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Abstract 

 In this report, fourth and sixth-order monochromatic aberrations are analyzed against the 

shape factor, conjugate factor, and the index of refraction. Additionally, these aberrations are 

also measured at different fields of view and object heights in order to obtain a comprehensive 

understanding of the behavior of these aberrations.  

 The wave aberration function is examined in its algebraic and vector forms in order to 

understand its dependence on the field vectors and aperture vectors. Then, the wave aberration 

function is related to geometric terms and written in terms of Seidel aberration coefficients up to 

the fourth-order. In the sixth-order, the monochromatic aberrations are broken down into their 

intrinsic and extrinsic parts, and their derivations are briefly explained.  

 The shape factor, conjugate factor, and index of refraction are studied in Chapter 2. 

Although these terms are simple, their importance to aberration theory is introduced through 

structural coefficients. These structural coefficients are rearrangements of the Seidel coefficients, 

and they are written in terms of the shape factor, the conjugate factor, and the index of refraction.   

 In order to analyze the fourth and sixth-order aberrations, a macro in Zemax’s 

OpticStudio is used; this macro calculates the fourth and sixth-order aberrations through Seidel 

aberration coefficients up to the fourth-order, and calculates the sixth-order coefficients through 

the various equations that are introduced later in this report. Additionally, the thin lens system 

that is used throughout this report is modeled in OpticStudio.  
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 The thin lens system used in this report has the following basic prescription: 

• f/4 thin lens with thickness of 5 mm. 

• Stop at the lens.  

• Wavelength of 0.58 𝜇m.  

The lens material, fields of view, and object heights are changed depending on whether the 

report changing the shape factor, conjugate factor, or index of refraction. It’s important to note 

that although the lens is considered thin, this description is simply because the thickness is small 

compared to the focal length. When designing the lens in OpticStudio, the lens is not “thin,” but 

has a thickness of 5 mm.  

 In order to analyze the fourth and sixth-order aberrations as functions of the shape factor, 

OpticStudio’s Merit Function editor is set up to change the radii of curvature of the thin lens. A 

desired shape factor is set as the target, and the system is optimized in order to fit the criteria. 

Then, the fourth and sixth-order aberrations are calculated through the macro and recorded.  

 In order to analyze the fourth and sixth-order aberrations as functions of the conjugate 

factor, an object is set at a specific distance away from the lens for a specific transverse 

magnification that results in the desired conjugate factor. In OpticStudio, the distance from the 

object to the lens is set as variable, and the desired magnification is set as the target. The thin 

lens system is optimized, and the specification magnification target is hit. Knowing this 

magnification results in an easy calculation of the conjugate factor. Again, the macro is used and 

the fourth and sixth-order aberrations are calculated and recorded.  

 Finally, in order to analyze the fourth and sixth-order aberrations as functions of the 

index of refraction, all that is changed is the index of refraction of the thin biconvex lens. The 
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crucial detail that is necessary for this portion is that the Abbe number be set to zero so that 

OpticStudio does not make assumptions on ray behavior. The index of refraction is then 

manually changed and the fourth and sixth-order aberrations are calculated and recorded through 

the macro.  
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Introduction 

 Aberrations in an optical system are departures from ideal behavior. These deviations 

have been analyzed and classified by the properties and behaviors they exhibit. This report will 

focus on discussions of the fourth and sixth-order monochromatic aberrations of spherical 

aberration, coma aberration, astigmatism, field curvature, and distortion. This discussion will 

begin with an introduction to wavefront deformations, where the wave theory of aberrations is 

pioneered by H. H. Hopkins [7]. Then, this report proceeds into a discussion of these aberrations 

geometrically. 

 In Section 1.1.1 the wavefront aberration function consists of zeroth, second, fourth, and 

sixth-order terms. By breaking down zeroth and second-order terms in the wavefront aberration 

function, and relating them to Gaussian and Newtonian optics, this report explains why these 

terms are usually ignored in aberration analysis. The fourth-order terms in the wavefront 

aberration function are explained in two separate topics: the Seidel coefficients and pupil 

aberrations.  

Next, in Section 1.2 the sixth-order terms in the wavefront aberration function are heavily 

discussed. Sixth-order aberrations consist of an intrinsic and extrinsic term, both of which 

require further understanding geometrically as well as analytically. Sixth-order aberrations are 
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typically less prominent than fourth-order aberrations in simple lens systems, however 

understanding sixth-order aberrations is necessary in having a more complete understanding of 

aberration theory. Additionally, sixth-order aberrations are analyzed in a thin lens system later in 

this report. 
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1.1  Theory of Sixth-Order Aberrations  

1.1.1 The Wave Aberration Function 

This report begins with an explanation of the wave aberration function for an axially 

symmetric system. The aberration function, ( , )W H p  is a function of the normalized field vector 

and the aperture vector, H and p  respectively. Before delving any further, it is incredibly crucial 

to note that a reference must be defined. In this study, the aberration function is built around a 

reference sphere that is centered at the ideal image plane. This is in direct relation to Gaussian 

and Newtonian optics upon which first-order rays travel in accordance to the collinear 

transformation.  

The aberration function gives the geometrical deformation of the wavefront at the exit 

pupil of the system. That is, the aberration function gives an optical path, in this case the optical 

path given is the distance between the reference sphere and the actual wavefront of the system as 

measured along a particular ray. This ray is defined by the tip of the field and aperture vectors.  

The field vector is located at the object plane of the system, while the aperture vector is 

located at the exit pupil plane of the system. These two vectors are necessary to define a ray, and 

subsequently, the aberration function, as stated above. Figure 1.1 gives an example of how the 

field and aperture vectors are defined in their separate planes, along with a view down the optical 

axis.  
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Written to the sixth-order approximation, the wave aberration function1 is,  

where each term represents a different aberration term. The sum of all the terms is the total 

wavefront deformation.  

It is2very quickly noted that there are various dot products, H H , ρ ρ , and H ρ . 

These dot products are necessary in order to ensure that the wave aberration function is a scalar 

                                                 
1 The wave aberration function is given in Introduction to aberrations in optical imaging systems (p. 71) by J. Sasián 

[3]. 
2 Reprinted [adapted] from Introduction to aberrations in optical imaging systems (p. 71) by J. Sasián [3]. 
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Figure 1.1 2 The exit and image planes with the aperture and field vectors respectively. These are scaled 

by the marginal ray height, 𝑦′, at the exit pupil, and by the chief ray height, 𝑦ത′, at the image plane. On the 

right, these are pictured looking down the optical axis, along with the angle in between them, 𝜙. 
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value. The angle between these values is simply 𝜙. Since the defined system is axially symmetric 

a rotation about the optical axis does not change the values of the field and aperture vectors. That 

is, the dot products are invariant with rotation about the optical axis.  

The wave aberration function [3] can also be written as a simple sum given by, 

where the sub-indices, 𝑗, 𝑚, 𝑛 represent integers 𝑘, 𝑙, 𝑚 with values = +2 ,k j m  = +2l n m . 

The index 𝑚 is the same for both sets of indices. Equation (1.2) is not a sum by strict definition 

since going numerically through , ,j m  and n  will not yield a wave aberration function that 

makes sense. Simply, equation (1.2) is written in this way to relate the sub-indices of , ,k l mW to 

the powers of the dot products. Additionally, it’s important to realize that equations (1.1) and 

(1.2) are equal. Equation (1.1) is simply an expansion to the sixth-order of the terms given by 

equation (1.2).  

In Table 1.1 each wavefront aberration is broken down into its vector and algebraic form. 

Recall that the field and aperture vectors are normalized. When these both are unity, this results 

in the wavefront coefficients representing the maximum amplitude of the aberration in units of 

waves. Upon inspection of Table 1.1 it can be seen why it may be convenient to refer to the wave 

aberration coefficients in terms of a sum. For example, in analyzing the coma wave aberration 

coefficient, 
131

W , it can be seen that = 1k , = 3l , and = 1m .  

 
=    , ,

, ,

( , ) ) )( ( )(j m n
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j m n

H ρ W H H HW ρ ρ ρ  (1.2) 
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Next, the values for the sub-indices must be calculated using the relationships between both 

groups of indices.  The equations of 𝑘 and 𝑙 can be rearranged as follows:3 

                                                 
3 Reprinted [adapted] from Introduction to aberrations in optical imaging systems (p. 72) by J. Sasián [3]. 
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Table 1.13 Wavefront aberrations in vector and algebraic form 
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Then, by substituting in the values for 𝑘, 𝑙 and 𝑚 the results are, 

Finally, the wave aberration function given by equation (1.2) for a system with coma is, 

In equation (1.3), coma aberration has been written in both its vector and algebraic forms by 

using the sum notation in equation (1.2). This can be done for every aberration. This form of 

writing the aberration function in terms of dot products is introduced by R.V. Shack [6]. 
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1.1.2 Aberrations of the Zeroth and Second-Order 

The wave aberration function [3] written to the second-order is, 

There are four separate aberrations in this shortened aberration function. The goal of this section 

is to examine each of these terms individually and explain why this report does not consider 

them in later calculations. 

 The first term, 000W is the zeroth-order piston term. This term simply shifts the 

wavefront, advancing or delaying it, and has no effect on image quality. Thus, it is not 

considered a true aberration and is ignored. 

To the same argument, there is a second-order piston term, 200( )H HW , that is called 

quadratic piston. This term solely relies on the field of view, and like the zeroth-order piston 

term, it has no effect on the image quality. Although this report will ignore this term, if the 

reference is changed with respect to the object point and the exit pupil, this quadratic piston term 

 +=  +  + 000 200 111 020, ) ) ( ) ( ).( (W WH ρ W H H W H ρ W ρ ρ  (1.4) 

Figure 1.2 An example of change of magnification where the solid line represents the ideal image, and the 

dashed line represents the change in magnification of the image. 
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becomes useful in determining a relationship between the change of focus and the longitudinal 

change of focus.   

 The 
111

( )H ρW  term is a quadratic term known as the change of magnification. It is 

linear as a function of both the field of view and the aperture. This term represents a departure 

from the ideal size of the image. An example of change of magnification of an image can be seen 

in Figure 1.2. Although this report is just considering monochromatic aberrations, there is a 

chromatic change of magnification term that must be considered when the system has multiple 

wavelength. The chromatic change of magnification is mentioned just for completion.  

The last term, 
020

( )ρ ρW is known as change of focus, and it is a quadratic term as a 

function of the aperture. It is independent of the field of view. This term is also known as 

defocus. What this term represents is a departure in focus from the nominal ideal image plane. 

An example of this is shown in Figure 1.3. Like chromatic change of magnification, there is a 

chromatic second-order term called chromatic change of focus. Again, this term will be ignored 

since the focus is on monochromatic aberrations.  

Figure 1.3 An example of defocus where the solid lines represent the ray and the location of the nominal 

image plane. The dashed line represents the actual location of the image plane 
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The value of the zeroth and second-order wave aberrations depends on the choice of 

reference. As stated previously in Section 1.1.1, the reference has been chosen to be a reference 

sphere centered at the ideal image plane in order to relate to Gaussian and Newtonian optics 

definitions. As a result, the change in magnification and defocus are zero. That is, 

= =
111 020

0WW  because the longitudinal change in position and the transverse size of an image 

are accounted for in Newtonian and Gaussian equations. 
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1.1.3 The Seidel Aberration Coefficients of Fourth-Order Terms 

In Table 1.1 each aberration is written in a vector and algebraic form. However, the 

vector and algebraic forms aren’t particularly convenient forms to use in geometric calculations. 

By tracing paraxial marginal and chief rays through the system, paraxial quantities can be 

derived and used to rewrite the wave aberration function in geometrical terms. In fact, these can 

be written in terms of the Seidel sums, of which the fourth-order sums can be seen in Table 

1.2.4As stated in Section 1.1.2, second-order terms are not considered. Sixth-order terms will be 

discussed later. Additionally, this report will not include the derivation of these sums; the usage 

of these sums in calculations is the more relevant topic. 

The fourth-order wave aberration coefficients are spherical aberration, coma aberration, 

astigmatism, field curvature, distortion, and quartic piston, each listed respectively in Table 1.2.  

In Table 1.2, each aberration is written as a Seidel sum. In a system, each surface has an 

individual contribution towards the Seidel sum and therefore towards the total amount of 

                                                 
4 Reprinted [adapted] from Theory of sixth-order wave aberrations (p. D72) by J. Sasián [5]. 

Table 1.24  Fourth-order wave aberration coefficients in terms of the Seidel sums. 
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aberration. For example, a single lens has two surfaces, surface 1 and surface 2. Then, in 

calculating spherical aberration, the Seidel sum term would be,  

where each surface has contributed its own term to the Seidel sum.  

 The first-order quantities that constitute the fourth-order wave aberration coefficients 

from Table 1.2 are found in Table 1.3.5The quantity ( / )u n  refers to the calculation of the 

term after and before refraction. That is,  = −( / ) '/ ' /u n u n u n  where the primed terms 

indicate the value of the terms after refraction, and the unprimed terms indicate the value of the 

terms before refraction.  

 As will be seen later, this report uses the equations from Table 1.2 in order to do 

calculations on the aberrations of the thin lens system.  

                                                 
5 Reprinted [adapted] from Theory of sixth-order wave aberrations (p. D72) by J. Sasián [5]. 
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Table 1.35  Quantities derived in paraxial ray tracing used in calculating Seidel 

sums.  
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1.1.4 Fourth-Order Pupil Aberrations 

Although this report does not use pupil aberration equations for the calculation of fourth-

order aberrations, this discussion is necessary in understanding sixth-order extrinsic aberrations.  

This report has previously used a system comprising of the nominal image and object. 

However, in consideration of pupil aberrations, the system is now comprised of the entrance and 

exit pupil. As a result, if the system consists of multiple components, the exit pupil of a 

component becomes the entrance pupil of the next component; these pupils are mismatched. 

Additionally, the marginal ray and chief ray of the object/image system now interchange roles; 

the marginal ray becomes the chief ray and the chief ray become the marginal ray in the 

entrance/exit pupil system.  

With the entrance/exit pupil system then a new problem arises. Now, image aberrations 

change when the object is axially moved. However, this problem is simply solved upon realizing 

that an object shift is equal to a stop shift in the pupil system.  

With this knowledge in mind, a pupil aberration function can be constructed to fourth-

order. The function6 is,  

The barred terms indicate aberrations of the pupil planes.  

                                                 
6 The pupil aberration function is written in Introduction to aberrations in optical imaging systems (p. 162) by J. 

Sasián [3]. 
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When comparing equations (1.1) and (1.5) up to fourth-order, it is very clear of the 

change in system – that is, H has essentially replaced p  and vice versa in our equations. Of 

course, this makes more sense when laid out in a figure. In Figure 1.47the object plane, the image 

plane, the entrance pupil plane, and the exit pupil plane are represented. As per previous 

definitions, the field vector is located in the object plane and the aperture vector is located in the 

exit pupil plane. In the object/image system, the calculation of aberrations begins in the object 

plane, where H is located. However, in the entrance/exit pupil system, the pupil aberration 

calculation begins in the entrance pupil plane, where ρ  is located. This is essentially the 

“switch” between H and ρ  that occurs in equations (1.1) and (1.5).  

Relationships between aberrations in the object/image system and entrance/exit pupil 

systems can be derived. When changing from an object/image to an entrance/exit pupil system 

the following changes must be made: 

                                                 
7 Reprinted [adapted] from Introduction to aberrations in optical imaging systems (p. 163) by J. Sasián [3]. 

Figure 1.47 An optical system where the object/image plane system is used. The object 

and image planes, as well as the entrance and exit pupil planes are optically conjugated. 
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By algebraic manipulation, and with the changes to the terms just mentioned, the results in Table 

1.48are derived. In Table 1.4 the term 
220

W  refers to the sagittal pupil field curvature and the 

term 
220

W  refers to the sagittal image field curvature.  

 

 

 

 

                                                 
8 Reprinted [adapted] from Theory of sixth-order wave aberrations (p. D72) by J. Sasián [5]. 
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Table 1.48 Relationship between fourth-order pupil and image aberration 

coefficients. 
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1.2 Sixth-Order Aberrations 

1.2.1 The Sixth-Order Aberration Function9 

In truncating equation (1.1), so to just focus on sixth-order aberrations, the sixth-order 

aberration function is, 

There are ten sixth-order aberrations. Six of these ten are improvements of their fourth-order 

counterparts where they now have an additional quadratic dependence on the field. The other 

four are new wavefront aberrations, however one is referred to as sixth-order spherical 

aberration. These new shapes can be seen in Figure 1.5.10 

                                                 
9 The study on sixth-order aberrations is taken from Introduction to aberrations in optical imaging systems (p. 187-

199) by J. Sasián [3] and Theory of sixth-order wave aberrations by J. Sasián [5]. 
10 Reprinted [adapted] from Introduction to aberrations in optical imaging systems (p. 188) by J. Sasián [3]. 
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Figure 1.510 Wavefront deformations of new aberrations in the sixth-order. 
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 In the study of sixth-order aberrations there are two parts that consist of the total 

aberration: the intrinsic part and the extrinsic part. Up until now, this study has focused on the 

intrinsic part. This intrinsic aberration is the aberration that is contributed by the surfaces and by 

the system itself when an incoming beam has no aberration. However, in the sixth-order study, 

extrinsic aberrations must be considered. 
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1.2.2 Extrinsic Aberrations 

Extrinsic, or induced, aberrations arise in an optical surface when there is aberration 

before that surface. These extrinsic aberrations result from distortion from the entrance and exit 

pupils. In the explanation11 for extrinsic aberrations used in this report, second-order aberrations 

are ignored, and the reference sphere is centered at the ideal Gaussian image point. 

Consider two optical systems, A and B. These systems have aberration functions to the 

sixth-order, written below, 

where the aberration function consists of fourth and sixth-order terms. These aberration functions 

are written with the aperture vector located at the exit pupil. However, it’s crucial to note that the 

exit pupil of system A is the entrance pupil of system B.  

 In combining these two systems into one system, C, the combined aberration function is,  

In equation (1.7) the term ( , )
A

H ρW  is expected from the combined system—it’s the 

contribution from system A. However, system B’s contribution to the aberration function has 

been written with an additional ρ added to its ρ  dependence. This ρ  term is the exit pupil 

distortion caused by system A that effects system B. This term is crucial in the combined 

                                                 
11 The mathematical methods used in the explanation for extrinsic aberrations comes from a combination of 

techniques used in Introduction to aberrations in optical imaging systems (p.188-189) [3] and Theory of sixth-order 

wave aberrations (p.D74-D75) [5] both by J. Sasián.  
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aberration function since the exit pupil of system A is the entrance pupil of system B. Although 

this report will not be going strictly into the calculations, it’s important to note that the exit pupil 

distortion can be written as, 

where the pupil aberrations of system A are being used. The fifth-order terms, (5)O will be 

ignored in this analysis.  

 So, what is the extrinsic aberration of system B? Figure 1.6 can be used as a visual aide in 

order to determine the answer. Figure 1.6 is a visual representation of system A’s exit pupil. 

However, recall that system A’s exit pupil is also system B’s entrance pupil. As a result, also 

recall that system B then has an extrinsic aberration term caused by the exit pupil distortion from 

system A. However, let it be clear that the extrinsic term is a result of the fourth-order exit pupil 

distortion by system A. Then, the sixth-order extrinsic term for system B is,  

 Now, proceeding with the knowledge of the behavior of extrinsic terms, equation (1.7) 

can be expanded as follows: 
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What if instead of focusing on system A and system B’s respective exit and entrance 

pupils, the focus lies on the exit pupil of the combined system C? That is, the induced aberrations 

of system A’s exit pupil are not considered until its effects in combined system C’s exit pupil. In 

short, the extrinsic terms will be calculated by locating the aperture vector at the exit pupil of 

system C. Then, equation (1.8) is no longer valid and a different equation must be written. Now,  

and the pupil aberrations of system B are being used. Then, the aberration function on system C 

can be written as,  

 
 = −  +



(5)(
1

, )
H B

ρ W H ρ O  
 

 = +  + + +(4) (6 ) (4) (6 )( ( .( , ) , ) , ) , ,()( )I I
C A A B B

W H ρ W H ρ ρ W H ρ W H ρ W H ρ   

Figure 1.6 An example of system A’s exit pupil and system B’s entrance 

pupil with the addition of 𝜌Ԧ and Δ𝜌Ԧ. 
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So, the extrinsic term (6 ) )( ,E
B

H ρW from equation (1.9) is no longer valid in its current 

form. The equation must be rewritten by replacing ρ with + ρ ρ in (4) , )(
A

H ρW  so that the 

result is, 

In summary, there are two techniques that were outlined above for calculating the 

extrinsic terms of a combined system A and B. The first was by locating the aperture vector at the 

entrance pupil of the combined system, and the second was locating the aperture vector at the 

exit pupil of the combined system. Table 1.512 lists the extrinsic aberration equations for sixth-

order aberrations with respect to the different locations of the aperture vector.  

 

                                                 
12 Reprinted [adapted] from Theory of sixth-order wave aberrations (p. D75) by J. Sasián [5]. 

 = +  −(6 ) (4) (4), ) , ) , ).( ( (E
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Table 1.512 Extrinsic aberrations of combination of systems A and B. 
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1.2.3 Intrinsic Aberrations  

Intrinsic aberrations are extensions of their fourth-order aberration counterparts. They are 

aberrations contributed simply by the surfaces of the system; its assumed that the incoming light 

beam will has no aberrations. However, in calculation of intrinsic aberrations it is incredibly 

crucial to be aware of changes to the wavefront propagation and changes to the aperture location. 

The equations for the intrinsic aberrations will be built upon these ideas.  

In order to begin understanding intrinsic aberrations, an explanation on intrinsic sixth-

order spherical aberration must be given. The equation for intrinsic sixth-order spherical 

aberration13 is written as, 

where the entire term must be applied to every surface of the system. The first order terms in this 

equation can be found in Table 1.3. The sixth-order intrinsic term for spherical aberration is 

proportional to fourth-order spherical aberration.  

Notice that if the stop is at the surface, the second term in equation (1.11) completely 

disappears since = 0y . This term arises from shifting the stop to a different location; the 

wavefront propagates from an old pupil plane to a new pupil plane and there is a new wavefront 

change,  , )(
Z
W H ρ  which is given by: 

                                                 
13 The equation for intrinsic sixth-order spherical aberration is from Introduction to aberrations in optical imaging 

systems (p. 190) by J. Sasián [3]. 
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 So, in the presence of fourth-order spherical aberration the wavefront change is: 

which is exactly the second term in equation (1.11). This wavefront deformation can be 

calculated for each aberration, and the results can be seen in Table 1.614.  

The next step in calculating intrinsic aberration terms is shifting the stop to the center of 

curvature, which results in = 0A . This results in a sixth-order aberration function given by, 

where fourth-order terms with a A term are zero. Then, the intrinsic sixth-order aberration 

coefficients, when the stop has been moved to the center of curvature, are given in Table 1.715.. 

This report will not go into the details necessary to derive these terms, however the derivation 

can be found in Theory of sixth-order aberrations by José Sasián, pages D.91-D.95. 

                                                 
14 Reprinted [adapted] from “Sixth-order aberrations” (p. 13) by J. Sasián [4] 
15 Reprinted [adapted] from Introduction to aberrations in optical imaging systems (p. 192-193) by J. Sasián [3]. 
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The last step to achieving a complete sixth-order aberration coefficient equation for the 

intrinsic terms is stop shifting back to the surface. While in fourth-order theory a stop shift is 

performed by substituting the aperture vector ρ for a stop shift vector 
shift
ρ  given by, 

Table 1.614 Wavefront deformation change for sixth-order aberration terms. 
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the same cannot be done for the sixth-order. In sixth-order theory, if the stop is shifted then the 

exit pupil changes locations. Additionally, with a stop shift there is an accompanied wavefront 

propagation. These two results of stop shifting require more mathematical rigor.  

 
 = + ,

shift

A
ρ ρ H

A
 

 

Table 1.715 Sixth-order aberrations with stop at center of curvature. 
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 Upon stop shifting, the wavefront equation for the center of curvature is altered as 

follows, 

 Upon substitution of , )(
CC

H ρW  and evaluation at 
shift
ρ , equations for intrinsic aberrations of a 

spherical surface are obtained. These equations can be found in Table 1.816. 

                                                 
16 Reprinted [adapted] from Introduction to aberrations in optical imaging systems (p. 194) by J. Sasián [3]. 
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Table 1.816 Intrinsic aberration coefficients of the sixth-order for a spherical surface. 
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 Section 2.1 will focus on the discussion of three system properties: the shape factor, the 

conjugate factor, and the index of refraction. These three properties play interesting roles in the 

aberration function of Seidel sums, and introducing these allows a new coefficient, the structural 

coefficient, to be defined and used in geometrical aberration analysis.  

 The shape factor is a ratio of surface curvatures that describes the shape of a lens. 

Manipulation of the shape factor results in lens bending and subsequent marginal and chief ray 

angle changes. Understanding of the shape factor leads to interesting results in aberration 

control. 

The conjugate factor is a ratio of marginal ray angles that when applied to a thin lens is 

related to the transverse magnification of a system. Moving an object across different distances 

from the lens results in changes to marginal ray angles. This can result in aberration for rays that 

deviate from paraxial definitions because of these object location changes.  

 Finally, the index of refraction is a material property that describes ray propagation 

through media. Different materials cause different ray angles across refracting surfaces which of 

course result in aberrations. 

 These properties can all be strictly related to aberrations through structural coefficients, 

which will be discussed in Section 2.2. 
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2.1 Lens Properties 

2.1.1 The Shape Factor  

The shape factor of a thin lens specifies the shape of the lens17, as it is governed by the 

curvatures of the two surfaces. The shape factor is then written as,  

where 𝑐1 and 𝑐2 are the curvatures of the first and second surface. If the thin lens is convex-

plano, the shape factor is 𝑋 =  1.0.  If the thin lens is plano-convex, then the shape factor is 𝑋 =

 −1.0. And, if the curvatures of the lens are equal but opposite, such as in an equi-concave, or 

equi-convex lens, the shape factor is 𝑋 =  0.0.   

The shape factor is not defined for equal curvatures. This is explored in the math below 

where 𝑐2 = 𝑐1: 

                                                 
17 The theory of the shape factor comes from Fundamental Optical Design (p. 139-140) by. M. Kidger [1]. 
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Figure 2.1 Examples of lens shape with three specific shape factors. 
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This is clearly undefined. 

The shape factor can also be written in terms of the radius of the surfaces using the 

simple relation 
1

R
c

= . The equation then becomes: 

 

The shape factor is a very powerful design parameter, especially when involved in 

aberration control. While maintain paraxial approximations and while holding the power of the 

lens constant, as the shape factor changes then paraxial chief and marginal ray paths through the 

lens do not change.  

  

 

 

 

+

−

+
=

−

+
= 

−

+
=

−

+
= −

=

−

1 2

1 2

2 1 1 2

2 1 1 2

1 2 1 2

1 2 2 1

1 2

2 1

1 2

1 2

1 / 1 /

1 / 1 /

( )/

( )/

.

r r

r r

r r r r

r r r r

r r r r

r r r

X

r

r r

r r

r r

r r

 

(2.2) 



34 

 

2.1.2 The Conjugate Factor 

The conjugate factor18 is another system design parameter that describes marginal ray 

angles of the system and is related to the transverse magnification of a thin lens. It is defined as,  

where 𝑛′ and 𝑛 are the indices of refraction and 𝑢′ and 𝑢 are the marginal ray after and before a 

surface, respectively. 

If the system is a thin lens in air, the conjugate factor can be simplified further. Since the 

object and image space have the same refractive index 𝑛′ = 𝑛 ≅ 1, the equation becomes, 

This equation can be simplified even further by using the equation for magnification given 

below: 

Rearranging equation (2.5) such that =' 'u mu  we can write,  

                                                 
18 The theory for the conjugate factor comes from Fundamental Optical Design (p. 140-141) by M. Kidger [1]. 
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2.1.3 The Index of Refraction 

The index of refraction plays a crucial role in aberration theory. The index of refraction 

of a material dictates by how much a ray of light is bent upon entering and exiting materials of 

different refractive indices. The basic rule for how much a ray of light is bent is given by Snell’s 

Law, 

where 𝑛 and 𝑛′ are the indices of refraction of the material surrounding the refracting surface, 

and where 𝐼 and 𝐼′ are the angles of ray incidence and refraction.  

As stated previously, aberrations are a result of a geometrical deformation in the 

wavefront. These deviations are described as separate types of aberrations, listed previously in 

Table 1.2, to the fourth-order in terms of Seidel sums, and in Table 1.5, Table 1.7, and Table 1.8 

to the sixth-order.  

The geometrical calculation of these aberrations breaks down to several first-order 

quantities which are found in Table 1.3. Among all these listed tables, the index of refraction 

term pops up frequently. Frequently, the index of refraction is divided through entire aberration 

equations so that the result is an optical path. But, the index of refraction also pops up in the 

calculation of first-order quantities as well as in structural aberration coefficients which will be 

discussed in the next section.  

 

 

 

 sin( ) 'sin( )I nn I =  (2.7) 
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2.2 Aberrations as Functions of the Shape Factor, Conjugate Factor, 

and Index of Refraction  

2.2.1 Structural Coefficients of Fourth-Order Aberrations 

The Seidel sums of section 1.1.3 can be restructured in terms of the optical power of each 

component, the marginal ray height at the principle plane, 
p

y , the Lagrange invariant, and new 

terms called the structural coefficients. Table 2.119lists the Seidel sums rewritten in terms of the 

variables just mentioned. Table 2.1 also includes Seidel sums 
L

C  and 
T

C which are the sums for 

chromatic change of focus and chromatic change of magnification, which this report will not 

discuss.  

 

                                                 
19 Reprinted [adapted] from Introduction to aberrations in optical imaging systems (p. 148) by J. Sasián [3]. 

Table 2.119 Seidel sums in terms of the marginal ray height at the principle planes, the Lagrange invariant, 

the power, and the structural coefficients of fourth-order aberration terms. 



37 

 

The reasoning for rewriting the Seidel sums in terms of structural coefficients begins to 

become more evident when looking at Table 2.2. The structural aberration coefficients relating to 

the monochromatic fourth-order aberrations are written in terms of the indices of refraction and 

the conjugate factor of the lens – both physical properties of the system that were described in 

Section 2.1. 

The structural aberration coefficients in Table 2.220are for individual surfaces. That is, if 

a system consists of a simple lens with two surfaces, the structural coefficients would need to be 

calculated for each surface, and each surface would contribute an individual term to the Seidel 

sum. The conjugate factor term used would then be the one defined in equation (2.3). 

Now, as mentioned before, the optical system used in this report is a thin lens in air, with 

the stop at the lens. Conveniently, the structural aberration coefficients can be simplified further 

                                                 
20 Reprinted [adapted] from Introduction to aberrations in optical imaging systems (p. 150) by J. Sasián [3]. 

Table 2.220 Structural aberration coefficients of a single surface, with the stop at the surface. 



38 

 

for a thin lens in air. Table 2.321lists the structural aberration coefficients of a thin lens, along 

with simplified first-order identities for this system. Note that the conjugate factor used is the one 

which this report has defined as equation (2.6).  

 

 

                                                 
21 Reprinted [adapted] from Introduction to aberrations in optical imaging systems (p. 151) by J. Sasián [3]. 

Table 2.321 First-order identities and structural aberration coefficients of fourth-order 

aberrations for a thin lens in air, with the stop at the lens. 
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 This chapter focuses on the fourth and sixth-order monochromatic aberrations as 

functions of the shape factor.  

 The first section describes the f/4 BK7 thin lens used in this report. This section also 

describes the methods used to control and change the shape factor as well as how the fourth and 

sixth-order monochromatic aberrations are calculated. Zemax’s OpticStudio is used very heavily 

in this section. The lens design, shape factor manipulation, and aberration calculation are all 

done within OpticStudio. 

 In the second section, plots of the fourth and sixth-order aberrations as functions of the 

shape factor are shown. These plots are analyzed with regards to the fields of view chosen, and 

they are compared against Seidel aberration equations written in terms of structural coefficients. 

Additionally, the fourth and sixth-order aberrations are compared with each other. 

 In the last section, certain shape factors have been chosen, and their respective thin lens 

layouts and wave fans have been plotted using OpticStudio. The reason for this is to understand 

the deviation of the rays from the nominal image plane by comparing the wave fans and the lens 

layouts. 
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3.1 Introduction to the Thin Lens System  

3.1.1 Description of the System and its Dependence on the Shape Factor 

This section will begin with an overview as to the optical system used, as well as to the 

methodologies used in changing the shape factor and in recording the fourth and sixth-order 

monochromatic aberrations.  

The optical system used in this report is a thin lens in air, with the stop located at the lens. 

Below are the thin lens system properties: 

• Stop at the lens. 

• Lens made of BK7 with a thickness of 5 mm. 

• f/4 lens with an effective focal length of 100 mm.  

• Wavelength of 0.58 𝜇𝑚 and fields of view of 0, 10, and 30 degrees.  

It’s important to note that this lens is described as a “thin” simply because its thickness is small 

compared to the focal length. However, this lens does have a thickness. An example of the basic 

Figure 3.1 Thin lens f/4 BK7 system with stop at the lens, a focal length of 100 mm, and a shape 

factor of  𝑋 = 0. 
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layout and prescription of this thin lens with a shape factor of 0X = can be seen in Figure 3.1 

and Table 3.1. 

 Table 3.1 shows the lens prescription above put into place for a thin lens with shape 

factor 0X = . The stop (surface 1) is located at the thin lens. Again, the lens is thin (5mm thick) 

in comparison with the defined effective focal length of the system.  

The system is f/4, which can be determined by use of the following equation: 

Thus, a thin lens with a shape factor of 0X =  and with the desired system properties has been 

laid out and defined. 

Next, the technique used to quickly bend a lens into the desired shape will be described 

through an example. Take a desired shape factor of = 2X . First, remember the equation of the 

shape factor given by,  
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Table 3.1 Prescription for f/4 BK7 thin lens system with lens at the stop, a focal length of 100 

mm, and a shape factor of 𝑋 = 0. 
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By changing the curvature of the surfaces, the shape factor is changed. Keeping this in mind, use 

OpticStudio’s Merit Function editor as an aide to quickly solve for curvatures necessary to 

achieve the desired shape factor.  

Let the radii of the surfaces (surfaces 2 and 3 in Table 3.1) be variables in the “Lens 

Data” editor in OpticStudio. Now, let the Merit Function editor read the curvatures of the 

surfaces, as in rows 1 and 2 of Table 3.2 where surfaces 2 and 3 (column 2) refer to surfaces 2 

and 3 of Table 3.1. The third row of Table 3.2 adds these curvatures, and the fourth row takes the 

difference of these values. The fifth row then divides the sum and difference, which is exactly 

equation (2.1). 

If a desired target and a weight is set in row 5 of Table 3.2, and then the system is 

optimized through OpticStudio’s optimization tool, the radii of curvatures of the surfaces of the 

thin lens will be changed to achieve the desired shape factor. However, it’s important to keep in 

mind that the effective focal length must remain the same for each change in the shape factor, as 

is seen in row 7 of Table 3.2.  

Now, it is necessary to describe the methodology used for the calculation of the fourth 

and sixth-order aberration coefficients. Luckily, a macro available for download in OpticStudio, 

Table 3.2 Merit function editor for thin lens f/4 BK7 system with stop at the lens, a focal length of 100 

mm, and a shape factor of  𝑋 = 0. 

X=2.0. 



43 

 

titled, “Book Wave Coefficients” 22 calculates fourth and sixth-order aberration coefficients 

through the use of Seidel aberration coefficients listed in Table 1.2, and through the various 

equations listed in Section 1.2. 

 After changing the shape factor of the thin lens, the fourth and sixth-order aberrations 

were calculated through the macro and recorded.   

                                                 
22 Details on the macro used can be found in Introduction to aberrations in optical imaging systems (p. 247-257) by 

J. Sasián [3]. 
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3.2 Aberrations as Functions of the Shape Factor 

3.2.1 Spherical Aberration as a Function of the Shape Factor 

 Figure 3.2 shows the amount of spherical aberration (in waves) to the fourth and sixth-

orders as a function of the shape factor. This is for a field of 0 degrees – as spherical aberration 

has no field dependence changing the field will not change the amount of spherical aberration. 

As expected, the fourth-order aberration is much larger than the sixth-order, however at shape 

factors of about −   −5 2X , the amount of sixth-order aberration is significant.  

 Let’s revisit the equations for fourth and sixth-order spherical aberration. Fourth-order 

spherical aberration, in terms of structural coefficients is given by,  

The structural coefficient is taken from Table 2.2 and equation (2.8) is to be applied to every 

surface.  

 Equation (2.8) can be simplified to an equation for a thin lens, and is given below, 

 

 
=

 
 

 

    
−

+ − +
 =  −  −     −      

=

040

4 3

2 2 2 2 2
2 3

2 2 2 2

1

8

1 1

8 4

1 1
.

32 2

I

p I

p

S

y σ

W

n n n n n n
y Y Y

n n n n n n

 

(2.8) 

 ( )+=  − +4 3 2 2
040,

1
,

32thin pW AX BXY Cy Y D  (2.9) 



45 

 

where the , , ,A B C  and D  terms are dependent on the index of refraction and can be found in 

Table 2.3. Equations (2.8) and (2.9) are both necessary in understanding how spherical 

aberration depends on the shape factor, since the lens, although considered thin, is not thin when 

designed in OpticStudio.  

  In equations (2.8) we see no explicit shape factor dependence. However, in equation (2.9) 

we see a quadratic and linear shape factor term. This dependence on the shape factor seems to 

describe the shape of our fourth-order curve. We can also see that the sixth-order curve does not 

share the same shape as the fourth-order curve.  

 

Figure 3.2 Fourth and sixth-order spherical aberration for f/4 BK7 thin lens with focal length of 100 mm 

and at 10 degrees as a function of the shape factor. 
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3.2.2 Coma Aberration as a Function of the Shape Factor  

  Figure 3.3 and Figure 3.4 show the amount of fourth and sixth-order coma aberration as a 

function of the shape factor. The thin lens system in Figure 3.3 is set to have a field of 10 

degrees, and the system in Figure 3.4 has a field of 30 degrees. Measuring the amount of coma 

across these two fields is important because coma aberration changes as a function of the field, 

unlike spherical aberration. Additionally, at a field of 0 degrees there is no coma.  

The dependence on the field can be seen in, 

which are the algebraic forms of fourth and sixth-order coma respectively. The dependence on 

the field to the fourth-order is linear, and cubic to the sixth-order. 

Now, the fourth-order coma aberration coefficient in terms of structural coefficients is, 

where this equation is applied to every surface. Equation (2.10) can be simplified for a thin lens 

and is given by, 
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where 𝐸 and 𝐹 are terms dependent on the index of refraction and can be found in Table 2.3. 

 In equation (2.10) there is no visible dependence on the shape factor. However, in 

equation (2.11)  there is a linear dependence on the shape factor to the fourth-order. In Figure 3.3 

and Figure 3.4, for small values of the shape factor, coma’s dependence is linear. However, when 

the magnitude of the shape factor increases, the dependence appears to be cubic. 

There is a reasonable explanation to this deviation from the first-order paraxial 

calculations. And to put it simply, that reason is that these equations are paraxial 

approximations. In Figure 3.5 the thin f/4 BK7 lens has a focal length of 100 mm, a field of view 

of 10 degrees and a shape factor of = −1X . In Figure 3.6 the same thin f/4 BK7 lens with a 

focal length of 100 mm and a field of view of 10 degrees is shown, but now it has a shape factor 

of = −5X . The lens in Figure 3.6 is bending the rays at a much larger angle than the lens in 

Figure 3.5, so much so that this ray trace cannot be considered paraxial. As a result, the amount 

of coma aberration that is being measured is not linear for shape factors where the lens is being 

bent by a large amount.  

In Figure 3.3 and Figure 3.4 the shape factor greatly affects the amount of coma 

astigmatism. A shape factor of = 1X  lends the system to the least amount of coma aberration. 
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Figure 3.3 Fourth and sixth-order coma aberration for f/4 BK7 thin lens with focal length of 100 mm at 

10 degrees as a function of the shape factor. 

 

Figure 3.4 Fourth and sixth-order coma aberration for f/4 BK7 thin lens with focal length of 100 mm at 

30 degrees as a function of the shape factor. 
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Figure 3.5 Thin f/4 BK7 lens with a focal length of 100 mm, field of view of 10 degrees and a shape 

factor of -1. 

 

Figure 3.6 Thin f/4 BK7 lens with a focal length of 100 mm, field of view of 10 degrees and a shape 

factor of -5.  
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 In comparing Figure 3.3 and Figure 3.4, by simply changing the field of view from 10 

degrees to 30 degrees almost triples the amount of coma aberration in the fourth-order. Even the 

sixth-order coma aberration appears to be incredibly significant; at a shape factor of = −5X  the 

amount of coma astigmatism is about 150 mm.  
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3.2.3 Astigmatism as a Function of the Shape Factor  

Figure 3.7 and Figure 3.8 show the amount of fourth and sixth-order astigmatism 

aberration as a function of the shape factor. The thin lens system in Figure 3.7 is set to have a 

field of 10 degrees, and the system in Figure 3.8 has a field of 30 degrees. Measuring the amount 

of astigmatism across these two fields is important because coma aberration changes as a 

function of the field. Additionally, at a field of 0 degrees there is no astigmatism. 

Astigmatism’s dependence on the field can be seen in its algebraic to the fourth and 

sixth-order:  

Astigmatism’s dependence on the field is quadratic to the fourth-order, and quartic to the sixth-

order.  

 Now, the fourth-order astigmatism coefficient in terms of structural coefficients is, 

where equation (2.12) must be applied to each individual surface. Equation (2.12) can be 

simplified for a thin lens and the simplification is seen below: 
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 We can see in equations (2.12) and (2.13) that there is no visible shape factor term. As 

such, astigmatism should not depend on the shape factor. Unfortunately, Figure 3.7 and Figure 

3.8 say otherwise. 

 In Figure 3.7 the fourth-order curve appears to have a quadratic or quartic dependence on 

the shape factor that approaches a maximum astigmatism value around 𝑋 = 2.5. The sixth-order 

astigmatism curve can be considered negligible when compared to the fourth-order; the fourth-

order terms dominate the sixth-order terms.  

 In Figure 3.8, where the field has been increased from 10 degrees to 30 degrees, the 

fourth and sixth-order terms are much more significant, as was expected with the field 

dependence on astigmatism. Even the sixth-order terms in Figure 3.8 contribute significantly to 

the total amount of astigmatism. Again, there is a quadratic or quartic dependence on the shape 

factor and the sixth-order astigmatism curve does not follow the shape of the fourth-order 

astigmatism curve.    

 In comparing Figure 3.7 and Figure 3.8, the fourth-order astigmatism curves have an 

identical shape. In fact, the fourth-order terms from Figure 3.8 are approximately 10.72 times 

those from Figure 3.7. And, the sixth-order terms from Figure 3.8 are approximately 114.92 

times those from Figure 3.7 – in fact, 
2
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It’s crucial to state that the results of Figure 3.7 and Figure 3.8 are incorrect. Equations 

(2.12) and (2.13) state that there should be no dependence on the shape factor for fourth-order 

astigmatism, and that is what the results should have shown. These incorrect results could 

potentially stem from the thickness of the lens being too large, or large fields that result in rays 

no longer being paraxial. Regardless, Figure 3.7 and Figure 3.8 do not obey equations (2.12) and 

(2.13) and are therefore not correct.   
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Figure 3.7 Fourth and sixth-order astigmatism aberration for f/4 BK7 thin lens with focal length of 100 

mm at 10 degrees as a function of the shape factor. 

 

Figure 3.8 Fourth and sixth-order astigmatism aberration for f/4 BK7 thin lens with focal length of 100 

mm at 30 degrees as a function of the shape factor. 
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3.2.4 Field Curvature as a Function of the Shape Factor  

Figure 3.9 and Figure 3.10 show the amount of fourth and sixth-order field curvature as a 

function of the shape factor. The thin lens system in Figure 3.9 is set to have a field of 10 

degrees, and the system in Figure 3.10 has a field of 30 degrees. As with coma and astigmatism 

aberration, measuring the amount of field curvature across different fields is important because 

field curvature is a function of the field. As such, when the field is 0 degrees, there is no field 

curvature. 

Field curvature’s dependence on the field can be seen in the fourth and sixth-order forms 

below: 

 Field curvature has the same field dependence as that of astigmatism aberration; there is a 

quadratic dependence on the fourth-order field curvature terms and a quartic dependence on the 

sixth order field curvature terms.  

 Now, the fourth-order field curvature coefficient in terms of the structural coefficients is: 

Equation (2.14) must be applied to every surface. Again, this equation can be simplified for a 

thin lens as seen below: 
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Equations (2.14) and (2.15) have no dependence on the shape factor. Unfortunately, Figure 3.9 

and Figure 3.10 show otherwise.  

 In Figure 3.9 the fourth-order curve appears to be quadratic. The sixth-order terms are 

close to zero and negligible when compared to the fourth-order terms. In Figure 3.10 the fourth-

order curve appears to have the same quadratic dependence as the curve from Figure 3.9. 

However, the sixth-order curve is no longer negligible; the sixth-order terms are largely negative.  

 In comparing Figure 3.9 and Figure 3.10, the fourth-order terms in Figure 3.10 are 

approximately 10.72 times those of Figure 3.9, and the sixth-order terms of Figure 3.10 are 

approximately 114.94 times those of Figure 3.9. Interestingly, these are the same multiples as 

were shown in the graphs for astigmatism in Section 3.2.3. Additionally, notice that the shapes of 

the curves in Figure 3.9 and Figure 3.10 are the same as Figure 3.7 and Figure 3.8, which are the 

graphs for astigmatism. These relationships between the field curvature and astigmatism can be 

attributed to the fact that equation (2.13) and equation (2.15) have the same Lagrange invariant 

and power terms.  

Like the results for astigmatism, Figure 3.9 and Figure 3.10 are incorrect. Equations 

(2.14) and (2.15) state that there should be no dependence on the shape factor for fourth-order 

field curvature, and that is what the results should have shown. These incorrect results could 

potentially stem from the thickness of the lens being too large, or large fields that result in rays 

no longer being paraxial. Regardless, Figure 3.9 and Figure 3.10 do not obey equations (2.14) 

and (2.15) and are therefore not correct.   
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Figure 3.9 Fourth and sixth-order field curvature for f/4 BK7 thin lens with focal length of 100 mm at 

10 degrees as a function of the shape factor. 

 

Figure 3.10 Fourth and sixth-order field curvature for f/4 BK7 thin lens with focal length of 100 mm at 

30 degrees as a function of the shape factor. 
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3.2.5 Distortion as a Function of the Shape Factor 

Figure 3.11and Figure 3.12 show the amount of fourth and sixth-order distortion as a 

function of the shape factor. The thin lens system in Figure 3.11 is set to have a field of 10 

degrees, and the system in Figure 3.12 has a field of 30 degrees. As with coma, astigmatism, and 

field curvature, measuring the amount of distortion across different fields is important since 

distortion is a function of the field. As such, when the field is 0 degrees there is no distortion.  

 Distortion’s dependence on the field can be seen in its algebraic forms written below for 

the fourth and sixth-orders: 

The fourth-order distortion term has a cubic field dependence, and in the sixth-order it has a 

quintic field dependence.  

 Now, the fourth-order distortion coefficient in terms of the structural coefficients is: 

This equation needs to applied to every surface in order to get the total contribution. Again, this 

equation can be simplified for a thin lens. The result is, 

 

 

3

311

5

511

cos( ),

cos( ).W

W H

H

 

 
 

 

 

311

3

2

3 2 2

2 2 2

1

2

21

2

.

V

V

p

p

W S

Ж

y

Ж n n

y n n

 
 

−

=

 
 

 
= 



=


 

 

(2.16) 



59 

 

In equations (2.16) and (2.17) there is no shape factor dependence, with equation (2.17) going so 

far as to starting that a thin lens supplies no distortion. Unfortunately, in Figure 3.11 and Figure 

3.12 distortion is varying with the shape factor.  

 In Figure 3.11 the fourth-order distortion curve appears to be negative and linear from 

43 X−   . The sixth-order distortion curve also appears to be linear, however the slope is 

much smaller, and the line is positive. The sixth-order distortion also appears to be negligible 

when compared to the fourth-order distortion.  

 In Figure 3.12 the fourth and sixth-order curves appear to be more cubic than linear. The 

amount of distortion measured at a field of 30 degrees is much greater than that measured at a 

field of 10 degrees. At 30 degrees the sixth-other distortion is no longer negligible and is quite 

significant.  

 In comparing Figure 3.11 and Figure 3.12 the general shape of the fourth and sixth-order 

curves is extremely similar – however, the cubic dependence on the shape factor is made more 

evident with the increase in field.  

It’s important to state that the results of Figure 3.11 and Figure 3.12 are incorrect. 

Equations (2.16) and (2.17) state that there should be no dependence on the shape factor for 

fourth-order distortion, and that is what the results should have shown. These incorrect results 

could potentially stem from the thickness of the lens being too large, or large fields that result in 
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rays no longer being paraxial. Regardless, Figure 3.11 and Figure 3.12 do not obey equations 

(2.16) and (2.17) and are therefore not correct.   
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Figure 3.11 Fourth and sixth-order distortion for f/4 BK7 thin lens with focal length of 100 mm at 10 

degrees as a function of the shape factor. 

 

Figure 3.12 Fourth and sixth-order distortion for f/4 BK7 thin lens with focal length of 100 mm at 30 

degrees as a function of the shape factor. 
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3.3 OpticStudio Analysis of the Shape Factor 

3.3.1 Lens Layouts and Wave Fans 

Figure 3.13, Figure 3.15, and Figure 3.17 show the thin lens layouts with shape factors of 

𝑋 = 0, 2.5, and 𝑋 = 5, and for fields of 0, 10, and 30 degrees. As the shape factor increases in 

these figures, the rays appear to spread out further from an ideal point. This is also true as the 

field of view increases.  

Figure 3.14, Figure 3.16, and Figure 3.18 show the wave fans of the respective lenses 

from Figure 3.13, Figure 3.15, and Figure 3.17. These wave fans include the 0, 10, and 30-degree 

fields. As the shape factor increases across these lenses, the scale on the wave fan plots increases 

rapidly. Additionally, as predicted by the thin lens layouts, the 30-degree fields contribute to the 

most aberration.  

 

 

Figure 3.13 Lens layout for f/4 BK7 thin lens with focal length of 100 mm at 0, 10, and 30 degree 

fields and a shape factor of 𝑋 = 0. 
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Figure 3.14 Wave fans for f/4 BK7 thin lens with focal length of 100 mm at 0, 10, and 30 degrees fields 

and a shape factor of 𝑋 = 0. 

 

Figure 3.15  Lens layout for f/4 BK7 thin lens with focal length of 100 mm at 0, 10, and 30 degree 

fields and with a shape factor of 𝑋 = 2.5. 
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Figure 3.16  Wave fans for f/4 BK7 thin lens with focal length of 100 mm at 0, 10, and 30 degrees 

fields and a shape factor of 𝑋 = 2.5. 

 

Figure 3.17  Lens layout for f/4 BK7 thin lens with focal length of 100 mm at 0, 10, and 30 degree 

fields and with a shape factor of 𝑋 = 5. 
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Figure 3.19 and Figure 3.21 show the thin lens layouts for lens with shape factors of 𝑋 =

−2.5, and 𝑋 = −5, and for fields of 0, 10, and 30 degrees. As the magnitude of the shape factor 

increases in these figures, the rays appear to spread out further from an ideal point. This is also 

true as the field of view increases.  

Figure 3.20 and Figure 3.22 show the wave fans of the respective lenses from Figure 3.19 

and Figure 3.21. These wave fans include the 0, 10, and 30-degree fields. As the magnitude of 

the shape factor increases across these lenses, the scale on the wave fans does not change, 

however the shape of the wave fans changes.  

 

Figure 3.18  Wave fans for f/4 BK7 thin lens with focal length of 100 mm at 0, 10, and 30 degrees 

fields and a shape factor of 𝑋 = 5. 
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 As expected, across all the wave fans, at 0 degrees there is only spherical aberration. 

Additionally, as was explained in Section 3.2.1 and as can be seen in the thin lens layouts, at 

large fields the rays travel far from the optical axis. This interferes with the definition of paraxial 

rays, where paraxial rays are those close to the optical axis. Many of the approximations made in 

aberration theory become inaccurate and fail to completely define the scope of all rays.  

 

 

 

 

 

 

 

Figure 3.19  Lens layout for f/4 BK7 thin lens with focal length of 100 mm at 0, 10, and 30 degree 

fields and with a shape factor of 𝑋 = −2.5. 
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Figure 3.20  Wave fans for f/4 BK7 thin lens with focal length of 100 mm at 0, 10, and 30 degrees 

fields and a shape factor of 𝑋 = −2.5. 

 

Figure 3.21  Lens layout for f/4 BK7 thin lens with focal length of 100 mm at 0, 10, and 30 degree 

fields and with a shape factor of 𝑋 = −5. 
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Figure 3.22  Wave fans for f/4 BK7 thin lens with focal length of 100 mm at 0, 10, and 30 degrees 

fields and a shape factor of 𝑋 = −5. 
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 This chapter focuses on the fourth and sixth-order monochromatic aberrations as 

functions of the conjugate factor.  

 The first section describes the f/4 BK7 thin lens used in this report. This section also 

describes the methods used to control and change the conjugate factor. The fourth and sixth-

order monochromatic aberrations are calculated by the methods outlined in Section 3.1. Again, 

the lens design and aberration calculation are all done within OpticStudio, as well as the 

conjugate factor manipulation. 

 In the second section, plots of the fourth and sixth-order aberrations as functions of the 

conjugate factor are shown. These plots are analyzed with regards to the object heights chosen, 

and they are compared against Seidel aberration equations written in terms of structural 

coefficients. Additionally, the fourth and sixth-order aberrations are compared with each other. 

 In the last section, certain conjugate factors have been chosen, and their respective thin 

lens layouts and wave fans have been plotted using OpticStudio. The reason for this is to 

understand the deviation of the rays from the nominal image plane by comparing the wave fans 

and the lens layouts, as was done in Section 3.3. 
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4.1 Introduction to the Thin Lens System for a Changing Conjugate 

Factor 

4.1.1 Description of the System and its Dependence on the Conjugate Factor 

This chapter uses the same initial thin lens system with 0X =  that was described in 

Section 3.1.1. Again, it’s important to note that while the thin lens is considered “thin” because 

its thickness is small compared to its focal length, when designed in OpticStudio the lens is not 

thin. Its prescription is rewritten below: 

• Stop at the lens. 

• Lens made of BK7 with a thickness of 5 mm. 

• f/4 lens with an effective focal length of 100 mm.  

• Wavelength of 0.58 𝜇𝑚 and fields of view of 0, 10, and 30 degrees.  

In Chapter 3 the lens system had an object placed at infinity so that the rays coming in would be 

parallel to the optical axis. However, in this chapter an object is placed at a known distance from 

the lens. This distance is selected with the lens design in mind to achieve a certain magnification 

and subsequent conjugate factor.  

 From Section 2.1.2, the equation for the conjugate factor was given by,  

which was then simplified for a thin lens in the following equation, 
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Equation (2.6) can be rearranged so that,  

So, by specifying a conjugate factor in equation (2.18) a magnification is calculated.  

In Figure 4.1 the lens layout is shown; the object height is defined as 10 mm which 

allows for an object distance other than infinity to be set. Note that the distance from the object 

to the lens is set as variable. Additionally, the lens is biconvex with the stop at the lens. The lens 

is 5 mm thick and can be considered thin since this thickness is significantly less than the 

effective focal length. Figure 4.3 displays the cross section of the lens description from Figure 

4.1. 
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Figure 4.1 Prescription for f/4 BK7 thin lens system with stop at the lens and a focal length of 100 mm. 

The object height is 10 mm, and the distance from the object to the lens results in a magnification of -

1.5. 

 

 

Figure 4.2 Merit function editor for f/4 BK7 thin lens system with stop at the lens and a focal length of 

100 mm. 

 

In using the technique from equation (2.18), a value of 0.2Y = −  was selected for the 

design shown in Figure 4.1 and Figure 4.3. In plugging 0.2Y = − into equation (2.18), the result 

is 1.5m = − . Figure 4.2 shows the Merit Function editor in OpticStudio. The first row, “PMAG” 

gives the paraxial magnification of the system. By setting a target of -1.5 and optimizing, the 

distance from the object to the lens is changed to fit this magnification value. So, the value of the 

conjugate factor can be controlled by optimizing the lens system to fit a certain magnification.  

For simplicity, the conjugate factors used result in only real images, not virtual. So, the 

conjugate factors have been restricted to values 80.8 0.Y − . 
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Figure 4.3 Lens layout for f/4 BK7 thin lens system with stop at the lens and a focal length of 100 mm. 

The object height is 10 mm and the distance from the object to the lens results in a magnification of -1.5.  
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4.2 Aberrations as Functions of the Conjugate Factor 

4.2.1 Spherical Aberration as a Function of the Conjugate Factor 

Figure 4.4 shows the fourth and sixth-order spherical aberration for the lens system 

defined in Section 3.1.1. The object height used is 10 mm. It’s important to realize that changing 

the object height will have no effect on the fourth and sixth-order spherical aberration, for the 

same reasons that spherical aberration remains the same throughout the field.    

Looking again at the equations defined in Section 3.2, for a system of surfaces the fourth-

order spherical aberration is given by,  

Equation (2.8) must be applied to every surface. The equation for fourth-order spherical 

aberration of a thin lens is given by,  

 

 In equation (2.8) there a linear and quadratic dependence on the conjugate factor. In 

equation (2.9) the dependence on the conjugate factor is the same and can be seen more clearly.   

 The fourth-order curve in Figure 4.4 appears to have the quadratic dependence on the 

conjugate factor from equations (2.8) and (2.9). The sixth-order spherical aberration curve 

hovers near zero despite the changing conjugate factor. As such, the sixth-order spherical 

aberration is negligible, especially when compared to the fourth-order spherical aberration.  
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Figure 4.4 Fourth and sixth-order spherical aberration for f/4 BK7 thin lens with focal length 

of 100 mm and object height of 10 mm as a function of the conjugate factor. 
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4.2.2 Coma Aberration as a Function of the Conjugate Factor 

Figure 4.5 and Figure 4.6 show the fourth and sixth-order coma aberration for the lens 

system defined in Section 4.1.1. The object heights used are 10 mm and 30 mm respectively. For 

a system of surfaces, the equation defined in Section 3.2.1 for the fourth-order coma aberration is 

given by,  

Equation (2.10) must be applied to every surface. The thin lens version of this equation is given 

by,  

 

 Equation (2.10) has a linear and quadratic conjugate factor term, where the quadratic 

term appears when the equation is expanded. However, equation (2.11) contains just a linear 

dependence on the conjugate factor.  

 In Figure 4.5 the fourth-order coma aberration curve is not linear; the fourth-order coma 

aberration appears to be quadratic and is therefore following equation (2.10)’s dependence on the 

conjugate factor. The sixth-order coma aberration curve appears linear—the amount of coma is 

so close to zero that it is negligible when compared to the fourth-order coma values.  

In Figure 4.6 the fourth-order curves are also quadratic. This curve appears to be the 

same shape as the fourth-order coma aberration curve from Figure 4.5. The sixth-order coma 
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aberration values are larger than those of Figure 4.5 and it appears to decrease towards zero as 

the conjugate factor increases. Even with the larger values, this sixth-order coma aberration 

curve is not significant when compared to the values of the fourth-order coma aberration curve.  

There is a relationship between the values in Figure 4.5 and Figure 4.6. The fourth-order 

coma aberration values in Figure 4.6 are approximately 3 times the fourth-order coma aberration 

values in Figure 4.5. Additionally, the sixth-order coma aberration values in Figure 4.6 are 

approximately 26 times the sixth-order coma aberration values from Figure 4.5. 
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Figure 4.5 Fourth and sixth-order coma aberration for f/4 BK7 thin lens with focal length of 100 mm 

and object height of 10 mm as a function of the conjugate factor. 

 

Figure 4.6 Fourth and sixth-order coma aberration for f/4 BK7 thin lens with focal length of 100 mm 

and object height of 30 mm as a function of the conjugate factor. 
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4.2.3 Astigmatism as a Function of the Conjugate Factor 

Figure 4.7 and Figure 4.8 show the fourth and sixth-order astigmatism aberration for the 

lens system defined in Section 4.1.1. The object heights used are 10 mm and 30 mm respectively.  

For a system of surfaces, at the equation defined in Section 3.2.3 for the fourth-order 

astigmatism aberration is given by,  

and the thin lens equation for fourth-order astigmatism is given by,  

Equation (2.12) has a linear dependence on the conjugate factor, while the dependence on the 

conjugate factor disappears for the thin lens equation (2.13). 

 In Figure 4.7 the fourth-order astigmatism values decrease towards zero as the conjugate 

factor increases. The sixth-order astigmatism curve appears to hover around zero, however there 

is a slight increase in astigmatism as the conjugate factor increases. The sixth-order astigmatism 

is quite small and is negligible when compared to the fourth-order astigmatism.  

 In Figure 4.8 the same decrease in the fourth-order astigmatism occurs as that from 

Figure 4.7, but with much higher fourth-order astigmatism. The sixth-order astigmatism curve 

now approaches zero from negative sixth-order astigmatism values. The magnitude of the sixth-

order astigmatism is still a small percentage of the magnitude of the fourth-order astigmatism.  
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 The astigmatism curves in Figure 4.7 and Figure 4.8 appear to have the same shape. In 

fact, the fourth-order values in Figure 4.8 are approximately 9 times larger than those Figure 4.7, 

and the sixth-order values in Figure 4.8 are approximately 62 times larger than those in Figure 

4.7.
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Figure 4.7 Fourth and sixth-order astigmatism for f/4 BK7 thin lens with focal length of 100 mm and 

object height of 10 mm as a function of the conjugate factor. 

 

Figure 4.8 Fourth and sixth-order astigmatism for f/4 BK7 thin lens with focal length of 100 mm and 

object height of 30 mm as a function of the conjugate factor. 
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4.2.4 Field Curvature as a Function of the Conjugate Factor 

Figure 4.9 and Figure 4.10 show the fourth and sixth-order field curvature for the lens 

system defined in Section 4.1.1. The object heights used are 10 mm and 30 mm respectively.  

For a system of surfaces, the equation defined in Section 3.2.4 for the fourth-order field 

curvature is given by,  

 where equation (2.14) must be applied to every surface. The fourth-order thin lens field 

curvature equation is given by,  

Equations (2.14) and (2.15) have no visible dependence on the conjugate factor. Unfortunately, 

Figure 4.9 and Figure 4.10 demonstrate otherwise.  

 The fourth-order field curvature curve in Figure 4.9 appears to be decreasing, 

approaching zero as the conjugate factor increases. The sixth-order field curvature curve hovers 

around zero but appears to have a slight increase as the conjugate factor increases. However, the 

sixth-order field curvature is negligible when compared to the fourth-order field curvature.  

 The fourth-order field curvature curve in Figure 4.10 appear to have the same decrease as 

the curve from Figure 4.9, however the fourth-order field curvature is much higher in Figure 

4.10. The sixth-order field curvature curve also approaches zero, but from negative field 
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curvature values. Additionally, the sixth-order field curvature is small when compared to the 

fourth-order field curvature.  

 Figure 4.9 and Figure 4.10 have the following relationship: the fourth and sixth-order 

field curvature curves of Figure 4.10 are 9 and 81 times the fourth and sixth-order field curvature 

plots of Figure 4.9 respectively.  

It’s crucial to state that the results of Figure 4.9 and Figure 4.10 are incorrect. Equations 

(2.14) and (2.15) state that there should be no dependence on the conjugate factor for fourth-

order field curvature, and that is what the results should have shown. These incorrect results 

could potentially stem from the thickness of the lens being too large, or large fields that result in 

rays no longer being paraxial. Regardless, Figure 4.9 and Figure 4.10 do not obey equations 

(2.14) and (2.15) and are therefore not correct.   
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Figure 4.9 Fourth and sixth-order field curvature for f/4 BK7 thin lens with focal length of 100 mm and 

object height of 10 mm as a function of the conjugate factor. 

 

Figure 4.10 Fourth and sixth-order field curvature for f/4 BK7 thin lens with focal length of 100 mm 

and object height of 30 mm as a function of the conjugate factor 
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4.2.5 Distortion as a Function of the Conjugate Factor 

Figure 4.11 and Figure 4.12 show the fourth and sixth-order distortion for the lens system 

defined in Section 4.1.1. The object heights used are 10 mm and 30 mm respectively.  

For a system of surfaces, the equation defined in Section 3.2.5 for the fourth-order 

distortion is given by, 

which must be applied to each surface. The thin lens fourth-order distortion equation is given by, 

Equations (2.16) and (2.17) have no dependence on the conjugate factor. Figure 4.11 and Figure 

4.12 show a small dependence, unfortunately.  

In Figure 4.11 the fourth-order distortion curve appears to quadratically approach zero 

from negative distortion values, as the conjugate factor increases. The sixth-order distortion 

curve appears to approach small negative distortion values from zero, as the conjugate factor 

increases. Sixth-order distortion is negligible when compared to fourth-order distortion, however 

the highest value of fourth-order distortion is still relatively small at around −0.45. 

 In Figure 4.12 the fourth-order distortion curve again approaches zero from negative 

distortion values as the conjugate factor increases. The sixth-order distortion curve also 

approaches zero from positive distortion values, and sixth-order distortion is again small when 

compared to fourth-order distortion.  
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It’s important to note that the results of Figure 4.11 and Figure 4.12 are incorrect. 

Equations (2.16) and (2.17) state that there should be no dependence on the conjugate factor for 

fourth-order distortion, and that is what the results should have shown. In fact, the fourth-order 

distortion curve should just be zero. These incorrect results could potentially stem from the 

thickness of the lens being too large, or large fields that result in rays no longer being paraxial. 

Regardless, Figure 4.10 and Figure 4.12 do not obey equations (2.16) and (2.17) and are 

therefore not correct.   

By equation (2.17), Figure 4.20 and Figure 4.21 should have no distortion for the fourth-

order curve. Luckily, this result can be shown by setting the setting to just be a simple paraxial 

lens with no thickness. Table 4.1 shows the design of the lens, and Figure 4.13 shows the lens 

layout. With this paraxial lens of no thickness, the results predicted in equation (2.17) are 

achieved. 

 Figure 4.14 and Figure 4.15 are the plots for the paraxial thin lens with no thickness. As 

can be seen in these plots, the fourth-order distortion is actually zero. Sixth-order distortion is 

behaving as expected, with the sixth-order distortion curves matching each other at different 

object heights.  

 So, equation (2.17) is correct after all for thin lenses. Interestingly, adding any thickness 

at all to this paraxial lens immediately caused fourth-order distortion in the paraxial system.
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Figure 4.11 Fourth and sixth-order distortion for f/4 BK7 thin lens with focal length of 100 mm and 

object height of 10 mm as a function of the conjugate factor. 

 

Figure 4.12 Fourth and sixth-order distortion for f/4 BK7 thin lens with focal length of 100 mm and 

object height of 30 mm as a function of the conjugate factor. 
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Table 4.1 Prescription for f/4 BK7 thin lens system with stop at the lens and a focal length of 100 mm. 

The object height is 10 mm, and the distance from the object to the lens results in a magnification of -

1.0. This system uses a paraxial surface type as the lens. 

 

 

Figure 4.13  Lens layout for f/4 BK7 thin lens system with stop at the lens and a focal length of 100 

mm. The object height is 10 mm and the distance from the object to the lens results in a magnification 

of -1.0. The lens in this system is paraxial.  
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Figure 4.14  Fourth and sixth-order distortion for f/4 BK7 thin paraxial lens with focal length of 100 

mm, an object height of 10 mm, and no lens thickness as a function of the conjugate factor. 

 
Figure 4.15 Fourth and sixth-order distortion for f/4 BK7 thin paraxial lens with focal length of 100 

mm, an object height of 30 mm, and no lens thickness as a function of the conjugate factor. 
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4.3 OpticStudio Analysis of the Conjugate Factor 

4.3.1 Lens Layouts and Wave Fans

Figure 4.16, Figure 4.18, Figure 4.20, and Figure 4.22 show the thin lens layouts with 

conjugate factors of 𝑌 = −0.8, −0.4, 0.4, and 𝑌 = 0.8, respectively. These thin lens layouts are 

also plotted with object heights of 0, 10, and 30 mm. As the conjugate factor increases, the 

magnification decreases, leading the object to lens distance to increase. As the distance between 

the object and the thin lens increases, the incident ray angles decrease. This results in less 

extreme ray angles of exitance, and thus less aberrations. 

Figure 4.17, Figure 4.19, Figure 4.21, and Figure 4.23 show the wave fans of the 

respective lenses from Figure 4.16, Figure 4.18, Figure 4.20, and Figure 4.22. These wave fans 

include the 0, 10, and 30 mm object heights. As mentioned in the previous paragraph, as the 

conjugate factor increases across these lenses, the scale on the wave fan plots decreases, which 

means less total aberration. Across these wave fan plots, the 30 mm object height contributes the 

highest value to the total aberration value.  

 As expected, across all the wave fans, at an object height of 0 mm there is only spherical 

aberration.
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Figure 4.16 Lens layout for f/4 BK7 thin lens with focal length of 100 mm at object heights of 0, 10, 

and 30 mm, a magnification of 𝑚 = −9.0 and a conjugate factor of 𝑌 = −0.8. 

 

 

Figure 4.17 Wave fans for f/4 BK7 thin lens with focal length of 100 mm at object heights of 0, 10, and 

30 mm, a magnification of 𝑚 = −9.0 and a conjugate factor of 𝑌 = −0.8. 
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Figure 4.18 Lens layout for f/4 BK7 thin lens with focal length of 100 mm at object heights of 0, 10, 

and 30 mm, a magnification of 𝑚 = −2.33 and a conjugate factor of 𝑌 = −0.4. 

 

 

Figure 4.19 Wave fans for f/4 BK7 thin lens with focal length of 100 mm at object heights of 0, 10, and 

30 mm, a magnification of 𝑚 = −2.33 and a conjugate factor of 𝑌 = −0.4. 
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Figure 4.20 Lens layout for f/4 BK7 thin lens with focal length of 100 mm at object heights of 0, 10, 

and 30 mm, a magnification of 𝑚 = −0.43 and a conjugate factor of 𝑌 = 0.4. 

 

 

Figure 4.21 Wave fans for f/4 BK7 thin lens with focal length of 100 mm at object heights of 0, 10, and 

30 mm, a magnification of 𝑚 = −0.43 and a conjugate factor of 𝑌 = 0.4. 
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Figure 4.22 Lens layout for f/4 BK7 thin lens with focal length of 100 mm at object heights of 0, 10, 

and 30 mm, a magnification of 𝑚 = −.0.11 and a conjugate factor of 𝑌 = 0.8. 

 

 

Figure 4.23 Wave fans for f/4 BK7 thin lens with focal length of 100 mm at object heights of 0, 10, and 

30 mm, a magnification of 𝑚 = −0.11 and a conjugate factor of 𝑌 = 0.8. 
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 This chapter focuses on the fourth and sixth-order monochromatic aberrations as 

functions of the index of refraction.  

 The first section describes the f/4 thin lens used in this report. This section also describes 

the methods used in changing the index of material of the thin lens. The fourth and sixth-order 

monochromatic aberrations are calculated by the methods outlined in Section 3.1. Again, the lens 

design and aberration calculation are all done within OpticStudio, as well as the index of 

refraction manipulation. 

 In the second section, plots of the fourth and sixth-order aberrations as functions of the 

index of refraction are shows. These plots are analyzed with respect to three different fields: 0, 

10, and 30-degrees. These plots are compared against Seidel aberration equations written in 

terms of structural aberration coefficients. And, the fourth and sixth-order aberrations are 

compared with each other.  

 In the last section, certain indices of refraction have been chosen and their respective thin 

lens layouts and wave fans have been plotted using OpticStudio. The reason for this is to 

understand the deviation of the rays from the nominal image plane by comparing the wave fans 

and the lens layouts, as was done in Section 3.3. 
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5.1 Introduction to the Thin Lens System for a Changing Index of 

Refraction 

5.1.1 Description of the System and its Dependence on the Index of Refraction 

This chapter uses a similar thin lens system that was described in Section 3.1.1 However, 

instead of using BK7 as the material for the thin lens, the index of refraction is adjusted, and the 

aberrations are measured. The thin lens system will continue to consist of the following: 

• Stop at the lens. 

• Lens made of BK7 with a thickness of 5 mm. 

• f/4 lens with an effective focal length of 100 mm.  

• Wavelength of 0.58 𝜇𝑚 and fields of view of 0, 10, and 30 degrees.  

Once again, it must be clarified that although the lens is called a “thin” lens, this is because its 

thickness is small compared to its focal length. When designed this lens in OpticStudio, the lens 

is not thin. 

As in Chapter 3, the lens system will have an object placed at infinity so that they rays 

coming in are parallel to the optical axis. However, unlike Chapter 3, the shape of the lens will 

not be changing. All that will be changing in this chapter in the index of refraction of the 

material.  

The lens system will have the prescription listed in Table 5.1, with its respective layout 

seen in Figure 5.1. The index of refraction is changed simply by altering the index of refraction 

value under the “Material” section of OpticStudio’s lens prescription. It’s important to note that  
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the Abbe value 𝜈 must always be set to zero since this report is not analyzing how the dispersive 

properties of a material affects aberrations. Figure 5.2 demonstrates how the expanded 

“Material” section is altered to obtain the desired values.  

 

Table 5.1 Prescription for f/4 thin lens system with stop at the lens and a focal length of 100 

mm. The index of refraction of the lens is defined to be n=1.5168 with a dispersion of  𝜐 = 0. 
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Figure 5.1 Lens layout for f/4 thin lens system with stop at the lens and a focal length of 100 mm. The 

index of refraction of the lens is defined to be n=1.5168 with a dispersion of 𝜐 = 0. 

 

 

Figure 5.2 Material model used for f/4 thin lens with stop at the lens and a focal length of 100 mm. The 

index is altered, and the Abbe number is set to zero. 
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5.2 Aberrations as Functions of the Index of Refraction 

5.2.1 Spherical Aberration as a Function of the Index of Refraction 

Figure 5.3 shows fourth and sixth-order spherical aberration as a function of the index of 

refraction. This is for a field of 0 degrees – as spherical aberration has no field dependence 

changing the field will not change the amount of spherical aberration. 

Once again, fourth-order spherical aberration is given by two sets of equations: the first 

applies to each surface and the second is a simplification for a thin lens model. These are given 

below, 

 

 

 It’s easily seen that equation (2.8) heavily relies on the index of refraction of each 
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which clearly also depend on the index of refraction. It’s important to realize that the power of 

the thin lens,   also has an index of refraction term that its dependent on. 

In Figure 5.3 the fourth-order spherical aberration appears to be increasing exponentially 

as the index of refraction increases. The sixth-order spherical aberration appears to be increasing 
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Figure 5.3 Fourth and sixth-order spherical aberration for f/4 thin lens with focal length of 100 

mm at 10 degrees as a function of the index of refraction. 
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linearly with the increase in index of refraction, however sixth-order spherical aberration is 

negligible when compared to fourth-order spherical aberration.   
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5.2.2 Coma Aberration as a Function of the Index of Refraction 

Figure 5.4 and Figure 5.5 show fourth and sixth-order coma aberration as a function of 

the index of refraction and at fields of 10 and 30 degrees respectively. Recall that coma is also a 

function of the field of view.  

Again, this report gives two equations for fourth-order coma aberration; the first is an 

equation applied to each surface and the second is a thin lens simplification of the first. These 

equations are given below,  

 

 

Equation (2.10) relies strongly on the index of refraction. So does equation (2.11) when 

variables 𝐸 and  𝐹 are defined: 
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Like with spherical aberration, the power term,   is dependent on the index of refraction. But in 

addition to the power term, the Lagrange invariant term, Ж  is also dependent on the index of 

refraction. With this it’s clear that both equations rely on the index of refraction.  

In Figure 5.4 the magnitude of the fourth-order coma aberration curve is growing 

exponentially as the index of refraction increases. The sixth-order coma aberration is also 

increasing as the index of refraction increases, although it appears to be increasing linearly. 

When compared to fourth-order coma aberration, sixth-order coma aberration is negligible.   

In Figure 5.5 the magnitude of the fourth-order coma aberration curve is growing 

exponentially as the index of refraction increases. The sixth-order coma aberration curve is no 

longer linear and is also increasing as the index of refraction increases. However, at a field of 30 

degrees sixth-order coma aberration can no longer be considered negligible especially as the 

index of refraction grows.  

 Fourth and sixth-order coma aberration in Figure 5.4 and Figure 5.5 share a relationship; 

fourth and sixth-order coma aberration in Figure 5.5 are approximately 3.27 and 35.10 times 

respectively larger than fourth and sixth-order coma aberration in  Figure 5.4. 
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Figure 5.4 Fourth and sixth-order coma aberration for f/4 thin lens with focal length of 100 mm at 10 

degrees as a function of the index of refraction. 

 

Figure 5.5 Fourth and sixth-order coma aberration for f/4 thin lens with focal length of 100 mm at 30 

degrees as a function of the index of refraction. 
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5.2.3 Astigmatism as a Function of the Index of Refraction 

Figure 5.6 and Figure 5.7 show fourth and sixth-order astigmatism aberration as a 

function of the index of refraction and at fields of 10 and 30 degrees respectively. Recall that 

more than one field is needed for a full understanding of astigmatism, since astigmatism is also a 

function of the field of view.  

 It’s once again necessary to write out the two fourth-order astigmatism aberration 

equations; the first being an equation applied to each surface of the system and the second being 

a simplification to a thin lens. These equations are given below, 

 

 

 Equation (2.12) is clearly dependent on the index of refraction, while in equation (2.13) 

the index of refraction is buried in the Lagrange invariant and power terms. In breaking down 

equation (2.13) the equation now states,  

where the dependence on the index of refraction is clear.  
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 In Figure 5.6 the fourth-order astigmatism curve appears to be increasing linearly as the 

index of refraction increases. The sixth-order astigmatism curve appears to be decreasing 

linearly, while its magnitude is increasing. This sixth-order astigmatism is not negligible at 

higher indices of refraction, although it is small compared to the magnitude of the fourth-order 

astigmatism.  

 In Figure 5.7 the fourth and sixth-order astigmatism curves have the same shape as those 

from  Figure 5.6, however their magnitudes are larger and sixth-order astigmatism is large 

throughout all values of the index of refraction. The fourth and sixth-order astigmatism values in  

Figure 5.7 are 10.72 and 114.94 times respectively larger than the fourth and sixth-order 

astigmatism values from  Figure 5.6. 
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Figure 5.6 Fourth and sixth-order astigmatism aberration for f/4 thin lens with focal length of 100 mm 

at 10 degrees as a function of the index of refraction. 

 

Figure 5.7 Fourth and sixth-order astigmatism aberration for f/4 thin lens with focal length of 100 mm 

at 30 degrees as a function of the index of refraction. 
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5.2.4 Field Curvature as a Function of the Index of Refraction  

Figure 5.8 and Figure 5.9 show fourth and sixth-order field curvature as a function of the 

index of refraction and at fields of 10 and 30 degrees respectively. Recall that multiple fields are 

needed to fully understand field curvature, since it is also dependent on the field of view.  

 Written again below are the fourth-order field curvature equations, the first being an 

equation applied to each surface and the second being a simplified version for thin lenses. These 

equations are,  

 

These equations have been expanded so that all the terms are written in terms of the index of 

refraction.  

 In Figure 5.8 the fourth-order field curvature curve appears to be linearly increasing as 

the index of refraction increases. The sixth-order field curvature curve is decreasing slowly away 

from zero as the index of refraction increases and is negligible when compared to the fourth-

order field curvature.  
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 In Figure 5.9 the fourth and sixth-order field curvature curves have the same shape as 

those from Figure 5.8, however their magnitudes are much larger. To that point, sixth-order field 

curvature is no longer negligible. The fourth and sixth-order field curvature values in Figure 5.9 

are 10.72 and 114.94 times respectively more than those in Figure 5.8. Interestingly, this is the 

same relationship for between the fourth and sixth-order astigmatism aberration values in Section 

5.2.3. 
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Figure 5.8 Fourth and sixth-order field curvature for f/4 thin lens with focal length of 100 mm at 10 

degrees as a function of the index of refraction. 

 

Figure 5.9 Fourth and sixth-order field curvature for f/4 thin lens with focal length of 100 mm at 30 

degrees as a function of the index of refraction. 
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5.2.5 Distortion as a Function of the Index of Refraction  

Figure 5.10 and Figure 5.11 show fourth and sixth-order distortion as a function of the 

index of refraction and at fields of 10 and 30 degrees respectively. Recall that distortion is also a 

function of the field of view, so it’s crucial to look at multiple fields.  

 Below are the fourth-order distortion equations for both a system of surfaces and a thin 

lens: 

 

Equation (2.16) has been expanded so that all terms are written with their dependence on the 

index of refraction.  

 In Figure 5.10 the fourth-order distortion curve increases rapidly from away from zero 

but begins to approach some limit as the index of refraction increases. The sixth-order distortion 

curve hovers around zero and is therefore negligible.  

 In Figure 5.11 the fourth-order distortion curve behaves similarly to that of Figure 5.10, 

although the magnitude of the distortion is larger in Figure 5.11. However, the sixth-order 

distortion curve moves away from zero rapidly, giving negative distortion values. The sixth-

order distortion is not negligible.  
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 The fourth and sixth-order distortion of  Figure 5.11 are 35.10 and 376.28 times 

respectively larger than those from Figure 5.10.  

Despite equation (2.16) stating that fourth-order distortion is not a function of the index 

of refraction, equation (2.17), Figure 5.10, and Figure 5.11 show otherwise. Looking back to 

Section 4.2.5, where a new paraxial thin lens system with zero thickness was set up, the fourth-

order distortion was zero. However, since the thin lens system set up in this section is not thin, 

by OpticStudio’s consideration of thin, equation (2.15) may describe the lens since the equation 

does rely on the index of refraction.  Regardless, equation (2.15) is not a particularly great model 

for this situation, but it cannot be cast aside.
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Figure 5.10 Fourth and sixth-order distortion for f/4 thin lens with focal length of 100 mm at 10 

degrees as a function of the index of refraction. 

 

Figure 5.11 Fourth and sixth-order distortion for f/4 thin lens with focal length of 100 mm at 30 

degrees as a function of the index of refraction. 
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5.3 OpticStudio Analysis of the Index of Refraction 

5.3.1 Lens Layouts and Wave Fans 

Figure 5.12, Figure 5.14, Figure 5.16, and Figure 5.18 show the thin lens layouts with 

indices of refraction of 𝑛 = 1.3, 1.5, 1.7 and 𝑛 = 1.9 and for fields of 0, 10, and 30 degrees. As 

the index of refraction increase, the exiting rays have more extreme angles. As a result, the rays 

appear to spread out further from their ideal points. This is also true as the field of view is 

increased.  

Figure 5.13, Figure 5.15, Figure 5.17, and Figure 5.19 show the wave fans of the 

respective lenses from Figure 5.12, Figure 5.14, Figure 5.16, and Figure 5.18. These wave fans 

include the 0, 10, and 30-degree fields. As the index of refraction increases across these lenses, 

the scale of the wave fan plots also increases. As predicted, the 30-degree fields contribute the 

most to the total aberration. Additionally, the 0-degree field only has spherical aberration. 

 

 

Figure 5.12 Lens layout for f/4 thin lens with focal length of 100 mm at 0, 10, and 30 degree fields and 

an index of refraction of 𝑛 = 1.3. 
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Figure 5.13 Wave fans for f/4 thin lens with focal length of 100 mm at 0, 10, and 30 degrees fields and 

an index of refraction of 𝑛 = 1.3. 

 

Figure 5.14 Lens layout for f/4 thin lens with focal length of 100 mm at 0, 10, and 30 degree fields and 

an index of refraction of 𝑛 = 1.5. 
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Figure 5.15 Wave fans for f/4 thin lens with focal length of 100 mm at 0, 10, and 30 degrees fields and 

an index of refraction of 𝑛 = 1.5. 

 

Figure 5.16 Lens layout for f/4 thin lens with focal length of 100 mm at 0, 10, and 30 degree fields and 

an index of refraction of 𝑛 = 1.7. 
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Figure 5.17 Wave fans for f/4 thin lens with focal length of 100 mm at 0, 10, and 30 degrees fields and 

an index of refraction of 𝑛 = 1.7. 

 

Figure 5.18 Lens layout for f/4 thin lens with focal length of 100 mm at 0, 10, and 30 degree fields and 

an index of refraction of 𝑛 = 1.9. 
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Figure 5.19 Wave fans for f/4 thin lens with focal length of 100 mm at 0, 10, and 30 degrees fields and 

an index of refraction of 𝑛 = 1.9. 
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Conclusions 

 In this report, fourth and sixth-order monochromatic aberrations are analyzed against the 

shape factor, conjugate factor and index of refraction. In addition, these aberrations are also 

measured at different fields of view and object heights in order to obtain a comprehensive 

understanding of the behavior of these aberrations.  

 The Seidel aberration coefficients were written using structural coefficients in order to 

obtain expressions for the wave aberration coefficients in terms of the shape factor, conjugate 

factor, and index of refraction. In addition to these general formulas for fourth-order aberrations, 

the equations could be simplified further for a thin lens system. However, the equations for a 

system of surfaces and the equation for a thin lens system both did not always describe the 

resulting aberration plots completely.  

 As changing shape factors, conjugate factors, and indices of refraction resulted in greater 

angles of exitance of the rays, the total amount of aberration was higher. Smaller angles of 

exitance resulted in lower amounts of total aberration. Additionally, large fields and large object 

heights also resulted in higher amounts of total aberration.  

 Fourth-order monochromatic aberrations were always greater than their sixth-order 

monochromatic counterparts. However, at larger fields and larger object heights, the sixth-order 

aberrations often were not small enough to completely ignore. To conclude, sixth-order 

aberrations cannot be ignored without full understanding of the optical system, even if the 

system is as simple as a thin lens.  
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