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Abstract 

 

Quantum key distribution (QKD) leverages quantum mechanics to share secret random keys 

between parties. These keys can be used to construct encryption which is unconditionally secure. This thesis 

first discusses the theory behind discrete Gaussian-modulated QKD, as well as work towards its realization 

using a fiber interferometer. A Red Pitaya single-board computer is used to stabilize the phase of the 

interferometer by way of a piezoelectric ring. Results of this implementation are presented as well as 

preliminary test data. The latter part of this thesis relates to covert communication. Distinct from secrecy, 

covertness entails communication which is itself undetectable, independent of the content or security of the 

data being communicated. Methods for assessing covert performance are detailed. A simulation for 

evaluating covert performance across arbitrary optical networks is presented. The simulation is based in 

Mininet, an open-source network emulator and testbed under active development.  
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1 | Introduction and Theory of Quantum Key Distribution 

1.1 The Role of Quantum Key Distribution 

 

Cryptography is the pursuit of secure communication in the presence of adversaries. In general, 

this security is accomplished by masking messages using a shared encryption key, or “shared secret.” The 

key describes the way in which characters in a message are converted to other characters. With sufficient 

complexity, any parties without the key have no practical way to decipher the message. Modern internet 

security rests on this principle; the complexity of the best modern ciphers is such that brute force attempts 

at guessing them are out of the question.  

As always, however, the advancement of technology is beginning to alter the landscape of the 

current paradigm. Quantum computing is steadily gaining strength and robustness. Though its trajectory 

and ultimate feasibility is not certain, the history of computing suggests that gains in computational power 

could come about rapidly and exponentially -- indeed, unpredictably. As such, the risk posed by quantum 

computing to current security paradigms is simply too great to be ignored, described by some as “a 

systematic threat to the global economy” [2]. Hence, strategies for maintaining security in the face of 

quantum computation must be developed, and well in advance of the potential strides to come.  

This is doubly true given that the replacement of existing internet protocols historically takes 

upwards of a decade. With the volatile risk of quantum computing, such lag time poses a threat to 

uninterrupted security [3]. The unique nature of the information security problem also means that lasting 

security is a concern. Namely, a data breach which occurs in the present may not incur damage until much 

later. The data stolen today might be too strongly encrypted to decipher, but it could be saved by adversaries 

indefinitely. At some future time, technology (quantum or otherwise) might evolve to render the encryption 

useless. Hence, new information security methods will ideally ensure security against quantum adversaries, 

for all time. That is, perfect security would take into consideration all possible quantum computational 
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abilities. This unique status is referred to as unconditional security; an unconditionally secure protocol has 

no caveats and is effective against all possible adversaries which could exist by known physics.  

On the surface, this sounds like a tall order. And it is an open question whether sufficiently 

quantum-proof upgrades can be made to existing software and infrastructure. Whether such upgrades are 

successful or not, it seems prudent to explore alternative approaches. The primary alternative, now gaining 

more traction, is quantum communication, where it has been shown that strategies for realizing 

unconditional security in fact do exist, such as in [7]. Among them is quantum key distribution (QKD), 

work towards which forms the first part of this thesis. QKD handles the secret key exchange portion of the 

communication process. Although different varieties and approaches exist, the overarching goal is the 

possession of a shared secret key between the two communicating parties, canonically called Alice and 

Bob. In practice, the key takes the form of a bit string, a sequence of ones and zeros determined by 

measurements of the optical signal. This sequence is then used as the basis for a given encryption scheme.  

One such encryption scheme is the one-time pad (OTP), developed by Frank Miller in 1882 [4], 

then reinvented and patented in 1917 by Gilbert Vernam [5], and proven to have “perfect secrecy” by 

Claude Shannon in 1949 [6]. In practice it is rarely used because imperfect but sufficient and less 

cumbersome methods exist. Hence, it serves mainly as an ideal example for the sake of discussion. Though 

given the quantum question, one might wonder if it drifts from the ideal to the necessary. The OTP is a 

single-use technique where the secret key is the same size or larger than the message being encrypted. If 

the key is truly secret, randomly generated and never reused, this method of encryption is infallible, no 

matter the available computing power. Distributed via QKD, OTP is currently the strongest known 

approach to secure communication. The only two requirements (in addition to those just mentioned for the 

OTP) is that quantum mechanics is true, and that Alice and Bob can authenticate one another. This last 

condition is an unavoidable weak point of the strategy. If an adversary impersonates Alice or Bob, the rest 

of the security measures are rendered pointless. Authentication is its own problem with its own solutions. 

For the purposes of evaluating a proposed QKD scheme, it is assumed to be solved.   
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1.2 Approaches to QKD 

 

Two primary classes of QKD are those of discrete variable and those of continuous variable. In 

discrete variable QKD (DV-QKD), physical measurements of optical signals are made using single photon 

detectors. These complicated, often expensive devices signal the incidence of individual photons, and have 

an output signal which is binary, either a true or false detection for each given time slot. The output has a 

finite number of possible values (two), so this detection is discrete. The output signal is also discontinuous, 

as there are periods where no photons are detected. The generation of single photons is cumbersome and 

statistically inconsistent but allows for the study of truly quantum schemes.  

In continuous variable QKD (CV-QKD), measurement of the optical signals is accomplished via 

either heterodyne or homodyne detection. For these measurements, the phase and amplitude of an optical 

signal are compared against a reference signal known as the local oscillator (LO). The discrepancy between 

the message-containing signal and the LO is how data is transmitted through the system. This principle is 

explained further in Section 1.4.  

The source signals for both homodyne and heterodyne detection are coherent states of pulsed light, 

easier to generate in the lab than the individual photons required in discrete variable protocols. But CV-

QKD is impeded by electronic noise in the system, as well as drift of the LO reference signal. Whether it 

is of the same frequency as the signal light (homodyne) or not (heterodyne), the LO also introduces its own 

excess noise into the system when mixed with the other signals. This is largely because its power is 

significantly higher than that of the message signals; any calibrations in the system must accommodate both 

this higher LO power and the comparably weak message signals. This higher power can also necessitate 

expensive, higher durability optical components. Additionally, the LO signal is a security vulnerability. If 

intercepted, it might help an eavesdropper make conclusions about the exchange and compromise the whole 

protocol.  
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To sidestep these problems and increase the overall viability of CV-QKD, a new implementation 

was proposed involving so-called “self-referencing,” introduced independently in 2015 by [22], [23] and 

[8]. In this self-referenced (SR) CV-QKD, the need to transmit the local oscillator is eliminated by instead 

sending “reference pulses,” which still use the same light source as used for the message signals (as in a 

homodyne setup) but are significantly less powerful and not as frequent as an LO signal. Alice and Bob 

each have their own local local oscillator (LLO), with a previously agreed upon phase. The reference pulses 

which Alice sends interspersed with her signal pulses are then used by Bob to continuously recalibrate his 

measurements. By doing this, synchronization of phase can be maintained between the two parties. Bob’s 

calibrations are in fact rotations of his measurement basis, and his measurements are accomplished through 

homodyne detection. Both of these concepts are detailed in the following sections, and the SR CV-QKD 

protocol is elaborated on in Section 1.5.  

Distinct from the self-referenced method is Gaussian-modulated coherent state (GMCS) QKD. 

Here, the need for difficult single photon generation is sidestepped by instead attenuating a regular laser 

source with an adequately narrow spectrum. The name comes from the method of modulation; each 

component of the coherent state in phase space is determined by randomly drawing from a Gaussian 

distribution. The assumption of a continuous Gaussian distribution allowed for progress to be made in 

proving the security and performance of GMCS protocols, but practical implementation is highly 

computationally cumbersome. Hence, discrete Gaussian modulation was proposed, where a much more 

practical, discrete Gaussian function is used for selecting modulation values. Discrete Gaussian-modulated 

(DGM) QKD strives to afford the efficient modulation and error correction possible in DV-QKD, while 

maintaining the practical ease of homodyne and heterodyne detection seen with CV-QKD [17]. The work 

presented in the first half of this thesis is part of an effort towards demonstrating DGM QKD in a laboratory 

setting. The protocol is explained in more detail in Section 1.6, after elaboration on the self-referenced 

scheme in Section 1.5. But first, theoretical foundations are needed.  
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1.3 Qubits and Bases  

 

 This chapter gives a basic overview of qubits and bases. Much greater detail can be found in more 

extensive sources, such as [30]. The state of a quantum system is a description of its properties at a given 

time. Knowledge of a system's state and how it evolves yield all possible predictions of the system’s 

behavior. The “bit,” from “binary” and “digit,” can be said to describe a system with two states (zero and 

one). The qubit is the quantum analogue of the bit, its name coming from “quantum” and “bit.” But the 

qubit has far more depth than a bit, as it can describe combinations of the two states -- superpositions. A 

qubit’s mathematical description is a wave function, 𝜓(𝑡), a complex-valued probability amplitude. 

Expressed in bra-ket notation:  

|𝜓⟩  =  𝛼 |0⟩ + 𝛽|1⟩     (1.3.1) 

Here, |0⟩ and |1⟩ are the two states of the system, and the function is expressed in terms of the basis which 

is defined by these states. The coefficients 𝛼 and 𝛽 are the probability amplitudes of each state; their square 

moduli give the probabilities of the system collapsing to the corresponding state, provided measurement is 

performed in this basis. Naturally, the coefficients must be normalized such that the total probability is one:  

|𝛼|2 + |𝛽|2 = 1      (1.3.2) 

The choice to represent the overall state as a combination of these two component states constitutes 

a choice of basis; this could be called the “|0⟩, |1⟩” or “zero-one” basis. It is also sometimes called the 

“computational basis” for obvious reasons. An expanded formulation which describes the full range of 

combinations of states in a two-level quantum system is the following:  

|𝜓⟩  = 𝑐𝑜𝑠
𝜃

2
 |0⟩ + 𝑒𝑖𝜙 𝑠𝑖𝑛

𝜃

2
 |1⟩     (1.3.3) 

where 𝜃 and 𝜙 represent the polar and azimuthal angles, respectively, of a vector which forms the radius 

of a sphere. The vector and its direction relative to the axes represent the quantum state, and a sphere used 

in this application is known as the Bloch sphere, named after the physicist Felix Bloch [9]. A vector ending 
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at the poles of the sphere indicates a pure zero or one state, while the equator of the sphere contains all the 

superposition states that are an even balance of the zero and one basis states, with the full range of phase 

offset between them. See Fig. 1.  

 

Fig. 1: Rendition of the Bloch sphere, a geometrical representation of the space of possible irreducible 

(pure) states of a two-level quantum mechanical system (a qubit).  

 

 When a given qubit is observed (measured), information about its state is gained. Now collapsed 

to one of the two states in the basis, further measurements will always yield the same result until the 

configuration is reset (or the original circumstances recreated). Next, we proceed to a discussion of coherent 

quantum states and their measurement using homodyne detection.  
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1.4 Coherent States and Homodyne Detection for CV-QKD 

 

In quantum mechanics, a coherent state is one that is an eigenstate of the annihilation operator, 

which reduces a system’s energy to the level below its current one. Mathematically, a coherent state is 

described here as the ket vector below, acted upon by the annihilation operator, 𝑎̂:  

𝑎̂|𝛼⟩  =  𝛼 |𝛼⟩      (1.4.1) 

This means that when reduced in energy by the annihilation operator, a coherent state is unchanged but for 

scalar multiplication by the complex value 𝛼 defining its ket vector. The real and imaginary components of 

𝛼 represent two quadratures in phase space, corresponding to the horizontal and vertical axes, respectively.  

𝛼 = 𝑞 + 𝑖𝑝      (1.4.2) 

This pair is similar to position and momentum as seen in classical phase spaces and shares a similar 

uncertainty relationship. However, while possible, it is usually not useful to consider them as 

representations of the position and momentum of the electromagnetic oscillator generating the coherent 

state. Instead, the quadratures here are taken to represent the in-phase and out-of-phase components of a 

given spatial-temporal mode’s electric field amplitude. In practice, coherent states as defined here are 

readily generated in the lab by a standard laser.  

The quadrature components p and q of 𝛼 have their own representations, defined as follows using 

the annihilation operator and its counterpart, the creation operator:  

𝑞̂ =  𝑎̂ + 𝑎̂†      (1.4.3) 

𝑝̂ =  −𝑖(𝑎̂ − 𝑎̂†)     (1.4.4) 

Likewise, this formulation allows for re-expression of the creation and annihilation operators in terms of 

the quadrature operators:  

 𝑎̂ =
1

2
(𝑞̂ + 𝑖𝑝̂)      (1.4.5) 
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𝑎̂† =
1

2
(𝑞̂ − 𝑖𝑝̂)      (1.4.6) 

This serves as a representation for the coherent states used for homodyne detection [16].  

Next, we can define the local oscillator reference signal that is the basis for homodyne 

measurements with its own complex number 𝛼𝐿𝑂 as:  

    𝛼𝐿𝑂 = |𝛼|𝑒
𝑖𝜃      (1.4.7) 

In the above, the magnitude is the amplitude of the electromagnetic field and 𝜃 is its phase with reference 

to a given coherent state to be measured.  

 A central optical element for homodyne detection and QKD is the beamsplitter, which splits one 

beam into two and/or combines two separate beams into a single overlapping beam. In optical fiber, the 

same is accomplished using a fiber coupler (a fusion of two or more adjacent fibers). This element can be 

defined mathematically as follows, in the case of equal splitting (50% of total energy in each path):  

    𝐵𝑆50/50 =
1

√2
(
1 1
1 −1

)     (1.4.8) 

For homodyne detection, the coherent state and LO signals are combined by the beamsplitter or fiber 

coupler onto the same channel (either a fiber or a path in free space). Mathematically, this action is described 

through matrix multiplication of the beamsplitter matrix and a column vector itemizing the incident fields, 

that of the coherent state and that of the LO:  

  𝐵𝑆50/50 (
𝑎̂
𝛼𝐿𝑂

) =
1

√2
(
𝑎̂ + 𝛼𝐿𝑂
𝑎̂ − 𝛼𝐿𝑂

) ≝ (
𝑎̂1
𝑎̂2
)    (1.4.9) 

We define above these new beamsplitter output states using the numbered annihilation operators.  

To proceed, we use one more tool from quantum mechanics formalism called the number operator, 

𝑛̂, corresponding to the observable which takes the count of all particles in the system. When applied to a 

state, the number operator returns the state scaled by the number of particles within it. The result is clearest 

when applied to a number state, also known as a Fock state (one with a well-defined number of particles). 

For a Fock state |𝑛⟩, this looks like:  
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𝑛̂|𝑛⟩ = 𝑛|𝑛⟩      (1.4.10) 

The effects of the creation and annihilation operators on a Fock state are as follows:  

𝑎̂†|𝑛⟩ = √𝑛 + 1|𝑛 + 1⟩     (1.4.11) 

𝑎̂|𝑛⟩ = √𝑛|𝑛 − 1⟩     (1.4.12) 

Meaning that the number operator can be expressed in terms of them:  

𝑎̂†𝑎̂|𝑛⟩ = √𝑛√𝑛|𝑛 − 1 + 1⟩ = 𝑛|𝑛⟩    (1.4.13) 

𝑛̂ ≡ 𝑎̂†𝑎̂      (1.4.14) 

Returning to our beamsplitter, we can now use the number operator to evaluate the photon count at 

the two outputs, as follows:  

𝑛̂1 = 𝑎̂1
†𝑎̂1 =

1

√2
(𝑎̂† + 𝛼𝐿𝑂

∗ )
1

√2
(𝑎̂ + 𝛼𝐿𝑂) =

1

2
(𝑎̂†𝑎̂ + 𝛼𝐿𝑂𝑎̂

† + 𝛼𝐿𝑂
∗ 𝑎̂ + 𝛼𝐿𝑂

∗ 𝛼𝐿𝑂) (1.4.15) 

𝑛̂2 = 𝑎̂2
†𝑎̂2 =

1

√2
(𝑎̂† − 𝛼𝐿𝑂

∗ )
1

√2
(𝑎̂ − 𝛼𝐿𝑂) =

1

2
(𝑎̂†𝑎̂ − 𝛼𝐿𝑂𝑎̂

† − 𝛼𝐿𝑂
∗ 𝑎̂ + 𝛼𝐿𝑂

∗ 𝛼𝐿𝑂) (1.4.16) 

With 𝑎̂n
†
 found by taking the adjoint of the corresponding 𝑎̂n that came from Eq. 1.4.9. Now having 

expressions for the number of photons exiting each beamsplitter output, the difference between these two 

outputs can be taken to arrive at the number-difference operator:  

𝛥𝑛̂ = 𝑛̂1 − 𝑛̂2 = 𝛼𝐿𝑂𝑎̂
† + 𝛼𝐿𝑂

∗ 𝑎̂     (1.4.17) 

Re-expressing with 1.4.5, 1.4.6 and 1.4.7 yields:  

Δ𝑛̂ = |𝛼𝐿𝑂|𝑒
𝑖𝜃 (
1

2
(𝑞̂ − 𝑖𝑝̂)) + |𝛼𝐿𝑂|𝑒

−𝑖𝜃 (
1

2
(𝑞̂ + 𝑖𝑝̂)) 

= |𝛼𝐿𝑂| (𝑞̂
(𝑒𝑖𝜃+𝑒−𝑖𝜃)

2
+ 𝑖𝑝̂

𝑒−𝑖𝜃−𝑒𝑖𝜃

2
)  

= |𝛼𝐿𝑂|(𝑞̂ 𝑐𝑜𝑠 𝜃 + 𝑖𝑝̂(−𝑖 𝑠𝑖𝑛 𝜃))    

𝛥𝑛̂ = |𝛼𝐿𝑂|(𝑞̂ 𝑐𝑜𝑠 𝜃 + 𝑝̂ 𝑠𝑖𝑛 𝜃)     (1.4.18) 
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From this we see at last that the LO phase determines which quadrature operator is active, only the 

q if 𝜃 is zero, because the second term vanishes, and only the p operator if this phase is half pi [16]. Both 

have the same magnitude, that of the LO signal amplitude, and hardware can now be used to select which 

quadrature of the coherent state to measure [21]. When the coherent state and LO are at the same frequency, 

this is homodyne detection. In heterodyne detection, different frequencies are used, and the two quadratures 

can be measured at the same time, with the cost of additional noise. Naturally, for good homodyne or 

heterodyne detection, fine control of the phase difference between the signal states and LO is necessary, as 

is the use of sufficiently low-noise detectors.  

Quadrature amplitude modulation (QAM) is used extensively for optical communication. QAM is 

the practice of creating an array of meaningful locations in phase space, a “constellation,” where each point 

can be realized in signals by way of selective phase and amplitude modulation of coherent states. For 

instance, each point can be made to correspond to some sequence of bits, so that several bits can be relayed 

in a single pulse. A coherent state can be rotated in phase space by the quantum mechanical phase shift 

operator:  

𝑈̂(𝜃) = 𝑒−𝑖𝜃𝑛̂      (1.4.19) 

Applied to a coherent state ket, the exponential term is multiplied, causing the existing phase value of the 

complex 𝛼 defining the state to change. Modulation in amplitude is described by the displacement operator:  

𝐷̂(𝛼) = 𝑒𝛼𝑎̂
†−𝛼∗𝑎̂     (1.4.20) 

Applied to a state with no magnitude, also called a vacuum state, the result is a coherent state which reflects 

the displacement operator’s argument:  

𝐷̂(𝛼)|0⟩ = 𝑒𝛼𝑎̂
†−𝛼∗𝑎̂|0⟩ = |𝛼⟩     (1.4.21) 

These operators can be applied in combination to arrive at any of the meaningful points which a QAM 

implementation has prescribed in the phase space.  
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A natural consideration regarding the measurement of coherent states is uncertainty. The 

uncertainty of each of the quadratures of a coherent state can be determined by taking the difference 

between the expectation (indicated by enclosed angle brackets) of its square and the square of its 

expectation. For the p quadrature, this is:  

𝑉𝑎𝑟(𝑝̂) = ⟨𝑝̂2⟩ − ⟨𝑝̂⟩2     (1.4.22) 

The square of the expectation of p for the coherent state defined by 𝛼 is found like so, using Eq. 1.4.4:  

⟨𝑝̂⟩ = ⟨𝛼|𝑝̂|𝛼⟩ 

= −𝑖⟨𝛼|(𝑎̂ − 𝑎̂†)|𝛼⟩ 

= −𝑖(⟨𝛼|𝑎̂|𝛼⟩ − ⟨𝛼|𝑎̂†|𝛼⟩) 

= −𝑖𝛼⟨𝛼|𝛼⟩ +  𝑖𝛼∗⟨𝛼|𝛼⟩ 

= −𝑖𝛼 +  𝑖𝛼∗ 

= −𝑖(𝑞 + 𝑖𝑝) + 𝑖(𝑞 − 𝑖𝑝) 

= 𝑝 − 𝑖𝑞 + 𝑖𝑞 + 𝑝 

 

⟨𝑝̂⟩ = 2𝑝     (1.4.23) 

While the expectation of the square is similarly:  

⟨𝑝̂2⟩ = ⟨𝛼|𝑝̂2|𝛼⟩ 

= ⟨𝛼| (−i(𝑎̂ − 𝑎̂†))
2
|𝛼⟩ 

= −(⟨𝛼|𝑎̂2|𝛼⟩ − ⟨𝛼|𝑎̂𝑎̂†|𝛼⟩ − ⟨𝛼|𝑎̂†𝑎̂|𝛼⟩ + ⟨𝛼|𝑎̂†𝑎̂†|𝛼⟩) 

After simplifying the first and last terms, we apply a commutation relation on the second:  

= −(𝑎̂2 − ⟨𝛼|(𝑎̂†𝑎̂ + 1)|𝛼⟩ − ⟨𝛼|𝑎̂†𝑎̂|𝛼⟩ + (𝑎̂†)
2
) 

= −(𝑎̂2 − 1 − 2⟨𝛼|𝑎̂†𝑎̂|𝛼⟩ + (𝑎̂†)
2
) 

= −(𝛼2 − 1 − 2𝛼∗𝛼 + 𝛼2) 
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= 2(𝑞 − 𝑖𝑝)(𝑞 + 𝑖𝑝) + 1 − (q + ip)2 − (𝑞 − 𝑖𝑝)2 

= 2(𝑞2 + 𝑝2) − (𝑞2 + 2𝑖𝑝𝑞 − 𝑝2) − (𝑞2 − 2𝑖𝑝𝑞 − 𝑝2) + 1 

⟨𝑝̂2⟩ = 4𝑝2 + 1      (1.4.24) 

 We can now express the variance of this quadrature as given in Eq. 1.4.22:  

𝑉𝑎𝑟(𝑝̂) = 4𝑝2 + 1 − (2𝑝)2 = 1   (1.4.25) 

The proof for the 𝑞 operator proceeds the same way, though more simply given the absence of the 𝑖 term, 

and results in expectation terms of the exact same form. Hence, its variance is also one. Their combined 

variance is the product of the two. Imperfections in the coherence of the state or other aspects of the system 

increase the uncertainty, so the product is merely lower-bounded by one. Here, uncertainty is indicated by 

Δ:  

𝛥(𝑞̂)𝛥(𝑝̂) ≥  1     (1.4.26) 

 The minimum uncertainties of each of the quadratures above is known as the “shot noise.” As such, 

these variances have a special unit called the shot noise unit (SNU), so that any noise in a system can be 

given in terms of this minimum. Because the combined uncertainty is only lower-bounded, it can potentially 

take on a range of values. Because of this, the combined uncertainty is described with a probability 

distribution.  

In traditional optics, shot noise is considered to be an inescapable result of the particle nature of 

light. But in quantum optics, squeezed states can be utilized to beat this limit. By sacrificing certainty in 

one part of an uncertainty relationship, such as momentum, uncertainty in the other part (such as position) 

can be reduced, so long as the product still satisfies the lower bound. Squeezing is its own sub-field within 

quantum science and has seen increasing attention. In 2013 (the date of publication) squeezed states were 

utilized in the famous LIGO system to achieve record gains in measurement sensitivity, a significant 

advancement in the study of gravitational waves [14]. Squeezed states even have application in quantum 

key distribution, where correlative measurements of Einstein-Podolsky-Rosen-entangled states can not only 
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distribute random keys but characterize the communication channel and the receiver [15]. Squeezed states 

can occur naturally from some nonlinear optical effects, and from various laser sources. Progress is being 

made in the ease of their generation. Theoretically, the phenomenon is useful in any context where increased 

sensitivity or precision beyond the classical limit is of benefit.  

 Having established basic theory for coherent states and an operational definition of homodyne 

detection, we can move on to the discussion of the self-referenced and discrete Gaussian-modulated QKD 

protocols.  
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1.5 Self-Referenced CV-QKD 

 

 Returning to SR CV-QKD, when Alice sends Bob reference pulses, he measures them in his basis. 

Then, with knowledge of a pre-agreed standard, such as “Alice’s reference pulses will always be at zero 

degrees in her basis” (as portrayed in Fig. 2), he determines how much their respective LLOs have drifted 

in phase with respect to one another. He can then choose a new basis which compensates for this drift so 

that the next signal (or multiple signal pulses before the next reference) he receives from Alice is properly 

interpreted. Physically, Bob’s change of basis can be performed by imparting a phase delay onto the 

incoming signal light, or by adjusting the phase of his LLO. The corrections could also be done in software.  

Alice must send reference pulses (interspersed with the signal pulses) frequently enough that Bob 

can stay phase-matched and perform measurements which yield accurate interpretation. The signal pulses 

themselves are coherent states modulated by Alice according to some random distribution, discussed further 

in the next section. This process is repeated until the pair share a partially correlated random variable 

corresponding to the values that Alice used to generate her signal pulses. This shared random variable is 

the basis for the encryption key. Its distribution was accomplished by using the signal source as a reference 

for itself, rather than the usual cumbersome co-transmission of a local oscillator signal; it was self-

referenced.  

At this point the key distribution process proceeds in the fashion that ordinary CV-QKD does. First 

comes channel estimation, where noise data about the channel over which the signals are being sent (free 

space or in fiber) is fed into any error correction software. This is important because uncertainty in the 

transmittance of the channel can result in a lower key rate [10]. The key rate is the speed (in bits per second) 

at which the secret key is established between parties. It is one of the primary figures of merit for key 

distribution systems. How it scales with the number of channel uses is important for consideration of 

practical implementation; if the key rate is very low, then the protocol would not be usable in a real-world 

network scenario, where security must be established immediately and constantly. It has also been shown 
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that, at least in atmospheric media, with enough channel estimation measurements, fluctuation in the 

channel can be largely overcome from a key rate perspective [10].  

 

 

Fig. 2: Reference frame discrepancy in Alice and Bob’s phase spaces. From natural phase drift in his 

LLO, Bob’s frame becomes out of phase with Alice’s by some angle. To correct it, he measures the 

quadratures of Alice’s reference pulses in his frame to determine the discrepancy, then adjusts the phases 

of his measurements by the same amount, re-synchronizing their frames.  

 

After channel estimation, the next step in the overall key exchange process is known as information 

reconciliation. The key shared by Alice and Bob after the distribution step will have some error, for which 

they have an estimate. The error will in practice always be present as a result of imperfect equipment and 

losses during transmission or because of interference by the canonical eavesdropper, Eve. Naturally, since 

there is no way to determine the source of the errors, it must be assumed to come entirely from Eve. The 

reconciliation process involves comparison of each party’s copy of the shared secret key and correction of 

any discrepancies between them. This is often done using the “cascade” protocol, where recursive parity 

comparisons and fixes of each block are made until the blocks almost certainly match [11]. To increase the 

efficiency of this process, low-density parity-check (LDPC) codes have been shown to be effective in QKD 
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settings, and for hardware applications generally [12]. More recently, polar codes have been shown to be 

superior in speed to some LDPC schemes for CV-QKD applications, provided that the block size is 

sufficiently large [13]. After each iteration of the comparison, Alice and Bob reorder their blocks in the 

same predetermined random order. The more cascade interactions, the higher the probability the keys match 

perfectly. Because the comparison must be done over a public channel (there being no securely encrypted 

channel yet), some information about the key must be considered compromised (acquired by Eve). For this 

reason, the final step in the key exchange process is known as privacy amplification.  

Privacy amplification entails reduction of the secret key by way of universal hashing, wherein a 

random selection is made from a family of hash functions. The hash function will reduce the key in the 

same way for both Alice and Bob, to a length chosen by them based on the known amount of error imparted 

by Eve. Once complete, the information Eve has on the new key is negligibly low. The key can now 

confidently be used to encrypt messages between Alice and Bob, using an encryption scheme of their 

choice.  

Contrasting this protocol, we next look at Gaussian-modulated coherent state QKD and its 

successor, discrete Gaussian-modulated QKD. After this, work towards experimental realization of the 

latter is presented, along with characterization results of the fiber interferometer system on which 

development was based.  
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1.6 GMCS and DGM CV-QKD 

 

Gaussian-modulated coherent state (GMCS) QKD uses strongly attenuated laser light rather than 

single photon generation, provided the source laser has a sufficiently narrow linewidth. Because of noise in 

detection, a LO signal is also needed, meaning the overall detection power is greater, and cheaper detectors 

can be used. This protocol will now be briefly summarized.  

The first step of GMCS QKD is the random generation of modulation quadrature values from a 

complex Gaussian distribution with a known variance. As before, Alice imparts these values on a signal 

pulse, creating a known coherent quantum state, and sends the pulse to Bob. Bob measures either the phase 

or amplitude of the pulse, by random choice, obtaining partial information on the state. He sends his choice 

of basis for the measurement to Alice over an unsecured (public) channel. This process is repeated, and 

Alice discards the data from those states which Bob measures in a different basis than the one in which she 

prepared the state. This process is termed “sifting,” as the two parties have sifted the useless data out of 

their collections, arriving at a shared key.  

Next comes “parameter estimation,” wherein the parties use a portion of their shared key to estimate 

the quantum bit error rate (QBER), the ratio of the bits that Bob incorrectly decoded to the total bits sent. 

This metric is used to calculate the maximum amount of information which could be obtained by Eve. If 

the QBER is too high, the risk of information leakage to Eve is significant and the protocol is aborted. The 

process concludes with information reconciliation and privacy amplification, which occur just as outlined 

in the previous section for SR CV-QKD.  

Building on the GMCS process just summarized, the explanation of DGM CV-QKD is 

straightforward. As before, the coherent states are modulated in phase and amplitude according to a random 

value from a complex Gaussian distribution. Considering the distribution to be ideally continuous enabled 

theoretical work including proofs of security and figures of merit such as the rate of secret key generation 

and the amount of information an eavesdropper can acquire. However, actual Gaussian modulation is highly 
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demanding on Alice’s random number source and demands computationally cumbersome error correction 

schemes. Of course, realization of a true Gaussian distribution is also not possible; any physical system is 

limited by the finite extinction ratio of the modulator. Given that the security proofs are based on true 

Gaussians, the security of the protocol comes into question. To resolve these challenges, DGM CV-QKD 

is defined by the drawing of modulation values from a discrete Gaussian distribution. This allows for 

efficient error correction coding and lighter-weight random number generation, without sacrificing the 

practical benefits of ordinary CV-QKD [17]. In essence, this is possible when the discretized Gaussian 

distribution has fine enough increments that, near the shot noise limit, it cannot be easily distinguished from 

a genuine Gaussian. The only missing piece for DGM to be a viable path forward was a healthy foundation 

of security proofs. In recent years, several have been presented, such as those in [18], [19] and [20].  

The particular DGM QKD protocol presented in [17] is the ultimate goal of the work summarized 

in the first two chapters of this thesis. Again, the idea is to select sufficiently many coherent states, packed 

around the origin in phase space, as well as a probability distribution across them, such that the aggregate 

of the states across the distribution resembles a thermal state (a Gaussian distribution), as theorized in 

GMCS.  

This protocol has been shown to be secure only against collective attacks, wherein Eve manipulates 

and possibly measures some number of the quantum systems transmitted from Alice to Bob, performing 

each manipulation/measurement independent of the others, and in the same fashion. In this class of attacks 

Eve can also store any quantum information she gathers from her manipulations for an arbitrarily long time, 

and can use it to inform her measurement techniques. Contrasted with the above, greater security is achieved 

when a protocol is impervious to coherent attacks (also called general attacks), wherein Eve has a great 

number of possible strategies at her disposal, such as entangling any of the transmitted quantum systems, 

and can continuously alter her approach as more information is obtained. In depth discussion of these 

attacks and their differences can be found in [31].  

The DGM protocol as detailed in [17] will now be outlined. It begins with the preparation of 

coherent states by Alice, each defined by a complex number 𝛼𝑥 that corresponds to a natural number 𝑥 
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belonging to the set of outcomes of a Gaussian random variable, 𝑋, with a mean of zero and a variance 𝑁𝑆. 

This set of outcomes are the integers from 1 to the chosen number of coherent states used in the protocol, 

𝑚2, where 𝑚 ∈ ℕ is chosen in advance. The probability function for 𝑥 is denoted by 𝑟(𝑥), and is such that 

the aggregate of the measurements of Alice’s coherent states will appear as a thermal state with 𝑁𝑆 mean 

photons.  

Alice records the present value of 𝑥 as 𝑥𝑗, where 𝑗 denotes the current transmission round out of 

the total number performed, 𝑛. Additionally, Alice records the real and imaginary parts of her coherent state 

(with a factor of √2) in variables indexed by transmission round, as before:  

𝑞𝑗 = √2𝑅𝑒{𝛼𝑥}      (1.6.1) 

𝑝𝑗 = √2𝐼𝑚{𝛼𝑥}      (1.6.2) 

Next, Alice chooses a random phase value, 𝜙𝑗 ∈ {0,
𝜋

2
, 𝜋,

3𝜋

2
} and applies the corresponding phase shift to 

her coherent state via the unitary operator 𝑒−𝑖𝑛̂𝜙𝑗, making the state |𝛼𝑥𝑒
−𝑖𝜙𝑗⟩. Again, in the lab this is 

accomplished using a typical phase modulator. Alice now sends her state to Bob over the quantum channel 

(which at this point has not been characterized) as well as classical information (over a public but 

authenticated classical channel) describing the phase shift she applied. She then erases her record of the 

phase value.  

Eve is assumed to have control of the quantum channel, which is considered unsecured. Also 

assumed is that all transmissions from Alice to Bob are made with independent and identical uses of the 

channel, of which the two have no knowledge when the protocol starts. Further, the finiteness of the mean 

photon number of the input states is assumed to imply the finiteness both of the mean energy of Eve’s states 

and of the mean photon number of the output states. These and the additional assumptions made are detailed 

in [17].  

Upon receipt of the coherent state, Bob reverses the phase using the provided phase information, 

then discards the information as Alice did. This “phase symmetrization” eases the coming process of 
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channel estimation. The final state is now the original modified only by the channel. For the implementation 

pursued in this work, Bob performs homodyne measurement on each received state, acquiring information 

on the real quadrature and storing it in a variable 𝑦𝑗
𝑞
. Meanwhile, Alice has the corresponding value 𝑞𝑗 for 

each round. The procedure so far described (a single “round”) is repeated a large number of times, 𝑛, as 

mentioned before.  

 A constant and small percentage of the total rounds, denoted 𝛿, is next used to perform channel 

estimation (estimations of certain parameters of the quantum channel). In the relevant case of homodyne 

detection, there are three estimated parameters calculated in these 𝛿𝑛 rounds:  

𝛾11 ≡
1

𝛿𝑛
∑(𝑞𝑗 − 𝑞̅)

2
𝛿𝑛

𝑗=1

 

𝛾12 ≡
1

𝛿𝑛
∑(𝑞𝑗 − 𝑞̅)(𝑦𝑗

𝑞
− 𝑦̅)

𝛿𝑛

𝑗=1

 

𝛾22 ≡
1

𝛿𝑛
∑(𝑦𝑗

𝑞
− 𝑦̅)

2
𝛿𝑛

𝑗=1

, 

with   

𝑞̅ ≡
1

𝛿𝑛
∑𝑞𝑗

𝛿𝑛

𝑗=1

 

and 

𝑦̅ ≡
1

𝛿𝑛
∑𝑦𝑗

𝑞

𝛿𝑛

𝑗=1

. 

 

Given the data that each party has, as outlined previously, it is clear that the first and last of the 

parameters above can be calculated by Alice and Bob, respectively, without any exchange of information 

between them. Parameter 𝛾12 requires data from both parties, so Bob shares his 𝑦𝑗 data across the public 

authenticated classical channel. Also shared across the classical channel are the values of the parameters 

(1.6.3) 

(1.6.4) 

(1.6.5) 

(1.6.6) 

(1.6.7) 
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themselves. This incarnation of DGM QKD is executed without the sifting step that was described for 

GMCS.  

 To determine whether the protocol is secure, Alice and Bob can upper-bound the amount of 

information Eve might distill from their communication by calculating her Holevo bound, 𝜒𝐸𝑣𝑒 :  

𝜒𝐸𝑣𝑒 = 𝑔(𝑣1) + 𝑔(𝑣2) − 𝑔(𝑣3),    (1.6.8) 

where the function 𝑔 above is defined:  

𝑔(𝑥) = (𝑥 + 1) 𝑙𝑜𝑔2(𝑥 + 1) − 𝑥𝑙𝑜𝑔2𝑥    (1.6.9) 

and  

𝑣1 = 𝛾11 + 1,       (1.6.10) 

𝑣2 = 𝛾22 ± 𝜀1,       (1.6.11) 

𝑣3 = (𝛾11 + 1) (𝛾11 −
𝛾11+2

𝛾11𝛾22
(𝛾12 ± 𝜀2)

2).     (1.6.12) 

In the above, the 𝜀 terms are errors introduced by the discrete approximation of a Gaussian function. With 

finer discretization, correspondingly more constellation points and fewer mean photons, these errors 

decrease and the Holevo bound for Eve approaches that seen in the GMCS protocol. Combining the above 

expressions yields the cumbersome:  

𝜒𝐸𝑣𝑒 = ((𝛾11 + 1) + 1) 𝑙𝑜𝑔2((𝛾11 + 1) + 1) − (𝛾11 + 1)𝑙𝑜𝑔2(𝛾11 + 1) + ((𝛾22 ± 𝜀1) +

1) 𝑙𝑜𝑔2((𝛾22 ± 𝜀1) + 1) − (𝛾22 ± 𝜀1)𝑙𝑜𝑔2(𝛾22 ± 𝜀1) − (((𝛾11 + 1) (𝛾11 −
𝛾11+2

𝛾11 𝛾22
 (𝛾12 ± 𝜀2 )

2 ) +

1) 𝑙𝑜𝑔2 (((𝛾11 + 1) (𝛾11 −
𝛾11+2

𝛾11 𝛾22
 (𝛾12 ± 𝜀2 )

2 )) + 1) − (𝛾11 + 1) (𝛾11 −
𝛾11+2

𝛾11 𝛾22
 (𝛾12 ±

𝜀2 )
2 ) 𝑙𝑜𝑔2(𝛾11 + 1) (𝛾11 −

𝛾11+2

𝛾11 𝛾22
 (𝛾12 ± 𝜀2 )

2 ))    (1.6.13) 

Alice and Bob can now use their signal-to-noise ratio (SNR) to determine the mutual information 

between them, given by: 
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𝐼𝐴𝐵 =
1

2
log2(1 + 𝑆𝑁𝑅)     (1.6.14) 

SNR here is determined using the transmittance of the channel, 𝑇, and the excess noise, 𝜉, which is the sum 

of all noise in the system that is relevant to homodyne detection and QKD, explained further in Section 2.1. 

These quantities can be determined using the channel parameters formulated above:  

𝑇 =
𝛾12
2

𝑁𝑆
2+2𝑁𝑆

      (1.6.15) 

𝜉 = 𝛾22 − 𝑇𝑁𝑆 − 1     (1.6.16) 

Also a factor in the SNR is the variance of the Gaussian random variable used by Alice to create her states 

(which is also the mean photon number of the intended aggregate thermal state), 𝑁𝑆. Altogether this gives:  

𝑆𝑁𝑅 =
𝑇𝑁𝑆

1+𝜉
=

(
𝛾12
2

𝑁𝑆
2+2𝑁𝑆

)𝑁𝑆

1+(𝛾22−𝑇𝑁𝑆−1)
     (1.6.17) 

Yielding for the mutual information between Alice and Bob from Eqn. 1.6.14, 

𝐼𝐴𝐵 =
1

2
log2(1 +

(
𝛾12
2

𝑁𝑆
2+2𝑁𝑆

)𝑁𝑆

1+(𝛾22−𝑇𝑁𝑆−1)
)   (1.6.18) 

This finally allows for calculation of the secret key rate, 𝐾, with the rate of transmitted symbols, 𝑓𝑠𝑦𝑚, and 

a post-processing efficiency, 𝛽:  

𝐾 = 𝑓𝑠𝑦𝑚(1 − 𝛿)(𝛽𝐼𝐴𝐵 − 𝜒𝐸𝑣𝑒)    (1.6.19) 

= 𝑓𝑠𝑦𝑚(1 − 𝛿)

(

 
 𝛽

2
log2

(

 
 
1+

(
𝛾12
2

𝑁𝑆
2 + 2𝑁𝑆

)𝑁𝑆

1 + (𝛾22 − 𝑇𝑁𝑆 − 1)

)

 
 
− 𝜒𝐸𝑣𝑒

)

 
 

 

Note the reappearance of 𝛿, the percentage of the total transmission rounds (symbols) used for channel 

estimation. Also note that 𝜒𝐸𝑣𝑒 is not expanded, which would make the expression considerably larger.  

As in GMCS QKD, if Eve’s Holevo bound exceeds the mutual information between Alice and Bob, 

the protocol cannot be considered secure and would be aborted. After this, the constituent data (𝑥𝑗, 𝑞𝑗, 𝑝𝑗 

and 𝑦𝑗
𝑞
) used in the 𝛿𝑛 channel estimation rounds are erased (for security or to free computational resources, 
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or both). The remaining values of these data (those not used for the parameter calculations) go towards 

generating the actual secure key that is the purpose of the protocol, at the rate determined above.  

The protocol concludes with information reconciliation carried out by Alice using the data sent by 

Bob (called “reverse” reconciliation, as opposed to “direct” reconciliation, wherein Bob uses data sent by 

Alice). Error correction methods are applied, followed by privacy amplification. Once again, these steps 

are performed as detailed in Section 1.5.  

Now having laid a theoretical foundation for homodyne detection and DGM QKD, we proceed to 

the work towards experimental realization of the DGM protocol and characterization of the system on which 

the work was based.  
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2 | Towards Experimental Realization of DGM QKD 

2.1 The Fiber Interferometer and Sources of Noise 

 

 In an optical interferometer, coherent electromagnetic radiation is split into two or more beams that 

travel down different paths. One path takes its beam through a medium to be investigated or some other 

alteration, such as a modulation, information about which can then be extracted upon recombination of the 

beams. In free space, the splitting and recombination is accomplished by a partially reflective mirror, or 

beamsplitter. In fiber-based systems like the one to be discussed in this thesis, the same is accomplished 

with a fiber coupler.  

 The particular fiber interferometer used here has as its source a 1550 nanometer semiconductor 

laser with 50 kilohertz linewidth and a power of two milliwatts (Clarity NLL-1550-LP). The laser beam is 

immediately coupled into polarization-maintaining (PM) fiber and carved into fixed 10-nanosecond pulses 

by an intensity modulator (EOSpace AX-65S-10-PFAP-R5) which receives its 25-megahertz signal from 

an arbitrary waveform generator (AWG). The pulsed beam is then split evenly by a PM fiber beamsplitter 

into the signal and local oscillator arms.  

The pulses in the signal arm are attenuated to the amplitude of a given coherent state using a 

variable fiber attenuator. In a real-world use case, this would be done by a software-controlled intensity 

modulator so that Alice’s QKD program could rapidly attenuate the signal to a needed amplitude. At this 

point, the two signals are recombined using another balanced PM fiber beamsplitter. The combined signal 

is coupled to a homodyne detector (Thorlabs PDB425C) whose output is recorded by an oscilloscope.  

A schematic of the system in a simplified test configuration is shown in Fig. 3. The full QKD-

capable system will have two input arms from the source, and will contain several additional components, 

including a bias voltage controller for an intensity modulator on the signal arm before first combination, 

followed by a variable attenuator. On the LO arm after first combination will be another controllable 
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intensity modulator, as well as a phase modulator. Synchronized AWGs will control these along with three 

switches, one just after the source, and the other two at each output arm. Additionally, the full system will 

include the phase stabilization accessory presented in the following section.  

 

 

Fig. 3: Schematic drawing of the interferometer system in a simplified configuration of the final system 

which was used to collect data representative of actual coherent states that would be used in QKD. 

“AWG” is an arbitrary waveform generator and “IM” is the intensity modulator that it controls.  

 

The phase of the radiation traversing both arms of the interferometer drift with respect to one 

another as a result of environmental noise, “phase” here meaning the positions of the signal and reference 

pulses with respect to one another, as determined by their detection times. For homodyne detection (and 

many applications), these phases must be continuously synchronized, else the interference of the two signals 

would produce inconsistent amplitude measurements and data transmission would be unfeasible. Hence, 

the noise sources must be suppressed for homodyne detection and QKD to be a possibility.  

The largest and most easily mitigated of these noise sources are temperature and vibration at the 

room level. To obtain some degree of isolation from these noise sources, the interferometer’s beamsplitters 

along with both arms of the fiber between them are housed in a cardboard enclosure filled with thermal 
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insulation and a heating element. The heating element includes a thermometer whose signal feeds into a 

control loop which adjusts the element’s heat output to maintain a set temperature.  

Although the fiber path lengths are matched as best as possible, small differences in their length 

result in additional, asymmetric noise; even when both lengths are in the temperature-controlled 

environment, the extra material in the longer fiber experiences additional noise not present in the shorter 

length. So, while the temperature control loop and insulation provide isolation from the larger magnitude 

noise, more precision and speed are needed to compensate for the remaining, smaller and faster fluctuations. 

This is where the need arises for an active control loop at the fiber level, the solution for which is outlined 

in the following section.  

There are several other sources of noise in this system, as with any real-world system. The sum of 

those sources of noise which are relevant to homodyne detection and QKD is commonly referred to as the 

excess noise, mentioned throughout earlier sections. The excess noise relates to the quadrature operators 

discussed in the first chapter by describing their variance in shot noise units. Though not all of these noise 

sources were addressed in the work comprising this thesis, they were considered and are worth briefly 

touching upon before moving on to the solution for the fiber noise mentioned above. An extensive 

characterization of all components of the excess noise is given by [16].  

The first notable component of the excess noise to consider is the power fluctuation of the source 

laser. This is quantified by taking the ratio of the power spectral density of the noise signal (the signal with 

its mean subtracted) to the square of its average optical power. The power spectral density of the noise can 

be determined by Fourier transforming the signal’s autocorrelation. An analysis similar to this was applied 

to Microsoft optical network data, as mentioned in a later section. The laser power ratio as defined above 

is termed the relative intensity noise (RIN). For the output of the optical channel, the term describing the 

contribution to the excess noise of the RIN of the laser is found to be:  

𝑉𝑚𝑜𝑑𝑇√𝑅𝐼𝑁 𝐵,     (2.1.1) 
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where 𝑉𝑚𝑜𝑑 in the above is the modulation variance of the quadrature operators 𝑞̂ and 𝑝̂, 𝑇 is the channel 

transmittance and 𝐵 is the laser bandwidth.  

 Next, there is the relative intensity noise of the local oscillator. As we saw in Eqn. 1.4.18, the 

number-difference operator for the beamsplitter outputs scales with the local oscillator amplitude, so drift 

in LO power will naturally affect the excess noise and the variance of the quadrature components. The 

contribution of the LO RIN to the total excess noise is found to be proportional to the product of this RIN, 

the laser bandwidth, and the variance of the 𝑞̂ quadrature with the LO RIN excluded:  

1

4
𝑅𝐼𝑁𝐿𝑂𝐵 𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑅𝐼𝑁𝐿𝑂(𝑞̂)    (2.1.2) 

 Beyond these noise contributors, there is also noise introduced by the modulation which Alice 

performs on the coherent states, dubbed modulation noise. As an example, for a quadrature phase shift 

keying scheme, this noise is found to be a function of the transmittance, the voltage generated by an 

analogue-to-digital converter or arbitrary waveform generator, and the modulation variance of the 

quadratures, as given above. This modulation noise scales with a given deviation from the setpoint in the 

modulation voltage, and inversely with the setpoint itself [16].  

 There is also phase noise in the signal and LO lasers. In general, this can be compensated for by 

sending a strong reference signal, separate from the signal and LO laser signals. Excess noise is also 

introduced by a low common-mode rejection ratio (CMRR). In homodyne detection, two balanced 

photodiodes convert incident optical energy into electrical currents. The difference in the currents from 

each is proportional to the quadrature of the optical signal. To measure this difference, an amplifier converts 

the currents into a voltage by applying a transimpedance gain. The CMRR describes the ratio of this 

transimpedance gain as it is applied to the differential current (the difference of the two) and the common-

mode current (the average of the two). The excess noise introduced by this dynamic scales with the inverse 

square of the CMRR, so it is desirable to maximize the latter [16].  

 Detection noise contributes to the total excess noise of the system as well. Its contribution scales 

with the square of the noise-equivalent power, which can be reduced in practice by increasing the power of 
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the LO. For homodyne detection, the excess noise introduced here is half of what it is for heterodyne 

detection, where two analogue-to-digital converters are used [16]. Finally, analogue-to-digital quantization 

excess noise arises from the voltage outputted by Bob’s receiver. This can be mitigated by oversampling 

the signal and/or strategically applying noise before the conversion (dithering).  
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2.2 Active Phase Stabilization 

 

 To maintain path length balance between the two arms of the fiber interferometer, the fiber in the 

LO arm was wound around a piezoelectric ring and glued to prevent slippage. The ring expands and 

contracts in proportion to an applied voltage, causing the wound fiber to be subtly stretched or relaxed.  

This allowed for active matching of the path lengths between the two arms, mediated by a control loop 

program that was implemented with a commercially available Red Pitaya FPGA. Feeding into the control 

loop code, described in detail below, was the amplitude of the signal outputted by a photodiode at the end 

of the interferometer. For the purposes of testing this phase stabilization, a simpler single-output photodiode 

rather than an actual homodyne detector was used.  

The Red Pitaya was configured to use the minimum sample decimation, yielding a sample period 

of just over 131 microseconds at a sampling rate of 125 million points per second, amounting to just over 

sixteen thousand points per loop. The laser source for the full SR QKD system would be pulsed at 

frequencies of at least one megahertz, so this pulse rate was used for this initial testing stage. With a 50% 

duty cycle, this yielded 500-nanosecond wide pulses. Hence, each data collection event traced 

approximately 131 pulses out of the sixteen-thousand or so points.  

Much deliberation went into the design of the control loop program, written in Python. The primary 

concern was how to obtain a mean which was representative of the actual optical power carried by the 

pulses comprising the signal. Many revisions of code were experimented with, until a parameterized rolling 

average was settled on. A threshold signal value was determined by experimental trial and error before each 

run; the variance in the “on” region of each pulse was such that a threshold value too high would cause 

many values to be neglected from the rolling average, causing it to be misrepresentative of the real signal 

magnitude. If the threshold were set too low, the rolling average would be weighed down by the “off” 

portions of the input segment.  
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Once a sensible threshold was determined it was hardcoded into the script. Upon execution, the 

rolling average would be taken for the first input segment for which 90% or more of the data points were 

above the threshold. From then on, the average would be updated for similarly qualifying segments, or else 

remain unchanged.  

After executing the formulation above in each loop, the script would pass the latest rolling mean 

value to a proportional-integral-derivative (PID) controller function. One of the many freely available 

online examples was modified, where the error signal was given by the difference between the most recent 

signal mean and a specified setpoint voltage. This setpoint was determined by performing a calibration step 

before a given run. To achieve this calibration, a second Python script was authored which swept the output 

voltage of the Red Pitaya thought a one-volt sine wave. This voltage, physically passed through to the 

piezoelectric ring, as before, took the interferometer arms smoothly in and out of phase. The resulting signal 

was inspected to confirm this response. More importantly, this calibration was used to determine the optimal 

voltage setpoint, the value for which is hardcoded into the control loop script. Given that the physical 

environment of the interferometer could change from one day to the next, it was prudent to perform the 

calibration before any other testing.  

The optimal setpoint was determined by taking the average of the output sine wave produced by 

the board’s photodetector as a result of the voltage sweep. The midpoint of the sine wave is the optimal 

setpoint, because this gives maximum flexibility for the control script; the more room it has, voltage-wise, 

the larger adjustments it can make at a given time to the piezoelectric ring to keep the interferometer arms 

in phase. Using the midpoint also reduces the chance that the control loop gets stranded; the environment 

may cause a path difference and error signal which demands the ring be expanded or contracted, but if the 

board is already outputting its maximum or minimum voltage, the adjustment cannot be maintained. In this 

failure mode, the path lengths remain mismatched, perhaps for quite a while. There is a chance that stability 

is regained, but with little room to make changes without becoming stranded once more. Setting the target 

voltage at that which corresponded to the midpoint of the calibration sine wave minimizes this possibility.  
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Though simple in concept, two unexpected challenges were encountered in implementing the 

control loop program onto the Red Pitaya. First, importing Python dependencies was found to be untenable 

on the university network due to unknown and immutable security protocols. This was resolved by simply 

taking the device off-campus and downloading the dependencies on an unaffiliated network. Second and 

more challenging was the data sampling speed bottleneck. Python was executed on the Red Pitaya by 

sending the code to a host PC, because the board itself cannot compile Python. This caused each instance 

of reading from the signal input register to be delayed by hundreds of milliseconds. Naturally, an update 

time of only a few Hertz is inadequate. After much deliberation with Red Pitaya support proved 

unsuccessful, it was discovered that the latency could be reduced by reading only a portion of the input 

signal register. Enough points were collected to be representative of the current signal power so that an 

accurate error signal could be calculated for the PID function.  

With the photodiode data now reading in more quickly, the PID error signal was updated more 

often. This value was passed on to one of the board’s analogue output ports and connected to a high-voltage 

amplifier, itself connected to the piezoelectric ring. A schematic of the system in this configuration, which 

is a reduced version of the envisioned complete QKD system, is given in Fig. 4.  

 

Fig. 4: Schematic drawing of the interferometer system in a simplified configuration to test the 

effectiveness of the Red Pitaya stabilization routine.  
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2.3 Evaluation of Phase Stabilization 

 

 Power measurements at the interferometer output were collected over a half-hour period with the 

Red Pitaya phase stabilization routine running. Rather than the difference signal from the homodyne 

detector, an independent, low-noise photodiode was used for this testing. To assess the performance of the 

phase stabilization control loop, the resulting data were compared against those from a trial without the 

routine running. Visible in the latter case is the natural, random drift in power that results from the ambient 

temperature fluctuations inside the interferometer box. These fluctuations result in differing path lengths in 

each arm, causing random phase differences that result in variability in the interference of the two signals 

at the detector, and hence in the overall signal power. The results of the two trials are shown in Fig. 5. The 

standard deviation of the stabilized signal on the right side of the figure is 793 microvolts, yielding a 

variance of 6.288e-7 square volts. In practice, this variance of the phase-locked signal would be converted 

to a phase variance by finding its ratio to the signal range resulting from a complete pi phase sweep. While 

greater performance and loop speed would be preferable, it was concluded that the control loop performance 

was sufficient for the immediate future while the system was in development.  
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Fig. 5: Plots of the output voltage from the photodetector at the end of the fiber interferometer, as 

recorded by the Red Pitaya over approximately a half hour. The board collects several thousand signal 

values for each sample event. Each plotted point is the modified rolling average of these values, as 

determined by the Python script discussed above which continuously runs on the board. The left plot 

shows the signal without the control loop script running, showing the slow, random power drift that 

results from path differences in the arms of interferometer caused by ambient temperature fluctuations. 

The right plot shows the signal with the control script running for a setpoint of 30mV. The stable output 

power is visible, indicating that optical paths in the two fiber arms are being kept in phase.  
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2.4 Collection of Test Data 

 

Tests were run to assess the system’s ability to transmit coherent states of a given phase and 

amplitude, as determined by Alice, as well as to estimate the secure key rate of the system if actual DGM 

QKD were performed. The procedure of these tests is outlined here, and one of the plots recorded during 

testing is shown and discussed. Full results and further discussions are presented in [21].  

To accomplish the aforesaid assessment of the system, many trials were performed wherein sample 

data was sent through a simplified configuration of the system, schematic of which is shown in Fig. 3. This 

simplified configuration of the system did not include the Red Pitaya phase stabilization, as this would 

require software development allowing for the control of added switches in the network to prevent cross 

contamination of the signal and local oscillator pulses. For each test trial, the input signal was pulsed at 25 

MHz and directed through the optical attenuator in the usual fashion, with the degree of attenuation 

calculated and set to realize a multiple of the target mean photon number of a given set of constellation 

points; a scaled value of amplitude was necessary because the current system is too noisy to reliably 

measure the very low photon numbers needed for actual implementation.  

The states targeted corresponded to points on a 4x4 example constellation. For a given sweep, data 

was collected over time, where each datum was the mean value of a signal trace recorded at an oscilloscope 

connected to the homodyne detector. Each of the traces spanned one microsecond, and so contained 25 

pulses. The traces were saved as quickly as possible, averaging one to two saves per second. Once a set was 

collected, it transcribed a sine wave as the interferometer arms cycled in and out of phase. Points in the 

recorded data were chosen whose phase in the overall sine wave matched the phases of the points in the 

test constellation. This allowed for identification of the subset of the saved traces which corresponded to 

constellation points. Hence, over a large number of trials, recorded traces corresponding to the selected 

constellation points could be confidently identified, and estimations of the secret key rate could be made. 
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Work towards the latter is presented in [21], as well as one of these phase sweep test plots, shown here in 

Fig. 6 with permission from the author.  

To sweep the phase for these tests, using an optical phase modulator or the Red Pitaya and 

piezoelectric ring would introduce additional noise and other electrical considerations. Hence, for practical 

ease the phase was instead swept through its range by way of natural temperature equilibration. By toggling 

the temperature control loop either on or off, the temperature in the box moves to equilibrium dictated by 

the controller set point or room temperature. As the temperature drifts, the fiber arms of the interferometer 

change in length with respect to one another, as discussed previously. Hence, as the temperature changes 

in either direction, a phase offset is induced, producing a signal plot that varies just as if the phase were 

swept with a modulator. Visible in the plot in Fig. 6 is a gradual decrease in the frequency of the sine wave. 

This is the result of the interferometer fibers reaching temperature equilibrium in the box. As this happens, 

the temperature changes more slowly, as does the difference in length between the fibers, and so the phase 

cycles less quickly.  

Also of note in the plot is the gradual drift of the overall signal envelope. This was determined to 

be caused by faulty electronics within the homodyne detector. This drift would make practical QKD 

untenable, as without a stable reference amplitude, phase values could not be reliably measured. In some 

cases, this drift was severe enough to impact testing. While a replacement detector was pursued, a 

compensating algorithm was developed in Matlab to subtract away the drift by mapping the local suprema 

of the plotted data to a known and steady sine function. Details and results of this work are presented in 

[21].  
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Fig. 6: Plot of oscilloscope trace means from the output difference voltage of the homodyne 

detector, as presented in [21] and used with permission from the author. Visible is the slowing change in 

phase as a result of temperature equilibration, as well as the slow overall drift resulting from imperfect 

electronics internal to the homodyne detector. The data here is from a trial with a local oscillator signal 

power of 18 microwatts and a data signal power of 9 nanowatts. The amplitude corresponds to 

approximately 2800 photons. 
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2.5 Discussion and Future Work 

 

 The Red Pitaya supports compilation of C programs to the FPGA itself, such that increasing 

execution and read speeds can be realized. Due to the absence of a programmer knowledgeable in C, the 

phase stabilization script was based in Python, which is executed on the Red Pitaya by way of SCPI 

(Standard Commands for Programmable Instrumentation). This approach is believed to be the cause of the 

latency in the control loop, so future implementations of this QKD setup could have a faster control loop 

by rewriting the code in C. For the work done here, it was not a simple matter of finding an open-source C-

based PID control loop online, as other alterations were needed, as discussed previously.  

 The design of the control loop script is also open tor revision. The development of the program in 

its current state was the result of improvisation and engineering judgement and could very likely be 

improved with further attention. Determination of the rolling average threshold could be changed or 

automated using, for instance, measurement of a segment’s variance (or the variance above yet another 

threshold, which could safely be the midpoint of the overall pulse train). The 90% majority condition for 

the rolling average could be optimized experimentally. Indeed, the entire rolling average concept itself 

could be rethought.  

 Though a slight digression, it is worth noting that the use of temperature equilibration for phase 

sweeping reveals an opportunity for system diagnostics. With a known starting temperature (from the 

temperature control box) and known ambient temperature, a phase sweep signal plot such as the one 

presented here could be used to draw conclusions about the present temperature of the interferometer 

enclosure. For instance, the slowing frequency of the outputted sine wave could be plotted against time and 

contrasted with a theoretical temperature equilibration curve. The two would likely have a high degree of 

correlation. Hence, the current temperature of the enclosure could be estimated without the use of a 

thermometer using only the outputted signal plot and the two bounding temperatures.  
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Towards realization of true homodyne detection (as precluded by the electronic drift mentioned in 

the previous section) two “homemade” balanced homodyne detectors were procured. These were printed 

circuit boards fitted with various electronic components and photodetectors. Several alterations were 

needed to achieve working operation, including severing, re-soldering and replacement of certain 

components and connections. Although the boards are prepared, more precise and expensive photodiodes 

will ultimately need to be equipped for measurements of sufficient precision to be made.  
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3 | Simulated Covert Communication 

3.1 Introduction and Basic Theory 

 

 In communication, covertness is a strategy adjacent to cryptography and secure key distribution. It 

refers to concealment of the fact of communication itself, independent of the security of the data which is 

communicated. The essence of covertness is the reduction of the power of transmission according to the 

noise in a channel, such that the message signals are indistinguishable from the noise, except by the intended 

receiver, Bob, who has a pre-shared secret with the sender, Alice. In place of Eve, the adversarial party in 

this dynamic is characterized as a warden, who seeks only (at a minimum) to detect the act of transmission 

by Alice. This warden is commonly given the name Willie. Notably, a pre-shared secret between Alice and 

Bob is not necessary when Alice’s channel to Bob is better than her channel to Willie, as discussed and 

proved in [32].  

 

Fig. 7: Schematic drawing of the covert communication setup. Alice transmits to Bob at a power, 𝑃𝐴, a 

proportion 𝜂 of which makes it to Bob, with the remainder collected by Willie (for this work via an optical 

tap). Additive white Gaussian noise (AWGN) is on each of the channels with power 𝜎𝐵
2 for Bob and 𝜎𝑊

2  

for Willie. Willie’s task is to classify his observations as either purely AWGN or transmissions from Alice 

corrupted by AWGN. 
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To communicate covertly with Bob, Alice sends a transmission with some number of time slots 

that are, in general, either occupied by an optical pulse or not. It is desirable for her to send as many filled 

slots as possible to transmit a higher number of bits in a given amount of time. To maximize the number of 

pulses sent while maintaining covertness from Willie, Alice has two options. For increasing numbers of 

available slots per transmission, she can either: maintain a constant transmission power but use a decreasing 

fraction of the available slots (with occupied positions randomly determined), or she can occupy all of the 

slots but continually decrease the power. We call these two methods “sparse coding” and “power control,” 

respectively, and a diagram illustrating them is shown in Fig. 8. It has been shown that for communication, 

either of these methods afford Alice covert transmission of 𝑂(√𝑛) bits to Bob, where 𝑛 is the number of 

slots, or channel uses. This behavior is the “Square Root Law” [25, 26]. In this work, it is assumed Alice 

employs the “power control” method, decreasing her power for increasing channel uses, but always using 

all available slots.  

In communication theory, “channel uses” refers to the number of optical modes in a transmission 

burst, whether these modes are spatial, temporal or polarization based (or any combination of these). The 

capacity of a channel is typically measured in bits per channel use. In the simulation, described in the next 

section, only single mode fiber is realized and there is no notion of polarization. Hence the channel uses in 

this case are reduced to meaning the number of pulses (temporal modes) which would be used in an actual 

transmission. However, to maintain generality, the term of choice will still be “channel uses” or simply 

“uses.”  
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Fig. 8: Diagram illustrating Alice’s two methods for achieving covert transmission, as prescribed by the 

Square Root Law. The height of the blue pulses indicates their relative power. In the first option, “sparse 

coding,” time slots are occupied less for greater numbers of uses in Alice’s transmissions. In the second 

option, “power control,” Alice fills all available time slots, but decreases overall power as the number of 

channel uses increases. 

 

This chapter will summarize a simulated covert communication link between Alice and Bob, with 

warden Willie. The emulator on which the simulation is founded will be discussed, as well as the design of 

the simulation program itself and its many capabilities. Among these capabilities is the primary task of 

Alice: to determine the optimal power to transmit with to remain undetected, while still relaying a useful 

amount of information to Bob. Preliminary work towards determination of a realistic network noise model 

was done using Microsoft optical network backbone data. Results from this exploration will be presented. 

Finally, the many opportunities for expansion and future work will be discussed.  
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3.2 Mininet Optical and Simulation Structure 

 

 Mininet is a virtual network emulator under active development [24]. Based in the Linux operating 

system, a virtual network in Mininet consists of emulated hosts, switches and links. Mininet Optical (MO) 

is an extension to Mininet which allows for the simulation and emulation of optical networks [25]. These 

virtual networks include virtual fiber spans, amplifiers, reconfigurable optical add-drop multiplexers 

(ROADMs), transceivers and splitters. Realistic physical models of noise and signal propagation are built 

into MO. For the ROADMs these models cover insertion loss, channel power leveling and wavelength-

dependent attenuation. The amplifier elements are built on models for linear and wavelength-dependent 

gain and automatic gain control, amplified spontaneous emission (ASE) noise power and optical power 

dynamics. Virtual fiber spans include models for dispersion and linear attenuation in fibers, as well as 

stimulated Raman scattering and self-channel and cross-channel interference noise [33]. Measurements can 

be taken at various points in a virtual network to arrive at figures such as the optical signal to noise ratio 

(OSNR), ASE noise power and nonlinear interference power.  

 To investigate covert communication performance across a range of optical network topologies and 

expand Mininet Optical’s capabilities generally, theoretical calculations for covert performance figures 

were built into a network simulation function in Mininet Optical using Mininet's Python application 

programming interface. Ultimately, the goal is to have a realistic general-purpose covert performance 

evaluator which can be run for arbitrary optical network topologies, including recreations of real-world 

networks. The work presented here realizes this goal in a basic sense and is a foundation for further 

development; source code is viewable at [34]. For this early stage of the work, a simple test network was 

made consisting of several elements. The initial version of the simulation program which was expanded to 

create this test network was authored by Bob Lantz of the Mininet team, who also supported the revisions 

and additions made to the program which led to the covert evaluation results presented here [24].  



48 

First in the simulated test network are virtual terminals corresponding to Alice, Bob and Willie, 

which each generate and receive signals in the simulation. However, it should be noted that signal 

propagation is not modelled in a time-evolution sense. Rather, signals are instantiated, and calculations are 

made from one steady-state of the network to the next. As another step towards realism, an additional 

terminal serves as a source of variable background traffic so that covert performance can be evaluated 

across a more or less crowded link. This traffic increases nonlinear interference on the measured channels, 

but this has no effect on the OSNRs, which only take into account the signal and ASE noise powers. 

However, the background traffic does affect the OSNRs in a different way. Every amplifier in MO has a 

wavelength dependent gain. As more channels are incident upon the amplifier, an internal compensation 

algorithm adjusts the gain profile to best accommodate the additional channels. This compensation causes 

a discrepancy between the target gain (which is specified) and the actual applied gain, altering the OSNRs, 

and therefore the covert metrics of interest. Hence, the density and volume of channels on the Alice-to-Bob 

link is one of many parameters which covertness can be tested across. The gain profiles of the amplifiers 

can be altered. Currently, they are set to “linear,” meaning a flat distribution of gain across channels, causing 

only small differences between the target and applied gain.  

The Alice, Bob and background terminals are connected to independent ROADMs, which allow 

(in both reality and Mininet Optical) traffic to be controlled at the wavelength level. The fourth terminal is 

Willie’s and is connected to a virtual optical tap element which draws some power from the Alice-to-Bob 

line, realizing Willie’s role as monitor and warden of the channel. The Alice terminal is connected to a 

ROADM which is configured (by the program) to add her channel to its line output. The ten channels of 

background traffic are added to the same line output at ROADM “r1,” only the central channel is replaced 

by Alice’s. This setting is arbitrary and can be reconfigured at will. The multiplexed signal then proceeds 

through several intermediate ROADMs (with label “_ab” indicating that they are on the Alice-to-Bob line). 

These intermediate ROADMs represent a realistic network which might exist in a real-world scenario. As 

such, the number of these ROADMs, as well as the number, length and gain of the spans between them can 

all be configured as desired. This is part of the primary motivation for this project: to have a general-purpose 
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covert performance evaluator which can be run for arbitrary optical network topologies. The intermediate 

ROADMs end at a final ROADM which drops only Alice’s channel to the Bob terminal, where his OSNR 

for that channel is measured. Finally, there is Willie, who seeks to catch Alice in the act of transmission. 

His position in the simulated network is variable, as in reality, he could be anywhere between Alice and 

Bob. To attempt to detect Alice’s signal, he uses an optical tap, or splitter, an element which gathers some 

of the signal from her channel on the multiplexed line. This element is analogous to (and in a free-space 

scenario identical to) a beamsplitter. In Mininet Optical, the virtual optical tap element was created and 

attached to the Alice-to-Bob line. It routes a specified fraction of the power of Alice’s transmission to 

Willie’s terminal element. Nominally, the remainder of the signal is routed to the next ROADM in the line, 

eventually reaching Bob. This transmitted fraction of the incident power is termed 𝜂 (eta).  But the splitter 

can also be made to attenuate the overall signal by a definable amount to emulate absorption. For instance, 

5% of Alice’s signal power may be received by Willie, but rather than 95% going on to Bob, perhaps only 

90% of the original power remains, emulating 5% absorption loss.  

A function in the simulation code generates a schematic of the current topology, labelling each 

element, including Willie’s tap, along with the spans and amps between them. Also shown are the ports 

used in a given link, as well as the total gain across it. One of these schematics, displaying all of the elements 

and configurations described, is shown in Fig. 9.  
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Fig. 9: Automatically generated topology plot of a covert communication link in Mininet Optical, 

modified here for clarity and compactness. Spans and amplifiers between elements are labelled (though 

boost amplifiers at the beginning of each span are not), as well as the total gain across each link and the 

ports used in the connection. Willie’s tap element, which is repositioned as needed for testing, is visible 

here between the fourth and fifth intermediate ROADMs.  
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3.3 Methods and Measures of Covert Performance 

 

 The primary metric for assessing covert performance across a given simulated topology is the 

number of bits covertly received by Bob and how this quantity scales with the number of pulses in a 

transmission. This is determined by the following, the standard formula for the capacity (in bits), 𝐶, of a 

channel defined by additive white Gaussian noise (AWGN), which is the assumption here:  

𝐶 =  
𝑛

2
𝑙𝑜𝑔2(1 + 𝑂𝑆𝑁𝑅𝐵)    (3.3.1) 

In the above, 𝑛 is again the number of channel uses (pulses) comprising a given transmission burst, while 

𝑂𝑆𝑁𝑅𝐵 refers to the optical signal to noise ratio at Bob’s receiver, per channel use. It also assumed in this 

work that the OSNR at a given receiver is a function of the number of pulses, 𝑛, only by way of their effect 

on Alice’s power as per the Square Root Law. For a channel like the one simulated here which evolves only 

gradually over time, this is a safe assumption.  

The above being said, it must be noted that the simulation in its current state does not have a notion 

of time evolution. When an instance of a simulated network is modified, this is not an update to the network 

which moves it from one time to the next, but rather the creation of a new network at a new steady state. 

Hence, the covertness performance trends against the number of pulses assume that the network conditions 

remain constant. More importantly, the number of pulses on the x-axis do not represent increasing numbers 

of pulses arriving at Bob or Willie over the course of one of Alice’s transmissions. Rather, each value 

reflects a distinct transmission comprised of that number of pulses.  

That is, a given covertness performance parameter is being evaluated against possible transmissions, each 

containing some number of pulses (again, it is assumed that network conditions are constant over the course 

of a transmission, regardless of its length). The program does not send transmissions, virtual or otherwise, 

from one element to the next. Rather, it calculates the results of transmissions if they were to take place.  

 The figure of merit for Alice now established, let us proceed to the adversary, Willie, beginning 

with some more theory. The total variation distance (TV) expresses the maximum difference in probability 
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that two probability distributions assign to the same event. Call these distributions 𝑃0 and 𝑃1, with 

corresponding densities 𝑝0(𝑥) and 𝑝1(𝑥). Then the TV is expressed:  

𝑇𝑉(𝑃0, 𝑃1) =
1

2
∫ |𝑝0(𝑥) − 𝑝1(𝑥)|𝑑𝑥    (3.3.2) 

For a sample space 𝑆 which is countable, the TV is given by half the sum of the differences in the values 

given by the distributions at each point:  

𝑇𝑉 =
1

2
∑ |𝑝0(𝑥) − 𝑝1(𝑥)|𝑥∈𝑆      (3.3.3) 

In the present case, 𝑃0 and 𝑃1 are the probability distributions of Willie’s observations of Alice’s channel 

to Bob when she is and is not transmitting, respectively. The TV of these distributions lower-bounds the 

error of any hypothesis tests available to Willie, 𝑃(𝐸𝑊), as: 

𝑃(𝐸𝑊) ≥
1

2
− 𝑇𝑉     (3.3.4) 

That is, as 𝑇𝑉 → 0 Willie’s probability of detecting Alice’s transmission approaches that of a random guess 

[26].  

For the present case, the more rigorous analysis of Willie’s observations, which is not detailed here, 

constitutes the product of these distributions, because here we are considering transmissions comprised of 

𝑛 successive pulses rather than individual detection events. This causes the TV to become a cumbersome 

term. An easier approach is to instead upper-bound it using Pinsker’s inequality [26]:  

𝑇𝑉 ≤ √
1

2
𝐷(𝑃0||𝑃1)     (3.3.5) 

In the above, 𝐷(𝑃0||𝑃1) is the Kullback–Leibler divergence, also called the relative entropy (RE) and 

henceforth represented by 𝑅𝐸. Alice wants Willie’s probability of error to be as close to 0.50 as possible. 

Therefore, she wants the upper-bound of the TV to be as small as possible; the less subtracted from 0.50, 

the better. RE upper-bounds the TV, so Alice wants a minimal RE. The quantum RE has been investigated 

[27], but for our purposes, the (classical) RE per channel use is expressed as follows:  
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𝑅𝐸 =
(ln(1+𝑂𝑆𝑁𝑅𝑊)−(1+

1

𝑂𝑆𝑁𝑅𝑊
)
−1

)

2
,    (3.3.6) 

where 𝑂𝑆𝑁𝑅𝑊 is the OSNR at Willie’s receiver, which collects some of the power from Alice’s channel. 

This formulation applies for an ASE-limited system, which is the case here, as ASE noise is the dominant 

source of noise power and the only noise source used in calculations of the OSNRs. Given the above, the 

total RE, accounting for all channel uses in a transmission by Alice, is equal to 𝑛𝑅𝐸.  

In the Mininet Optical simulation, a linearly spaced sample set of values of 𝑛 (Alice’s uses-per-

transmission values) is taken from a specified range. The number of elements in this set is also specified; 

this is the number of points that all the covertness metrics are evaluated across, and is a prime contributor 

to the execution time of the program. To enforce a minimal RE, Alice sets a budget and determines 

transmission powers for each of the selected values of 𝑛 such that this budget is not exceeded. The relative 

entropy is commonly budgeted at 0.0025, lower-bounding Willie’s probability of error at 0.465. This is the 

budgeted value in the current version of the MO simulation, with an additional 5% safety margin. Both of 

these values can be changed easily. Simple additions to the program could also parameterize the entire test 

across a set of RE budget values (or margin values). The method for Alice’s optimal power determination 

is as follows.  

 It is assumed that Alice has knowledge of the network across which she will be transmitting to Bob. 

For each of the values of 𝑛 being tested over, a power optimization algorithm incrementally increases 

Alice’s power value, starting from a provided initial power value. For each power value, a digital twin of 

the known network (ending in Bob) is created, with the Alice terminal outputting her signal at that power. 

A location is assumed for Willie’s tap, and the resulting RE derived from the OSNR at that tap element is 

estimated using Eqn. 3.3.6. Once the RE at Willie exceeds the budget set by Alice, minus some safety 

margin, the power is walked back to the previously safe value, and the program proceeds to the next value 

of 𝑛 in the sample set. Once this process is complete, the simulated Alice has a list of optimal powers for 

transmission to Bob, corresponding to the sample set of values of 𝑛. Alice’s power step size is mutable, and 
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opportunities for future work include development of a more intelligent method of optimization with 

variable step size.  

For this early work, the simulation program is based in the Mininet Optical simulator, rather than 

the emulator, which would allow for actual data transmission within the host computer. In the simulator, 

topologies can be rapidly created and tested for covert performance, allowing for broader exploration in a 

given time frame. But this feature is particularly relevant for Alice’s determination of optimal powers; in 

the simulator mode of MO, the iterative digital twin networks across which she estimates performance can 

be created and evaluated several times per second.  

While Alice does know the network topology, she cannot be sure where Willie’s tap may be located. 

As mentioned above, a location is assumed for each run of the simulation. In practice, Alice can use her 

knowledge of the network to determine the worst case tap location. To investigate the affect of tap location 

on Alice’s powers and the covert performance metrics, the simulation is run over a selection of possible 

Willie tap locations, given the inputted number of intermediate ROADMs between Alice and Bob. 

Alternatively, modifications could be made to have Alice test against all locations of Willie, determine 

which location would be the worst-case, and find the optimal powers for that case. Once Alice has a list of 

optimal powers (corresponding to the inputted list of values of 𝑛), a “real” network is created. Currently, 

this “real” network is the same as the twin test networks, but future work can include the addition of realistic 

properties to it which Alice could not accurately estimate in advance.  

The “real” network is created and recreated across Alice’s list of optimized powers, each instance 

yielding a value of the RE at Willie, the number of covert bits received by Bob and Alice’s covert bitrate 

to Bob. This happens for every value in the inputted set of values of 𝑛. The set of covert bits received by 

Bob is the primary covert performance figure, as mentioned previously and defined in Eqn. 3.3.1. These 

data, four lists (of length equal to the length of the inputted list of values of 𝑛), are plotted in four respective 

plots.  

This constitutes one “run” of the simulation. In its current state, the simulation program executes a 

run across a given selection of possible locations for Willie’s tap. Four more lists are saved for each location, 
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and corresponding curves are added to the final plots, allowing for comparison of the performance of the 

network (and Alice’s power algorithm) for each possible tap location. Also generated is a surface plot of a 

given figure of merit (against values of 𝑛) across the tap locations, more clearly displaying any trends in 

that figure against tap location. A dataset as just described is presented in the next section. In its current 

state, this entire process is completed on the order of tens of seconds, depending strongly on the power step 

size, number of values for 𝑛, and Willie tap locations.  

 The covert bitrate to Bob (during transmission) is derived from the covert bits received by Bob by 

assuming some duration, 𝑇, for each channel use. The total duration of a transmission by Alice is then 

simply 𝑛𝑇. So the bitrate during transmission is the number of bits divided by 𝑛𝑇. In a typical physical 

system, modulation frequencies on the order of several gigahertz can be realized, allowing for pulses on the 

order of nanoseconds. For a conservative pulse width of 20ns, if Alice employed 𝑛 = 104 channel uses in 

her transmission, it would take 200 microseconds.  
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3.4 Simulation Test Results 

 

 In the current version of the Python program which generates the covert communication link 

simulation, four 2D output plots are generated. As mentioned, these show Alice’s optimized powers, the 

RE at Willie, the number of covert bits received by Bob and Alice’s covert bitrate to him, each across the 

inputted set of Alice’s values for 𝑛. Empirical curves for Alice’s power and Bob’s covert bits are also 

plotted (as dashed lines) using coefficients estimated in the following ways. For a given Alice transmission 

power and network configuration, the number of covert bits received by Bob, 𝐵, increases as per the Square 

Root Law with √𝑛, scaled by the covert capacity, 𝐿, in bits per square root channel use: 

𝐵 = 𝐿√𝑛     (3.4.1) 

From the list of 𝐵 values resulting from a simulation run (with its list of values of 𝑛), we estimate the value 

of 𝐿 empirically by taking the logarithm of both sides of Eqn. 3.4.1 and running linear least squares 

regression:  

ln𝐵 = ln 𝐿 +
1

2
ln 𝑛    (3.4.2) 

The zeroth order term of the fitted function is exponentiated to estimate the value of 𝐿 for the given run. 

Plotted curves using the estimated values of 𝐿 for various runs are visible as the dashed lines in Fig. 12. A 

similar method is performed to estimate the constant, 𝑐𝑐𝑜𝑣, that governs Alice’s power, 𝑃, which decays as 

the inverse of the square root of 𝑛. That is:  

𝑃 =
𝑐𝑐𝑜𝑣

√𝑛
     (3.4.3) 

The curves generated with the estimated values of 𝑐𝑐𝑜𝑣 are visible as dashed lines in Fig. 10.  

 The full results of simulation runs with Willie’s tap at four different positions across the network 

are shown in Figs. 10-14. The virtual network tested here is of the structure shown in Fig. 9, with five 

ROADMs between Alice’s and Bob’s. This test was performed with 𝜂 = 0.97, meaning 97% of the input 
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power at Willie’s tap proceeded to Bob. Absorption loss was set to 1%, leaving 2% of that input power to 

be collected by Willie. As shown in the diagram, the spans between intermediate ROADMs are 75 

kilometers, with two amplifiers after the boost amplifier (not labelled). As mentioned, the amplifier gain 

profiles are currently set to “linear,” meaning a flat distribution of gain across channels that causes only 

small differences between target and applied gains. The background terminal is configured to send 10 

channels at 0dBm (one milliwatt) before amplification, centered at 191.55THz and spaced by 50GHz. This 

test was run with 20 values for 𝑛, linearly spaced between 1 and 100000. The power step size was set to 

0.25dBm. A finer step size would result in increased bits at Bob and RE curves that hug the budget more 

tightly but would significantly increase the execution time of the simulation. With the current settings, 

execution takes roughly three minutes per location for Willie. As mentioned, a much more efficient power 

optimization algorithm could greatly reduce this time.  

 The plot of Alice’s covert-optimal powers in Fig. 10 show the expected descent with increasing 

numbers of channel use per transmission. From the plot of Willie’s RE in Fig. 11, it is clear that the RE 

values are kept below Alice’s safety margin across values of 𝑛. At higher values of 𝑛, the RE at Willie 

becomes increasingly sensitive to Alice’s power, causing optimality to vary significantly depending on the 

chosen power step size. This behavior is evident in Fig. 11. Towards the right, where 𝑛 is highest, the RE 

is often not as close to the budget as it could be; with an imperfect optimization algorithm (non-infinitesimal 

step size), Alice is missing out on some amount of safe transmission power which would allow her a greater 

covert bitrate to Bob. The covert bits received by Bob in Fig. 12 shows the expected square root trend, 

plateauing with 𝑛, because even though Alice’s transmissions have more channel uses, her power is also 

decreased. From this data, the covert bitrate per transmission is derived as discussed previously and is 

shown in Fig. 13.  

The chief insight from the simulation is that the farther Willie’s tap is from Alice’s ROADM, the 

better Alice’s covert performance. This is not surprising, because after a greater number of amplifiers, the 

OSNR at Willie’s receiver (receiving from his tap) is worsened by the additional ASE noise. The surface 
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plot in Fig. 14 illustrates this trend more clearly, and was created under the same conditions but with two 

additional locations for Willie.  

 

 

Fig. 10: Alice’s covert-optimized transmission power, 𝑃, against number of channel uses per 

transmission, 𝑛. Each solid line corresponds to a run of the simulation with a different location (as 

labelled in the legend) for Willie’s tap element. The dashed lines (also labelled) are plots of Eqn. 3.4.3 

using empirical estimates of 𝑐𝑐𝑜𝑣, as discussed above.  
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Fig. 11: Willie’s relative entropy (RE) against number of channel uses per transmission, 𝑛, as a result of 

Alice’s covert-optimized transmission powers. Alice’s budget and safety margin are visible in blue. Each 

curve corresponds to a run of the simulation with a different location (as labelled in the legend) for 

Willie’s tap element.  
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Fig. 12: Covert bits received by Bob, 𝐵, against number of channel uses per transmission from Alice, 𝑛, 

as a result of Alice’s covert-optimized transmission powers. Each solid curve corresponds to a run of the 

simulation with a different location (as labelled in the legend) for Willie’s tap element. The dashed curves 

(also labelled) are plots of Eqn. 3.4.1 using empirical estimates of 𝐿, as discussed above. 
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Fig. 13: Covert bitrate (during transmission) from Alice to Bob against number of channel uses per 

transmission from Alice, 𝑛. Each curve corresponds to a run of the simulation with a different location 

(as labelled in the legend) for Willie’s tap element. As before, the dashed curves (also labelled) are 

plotted using Eqn. 3.4.1 with empirical estimates of 𝐿. 
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Fig. 14: Surface plot of covert bits received by Bob, 𝐵, against number of channel uses per transmission 

from Alice, 𝑛, as a result of Alice’s covert-optimized transmission powers. The second axis indicates the 

position of Willie’s tap element in the network for each run. This plot illustrates that the more channel 

uses Alice has in her transmissions and the farther away Willie’s tap is from her, the more bits she can 

covertly communicate to Bob. For this plot, the power step size was set to 0.20dBm.  
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3.5 Exploration of Microsoft Backbone Data for Noise Realism 

 

 

 For a maximally realistic simulation, it is necessary to include channel noise which changes as a 

function of time. To support eventual incorporation of a realistic noise model, analysis was performed of 

recently published wide-area optical network data from Microsoft, the first of its kind to be made publicly 

available [28]. Collected over a period of fourteen months beginning in February 2015, the dataset contains 

the transmitted power, signal quality factor and chromatic and polarization mode dispersion of over a 

thousand randomly selected channels from 115 randomly selected real-world optical paths in the North 

American optical backbone, with samples taken at fifteen-minute increments. This wide-area network data 

is useful to study because the behavior within it is the closest available to that which would one day likely 

be seen in future quantum and covert networks operating across the internet.  

Among the four metrics given, it was determined that the quality factor was of primary interest for 

the covert communication simulation. The quality factor (Q-factor) as it appears in the Microsoft data is 

related to the signal to noise ratio (SNR); an increase in Q-factor implies an increase in SNR. It takes 

physical sources of degradation into account, such as noise in the channel and chromatic dispersion [29]. 

Hence, a model of the fluctuations in Q-factor serves as a surrogate model for overall background noise in 

the channel, justifying its use in the simulation. The Q-factor from the Microsoft data is defined as follows:  

𝑄 =
|𝜇1 − 𝜇0|

𝜎1 + 𝜎0
, 

where the numerator is the difference in powers between the “one” and “zero” pulses transmitted across a 

given optical channel, and the denominator is the sum of the standard deviations of the noise of those pulses.  

Also available in the published data was the “transmitted power.” This was disregarded, because 

rather than the consistent random noise seen in the quality factor, this data often showed intentional shifts, 

suggesting changes in settings or other properties over the fourteen months of recording which do not reflect 

realistic noise conditions.  

(3.5.1) 
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 Python was used to analyze the Q-factor data and extract justifiable noise behavior for use 

in the Mininet simulation. The data consisted of 1071 text files, one for each of the channels polled by 

Microsoft, each with between twenty and thirty-thousand points. A large portion of the Q-factor values 

were parsed out, for the sake of time omitting files with inconsistent formatting. The noise of each channel’s 

Q-factor data was determined by subtracting the mean for that channel. These noise values were collected 

in a running sum so that the cross-channel mean could be taken after iterating through all the files. The Q-

factor noise arrays from every inspected channel are overlaid and scatter plotted in Fig. 15 (left). On the 

right side of the figure, the means of these values are arranged chronologically. The raw data contains 

periods of server outage, where there are no values. These periods were removed from the data. This and 

the fact that some channels were omitted as mentioned previously results in a sample of 492 channels and 

9.84 million points, with a sample period of 6.8 months (300000 minutes). For this sampled Q-factor data, 

the mean standard deviation of the noise was 0.0820, with variance 0.0067.  

 

 

Fig. 15: Overlaid scatter plots of Q-factor noise from every inspected channel in the Microsoft backbone 

data (left), and the means of these Q-factor values, arranged chronologically (right).  

 

Fourier decomposition of the mean Q-factor noise was performed towards construction of a 

plausible time-varying noise function for incorporation in the simulation. The normalized mean of the 

spectra of the noise, with accentuated local maxima, is shown in Fig. 16. The strongest frequency in this 
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sample of 492 channels was found to be 0.25 Hertz (15 inverse minutes, as plotted). A sine wave created 

using the three strongest frequencies from this spectrum is shown in Fig. 17. A function describing this 

behavior could be implemented in the covert link simulation after the addition of time evolution. This would 

give the results a basis in real-world network performance, are could ultimately be a step towards a more 

realistic and credible simulation.  

 

  

Fig. 16: Normalized mean of the spectra of the Q-factor noise across all 492 sampled channels. The blue 

dots indicate local maxima.  
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Fig. 17: Normalized sine wave composed using the three strongest frequencies from the mean of the Q-

factor noise Fourier spectra. For future work, this function or one like it could be adapted to provide a 

realistic noise model to the MO covert communication simulation.  
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3.6 Discussion and Future Work 

 

The most immediate next step for this work is the exploration of more realistic network topologies. 

In principle, any real-world optical network can be recreated to some approximation in MO. With the 

addition to MO presented here, the covert performance of these networks can be assessed.  

 Building a notion of time evolution into the covert simulation would allow incorporation of any 

conclusions regarding realistic, time-dependent noise from the Microsoft backbone data. This would give 

the simulation further credibility as a tool for evaluation of covertness. Time evolution would also allow 

for the modelling of more complex and realistic network behavior, such as back-propagation of signals.  

Additionally, as mentioned, significant upgrades can be made to the Alice power optimization 

algorithm, which in its current form is as simple as possible. The step size could be made to vary as some 

function of the current test value of Willie’s RE. For instance, the step size could be large at first, then 

shrink as the RE budget is approached, so that much finer adjustments could be made without demanding 

a large number of twin networks. In its current, crude state, fine step sizes cause execution time to increase 

dramatically. The other primary contributors to execution time are the number of values of 𝑛 and the number 

of different Willie locations.  

Important further work also lies in realistically differentiating Alice’s digital twin networks from 

the “real” network on which she uses her optimized powers. As a start, is could be assumed that Alice does 

not have knowledge of the gain profiles of the amplifiers on the network. In the simulation, this would mean 

setting the profiles differently in Alice’s rehearsal networks than in the “real” networks. This would create 

a discrepancy between Alice’s predicted RE and the actual. Additional changes could relate to approaches 

used in estimation of quality of transmission; Alice could perform calculations to find the optimal path 

through a complex network, for instance. Changes like this would make Alice’s RE safety margin more 

meaningful, as the accuracy of her estimations might threaten her RE budget unexpectedly.  
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When the field of covert communication has matured sufficiently, so-called “shadow networks” 

will be feasible, where many distributed jammers that are friendly to a designated party disseminate 

artificial noise which impairs interception. Covert communication between many simultaneous parties may 

be possible, with all parties unknowing of all others, and any eavesdroppers out of luck. The advent of 

quantum computing and other technologies will likely cause considerable turbulence as the internet 

continues to grow. New methods for security will be needed, and surprises surely await. Shadow networks 

may one day be taken for granted, as virtual private networks and public key encryption are today.  
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4 | Summary 

 

 The first two chapters of this thesis presented the background and theory behind quantum key 

distribution. A sampling of approaches to QKD were discussed and compared, culminating in DGM QKD. 

A fiber interferometer was introduced and is the basis for realization of the DGM protocol. Relevant 

considerations were discussed, centering on sources of noise and strategies for mitigating them. Among 

them was active phase stabilization, accomplished using a Red Pitaya microcontroller and accompanying 

Python-based control loop. Results of this work were presented, and opportunities for further work 

discussed. Towards characterization of the system and key rate estimation, test data taken through a non-

stabilized configuration of the system was also presented, wherein sweeping of phase was accomplished 

without added components via temperature equilibration.  

 Next, covert communication was introduced. Basic theory was presented, centering on methods for 

evaluating covert performance. The Mininet and Mininet Optical software packages form the basis for a 

simulated covert communication network with variable topology. The design of this simulation was 

discussed, and preliminary results shown. Avenues of future development were discussed. In principle, with 

this extension to Mininet Optical, any real-world optical network can be recreated to an approximation and 

evaluated for covert performance.  

Networks and the security of the information they carry are fundamental to the operation of modern 

civilization, and their importance by any account is increasing. Indeed, safe and reliable communication is 

one of the essential factors for continued competition, cooperation and liberty. But the developments 

summarized in this thesis constitute only a few tiny threads of technological progress. Each generation of 

humanity sews many millions of these threads, one by one. Sometimes, the threads overlap, and with 

enough time, patches are formed, tenuous foundations for new modes of life. Let this weaving continue, 

that we may soon free ourselves from so many ancient troubles, and at long last unlock the secrets of this 

strange realm into which we have awoken.  



70 

Bibliography 

 

[1]  A. Fedorov , E. Kiktenko, A. Lvovsky. “Quantum computers put blockchain security at risk.”  

Nature. https://www.nature.com/articles/d41586-018-07449-z. (2018).  

[2] I. Shakeel. “Quantum threat to cryptography and how to overcome this.” AT&T Business. 

https://cybersecurity.att.com/blogs/security-essentials/how-quantum-computing-will-effect-

cryptography-why-we-need-post-quantum-cryptography. (2021).  

[3] National Academies of Sciences, Engineering, and Medicine. “Quantum Computing: Progress and 

Prospects.” Washington, DC: The National Academies Press. https://doi.org/10.17226/25196. 

(2019). 

[4] F. Miller. “Telegraphic code to insure privacy and secrecy in the transmission of telegrams.” C.M. 

Cornwell (1882).  

[5] B. Schneier. “Applied Cryptography.” John Wiley & Sons, Inc., New York, NY, USA (1993).  

[6] C. Shannon. "Communication Theory of Secrecy Systems." (1949).  

[7] D. Mayers. “Unconditional Security in Quantum Cryptography.” Journal of the ACM, Vol. 48, No. 

3, pp. 351–406 (2001).  

[8] D. B. Soh, C. Brif, P. J. Coles, N. Lutkenhaus, R. M. Camacho, J. Urayama, M. Sarovar. “Self-

Referenced Continuous-Variable Quantum Key Distribution Protocol.” Phys. Rev. X, 5, 041010 

(2015). 

[9] F. Bloch. “Nuclear Induction.” Phys. Rev. 70, 460 (1946).  

[10] L. Ruppert. “Fading channel estimation for free-space continuous-variable secure quantum 

communication.” arXiv:2011.04386v1 [quant-ph] (2020).  

[11] G. Brassard, L. Salvail. "Secret key reconciliation by public discussion." Advances in Cryptology: 

Eurocrypt 93 Proc. pp 410-23 (1993).  

https://www.nature.com/articles/d41586-018-07449-z
https://cybersecurity.att.com/blogs/security-essentials/how-quantum-computing-will-effect-cryptography-why-we-need-post-quantum-cryptography
https://cybersecurity.att.com/blogs/security-essentials/how-quantum-computing-will-effect-cryptography-why-we-need-post-quantum-cryptography
https://doi.org/10.17226/25196


71 

[12] D. Elkouss, J. Martinez-Mateo, V. Martin. "Information reconciliation for quantum key 

distribution." Quantum Information & Computation. 11: 226–238. (2010). 

[13] P. Jouguet, S. Kunz-Jacques. “High Performance Error Correction for Quantum Key Distribution 

using Polar Codes.” arXiv:1204.5882v3 [quant-ph] (2013).  

[14] J. Aasi et al. “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed 

states of light.” Nature Photonics 7, 613 (2013).  

[15] T. Gehring, V. Händchen, J. Duhme et al. "Implementation of continuous-variable quantum key 

distribution with composable and one-sided-device-independent security against coherent attacks." 

Nature Communications. 6: 8795 (2015).  

[16] F. Laudenbach, C. Pacher, C.-H.F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, 

P. Walther, H. Hübel. “Continuous-Variable Quantum Key Distribution with Gaussian Modulation 

– The Theory of Practical Implementations.” arXiv:1703.09278v3 [quant-ph] (2018).  

[17] E. Kaur, S. Guha, M. Wilde. “Asymptotic security of discrete-modulation protocols for continuous-

variable quantum key distribution.” arXiv:1901.10099v4 [quant-ph] (2021).  

[18] P. Grangier, A. Leverrier. “Asymptotic security of continuous variable quantum key distribution 

with a discrete modulation.” arXiv:1002.4083v2 [quant-ph] (2011).  

[19] A. Leverrier, P. Grangier. “Continuous-variable quantum-key-distribution protocols with a non-

Gaussian modulation.” Physical Review A 83, 042312, arXiv:1101.3008 (2011).  

[20] J. Lin, T. Upadhyaya, N. Lütkenhaus. “Asymptotic security analysis of discrete-modulated 

continuous-variable quantum key distribution.” Physical Review X 9, 041064, arXiv:1905.10896 

(2019).  

[21] C. Rios. “Experimental Characterization of a Discrete Gaussian-modulated Quantum Key 

Distribution System.” MS thesis, The University of Arizona (2021).  

[22] D. Huang, P. Huang, D. Lin, C. Wang, G. Zeng. “High-speed continuous-variable quantum key 

distribution without sending a local oscillator.” Opt. Lett. 40, 3695 (2015). 



72 

[23] B. Qi, P. Lougovski, R. Pooser, W. Grice, M. Bobrek. “Generating the local oscillator ‘locally’ in 

continuous-variable quantum key distribution based on coherent detection.” Phys. Rev. X, 5, 

041009 (2015). 

[24] Mininet. http://mininet.org/ (2022).  

[25] B. Lantz, A. Díaz-Montiel, J. Yu, C. Rios, M. Ruffini, D. Kilper. “Demonstration of Software-

Defined Packet-Optical Network Emulation with Mininet-Optical and ONOS.” Optical Fiber 

Communication Conference (2020).  

[26] B. A. Bash, D. Goeckel, D. Towsley. "Limits of Reliable Communication with Low Probability of 

Detection on AWGN Channels." IEEE Journal on Selected Areas in Communications, vol. 31, no. 

9, pp. 1921-1930, doi: 10.1109/JSAC.2013.130923 (2013).  

[27] B. A. Bash, A. Gheorghe, M. Patel, J. Habif, D. Goeckel, D. Towsley, S. Guha. “Quantum-secure 

covert communication on bosonic channels.” Nature Communications. 

https://doi.org/10.1038/ncomms9626 (2015).  

[28]  “Wide-Area Optical Backbone Performance.”  

https://www.microsoft.com/en-us/research/project/microsofts-wide-area-optical-backbone/. 

Microsoft (2017).  

[29] M. Ghobadi, R. Mahajan. “Optical Layer Failures in a Large Backbone.” Proceedings of the 2016  

Internet Measurement Conference, pp. 461-467. https://doi.org/10.1145/2987443.2987483 (2016).  

[30] M. Nielsen, I. Chuang. “Quantum Computation and Quantum Information.” (Tenth Anniversary 

Edition). Cambridge University Press (2010).  

[31] V. Scarani, H. Bechmann-Pasquinucci, N. Cerf, M. Dusek, N. Lutkenhaus, M. Peev. “The Security 

of Practical Quantum Key Distribution.” Rev. Mod. Phys. 81, 1301 (2009).  

[32] M. R. Bloch, "Covert Communication Over Noisy Channels: A Resolvability Perspective," in IEEE 

Transactions on Information Theory, vol. 62, no. 5, pp. 2334-2354. doi: 

10.1109/TIT.2016.2530089 (2016).  

http://mininet.org/
https://doi.org/10.1038/ncomms9626
https://www.microsoft.com/en-us/research/project/microsofts-wide-area-optical-backbone/
https://doi.org/10.1145/2987443.2987483


73 

[33] A. A. Díaz-Montiel, B. Lantz, J. Yu, D. Kilper, M. Ruffini. “Real-Time QoT Estimation Through 

SDN Control Plane Monitoring Evaluated in Mininet-Optical.” IEEE Photonics Technology 

Letters, vol. 33, no. 18, pp. 1050-1053, 15. doi: 10.1109/LPT.2021.3075277 (2021).  

[34] T. Mills. “CovertComm.” Github repository. 

https://github.com/Cogit8or/CovertComm/blob/main/covertsim.py. (2022).  

https://github.com/Cogit8or/CovertComm/blob/main/covertsim.py



