 11.5756 μm. 

In the following discussion, the cumulative P matrices are constructed to represent 

the propagation of rays that interacts with the entrance surface, travels through the 

birefringent material, and passes the exit surface. The various intermediate P matrices are 

shown in Figure 4.4. 

 

Figure 4.4 P matrices of individual ray intercepts, cumulative P matrices, and OPLs of the split ray 
paths for the two modes are represented in the figure. The refraction P matrices at the entrance 
surface are Ptf and Pts, shown in boxes. The refraction P matrices for the exit surface are P′tf and 
P′ts, shown in boxes at the exit interface. The cumulative P matrices with the OPLs right after the 

entrance are +
tf,totalP  and +

ts,totalP , respectively. The cumulative P matrices right before the exit 

surface with the corresponding OPLs are 
tf,totalP  and 

ts,totalP , respectively. Finally the cumulative 

P matrices after the exit surface are tf,totalP  and ts,totalP . 

The two ray paths shown in Figure 4.4 start to have different OPLs after they 

propagate passed the gray dashed line shown at the incident interface. The slow-mode 

experiences extra optical phase due to Δt, which is the propagation difference between the 

rays in the incident space. Then, at the entrance surface, the fast- and slow-modes 
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experience the polarization change due to refraction. The cumulative P matrices for the 

two modes after the entrance surface are: 

 
2

Δt

0.653 0 0
and0 0.184 0.263

0 0.543 0.776

0 0 0
,0 0.471 0.429 0.02 0.30

0 0.458 0.128 0.849 0.09

i
e i i

i i




 
  
 
 

 
     
 

  

+
tf,total tf

+
ts Dsts,total Ds

P P

P SP S

  

where 
0 0 0
0 0.164 0.235
0 0.550 0.785

 
 
 
 

D2S  maps Ŝ to ˆ
tsS . The two modes experience different OPLs 

propagating through the birefringent material due to different path lengths and refractive 

indices. The cumulative P matrices right before the exit surface inside the waveplate are 

calculated as P  in equation (3.41), 

   
2 2

0.648 0.080 0 0
, and0 0.184 0.263

0 0.543 0.776

tf tfi OPL i OPL
e e
i

 
      

  
 
 
 

tf Dftf,total Df Dftf,total Df P SP S SP S
 

   
 2 2

Δt

0 0 0
,0 0.627 0.253 0.090 0.177

0 0.411 0.076 0.882 0.053

tsts OPLi OPL i
e e

i i
i i

 
 

     
 
    
 

  

ts Dsts,total Ds Dsts,total Ds P SP S SP S
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where 
0 0 0
0 0.184 0.263
0 0.543 0.776

 
 
 
 

tfS  maps Ŝ to ˆ
tfS . Finally, the two modes exit the birefringent 

plate parallel to the incident rays with ˆ 'tS . The cumulative P matrices right after the exit 

surface are 

 
2

0.873 0.108 0 0
,  and0 0.329 0.470

0 0.470 0.671

tfi OPL
e

i


        

  
 
 
 

tf tf Dtf,total tf tf,total DP P SP P P S
 

 
 2

Δt

0 0 0
,0 0.891 0.307 0.076 0.215

0 0.076 0.215 0.946 0.151

tsOPLi
e

i i
i i




        
 
   
 

  

ts ts Dts,total ts ts,total DP P SP P P S
 

where 2

2

0 0 0

0 sin 35 cos35 sin 35

0 cos35 sin 35 cos 35

 
      
    

DS  is the outer product of Ŝ with itself 

because ˆ ˆ  tS S , and  t D DP S S . 

 After the waveplate, the two modes from the two incident rays in Figure 4.3 (a) 

propagate on top of each other, so their P matrices can be combined to describe the 

polarization of the resultant beam. P matrices can only be combined if they contain the 

same SD; they must have the same incident and exiting S as is the case in this example, and 

the combined P matrix of the overlapping rays is: 
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   

   
 2 2

Δt

0.873 0.108 0 0
.0 0.891 0.307 0.076 0.215

0 0.076 0.215 0.946 0.151

tstf OPLi OPL i
e e

i
i i
i i

 
 



      

       

  
   
 

  

+ +
overlap Dtf,total D ts,total D

tf tf D ts ts D D

P SP S P S

P P S P P S S       (4.2) 

If the P matrices do not have the same SD, they cannot be combined. In that case, the 

electric fields are combined instead. Combining P matrices has the advantage of describing 

the output polarization for any incident polarization. Further details about combining 

modes are provided in Chapter 5. 

4.4 Calculation of diattenuation 

Diattenuation D describes the polarization dependent reflection or transmission. It is a 

function of maximum Imax and the minimum Imin intensity over all polarization states,  

max min

max min

.
I I

D
I I





      (4.3) 

The P matrix of one mode at an anisotropic ray intercept has a form of a polarizer, with 

diattenuation 1. But when two P matrices for a ray path are combined, the diattenuation 

depends on the brightness of the two modes. The diattenuation for a ray path associated 

with a P matrix is calculated from the singular values corresponding to the maximum and 

minimum intensities27. The singular value decomposition of Poverlap for the biaxial 

waveplate in the preceding example is: 

3.019

0.500

0.50

†

†

0

0. 0

0.574 0.819

0.819 0.574 0

1 0 0 0 0 1
.0 0.964 0 0.574 0.819 00

0 0 0.879 0.819 0.574 0

i

i

i

e

e

e

                      

U D V     
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The P matrix performs a mapping of incident states,  ˆˆ ˆ, ,m nE E S , to exiting states, 

 ˆˆ ˆ, ,m na a  m nE E S , the columns of U correspond to  ˆ ˆ ˆ, ,m ni ie e   m nS E E , the columns 

of V corresponds to  ˆ ˆ ˆ, ,m nS E E , and the diagonal elements of D are the singular values 

(1, am, an). The singular value 1 corresponds to the mapping of incident to exiting S vectors, 

Ŝ=(0, sin 35°, cos 35°)=(0, 0.574, 0.819). The singular value of 0.964 is the amplitude 

coefficients associated with state Ep=(0, 0.819, -0.574) mapping to 0.964e i0.500Ep. The 

singular value of 0.879 is the amplitude coefficients associated with Es=(1, 0, 0,) mapping 

to 0.879e-i3.019Es. Therefore the cumulative diattenuation is 
2 2

2 2

0.964 0.879

0.964 0.879




=0.0816 with 

the maximum transmission axis along Ep. 

4.5 Calculation of retardance and geometrical rotation 

Retardance δ is the phase difference between the eigenpolarizations of a system,  

δ = ϕ1 – ϕ2,      (4.4) 

where ϕ1 and ϕ2 are the phase change of the eigenstates. The eigenstate with the smaller 

phase change is the fast axis. The retardance of a P matrix divides into physical retardance 

and the geometrical transformation108. 

Physical retardance is the phase change due to propagation in medium, 

characterized by OPL defined in equation (2.17). It provides the phase difference between 

eigenpolarizations through birefringent material. For example, Figure 4.5 (a) shows a 

linearly polarized light passing through a birefringent waveplate which becomes 

elliptically polarized. Also, physical retardance includes the phase change due to surface 
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interactions, such as metallic reflection where a linearly polarized light physically reflects 

to elliptically polarized light, as shown in Figure 4.5 (b). 

 

Figure 4.5 Physical retardance: (a) Linearly polarized light passes through a waveplate and 
becomes elliptically polarized. (b) Linearly polarized light reflect from a metal surface and 
becomes elliptically polarized.  

 Geometrical transformation is retardance induced by the geometry of a ray path. It 

can result in polarization rotation and/or inversion. A polarization rotation appears as a 

circular retardance, while a polarization inversion appears as half wave of retardance. The 

polarization of a solid corner cube shown in Figure 4.6 demonstrate polarization rotation 

after three reflections. All three reflections are set to be perfect total internally reflection at 

the critical angle where rs=1 and rp=1. Therefore the resultant circular retardance of the 

reflected light is solely induced by the geometry of the ray paths. The polarization rotations 

around the exit surface are 0°, 120° and 240°.  

 

  



160 

 

Figure 4.6 (a) Linear polarization, represented by green arrows, rotates 120° after three total internal 
reflections within a solid corner cube. (b) Six incident rays incident at different regions of the 
entrance surface follow different paths within the corner cube, and the corresponding exiting states 
have a different amount of polarization rotations. (c) Circular retardance induced by the corner cube 
alters the absolute phase of circular incident light. The amount of circular retardance depends on 
the ray path inside the corner cube. (d) The rotation associated with the induced circular retardance 
are 0°, 120°, 240°, 360° and so on around the exit surface.   

Another example with geometrical transformation is seen in the dove prism. Figure 4.7 

shows a dove prism with non-polarizing reflection. When a dove prism rotates about the 

direction of the incident light, the exiting x-polarization rotates twice as much as the prism. 

Since the internal reflection is beyond critical angle, the incident y-polarization has an 

inversion, as shown in Figure 4.8. The dove prism induces half wave of retardance with a 

fast axis lying along the bottom surface of the prism. 

 

Figure 4.7 Horizontally polarized light propagates through a dove prism which rotates about the 
incident direction by 0°, 30° and 60°. Then the resultant polarization rotates 0°, 60° and 120° about 
the exiting direction. 

 

Figure 4.8 Elliptically polarized light propagates through a dove prism which is rotated about the 
incident direction by 0°, 30° and 60°. The major axis of the resultant polarization ellipse rotates by 
0°, 60° and 120° with a change of helicity. 
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4.5.1 Geometrical transformation Q matrix 

P matrix contains both the physical and the geometrical polarization change of a ray path. 

Therefore, the retardance calculated from the P matrix contains both physical retardance 

and geometrical transformation. The geometrical transformation of a ray path can be 

represented by geometrical transformation Q matrix which is a non-polarizing P matrix. 

The calculation of the Q matrix assumes all surfaces are non-polarizing such that the 

magnitude of the Fresnel coefficient is always 1. To the Q matrix contains only the 

geometrical transformation. For an isotropic interface, the refraction and reflection Q 

matrices are 

1 out 3D inQ O I O      (4.5) 

with  

1 0 0 1 0 0

and ,0 1 0 0 1 0

0 0 0 0 0 0

   
   
   
   
   

  I I3D 3D    (4.6) 

respectively, where Oin and Oout are defined in equations (3.5) and (3.8). These Q matrices 

maps the incident  ˆˆ ˆ, ,s p k  coordinate system to the exiting  ˆˆ ˆ, ,  s p k  and exiting 

 ˆˆ ˆ, ,  s p k  for refraction and reflection, respectively. The negative sign in reflection 

means a right-handed orthonormal basis becomes left-handed after reflection. 
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In order to adapt this to an anisotropic interface, the definition of the  ˆˆ ˆ, ,s p k  basis 

is adjusted to  ˆˆ ˆ, ,s p S  because the energy of the ray follows Ŝ which is not equal to k̂ . 

And the definition of ŝ  and p̂ are also adjusted to stay in the transverse plane of Ŝ, 

ˆ ˆˆ ˆ ˆˆ ˆ, ,
ˆ ˆˆ ˆ

x x x

y y y

z z z

s p S
s p S

s p S

     
                     

     

S η S s
s p S

S η S s
    (4.7) 

for incident basis, and  

ˆ ˆˆ ˆ ˆˆ ˆ, ,
ˆ ˆˆ ˆ

x x x

y y y

z z z

s p S
s p S

s p S

       
                                   

S η S s
s p S

S η S s
  (4.8) 

for exiting basis.  ˆˆ ˆ, ,s p S  and  ˆˆ ˆ, ,  s p S  are the orthonormal bases before and after a ray 

intercept. The refracted and reflected ˆ S  do not need to be in the PoI and ˆ ˆs s .The Oin 

and Oout in equation (4.5) becomes 

and .

s p S s p Sx x x x x x
s p S s p Sy y y y y y

s p S s p Sz z z z z z

  
  
  
    

   

  
   

  

O Ooutin   (4.9) 

 The geometrical transformation can be observed when skew rays spiral through the 

edges of a series of lenses. This is similar to a ray propagating through three arbitrarily 

oriented prisms, as shown in Figure 4.9. For simplicity, the prisms are made of isotropic 

glass with index 1.515. The incident and exiting propagation directions of the ray path are 

the same, and the slight spiral of the ray path induces rotation in the plane of polarization. 
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The P and Q matrices of the ray shown in Figure 4.9 are 
0.806 0.100 0
0.050 0.823 0

0 0 1

 
 
 
 

 and 

0.996 0.092 0
0.092 0.996 0

0 0 1

 
 
 
 

. They both contain circular retardance that will be calculated in 

section 4.5.2. 

 

Figure 4.9 (a) A ray propagates through three prisms and exits in the same incident direction, k=(0, 
0, 1). The surface normal of these six surfaces are (0, -0.423, 0.906), (0, 0.423, 0.906), (0.366, 
0.211, 0.906), (-0.366, -0.211, 0.906), (-0.380, 0.198, 0.903) and (0.378, -0.201, 0.903). (b) Two 
orthogonal polarizations propagate through the three prisms and rotate slightly due to the geometry 
of the ray path. 

The geometrical transformation of the P matrix is undone by multiplication of Q-1. The 

1Q P  of the example system of prisms is 
0.807 0.024 0
0.025 0.829 0

0 0 1

 
 
 
 

, which represents a 

linear diattenuator. Therefore all 6 surface interactions induce zero physical retardance. 

With the method described in section 4.4, 1Q P  is a linear diattenuator with 

maximum/minimum amplitude transmission of (0.845/0.792), and maximum transmission 

axis oriented at 123.12° from the x axis. The retardance calculation of P and Q matrices 

are presented in section 4.5.2. 
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4.5.2 Calculation of retardance 

The retardance of a P matrix is calculated by applying eigenanalysis on the unitary matrix 

of P25,28. The polar decomposition of P = MR MD = MD MR which yields a unitary matrix 

MR and a Hermitian matrix MD. By singular value decomposition, P = U D V†, then MR 

= U V† and MD = D. Then the retardance of a 3×3 unitary matrix MR is calculated by 

eigenanalysis. The three eigenvalue and vector pairs of MR are: (λ1, λ2, λ3) and (v1, v2, v3), 

respectively. 

 For P, Q, and Q-1∙P matrices, one of the eigenvalue of their MR will be λ1=1 which 

corresponds to the ray direction v1= Ŝ. The argument of the other two eigenvalues λ2 and λ3 

are the phase of the fast- and slow-eigenstates v2 and v3, where arg(λ2)<arg(λ3). 

 The eigenanalysis of MR of P and Q matrices of the three prisms example in Figure 

4.9 is summarized in Table 4.3. The Q matrix contains 10.546° circular retardance induced 

by the ray path geometry, which rotates linear polarization by 5.273°. As shown in the end 

of last section, the physical retardance calculated from Q-1∙P is zero because refraction 

through uncoated surface induces zero retardance. However, an uncoated surface does 

induce diattenuation. Since the fast axis associated with Q and the maximum transmission 

axis associated with Q-1P are not aligned, the resultant MR of the P matrix has elliptical 

eigenstates, as shown in Table 4.3, and the retardance of P and Q are slightly different.109 
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Table 4.3 Eigenanlysis of MR of the P and Q matrices for the three prisms example in Figure 4.9. 

 Eigenvalues Eigenvectors Retardance Fast axis 

Q e0.092i
 

e-0.092i (
1

1

2 0
i
 
 
 
 

, 
1

1

2 0
i

 
 
 
 

) 

10.546° 1
1

2 0
i

 
 
 
 

 

P 0.818e-3.056i 

0.818e-3.227i ( 1.45

0.817

0.58
0

ie

 
 
  
 

, 1.7

0.817

0.58
0

ie
 

   
 

) 

9.834° 

1.7

0.817

0.58
0

ie
 

   
 

For the previous biaxial waveplate example with a collimated beam shown in 

Figure 4.1 and sections 4.2 and 4.3, the total geometrical transformation of the waveplate, 

Qoverlap = Qt′ ∙Qt, is an identity matrix because the two surfaces create a plane parallel 

plate. So Qoverlap
-1∙ Poverlap = Poverlap, and its eigenvectors and eigenvalues are 

 
 
 

1

2

3

1, 0, 0

0, 0.819, 0.574

0, 0.574, 0.819



 



v

v

v

 and 

-3.01865
1

0.500467
2

3

=

=

=1

i

i

e

e






 

where v3 and λ3 correspond to the mapping from the incident to exiting Poynting vectors. 

The retardance is arg(λ2)-arg(λ1)=3.519 radians with a fast axis along v1 which is s-

polarization along (1, 0, 0). 
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4.6 Conclusions 

A polarization ray tracing example of an off-axis ray propagating through a biaxial 

waveplate was performed and the associated P matrices were calculated. The methods to 

accumulate polarization effects, including surface interactions and mode propagation, 

along a ray path into the P matrices were demonstrated numerically. To represent the 

polarization in a region where the two polarized wavefronts overlap, the two associated P 

matrices were combined to one P matrix. The procedure shown in this chapter to combine 

the two P matrices can be extended to combine multiple P matrices, which is useful for 

analyzing retarder made of stack of anisotropic plates. More details about mode 

combination will be described in Chapter 5, which can be done by combining P matrices 

or simply combining their corresponding electric fields spatially. 

The calculations of diattenuation and retardance of the P matrix were demonstrated 

numerically for the one biaxial plate example. The diattenuation of the P matrix was 

calculated using singular value decomposition. The three dimensional nature of the P 

matrix allows the definition of retardance to be separated into geometrical transformation 

and physical retardance. The geometrical transformation is represented by the geometrical 

transformation Q matrix whose definition is generalized for an anisotropic intercept. Then 

the physical retardance is calculated from Q-1∙P using eigenanalysis.  
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CHAPTER 5 COMBINATION OF POLARIZED 
WAVEFRONTS 

5.1 Introduction 

Many optical systems divide a light beam into two or more partial waves, operates on each 

of these beams separately, and interfere them at an output plane. Such systems divide 

beams with components such as beam splitters and multiple element birefringent 

components, for example achromatic retarders, Lyot filters, optical isolators, and crystal 

polarizers. These birefringent components generate multiple wavefronts due to double 

refraction. The exiting wavefronts can completely or partially overlap in the case of a 

retarder, or split and not overlap in the case of beam splitters. When these wavefronts do 

overlap at an output plane, the resultant wavefront is the interference between the polarized 

beams. The output plane could be a detector such as a CCD, an exit pupil, a screen for 

viewing interferograms110,111,112,113, a hologram to record an interference pattern114,115, or a 

surface to be illuminated. 

Algorithms for calculating each multiple wavefronts from the sequence of each 

eigenmodes generated from ray doubling were calculated in Chapter 2. The polarizations 

of each path can be characterized by its P matrices; associated algorithms were described 

in Chapter 3 and Chapter 4 for polarization ray tracing. This chapter provides some general 

methods to combine these completely or partially overlapping wavefronts. In general, the 

E fields of overlapping rays add, but their associated P matrices do not, because each P 

matrix operates on different incident E, and P is constrained by a unique pair of incident 

and exiting Poynting vectors S. This chapter includes the following example: a special case 
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of co-propagating wavefronts whose incident and exiting beams are co-propagating, and 

their P matrices can be combined.  

Wavefront combination procedures have two subtle issues. (1) The exiting rays of 

each polarized wavefront calculated from ray tracing are not on the same exiting grid. This 

is addressed by either interpolating the partial waves as continuous functions, or by 

resampling each partial wave onto the same grid for each mode prior to the combination. 

(2) When the rays are converging or diverging close to focus, caustics form, the wavefront 

folds over on itself, and the OPL becomes multivalued at parts of the wavefront116,117. To 

avoid this complication, it is best if the wavefront resampling is performed at the exit pupil 

where the rays are spatially distributed in a well-spaced grid, or at least in regions where 

caustics can be avoided. 

5.2 Wavefronts and ray grids  

The optical ray trace commonly starts by tracing a grid of rays emerging from a light 

source. This grid of rays is usually evenly distributed over the incident wavefront, as shown 

in Figure 5.1. 

 

Figure 5.1 The point source on the left emits spherical wavefronts (gray surfaces) which are 
represented by a grid of rays (blue arrows) propagating towards the lens (light blue). 
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When these rays propagate, encounter birefringent components, and split into multiple 

wavefronts, they eventually reach an image plane or exit surface where the interference of 

the wavefronts may need to be evaluated. Depending on the system, the interfering 

wavefronts could be as simple as two overlapping collimated wavefronts exiting a retarder 

as shown in Chapter 4, or as complicated as hundreds of partially overlapping converging 

or diverging wavefronts from systems such as Lyot filters and Fabry Perot interferometers. 

These resultant rays at the output surface are most likely not evenly spaced due to 

aberration differences between modes. In Figure 5.2, an incident wavefront sampled by a 

grid of rays, converges through a birefringent material and exits as two grids of rays 

representing the two polarized exiting wavefronts. These two sets of rays are traced 

separately after splitting, and the effect of the birefringent plate is contained in the 

combination of these two wavefronts. Therefore, accurate analysis needs to encompass 

both ray grids where the wavefronts overlap. 
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Figure 5.2 A collimated wavefront passes through a lens and converges through a birefringent plate. 
The optic axis (black line) of the birefringent plate lies in the plane of the page. Two aberrated 
wavefronts (red and blue) exit the birefringent plate and pass a series of planes labeled from A to 
F. The ray positions from the two modes overlap on those planes are spaced differently. 

There are two broad classes of optical systems: imaging and non-imaging. 

Illumination systems which shine light onto a surface is a common example of a non-

imaging system. They are usually used to provide uniform illumination on objects, such as 

illuminating a hologram with a spherical wavefront or illuminating a screen with a 

polarized wavefront using a liquid crystal projector118,119. On the other hand, imaging 

systems are usually designed to take a spherical wavefront from a light source and image 

it through a series of optical components into another spherical wavefront centered at an 

image plane. Due to aberrations, the output wavefronts will deviate from the ideal spherical 

shape. As the aberrated wavefront approaches to its focus, it tends to have a complex 

electric field distribution. Figure 5.3 shows light focusing through a glass and forms a 

region of caustic (a nephroid-shaped bright area) where the wavefront folds over on itself 
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and neighboring rays intersect. These types of area will be avoided when combining 

wavefronts.  

  

Figure 5.3 (Left) Illumination pattern created from a light focusing through a glass of water. The 
wavefront contains many bright lines which are the caustics. (Right) The caustics are highlighted 
in red. 

Instead, the wavefronts will be combined at the exit pupil of the imaging system, where 

the ray grid are relatively well-spaced. For example, for a beam with spherical aberration, 

the region containing the caustic would be avoided. Then the electric field at the image 

plane will be evaluated by diffraction theory from the exit pupil, which was described in 

details in section 1.6. 

5.3 Co-propagating wavefront combination 

The simplest beam combining configuration occurs when combining two collimated 

wavefronts propagating in the same direction. Many retarders, polarizers and other 

anisotropic devices consist of planar surfaces, so it is a common occurrence that a 

collimated incident beam yields co-propagating collimated exiting beams. In general, P 

matrices do not combine, but in the case of co-propagating wavefronts, as shown in Figure 

5.4, they can be combined. 
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Figure 5.4 (a) A normal incident collimated beam with a planar wavefront (purple) incident onto a 
birefringent plate. The disks in the plot indicate the start of each period of the oscillating electric 
fields. The incident beam splits into two wavefronts (red and blue) with a phase delay between 
them and reaches an observation plane. (b) Electric fields of the two orthogonal eigenstates for a 
ray passing through the plate. Red for y-polarized and blue for x-polarized. (c) Both electric field 
oscillations are plotted in one plane to show that the x-polarized mode goes through 3 periods while 
the y-polarized mode goes through 3.25 periods traversing the plate. 

Consider a collimated beam normally incident onto a birefringent plate, as shown 

in Figure 5.4. Two collimated and completely overlapping beams are generated. They are 

considered as two separate wavefronts in a sense that the birefringent plate delayed the 

phase of one mode’s wavefront relative to the other mode. The orthogonally polarized 

eigenstates of the plate are x- and y-polarized light. The ray tracing parameters calculated 

using the ray tracing algorithm in Chapter 2 and Chapter 3 produces two P matrices for the 

two wavefronts, 
1 0 0
0 0 0
0 0 1

t 
 
 
 

1P  and 2

0 0 0
0 0
0 0 1

t
 
 
 
 

2P  where t1 and t2 are amplitude 

transmittances. These two wavefronts are the o- and e-modes for uniaxial material, or fast- 

and slow-modes for biaxial material. Although these two P matrices represent two different 

modes, they both perform the same transformation for the S;  

and

.

 
 

1

2

S P S

S P S




    (5.1) 
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As shown in section 3.5, P1 and P2 have the same 
0 0 0
0 0 0
0 0 1

 
 
 
 

DS  which was defined in 

equation (3.37). By subtracting SD from P, as shown in equation (3.38), the resultant 

  DP P S


  contains the electric field transformation, but not the S transformation, so the 

OPL accumulated from each mode can be coherently incorporated into these electric field 

transformations to  
2 2

i OPL i OPL
e e

 
    DP P P S


, as shown in equation (3.39). For an 

incident E, the combined exiting E of two overlapping beams is 
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so the P matrices can be combined. The combination is done by adding the P  matrices of 

each modes and also one of SD, so com bineP S S . The combined P matrix is 
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S
P P

SP P

    (5.3) 

as shown in equation (3.41). 

For the example in Figure 5.4, the waveplate induces OPL1=3λ and OPL2=3.25λ, 

and assume t1 and t2 are both 1. The combined P matrix is 



174 

 

6 6.5

6

6.5

1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1

0 0 1 0 0
0 00 0
0 0 10 0 1

i i

i

i

e e

e
ie

 





     
       
     
     

   
           

combineP

  

which describes a linear quarter wave retarder as expected, and conveys information of the 

relative phase induced between the two wavefronts.  In general, the combined P for M co-

propagating overlapped wavefronts is 
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 Consider a 45° polarized incident beam in equation (5.3),  
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The resultant polarizations after the waveplate are a function of ΔOPL as shown in Figure 

5.5. 

 

Figure 5.5 The resultant polarization states as a function of ∆OPL. 

5.4 Sheared co-propagating wavefront combination 

The method of combining P matrices in the previous section applies to systems of multiple 

birefringent plates or wedges. The wavefronts exiting these systems do not always perfectly 

overlap. The difference between two wavefronts is referred to as their shear. They may be 

laterally sheared, where one is translated relative to the other, as in the case of lateral shear 

interferometers120. They may be rotationally sheared, where one is rotated. Figure 4.3 

shows partially overlapping wavefronts propagating in the same direction with a lateral 

shear. The P matrices are combined where the beams overlap. As shown in section 4.3, 

extra adjustment Δt defined in equation (4.1) is made to the OPL for off-axis beams, so the 

resultant retardance is  2
Δs fOPL t OPL




    . Consider an evenly spaced incident grid 

of rays propagating through the birefringent plate at an angle, as shown in Figure 5.6. It 

results in two sets of exiting ray grids representing the two wavefronts. Depending on the 

system, the exiting rays may be analyzed on plane A, orthogonal to the ray direction, plane 

B which is parallel to the plate, or some other surface.  
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Figure 5.6 One off-axis collimated ray grid propagates through a birefringent plate splits into two 
collimated wavefronts. They partially overlap each other on plane A and plane B. 

The ray locations of these two exiting modes do not coincide. The individual wavefront 

can be interpolated onto the same grid before combining the P matrices or combining the 

E fields. The given incident sample rays should be dense enough to resolve the structure 

of the beams and their boundaries. Although these rays are individual points on an exit 

plane (for example, the exit pupil), in this case they represent a smooth and predictable 

wavefront. Further considerations of interpolating wavefronts are given in section 5.6. The 

two ray sets in Figure 5.6 are assumed to have uniform E field across the exit plane. One 

exiting ray set is horizontally polarized and the other ray set is vertically polarized, as 

shown in Figure 5.7. The result of combining these two modes gives an overlapping area 

of interference surrounded by two crescents with the polarization of the two individual 

modes.  
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Figure 5.7 The two resultant wavefronts are horizontally (blue) and vertically (red) polarized. The 
overlapping area of the two orthogonal modes is 45° polarized. 

The polarization of the overlapping area depends on the relative phase between the two 

modes. Figure 5.8 shows the various polarization ellipse patterns for different relative 

phases. 

 

Figure 5.8 Two individual wavefronts, one horizontally and one vertically polarized, are laterally 
sheared by the waveplate. They partially overlap each other. The polarization of the overlapping 
region depends on the phase difference of the individual wavefront. Showing from left to right, the 
relative phases are (0, 0.15, 0.25, 0.35, 0.5) waves. 

In general, ray doubling occurs each time a beam enters an anisotropic medium. An optical 

system containing N anisotropic interfaces can have 2N separate exiting modes in 

transmission for one incident ray. To combine cumulative P matrices of multiple off-axis 

modes from a system that consists of N plane parallel anisotropic plates, equations (4.2) 

and (5.4) become equation (5.5). Instead of 2 exiting modes, 2N modes are combined within 

the beam overlapping region as 
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where M=2N, , 1
1

N

N n
n

 


 tm ,total tmP P  is the cumulative P matrix for the effects from all 

of the interfaces,  1
ˆ ˆΔ mt   m ma S Sr r

     and mr
  is the ray intercept of mode m at the 

last surface of the anisotropic plate assembly.  

5.5 Non co-propagating wavefront combination 

This section describes combining the E fields of sets of spatially overlapping ray grids 

propagating in different directions. The P matrices with different SD cannot be combined 

with the method shown in sections 5.3 and section 5.4, but their E fields can be added. 

When M modes are traced to the same spot spatially, the electric fields can be combined 

coherently as 

2

1

.
m

M i OPL

m

e




 total mE E      (5.6) 

A simple example of merging two grids of polarized rays with a polarizing beam splitter 

(PBS) to the same plane is shown in Figure 5.9. 
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Figure 5.9 Two collimated wavefronts (red and blue) exiting a PBS into the same direction. 

Since the two grids of rays are coming from different directions, instead of combining their 

P matrices, the resultant E fields are combined. The x-polarized light with 
1 0 0
0 0 0
0 0 1

 
 
 
 

1P  

exits the PBS as E1 = (1, 0, 0). The y-polarized light with 
0 0 0
0 1 0
1 0 0

 
 
 
 

2P  reflects into E2 = 

(0, 1, 0). These two grids are shown coinciding with each other, but in general they do not 

share the same ray coordinate. The method to combine two overlapping beams with 

misaligned ray grids will be explained in section 5.6.  

 The exiting polarization depends on the optical path difference ΔOPL between the 

two beams,  
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If the two beams are perfectly collimated with no deviation, and the ray grids for the two 

wavefronts overlap each other perfectly, the resultant E will have a constant ∆OPL across 

the resultant beam and produce a uniformly polarized beam, as shown in Figure 5.5. If the 

∆OPL are spatially varying, the resultant polarization ellipses will also be spatially varying 

across the beam, as shown in Figure 5.10. 

 

Figure 5.10 Resultant polarization states with spatially varying ∆OPL across the beam. 

5.6 Combining irregular ray grids 

In general the exiting ray locations corresponding to multiple wavefronts do not coincide. 

When a spherical wave propagates through a retarder, the two sets of rays for the two split 

modes are sheared with respect to each other. The two modes have different spacing 

between rays, as shown in Figure 5.2 F. Although the rays do not overlap exactly on top 

of each other, their wavefronts do substantially overlap, so they need to be combined to 

reveal their overall effect. This section describes the procedures to reconstruct and combine 

the wavefronts of these misaligned ray grids. These procedures involve interpolating data, 

and an example interpolation algorithm is also provided. 

5.6.1 General steps to combine misaligned ray data 

To combine E field functions by vector addition, the discrete ray data for the E fields needs 

to be interpolated into continuous functions. The discrete set of E fields calculated for each 

wavefront from the ray trace is spatially distributed over a surface. The discrete E field on 
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the irregular ray grid can be reconstructed into continuous function by interpolation. 

Interpolation is a method to estimate intermediate values between known data, so 

resampling can be done on the interpolated function. There are many algorithms to 

interpolate data, such as bilinear interpolation, spline interpolation, Kriging interpolation 

and many others121,122,123,124,125. Those values estimated by interpolation contain 

interpolation errors. However, with sufficient sample points, and smooth input ray data, 

these errors can be minimized. By interpolating the ray data of the ray grids, and resampling 

the interpolated functions to a common ray gird, the resultant resampled E fields can be 

added to simulate interfering multiple beams of light. Since the E field is summed on a 

mode by mode basis, the ray trace data is first grouped into individual modes. Then the E 

field, as shown in equation (5.8) with seven components (three orthogonal components of 

the complex E field and an OPL), for each mode is interpolated using the discrete ray data 

and yields a continuous function. The resultant functions of E of each mode are added to 

represent the combined E field. The steps of constructing the overall E field are 

summarized in Table 5.1.  
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Table 5.1 Steps to reconstruct wavefront from wavefront combination 
Steps Operation Output 
1 Group exiting ray trace data by mode  Grids of ray data 
2 Calculate exiting E for the grids of ray Grids of E 
3 Interpolate each grid of E E functions for each mode 
4 Resample E from each E function onto a common grid Grids of resampled E 
5 Add the resampled grids of E Final grid of E 
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Figure 5.11 Three grids of rays corresponding to three modes reach a 2D plane. (a) The location of 
the rays are shown as dots. (b) The ray data are resampled in a regular grid with zeros values (gray 
dots) outside the region of the three beams. 

An example of three overlapping grids of rays whose ray positions are unequally 

spaced and do not coincide is shown in Figure 5.11(a). A rectangular grid is preferred, so 

the matrix data structures and operations can be used. Therefore the region without data 

should be padded with zeros. In Figure 5.11 (b), the three ray grids have been resampled 

using interpolation onto a new grid with zeros around the data. This new grid is evenly 

spaced which is useful for further analysis using diffraction theory. For M individual 

modes, the resultant E field is calculated by adding M interpolated E fields as 
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where (x, y) is the coordinate system at the surface of mode combination. 
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5.6.2 Inverse-distance weighted interpolation 

This section describes the inverse-distance weighted interpolation algorithm126 used in this 

dissertation to generate intermediate values within sample data. This weighted 

interpolation method uses the weighted averages of data from nearby points127. This 

interpolation method is versatile and fairly accurate for a dense grid of sample points with 

smooth values. 

  

Figure 5.12 (Left) An unevenly spaced ray grid at locations (rE1, rE2, …rEa, …rEA) are shown in 
red. The evenly spaced grid (r1, r2, …rb, …rB) for resampling is shown in black. (Right) 
Interpolation involves weighting contributions from nearest neighbors. Five closest data location 
(rc1, rc2, rc3, rc4, rc5) to rb are shown. 

Consider A samples of electric field (E1, E2, …Ea, …EA) at A irregularly spaced 

locations (rE1, rE2, …rEa, …rEA), which will be resampled to a new evenly spaced grid at 

B locations (r1, r2, …rb, …rB), as shown in Figure 5.12 (left). The Q closest data points 

from rb, as shown in Figure 5.12 (right), will be used to estimate the value at rb. At point 

rb, the Q closest electric field samples are (Ec1, Ec2, …Ecq …EcQ) at (rc1, rc2, …rcq, …rcQ). 

Q is chosen to produce a reasonable electric field estimation at intermediate locations. The 

distance of these Q data points from point rb are  1 2, , ... , ...cq cQc c r rr r = (|rc1-rb|, |rc2-rb|, 
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…|rcq-rb|, …|rcQ-rb|). Then, the interpolated value of the E field at rb weighted by the Q 

data points is 

1

,
Q

q
q

S
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b cqE E       (5.10) 
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is a scaling factor based on distance cqr  and has a maximum of 1. ε = 10-17 is a small 

number to avoid the situation of “divide by zero” in computer program, when 0cqr  . p is 

the inverse-distance weighting power which controls the region of influence of each of the 

data locations. As p increases, the region of influence decreases. When p=0, equation (5.11) 

simply averages the sampled values. As rcq is near rb, Sq emphasizes Ecq. If rb is exactly 

on top of rcq, 0cqr  , then Sq≈1. When rb is far away from any one of the A data points, 

Sq→0. Abrupt magnitude changes at the edge of apertures can result in interpolation 

artifacts, and such artifacts can be minimized by using a small number of Q and limiting 

the area where sample can be accounted for in equation (5.10) during resampling. 
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Figure 5.13 Seven data points (red) are interpolated using equation (5.10). The resultant 
interpolation functions are shown in blue for five different p. 

 

Figure 5.14 Two non-zero data point (blue) are interpolated using equation (5.10). The resultant 
2D interpolated functions shown in orange for the different p reveal the influence function for the 
different p. 

Two interpolation examples are shown in Figure 5.13 and Figure 5.14 for a set of 

1D data and a set of 2D data. The interpolation algorithms produce a smooth function with 

p=3. Depending on the physical properties of the data, p should be chosen. For example, 

Kelway128 and NOAA129 uses p=1.65 and p=2 for interpolating rainfall. The ARMOS 

model130 suggests p ranges from 4 to 8 for interpolating oil pressure heads.  
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Variations of the inverse-distance weighted interpolation algorithm can reduce the 

artifacts of the interpolation function, such as limiting the radius of the samples being used, 

or taking the slope of the samples into account131. Other interpolation algorithms, such as 

Kirging interpolation132 and thin plate spline133 provide more sophisticated estimations and 

require more involved computer programming. These interpolation functions are usually 

built into programs, such as Mathematica and MATLAB. 

5.7 Conclusions 

The results of an anisotropic ray trace are grids of rays associated with multiple modes and 

multiple wavefronts. Each wavefront takes a different path and has its own amplitude, 

polarization, OPL, and aberration functions. When these wavefronts overlap, their 

combined effects are calculated from interfering their wavefronts. The optical analysis of 

interferometers and anisotropic optical elements requires combining these multiple 

wavefronts after the ray trace. This is done by: (1) sampling each wavefronts through 

polarization ray tracing, (2) fitting them to interpolating functions, one for each mode, and 

then (3a) add these functions of P or E to represent the interference at that plane, or (3b) 

resample P or E from their interpolation functions on an evenly spaced grid. Then, this 

recombined wavefront is used to calculate overall aberrations, point spread functions and 

other metrics.  

It is preferred to combine the P matrices rather than the E fields from each mode 

when the beams are collimated. The advantages of combining P matrices instead of E fields 

are: (1) it preserves the polarization information along the ray path for any incident 

polarization, and (2) the calculations of diattenuation and retardance described in section 
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4.4 and section 4.5 still apply. However, when the SD of the modes being combined is not 

the same, the P matrices cannot be combined, so the E fields are combined instead.  

The calculations of wavefront combination are usually done at the exit pupil of an 

imaging system or at the plane of illumination, where the P matrices, E fields and their 

OPLs sampled from ray tracing are located on a smooth and well-spaced exiting grid, and 

where caustics can be avoided. These sampled wavefront parameters are fitted and 

interpolated to wavefront functions. Interpolation over the pupil allows estimation of the 

associated values anywhere within the pupil using the ray trace data, and constructs new 

values at intermediate locations. Then the combining effect of each mode is calculated from 

the summation of these wavefront functions. 

Assumptions are often made to reduce complex calculations, such as ignoring the 

small wavefront shear from a thin waveplate. However, for thick biaxial components or 

birefringent crystals which split an incident beam into different paths, and then redirects 

the beams to be combined to a plane of interest, care and caution are needed. When the 

calculation is done without assumptions, subtle effects of misalignments and fabrication 

defects in the system can be simulated and yield accurate results. Large amounts of ray 

tracing and interpolation may be required for wavefronts which are not smooth.  

Detailed analysis of a crystal waveplate and a Glan-Type polarizer, using the ray 

tracing algorithms in Chapter 2 and Chapter 3 with the method of mode combination in 

this chapter, will be covered in Chapter 6 and Chapter 7. These simulations show the 

aberrations, undesired modes, and angle of incidence effects observed in laboratory 

measurements, which limit these high performance birefringent components. 
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CHAPTER 6 ABERRATIONS OF CRYSTAL 
RETARDERS 

6.1 Introduction to crystal waveplates 

A waveplate is a common type of retarder formed from a plane parallel plate of birefringent 

material. Its function is to introduce retardance between two orthogonal eigenmodes in the 

transmitted light. They are utilized to control polarized light, adjust ellipticity, rotate 

polarization, and even fine tune laser wavelengths when used inside laser cavities. They 

are widely used in polarimetry, medical imaging, microscopy, telecom, and laser cutting 

industry. Simple isotropic plane parallel plates cause a focus shift and spherical aberration 

on-axis, and add coma, and astigmatism off-axis, due to the variation of the OPL with 

angle134. The aberrations of the retarder’s ordinary wave are the same as for the isotropic 

plate. The aberrations of the extraordinary wave are more complicated because they include 

all the isotropic aberrations as well as additional aberrations arising from the variation of 

refractive index with direction. These aberrations and their effect on image formation will 

be calculated from polarization ray tracing.  

Waveplates are characterized by the plate thickness t and the on-axis retardance δ 

at a reference wavelength λref. 

2
Δ

ref
n t




      (6.1) 

where δ is the on-axis retardance in radians and, Δn = |ne – no| is the birefringence. The 

optical path difference of the two modes is ΔOPL=Δn t. Common waveplates include 

quarter waveplates and half waveplates. A zero-order quarter waveplate with a thickness 
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of λref/(4Δn) is most commonly made of quartz or magnesium fluoride rather than calcite, 

because the smaller ∆n translates into a more practical thickness. Calcite would require a 

thickness of less than 10 µm to achieve 3½ waves of retardance (a 3rd order waveplate) for 

0.5 μm, which is impractically thin to manufacture. A 1¼ wave waveplate generates the 

same polarization changes on-axis at the λref as a zero-order quarter waveplate, and is 

labeled as first order quarter waveplate. Similarly, a 2¼ wave waveplate is a second order 

quarter waveplate. The waveplates of different orders have the same effect on normal 

incident light at the λref. The effects are different when the OPL is different, i.e. at other 

wavelengths or incident angles. A waveplate’s retardance changes with incident angles and 

with changes in refractive index due to dispersion. It is common to stack multiple 

waveplates together with different dispersion properties in order to produce a nearly 

constant retardance over multiple wavelengths. Such a waveplate is called an achromatic 

waveplate46,135.  

 Algorithms for ray paths through anisotropic elements were described in Chapter 

4. These algorithms are applied in this chapter to study the aberrations of a waveplate. 

ΔOPL and the retardance are calculated for the on and off-axis incident rays. Consider a 

collimated beam passing through a uniaxial plate shown in Figure 6.1. The lateral shear 

between the two wavefronts is Δr and the two beams partially overlap after the plate. 

Depending on the incident angle, the incident polarization and the retardance of the plate, 

the two exiting states can combine to linear, circular, or elliptical polarization. 



190 

 

  

Figure 6.1 A ray of an incident beam refracts into a uniaxial plane parallel plate and splits into two 
rays in two directions. After these two rays refract out of the crystal, they both propagate in the 
same direction as the incident ray, but are displaced by ∆r. 

In the following discussion, the normalized incident propagation vector k = {kx, ky, 

kz} is defined as 

  (6.2) 

where tanθx=kx/kz, tanθy=ky/kz, and θ is the incident angle in air. 
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6.2 Angular behavior of a uniaxial A-plate  

 

Figure 6.2 Negative uniaxial A-plate such as calcite with a y-oriented optic axis delaying the o-
modes with respect to the e-mode. 

An A-plate is a uniaxial waveplate whose optic axis lies on the plate surface, as shown in 

Figure 6.2. In this configuration, the maximum birefringence is obtained at normal 

incidence. Consider a zero-order quarter wave calcite A-plate with an optic axis along y 

axis. Ray splitting occurs for all off-axis rays. The index variation of the e-mode, ne, for 

wavelength 0.5 μm is shown in Figure 6.3 (a) over a േ40° square field of view (FOV). 

ne(θx, 0) is constant for light incident in the x-z plane, and decreases quadratically with 

respect to angle θy above and below that plane. All e-rays propagating in the x-z plane are 

linearly polarized along the optic axis, with the same index nE. For e-rays in the y-z plane, 

the E field inside the crystal rotates from the optic axis as they move off-axis, changing ne 

towards nO. The birefringence of the A-plate produces small lateral shear Δr, quadratic 

with angle and slightly larger along the x axis as plotted in Figure 6.3 (b), between the two 

parallel exiting modes. This shear is a function of Δn and increases with the plate’s 

thickness.  



192 

 

 

Figure 6.3 (a) ne at wavelength 0.5 µm in a y-oriented calcite A-plate as a function of incident angle 
(θx, θy) in air. (b) The shear displacement ∆r between the two exiting modes through the quarter 
wave calcite A-plate, measured transverse to the k vector.  

 The retardance induced by a waveplate depends not only on Δn but also the physical 

ray paths of the two eigen-states. The ray paths of three rays at 0.5 µm with increasing 

angle of incidence in the y-z plane passing through a quarter wave A-plate with thickness 

0.0007 mm are shown in Figure 6.4. The path length increases off-axis, but the 

birefringence reduces faster with angle, described in Figure 4.3 (c), yielding the net 

decrease in retardance (∆OPL). 

 

Figure 6.4 Three incident rays at 0.5 µm along the principal section with incident angles 0°, 30°, 
and 45° pass through a quarter wave A-plate, and experience different birefringence ∆n and ∆OPL. 

 Due to the varying refractive index of the e-mode with angle, the angular behavior 

of the e-wavefront is very different than that of the o-wavefront. Consider a converging 
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beam focused through an A-plate. The wavefronts of the individual o- and e-modes take 

different paths, experience different refractive indices, and have different aberrations. 

Figure 6.5 shows the ray bundles and caustic formed near focus in both sagittal and 

tangential planes. The e-mode converges before the o-mode in the x-z plane, and after the 

o-mode in the y-z plane. 

 

Figure 6.5 (Left) Sagittal and (right) tangential ray bundles (±45°) in the focal region are shown 
with o-rays in red and e-rays in blue. A thick waveplate is used to make the aberrations easily 
visible. 

The OPLs of the two modes exiting the A-plate as a function of angle are calculated as in 

section 4.2 and are shown in Figure 6.6. The o-mode’s OPL has circularly symmetric 

aberration about the z axis, comprising a focus shift and some spherical aberration. In 

contrast, the e-mode’s OPL is symmetric about the optic axis (the y axis); the tangential e-

rays have a larger OPL than the sagittal e-rays.  
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Figure 6.6 (a) and (b) show the OPL of the o- and e-wavefronts after the A-plate. (c) shows the 
OPL values in the tangential and sagittal planes. 

The orientation of the exiting polarization states for the two modes plotted in three-

dimensions viewed along the z axis are shown separately in Figure 6.7 (a). Moving away 

from the center of the pupil, the e-polarizations are slightly rotated from the y direction. 

Similarly, the o-polarizations are slightly rotated from the x direction. The OPL difference 

between the o- and e-rays is the retardance, as shown in Figure 6.7 (b), which is calculated 

as in section 4.5. The variation of retardance with angle is saddle shaped, increasing 

perpendicular to the optic axis (x-z plane) and decreasing along the y-z plane. The 

retardance magnitude in the retardance map is scaled as equation (6.1), linear with the plate 

thickness and Δn, and inversely with wavelength. Also, the shape of the retardance map is 

symmetric about the optic axis. If the optic axis lies orthogonal to the waveplate (C-plate 

configuration), the retardance map will become rotationally symmetric, zero retardance at 

normal incidence and increases quadratically with angle. 
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Figure 6.7 (a) o- and e-polarizations are shown on the exiting wavefronts in Figure 6.5 , thus the 
slight rotation. The arrow locations indicate phase. (b) Retardance magnitude though the quarter 
wave A-plate.  

6.3 Polarization aberrations of a uniaxial A-plate  

This section presents the methods of analyzing aberrations of crystal waveplates and their 

effects on image formation. The polarization aberrations of a quarter wave uniaxial calcite 

A-plate (Figure 6.8) for a beam with 0.5NA at 0.5 μm are studied. Although the zero-order 

quarter waveplate is very thin and induces small aberrations, every uniaxial A-plate has 

similar polarization aberrations. Even the aberrations of this waveplate are arbitrary, the 

form and interpretation are similar to other waveplates. 

 

Figure 6.8 A beam with 0.5NA is simulated by a grid of rays which focuses through a quarter wave 
calcite A-plate with optic axis oriented along y. The incident ray grid splits into two ray grids, one 
for the ordinary mode (red), and one for the extraordinary mode (blue). 

To evaluate the aberrated focus of the quarter wave A-plate, a converging ray 

bundle with 0.5NA is traced to the best RMS focus (Appendix A) of both modes. Using 
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the ray tracing results, the wavefronts are examined at the exit pupil, as described in section 

1.6. The wavefront aberrations at the exit pupil of the two modes are shown in Figure 6.9. 

The o-wavefront is rotationally symmetric with spherical aberration, while the e-wavefront 

has astigmatism.  

 

Figure 6.9 The o- and e-wavefronts at the exit pupil of the quarter wave calcite A-plate for 0.5 NA 
at 0.5 µm. 

Although the magnitude of the aberrations are small due to the example thin plate, they 

scale with the plate thickness t and birefringence Δn, and changes form with the optic axis 

orientation. For the example A-plate, the aberrations of both modes increase linearly with 

the plate thickness, as shown in Figure 6.10. 

 

Figure 6.10  The maximum (red) o- and (blue) e-ΔOPL calculated from ray tracing at the exit pupil 
for six different plate thickness t 
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The P matrices at the spherical exit pupil are shown in Figure 6.11. To examine the 

polarization aberrations, the P matrices are extracted from the 3D representation and 

converted into a Jones pupil, as shown in Figure 6.12108.  

 

Figure 6.11 The P matrices of the o- and e-wavefronts at the exit pupil. The magnitude (left 3×3 
panels) and phase in radians (right 3×3 panels) of the (a) e-mode’s and (b) o-mode’s P matrices. 

The o-wavefront is an x-polarizer with aberrations; the xx component with the majority of 

the light has apodization, and its phase shows the spherical aberration. The e-wavefront is 

a y-polarizer with aberrations; the yy component has the most amplitude with apodization, 

and its phase shows astigmatism. The combined polarizations at the exit pupil are evaluated 

in the next section. 

 

Figure 6.12 The Jones pupil of the o- and e-wavefronts at the exit pupil. The magnitude (left 2×2 
panels) and phase in radians (right 2×2 panels) of the (a) e-mode’s and (b) o-mode’s Jones pupils. 

Next, the form and polarization structure of these 0.5NA images are examined.  The 

focus of the two modes is evaluated by the response matrix of the Jones pupil, which is the 
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amplitude response matrix (ARM) defined in equation (1.3), whose magnitude is plotted 

in Figure 6.13. With the small aberration of the thin quarter wave plate, the major 

polarization (ARMxx of o-mode and ARMyy of e-mode) forms an Airy disk. The cross 

coupling (ARMxy and ARMyx) forms a dark center and four islands. And, the orthogonal 

polarization (ARMyy of o-mode and ARMxx of e-mode) forms nine island leakage with 

extremely low amplitude. 

 

Figure 6.13 The amplitude of the 2×2 ARMs of the o- and e-wavefronts. Zero amplitude in gray, 
medium amplitude in red, and highest amplitude in yellow. 

 Since the magnitude of the aberration scales with the plate thickness, the effects of 

the aberration on the image are more visible with a thicker A-plate. Two more A-plates, 

3rd order and 17th order half waveplate, are analyzed with the same procedures. As the 

thickness of the A-plate increases, the ARM of the ordinary focus stays about the same, 

while the structure of the extraordinary focus diffuses from the Airy disk due to aberrations, 

as shown in Figure 6.14. For the thicker plate, the e-ARMyy has a higher energy in the y 
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direction than the x direction, which is formed from the astigmatism residual to the uniaxial 

plate. 

 

Figure 6.14 The ARM amplitude of the o- and e-wavefronts with 0.5NA for various A-plate 
thicknesses. 

The overall ARM at the image is the sum of complex ARMo and ARMe. In the absence of 

polarization aberration, the amplitude response matrices are 
/4

/4

0

0

i

i

e

e





 
  
 

 and 
1 0
0 1
 
  

 

modulated by the Airy disk patterns for the quarter and half waveplate, respectively. The 

thickness of the waveplate induces aberrations and increases the spatial extent of the yy 
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component of the overall ARM. The magnitudes of the overall ARMs are shown in Figure 

6.15. The aberrations also increases the spatial extent of the xy and yz-leakages. These 

aberrations originate from the aberrated e-wavefront. The amplitude of the overall ARMyy 

decreases and its spatial extent increases approximately quadratically with thickness, as 

shown in Figure 6.16.  

 

Figure 6.15 The amplitude of ARM of the combined o- and e-wavefronts with 0.5NA for various 
A-plate thicknesses. 

 

Figure 6.16 (Left) The maximum amplitude and (right) the 50% encircled energy (EE) for ARMe,yy 
calculated from ray tracing results at six different plate thickness t. 

For the analysis of incoherent light, the ARM is converted to the 4×4 Mueller point 

spread matrix (MPSM) as described in section 1.6. The MPSM for the different plate 
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thicknesses are shown in Figure 6.17. The resulting MPSMs are consistent with the ARMs. 

Without aberrations, the MPSMs are the Mueller matrices 
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 modulated by the Airy disk pattern for the quarter and half waveplates, 

respectively. The aberrated MPSM for the thicker A-plates, as shown in Figure 6.17, 

contain large aberrations, produces polarization leakages and induces non-Airy disk image.  

 

Figure 6.17 MPSM of the combined o- and e-wavefronts with 0.5NA for various A-plate 
thicknesses. 

6.4 Polarization states exiting retarders 

The combined polarizations of the two diverging wavefronts from the calcite A-waveplate, 

shown in Figure 6.18, are calculated in this section. A 45° linearly polarized wavefront 

propagates through the waveplate and becomes circularly polarized on-axis with 

polarization aberrations in the off-axis rays. 
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Figure 6.18 (a) A 45° linearly polarized wavefront is simulated for a circular grid of rays. (b) The 
circular grid of rays with ±25° incident angle propagate through a 1st order quarter waveplate whose 
optic axis is oriented along y. (c) The exiting wavefronts are circularly polarized with small 
aberrations. The locations of the arrows indicate the phase of each rays. 

The resultant wavefronts are combined after the crystal plate. The shear between 

the o- and e-modes is very small since the quarter waveplate is thin. The ray locations of 

the exiting ray grids are shown in Figure 6.19.  

 

Figure 6.19 The grid locations on a spherical surface where the fields and OPLs will be combined. 

The Po and Pe of each exiting ray have been calculated. Multiplying the incident E by Po 

and Pe, two sets of exiting E are obtained, Eo and Ee. To perform mode combination, the 

exiting E field components of each mode are resampled onto the same grid, as described 
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by equation (5.8). The x, y and z components of Eo and Ee are shown in Figure 6.20. The 

overall magnitude of Eo and Ee depends on the incident E. 

 

Figure 6.20 Fit functions for the E field components and the OPL for the two exiting modes through 
the 1st order quarter waveplate. The dots are the discrete ray data, and the smooth surfaces are the 
fit. 

Then the combined E is calculated by equation (5.9) where m is o and e. The 

polarization aberration of E is represented by a grid of polarization ellipses over the 

wavefront, shown in Figure 6.21 for 1¼λ, 2¼λ, and 5¼λ A-plate. The diverging wavefront 

through the A-plate yields angularly varying retardance. This variation is symmetric about 

the y oriented optic axis. The exiting states stay circularly polarized along the 45° and 135° 

axes passing through the center of the field. As the angle of incidence increases, the exiting 

ellipse becomes less circular in the ±x and ±y regions due to the increasing off-axis 

contribution. This change of ellipticity increases approximately linearly with thickness and 

quadratically with the FOV. The orientations of the major axes are 45° in the ±x region and 

135° in the ±y region of the field, and this variation is constant with thickness. 
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Figure 6.21 The polarization ellipses over ±25° after the 1¼ λ, 3¼ λ, and 5¼ λ waveplates. 

As the plate gets thicker, polarization fringes (periodic modulations of polarization state) 

are observed, as shown in Figure 6.22 for a 50¼λ A-plate. 

 

Figure 6.22 (Left) The polarization ellipse on the transverse plane of a wavefront with 15° NA after 
a 50¼λ thick waveplate. (Right) The polarization ellipses plotted on a 2D plane. 
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6.5 Conclusions 

The wavefront and polarization aberrations induced by an example crystal waveplate at the 

exit pupil and the image plane has been presented. The electric field distribution across the 

exit pupil was calculated using the polarization ray tracing algorithms of Chapter 2, 

Chapter 3, and Chapter 4. Then, the mode combination was applied as explained in Chapter 

5. The polarization of a point source imaged at the image plane was calculated by 

diffraction theory described in section 1.6, and were presented as a pair of 2ൈ2 ARMs for 

coherent imaging. 

The uniaxial A-waveplate with various thickness were studied because its o-

wavefront demonstrates isotropic aberrations while the e-wavefront demonstrates the more 

complex aberrations of extraordinary rays. The aberrations of each of these wavefronts 

were first calculated and analyzed individually. The e-wavefront has larger wavefront 

aberrations than the o-wavefront in the exit pupil and in the image plane. The combined 

wavefront at the exit pupil contains polarization aberrations that induce various 

polarization states across the pupil as a function of the plate thickness, material’s 

birefringence, the NA of the beam, and the orientation of the optic axis. 

The MPSM is calculated from the ARM with the same algorithm which converts 

Jones matrix into Mueller matrix. The image of an unpolarized or partially polarized point 

object is calculated by multiplying the system MPSM to the incident Stokes parameters. 

The Stokes images of a point source for seven different incident polarization states and for 

three different A-plates thicknesses are shown in Figure 6.23, Figure 6.24 and Figure 6.25. 
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Figure 6.23 Exiting Stoke parameters for unpolarized, horizontally polarized, vertically polarized, 
45° linearly polarized, 135° linearly polarized, right circularly polarized and left circularly 
polarized incident light for the quarter wave A-plate. 

 

Figure 6.24 Exiting Stoke parameters for unpolarized, horizontally polarized, vertically polarized, 
45° linearly polarized, 135° linearly polarized, right circularly polarized and left circularly 
polarized incident light for the 3.5 wave A-plate. 
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Figure 6.25 Exiting Stoke parameters for unpolarized, horizontally polarized, vertically polarized, 
45° linearly polarized, 135° linearly polarized, right circularly polarized and left circularly 
polarized incident light for the 17.5 wave A-plate. 
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CHAPTER 7 ABERRATIONS IN THE GLAN-TAYLOR 
CRYSTAL POLARIZERS   

7.1 Introduction to crystal polarizers 

Crystal polarizers, polarizers fabricated from anisotropic materials which utilize double 

refraction to obtain a highly polarized exiting beams of light. The highest performing 

polarizers with the greatest extinction ratio are crystal polarizers, including the Glan-Taylor 

(Figure 7.1 right), Glan-Thompson, and the Nichol prism. These operate by totally internal 

reflecting (TIR) one eigenmode while transmitting most of the orthogonal mode. Since TIR 

reflects 100% of the incident mode, the degree of polarization of the transmitted beam can 

be very close to one, leading to exceptional extinction ratio and diattenuation. Polarization 

states can also be separated in angle by double refraction, such that two orthogonal 

polarization states exit in different directions, as with the Wollaston prism shown in Figure 

7.1 (left). A comprehensive review of crystal polarizers is contained in references 136, 137, 

and 138 written by J. M. Bennett and H. E. Bennett in OSA Handbook of Optics. 

  

Figure 7.1 (Left) A Wollaston prism is made of two blocks of calcite which have orthogonal optic 
axes (light blue lines inside crystals). It directs two orthogonal modes into two directions, due to 
the different refractive index associated to each mode. (Right) A Glen-Taylor polarizer is also made 
of two blocks of calcite with the same optic axes orientation. It transmits the e-mode (blue arrows) 
while redirect the o-mode (red arrows) at the interface. 

 Crystal polarizers provide high performance in optical systems at a high cost: 

limited aperture and significant length. Total internal reflecting polarizers tend to be long 
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when compared to sheet and wire-grid polarizers which are particularly thin. Since the 

crystal surface needs to be included at a large angle for TIR with respect to the incident 

light, the ratio of the polarizer length to the aperture size is large, about 1 for Glan-Taylor 

polarizers and 3–5 for Glan Thompson polarizers. The common issues when incorporating 

this type of polarizers into imaging systems are small field of view (FOV), restricted 

étendue and vignetting. 

The Glan-type crystal polarizers are commonly used in specialized applications, 

such as ellipsometry and polarimetry which require high performance, as well as laser 

systems where lengthy components are less of an issue for collimated beams. High power 

laser systems are another application for Glan-type polarizers, because their ability to 

handle much higher powers than sheet and wire grid polarizers is compelling. Such high 

power applications require highly transparent optical grade crystals, typically calcite and 

rutile, fabricated to tight specifications. 

The ideal material for crystal polarizers should be highly transparent over a 

substantial spectral range, easy to polish to get high quality optical surfaces, and have a 

large birefringence. In practice, almost all crystal polarizers are fabricated from calcite 

which is a soft crystal, can be polished to very smooth surfaces and has a large 

birefringence over the 400nm to 1600nm wavelength range. Optical calcite is mined, and 

may have bubbles, inclusions, stria, and small refractive index inhomogeneities which 

often resemble curtains of weakly scattering inclusions. In contrast, quartz is another highly 

desirable birefringent material because it can be synthetically grown and is inexpensive. 

However, the birefringence of quartz is too small for effective Glan-Thompson and Glan-
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Taylor polarizers; it is more useful for waveplate retarders. Rutile has high refractive index 

and is a strong birefringent crystal that can also be synthetically grown to manufacture 

polarizing cubes and coupling prisms139,140. Many other minerals, such as sapphire and 

magnesium fluoride are also used to make prism and vacuum viewing ports for specific 

wavefront separation and combining purposes. 

The complex behavior of the crystal polarizers should be considered when 

designing or using these polarizers. In most polarizers, the intended exiting polarization is 

the extraordinary mode; the refractive index of the extraordinary mode varies with angle 

which introduces astigmatism, apodization, and other aberrations into spherical 

wavefronts. Additionally, crystal polarizers have a small FOV and substantial chromatic 

aberration. At the edge of the FOV, the ordinary rays begin to leak through rapidly 

decreasing the degree of polarization of the transmitted light.  

 This chapter focuses on simulation results of these aberrations using the 

polarization ray tracing methods from the previous chapters, focusing on the polarization 

aberrations of Glan-Taylor crystal polarizers. 

7.2 Polarization ray tracing of Glan-Taylor polarizer 

A Glan-Taylor polarizer is an air-spaced crystal polarizer constructed from two right 

triangular pieces of calcite, as shown in Figure 7.2 (a). Its design was first described in 

1948141. Light propagation in an example Glan-Taylor polarizer, shown in Figure 7.2 (b), 

is modeled in this chapter to study its wavefront and polarization aberrations. The optic 

axes of both calcite pieces are oriented vertically along the y axis. In the following 
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simulation, the hypotenuse is inclined at an angle θAൌ40° with respect to the entrance and 

exit surfaces. 

 

Figure 7.2 (a) Glan-Taylor polarizer consists of two calcite right-triangular pieces separated by an 
air gap with vertically oriented optic axes (black arrows inside the two blocks). (b) The geometry 
of the crystal polarizer is defined by θA, H, L, and C. The combination of the two crystal blocks 
forms a rectangular cube. The entrance surface has an area HൈH. The length of the crystal is L =H 
tan θA. The air gap has a thickness C. 

7.2.1 Conditions of internal refraction/reflection in calcite 

At 589.3nm, the refractive indices of calcite are nO=1.659 and nE=1.486, so the critical 

angle for the o-ray is ψo=37.08° and the critical angle for e-ray, after accounting for the 

varying ne, is ψe=42.22° in the y-z plane of Figure 7.2, as shown in Figure 7.3. The 

difference between the critical angle of the o- and e-modes is the key property for the 

polarizer operation.  
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Figure 7.3 The properties of internal refraction at a calcite/air interface as a function of incident 
angle at the air-gap interface. (a) The refractive index as a function of ray angle in calcite. (b) The 
refraction angle as a function of incident angle, the o- mode critical angle is 37.08º and e-mode 
critical angle is 42.22º. (c) The intensity transmission as function of incident angle, where the 
maximum e-transmission occurs at 34.54°. 

Ray paths for internal refraction at a calcite/air interface is depicted in Figure 7.4. When 

the plane of incidence contained the optic axis, the o-ray refract as s-polarized light, and 

the e-ray refracts as p-polarized light. As shown in Figure 7.3 (c), the refracted o-ray has 

decreasing intensity with incident angle, and zero transmission above critical angle. On the 

other hand, the refracted e-ray has increasing intensity with angle, and 100% transmission 

at Brewster’s angle around 35°, so a smaller θA is desirable. As the incident angle 

continuous to increase, the transmission of e-ray decreases rapidly to zero at critical angle.  
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Figure 7.4 o- and e-rays internally refracts through a calcite/air interface. The incident and exiting 
polarization orientations are shown at the start and at the end of each ray. (a) The o-mode is 
orthogonal to the optic axis (purple arrow) and (b) the e-mode is in the plane of the optic axis. The 
length of the polarization state represents the transmission coefficient which is also plotted in 
Figure 7.3 (c). This figure cannot represent the rays with rapidly changing intensity in a small range 
close to the critical angle. 

For light incident on the hypotenuse calcite/air interface of the Glan-Taylor (Figure 

7.2) with angles in the range between ψo and ψe, the o-ray (above its critical angle) 

undergoes TIR and reflects toward the top surface, while the e-ray divides into reflected 

and refracted rays (remains below the critical angle) passes through the air gap; the incident 

ray splits into reflected and transmitted rays. The e-mode in the first crystal couples entirely 

to the e-mode in the second crystal, and exits the polarizer as y-polarized light. 

7.2.2 Nominal operation at normal incidence 

A normal incident ray at 589.3nm refracts through the Glan-Taylor polarizer and divides 

into the x-polarized o-mode and the y-polarized e-mode is shown in Figure 7.5. 
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Figure 7.5 For a normal incident ray, the o-mode (red) undergoes TIR at the air gap, while the e-
mode (blue) transmits to the exit surface as vertically polarized light. The o-mode either exits 
through the top surface or is absorbed by a black coating on the top surface. The partial reflections 
associated with small amplitude are not shown here, for example the partial reflection of the e-
mode at the hypotenuse. 

The desired light path through the polarizer is the eie-mode: (e)xtraordinary in the first 

crystal, (i)sotropic in the air gap, and then (e)xtraordinary in the second crystal. Ray 

doubling can occur in the second crystal, but in case of normal incidence, when the 

orientations of the two crystal axes are perfectly aligned, the undesired eio-mode will have 

zero amplitude. 

The polarization ray tracing matrix Peie of the eie-mode for normal incidence is 

calculated by matrix multiplication of the P matrices from each of the four interfaces. Table 

7.1 shows the P matrix and cumulative E field after each interface.  

0 0 0

0 0.891 0

0 0 1

 
   
 
 

eieP       (7.1) 

The Peie corresponds to a y-polarizer; the incident x-polarized light is completely 

extinguished. For the incident polarization vector Ei = (0, 1, 0), the amplitude of the exiting 
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E field is 0.891 which corresponds to an intensity transmission of 0.793 as calculated in 

Table 7.2. 

Table 7.1 Resultant e-mode P matrices and electric fields for a normally incident ray through a 
Glan-Taylor polarizer. 

Ray path 
P for each individual 

surface 
Cumulative electric 

field after each surface 

Electric field 
amplitude after 

each surface 

entrance 
surface 

1 0 0

0 0.804 0

0 0 1

 
   
 
 

P1
 

0

0.804

0

 
   
 
 

E1
 0.804 

1st air gap 
interface 

1 0 0

0 1.588 0.542

0 1.025 0.840

 
   
  

P2
 

0

1.278

0.825

 
   
  

E 2
 1.521 

2nd air gap 
interface 

1 0 0

0 0.412 0.266

0 0.542 0.840

 
   
 
 

P3
 

0

0.745

0

 
   
 
 

E 3
 0.745 

exit surface 

1 0 0

0 1.196 0

0 0 1

 
   
 
 

P4
 

0

0.891

0

 
   
 
 

E4
 0.891 

Table 7.2 Resultant transmittance and transmission of eie-mode from normal incident is calculated. 
tp is the Fresnel coefficient and Tp is the Fresnel transmission. 

Ray path 
Incident & 

refraction angles 
at each surface 

Ray 
index 

tp 

cos 2
cos

n θout outT tp pn θin in
   

entrance 
surface 

0° 0° 1 0.804 21.486 0.804 0.962 

1st air gap 
interface 

40° 72.84° 1.486 1.890 
cos 72.84 21.890 0.926

1.486 cos 40


 



2nd air gap 
interface 

72.84° 40° 1 0.450 
1.486 cos 40 20.4900 0.926

cos 72.84


 



exit 
surface 

0° 0° 1.486 1.196 
1 21.196 0.962

1.486
 

   Total: Πtp=0.891 ΠTp=0.793
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7.2.3 Limited field of view 

The Glan-Taylor polarizer is an excellent polarizer within the given FOV, where the 

undesired polarization component is efficiently redirected by TIR. At incident angles off 

normal incidence, other undesired modes could present. The FOV of the crystal polarizer 

is defined as the solid angle within which, only the eie-mode is present in the transmitted 

beam. Within this FOV, the degree of polarization of the exiting light is one. In practice, 

(1) the TIR of the o-mode and (2) the transmission of the e-mode for the Glan-Taylor 

polarizer only occurs within a few degrees around normal incidence, as shown in Figure 

7.6, leading to a small FOV which is about േ3.5° in the y direction.  

 

Figure 7.6 (a) The angle of refraction for the o- and the e-modes at the 1st air gap interface as a 
function of the incident angle (θx, θy) at the polarizer’s entrance surface. The false color scale 
indicates the refraction angle, where gray denotes TIR. At the critical angle, light refracts at 90° 
(light blue). The vertical shift between these two functions for oi- and ei-modes, is the basis of 
operation for the Glan-Taylor polarizer, indicating the incident angles where the o-mode TIRs 
while the e-mode partially transmits. This shift is responsible for the highly efficient performance 
of the Glan-Taylor. (c) The intended field for the Glan-Taylor polarizer shown ensures the o-mode 
will TIR at the interface, while the e-mode transmits through the polarizer. At θx=0, the polarizers 
field along θy ranges from -4.5° to +3.5°.  

When the angle of incidence at the air gap is below ψo, the o-mode partially 

transmits to the second crystal and generates oie- and oio-modes spoiling the polarizer. 
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When the angle of incidence at the air gap is greater than ψe, the e-mode switches from 

partially transmitting to TIR, no light reaches the second crystal, and the polarizer goes 

dark. Also, for an incident rays outside of the y-z plane (θx is non-zero), the e-mode 

generates a small amplitude of eio-mode which leaks through the polarizer as an undesired 

polarization state in the transmitted light.  

The Glan-Taylor polarizer becomes a complicated device outside its small field of 

view, and users should be prepared for these additional undesired beams, if the incident 

angular range is not properly limited. Experiments with laser pointers and polarizers easily 

demonstrate these additional beams. 

7.2.4 Multiple potential ray paths for off-axis operation 

A polarization ray trace of the Glan-Taylor over a large range of angles is performed to 

analyze the refractions of all the modes through all the interfaces, taking into account the 

TIR at the air gap. The calcite is simulated as uncoated, and the Fresnel losses at all surfaces 

are included. A ray tree depicting all the possible ray paths (coupling between modes) 

through the polarizer is shown in Figure 7.7. 
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Figure 7.7 A ray tree of all possible ray paths of a ray propagating through a Glan-Taylor polarizer 
with different mode combinations. The incident ray splits into o- and e-modes at the entrance 
surface. Without loss of generality, at the 1st surface of the air gap, both modes can refract through 
the gap or TIR back to the 1st crystal. For light reflected from the hypotenuse, the rays split further 
into oo- and oe-modes or eo- and ee-modes. These modes may escape through the top surface. Rays 
transmitted through the air gap further split into oio- and oie- or eio- and eie-modes, and exit the 
polarizer. Up to four exiting modes may occur for a given incident ray, but depending on the 
incident ray propagation direction, some of these modes have zero amplitude. 

The focus of this analysis is refractions not reflections, unless TIR occurs and stop 

a ray from refracting through the system. The incident light (inc) divides into o- and e-

states. At the first crystal’s hypotenuse (the birefringent/isotropic interface), each modes 

reflects into both o- and e-modes; the coupling of o into e and e into o is small. However, 

this coupling is only zero in the vertical plane, the plane containing the surface normal and 

the optic axis. Within the air gap between the two crystals, the transmitted rays are in an 

isotropic mode. These rays refract part of their flux into the second crystal, generating o- 

and e-rays. Again, coupling from e in the first crystal into o in the second crystal, or vice 

versa, is zero only for rays propagating in the vertical plane. The light reflects at the first 
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hypotenuse is undesired light which will reach the top surface and preferably either escape 

or be absorbed by a top surface coating. As a ray passes through the air gap (ei- or oi-mode) 

into the second crystal, the light splits again into o- and e-modes. For each incident ray, a 

maximum of four modes (eie, eio, oie, and oio) may emerge from the exit surface. 

Total internal reflection from the crystal/air interface is a clever and effective 

mechanism to redirect the unwanted polarization state out of a ray path. However this 

mechanism is strongly angle of incidence dependent. As the incident angle increases 

further from normal incidence, or the desired mode is redirected away from the exit surface, 

as shown in Figure 7.8 which shows some of the exiting amplitudes for the various modes. 

As the angle decreases, undesired modes leak to the exiting surface. 

  

 

Figure 7.8 Ray traces of several incident angles. Only rays associated with TIR and transmitted 
through the air-gap are shown. The top left is normal incidence. The incident rays for the top two 
ray trace on the right are tilted along the y axis with incident k=(0, 0.087, 0.996) in air and (0, -
0.122, 0.993). The incident rays in the third row are tilted in both the x and y directions with incident 
k=(0.104, -0.104, 0.989) and (0.104, 0.104, 0.989). All incident beams are 45° linearly polarized 
with amplitude of one. The resultant eie- (blue), eio- (green), oie- (magenta), oio- (red), ee- (light 
blue) and oo- (orange), eo- (green), and oe-(coral) polarizations are shown with their corresponding 
amplitude. 
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Tilting the incident ray in the y-z plane induces oo-, ee-, oio-, and eie-modes, while the oe-

, eo-, oie- and eio-modes have zero amplitude since the optic axis is along y axis. As the 

incident ray is tilted away from the vertical plane in the x direction, the cross-coupling 

modes, oe-, eo-, oie- and eio-modes start to linearly gain amplitude. These leakages from 

the undesired modes cause reduction of the extinction ratio and other aberrations, and affect 

image quality. 

A wavefront converging through the polarizer becomes quite distorted. Figure 7.9 

shows a polarization ray trace for a ±45°	fan of rays in the y-z plane. Parts of the rays are 

redirected by TIR, while the rest of the eie- and oio-rays transmit through with an uneven 

spatial distribution. Each ray exits parallel to the incident ray, since refractive indices 

experienced by the ray in the first and second crystal are equal in this case, but with large 

sideways displacements, indicating substantial pupil aberration. The individual ray plots 

for five of the rays in the ray fan are also shown, producing varying ray propagation across 

the field. Due to the asymmetric geometry of the polarizer in the y-z plane, the exiting 

wavefronts are also non-symmetric. 
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Figure 7.9 Ray paths for a േ45°	fan of rays in the y-z plane. Details ray paths for five circularly 
polarized incident rays in the y-z plane are shown for refraction and TIR. (To keep the figures 
simple, the partial reflection are not shown.) The resultant eie- (blue), oio- (red), ee- (light blue) 
and oo-(orange) polarizations are shown with their corresponding electric field amplitude. 

Figure 7.10 contains a similar ray trace to Figure 7.9 but in the x-z plane. The polarizer 

geometry is symmetric in this plane and therefore the resultant wavefront is symmetric.  

 

Figure 7.10 A ±45° x-z fan of rays through a Glen-Taylor polarizer. Individual rays in the x-z plane 
at different incident angles with circularly polarized incident ray (purple) with incident angle θin 
and an amplitude of 1. The resultant eie- (blue), eio- (green), ee- (light blue), oo- (orange), eo- 
(light green), and oe-(coral) polarizations are shown with their corresponding electric field 
amplitudes. 
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These calculations show the desired eie-mode is highly apodized due to the large variation 

of the Fresnel transmission close to critical angle at the hypotenuse, as shown in Figure 7.3 

(c). Precision radiometry is thus extremely difficult using this eie-beam! 

7.2.5 Multiple polarized wavefronts 

To understand crystal polarizers, especially in the regions where undesired modes are 

present, involves calculations to combine the effects of multiple polarized wavefronts. To 

do this, a spherical wavefront, simulated by a grid of rays, is sent through the polarizer, 

shown in Figure 7.11 (top), to study the off-axis effects. According to the ray tree in Figure 

7.7, four groups of rays are expected for the four exiting modes. These modes are examined 

individually before combining the wavefronts to determine the overall electric field. The 

exiting polarization states for each modes are shown in Figure 7.11 (middle, bottom).  
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Figure 7.11 (Top) An incident spherical wavefront (yellow) is ray traced for a grid of rays (gray 
lines) shown within a േ45° cone. The wavefront focuses at the entrance of the Glan-Taylor 
polarizer and diverges into the crystal. Due to ray doubling, four resultant modes, shown in separate 
colors, pass through the polarizer, exit, and overlap unevenly. The eie-mode is blue, eio-mode is 
green, oie-mode is red, and oio-mode is magenta. (Middle row) The grid of rays for each refracted 
modes are plotted separately. The exiting polarization states are determined in 3D. Note that only 
the bottom half of the rays transmit through. The polarization ellipses of each rays are shown in at 
the end of the ray. (Bottom row) The 3D polarization states scaled by their amplitudes viewed after 
the crystal. 
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Figure 7.12 The distribution of the electric field amplitudes for each exiting modes in Figure 7.11 
as function of exiting angle. The numerical aperture (NA) of the incident beam for each rows are 
(top) 0.088=sin5°, (middle) 0.259=sin15° and (bottom) 0.707=sin45°.  

The exiting amplitude distributions for three incident beams with 0.088=sin5°, 

0.259=sin15° and 0.707=sin45° numerical aperture (NA) are shown in Figure 7.12. These 

incident ray grids are an evenly spaced square grid of rays. None of the four exiting modes 

maintain the original square outline, and all have large amplitude variations across their 

fields. The exiting eie- and eio-modes have the same maximum exiting angle because they 

have the same critical angle at the air gap. Similarly, all the eio- and oio-modes have the 

same maximum exiting angle. 

The electric field amplitudes are calculated for 45° linearly polarized incident rays. 

The desired eie-mode is vertically polarized and has higher amplitude towards the bottom 

of the field where it is approaching Brewster angle, with maximum transmitted amplitude 

0.68. The undesired oio-mode is horizontally polarized and has increasing amplitude with 
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increasing NA. For a cone of ±45° incident beam, the maximum amplitude of the oio-mode 

reaches 0.65. The amplitudes of both of these modes decrease rapidly towards the TIR 

boundary, and their ray angles are unchanged after the polarizer because the refractive 

indices in the first and second crystals are the same. On the other hand, the oie- and eio-

modes can be classified as cross coupling leakages. For rays out of the y-z plane, crossing 

the air-gap, small amounts of o couple into e and vice versa. They have small amplitudes, 

less than 10%, and increase approximately linearly with increasing θx. Their angles are 

different in air, in each crystal, and in air again due to the change of refractive indices, from 

no to ne and vice versa. For larger NA, these four modes overlap each other after the 

polarizer, as shown in Figure 7.13. 

 

Figure 7.13 The overlap between the four exiting modes for 0.707NA (the bottom row of Figure 
7.12), as function of exiting angle. 

The OPLs of each exiting modes in Figure 7.12 depends on the size of the polarizer. 

The height of the polarizer in this simulation is 20mm (H=20mm and L=16.78mm in 

Figure 7.2). The OPLs are evaluated on a surface 10mm from the center of the polarizer or 

1.61mm from the exit surface. The OPLs shown in Figure 7.14 are relative to the on-axis 

eie-ray. Because of the large crystal block, the OPL contains large values. 
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 Figure 7.14 OPL of each modes corresponds to the amplitude shown in Figure 7.12, and relative to 
the OPL of the on-axis eie-ray. 

7.3 Polarized wavefronts exiting from the polarizer 

To understand the polarizer’s performance, the fields of the four exiting modes are 

combined. The method of Chapter 5 for combining polarized wavefronts represented by 

irregular grids of rays is applied. The resultant wavefronts from each mode is approximated 

by resampling each grid of rays onto the same grid. The overall E field is 
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E     (7.2)  

where OPLm and Em are generated from interpolating the ray parameters in terms of θx and 

θy for mode m. 

The resultant far field intensity distributions in angle space, calculated by equation 

(2.27), of the four exiting modes are shown in Figure 7.15 for three incident NA. 
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Figure 7.15 The resultant intensity distribution for Figure 7.12 and Figure 7.14. The incident NA 
for each of them are (left) 0.088, (middle) 0.259 and (right) 0.707. Light pink is chosen to represent 
the lower intensity. 

The resultant intensity drops off toward the top of the field due to the decreasing Fresnel 

coefficients toward the critical angle of the pure e-mode and pure o-mode. Both of these 

modes eventually become zero due to TIR. A faint ghost mode (pink) is observed at the 

bottom of the field from the eio-mode. 

These simulation results can be compared with the polarimetric measurement of a 

Glan-Taylor crystal polarizer shown in Figure 7.16. The measurement shows the angular 

behavior of the polarizer in the form of a Mueller matrix image measured by a Mueller 

Matrix Imaging Polarimeter (MMIP) in the Polarization Lab at the University of 

Arizona142. The image is acquired over a range of incident angles by illuminating the 

crystal polarizer with a 0.1NA focused beam from a polarization state generator. After the 

beam refracts through the crystal polarizer, the transmitted light is collected by a 

polarization state analyzer. Then an image of the exit pupil of a collection objective lens is 

formed across a CCD. So, each pixel of the image represents light from a different angle 

exiting from the crystal polarizer.  

The measured irradiance (Figure 7.16 left) shows the polarizer has a decreasing 

transmittance toward the top of the field, and zero transmittance in 1/3 of the 0.1NA. This 
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region with zero transmittance corresponds to the TIR of all polarization states at the 

polarizer’s hypotenuse as in the simulation. The measured Mueller matrix image (Figure 

7.16 middle) contains the polarization properties of the crystal polarizer, including 

retardance and diattenuation. It has high signal in the m00, m01, m10, and m11 components‡‡, 

and about zero for the other components. The Mueller matrix image has a form close to 

1 1 0 0
1 1 0 0

0 0 0 0
0 0 0 0

 
 
 
 
 

 in 2/3 of the 0.1NA, which corresponds to a vertical polarizer. The 

diattenuation image (Figure 7.16 right) is calculated from the Mueller matrix image. It 

shows high diattenuation within the middle region and about 0.5 diattenuation in a small 

region at the bottom of the field. This low diattenuation corresponds to the multiple modes 

overlapping as in the simulation. Due to the aperture of the microscope objective, further 

leakages from the undesired modes are cropped, and the ghost shadow in the simulation 

does not reach the detector. 

                                                 

‡‡ The (4×4) 16 elements of the Mueller matrix are 

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

m m m m
m m m m
m m m m
m m m m

 
 
 
  
 

.  
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Figure 7.16 Polarimeter measurement of a Glan-Taylor polarizer with a 0.1NA microscope 
objective pair. (Left) Measured irradiance, (middle) normalized Mueller matrix image, and (right) 
diattenuation image. 

7.4 Aberrations and performance of the Glan-Taylor polarizer 

The aberrations of the eie-mode (the principal and the only desired mode) and the 

extinction ratio of the Glan-Taylor polarizer are examined in this section. For the 0.088NA, 

Figure 7.12 shows how the oio-mode hardly overlaps the eie-mode at the center ±5°. The 

wavefront aberrations of the eie-mode can be estimated using the actual OPLs distribution 

shown in Figure 7.14 (top left) which is also shown in Figure 7.17.  

 

Figure 7.17 The OPL function for the eie-mode from ray tracing to a flat surface; defocus 
dominates. 

The estimation of the eie-aberration is done by Zernike polynomial fitting, 

  0 1 1 2 2 3 4 1 5 2 5,OPL a P a T a T a D a A a A a S            (7.3) 

where (P, T1, T2, D, A1, A2, S) are the form of the aberrations presented in Table 7.3, a’s 

are the aberration coefficients, ρ is normalized pupil coordinate, and	tanφ = ߮x/߮y is the 
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pupil angle measured counterclockwise from the x axis. The Zernike fit to 9 terms produces 

about 0.3ߤm error from higher order aberrations. 

Table 7.3 Zernike coefficients for the eie-wavefront for system with 0.088NA.	 

Zernike Aberration 
a coefficients of the  

eie-wavefront (waves) 

Piston, P a0 38.067 

Tip, T1 a1 (ρ cos θሻ 0.018 

Tilt, T2 a2 (ρ sin θሻ 0 

Defocus, D a3 (2ρ2 - 1ሻ 38.052 

Astigmatism 1, A1 a4 (ρ2 sin 2θሻ 0 

Astigmatism 2, A2 a5 (ρ2 cos 2θሻ -7.198 

Coma 1, C1 ρ (3ρ2 - 2)sin θ 0 
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Coma 2, C2 ρ (3ρ2 - 2)cos θ 0.0197 

Spherical, S a6 (6ρ4 - 6ρ2 + 1) -0.037 

After subtracting the piston, tilt and defocus, the residual wavefront of the eie-mode, shown 

in Figure 7.18, is primarily astigmatism. 

 

Figure 7.18 Wavefront of eie-mode after removing piston, tilt and defocus. 

 A figure of merit for polarizer performance is the extinction ratio, 

co-polarized

cross-polarized

Intensity
Extinction Ratio ,

Intensity
     (7.4) 

the ratio of the transmission of the co-polarized system to the cross-polarized system for 

unpolarized incident light. For sheet polarizers, the cross-polarized system is two polarizers 

with their transmission axes crossed, and the co-polarized system is two polarizers with 

their transmission axes in the same orientation. 

Two configurations are considered (Figure 7.19) for calculating the extinction ratio 

for a pair of Glan-Taylor co- and cross- polarizers. At normal incidence, the co-polarized 
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system produces a vertically polarized ray, and the cross-polarized system blocks all 

incident light. Therefore the extinction ratio at normal incidence is infinite. 

The advertised FOV of commercial Glan-Taylor polarizer is stated to be around 3° 

to 5° at 0.5 µm143. A θy=3° incident ray shown in Figure 7.19 (right) creates 4 exiting modes 

in the cross-polarized configuration (extinction) and 5 exiting modes in the co-polarized 

configuration (adding the desired mode). As the off-axis ray propagates through polarizers, 

therefore the cross-polarized system leaks light at this angle light. The extra light carries 

only a small flux at this small field, but this drastically decreases the extinction ratio. 

 

Figure 7.19 Polarizer configurations for calculating extinction of Glan-Taylor polarizers. (Left) A 
normal incident ray propagates through the (top) cross and (bottom) co-polarized systems. (Right) 
An off-axis ray with θy=3º incident angle propagates through the two systems, where light leaks 
through the cross-polarized system while more rays split through the co-polarized system. 

Both of these two polarizer systems have four blocks of calcite with eight 

birefringent interfaces, so they potentially yield 24 or a total of 16 possible exiting modes, 

as shown in Figure 7.20. These 16 rays involve all possible couplings between o- and e-

modes. When the ray enters the air gap between the crystals, it does not split, and this mode 
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is represented by i, for isotropic air. So, the 16 possible exiting modes are: eieieie, eieieio, 

eieioie, eieioio, eioieie, eioieio, eioioie, ieoioio, oieieie, oieieio, oieioie, oieioio, oioieie, 

oioieio, oioioie, and oioioio. 

 

Figure 7.20 A ray propagates through a co-polarized system with 4 crystals. Beyond θy=-10°, one 
incident ray produces 16 exiting rays. 

The performance of the Glan-Taylor polarizer is first examined for a square grid of 

incident rays with 0.05NA. At this small NA, there are 4 exiting modes for the cross-

polarized system, and 6 exiting modes for the co-polarized system. Figure 7.20 shows the 

locations for all the resultant modes at far field. The number of exiting modes increases 

with increasing field for this system. 

The flux of the exiting beam near the optical axis (z axis) is dominated by the pure 

e-modes for co- and crossed-Glan-Taylor prisms. The four exiting modes from the cross-

polarized system propagates in four distinct directions, and results in four wavefront 

patches which do not overlap. On the other hand, three of the six modes from the co-

polarized system have the same exiting propagation vector and overlap right below the 

dominant eieieiei-wavefront, as shown in Figure 7.21. Exiting rays from the same mode 

produce a smooth wavefront; this is not the case for rays across different modes. Therefore, 

as in the last section, each mode is treated individually before combining them.  
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Figure 7.21 (Left) A grid of rays with 0.05NA propagates through the cross and co-polarized 
systems, where rays leak through for non-normal incident rays. (Right) The exiting modes are 
divided into groups by different colors and are plotted as function of exiting angles. In the co-
polarized system, eieieie-mode dominates the center of the field. 

The polarization amplitude of each modes exiting the cross and co-polarized system 

are shown individually in Figure 7.22 and Figure 7.23 as a function of exiting angle. In the 

cross-polarized system, a Maltese cross like pattern is observed for both the eieieie- and 

eieieio-modes, with the eieieioi-mode carrying the least energy. The eioieie- and eioieio-

modes have zero amplitude for incident rays along the y-z plane. These amplitudes increase 

with incident angle away from the y-z plane. These four modes appear at distinct areas of 

the exit surface, where the eieieie-mode stays at the center of the optical axis, and all the 

other modes are displaced. From the co-polarized system, the dominant extraordinary mode 

has rapidly decreasing amplitude, apodization, with increasing θy. The rest of the five 
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exiting modes displaced from the center have minimum amplitude with zero θx component, 

and increases with θy.  

 

Figure 7.22  Polarization amplitudes through the cross-polarized system with 0.05NA for each 
resultant mode expressed in the exiting angle coordinates. 

 

Figure 7.23  Polarization amplitudes through the co-polarized system with 0.05NA for each 
resultant mode in exiting angle coordinates. 

The combined intensity distributions at the far field for both of the systems are 

shown in Figure 7.24, where part of the energy is redirected away from the center of the 

field. The highest intensity leaks in the cross-polarized system is the eioieie-mode, which 

is just below the centered pure e-mode. Special care is necessary to prevent this significant 

mode from interfering an optical system’s performance.  
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Figure 7.24  Resultant electric field intensity at the exit surface of the (left) co and (right) cross- 
polarized systems with 0.05NA. 

The extinction ratio will be calculated for a ±3° FOV, as shown in Figure 7.25, 

where the pure e-mode dominates. The extinction ratios are highly dependent on the 

incident angle.  

   

Figure 7.25  The intensity distribution at the center േ3° in the far field for the (left) co and (right) 
cross-polarized systems. The Maltese cross pattern represents the light leakage from off-axis rays 
in the cross-polarized system. The co-polarized system has decreasing amplitude toward the +y 
direction. 

The ratio of these two systems yields the extinction ratio distribution shown in Figure 7.26. 

The highest extinction ratio, essentially infinite in simulation with ideal polarizers and 

monochromatic light, is observed at normal incidence (shown by the center point) and 

along the x and y direction (zero θx and/or θy). This is because the intensity at those regions 
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in Meltese cross leakage of the crossed-polarized system are zeros. Outside those regions, 

the extinction ratio drops off rapidly with increasing angles to about 105. 

 

Figure 7.26  Extinction ratio map for ±3° square illumination. The highest extinction ratio is at 
normal incidence, and along the x and y directions. 

Next, a similar analysis is performed for a 0.1NA. The exiting modes have more overlap 

than the 0.05NA, as shown in Figure 7.27. The co-polarized system has a decreasing 

transmission toward the +y direction and only transmits light up to +3° due to TIR. In the 

cross-polarized system, the center േ6° region is highly affected by the overlapping modes. 

The low Meltese cross leakage is boosted by the light couplings from the overlapped 

modes; the abrupt changes of intensity is the sign of overlapped modes. Also, the crossed-

polarized system does not transmit light beyond +3° in both x and y directions. The 

extinction ratio is undefined when the co-polarized system has zero intensity which is when 

θy>+3°. It is infinity when the cross-polarized system has zero intensity at normal incidence 

and θx>+3°. At the mode overlapping regions (θx≈-6, θx≈+3, and θy≈-6) of the cross-

polarized system, the extinction ratio drops to 0.13. The minimum extinction ratio of the 

remaining area is ~3000 which is lower than that for the 0.05NA in Figure 7.26.  
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Figure 7.27 Analysis for a േ6° incident beam. (Top) The mode overlapped after the co and cross-
polarized systems. (Bottom, left & middle) The exiting intensity within േ6° exiting angle for the 
co- and cross-polarized systems. (Bottom, right) Overlapping mode is visible in the extinction ratio 
plot. 

7.5 Conclusions  

This chapter showed a complex method to analyze complex optical components with 

anisotropic materials. All the significant modes generated from ray doubling are 

considered, which reveals the high performance crystal polarizer – Glan-Taylor prism – is 

highly sensitive to incident angle. Also, incident beams with various NAs through the 

polarizer, and the multiple exiting modes were simulated. The light leakage from undesired 

modes have increasing effects with increasing FOV. The Glan-Taylor polarizer shows 

interesting wavefront and polarization aberrations due to the non-rotationally symmetric 

geometry of the component. For small FOV, the center region is dominated by the 

extraordinary mode which has residual astigmatism due to the uniaxial crystal and rapidly 

decreasing intensity towards critical angle. The undesired modes propagating through the 

anisotropic materials should be aware of to avoid the unexpected energy leakage.  
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Additionally, a more complex configurations of the prisms, co- and cross- crystal 

polarized systems, are studied and the performance of the Glan-Taylor crystal polarizer 

decreases drastically when operating outside of the intended FOV. Similar configurations 

can be found in interferometers with co-and crossed-beam-splitters, such as Heterodyne 

interferometer144 and other multi-channel interferometers145,146,147, and similar light 

leakage could be observed and affect the resultant fringe visibility. 
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CHAPTER 8 RAY TRACING ELEMENTS WITH STRESS 
BIREFRINGENCE 

8.1 Introduction to stress birefringence 

Stress induced birefringence is common and often unavoidable in optical systems. The 

associated retardance is generally undesirable, changing the wavefront aberration and 

polarization aberration in complex patterns. Thus it is very useful to be able to ray trace 

elements with stress birefringence to access the impact and calculate tolerances. This 

chapter will discuss polarization ray tracing through lenses with stress birefringence, where 

stress is described by arrays of stress tensors in CAD file.  

Scottish physicist David Brewster148 discovered stress induced birefringence in 

isotropic substances in 1816; this phenomenon is also addressed as mechanical 

birefringence, photoelasticity, and stress birefringence. Stress is presents in optical systems 

in two different forms, mechanically induced or residual. Mechanical stress results from 

physical pressure, vibration, or thermal expansion and contraction. It often arises from 

mounts squeezing or applying force to elements. Such a property of an optical material is 

referred as photoelasticity149. Residual stress is a permanent stress inside an element, 

independent of external forces. It commonly occurs during fabrication of injection molded 

lenses or when glass is poorly annealed. As material cools from liquid to solid, stress can 

easily become frozen into the material, particularly when the outer surface solidifies before 

the inner material. Stress is also generated during the annealing process due to variation of 

chemical composition within a melt. Either form of stress alters the material’s molecular 

structure slightly, some molecules are closer than equilibrium, others further apart, 

changing the optical properties in the direction of the stress, and induces birefringence.  
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Isotropic materials with stress induced birefringence behave as spatially varying 

weakly uniaxial or biaxial materials. This induced birefringence is readily observed with 

interferometers150,151 and polariscopes152,153, as shown in Figure 8.1.  

     

Figure 8.1. The colors in these plastic cup, plastic tape dispenser, and prescription eye glasses 
placed between crossed polarizers indicate large amounts of spatially varying stress. 

The colorful patterns of materials with stress birefringence between crossed polarizers is 

due to the wavelength dependent nature of the retardance. Transparent isotropic optical 

elements will exhibit temporary birefringence when subjected to stress and revert to 

isotropic when the stress is released. An example is the glass rectangle subjected to stress 

by tightening a screw against one edge in Figure 8.2.  

  

Figure 8.2  (a) An isotropic glass plate placed in an optical mount and viewed between crossed 
polarizers. (b) The same glass plate as a screw is tightened against the glass at the bottom. Due to 
the stress created, induced birefringence has caused significant leakage between crossed polarizers. 
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Stress birefringence can be intentional, for example in tempered glass and photoelastic 

modulators. In general optical elements, it is undesirable. For example, the stress which is 

common in injection molded lenses added to the wavefront aberrations and causes 

polarization aberrations, thus increasing the size of the points spread function, and 

degrading the image. 

8.2 Stress birefringence in optical systems 

In most optical designs, tolerance analysis is required to ensure high performance of the 

system in the desired environment. The analysis can be done, for example, by 

understanding the allowable induced birefringence. Some typical birefringence tolerances 

on lenses and glass blanks are 2nm/cm for critical applications such as photolithography 

systems, polarimeters and interferometers, 5nm/cm in precision optics, 10nm/cm for 

microscope objectives, and 20nm/cm for eyepieces, viewfinder, and magnifying 

glasses154,155. More lenses are made from plastic these days due to its low cost and ease of 

fabrication. However, plastic optics more easily suffer stress birefringence, which easily 

occurs during injection molding and cooling. Molding parameters such as the pressure 

applied to the resin in a mold, the time spent in the mold, and the rate the molded lens cool 

are often adjusted to minimize stress birefringence, but completely eliminating it is 

difficult. 

It is useful but complicated to simulate stress induced birefringence in polarization 

ray tracing, because the stress effects are directional and change through the volume. This 

chapter presents the mathematical description of stress and its relationship to optical 

birefringence. Methods to translate the non-uniform stress information of optical 
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components to retardance and the algorithms to use this information for polarization ray 

tracing through stress components will be explained. The finite-element model of example 

plastic lenses will be analyzed using retardance maps, Jones pupil images and polarization 

point spread matrices to visually demonstrate the induced birefringence and its effects. 

8.3 Effects of stress birefringence on material properties 

The stress birefringence can be described mathematically. When stress is applied to an 

object, the material deforms slightly as atoms reposition themselves in response to applied 

forces, as shown in Figure 8.3. The stress discussed in this chapter induces small changes 

in atomic and molecular positions, but causes negligible change in the material’s physical 

shape. This applied stress, contact stress, or principal stress is characterized by the force 

applied in kg·m·s-2 or Newton (N) to the relevant cross sectional area; the resulting stress 

is given in units of N/m2 or Pascals (Pa). For a material such as glass or clear plastic, 

compression increases the refractive index in the compressive stress direction; atoms move 

closer together in this direction but move further apart in the perpendicular plane. 

Conversely, tension decreases refractive index in the tensile stress direction as atoms 

expand along this axis. For small stress, after releasing the force, the glass returns to an 

isotropic state. This is referred to as elastic deformation. Above some threshold, 

irreversible changes to the molecular arrangements occur, and the object cannot return to 

its original shape. For example, glass may shatter or a plastic lens may become dented. 
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Figure 8.3 Stress on an object results in compressive stress and tensile stress. (Left) The original 
shape of an object. (Right) When stress is applied to the object, the shape of the object deformed. 
The deformation of the object shown is exaggerated to visualize the effect of compressive and 
tensile stress. 

 Stress induces a small changes in a material’s refractive index with ∆n less than 1. 

Typically, a 15MPa stress yields a ∆n in the order of 0.0001 for glass, as shown in Figure 

8.4.  

 

Figure 8.4  The change of refractive index Δn plotted as a function of material stress-optic 
coefficient C for 15MPa applied stress, where Δn = C∙Stress. Glasses such as N-BK7 and SF4 have 
C<5. Polymers, such as Polymethylmethacrylate (PMMA), Polystyrene (PS), and Polycarbonate 
(PC), have larger C which vary in a large range with temperature. 

When an external force is applied along one direction to an isotropic piece of glass, it 

becomes a uniaxial material with its optic axis along the direction of external force. 

Application of a second force along a different direction causes the glass to become a 
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biaxial material. These stresses alter the dielectric tensor of the material. Therefore the 

stressed optical element is simulated as an anisotropic material. A real optical component 

generally has varying stress throughout its volume, such as Figure 8.1 and Figure 8.2, so 

stress birefringence should be simulated as a spatially varying anisotropic material. 

 

Figure 8.5  Refractive index change Δn and its corresponding ray split Δθ as a function of applied 
stress for glass N-BK7 (left) and polymer polycarbonate (right). The ray split is calculated with 
algorithms presented in Chapter 2. 

Figure 8.5 shows the very small change in refractive index (Δn) due to typical stress 

induced birefringence for N-BK7 and polycarbonate (PC), which results in a negligibly 

small amount of ray doubling (Δθ°), so the two split modes propagate very close to each 

other. Since a few wavelengths of ray separation in a ray trace is insignificant and would 

usually not affect the accuracy of many calculations, this ray doubling can be safely 

ignored. The induced birefringence of the two modes can be modeled as retardance along 

a single ray path. And, the refraction is typically modeled based on Snell’s Law using the 

unstressed refractive index. 

8.4 Ray tracing in stress birefringent components 

Algorithms will now be developed for simulating stress birefringence in polarization ray 

tracing. Its effects on image formation, fringe visibility, and other optical metrics can be 
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calculated. The applied stress and its induced retardance have a linear relationship. 

Therefore, the stress induced birefringence can be represented as spatially varying linear 

retarder. P matrices are used to keep track of stress induced retardance along ray paths. The 

following sections will describe the algorithms which take the stress of an optical material 

as input and calculate the resultant retardance experienced by light rays. 

8.4.1 Anisotropic stress model 

When multiple stresses are applied to an isotropic material in different directions, the 

stressed component becomes biaxial. The applied stress is represented as a 3×3 stress 

tensor S, defined in terms of normal stresses σ and shear stresses τ in (x, y, z) coordinate 

system, 

.
xx xy xz

xy yy yz

xz yz zz

σ τ τ

τ σ τ

τ τ σ

 
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  
 
 

S       (8.1) 

S contains 6 stress tensor coefficients, σxx, σyy, σzz, τxy, τxz, and τyz
156,157,158,159,160, which 

represent the force per unit area from different directions in three dimensions. The amount 

of deformation in the optic relative to the original shape due to S is characterized by the 

strain tensor Γ, 

,
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xz yz zz
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Γ     (8.2) 

where γ’s are the strain tensor coefficients. The material refractive index is represented as 

a 3×3 dielectric tensor ε (introduced in Chapter 2). Isotropic materials have an refractive 
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index no, and a dielectric tensor εo (no
2 × identity matrix), which changes and becomes non-

diagonal ε when external stress is applied in arbitrary directions, 
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where no is the unstressed refractive index. Similarly, the impermeability tensor, the inverse 

of oε , also changes from a diagonal tensor to a non-diagonal tensor with external stress as 
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Stress alters the index ellipsoid from spherical to ellipsoidal. From equations (2.34) and 

(2.31), 
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where 
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, and u is the energy density of the light 

field. 

The links between the stress/strain and their optical effect on isotropic, non-

magnetic, and non-absorbing material are given by the 6×6 stress optic tensor C and strain 

optic tensor Ω, 
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for the unidirectional symmetric structure of isotropic materials and polymers. C is a 

function of the stress optic coefficients, C1 and C3 = C1-C2 with unit inverse Pascals (1/Pa). 

Ω is a function of the strain optic coefficients, p1 and p2 with p3=(p1-p2)/2. These 

stress/strain optic coefficients are directly related to each other through the Young’s 

modulus E and Poisson’s ratio ν as:  

   
3 3
o o

1 1 2 2 2 1 22 and
2 2

n n
C p ν p C p ν p p

E E
       .  (8.7) 

Then matrix Ω and C relate the strain and stress to material refractive index as: 
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Table 8.1 contains a set of strain and stress optic tensor coefficients C1 and C2. The 

stress optic tensor coefficients for plastic are typically larger than glass, which means an 

equivalent stress applied on plastic yields a larger change of refractive index than glass. 

More compressible materials have a larger response in general. Polycarbonate (PC) is a 

very strong polymer, but generally has high stress induced birefringence. So PC is avoided 

in application where stress is a problem, but is popular in eye glasses for its strength. 

Table 8.1  Refractive index no, strain optic coefficients (p1 and p2), Young’s modulus E, Poisson’s 
ratio ν, and stress optic tensor coefficients (C1 and C2) for glasses and plastics at 633nm. 

Materials no p1 p2 E (GPa) ν C1 (10-12/Pa) C2 (10-12/Pa)

Corning 7940 
fused 
silica158,161  

1.46 0.121 0.270 70.4 0.17 0.65 4.50 

Corning 7070 
glass161 

1.469 0.113 0.23 51.0 0.22 0.37 4.80 

Corning 8363 
glass161 

1.97 0.196 0.185 62.7 0.29 5.41 4.54 

Al2O3
158 1.76 -0.23 -0.03 367 0.22 -1.61 0.202 

As2S3
161 2.60 0.24 0.22 16.3 0.24 72.5 59.1 

Polystyrene162 1.57 0.30 0.31 3.2 0.34 53.9 62.0 

Lucite162, 163 1.491 0.30 0.28 4.35 0.37 35.4 24.9 

Lexan162,163 1.582 0.252 0.321 2.2 0.37 13.0 98.1 

From equation (8.8), the stressed impermeability tensor is η = ηo + Δη which can 

be converted to a dielectric tensor in the principle coordinate system. When η is expressed 
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in its principle coordinates, it is a diagonal matrix with its eigenvalues (L1, L2, L3) along 

the diagonal, 
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The dielectric tensor in principle coordinates is rotated from the global coordinate system 

as  

1  principleε R ε R ,     (8.10) 

where R is  1 2 3v v v  whose columns are the eigenvectors of η. 

 Stress applied to uniaxial or biaxial crystals requires additional stress optic 

coefficients than the one shown in equation (8.6), which are related to the other strain 

coefficients. Their stress optic tensor require more non-zero components to account for 

interactions between off-diagonal ε components in both shear and normal stress156,164,165. 

 Using the results in equations (8.8) to (8.10), we obtain the stressed dielectric tensor 

that alters the polarization properties of a ray in a way similar to a biaxial dielectric tensor. 

As described in Chapter 2, when a ray passes through a stressed biaxial material, it splits 

into two modes with orthogonal electric field vectors E1 and E2 which carry two different 

refractive indices n1 and n2. The following assumptions are made to simplify the calculation 

of the stressed P matrix: 
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(1) The applied stress only causes small changes to the refractive index. So, refraction into 

and out of an element is accurately calculated by Snell’s law using the unstressed refractive 

index. 

(2) Ray doubling is ignored since the two modes exiting the stress birefringent material are 

essentially on top of each other, as shown in Figure 8.5, and the path is well modeled by a 

single ray traced from the entrance to exiting surfaces. Therefore ˆˆ k S  and ˆ ˆD E . 

Using these assumptions, the refracted propagation vector k is calculated as  

o osin sini in n    and  o
o o
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n n

n n
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 
ik k η   (8.11) 

where ni and no are the incident and unstressed refractive indices, θi and θo are incident and 

refraction angles, ki is the incident propagation vector, and η̂ is the surface normal. The 

refractive index and electric field vector for the two modes are calculated with the method 

described in section 2.4. By combining the anisotropic constitutive relation in equation 

(2.5) and the Maxwell equations, the eigenvalue equation for E is  

 2 0,n    Eε K       (8.12) 
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K  and  ˆ , ,x y zk k kk  is the propagation direction within the 

stressed material. For non-zero E,  

 2 0n ε K     (8.13) 
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with two refractive index solutions, n1 and n2 corresponding to the two eigenmodes. Then 

E1 and E2 are obtained through the singular value decomposition of  2
n  ε K  with n1 

and n2. Their Poynting vectors are the cross product of the electric and magnetic vectors, 
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where  

.nH K E       (8.15) 

The P matrix of the ray within the stressed material is a linear retarder. It maps vectors 
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where λ is the wavelength of the light, and d is the distance the light travels inside the 

material. 

8.4.2 Spatially varying stress 

In optical elements with stress birefringence, the stress usually varies in a complex way. 

For example, when plastic optical elements are manufactured by injection molding, stress 

from lens mounts and vacuum windows create complex spatially varying stress 

birefringence, like Figure 8.1. Mechanical engineering software packages, such as 

SigFit166, calculate the stress distributions within mechanical parts due to forces such as 

bolting items together, welding, and gravity. This finite element modeling (FEM) of 
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stresses and many other parameters such as vibration characteristics are part of the 

mechanical design process. The resultant stress distribution is calculated at a discrete set 

of data points, thus the designation finite element. For injection molding, other software 

packages such as Moldflow and Timon3D167,168,169 analyze the complex physical process of 

injection molding by simulating the flow of the viscous melted plastic into a heated mold, 

the non-uniform cooling of the mold and part, the solidification under high compression, 

and the separation of the lens from the mold. Modeling has improved efficiency and quality 

in plastic lens molding to incorporate new polymers and meet the high demand in high-

quality electronics, consumer products, and automobiles industry170. In both cases, 

mechanical stresses and molding stresses, the distribution of stress inside a 3D object is 

expressed as an array of 3×3 stress tensors. Figure 8.6 shows the 3×3 symmetric stress 

tensor distribution on the surface of an injection molded lens, where high stress variations 

are observed in the diagonal elements. 
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Figure 8.6  The 3×3 stress tensor distribution of an injection molded lens. Red indicates tension, 
blue indicates compression, and gray indicates zero stress. The plastic entered the lens mold from 
the bottom at the region called the gate. The cylinder of plastic extending from the bottom of the 
lens is for handling the lens, which will be removed by a robotic saw. When the cylinder is removed, 
the lens falls into packaging for delivery. 

 To simulate polarization change through an optical element with spatially varying 

stress involves four general steps listed below. They calculate OPL, retardance, and P 

matrices for a finite element stress model.  

(1) Extract the element’s optical shape, 

(2) Calculate the optical path of a ray inside the element, 

(3) Extract the stress information along that optical path, and  

(4) Convert the stress optical distribution into a retarder P matrix. 

8.4.3 Refraction and reflection at stress birefringent intercepts 

Although the storage details of a 3D object with stress vary between CAD systems, the 

idea is similar; the goal is to discretize a continuous region to a finite numbers of sub-

domains. In general, an object stored in a CAD file is using numerous simple building 

blocks or finite elements, such as cuboids or tetrahedrons. Each element is specified by its 
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vertices or nodes. A cuboid requires eight nodes, and a tetrahedron requires four nodes as 

shown in Figure 8.7 (a). Nodes for elements are spaced in a semi-regular grid; all the nodes 

are at the finite elements’ corners. With tetrahedron building blocks, the surface of the 

resultant 3D object can be expressed in surface triangles, as shown in Figure 8.7 (b) and 

(c).  

 

Figure 8.7  (a) A tetrahedron element has four vertices (1, 2, 3, and 4) and four surfaces (I, II, III, 
and IV). (b) and (c) are surface plots of two different injection molded lens structures. The surfaces 
are represented by surface triangles. 

Refraction and reflection are performed using the unstressed refractive indices and 

the surface triangles at the object surface extracted from a CAD file. Each surface triangle 

has its surface normal specified in global coordinate systems. For a given triangle, two 

vectors are calculated by taking the differences between the triangle vertices. The cross 

product of these two vectors is the surface normal. For a given ray, a ray intercept is 

calculated using the algorithm in the reference 171. Figure 8.8 shows the refraction of a 

ray grid refracts through an injection molded lens. Using the ray intercept routine and 

Snell’s law, a set of collimated rays converge after refracting from the lens surfaces.  
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Figure 8.8  Refraction through an injection molded lens uses surface triangles and Snell’s law to 
calculate ray intercepts. The figure shows a simulation of collimated rays converging through the 
lens. 

8.5 Polarization ray tracing P matrix for stress birefringent model 

Stress information is usually contained in CAD files as an array of stress tensors, each with 

six stress coefficients, σxx, σyy, σzz, τxy, τxz, τyz in equation (8.8). A stress tensor is assigned 

to each element building block. When a ray propagates through a lens or a 3D object, the 

ray passes through multiple elements and experiences varying stress tensors along the ray 

segment. Usually each stress tensor is associated with the center of one element block as 

shown in Figure 8.9. Thus for an object comprised of A element blocks, the stress file 

provides A stress data points distributed throughout the object’s volume. The light ray 

propagates through this cloud of points and interpolation can estimate the stress at arbitrary 

locations along the ray. 
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Figure 8.9 A tetrahedron element defined by four corners (top row, left column) is reduced to one 
data point, shown as a red point at the center of the element. Eleven tetrahedrons shown in the 
middle row are reduced to eleven data locations. The last row shows all 95,656 tetrahedrons of an 
object are reduced to 95,656 data locations, each of them are associated with a stress tensor. 

 The stress component σxx of an example injection molded lens is shown in Figure 

8.10. It is common that most of the stress is concentrated in a thin layer at the surfaces. A 

stress tensor map with all nine components of another example lens is shown in Figure 

8.11 with the magnitude of the stress shown in the color scale. Higher stress is observed 

around the gate (where the plastic melt flow into the mold) and the flange (an annular 

structure around the outside of the lens for mounting) of the plastic lens. 
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Figure 8.10 Two views of the stress tensor coefficient σxx from the CAD file of an injection molded 
lens. 

 

Figure 8.11 Stress tensor maps for the 9 components are plotted across an object cross section in 
color scale. 

When a ray propagates through material with spatially varying stress, it experiences 

retardance change along the ray path. This is similar to a ray propagating through a spatially 

varying birefringent material, so the ray path is modeled as a stack of constant biaxial 

materials as shown in Figure 8.12. The Figure 8.12 (left) shows a spatially varying 

birefringent layers with a rotating optic axis and changing retardance magnitude. Such 
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spatially varying behavior is simulated by dividing the material into thin slabs along the 

ray path as shown in Figure 8.12 (right). Each of the slabs represent a constant biaxial 

material with its unique optic axis orientation and retardance magnitude. 

 

Figure 8.12 For a single ray, a spatially varying biaxial material (left) can be simulated as a stack 
of constant biaxial slabs (right). A different stack is calculated for each ray. 

 The concept of slicing a ray path into segments through a material is applied to the 

stress data shown in Figure 8.13. (a) Along a ray path, a ray passes many stress data points. 

(b) The ray path is then divided into steps. (c) A step is very unlikely to be on top of a data 

point. (d) The stress tensor at each step is the weighted average of the three closest data 

points. (e) A P matrix is calculated for the step from the stress tensor. The data point closest 

to the step contributes more than the data point further away from the step. The number of 

steps should be chosen to be sufficiently large to model spatial variation of the stress 

birefringence and ensure accurate results. 
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Figure 8.13 The ray path inside the spatially varying biaxial material is divided into steps. 
Interpolation is used to obtain stress information at each step. (a) A ray passes near many stress 
data points shown in light blue along its ray path. (b) The ray path is then divided into steps shown 
as orange parallel lines along the ray path. (c) It is unlikely that the step exactly intersects any data 
point. (d) The N closest data points, three are highlighted in purple, are used to interpolate the stress 
for the step. (e) A P matrix is calculated for the step from the stress tensor, the ray direction, and 
the step length. 

The stress grid is intended to well sample the spatial stress variation such that the 

change between nearby modes is small. In this limit the stress can be interpolated. 

However, for more rapidly vary stresses, higher order equations could be needed, and 

interpolation would be performed on the retardance magnitude and retardance orientation 

separately. 

The method to calculate the weighted average stress is similar to the interpolation 

algorithm shown in section 5.6. Consider a set of 3×3 stress tensors (S1, S2, …Sa, … SA) at 

A data locations (rs1, rs2, …, rsa, … rsA) describing the stress distribution of an object. A 

ray propagates through the object and its ray path within the stressed object is evenly 

divided into N steps (r1, r2, … rn, … rN). The distance between each step is d. At step n, 

the Q closest data points are (rn1, rn2, … rnq, …rnQ) with stress tensors (Sn1, Sn2, …,Snq …, 

SnQ). Q is chosen to produce a reasonable stress estimation at a location other than the A 

data points. Q=3 is sufficient for the examples shown in this chapter. These data points are 
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a distance  1 2, , ..., nQn n rr r = (|rn1-rn|, |rn2-rn|, …, |rnQ-rn|) away from step n. The stress 

at step n is interpolated from this data. One interpolation equation is 

1

Q

q
q

A


 n qS S ,      (8.17) 

where 

 
 

217

217

1

10

10

nq
q Q

nq
q

r
A

r










 
  

    (8.18) 

is scaling factor based on distance nqr  and has a maximum of 1. Aq emphasizes Sq when 

it is very near point rn and deemphasizes points further away. If rn is exactly on top of rnq, 

0nqr   and Aq≈1. When rn is away from any one data point, Aq includes effects from the 

closest Q data points. 

Each of the steps behaves as a linear retarder whose effect is represented by a P 

matrix. The stressed Pn matrix corresponding to step n is calculated using methods 

described in section 8.4.1 and equation (8.16) with average Sn in equation (8.17). The net 

effect of the sequences of retardances is obtained by multiplying the P matrices. For all N 

steps, the cumulative stressed P matrix is 

1

.
N

n
 N-stress n+1PP      (8.19). 

To represent a ray refracting into the stress material, propagating through the stressed 

material, and refracting out of the material, the total P matrix is 
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out stress inP P P        (8.20) 

where Pin and Pout are isotropic P matrices calculated as described in section 3.3 with the 

unstressed refractive index for the incident and exiting surfaces. 

8.6 Example: Polarization ray tracing for a plastic injection molded lens 

There are many ways to analyze ray tracing results for systems containing stress 

birefringence, such as the polarization state change or birefringence change. The most 

common figure of merit is retardance. Retardance magnitude and fast axis orientation 

across the pupil give insight into the stress location, orientation, and magnitude. In most 

optical systems, a quarter of a wave of retardance yields a significant amount of aberrations, 

causing noticeable image degradation in the point spread function. 

 The simulation methods described in section 8.4 and 8.5 are applied to calculate 

the retardance induced by an injection molded lens with stress shown in Figure 8.14. The 

complete 3×3 stress tensor of this lens is shown in Figure 8.11. 

 

Figure 8.14 The stress images of the injection molded lens (the same lens as in Figure 8.11) with a 
cut away through the CAD variation file. 

A collimated grid of rays is traced through this stressed lens. The retardance variation 

across the lens is calculated from the ray tracing P matrices and plotted in Figure 8.15. 
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Rapid variation of retardance appears on the flange and the gate of the lens. The retardance 

is lower at the center and slightly higher towards the edge. This lens is also simulated in a 

polariscope with crossed polarizers. The light leakage through the polariscope is due to the 

shape of the lens as well as the stress induced retardance.  

 

Figure 8.15 Retardance magnitude, retardance orientation, and polariscope images from a 
polarization ray trace for an injection molded lens of Figure 8.14. The gate of the lens is located at 
the top of the lens shown. 

 Injection molded DVD lenses are sensitive to stress induced polarization since the 

DVD signal is routed with two passes through a polarization beam splitter. The signal is 

degraded by stress induced aberrations. Too much degradation causes the bit error rate to 

increases. Without stress, the lens has zero retardance and performs as a conventional ray 

trace would predict; with stress, the lens has non-zero induced retardance. The stress 

induced retardance of an example DVD pick up lens across the pupil is shown in Figure 

8.16. 
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Figure 8.16 Stress induced retardance of a DVD pick up lens across the pupil. 

The DVD pick up lens configuration in Figure 1.6 is illuminated through then 

images through a polarizing beam splitter. The image quality is evaluated by its polarizing 

point spread matrix (section 1.6). The point spread functions (PSF) is presented in the form 

of 
x x y x
x y y y
  

   
. In Figure 8.17 for the example DVD lens, the main PSF components 

xx and yy are nearly Airy disks for the unstressed lens (Figure 8.17 left) with a small amount 

of light coupled into the off-diagonal elements xy and yx. When the polarization ray trace 

analysis is repeated with the stress data, the main xx and yy components are only slightly 

affected, but much more light is now coupled into the orthogonal polarization states, as 

shown by the off diagonal elements xy and yx. 

 

Figure 8.17 Point spread functions of polarized light through the un-stressed lens (left) and the 
stressed lens (right) in log scale. 
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As the stress continuously increases, the xx and yy images become less and less like an 

Airy disk, and the leakages between x and y-polarizations continuously increase. At 

extreme levels of stress, illustrated in Figure 8.18, the lens loses its ability to form an image. 

 

Figure 8.18 Point spread functions of polarized light refracting through a stressed lens with 10, 100, 
and 1000 times the stress shown in Figure 8.17. 

8.7 Conclusions 

Stress in optical elements impacts performance. Methods for the simulation of stress 

birefringence was presented in this chapter. Complex stress distributions are modeled as a 

varying anisotropic material with spatially varying dielectric tensor. To ray trace through 

stress birefringent components, the induced birefringence along a ray path was simulated 

as cascade of P matrices for short ray segments. The stresses simulated in this chapter was 

assumed to be small and induces negligible ray doubling. Therefore, the small ray segment 

within the stress material was represented by a normal refraction through a linear retarder 

with retardance related to the orthogonal modes calculated with the algorithms shown in 

Chapter 2, Chapter 3 and Chapter 4. Then the effects of the stress on the optical system 

was evaluated by the point spread functions calculated from the stress induced polarizing 

pupil.  

Stress birefringence can be measured and observed by polariscopes and Mueller 

matrix polarimeters. Other birefringence measurement methods are also developed for 
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higher accuracy and shorter processing time using photoelastic modulators, optical 

heterodyne interferometry172, phase shifting techniques173, and near-field optical 

microscopes (NSOM)174. Being able to analyze and simulate the effects of the stress in 

optical elements is very important for industrial inspection, product control and tolerance 

analysis for precision optical system. Using the stress simulation to predict the product 

performance can optimize the tradeoff between the processing time and the product quality 

in manufacturing without expensive cost of trial and error. 

Anisotropic material requires more complex stress optic tensor and strain optic 

tensor to describe its directional dependent change induced by external stress, but similar 

algorithms described in this chapter still apply to model the optical performance. Also, the 

ray tracing method, modeling optical components with spatially varying optical properties, 

can apply to simulate gradient index optic, liquid crystal, and other similar optical 

elements.  
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CHAPTER 9 CONCLUSIONS AND FUTURE WORK 

9.1 Work accomplishment in Polaris-M 

This goal of this dissertation is to extend the polarization ray tracing calculus to incorporate 

anisotropic materials. Some of this work was funded by the Science Foundation Arizona 

(SFAz), a Technology & Research Initiative Funding (TRIF) imaging fellowship, and the 

NALUX Corporation. With the funding, a polarization ray tracing program, Polaris-M, was 

developed at the Polarization Lab in the University of Arizona. Besides implementing the 

algorithms to handle anisotropic optical materials in Polaris-M, research was performed 

into data structure to systematically manage the multiplicity of rays generated by 

anisotropic elements. These structures needed to handle many special cases unique to 

anisotropic interactions: inhibited refraction, total internal reflection, and conical 

refraction. Algorithms for evaluating imaging quality of an optical system are also 

implemented in Polaris-M, so that polarization image formation can be calculated with 

anisotropic elements. 

Many ray tracing examples were developed to test the validity of the algorithms 

where possible against published data. An early presentation on the Polaris-M algorithms 

was presented at the International Optical Design Conference (IODC) 2010 at Jackson 

Hole, Wyoming, USA175. Many more complex analyses have been performed since then, 

such as the modeling of crystal polarizers, crystal retarders and optical components with 

stress induced birefringence. 

Other analyses utilizing advanced Polaris-M features include the modeling of solid 

corner cube, compensating polarization aberrations between fold mirrors, and a detailed 
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evaluation of the PSF of a Cassegrain telescope. The solid corner cube modeling was 

presented at the International Optical Design Conference (IODC) 2014 at Kohala Coast, 

Hawaii, USA and demonstrated the polarization skew aberration resulting from 

geometrical aberration6. Fold mirrors are common optical components used in many 

optical systems for compactness, but they are often a significant source of polarization 

aberrations. The polarization aberrations (diattenuation and retardance) of a metallic fold 

mirror for a spherical wavefront can be partially compensated by using multiple fold 

mirrors oriented as crossed-mirror configuration, as shown in reference 176. An 

astronomical Cassegrain telescope followed by a fold mirror was analyzed using Polaris-

M5 where it is shown how the astronomical image, particularly its point spread function 

(PSF), is affected by polarization aberrations. It also shows how a wavefront correction 

system cannot optimally correct the wavefront aberrations for all polarizations 

simultaneously. Thus the polarization aberration will interfere with exoplanet imaging. 

Such effects have important implications for high-contrast imaging, coronagraphy, and 

astrometry with their stringent PSF image symmetry and scattered light requirements, so a 

vector-wave or polarization optimization is recommended. 

 Many other ray tracing examples were developed using Polaris-M and were not 

included in this dissertation. These examples include simulation of PSF of biaxial 

waveplate, a realistic model of retarder (varying retardance with angle), realistic models of 

dichroic polarizers and wire grid polarizers, and diffractive grating analysis of blazed 

gratings, echelle gratings, and optically active gratings. 
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Many other science modules for Polaris-M were also developed by my colleagues 

(Greg Smith, Karlton Crabtree, Garam Young, Paula Smith, Hannah Noble, and Michihisa 

Onishi) since 2008. These science modules include isotropic thin films, biaxial thin films, 

stress birefringence, rigorous coupled wave analysis (RCWA) for anisotropic grating 

calculations, bi-directional scattering model for polarized light, and interfacing with 

polarimeter measurement. 

As a research ray tracing program, Polaris-M would benefit from more ray tracing 

examples with confirmation against measurement where possible to further validate the 

current science modules. For example, it would be interesting to test some of the science 

module with metamaterials with negative refractive index and other new photonic 

materials. Further future development of Polaris-M is outlined in section 9.3. 

9.2 Summary of modeling optical system with anisotropic components 

My contributions to accurately analyze the subtle effects of anisotropic optical components 

on optical systems have been demonstrated in this dissertation in the following order: (1) 

polarization ray tracing through a series of uncoated anisotropic optical interfaces, (2) 

automating ray doubling and carrying the polarization effects related to the multiple 

wavefronts along their ray paths from the entrance to the exit pupils of an optical system 

(3), calculating polarizing parameters (diattenuation, retardance, and Jones pupil) across 

the exit pupil for individual or combined polarized wavefronts, and (4) analyzing the 

resultant image quality where aberrations from each polarized wavefronts are apparent. 

The polarization aberrations of the wavefronts for each eigenmode can be studied 



270 

 

individually before combining them to examine their effects across the exit pupil as well 

as at the image plane. 

The automated ray doubling algorithm accommodates the exponentially growing 

number of ray segments per anisotropic elements as a result of anisotropic ray doubling. 

The resultant ray data for each ray intercept and ray segment are organized in a ray tree 

structure, as shown in Figure 9.1. The polarization properties at each ray interface and 

along each ray segment are represented by P matrices; the polarization evolution along a 

ray path is represented by series of P matrices. The cumulative P matrix fully characterizes 

the polarizations of each ray path, and evaluates the exiting polarization states by operating 

on any incident states. 

 

Figure 9.1 Ray tree for system with two anisotropic surfaces. The incident ray split into two modes 
at the 1st intercept. These two modes split again at the 2nd anisotropic interface and result in four 
exiting modes. The surface interactions are represented by Pif, Pis, Pff, Pfs, Psf, and Pss. The phase 
changes due to propagation are represented by Pf, PS. The polarization of the first exiting mode is 
represented by the P matrices along the first ray path, which is the matrix multiplication of 
Pff·Pf·Pif. 

The procedures of anisotropic ray trace demonstrated in this dissertation and the 

corresponding analysis of imaging quality for polarized light are summarized in Figure 9.2.  



271 

 

 

Figure 9.2 Summary of anisotropic ray tracing and imaging analysis of multiple polarized 
wavefronts. Subscript m indicates the mth eigen-polarized wavefront. The total MPSM is the 
summation of ARMm of all the overlapped modes. 

Although the algorithms presented in this dissertation describe ray tracing through 

uncoated anisotropic interfaces, the P matrix algorithms for handling multiple exiting rays 

can be applied to other light-surface or light-material interactions with ray multiplying 

effects. For example, Polaris-M handles isotropic and anisotropic diffraction gratings (a 

module developed by Michihisa Onishi177 calculates amplitude coefficients for anisotropic 

gratings) and surfaces coated with anisotropic thin films (another module developed by 

Paula Smith178 calculates amplitude coefficients for coated anisotropic interfaces). Also, 

liquid crystal cells can be simulated as both (1) layers of retarders using the calculation for 

anisotropic bulk materials as in Chapter 2 or (2) using the more accurate multilayer 

interference model for anisotropic thin films. The goal of these ray tracing algorithms 

involves calculating the polarization change in terms of eigenpolarizations, ray direction 

change, and the associated OPL. By placing these ray parameters in the P matrix using the 

algorithms in Chapter 3 and Chapter 4, the polarization effects of many different types of 

surfaces can be evaluated together in one optical system, an extremely useful tool for 

optical design and optimization. For example, one application is biaxial multilayer films 
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matched with liquid crystal cells for field of view (FOV) enhancement in liquid crystal 

displays. 

9.3 Further work 

Any optical design program is incomplete; there is always more physics and analysis to be 

incorporated. This section mentions some of my thoughts from the last few years. The 

polarization ray tracing calculus utilized throughout this dissertation is a high level ray 

tracing method used to systematically perform ray propagation in a global 3D coordinate 

system. There are many areas of optical modeling can be explored and further implemented 

in Polaris-M, for example the specification of the light source polarization, development 

of merit functions for the optimization of anisotropic optical systems, and methods for 

tolerancing such systems. 

 Many design questions involve the spatial and temporal coherence of the light 

source, and how this should be incorporated during the interference of wavefronts 

(combination of polarized wavefronts). Coherence describes the ability of E fields to 

interfere with each other when added together179,180. If the rays are fully incoherent, the 

Mueller matrix formalism applies and ray flux is added incoherently. If rays are fully 

coherent, the polarization ray tracing or Jones formalism applies and E fields are added 

coherently. These are relatively straight forward. Partial coherence calculation involves 

much more computationally intensive calculations than the incoherent and coherent cases, 

and computer programming methods to perform large but meaningful calculations should 

be explored.  
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Straight forward evaluation of coherence integrals can involve 102, 103, 104, or more 

computation, putting such calculations out of reach of reasonable computers and 

computation times. Examples are found in Chapter 10 of reference 9 (equation 46 in section 

10.6.3) and other references181,182,183,184,185. Further techniques to describe changes in 

coherence during propagation as well as methods for combining partially coherent rays are 

worth exploring. 

The image formation algorithms need to be improved to handle combination of 

multiple polarized images for on- and off-axis point object. To perform computer 

optimization and tolerancing on optical system with anisotropic materials, new types of 

merit function to characterize the image quality for the multiple wavefronts are needed. 

The optimization variables and constraints need to be defined carefully so that 

specifications and constraints are met (such as the system should operate within the small 

FOV of the crystal polarizer) and the system remains manufacturable (such as components 

do not have negative thickness, clearances are maintained and components do not block 

beams). 

In computer ray tracing, an optical system having N optimization variables is often 

regarded as a point in an N-dimensional space. Optimization uses numerical algorithm to 

iteratively find the minimum of the nonlinear error function that depends on N variables, 

starting from the initial configuration186. It is important that the merit function is smooth. 

If it is bumpy, the system can get stuck many places far from the desired minima. The 

evaluation of complex functions with double (or arbitrary) precision arithmetic yields 

irregularity, typically around 10-17 of the value, which are a small problem. Combining a 
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large number of algorithms and calculations into a merit function or constraint can result 

in significantly bumpy or irregular high dimensional surfaces. The goal is that the system 

performance be stable with small amount of perturbations. For optical systems with 

moderate complexity, due to the high dimensionality of the parameter space, the 

nonlinearity of the merit function, and the many nonlinear constraints, there is no guarantee 

that the mathematical global minimum can be found in a reasonable period of time. But 

with long processing time, algorithms such as the escape function method187, simulated 

annealing188, and global synthesis189, algorithms can find solutions that are considerably 

better than those found by local optimization. Although further research for improving 

global optimization algorithms is still necessary, an optimization method (global or local) 

should be implemented and explored with Polaris-M, to allow design and research into the 

limit of anisotropic components optimization with respect to manufacturing errors as well 

as image quality. 
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APPENDIX A RMS FOCUS 

Due to aberrations, a group of rays propagating to an image plane might not converge to a 

single point, as shown in Figure A.1. In this case, the location of the focal plane can be 

defined as the point where all the rays converge to the smallest RMS spot size. This RMS 

focus minimizes the root mean square of all the ray intercepts relative to the center of the 

RMS spot. 

 

Figure A.1 A collimated beam focuses through a lens. Due to aberrations, the rays never coincide 
at a single point. (Left) On-axis beam. (Right) Off-axis beam. 

The minimum RMS focus is calculated by the ray parameters of all the converging 

rays at the last optical surface (Z) before the focus. These parameters of the grid of rays are 

the ray locations (r1, r2, …rm,… rM) with ray directions  ˆ ˆ ˆ ˆ, ,... ,... ,1 2 m MS S S S .  

(1) Locate the average axis which is orthogonal to the plane of RMS focus. This average 

axis passes through the average ray location 
1

1 M

mM 

 
   

 
Mean mr r   and lies in the direction 

of the average ray direction 
1

1 ˆ
M

mM 

 
   

 
Mean mS S , as shown in Figure A.2. 
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Figure A.2 The ray intercepts on the last surface before focus are shown in yellow. The average of 
these ray intercepts rMean is shown in red. The average axis SMean is shown as a pink line passing 
through rmean. (Left) On-axis beam. (Right) Off-axis beam. 

There is a family of planes orthogonal to the average axis, as shown in Figure A.3. One of 

these planes is potentially the plane containing the best focus. 

 

Figure A.3 Potential planes of focus (light blue) orthogonal to average axis (pink). (Left) On-axis 
beam. (Right) Off-axis beam. 

(2) The potential plane of best focus is tn away from rMean along the average axis. The ray 

intercept of this potential plane of any ray on the last surface with (rm, Sm) is: 

,
ˆ

m nt m,n m mr r S  

where 

 
,

ˆ

ˆ ˆm nt
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Mean,n m Mean

m Mean

r r S

S S  . 
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and the average axis intercept to that plane of best focus is ˆ
nt Mean,n Mean Meanr r S . 

Therefore 

  ˆˆ
ˆ

ˆ ˆ
nt    


m MeanMean Mean

m,n m m
m Mean

r Sr S
r r S

S S
. 

These ray intercepts for each of these potential planes of best focus are shown in Figure 

A.4. 

 

Figure A.4 Ray intercepts (colored points) of the grid of rays on each potential planes of best focus 
(blue). (Left) On-axis beam. (Right) Off-axis beam. 

(3) At each potential best focus plane, the distance between each intercept and the average 

axis is  ntdist  m,n Mean,nr r  which is a function of tn only. 

(4) The root mean square of these distances for all rays is 

  2

1

1 N

nrms
n

tdist dist
N 

   . 

(5) The minimum distrms with tn,min corresponds to the minimum RMS spot radius.  

So, the best focus is at ,min
ˆ

ntMean Meanr S . 
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APPENDIX B LOCAL COORDINATE SYSTEMS 

The polarization states on a spherical wavefront or wavefront with small deviations from a 

spherical wavefront can be described most unambiguously in 3D global coordinates. 

However, it is frequently necessary to convert the 3D data onto a 2D plane, such as onto 

computer screen or onto a printed page, to communicate the polarization effects on the 2D 

transverse plane. The polarization aberrations are commonly represented by the Jones 

pupil, which is the 2×2 Jones matrix in pupil coordinates. This Jones pupil is commonly 

used in industry and can be generated from ray tracing output. This Appendix defines two 

common pupil coordinate systems for each 3D polarization state on a spherical wavefront 

to transform onto the 2D Jones pupil. 

The first coordinate basis is called the Dipole system. Consider a ray emerging from 

the origin (0, 0, 0) with ray direction k=(x, y, z); the local x and y basis are 

2 2 2 2
, ,0

y x

x y x y

  
  

localx  and 
2 2

2 2 2 2
, ,

xz yz
x y

x y x y

    
  

localy . 

The dipole system with singular poles along the y axis is shown in Figure B.1.  

 

Figure B.1 Dipole coordinate system has local x and y axes along the latitude and longitude of a 
spherical wavefront. 
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The singularities at േy represent an undefined basis. A spherical wavefront that propagates 

through an optical system has its chief ray aligned with the z direction shown in Figure B.1, 

and it is rare to have to include the ray propagating in the േy direction. The dipole 

coordinate system best depicts the polarizations of spherical wavefronts emerging from 

linear polarizers. 

 The second coordinate basis is called the Double pole system. Instead of the two 

singularities in the dipole system, the double pole system has both of the singularities 

wrapped to a single point at -z. This double pole system is shown in Figure B.2. 

 

Figure B.2 Double pole local coordinate system with one double singularity at –z. (Left) Viewing 
toward the opposite end of the singular double pole, the basis vectors have a nice nearly uniform 
distribution. (Right) Near the double pole, the basis vectors rotate rapidly by 720°. 

Similar to the dipole system, the chief ray of a spherical wavefront is aligned with +z. To 

fully specify the coordinate basis, the chief ray propagating to z=(0, 0, 1) is set to have a 
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local x axis (1, 0, 0). Then the local y for this ray is klocal×xlocal = (0, 1, 0). In this double 

pole coordinate system, all the other k’s have the following basis vectors: 

2

, ,
1 1

y xy
z x

z z

     
  

localx  and 
2

,, ,
1 1

xy x
z y

z z

     
  

localy  

except at the double pole (-z), where the basis coordinates are undefined. Although the 

front side of the double pole sphere is smoother than the dipole sphere, the basis changes 

rapidly around the singularity on the -z side of the double pole sphere. The double pole 

basis depicts the polarization of light exiting an ideal lens. 
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APPENDIX C BIAXIAL REFRACTION AND 
REFLECTION PROPERTIES WITH CRYSTAL AXES 
ALONG XYZ AXES 

The transmission and reflection properties of the anisotropic surface are studied in this 

Appendix. Consider a biaxial crystal made of KTP with principal refractive indices (nF, 

nM, nS) = (1.786, 1.797, 1.902) whose principal axes are oriented along the (x, y, z) axes. 

 

Figure C.1 External (left) and internal (right) reflection and refraction of biaxial interface. 

The external and internal reflection and refraction properties are calculated with the 

algorithm in section 2.4 for wavelength 500 nm through different incident angles. Figure 

C.1 (left) shows the external reflection and refraction at an isotropic/anisotropic interface 

of air/KTP. Part of the light reflects back to air with s- and p-polarizations, and part of the 

light refracts into KTP as fast- and slow-modes in different directions. Figure C.1 (right) 

shows the internal reflection and refraction at an anisotropic/isotropic interface of KTP/air. 

Part of the light reflects back into the KTP with fast- and slow-modes in different directions, 

and part of the light refracts into air with s- and p-polarizations. To simplify the analysis, 

the xyz aligned crystal axes allow the s-polarization to couple entirely to the fast-mode and 

the p-polarization to couple entirely to the slow-mode. Performing the calculations at 

different angles of incidence yields the following results. 
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Figure C.2 plots the amplitude coefficients of the air/KTP interface, which are the 

case of external dielectric reflection/refraction. In reflection, the s-polarization reflectance 

increases with angle, while the reflectance of p-polarized light decreases to zero at around 

60°. In refraction, due to the orientation of the crystal axis, p-polarized light couples 

entirely to the slow-mode and the s-polarization couples entirely to the fast-mode. 

 

Figure C.2. Reflection and transmission coefficients at the air/KTP interface. 

Figure C.3 shows a fan of incident rays, from 0 to 70°, reflecting from the air/KTP 

interface. In Figure C.3 (right), the reflected polarization of the s-polarized light has a π 

phase shift, while the p-polarized state in Figure C.3 (left) turns around when passing 

through the Brewster’s angle. Around normal incidence, both polarizations have the same 

reflectance. Approaching Brewster’s angle, their reflectance difference increases, thus their 

reflected diattenuation also increases. 
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Figure C.3 A fan of rays externally reflect from an air/biaxial interface. The gray arrows are the 
incident k vectors. The black arrows are the corresponding reflected k vectors. The blue and red 
arrows are the polarization ellipses, showing the evolution of the electric field, where the arrow 
head indicates the start of the electric field evolution in time. All the incident polarizations have 
the same magnitude. The length of the polarization arrows indicate the intensity of the reflected 
light, but are adjusted slightly for visualization.  

 In refraction, the crystal axis orientations of the biaxial KTP are oriented to have 

non-zero intensity p-slow and s-fast modes. The other two possible modes, p-fast and s-

slow, have zero coupling. These two refracted modes, p-slow and s-fast, have different St. 

The phase of the polarization is unchanged upon refraction, as shown in Figure C.4, thus 

the refracted retardance for this uncoated interface is zero. As the incident angle increases, 

the transmission decreases while the reflection increases. 

 

Figure C.4 A fan of rays externally refract through an air/biaxial interface. The gray arrows are the 
incident k vectors. The black and brown arrows are the refracted S vectors for the slow- and fast-
modes. The blue and red arrows are the polarization ellipses of p-slow couplings and s-fast 
couplings. 
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Consider a left circularly polarized light propagating to the air/KTP interface at 

various angles, as shown in Figure C.5. The reflected polarizations are elliptically 

polarized. Around normal incidence, the incident and reflected polarizations evolve in the 

same direction viewing in 3D; left circularly polarized light reflects as right circularly 

polarized light. As the incident angle approaches Brewster’s angle, the reflected 

polarization elongates towards the s-polarization. When it reaches Brewster’s angle, the 

reflected p component is zero, and the reflected light becomes completely s-polarized. 

Above the Brewster’s angle, the reflected polarization starts to gain ellipticity again, but in 

the opposite helicity than below Brewster’s angle; left circular light reflects as left 

circularly polarized light. 

 

Figure C.5 Left circularly polarized light is incident on the air/biaxial interface. The gray, black 
and brown arrows are the incident, reflected and refracted rays, respectively. The purple ellipses 
are the incident and reflected polarizations. The red and blue arrows are the refracted fast- and 
slow-modes. 

 Figure C.6 shows the internal reflection/refraction intensities of the example 

KTP/air interface. In reflection, the fast-mode couples entire to the reflected fast-mode with 



285 

 

Brewster’s angle just below 30°, the slow-mode couples entirely to the reflected slow-

mode, and the fast-slow and slow-fast couplings are zero. This anisotropic surface has 

critical angle for the slow-mode that is smaller than the critical angle for the fast-mode. 

 

Figure C.6 Internal reflection and transmission coefficients at the KTP/air interface. 

 The polarizations of the internal reflection are shown in Figure C.7. The incident 

fast- and slow-modes lie orthogonal to and in the plane of incidence, respectively. Below 

the critical angle, most energy transmits, while the low energy reflected light undergoes a 

π phase shift. Above the critical angle, the reflected intensity increases drastically due to 

TIR, with a changing phase shift. 

 

Figure C.7 A fan of rays internally reflect from a biaxial/air interface. The gray arrows are incident 
k vectors. The black arrows are reflected k vectors. The blue arrows are the incident and reflected 
polarizations of slow-modes. The red arrows are the incident and reflected polarizations of fast-
modes. 
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In Figure C.8, the polarizations refracted through the uncoated surface have zero phase 

change. The slow-mode couples to p-polarized light in the plane of incidence, while the 

fast-mode couples to s-polarized light orthogonal to the plane of incidence. 

 

Figure C.8 A fan of rays internally refract through a biaxial/air interface. The gray arrows are 
incident k vectors. The black arrows are refracted k vectors. The blue arrows are the incident and 
refracted polarizations of slow-modes. The red arrows are the incident and reflected polarizations 
of fast-modes. 
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