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ABSTRACT 

The principles of optical and metrology design form the foundation for technologies in 

many areas. Of interest to this dissertation are the areas of solar energy and telescopes. For solar 

energy, low quality (~1 mrad) solar disk images are formed for the purposes of photovoltaic or 

heat energy production. For space and ground telescopes, high quality (0.1-1.0 μrad) stellar images 

can be formed, especially over wide fields where phenomena such as dark energy can be further 

studied. There are 3-4 magnitudes of difference in precision between solar energy and telescopes, 

and yet similar optical and metrology design principles are applicable. 

Concentrated solar energy can be used to exploit the benefits of high efficiency 

Photovoltaic Multi-Junction cells (CPV). The design of these optics is largely driven by the cost 

per watt of generation. Pupil-imaging techniques help with mispointing and low tolerance 

alignment of optical components. Several designs will be covered in detail, exploring their benefits 

and limitations.  

The cousin to CPV, Concentrated Solar Power (CSP) is of special interest. Industry 

standards involve usage of tens of thousands of heliostats focusing sunlight on a central "power 

tower" at ~500X solar concentration. Concave focusing heliostats are of limited value, they suffer 

from spillage of sunlight around the tower receiver due to changing astigmatic aberrations as the 

sun angle changes. We have designed and built a prototype that uses active bending astigmatic 

modes in a 1.6 m2 heliostat mirror, demonstrating sharp disk images of the Sun formed from 0 

degree angle of incidence to >70 degree angle of incidence with >90% ensquared energy into an 
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area little larger than the disc image. With ~10X concentration only hundreds of heliostats are 

needed to achieve ~1000X. 

Optical and metrology design are further applied to another metrology system for a 1.6-m 

gull-wing lens, which is part of a recent design for a wide field 6.5-m Cassegrain telescope. The 

telescope design is intended as a future replacement for DESI, acting as a spectrometer for ~10,000 

stellar objects simultaneously. The gull-wing lens is a key component for the telescope achieving 

~0.5 arcsecond resolution for a 3.0-degree field of view for 365 nm - 950 nm wavelengths.  

Several other telescope designs are presented, including a ground telescope with 10,000 

m2 of area that can achieve 300,000X spectroscopic resolution for the oxygen band. This makes 

possible the search for life on exoplanets. Another design is presented that pushes resolution and 

field of view to the very limits of a 20-m space telescope with ~0.01 arcsecond resolution (at 1 μm 

wavelength) and a 1-degree field of view. A new class of telescopes with an analytical solution 

are presented, the Double-Cassegrain.
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CHAPTER 1 :  INTRO TO OPTICAL AND METROLOGY DESIGN 

1.1 Introduction 

This dissertation addresses a series of topics that all share similar principles: solar 

concentration, telescope designs, and metrology. At a first glance, solar concentration, telescope 

designs, and metrology do not seem very related. However, an understanding of geometric optics 

is necessary for each, among other topics including pupil imaging, aberration theory, cost versus 

benefit, optimization techniques, etc. Design work for both optical and metrology systems rely 

upon the same fundamentals, particularly one major and somewhat obvious fundamental. 

The design work and metrology for optical elements and systems depend on the 

specifications and requirements. What are you trying to measure and how good does that 

measurement have to be? Optical designs that are well optimized but require high-precision 

tolerances may be rejected in favor of other designs that perform worse but require lower 

tolerances. Metrology systems that measure the surface of an optic to sub-nanometer precision and 

accuracy may be required for high-performance systems, such as with Extremely Large Telescopes 

(ELT)  [1]. This level of surface knowledge may not be required for loose-tolerance systems, such 

as for solar concentration. Sun Tzu once said, “Know thy enemy”. The “enemy” or challenge of 

an optical engineer is meeting the requirements. Therefore, the optical engineer may rephrase this 

to, “Know thy requirements.” 

What follows is a series of sub chapters that introduce the fundamentals for understanding 

the contents of this dissertation. These sub chapters are brief and are therefore intended as solely 

a primer for the optical engineer. The topics discussed in this chapter will be freely used in the 
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remaining chapters where solar concentration design, metrology systems and designs, and 

telescope designs will be discussed in detail. 

1.2 Geometric Optics 

A preliminary understanding of an optical system starts with the first order analysis. The 

well-known marginal and chief rays define important features of imaging (and pupil-imaging) 

designs. The marginal ray passes through the edge of the stop, and the chief ray passes through the 

center of the stop (see Figure 1.1). Where the marginal ray crosses the optical axis an image of the 

object is formed. Where the chief ray crosses the optical axis an image of the pupil is formed. 

Calculation of these crossings involves a first order ray trace, which requires three basic 

equations [2]. The first equation involves the change in ray height, which is calculated by 

𝑦𝑦′ = 𝑦𝑦 + 𝑢𝑢𝑐𝑐, 

where  𝑦𝑦 is the beginning ray height, 𝑢𝑢 is the optical angle (slope) of the ray, 𝑐𝑐 is the distance 

traversed, and 𝑦𝑦′ is the final ray height. 

The second equation involves the change in ray angle, which is calculated by 

𝑛𝑛′𝑢𝑢′ = 𝑛𝑛𝑢𝑢 − 𝑦𝑦𝑦𝑦, 

Eq. 1-1 

Eq. 1-2 

Figure 1.1: A basic optical layout showing the chief ray in object space (𝒚𝒚�), marginal ray 
in object space (𝒚𝒚), chief ray in image space (𝒚𝒚�′), marginal ray in image space (𝒚𝒚′), stop, 

and optical axis. 
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where 𝑛𝑛 is the index of refraction before the refracting surface, 𝑢𝑢 is the ray angle before, 𝑦𝑦 is the 

ray height before, 𝑦𝑦 is the power of the refracting surface, 𝑛𝑛′ is the index of refraction after, and 

𝑢𝑢′ is the ray angle after. The power of a refracting surface is given by 

𝑦𝑦 = 𝑛𝑛′−𝑛𝑛
𝑅𝑅

, 

where 𝑅𝑅 is the radius of curvature. 

These equations, while simple in form, are very powerful for determining the 

characteristics of an optical design. In section 1.4, a brief discussion of aberration theory will show 

that just the chief and marginal rays are required to understand the 4th order wavefront errors of an 

optical system. The 4th order wavefront equations will prove useful for understanding how to 

correct for the off-axis aberrations of a heliostat mirror (see Chapter 3 and Appendix A). 

1.3 Pupil-imaging Optical Designs 

The imaging of the stop, or pupil, has proven to be useful in a variety of applications: 

Köhler illumination, gravitational distortion correction, atmospheric correction, concentrated 

photovoltaics (CPV), etc. A basic layout of pupil-imaging is given in Figure 1.2. 

If the object were a spatially non-uniform light source being imaged onto the field lens, the 

Fourier transform of the angular distribution of the object would be located at the field lens, i.e. 

Eq. 1-3 

Figure 1.2: Optical layout with objective lens focusing light onto a field lens, which in turn images the stop. 
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the spatial distribution of the object convolved with the point spread function (PSF) of the lens. 

The field lens is then taking this spatial distribution and applying another Fourier transform such 

that the angular distribution of the light source is located at the imaging conjugate of the field lens. 

Each point of a light source tends to emit uniformly at all angles; thus, the pupil image is a highly 

uniform irradiance distribution. Such is the case for Köhler illumination in microscopes [3]. 

Consider the motion of a refracting telescope as its pointing sweeps across the sky to view 

various astronomical objects. The force of gravity relative to the pointing of the telescope goes as 

𝐹𝐹 = 𝑔𝑔 sin𝜃𝜃, where 𝜃𝜃 is the angle of the pointing relative to the horizon (i.e. the elevation angle) 

and 𝑔𝑔 ≅ 9.8 𝑚𝑚/𝑠𝑠2. With the telescope Zenith pointing there is a greater moment in the center of 

the lens. Thus, the shape of the objective lens is altered. To measure this change in shape an optical 

instrument may be placed at the focus of the telescope. With the telescope directed at a point 

source, an image of the primary mirror can be formed on a fly’s eye array. The local slopes across 

the wavefront can then be measured from the spot local deviations from on-axis, and the slopes 

can be integrated to provide the wavefront introduced 

by the gravitational sag. In this scenario you have 

created a Shack-Hartmann wavefront sensor.  

Generally, the thickness of glass of optical 

elements is chosen such that this gravitational effect 

can be considered negligible, but not always. Because 

this change in sag with gravity can be measured, 

engineers have discovered ways it can be fixed (e.g. 

Figure 1.3: GMT layout 
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placing a deformable mirror at a pupil-image). Thus, pupil-imaging can be used in the measuring 

and correction of mechanically introduced aberrations.  

The principle of imaging optical elements need not apply solely to the objective (stop) 

element of an optical system. In the case of the Giant Magellan Telescope (GMT), a Gregorian 

telescope design (Figure 1.3) was chosen so that the secondary mirror could be imaged by the 

primary mirror to ~200 m above the primary mirror (see Figure 1.4). This makes it possible to 

correct for phase variations introduced by the atmospheric ground layer [4]. As shown in Figure 

1.4, the off-axis edge rays do not focus in the same focal plane as the on-axis edge rays, yet the 

atmospheric wavefront errors can still be corrected. The image of the secondary does not need to 

be sharp for atmospheric correction to work. This correction of the atmospheric ground layer will 

ideally allow the GMT to obtain 0.30 arcsec FWHM resolution 

images across a ~10 arcmin field of view for wavelengths >1 

μm [5]. The possibility of obtaining such earth-based images 

with this technique sheds some light on its usefulness and power.  

A further application of pupil-imaging is with 

concentrated solar energy, where the drive to reduce cost leads 

to very blurred images. When focusing sunlight in CPV 

applications it can be challenging to keep the spot focused on 

the multi-junction (MJ) cell. Any fluctuations in the geometry 

of the tracker due to wind or slop in the driving mechanisms 

causes the focal spot to shift around. To keep the spot within the 

MJ cell area it needs to be much smaller than the size of the cell. Figure 1.4: GMT layout with the 
secondary mirror set as the object. 
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However, this creates hot spots, which tend to degrade the performance of the cell [6]. To keep the 

spot from moving around, an object that is not moving relative to the MJ cell can be imaged onto 

the cell. In practice the stop is chosen, thus an image of the pupil is formed on the MJ cell. Placing 

a CPV cell at the pupil-image in Figure 1.2 illustrates this technique. Now when the tracker has 

fluctations in pointing the spot position on the cell does not change significantly. Additionally, 

because the pupil is imaged (i.e. the spot is the Fourier transform of the spatial distribution of the 

Sun), the spot on the cell tends to be more uniform, thus reducing the risk of hotspots. 

More details on the techniques discussed in this section are found in Chapter 2. An 

understanding of these techiniques also helps with understanding the basic principles of both null 

and non-null type metrology systems. In section 1.4 this is briefly described. 

1.4 Non-null Metrology Systems 

The metrology of optical elements, mechanical components, stellar objects, etc. is 

performed using a variety of techniques. Mechanical or contact measurement procedures often 

involve coordinate measuring machines (CMM), Geneva gauges, spherometers, Faro arms, etc. 

Contactless measurement processes can be done in a greater number of ways: deflectometry, point 

source microscopes, confocal chromatic sensors, interferometry, Hartmann measurements, etc. 

There are only so many ways you can physically touch an object. In contrast, the number of ways 

an object can be optically measured is limited by the imagination of the engineer. 

Optical measurement techniques can be divided into two highest level categories: non-null 

metrology, and null metrology. The category of the optical metrology system is determined by the 

answer to the following question: Is the returning light in a similar form to the outgoing light? In 

other words, if the light is passing through a focal point, does it return through that focal point? 
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Does the light return through some or all the optics used in the outgoing beam? Is the measurement 

absolute or relative to an ideal? If the answer is yes to any of these questions, then the type of 

metrology system is generally considered a null metrology system. 

The quintessential example of a null metrology system is an interferometer. In a Fizeau 

type interferometer, light is emitted by a source and passes through optics, which often focus the 

light. This focused light continues (effectively acting like a point source) towards an optical 

component being tested, perhaps a spherical concave mirror. If the mirror is concentric with the 

focal point, then the light will focus back on itself and return through the optics from which the 

light originated. Using interference, the shape error of the optic under test can be directly measured. 

More details about this type of system will be discussed in Section 1.6 and Chapter 5. 

 Non-null metrology systems often consist of a light source and a sensor. Light from the 

light source is incident upon the optic under test, and the reflected or refracted light is measured 

by the sensor. If light is measured in reflection, a triangle is formed containing the light source, 

optic under test, and sensor. The angular separation of the 

outgoing and reflected beams is the same as the angle made 

between the light source and sensor with the vertex located 

on the optic under test (see Figure 1.5). 

The angular deviation of the ray is associated with 

the local slope of the optic under test. In the trivial case, the 

slope is zero, and the light reflects upon itself. In a normal 

situation, the slope is non-zero, and the direction of the ray 

is deviated by twice the local slope. Thus, the local slope 

Figure 1.5: Basic non-null metrology 
arrangement. Light is emitted by the source, 
which reflects from a known position on the 
optic under test. A sensor then detects the 

final position of the light. Together the light 
source, position on the optic under test, and 

sensor define a triangle with an angular 
separation, α, of the outgoing and reflected 

light. 
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of the mirror is related to half the angular deviation of the light (i.e. 𝑆𝑆 = tan �𝛼𝛼
2
�). By measuring 

the angular deviations of the spots across the optic under test the slope of the optic can be 

measured. The slope has two dimensions, thus the slope in x and y need to be measured. 

A common non-null metrology 

system uses deflectometry (see Figure 

1.6). In phase-shifting deflectometry, 

millions of pixels across a television 

display are flashed in known patterns, 

which allow for individual identification 

of pixels [7]. This is often accomplished 

in ≥4 measurements, but has been done in one measurement [8]. Generally, this technique is used 

for measurements in reflection, but can also be done in transmission [9]. In a reflection 

measurement, the light from the display is reflected from an optic under test. A camera, focusing 

on the optic, captures images of the display patterns. From these images, individual pixels are 

identified, and millions of triangles are formed between the display, optic, and camera. Thus, the 

slope across the optic can be calculated, and by advanced integration techniques [10] the surface 

of the optic can be computed. 

Deflectometry itself has been identified as a Hartmann test in reverse [11]. Deflectometry 

has enough resolution and accuracy to get the low-order and high-order figuring as well as the 

roughness of a surface. In contrast, the Hartmann test has a more limited resolution, which works 

well for measuring low-order surface figuring [12], but not high-order. A full discussion of the 

Hartmann test appears in Chapter 4 where a Hartmann Laser metrology system is introduced.  

Figure 1.6: A basic deflectometry arrangement where a Display 
flashes known patterns across the screen, light from the Display 
reflects from the Optic onto the Camera, and the Camera takes 
pictures of the Optic. Based on the geometry and images of the 

optic, the local slopes across the Optics can be measured. These 
slopes can then be integrated to obtain the surface shape. 
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1.5 Optimization and Aberration Theory 

Inherent aberrations of optical systems can be categorized based on the characteristic 

optical performance. Additionally, many systems are designed with a specific application in mind 

and situations outside the design parameters may lead to undesirable performance. For example, 

certain applications require a small spot size, such as for telescopes. Other applications require a 

well corrected wavefront with a Modulation Transfer Function (MTF) that has a high contrast at a 

desired spatial frequency, such as for military imaging applications. If an MTF optimized system 

were used to view stars there would be a noticeable loss of resolution for the system. Conversely, 

if a spot-size optimized system were used in low contrast imaging situations, the features of the 

scene would be more challenging to define. 

These different optimization techniques are both driven by an understanding of the intrinsic 

aberrations of optical systems. To understand the spot characteristics or the wavefront departure, 

the aberration of an optical system needs to be broken down into its constituent parts. The 

fundamental optical aberrations are named spherical, coma, astigmatism, field curvature, and 

distortion. Other low-order terms are generally not considered in optimization except chromatic 

aberrations, which should be considered for refracting optical systems that require multiple 

wavelengths. The other low-order terms are more related to alignment: tilt, piston, and defocus. 

Defocus can also be used to balance aberrations. It is induced by a shift in the focal plane from the 

marginal ray (first order) focal point. It is used to get a better fit sphere to the focusing wavefront. 

The fundamental, or 4th order, aberrations have been derived in previous texts [13]. Shown 

here are the results of those derivations with some introductory explanation. For the wavefront 

description of optical aberrations, the vector, 𝐻𝐻��⃗ , is the normalized field vector of the optical 
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system. The chief ray slope multiplied by 𝐻𝐻��⃗  provides the field vector. The 

vector, �⃗�𝜌, is the normalized pupil vector of the optical system. The 

entrance pupil radius multiplied by �⃗�𝜌 gives the pupil vector. Together, 𝐻𝐻��⃗  

and �⃗�𝜌 form a basis for wavefront errors of optical systems. The normalized 

field and pupil vectors are defined in the plane of the entrance pupil or 

exit pupil. Because the vectors are normalized, the wavefront error can be 

defined in either. This is illustrated in Figure 1.7. These vectors can be 

combined by the scalar product of each with itself, or with one another. The wavefront error is not 

defined to have directionality, which is why the cross product is not considered. Thus, the 

wavefront error can be defined as 

𝑊𝑊�𝐻𝐻��⃗ , �⃗�𝜌� = ∑ ∑ ∑ 𝑎𝑎𝑖𝑖𝑏𝑏𝑗𝑗𝑐𝑐𝑘𝑘�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �
𝑖𝑖
�𝐻𝐻��⃗ ∙ �⃗�𝜌 �

j
(�⃗�𝜌 ∙ �⃗�𝜌)k ∞

𝑘𝑘=0
∞
𝑗𝑗=0

∞
𝑖𝑖=0 , 

where 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑗𝑗, 𝑐𝑐𝑘𝑘 represent the coefficients for each term. This form of the wavefront function is not 

generally used. Instead, the wavefront function is written in the form 

𝑊𝑊�𝐻𝐻��⃗ , �⃗�𝜌� = ∑ ∑ ∑ 𝑎𝑎𝑖𝑖𝑏𝑏𝑗𝑗𝑐𝑐𝑘𝑘𝐻𝐻2𝑖𝑖+𝑗𝑗𝜌𝜌2𝑘𝑘+𝑗𝑗 cosj(θ) ∞
𝑘𝑘=0

∞
𝑗𝑗=0

∞
𝑖𝑖=0 , or 

𝑊𝑊(𝐻𝐻,𝜌𝜌,𝜃𝜃) = ∑ ∑ ∑ 𝑊𝑊𝑚𝑚𝑛𝑛𝑗𝑗𝐻𝐻𝑚𝑚𝜌𝜌𝑛𝑛 cosj(θ) ∞
𝑗𝑗=0

∞
𝑛𝑛=0

∞
𝑚𝑚=0 , 

where 𝑚𝑚 = 2𝑖𝑖 + 𝑆𝑆 and 𝑛𝑛 = 2𝑘𝑘 + 𝑆𝑆. Note, whenever 𝑆𝑆 is nonzero, all three terms are influenced in 

odd increments, whereas 𝑖𝑖 and 𝑘𝑘 only influence the field term and pupil term in even increments, 

respectively. Therefore, some combinations of the summations using 𝑚𝑚 and 𝑛𝑛 notation are not 

possible. For example, it is not possible for 𝑚𝑚 = 1, 𝑛𝑛 = 0, and 𝑆𝑆 = 1, but it is possible to have  

𝑚𝑚 = 1, 𝑛𝑛 = 1, and 𝑆𝑆 = 1. The fourth order terms are thus defined by a combination of the field 

and pupil terms such that 𝑚𝑚 + 𝑛𝑛 = 4. Therefore, 

Eq. 1-4 

Eq. 1-5 

Eq. 1-6 

Figure 1.7: The 
normalized field, 𝐻𝐻��⃗ , and 

pupil, �⃗�𝜌, vectors located in 
the entrance pupil plane, 
separated by an angle 𝜃𝜃.  
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𝑊𝑊�𝐻𝐻��⃗ , �⃗�𝜌� = 𝑊𝑊400(�⃗�𝜌 ∙ �⃗�𝜌)2 + 𝑊𝑊131�𝐻𝐻��⃗ ∙ �⃗�𝜌 �(�⃗�𝜌 ∙ �⃗�𝜌) + 𝑊𝑊222�𝐻𝐻��⃗ ∙ �⃗�𝜌�
2

+ 

𝑊𝑊220�𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ �(�⃗�𝜌 ∙ �⃗�𝜌) + 𝑊𝑊311(𝐻𝐻��⃗ ∙ 𝐻𝐻��⃗ )(𝐻𝐻��⃗ ∙ �⃗�𝜌), or 

𝑊𝑊(𝐻𝐻,𝜌𝜌,𝜃𝜃) = 𝑊𝑊400𝜌𝜌4 + 𝑊𝑊131𝐻𝐻𝜌𝜌3 cos(𝜃𝜃) + 𝑊𝑊222𝐻𝐻2𝜌𝜌2 cos2(𝜃𝜃) + 

𝑊𝑊220𝐻𝐻2𝜌𝜌2 + 𝑊𝑊311𝐻𝐻3𝜌𝜌cos (𝜃𝜃) 

is the wavefront error function where the aberration coefficients are labeled as follows: 𝑊𝑊400 is 

spherical, 𝑊𝑊131 is coma, 𝑊𝑊222 is astigmatism, 𝑊𝑊220 is field curvature, and 𝑊𝑊311 is distortion. The 

4th order term 𝑊𝑊004 is not considered in this treatment because it depends solely on the field and 

is therefore a piston term. In other applications, such as interferometry, piston terms may not be 

negligible. 

 The value of each of the coefficients is determined by the Seidel formulas, first discovered 

by L. Seidel [14]. The equations can be found in “Introduction to Aberration Theory” by José 

Sasián in Chapter 10 [13]. These coefficients are determined solely by the slope and heights of the 

marginal and chief rays at each of the optical surfaces in an optical system. It is inappropriate to 

use these coefficients for optical designs that are not axially symmetric (i.e. off-axis designs, plane-

symmetric designs, etc.). Alternative Seidel equations may be used for non-axially symmetric 

situations [15–17]. 

 In regards to metrology, the Seidel aberrations can be related to the Zernike coefficients of 

an optical surface [18]. This analogy is useful when making corrections to wavefront. For example, 

a Cassegrain telescope that is Earth-bound may experience gravitational deflection in the support 

structure for the secondary mirror. This deflection may cause the secondary mirror to decenter 

from the optical axis, which introduces an on-axis coma term. Note, this system has broken axial 

symmetry, therefore the traditional Seidel aberrations do not adequately describe the behavior of 

Eq. 1-7 

Eq. 1-8 
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the system. Nonetheless, the traditional Seidel aberrations can still be usefully applied. If the 

primary mirror were deformable, or better yet, if a deformable mirror were located at an image of 

the primary mirror (using some additional optical components), then introduction of the 

appropriate comatic term to the deformable mirror would help compensate for the wavefront error 

introduced by gravity. This is discussed in Chapter 6 and applied extensively in Appendix A.  

1.6 Imaging Optical Designs 

The Seidel formulas are generally used to describe the imaging characteristics of an optical 

system. The wavefront error (calculated by the Seidel formulas) describes the optical system spot 

characteristics. As written in “Introduction to Aberration Theory”, “The normalized transverse 

ray error vector ∆𝐻𝐻��⃗ , normalized by the chief ray height 𝑦𝑦�𝐼𝐼′ at the Gaussian image plane, can be 

written to third order of approximation as 

∆𝐻𝐻��⃗ = − 1
Ж
𝛻𝛻�⃗𝜌𝜌𝑊𝑊, 

where Ж is the Lagrange invariant…” [13]. 

 Therefore, the spot size and shape of an optical system is well described by the gradient of 

the wavefront error of the optical system. Meaning, a slope error in the wavefront will cause a 

deviation of ray slope such that when the ray travels from the exit pupil to the Gaussian image 

plane it is not located at the ideal Gaussian image point. Rather, it is located at a distance ∆�⃗�𝑦 = 𝑆𝑆𝐹𝐹 

from the Gaussian image point, where 𝑆𝑆 is the slope error and 𝐹𝐹 is the distance from the Exit Pupil 

to the Gaussian image plane, which is usually the effective focal length. See “Field Guide to 

Geometrical Optics” for more information on Gaussian imaging equations [2]. 

(8.3) 
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 Nothing new has been described in this discussion of imaging optical systems. Yet, 

understanding the basic principles given here is critical for understanding later materials. For 

example, the ideal shape of a solar imaging mirror is toroidal. This is because the off-axis 

aberration, astigmatism, causes significant blurring of images by a mirror. For a spherical mirror, 

the wavefront error introduced at off-axis angles is toroidal in shape. Therefore, an alteration in 

the shape of the spherical mirror to an ideal toroid leads to a correction of astigmatism and a nearly 

spherical wavefront is obtained (see section A.1). 

 Active optics is only one application for aberration theory. The ideal shapes of optical 

components can be precisely calculated for certain situations, using solely aberration theory. For 

example, the ideal shape for a lens with one surface as a conic and the other as plano depends only 

on the change in index of refraction (for on-axis imaging and working at one infinite conjugate). 

What does this mean? By making the convex surface of a plano-convex lens the ideal conic 

surface, spherical aberration can be perfectly corrected. This can be shown using aberration theory 

for aspheric caps. The contribution of an aspheric cap to the Seidel aberrations is given by 𝑎𝑎 =

𝜅𝜅𝑦𝑦𝑦𝑦4/𝑅𝑅2, where 𝜅𝜅 is the conic constant, 𝑦𝑦 is the power of the surface, 𝑦𝑦 is the marginal ray height, 

and 𝑅𝑅 is the radius of curvature. This value, 𝑎𝑎, describes all alterations to the 4th order aberrations 

by an aspheric cap. For spherical aberration, the change in spherical aberration by an aspheric cap 

is 𝑎𝑎/8. The spherical aberration for a conic plano-convex lens has contributions from traditional 

aberration theory and aspherical cap aberration theory. Thus, the spherical aberration for such a 

lens as shown in Figure 1.8 is given by 

𝑊𝑊040 = 𝑊𝑊040
0 + 𝑊𝑊040

𝐶𝐶𝐶𝐶𝐶𝐶 = 1
8
𝑛𝑛2

𝑛𝑛′2
𝜙𝜙3𝑦𝑦4

(𝑛𝑛′−𝑛𝑛)2 + 1
8
𝜅𝜅 𝜙𝜙3𝑦𝑦4

(𝑛𝑛′−𝑛𝑛)2 = 1
8

𝜙𝜙3𝑦𝑦4

(𝑛𝑛′−𝑛𝑛)2 �
𝑛𝑛2

𝑛𝑛′2
+ 𝜅𝜅�, 

which shows that to perfectly correct spherical aberration, set the conic constant 

Eq. 1-9 
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𝜅𝜅 = −𝑛𝑛2/𝑛𝑛′2, 

where 𝑛𝑛 is the refractive index in object space and 𝑛𝑛′ is the refractive index in image space. 

 This is a powerful discovery of aberration theory. One application 

of this equation is found in injection molded plastics for LEDs. LEDs are 

often used in electronics as feedback for users, or back-lighting of 

interactive components. In order to create high visibility of the LED from 

desired viewing angles, the LED is often placed at the focal position of a 

lens like that shown in Figure 1.8. Since LEDs are small, the light emitted 

is reasonably collimated and sends more of the light in the intended direction (towards the eye of 

the user). 

 Another application is found in a potential design for the Breakthrough Starshot laser 

projector. The Breakthrough Starshot Initiative has a goal to send a small spacecraft to Alpha 

Centauri at 20% of the speed of light [19]. The basic idea involves a multi-kilometer array of lasers 

that are all phased directing a ~100 GW beam at a “light-sail” in space. In the space of several 

minutes the light-sail spacecraft is accelerated to 0.2 × 𝑐𝑐. In order to get the desired diffraction-

limited spot on the light-sail the full aperture must be well filled and uniform [20]. 

A potential solution to the optical challenge is to create a series of rafts composed of lenslet 

arrays. Each lenslet is about 8” in diameter (the size of r0 for ideal atmospheric conditions). Behind 

each lenslet is a diverging lens placed in front of a laser. Together the diverging lens and the 

focusing lenslet comprise a beam expander. A less expensive solution to this problem would be to 

have the lenslet plano-convex with the convex side towards the light-sail (see Figure 1.9). In this 

Eq. 1-10 

Figure 1.8: A lens with 
refractive index, n, and 
conic constant, 𝜅𝜅, such 

that the on-axis imaging is 
perfectly corrected. 
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arrangement, the convex side can be spherical, which makes the 

lenslet array less expensive. The potential issue with this 

arrangement has long been an issue for heliostat mirrors: soiling. 

When being used, this laser array is exposed to the elements, 

thus soiling of the optics must be considered. Cleaning out the 

crevices between adjacent lenslets may prove to be time-consuming 

and expensive. It would be better if the plano side of the lenslet array 

were exposed to the elements, but this is not favorable for a plano-

convex lens. According to aberration theory, the convex side of a 

spherical plano-convex lens should be directed towards the infinite 

conjugate. This minimizes spherical aberration. However, if the 

convex surface of the lens is a conic of any choice the lens can actually face whichever direction 

is most convenient for the application, according to Eq. 1-10. 

So, we can have our cake and eat it too if we allow the convex surface to be a conic and 

direct it towards the laser. The major caveat is of course the lenslet array is much more challenging 

to manufacture. However, if a manufacturing process were adopted as suggested in US Patent 

Application No. 62/905,824, then this could prove to be a viable approach. 

Knowing that there exists a solution with the plano side towards an infinite conjugate, 

Zemax OpticStudio can be used to find the solution. One other optimization parameter must be 

considered though, the beam shape output by a typical laser is gaussian. Expanding a gaussian-

shaped beam will result in a gaussian output, which will significantly reduce the uniformity of the 

output beam, thus more light will be diffracted outside the airy-disk. A reasonably uniform output 

Figure 1.9: Potential beam 
expander for Breakthrough 
Starshot laser array raft. 
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can be obtained by vignetting the outer parts of the beam and leaving only the relatively flat center, 

but this reduces the overall output from each lenslet. The additional optimization goal is then to 

change the beam from a gaussian input to a uniform (or flat-top) output. With the merit function 

properly established, optimization in Zemax OpticStudio leads to the design shown in Figure 1.10. 

The convex surface of the lenslet is an even asphere with a conic constant of -2.58. Assuming an 

index of refraction of glass of 1.5, the conic constant should be near -2.25 (hyperbolic) to minimize 

spherical aberration, so the optimized solution is very close to the prediction. The discrepancy is 

likely due to the additional requirement of changing the beam from 

gaussian to uniform and the balancing of spherical aberration 

between the lenslet and the diverging lens. 

Additional changes to this design could involve a local 

change in tilt by displacing the diverging lens. This would allow 

for correction of atmospheric wavefront errors. Additionally, a 

beam splitter would need to be introduced either before or after the 

diverging lens so that these optics could also be used for wavefront 

sensing of the atmosphere. By no means is this a complete design 

for what is required of the Breakthrough Starshot laser projector, 

but it provides a direction to pursue, and shows the usefulness of 

aberration theory in guiding solutions towards a solution that satisfies system requirements. 

1.7 Null Metrology Systems 

As discussed in section 1.3, if the returning light in a metrology system is in a similar form 

to the outgoing light, then the system can be categorized as a null metrology system. This definition 

Figure 1.10: Beam expander for 
Starshot laser array using an even 

aspheric convex surface for the 
lenslet. 
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is not accurate for many null metrology arrangements. In this section null metrology is defined 

more completely. Null metrology is generally associated with interferometry where a reference 

beam and test beam are overlapped resulting in a fringe pattern, which shows the difference in 

optical path (OPD) between the two beams. Fringe patterns are well described by 

𝐼𝐼(𝑥𝑥,𝑦𝑦) = 𝐼𝐼1 + 𝐼𝐼2 + 2�𝐼𝐼1𝐼𝐼2 cos�𝑦𝑦(𝑥𝑥, 𝑦𝑦)�, 

where 𝐼𝐼1 and 𝐼𝐼2 are the two different beam nominal irradiances, 𝐼𝐼(𝑥𝑥,𝑦𝑦) is the irradiance of the 

fringe pattern at a given 𝑥𝑥, 𝑦𝑦 position on the optic under test, and 𝑦𝑦(𝑥𝑥,𝑦𝑦) is the phase difference 

between the two different beams. Note, the phase difference only depends on the position in the 

pupil of the optic under test. 

In the past, interferometry has required 

tilt fringes to be present so that optical path 

differences can be measured by deviations of the 

fringe pattern from straight lines (see Figure 

1.11). For a double-pass configuration, a quarter 

wave error (at 633 nm wavelength) would be 

associated with an eighth of a wave of surface 

height error, or about 80 nm. In contrast, phase-

shifting interferometry has allowed for much 

higher accuracy in surface height errors in a 

fraction of the time. 

Phase-shifting interferometry has often 

been accomplished by inducing 90-degree phase shifts to one of the interfering beams, usually the 

Eq. 1-11 

Figure 1.11: Typical fringe pattern for a classical 
interferogram. The circular region with slightly wavy 

lines is the interferogram. The square box with the 
straight lines is used as a precise reference to observe 
the deviation of the fringes from straight lines. These 

deviations represent the optical path difference 
introduced by the optic under test (i.e. the surface height 

error). 
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reference beam. In Eq. 1-11, there are three unknowns, therefore at least three independent 

measurements are required to obtain the phase map across the surface of the optic under test. In 

practice, at least four measurements are obtained due to errors in phase stepping [21] and other 

sources of error [22,23]. 

Phase stepping is often accomplished by changing the optical path length of the reference 

beam by mechanical motion of the reference reflecting surface. Using 90-degree phase shifts, the 

well-known four-bucket algorithm can be derived to calculate the phase. The four different 

measurements are of the form: 

𝐼𝐼1(𝑥𝑥,𝑦𝑦) = 𝐼𝐼𝐷𝐷𝐶𝐶 + 𝐼𝐼𝑀𝑀𝑀𝑀𝐷𝐷 cos�𝑦𝑦(𝑥𝑥,𝑦𝑦)�, 

𝐼𝐼2(𝑥𝑥,𝑦𝑦) = 𝐼𝐼𝐷𝐷𝐶𝐶 + 𝐼𝐼𝑀𝑀𝑀𝑀𝐷𝐷 cos �𝑦𝑦(𝑥𝑥,𝑦𝑦) + 𝜋𝜋
2
� = 𝐼𝐼𝐷𝐷𝐶𝐶 − 𝐼𝐼𝑀𝑀𝑀𝑀𝐷𝐷 sin�𝑦𝑦(𝑥𝑥,𝑦𝑦)�, 

𝐼𝐼3(𝑥𝑥,𝑦𝑦) = 𝐼𝐼𝐷𝐷𝐶𝐶 + 𝐼𝐼𝑀𝑀𝑀𝑀𝐷𝐷 cos(𝑦𝑦(𝑥𝑥,𝑦𝑦) + 𝜋𝜋) = 𝐼𝐼𝐷𝐷𝐶𝐶 − 𝐼𝐼𝑀𝑀𝑀𝑀𝐷𝐷 cos�𝑦𝑦(𝑥𝑥,𝑦𝑦)�, 

𝐼𝐼4(𝑥𝑥,𝑦𝑦) = 𝐼𝐼𝐷𝐷𝐶𝐶 + 𝐼𝐼𝑀𝑀𝑀𝑀𝐷𝐷 cos �𝑦𝑦(𝑥𝑥,𝑦𝑦) + 3𝜋𝜋
2
� = 𝐼𝐼𝐷𝐷𝐶𝐶 + 𝐼𝐼𝑀𝑀𝑀𝑀𝐷𝐷 sin�𝑦𝑦(𝑥𝑥,𝑦𝑦)�, 

where 𝐼𝐼𝐷𝐷𝐶𝐶 = 𝐼𝐼1 + 𝐼𝐼2 and 𝐼𝐼𝑀𝑀𝑀𝑀𝐷𝐷 = 2�𝐼𝐼1𝐼𝐼2. 

 Combination of these four equations leads to 

𝑦𝑦(𝑥𝑥,𝑦𝑦) = atan �𝐼𝐼4(𝑥𝑥,𝑦𝑦)−𝐼𝐼2(𝑥𝑥,𝑦𝑦)
𝐼𝐼1(𝑥𝑥,𝑦𝑦)−𝐼𝐼3(𝑥𝑥,𝑦𝑦)�, 

which shows that the phase difference across the optic under test can be obtained without 

comparison of the fringe pattern to regularly spaced lines. In other words, tilt fringes are not 

required to obtain the phase, therefore the two beams can be aligned such that they form a null 

fringe pattern. 

 This type of measurement is only considered a null measurement if the optic under test 

returns the beam in a similar form to the reference beam (flat or spherical). Interferometers tend to 

Eq. 1-12 

Eq. 1-13 

Eq. 1-14 

Eq. 1-15 

Eq. 1-16 
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output a spherically shaped wavefront; therefore, only spherical surfaces will return a null. 

However, if other optical components are placed in the beam path, aspheric surfaces can also be 

measured with a null test. 

 For example, an F/2 parabolic mirror can have large aspheric departure. A spherical 

wavefront input from an interferometer will be returned with significant spherical aberration. For 

a 400 mm F/2 paraboloid the aspheric departure is 0.40 mm, or ~600 waves. The mirror is tested 

in double pass; therefore, the interferometer would be attempting to measure ~1200 waves of OPD 

across the mirror. The number of camera pixels required to measure this is very large. 

At the edge of the mirror, the slope departure is 8 mrad, which results in 16 mrad of ray 

deviation from spherical. Due to phase unwrapping requirements, the difference between adjacent 

pixels cannot be greater than 2𝜋𝜋 or there is ambiguity in the measurement. Thus, the ray slope 

deviation multiplied by the mapped pixel size must be less than one wave. In other words, the 

mapped pixel size on the optic under test must be smaller than 𝜆𝜆/𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝐶𝐶𝑑𝑑𝑖𝑖𝑑𝑑𝑛𝑛, which is about 

40 μm. This means >10,000 pixels in one dimension are required to avoid ambiguity in phase-

unwrapping! Therefore, additional optics must be introduced to measure this mirror with an 

interferometer. A very useful trick for discovering the required optics for a null test is to trace the 

rays in reverse, forcing the rays to leave the surface under test at normal incidence. A departure 

from reality is required to accomplish this. By Snell’s law 

𝑛𝑛1 sin(𝜃𝜃1) = 𝑛𝑛2sin (𝜃𝜃2), 

with 𝑛𝑛1 and 𝑛𝑛2 as the indices of refraction before and after the refracting surface, and 𝜃𝜃1 and 𝜃𝜃2 

the angle of incidence/exitance (relative to the surface normal) before and after the refracting 

surface, respectively. To obtain an angle of exitance that is normal to the surface, set 𝜃𝜃2 = 0°. 

Eq. 1-17 
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Because the angles of incidence cannot all be 0, it must be that 𝑛𝑛1 = 0. This is not physically 

possible, but it can still be done in ray tracing software, and it significantly reduces the time 

required to design corrective optics. 

 Using this ray tracing technique in Zemax OpticStudio®, a design for null corrective optics 

is readily attainable. An object is placed at infinity where the index of refraction until the surface 

under test is 0. Incidence upon the paraboloidal surface leads to refraction where all rays exit at 

normal incidence. A field-like meniscus lens is placed near the focus of the mirror and redistributes 

the rays onto a second plano-convex focusing lens, which counteracts the spherical aberration of 

Figure 1.12: Optical layout for null-corrective optics of an F/2 400 mm paraboloidal mirror. Rays are traced in 
reverse; thus, the resulting wavefront errors are half of what they would be in a real test. 

Figure 1.13: wavefront errors for a paraboloidal F/2 mirror under test at (a) paraxial focus of the mirror and (b) 
paraxial focus after the focusing lens. Both wavefront errors are half of what they would be in a real testing 

configuration. 

(a) (b) 
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the mirror and refocuses the light to a diffraction limited spot (see Figure 1.12). The wavefront 

error at the paraxial focus of the mirror is 581 waves PV. After the corrective optics the wavefront 

error is reduced to 1/100th of a wave PV (see Figure 1.13). 

 Both lenses are composed of N-BK7 and are less than 4” in diameter. Also, they both have 

spherical surfaces. Additional optimization could lead to smaller lenses, and ghost reflections may 

need to be examined, but this example illustrates how null testing can still be done for aspherical 

optics. More complicated corrective optics are required for specialized optics, such as gull-wing 

lenses found in cellphones. Introduction of computer-generated holograms (CGH) is often 

necessary to make the appropriate wavefront corrections. However, the principles illustrated here 

are applicable to a wide range of optical components. 

1.8 Conclusion 

In the coming chapters, the concepts discussed in Chapter 1 will be used in the exploration 

of designs and experimental results. All subjects rely upon an understanding of geometric optics, 

including imaging an object and imaging a pupil. Aberration theory is used to explain different 

optical design choices or metrology measurements, and a variety of other topics of the optical 

sciences are used in explaining the various designs and metrology techniques. 

Chapter 2 is a presentation of a collection of concentrated photovoltaics (CPV) designs. 

Each design is intended to explore the different benefits provided by different approaches, 

especially the cost. Chapter 3 introduces concentration solar power (CSP). It is a chapter intended 

to provide motivation for using actively focused heliostats. Chapter 4 explores the mechanical and 

optical requirements for an actively focused heliostat. An experiment funded by Tech Launch 

Arizona is presented, which involved the manufacture of a prototype actively focusing heliostat 
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and a unique metrology system for determining the heliostat shape. In Chapter 5 there is a deeper 

dive into null metrology systems, specifically for a unique 1.6 m diameter gull-wing lens. 

Additionally, a local curvature metrology system is proposed, which could enable full 3D 

measurements of free form surfaces without the need for interchanging optical components (i.e. 

switching out null corrector elements). Chapter 6 is like Chapter 2 in that it is a presentation of a 

collection of different telescope designs. The motivation for the telescope designs are not 

emphasized, though they are given in brief detail with some reference to published papers that 

provide more background. 

Collectively the chapters of this dissertation show the various ways that the principles 

taught within the optical sciences can be applied to a large variety of scenarios. Solar concentration 

and telescopes are just two small areas in the world of optics, though there is much to say about 

both topics, especially when optical design and metrology are both considered. 
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CHAPTER 2 :  CONCENTRATED PHOTOVOLTAICS (CPV) DESIGNS 

2.1 Introduction 

Potential cost savings are the driving force for research and development of multi-junction 

(MJ) solar cells. Silicon cells have reached a conversion efficiency of over 25% sunlight to 

electricity [24]. In contrast, MJ cells have achieved conversion efficiencies of greater than 

47% [25]. This increased efficiency of MJ cells is offset by the increased complexity to 

manufacture such a cell. A typical silicon solar cell is approximately $1/Watt whereas a multi-

junction cell is around $300/Watt [26]. If that were the end of the discussion, then the conclusion 

would be to stick with silicon. Except perhaps in space applications where the cost of energy per 

weight make MJ cells more attractive. However, it is not just space where multi-junction cells have 

the potential to reduce cost. 

Multi-junction cells are often called concentrated photovoltaic (CPV) cells. This is because 

many MJ cells have been designed such that ideal operating conditions are at greater than nominal 

Earth insolation. Many cells operate best at >100X solar concentration. This is accomplished by 

introduction of refracting and/or reflecting elements to concentrate sunlight onto the cells. At 300X 

concentration the CPV cell achieves a similar cost to a silicon cell for the same energy conversion. 

However, there is added complexity required for a CPV cell that is not required for a silicon cell. 

A CPV cell needs to track the sun in two dimensions. Otherwise sunlight will not be focused onto 

the cell. Additionally, the localized heating by concentration needs to be well dissipated or the 

efficiency of the cell is reduced [27]. Therefore, achieving just 300X concentration of sunlight is 
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not enough to offset the cost disparity between silicon and multi-junction cells. Greater 

concentrations are required for modern CPV cells to compete. 

2.2 Solar Concentration at 1000X 

Achieving 1000X concentration reduces the cost of CPV cells to about 1/3 of a silicon cell. 

Therefore, this seems a worthy optical design goal. A recent paper by Hyatt et al. reports the results 

of a prototype design which achieved 500X concentration [28]. They obtained this concentration 

by using a dish collector mirror in the form of an off-axis paraboloid followed by a field lens near 

the focus, which concentrated sunlight at ~30X onto a fly’s eye lens array. The field lens had the 

function of imaging the collector mirror onto the lens array. The lens array then divided the 

sunlight into equal portions and further concentrated onto a dome lens, which reimaged the pupil 

image onto the CPV cell at 500X (see Figure 2.1). 

Beginning with this heritage, another design was developed for a reduction of mechanical 

complexity of the design by Hyatt et al. The design takes advantage of symmetry to reduce the 

number of unique components for manufacture. Additionally, a higher mispointing tolerance is 

Figure 2.1: Figure 1 from Hyatt et al.’s paper showing their optical design. The off axis paraboloidal dish collector 
concentrates sunlight just before a field lens (left), which images the pupil onto a fly’s eye lens array (middle). The 
fly’s eye lens array then divides the sunlight into equal amounts and further concentrates onto a dome lens, which 

reimages the pupil image onto the multi-junction cell (right). 
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obtained. This design was reported in a follow-up paper by Eads, Hyatt, and Angel, entitled 

“Optical Design for a Fly’s Eye CPV System with Large, On-axis Dish Solar Concentrator” 

(included in Appendix D) [29]. 

The goal of the design was to achieve a higher level of uniformity while pushing towards 

a geometric concentration of 1000X. The design process involved the creation of a custom merit 

function where minimization of the merit function occurred when the different field angles from 

the same pupil position imaged to the same position on the fly’s eye array (i.e. pupil imaging). 

Creation of such a merit function is a simple process. The following is an outline for how to do 

this. 

Zemax OpticStudio will automatically generate a default merit function based on a variety 

of criteria: Image Quality, Type, Reference, Distortion, Pupil Integration, etc. The dish shaped 

reflector was chosen to be square for more simple division of the pupil into equal areas. Therefore, 

set the pupil integration to a rectangular array in the Optimization Wizard. The number of rays 

should be chosen to be larger than the number of divisions of the pupil, which in this design was 

100 equal areas, or a 10 X 10 grid. A sampling of 40 X 40 should be suitable. Check the box for 

delete vignetted, set the image quality to be spot, and do not assume axial symmetry. Click apply 

and a merit function will be automatically generated. Copy and paste the merit function into an 

excel spreadsheet for further modification. 

In excel, sort the rows by type so all the TRCX operands are grouped together followed by 

the TRCY operands. Replace all the TRCX and TRCY operands with the REAX and REAY 

operands, respectively. Using REAX and REAY will ensure rays are more accurately traced to the 

correct location (at the cost of time to optimize). Set the REAX targets to be the desired pupil 
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image radius times the normalized x pupil 

coordinate (Px). Set the REAY targets to be 

the desired pupil image radius times the 

normalized y pupil coordinate (Py). Change 

all elements of the surface number column to 

imaging surface number (the column after the 

operand name). Note, the sign of the targets 

may need to be changed due to an inverted 

pupil image. Highlight the default operands in 

Zemax OpticStudio. Copy and paste the excel modified operands over the default operands in 

Zemax OpticStudio, and the design should be ready for pupil image optimization. If optimization 

is slow the sampling may need to be reduced. A chief ray height solve on the last surface may 

prove to be useful. 

Using a merit function of this nature, the design by Eads, Hyatt and Angel was obtained. 

Optimization occurred at three different field angles: 0, 0.5, and 0.75 degrees. Wavelengths ranged 

from the optical to the near infrared. The size of the field lens was kept as small as possible to 

reduce weight and cost (see Figure 2.2). 

The secondary stage concentration optics were designed using a similar merit function. 

These optics consisted of a fly’s eye lenslet and a dome-shaped field lens (Figure 2.3). The 

optimized design was only required for the on-axis fly’s eye.  From the optimized design all other 

optical designs were obtained by variation of the fly’s eye lenslet power, and the spacing between 

the lenslet and dome lens. These variations were determined by equations provided in Eads, Hyatt, 

Figure 2.2: Optical layout of design by Eads, Hyatt, and 
Angel in Figure 2 of their paper. 



55 

 

and Angel’s paper [29]. The primary stage optics 

focus a pupil image onto the fly’s eye array at 

~35X concentration. The secondary stage optics 

concentrate the sunlight to a further ~1000X onto 

5.4 mm size CPV cells. 

The goal of this design was to achieve 

1000X concentration so that the cost of solar cells is significantly reduced. Additionally, the cost 

of materials for the mirror and solar module is about the same since silicon solar cells are generally 

covered by glass for protection. The cost of dual-axis tracking is a significant factor that reduces 

cost benefits from concentration, but the greater challenge is the alignment of these optical 

components. In this design, there are 96 dome lenses that need to be properly centered on 96 CPV 

cells and then aligned to the 96-lens fly’s eye array. The manufacturing of the fly’s eye lens array 

may involve precision glass molding of four 4x6 arrays that each need to be aligned to one another 

and positioned relative to the field lens. Also, without proper AR coatings the dielectric losses 

reduce the concentration. In this design, the push for 1000X concentration led to the use of multiple 

optics, but this added a significant amount of complexity. 

With an application of modern manufacturing techniques, the cost of these modules would 

approach the materials cost. Therefore, this design is still worth consideration. However, 

significant investment would be required to reach cost goals. Additionally, a low-cost, rapid 

alignment metrology would need to be implemented to verify correct manufacture of each module. 

Perhaps a lower concentration, yet simpler design, is a better option. 

Figure 2.3: Secondary concentration optics consisting 
of a fly’s eye lenslet and dome-shape field lens for 

final imaging of pupil onto CPV cell. 
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2.3 CPV at 300X Versus Silicon 

Creating a CPV system with 300X concentration would place the cost of cells per watt at 

roughly the same as silicon solar. Thus, there appears to be no great advantage in creating a CPV 

system. However, silicon has the current advantage of mass production reduced cost. If CPV cells 

were produced at a similar level to silicon, then the cost per watt would be reduced, and CPV cells 

would be far more competitive. However, there is still the issue of the requirement for dual axis 

tracking in CPV applications. 

Silicon solar cells do not see a great advantage in dual-axis tracking of the sun. However, 

single-axis tracking shows a significant improvement over a fixed tilted solar panel. A fixed tilted 

solar panel can receive about 6.5 kWh/m2/day in Tucson, Arizona (see “Solar Radiation Data 

Manual for Flat-Plate and Concentrating Collectors” [30]). For single axis tracking the average 

yearly incident energy is 8.1 kWh/m2/day. At the University of Arizona Tech Park, single-axis 

tracking is used to gain this 25% boost in produced energy (see Figure 2.4). In contrast, dual-axis 

tracking obtains only an 11% increase over single-axis tracking, which equates to 9.0 kWh/m2/day. 

Single axis tracking mechanisms can be created in long strips, which reduces the mechanical 

Figure 2.4: Single-axis tracking solar panels at the University of Arizona Tech Park in Tucson, Arizona. 
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complexity and cost. Dual axis tracking mechanisms require a separation of modules, and of course 

the added complexity of another axis of rotation. 

Dual-axis tracking for silicon solar panels does not add much advantage. However, dual-

axis tracking with CPV cells does show an advantage over silicon solar panels. Of the 9.0 

kWh/m2/day that are collected with dual-axis tracking, 7.0 kWh/m2/day are the direct solar 

component, which is the only part that CPV cells use (the other 2.0 kWh/m2/day are the diffuse 

sky component). This is less than the 8.1 kWh/m2/day collected and used by a single axis tracking 

solar panel. However, the conversion efficiency of both cell types must be considered in both 

applications. 

Commercial silicon solar cells have conversion efficiencies close to 20%. In contrast, 

commercial CPV cells have conversion efficiencies >40% (at operating temperatures). If well 

designed AR coatings are used on optical components, then the expected system conversion 

efficiency is reasonably 40%. This means that for single axis tracking silicon solar panels, the 

expected yearly average energy production is about 1.6 kWh/m2/day. Using dual-axis tracking 

with CPV cells the expected energy production from the direct solar component is 2.8 

kWh/m2/day, a 75% increase over single axis tracking silicon solar panels. Clearly in Tucson, 

Arizona CPV cells show a great improvement in conversion efficiency of sunlight, perhaps enough 

to offset the added cost in dual-axis tracking. But in other parts of the USA the efficiency gains in 

CPV are not so significant. 

In Seattle, Washington the yearly averaged collected energy for a single-axis tracking 

system is 4.3 kWh/m2/day. The collected energy for dual-axis tracking is 4.9 kWh/m2/day with 2.9 

kWh/m2/day being direct. Therefore, a single-axis tracking silicon PV panel predicted energy 
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production averaged over a year is 0.9 kWh/m2/day. A dual-axis tracking CPV system has a 

predicted energy of 1.2 kWh/m2/day. The energy gain is only about 33%. An energy gain of this 

amount may be sufficient for the switch from fixed tilted silicon PV to single-axis tracking silicon 

PV, but the required switch from single-axis tracking to dual axis-tracking makes silicon PV more 

cost-effective than CPV in regions of the world like Seattle, and silicon PV in Seattle isn’t that 

cost-effective anyway. So far, the decision has appeared to be either silicon PV or CPV, but what 

if the decision is not just between silicon PV and CPV? What if both technologies could be used 

together? Yunus Emre once said “Come let us be friends for once.” Perhaps by combination of 

these two technologies there can be a greater gain than using only one. A different type of design 

would need to be studied. What is the efficiency gain made possible? 

If all the direct sunlight were used by CPV and the remaining diffuse component collected 

by silicon PV, then the overall system efficiency is improved. In Tucson, Arizona the predicted 

energy production would be 3.2 kWh/m2/day, twice that of single-axis tracking silicon PV! In 

Seattle, Washington the predicted energy production would be 1.6 kWh/m2/day, over 75% more 

than single-axis tracking silicon PV! Of course, the cost per energy of such a system in Seattle 

would be twice that of Tucson. 

The potential gain in solar conversion appears to offset by the increased cost per watt 

though. The cost of the cells is approximately doubled since both 300X concentration CPV cells 

and silicon PV cells are used. However, other effects may change this loss. If more CPV cells were 

manufactured, then the cost would be driven down. There wouldn’t necessarily be a 100% 

improvement on cost per watt, but there would still be improvement. The major obstacle would 

then be a low-cost dual-axis tracker. 
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2.4 Ideal Hybrid Design 

The use of silicon and CPV cells together involves a different way of thinking about solar 

concentration than shown in section 2.2. The geometry makes it challenging to use both the diffuse 

and direct component of sunlight with a reflective system, thus a transmissive system is more 

appropriate. For silicon solar panels a 4 mm protective glass layer is typically placed over the top 

of the silicon cells. Perhaps this glass layer could be switched out with a focusing element? It 

would need to be a collection of focusing elements to keep the thickness close to 4 mm, which 

means it would need to be a fly’s eye lenslet array. Then of course there would need to be another 

focusing element behind each lenslet so that a pupil image could be formed on the CPV cells, thus 

ensuring mispointing is well tolerated while keeping local concentrations below ~1000X (i.e. no 

hotspots). 

There is also the question of maintaining the panel (e.g. keeping the glass clean). If 

curvature is placed on the front surface of the glass, then grooves are exposed to the elements and 

it may be challenging to clean out collected dust and grime. Yet it is ideal for the front surface to 

have curvature so that spherical aberration of the objective is minimized. Unless the lenslet array 

were composed of plano-convex lenses with the convex surface being aspheric. Then the front 

surface could be flat and the back surface hyperbolic and spherical aberration would be well 

corrected.  

Using a similar merit function as introduced in section 2.2, and following the parameters 

described above, an optical design for ~300X concentration was found (see Figure 2.5). A 1” 

square plano-convex objective element focuses light onto a dome lens, which images the objective 



60 

 

onto a 1.5 mm square CPV cell (i.e. 287X geometric concentration). The aperture size and 

thickness of the objective is chosen such that the average thickness is 4.2 mm (near the 4 mm 

thickness used in standard silicon PV panels). The glass chosen is N-BK7 due to its availability, 

but this design could easily be reoptimized to accommodate a cheaper low-iron float glass. 

The distance from the glass plate to the CPV cell is kept less than 100 mm so the cost of 

the panel housing is not significantly increased. The conic constant of the convex surface is -2.295 

(𝜅𝜅 = −𝑛𝑛2 = −1.5152) so that an interferometric null test could be used to measure each of the 

lenslets using a HeNe laser (see Figure 2.6). This provides more surface information and accuracy 

than what is generally needed for solar concentration, but the test is quite simple. The measurement 

would be performed in a double pass configuration with the light focusing from a Fizeau 

interferometer in front of the convex surface, refracting at the convex surface and reflecting from 

the flat back surface of the lenslet. The convex surface collimates the light, thus the second pass 

Figure 2.5: Optical design for hybrid CPV application. The objective element is a 1” square plano-convex lens with 
the convex surface hyperbolic. The secondary element is an elliptical dome lens, which images the objective element 

onto the CPV cell at 300X concentration. Angles depicted are on-axis and +/- 0.75°. 
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through the objective brings the light back through the same focus. Stray light reflected by the 

convex surface is diverged and is therefore negligible. 

The optimization was performed for 0°, 0.5°, and 0.75° for wavelengths 400 nm, 633 nm, 

1.0 μm, and 1.6 μm. The pupil imaging is achromatically blurred by about +/- 2.5%, meaning the 

size of each pupil image is similar within +/- 2.5% in diameter, or about +/- 5% in area. This leads 

to a highly uniform spot spread across the CPV cell, which is desirable [6]. The size of the spot is 

kept to about a 1.3 mm square to allow for misalignment errors of the CPV cell up to +/- 0.1 mm 

in manufacturing. Pupil images for solar disk angular positions of on-axis, 0.75° off-axis and 1.39° 

off-axis are provided in Figure 2.7. The optimization was only out to 0.75°, which is why a slight 

vignetting begins to occur for a solar disk position of 0.75°. Surprisingly, the vignetting does not 

reach >20% until the solar disk is 1.39° off-axis. Thus, the solar disk acceptance angle is nearly 

2.8° before the relative total illumination drops below 80%! A quick look at the transmittance of 

an array of such lenses (in non-sequential mode of OpticStudio) shows that 9.4% of the light 

entering the array does not make it due to TIR. This is for angles ranging from 1.5 to 89.5 degrees, 

weighted by their cosine factors. Thus, most of the diffuse light is converted to electricity by the 

silicon. 

Figure 2.6: Double pass testing configuration of hyperbolic convex surface. Light is focused by a Fizeau 
interferometer in front of the convex surface. The diverging light is collimated upon refraction by the 
hyperbolic surface and reflects from the flat back surface (dielectric reflection). The contrast of the 
fringes observed would not be noticeably affected by dielectric reflections from the convex surface. 
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The main issue with this design is of course the use of aspheric surfaces (see the optical 

prescription in Table 2-1). However, in high volume the aspheric dome lenses could be injection 

molded at a cost similar to the cost of materials. The aspheric lenslet array is a more significant 

element. The cost could be quite significant, but recent ideas about the creation of such an array 

may allow for such a monolithic optic to be manufactured. 

The recently filed patent, U.S. Provisional Application No. 62/905,824, entitled 

“APPARATUS AND METHOD FOR THE MANUFACTURE OF LARGE GLASS LENS 

ARRAYS” describes a method that could be implemented on a float glass manufacturing line. 

Figure 2.7: Pupil images formed on a 1.5 mm square CPV cell beginning with on-axis sun (i.e. +/- 0.25° solar disk 
object) on the left and further off-axis positions towards the right. Total relative illumination is provided showing 
that performance of the optical system does not deteriorate to below 80% until the solar disk is located 1.39° off-

axis. 

Table 2-1: Optical prescription for the design shown in Figure 2.5. SYLGARD-
184 would be used to glue the dome-lens onto the CPV cell for ideal optical 

contacting. 
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Localized regions of high and low air pressure would be exerted on the top surface of float-glass 

as it moves along a bath of liquid tin. This is accomplished by “blowing” and “sucking” on the top 

surface in such a way that certain regions of liquid glass are raised, and other regions are depressed. 

In this manner a large “quilted” pattern of lenslets could be formed with virtually no added time 

in the manufacture of the glass sheet. Using this method, many types of surfaces could be imprinted 

on a glass sheet with the top surface having the desired pattern and the bottom surface obtaining 

the high precision flatness that naturally occurs in float-glass manufacturing. 

2.5 Off the Shelf Hybrid Design 

Until such a manufacturing process is implemented, a cheaper design to illustrate the 

performance of a hybrid system is needed. To reduce the cost of a prototype system, aspheric 

surfaces should not be used. The benefits of keeping the flat surface facing outward are still 

attractive, but the spherical aberration is too damaging when using solely spherical surfaces. Thus, 

for the following design the plano-convex objective was placed with the convex surface facing 

outward to minimize spherical aberration. A ball lens was chosen because of its cheap cost 

(especially if mass-produced soda-lime balls are used). Real off the shelf optics are used for this 

design.  

The objective is a 1.5” diameter 75 mm focal length N-BK7 plano-convex lens from 

Thorlabs (part # LA1386). The lens would need to be cut to a 1” square by a process such as water-

jetting and glued to other objective lenses to form a monolithic fly’s eye array. The ball lens is 

made from N-BK7 and is 5 mm in diameter, readily available from Edmund Optics (part #43-712). 

5 mm ball lenses are also available in large quantities from other online sources, though the quality 

of these lenses would need to be verified before use. 
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This design was optimized for the same fields of view and wavelengths as the ideal design 

in section 2.4. An extra dielectric loss was allowed, which improved pupil imaging by using the 

full power of the ball lens (see Figure 2.8). A CPV cell that is AR coated for air exhibits a slightly 

smaller conversion efficiency, but for the purposes of a prototype a 1-2% loss in efficiency is not 

too detrimental. If an optically contacted CPV cell is preferred then a SYLGARD-184 layer can 

be used, but it would need to be 1.4 mm thick, and the ball lens would need to be reduced to 4 mm 

in diameter. While this would save a couple percent in optical efficiency, the optical performance 

is degraded for off-axis imaging, which is why the extra dielectric loss is preferred. For the ball 

lens in air design, the chromatic pupil blurring is about +/- 2% in diameter on-axis but degrades 

significantly off-axis.  

The overall performance of this design is comparable to the design shown in Figure 2.5 

except for loss of uniformity between different areas of the spectrum as the solar disk goes further 

off-axis (i.e. Chromatic change in magnification of the pupil image). Nevertheless, the 

Figure 2.8: Optical layout for an off the shelf 300X concentration design. The ideal cell size is 1.5 mm 
square, but a commercially available 3.3 mm CPV cell would be used for a prototype, making the 

global geometric concentration 60X. Angles depicted are on-axis and +/- 0.75°. 
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performance is very good. The acceptance angle is boosted compared to the previous design. A 

20% degradation in relative total illumination is not reached until the solar disk is centered at 1.49°, 

nearly double that of the optimized angles (see Figure 2.9)! A quick look at the transmittance of 

this array of lenses shows that 13.7% of the light entering the array does not make it due to TIR. 

This is for angles ranging from 1.5 to 89.5 degrees weighted by their cosine factors. This shows a 

worse performance for this design than for the design in section 2.4, but the majority of the diffuse 

light is still incident upon the silicon. 

The design shown here has the advantage of using commercially available components. 

These optical components could be purchased today, and a prototype could soon be built. 

Additionally, this design exhibits a larger acceptance angle, allowing less money to be spent on a 

dual-axis tracking unit. Despite these advantages, this may not be the ideal long-term system. 

Having grooves exposed to the elements could lead to significant dust and grime build-up, 

Figure 2.9: Pupil images formed on a 1.5 mm square CPV cell beginning with on-axis sun (i.e. +/- 0.25° solar disk 
object) on the left and further off-axis positions towards the right. Total relative illumination is provided showing 
that performance of the optical system does not deteriorate to below 80% until the solar disk is located 1.49° off-

axis. Chromatic aberration causes a noticeable loss of uniformity. The size of the actual CPV cell would be 3.3 mm, 
as this is commercially available. 
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reducing overall performance. Additionally, two extra dielectric losses reduce the optical 

efficiency of the system (the glass-air reflection from the back surface of the ball lens and the air-

dielectric reflection from the CPV cell). Also, the TIR loss for diffuse light is worse, leading to an 

overall reduced energy production over the lifetime of use. 

In contrast, the ideal design shows an overall better performance. In a commercial setting, 

large quantities of aspheric dome-lenses could be manufactured at a comparable cost to materials, 

and large quilted fly’s eye arrays could be manufactured right off a float glass production line. The 

ideal design has fewer dielectric losses and better TIR performance for diffuse light. Additionally, 

the chromatic loss of uniformity is much less at large off-axis angles, and soiling of the exposed 

surface cannot accumulate in grooves. The acceptance angle for the ideal design is not as large, 

thus a slightly more expensive dual-axis tracker could be required. Additionally, the manufacture 

of large cost-effective aspheric fly’s eye arrays would involve significant research and 

development. 

Considering these arguments, the prototype approach may be best. Both the ideal and 

prototype designs have varying pros and cons. Perhaps a different design could split the difference 

between the two. It would take advantage of modern manufacturing techniques while still 

exhibiting similar pros to the ideal design. A balanced approach designing a hybrid concentrator 

would use elements that may not be off the shelf available. Rather, it would use optical elements 

that could be made within the next year or so for a reasonable price. A look at commercially 

available architectural glass introduces this alternative design. 



67 

 

2.6 Reed Glass Hybrid Design 

Reed glass is produced by manufacturers for 

architectural applications. The glass can be frosted or 

transparent depending on the desired look. This patterned 

glass consists of a repeating pattern of curved partial 

cylinders that can reach sizes over 2 m2 (see Figure 2.10). 

Sunlight incident upon such a piece of glass would create 

a series of line foci. The cost of reed glass ~4 mm thick is sold at the consumer level for about 

$70/m2. This cost could reasonably be expected to be reduced by a factor of 2-3 for mass 

production, and the cost would be even less if low-iron soda-lime float glass was used. 

The issue with using this glass is that focusing occurs in only one dimension. However, if 

a second sheet of glass were placed behind and rotated 90 degrees, then focusing occurs in both 

dimensions. An experiment was performed showing that this works. Two reed glass sheets were 

optically contacted with both flat faces in contact with each other. The patterns were set in 

orthogonal directions. The measured shape of the repeating cylinder, using a coordinate measuring 

machine (CMM), was 28.5 mm radius of curvature and -54.1 for the conic constant. According to 

Eq. 1-10 the ideal conic constants for the front and back surfaces are -0.44 and -2.25, respectively 

(for glass with an index of refraction of 1.5). Therefore, a conic constant of -54.1 causes a large 

amount of spherical aberration. In Figure 2.11 the observed effect of this incorrect surface shape 

is a grid pattern of square spots instead of circular spots. 

Figure 2.10: Reed glass used in an office 
setting. Sold by companies such as Decorative 

Film, from which this photo was obtained. 



68 

 

The thickness of the glass shown above is 4 mm 

for each sheet (8 mm total thickness). To keep the cost 

down, the total thickness of glass needs to be near 4 mm 

for the optimal design. This means that instead of 

optically contacting two pieces of off the shelf sheets of 

glass, as in Figure 2.11, a sheet of glass should be 

imprinted with orthogonal cylindrical patterns on the 

front and back with the appropriate conic constants. 

Using the pupil imaging merit function, a design was 

created with two orthogonal cylindrical patterns on the 

front and back, respectively. The cylindrical shape of the front and back were both allowed to be 

aspheric. A ball lens was used once again to reduce cost. The optical prescription is provided in 

Table 2-2. Note, the conic constant of the front surface is -0.41 and the back surface conic constant 

is -1.96, both very near to the predicted -0.44 and -2.25. Together the cross-cylindrical aspheric 

biconvex objective and a simple ball lens obtain 287X geometric concentration (see Figure 2.12). 

The advantage of cleaning a flat surface is still obtained by orienting the outward facing face of 

the array with the grooves vertical. Accumulation of dust and grime is then minimized. 

Figure 2.11: Experiment using two sheets of 
reed glass with flat surfaces optically contacted 

and patterns set orthogonal to one another. 
Focus is accomplished in both directions, 

though the spot formed is square in shape due 
to an incorrect shape in the reed glass sheets. 

Table 2-2: Optical prescription for 300X concentration CPV design using aspheric 
cylindrical lenses on the front and back surfaces of the objective element with radii of 

curvature in orthogonal directions. 
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The objective element could be 

made by creating two cross-patterned 

rollers to press-mold glass on a patterned 

glass manufacturing line (see Figure 

2.12). These rollers would need to be 

precision machined, which would have a 

large upfront cost. Metrology of the 

generated patterned sheets would require 

a combination of CMM measurements, interferometry with computer generated holograms 

(CGH), and/or potentially deflectometry. If 

multiple hybrid systems were made, it would 

likely be too costly to perform this 

measurement for every glass array, so the 

arrays would be randomly sampled and 

measured to ensure the rollers were not deformed over time (similar to what cell-phone 

manufactureres do for gull-wing lenses). 

The solar pupil images obtained for this design are shown in Figure 2.14. The solar disk 

acceptance angle is a smaller +/- 1.38° before power collection drops below 80%, but the 

uniformity of this design is better than that for the off the shelf ball lens design. The time for 

production is longer than the off the shelf design, but less than the ideal design. However, for an 

alternative prototype, suitable architectural glass could be “sandwiched” together so long as the 

Figure 2.13: 3D layout of 287X concentration CPV design using 
elements that could be readily obtained by working with 

patterned glass manufacturers. 

Figure 2.12: Orthogonally oriented rollers for press-
molding glass sheets according to the desired optical 

prescription. 



70 

 

cylindrical shapes were close to 

what is desired. The 

transmittance of this array of 

cylindrical lenses showed that 

13.2% of the diffuse light 

entering the array does not make 

through due to TIR, which is 

slightly better than the off the 

shelf design. 

Overall, a reed glass 

hybrid design appears to be the 

middle ground between a lower 

performance off-the-shelf 

Figure 2.14: Pupil images formed on a 1.5 mm square CPV cell beginning with on-axis sun (i.e. +/- 0.25° solar disk 
object) on the left and further off-axis positions towards the right. Total relative illumination is provided showing 
that performance of the optical system does not deteriorate to below 80% until the solar disk is located 1.38° off-

axis. Chromatic aberration causes a slight loss of uniformity. 

Figure 2.15: A hybrid PV system consisting of a glass array where the front 
surface is composed of a series of long cylindrical lenses of elliptical shape 

and the back surface is composed of a series of long cylindrical lenses of 
hyperbolic shape. Thus, an array of lenses is formed, which each focus 

light onto a secondary ball lens. The ball lens forms a pupil image onto a 
high-efficiency CPV cell for direct sunlight (red). Diffuse light passes 

through the lenslet array (with a 13.2% TIR loss) and is converted by the 
silicon cells located on the back surface of the system. 
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system and a costly ideal system. For a reed glass hybrid design the overall system would consist 

of a large monolithic array where the front surface consists of a series of long cylindrical lenses 

with an elliptical shape and a back surface consisting of an orthogonally oriented series of long 

cylindrical lenses with a hyperbolic shape. Incident direct sunlight would be focused and captured 

by an array of secondary ball lenses, which create an array of pupil images, each on a high-

efficiency CPV cell (see Figure 2.15). The CPV cells would be mounted onto a surface consisting 

of silicon PV cells, which would convert off-axis diffuse light to electricity with roughly half the 

efficiency of the CPV cells. Together, the CPV cells and silicon PV cells would maximize the total 

energy conversion with the only significant added cost being a low-precision dual-axis tracking 

unit. Approximately the same amount of materials would be required for this system as for a silicon 

PV solar panel, which in high volume places the cost of this panel similar to a standard solar panel, 

but with up to twice the energy conversion. 

2.7 Conclusion 

The optical design for concentrated photovoltaics is driven by a need to obtain high 

concentrations of sunlight where the efficiency of CPV cells peak and the cost of the cells drops 

as the required area of cells is reduced. At approximately 300X concentration, the cost per watt of 

CPV cells is well matched to silicon cells. Reaching concentrations much greater than this 

(~1000X) leads to a lower cost for CPV cells, but this cost savings is offset by a need for more 

complicated optical layouts where multiple stages of concentration may be required. 

At 300X concentration much simpler optics can be used. A general approach is to use a 

fly’s eye array with each lenslet followed by a secondary ball or dome lens, which images the fly’s 

eye array onto an array of CPV cells for high-efficiency conversion of sunlight. The weight of the 
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glass needed in the optical components becomes similar to the weight of glass already used as a 

protective covering in solar panels. Thus, in high volume, the cost of a CPV panel as described is 

similar to the cost of a solar panel, with solely the added need for dual-axis tracking. 

A significant benefit is obtained when the array of CPV cells is mounted onto a large region 

of silicon solar cells (see Figure 2.15). Then compared to single-axis tracking silicon solar panels, 

twice the amount of energy can be generated in regions like Tucson, Arizona, and 75% more 

energy can be generated in regions like Seattle, Washington (not considering optical losses). The 

benefits of a hybrid system could potentially outweigh the added cost of dual-axis tracking, 

especially with a large acceptance angle that reduces the required precision for dual-axis tracking. 

A series of options are available to create such a hybrid system, the most promising of 

which involves a lenslet array where the front and back surfaces are composed of a series of long 

cylindrical surfaces (reed glass) that are orthogonally oriented so that focusing occurs in both the 

tangential and sagittal planes. An inexpensive ball lens serves as the secondary optic, which allows 

for high mispointing of +/- 1.39° of the solar disk before energy production drops below 80%. A 

system of this nature may be what is required to drop the cost of solar energy below current costs 

of electricity generated by fossil fuels. 

In the next chapter, an alternative, yet complementary approach to photovoltaic solar 

energy is discussed: concentrated solar power. Instead of focusing sunlight onto photovolatic cells, 

mirrors are used to focus sunlight on a central receiver where the heat can be used to create steam 

or potentially provide heat for industrial processes. Companies, such as Heliogen, hope to obtain 

very high concentrations and reach temperatures greater than 1500 °C at which point hydrogen 

fuel can be generated [31]. 
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CHAPTER 3 :  CONCENTRATED SOLAR POWER (CSP) 

3.1 Introduction 

Heliostats are used to concentrate sunlight onto a central power tower where the heat is 

often converted into electricity by a generator. This Concentrated Solar Power (CSP) approach to 

generating electricity is complementary to photovoltaics. Solar panels can generate electricity 

throughout the day. At the same time CSP can be used to collect heat throughout the day, which 

is stored and then used to generate electricity at night when solar panels are no longer useful, which 

is not a new concept [32]. 

Recent innovation in the CSP world has led to an interesting application of heliostats; the 

realistic possibility of creating hydrogen fuel [31]. Solar concentrations of 1,200X are required to 

achieve temperatures around 1,500 °C. At this temperature it becomes possible to create hydrogen 

fuel. The energy content of hydrogen is about 3 times as much as gasoline making it an ideal 

substitute for automotive vehicles [33]. Especially because using hydrogen does not involve the 

emission of CO2. Clearly, it is very desirable to be able to create a high-density green fuel that can 

replace gasoline. A potential solution is a very high concentration of sunlight, and a lot of it. 

In addition to hydrogen fuel, the temperatures made possible by high concentration 

heliostat fields could allow for industrial heating processes to use heliostats instead of fossil fuels 

to create heat. Industrial heating produces about 10% of the world’s CO2 emissions, and it is 

perhaps the most challenging area to replace fossil fuels with green fuels [34]. 

One great challenge for applying heliostat technology to industrial heating, such as a blast 

furnace, is the need for a continuous steady heat source. Variation of weather throughout the day 
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may cause significant variation in the heat production of a field of heliostats. Thus, heliostats may 

not be directly useful in this sector. However, hydrogen fuel created by heliostats could prove to 

be a suitable substitute for fossil fuels.  

3.2 A Conventional Power Tower 

For a conventional power tower, typically, thousands of flat-mirror heliostats are used in 

concert all reflecting sunlight towards the same receiver. A heliostat consists of a supporting 

structure upon which a mirror is mounted. This structure can rotate in two different axes such that 

the mirror can be positioned to reflect incident sunlight towards a receiving tower. The geometry 

of a heliostat field is such that the light at the central receiver is spread out over a size not much 

larger than the image that would be formed by a pinhole camera. The heliostat itself often ranges 

in size from half the size of the pinhole camera solar disk image to about the same size. In the case 

of half the size of the pinhole camera solar disk, the diameter of the heliostat would be, 

𝐷𝐷 = 𝐹𝐹𝜃𝜃𝑆𝑆𝑆𝑆𝑛𝑛/2 ≈ 𝐹𝐹/230, 

where 𝐹𝐹 is the focal distance to the central receiver and 𝜃𝜃𝑆𝑆𝑆𝑆𝑛𝑛 is the angular subtense of the Sun, 

which is approximately 1/115 radians. In the case of the Ashalim Power Station the furthest 

heliostat is 1.0 km from the central receiver and each heliostat is about 4.3 m in diameter, which 

is half the pinhole solar disk diameter.  [35]. 

The solar images from heliostats at the edge of the field have an RMS diameter of about 

7.0 m in diameter for heliostats at the edge of the field. This equates to about 70% of the reflected 

energy. To capture the geometric spot size (100% of reflected energy) the receiver would need to 

be about 12 m wide (see Figure 3.1). To account for surface errors and mispointing, the actual 

Eq. 3-1 
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receiver for the Ashalim Power Tower is about 22 m 

wide. Perhaps a power tower manufacturer would want 

the heliostats to each act more like pinhole cameras. This 

would require a significant reduction in the size of the 

heliostats, and thus a significant increase in the required 

number of heliostats. 

 The number of heliostats required for the Ashalim 

Power Tower (50,000) was dictated by the goal of a large 

power capacity (121 MW), the use of flat heliostats, and 

the goal of getting the geometric concentration ratio to ~650X. The large number of heliostats is 

necessary because of the small concentration provided by each heliostat of ~1/25X. At this 

concentration ratio electricity can be generated with a steam boiler. 

3.3 The Need and Potential for Higher Concentration 

The ability to create Hydrogen fuel is well out of reach of the Ashalim Power Tower 

because 1,500 °C is necessary. To obtain 1,500 °C, 1,200X solar concentration needs to be fed 

into the power tower receiver [31]. At 1,200X solar concentration there is an acceptable loss of 

radiation. Relevant to this discussion is whether it is even possible to achieve 1,200X 

concentration? What is the maximum possible concentration? 

 Assuming the area of heliostats is about 1/3 of the land area (as is the case for the Ashalim 

Power Tower and other power towers to avoid shadowing and blocking), the total area of heliostats 

is given by 

𝛾𝛾𝐻𝐻𝑑𝑑𝐻𝐻𝑖𝑖𝑑𝑑 = 𝜋𝜋𝑅𝑅2/3, Eq. 3-2 

Figure 3.1: Ray traced solar image formed 
by an Ashalim Power Tower heliostat 

located 1 km from the receiver. The size of 
the box shown is 12 m square. 
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where 𝑅𝑅 is the radial distance to the furthest heliostat (assuming a field of heliostats in a circular 

pattern centered on the receiver tower). The size of the receiver is a cylinder with a diameter and 

height matching the size of the solar disk image for the furthest heliostat. Thus, the area of the 

cylinder is given by 

𝛾𝛾𝐶𝐶𝑦𝑦𝐻𝐻 = 𝜋𝜋𝐷𝐷𝑠𝑠𝑆𝑆𝑛𝑛2 = 𝜋𝜋𝑅𝑅2/1152, 

where 𝐷𝐷𝑠𝑠𝑆𝑆𝑛𝑛 is the diameter of the solar disk image, which is 𝑅𝑅/115. If each heliostat could form 

an ideal solar disk image on the tower receiver, then the maximum possible concentration is 

𝐶𝐶 = 𝐴𝐴𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
𝐴𝐴𝐶𝐶𝐶𝐶𝐻𝐻

= 4,400. 

 This level of concentration is not reasonable though because the size of the receiver cannot 

be the exact same size as the solar disk image (due to mispointing). A good rule of thumb is to 

increase the diameter of the receiver by a factor of √2 compared to the size of the largest solar 

disk. Thus, the maximum concentration possible is 2,200X. It is the same maximum concentration 

whether a circular receiver is used, or a cylindrical receiver is used, though in the case of a circular 

receiver the solar angles of incidence tend to be more favorable. However, cylindrical receivers 

provide more energy production for a fixed size of receiver. Considering an average 10% loss in 

reflection, mispointing errors and an average cosine factor of perhaps 0.7, a geometric 

concentration of 2,200X quickly reduces to 1,200X solar concentration. 

Thus, it is possible to obtain the concentration necessary to reach 1,500 °C, though this is 

near the limit of what is possible. This is most readily accomplished if the heliostats being used 

are similar in performance to a pinhole camera or if the heliostats have the appropriate curvature 

to focus sunlight. In the standard approach the number of heliostats required for a conventional 

powerplant goes into the tens of thousands and the cost grows excessively. Additionally, a high 

Eq. 3-3 

Eq. 3-4 
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solar concentration of 1,200X is not possible. If instead of using flat mirrors, curved mirrors were 

used, then high concentrations would be possible with a smaller number of larger heliostats. 

However, the shape of the ideal heliostat is not static for focusing light throughout the day. For a 

fixed shape heliostat, high concentrations are possible for certain solar positions, but in the 

morning and evening astigmatism significantly reduces solar concentration. In this next section 

the effects of astigmatism are characterized. 

3.4 Fixed Shape Heliostat vs Actively Focused Heliostat 

Successful efforts have been made in the past to characterize spot size due to 

astigmatism [36]. The Coddington equations show that the effective radii of curvature of a 

spherically shaped mirror are changed at off-axis angles of incidence. Eq A-20 and Eq A-21 from 

Appendix A show that the tangential radius of curvature is effectively the physical radius of 

curvature times the cosine of the angle of incidence. Similarly, the sagittal radius of curvature is 

effectively the physical radius of curvature divided by the cosine of the angle of incidence. 

Therefore, for a given angle of incidence on a spherical mirror, the optical power in the 

tangential direction is 

𝑦𝑦𝑇𝑇 = 2
𝑅𝑅 cos(𝐼𝐼)

, 

and the optical power in the sagittal direction is 

𝑦𝑦𝑆𝑆 = 2 cos (𝐼𝐼)
𝑅𝑅

, 

where 𝐼𝐼 is the angle of incidence and 𝑅𝑅 is the physical radius of curvature of the mirror. In this 

treatment, the solar disk is placed on-axis and the optical power of the mirror is given by Eq. 3-7 

Eq. 3-5 

Eq. 3-6 
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and Eq. 3-8. Using the first order equations for ray tracing (Eq. 1-1 and Eq. 1-2), the marginal ray 

heights in the tangential and sagittal planes are 

𝑦𝑦𝑇𝑇′ = 𝑦𝑦𝑇𝑇(cos (𝐼𝐼) − 1) and 

𝑦𝑦𝑆𝑆′ = 𝑦𝑦𝑆𝑆(1 − cos(𝐼𝐼)), 

where 𝑦𝑦𝑇𝑇 and 𝑦𝑦𝑆𝑆 are the marginal ray heights (aperture radii) of the heliostat, and 𝑦𝑦𝑇𝑇′  and 𝑦𝑦𝑆𝑆′  are 

the marginal ray heights at a focal distance of 𝑅𝑅/2 (i.e. the on-axis focal distance for the spherically 

shaped mirror). Some explanation is necessary for Eq. 3-9. 𝑦𝑦𝑇𝑇 is the physical aperture radius of 

the mirror, but the effective aperture radius is the physical aperture radius foreshortened by a cosine 

factor. In other words, the tangential marginal ray height must be multiplied by the cosine of the 

angle of incidence in order to take into consideration the shortened appearance of the mirror at off-

axis angles. This treatment is ignoring any cosine factor that would occur by the sunlight being 

incident upon the tower at an oblique angle, as is the case when the cylindrical receiver is high in 

the air and vertical. 

 The chief ray heights are the same for both the tangential and sagittal planes, given by 

𝑦𝑦�′ = 𝑆𝑆�𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅
2

≅ 𝑅𝑅
458

, 

where 𝑢𝑢�𝑠𝑠𝑆𝑆𝑛𝑛 is the chief ray angle made by an on-axis sun, which is about 1/229 radians. The 

maximum dimensions of the spot are then given by adding the absolute value of the marginal ray(s) 

to the chief ray and doubling that value, which gives 

𝐷𝐷𝑇𝑇 = 2|𝑦𝑦𝑇𝑇′ | + 2|𝑦𝑦�′| = 2|𝑦𝑦𝑇𝑇|(1− cos (𝐼𝐼) + |𝑅𝑅|/229 and 

𝐷𝐷𝑆𝑆 = 2|𝑦𝑦𝑆𝑆′| + 2|𝑦𝑦�′| = 2|𝑦𝑦𝑆𝑆|(1 − cos(𝐼𝐼)) + |𝑅𝑅|/229. 

Performing a ray trace in Zemax OpticStudio confirms the validity of these equations. For 

a 1.5 m diameter heliostat focusing at 40 m with sunlight at 45° angle of incidence the size of the 

Eq. 3-7 

Eq. 3-8 

Eq. 3-9 

Eq. 3-10 

Eq. 3-11 
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spot in the tangential direction is 788.5 mm and the size of the spot in the sagittal direction is 788.4 

mm. According to Eq. 3-12 and Eq. 3-13, the size of the spot in both directions is 788.7 mm, a 

0.04% error compared to the sagittal spot size. 

Note, a 45° angle of incidence happens for a northern 

heliostat about 10% of the time of the Sun being up (over a 

year in Tucson, Arizona with the tower height half the 

distance of the heliostat from the tower). For an eastern and 

western heliostat, it happens about 1/3 of the time. For a 

southern heliostat it happens close to half of the time. 

While this method does predict the maximum 

dimension of the spot formed, it does not predict the variation 

in uniformity across the blurred solar image, which can be 

significant. A convolution of images formed by each point in 

the pupil is required to get this information. The result is 

simply a cone function with the peak at the center sloping 

down to zero irradiance at the maximum spot dimension 

(assuming a perfectly uniform Sun). This can simply be 

obtained by ray tracing (see Figure 3.6). 

In contrast, making the heliostat mirror surface 

biconic with the appropriate radii of curvature in the 

tangential and sagittal planes, a well-corrected solar image 

can be formed. The appropriate radii of curvature are 

Figure 3.2: Solar image formed by 1.5 m 
aperture mirror with 80 m radius of 

curvature at 45° angle of incidence, 40 m 
from the vertex of the mirror. The outer 

box is 1 m square. The irradiance follows 
a cone distribution with maximum 
irradiance at the center and zero 

irradiance at the maximum spot size (i.e. 
the black circle). 

Figure 3.3: Solar image formed by 1.5 m 
aperture mirror with different tangential 

and sagittal radii of curvature at 45° 
angle of incidence, 40 m from the vertex 

of the mirror. The outer box is 1 m 
square. 
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𝑅𝑅𝑑𝑑 = 2𝐹𝐹
cos(𝐼𝐼)

, and 

𝑅𝑅𝑠𝑠 = 2𝐹𝐹 cos(𝐼𝐼), 

with 𝐹𝐹 as the focal distance from the heliostat to the tower receiver, and 𝐼𝐼 as the angle of incidence. 

The resulting ray trace from such a toroidal surface is provided in Figure 3.7. The solar 

disk image formed is 350 mm in diameter. Thus, a geometric concentration from a 1.5 m heliostat 

to a 0.35 m spot is about 18X. Comparing this to the solar image shown in Figure 3.6 reveals the 

benefits of correcting astigmatism. 

The amount of energy inside a chosen radius for a cone shape irradiance distribution is 

approximately given by  

𝑃𝑃 = 3𝑟𝑟2

𝑅𝑅𝑠𝑠2
�1 − 2𝑟𝑟

3𝑅𝑅𝑠𝑠
�  × 100%, 

where 𝑆𝑆 is the chosen radius (the ideal solar disk radius) and 𝑅𝑅𝑠𝑠 is the maximum radius of the 

aberrated spot. Using Eq. 3-14 the amount of energy contained within 0.35 m is 41.7% of the total 

when a spherical surface is used. If the target receiver were a circular disk 1.5 times the size of the 

best solar disk image, 74% of the total reflected flux is the most that will make it onto the target 

receiver. Clearly there are some significant gains in correcting astigmatic aberrations. 

If the goal is to maximize the amount of light reflected onto a target receiver while 

maximizing concentration, as is needed for high efficiency thermodynamic conversion, then one 

of two things needs to happen: a large number of pinhole camera heliostats need to be used 

(possibly in the millions), or focusing heliostats need to be used with the ability to correct 

astigmatism. Hundreds of actively focused heliostats seem far more reasonable than millions of 

pinhole heliostats. Therefore, actively focused heliostats are of high interest. 

Eq. 3-12 

Eq. 3-13 

Eq. 3-14 



81 

 

The most common mounting scheme for a heliostat is the altazimuth mount. Solving this 

problem using an altazimuth mounting scheme is a promising approach to creating a shift of 

mindset in the heliostat community concerning what is needed to meet the demanding energy goals 

of today. The first step towards being able to correct for astigmatism is then to see what shape the 

mirror surface needs to be based on the positions of the heliostat and Sun. 

3.5 The Ideal Shape of an Altazimuth Mounted Heliostat 

  The ideal shape of a focusing heliostat varies throughout each day depending on the 

location of the heliostat relative to the receiver and the location of the Sun. The greater the angle 

of incidence of sunlight the less spherical the mirror should be. There are three variables in this 

situation that need to be solved for to obtain the three bending modes of the heliostat: the radius 

of curvature in the tangential plane, the radius of curvature in the sagittal 

plane, and the angle of astigmatism. In Appendix A: Derivation of the 

Ideal Heliostat Shape, a full mathematical treatment of the ideal heliostat 

shape is provided in the coordinate system of the heliostat mirror. Here 

only the results are stated.  

 The three variables, the sagittal and tangential radii of curvature 

(Eq. 3-12 and Eq. 3-13) and angle of astigmatism (see Figure 3.4), 

involve a view of a toroidal surface that can physically be rotated about its optical axis. In an 

altazimuth mounting scheme this is not the case. Therefore, a different way of viewing the surface 

is more useful. The surface shape can be decomposed into three different modes: power, oblique 

astigmatism, and vertical astigmatism. These three modes are of the form 

𝑍𝑍 = 𝑎𝑎1(𝑋𝑋2 + 𝑌𝑌2) + 𝑎𝑎22𝑋𝑋𝑌𝑌 + 𝑎𝑎3(𝑋𝑋2 − 𝑌𝑌2), Eq. 3-15 

Figure 3.4. Angle of 
astigmatism, 𝛾𝛾𝐴𝐴, relative to 
the local x and y axes of the 

heliostat mirror. 
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where 𝑎𝑎1, 𝑎𝑎2, and 𝑎𝑎3 are the coefficients for power, oblique astigmatism, and vertical astigmatism, 

respectively. If the angle of astigmatism is zero, as is the case for a target aligned heliostat, then 

there is no oblique astigmatism and the surface can be expressed in terms of a biconic surface with 

𝑍𝑍 = (𝑎𝑎1 + 𝑎𝑎3)𝑋𝑋2 + (𝑎𝑎1 − 𝑎𝑎3)𝑌𝑌2 = 𝑋𝑋2

2𝑅𝑅𝑆𝑆
+ 𝑌𝑌2

2𝑅𝑅𝑇𝑇
, 

where 𝑅𝑅𝑆𝑆 and 𝑅𝑅𝑇𝑇 are relative to the tangential and sagittal curvatures by 

𝐶𝐶𝑑𝑑 = 1
𝑅𝑅𝑇𝑇

= cos(𝐼𝐼)
2𝐹𝐹

, and 

𝐶𝐶𝑠𝑠 = 1
𝑅𝑅𝑆𝑆

= 1
2𝐹𝐹 cos(𝐼𝐼) 

, 

with 𝐹𝐹 as the focal distance from the heliostat to the tower receiver, and 𝐼𝐼 as the angle of incidence. 

Therefore, the biconic surface is a special case for an altazimuth mounted heliostat. Instead 

of viewing the mirror as something that can be physically rotated, the mirror can be considered 

fixed and the shape of the mirror can be rotated. Eq. 3-16 is the equation for the surface, but it is 

in a rotated coordinate frame relative to the coordinate frame of the mirror. This rotation angle is 

the angle of astigmatism. 

 Rotating the biconic surface into the coordinate frame of the mirror leads to the coefficients 

for power, oblique astigmatism, and vertical astigmatism with 

𝑎𝑎1 = 1
4

(𝐶𝐶𝑑𝑑 + 𝐶𝐶𝑠𝑠), 

𝑎𝑎2 = 1
4

(𝐶𝐶𝑑𝑑 − 𝐶𝐶𝑠𝑠) sin(2𝛾𝛾𝐴𝐴), 

𝑎𝑎3 = 1
4

(𝐶𝐶𝑑𝑑 − 𝐶𝐶𝑠𝑠) cos(2𝛾𝛾𝐴𝐴), 

where 𝐶𝐶𝑑𝑑 is the tangential curvature (the reciprocal of the tangential radius of curvature), 𝐶𝐶𝑠𝑠 is the 

sagittal curvature, and 𝛾𝛾𝐴𝐴 is the angle of astigmatism relative to the local x-axis of the mirror. 

Eq. 3-16 

Eq. 3-17 

Eq. 3-18 

Eq. 3-19 

Eq. 3-20 

Eq. 3-21 
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These three simple coefficients completely describe the surface required to correct for astigmatism 

on an altazimuth mounted mirror. Note, coma is still present in the solar image, but this is small 

compared to the solar disk size (see section A.1) 

 The real challenge in this derivation of ideal shape is calculating the angle of astigmatism. 

This involves taking a vector that describes the position of the Sun in global coordinates and 

projecting it onto the surface of the heliostat. The surface of the heliostat is rotated in the global 

frame, which makes this projection a multi-step process (see Eq A-28 through Eq A-38). Once the 

solar vector is projected onto the surface of the heliostat and defined in the local coordinate frame 

it is a simple matter to calculate the angle of astigmatism. Appendix B and Appendix C together 

contain MATLAB® codes that can calculate the surface shape coefficients for a heliostat. This 

requires a specific geographic location relative to a target receiver on a desired day of the year at 

the specified time. Just the code from Appendix C is required if the solar azimuth and elevation 

angles are known along with the position of the heliostat relative to the target receiver. 

3.6 Heliostat Mounting Schemes 

As previously stated, a fixed shape focusing heliostat exhibits large amounts of astigmatic 

aberration at off-axis angles of incidence. This causes a large amount of spillage in the early 

morning and late afternoon, unless the manufacturer settles for a lower geometric concentration so 

that more of this light is captured (i.e. increase the receiver size). At ideal times of day (+/- a few 

hours around solar noon) the astigmatic aberration of each heliostat in a power tower field is 

relatively small for spherically shaped heliostats. A high solar concentration is possible during 

these times. But for the other 6-8 hours of a 12-hour day it is more challenging to obtain the high 

solar concentrations required to generate hydrogen fuel. A solution to the ideal shape of a heliostat 
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has been provided for an alt-azimuth mounted heliostat. An exploration of this mounting scheme 

and other mounting schemes provides the groundwork for understanding how an actively shaped 

heliostat could be created. 

There are a variety of ways that a heliostat mirror can be mounted with two orthogonal 

rotation axes that allow the mirror to be oriented such that sunlight is reflected towards a central 

tower receiver. Most heliostats are on an altazimuth mount where the elevation axis is always 

parallel to the ground and the azimuth axis points straight up (see Figure 3.5). The advantage of 

this mounting scheme is the mechanical simplicity and the range of motion. The mirror can be 

oriented in any desirable direction including a 

horizontal stow position for high winds. The mirror 

is tucked in close to the mounting pole so that there 

is a reasonably small moment exerted on the pole. 

The disadvantage to this mounting scheme is the 

challenge of compensating astigmatic aberration. 

This challenge will be discussed in more detail later.  

Another mounting scheme is found in the 

target-aligned heliostat. In the target-aligned mounting scheme one axis of rotation is pointed at 

the target receiver, the target axis, and the other points orthogonal to the target receiver, the 

“elevation” axis. Just like the altazimuth mounting scheme where the pointing of the elevation axis 

depends on the rotation angle of the azimuth axis, the pointing of the elevation axis of the target-

aligned mount depends on the rotation angle of the targeted axis (see Figure 3.6). Elevation axis 

Figure 3.5: Schematic of altazimuth mounted 
heliostat. Elevation (altitude) and azimuth axes are 

always orthogonal allowing for the mirror to be 
oriented in any desired direction. 
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may be a misnomer because while at times this axis will 

tilt the mirror up and down, if the target axis is rotated by 

90 degrees then this axis tilts the mirror left and right. 

This type of mounting scheme has been suggested 

to compensate for astigmatic aberration because the 

tangential axis of the mirror is always in the tangential 

plane of reflection [37,38]. Meaning, the plane that 

contains the vertex of the mirror, the Sun, and the receiver 

will always bisect the mirror at the same position. If the 

radii of curvature in the tangential and sagittal planes of the 

heliostat are set appropriately, then astigmatic aberration 

can be well corrected for larger angles of incidence at the cost of blurring at small angles of 

incidence. 

This mounting scheme adds some mechanical complications. There is a greater moment 

on the mounting pole due to the mirror being further away. This can be reduced if the mirror is 

tucked in closer at the cost of a reduced range of motion. This reduced range of motion may prevent 

the mirror from being able to go into a horizontal stow position during high winds. A clever 

mechanical engineer could work around this. However, there are other challenges with this 

mounting scheme. Another complexity for the target-oriented mounting scheme is that each 

heliostat in the field has a uniquely oriented target axis. Therefore, each heliostat needs to be made 

such that the orientation of the target axis can be varied (so that it always points at the receiver), 

or the mounts need to be divided into groups of heliostats with the same radial distance from the 

Figure 3.6: Target-aligned mounted 
heliostat. The target axis of rotation is 
pointed at the target receiver and the 

elevation axis points in and out of the page. 
The black curved segment is the mirror. 
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tower (and elevation). The target-aligned mounting 

scheme has not been widely implemented in the 

industry. Likely, this is due to the reasons discussed 

above. 

A final mounting scheme to consider is a 

cable-drive mount, currently being researched by 

Heliogen [39]. In this layout a minimum of four 

points on the heliostat mount frame are attached to 

cables with each cable under tension. Change in 

length of the cables causes the mirror to pivot about 

a dual-rotation mechanism with one axis of rotation always parallel to the ground, the y-axis, and 

the other axis, the x-axis, with pointing dependent on the rotation angle of the y-axis (see Figure 

3.7). Since there are two always orthogonal axes, this type of mounting scheme has a full range of 

motion. Also, there is very little torque applied to the mounting pole by the mirror. However, the 

need for a high tension in the cables requires a thick supporting beam to mount the mirror onto. 

Additionally, correction of astigmatism may be complicated. 

For a target-aligned mount, the manner of correcting astigmatism is obvious. Make the 

surface biconic with different radii of curvature in orthogonal directions, the radii of curvature 

determined by the Coddington equations (Eq. 3-17 and Eq. 3-18). Because of how the mirror is 

rotated in space the tangential plane always intersects the mirror in the same cross section of the 

mirror. For an altazimuth mounted mirror or a cable-drive mounted mirror the correction is not so 

obvious. The tangential plane does not always intersect the mirror in the same cross section. Rather 

Figure 3.7: Cable drive mounted heliostat. The y 
axis is always parallel to the ground and the x-axis 
changes its pointing depending on the rotation of 

the y-axis. The two axes always remain orthogonal. 
The cables are in blue, with the center blue line 

being two separate cables. 
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it rotates about the vertex of the mirror. Thus, as the Sun moves throughout the day and the heliostat 

rotates in space to reflect the sunlight onto the tower receiver, the angle of astigmatism of the 

mirror needs to rotate independently either by physically rotating the mirror with an added axis of 

rotation, or deforming the shape of the mirror. Such a requirement appears drastic and expensive 

at first, but in the next chapter a simple and powerful modification to an alt-azimuth mounted 

mirror makes active focusing possible. 

3.7 Conclusion 

The current arrangements for power towers make it unfeasible to have both high-power 

generation capabilities and very high concentration. Either very large numbers of small heliostats 

acting as pinhole cameras are required, or a smaller number of larger actively focusing heliostats. 

To achieve the high concentration required for processes like synthesis of hydrogen fuel many 

small pinhole camera heliostats is required, in the tens of thousands. In contrast, only hundreds or 

thousands of focusing heliostats are required. 

Previous attempts have been made to correct astigmatism of focusing heliostats, but 

solutions have been cumbersome and expensive. A common approach has been the target aligned 

heliostat where the mirror is set to a toroidal shape, which can rotate in space such that the 

tangential curvature is always in the tangential plane. The complexity of such a mounting scheme 

has kept it from being widely used. 

A better step in the right direction is to fix astigmatism for an altazimuth mounted mirror. 

The requirement is then to rotate the shape of a desired toroid relative to the local axes of the 

heliostat mirror. Equations for this rotated shape are simple and straightforward. The next 
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challenge is whether such shapes can be bent into a mirror, not just for setting the mirror shape. 

Active shape change is required for astigmatism to be corrected throughout the day. 
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CHAPTER 4 : A PROTOTYPE ACTIVELY FOCUSING HELIOSTAT 

4.1 Introduction 

In this chapter the results of a real experiment show that the desired heliostat shape changes 

for actively focusing are possible on an altazimuth mounted heliostat. This was accomplished by 

mounting the mirror on a stiffening truss structure. Truss members could be lengthened or 

shortened in pairs by three linear actuators to bend the mirror into the desired shapes. Of course, 

this was not done without first knowing the shape of the mirror. Therefore, a non-null metrology 

system was designed and implemented for measuring the shape of the mirror for a variety of 

situations where the sag was changed by several millimeters. This metrology system has the 

potential to be used in situ (i.e. from a power tower). Additionally, a complementary in situ null 

metrology system is introduced. 

Now that we have seen that an actively controlled shape heliostat is desirable for high solar 

concentration, a metrology technique for measuring that shape change is necessary. Existing 

methods for heliostat metrology have been concerned with measuring canting of flat mirror 

segments. Typical heliostats consist of many flat segments that are tilted in an overall concave 

shape. Though, shape change due to gravitational deflection is also of great concern. If there is 

concern about heliostat mirror shapes, this is generally measured in the factory by deflectometry 

or a laser array [11,40]. Canting a heliostat involves tipping and tilting the different facets 

(generally flat in shape) across the structure of a heliostat so that they form overlapping solar 

images (ideal canting). 
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Photogrammetry is a common technique for measuring the canting of a heliostat. Images 

of the heliostat are taken from a variety of orientations and by correlating the images the tilt of the 

facets relative to each other can be determined. This technique has reasonable accuracy (<1 mrad) 

and can even be used to measure gravity sag deflection. However, photogrammetry requires the 

camera to be relatively close to the heliostat being measured, and thus can be a lengthy process for 

a large field of heliostats. In contrast, edge detection techniques can obtain heliostat pointing and 

surface errors in a fraction of the time, though measurement uncertainties are often >>1 mrad [41]. 

Faster and more accurate measuring techniques are still an area of research for heliostat 

fields.  A minimum absolute accuracy of 0.2 mrad is desirable. This number is somewhat arbitrarily 

provided. Taking a measurement with this accuracy, the ideal heliostat shape error of 1 mrad RMS 

is attainable. The shape error provided by heliostat manufacturers is generally defined for flat 

facets or curved facets in different manners. In the case of flat facets, 1 mrad shape error is 

associated with the pointing of the facets and the deviation from flatness of each facet. Similarly, 

curved facet users are concerned with deviation from the desired curvature and pointing errors. 

These errors together are ideally less than 1 mrad RMS. If these shape errors were defined relative 

to the ideal shape as defined in section 3.5, the surface errors are much greater. For example, a 

focusing heliostat that is reflecting light at 45° angle of incidence will have significant blurring of 

the solar image due to astigmatism. To make the example more quantitative, a 1.5 m diameter 

circular heliostat with 40 m focal length will have the spot shown in Figure 3.2. The effective 

shape error of the heliostat is like that shown in Figure 4.1. Assuming the spherical shape is perfect, 

and the pointing is perfect, the minimum RMS slope error for such a heliostat is 2.4 mrad, and the 

error budget is already used up. 
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In the previous chapter 

an altazimuth mounted heliostat 

with adjustable shape was 

introduced. A project funded by 

Tech Launch Arizona led to the 

manufacture this heliostat along 

with a unique low-cost 

metrology system. In 

combination, the adjustable 

shape heliostat and metrology 

system were used to bend a flat piece of glass to the ideal toroidal shape with <1 mrad RMS 

absolute surface slope error, meaning the surface error relative to the ideal toroidal surface. 

4.2 Adjustable Shape Heliostat on an Altazimuth Tracker 

According to Eq. 3-15, three coefficients are required to define the ideal toroidal surface 

of a heliostat. Therefore, an adjustable shape heliostat must be able to change its shape in at least 

three ways. Additionally, the ideal heliostat shape is composed of functions which each have 

symmetry. Curvature is axially symmetric, oblique astigmatism is double-plane symmetric about 

a 45° axis and 135° axis, and vertical astigmatism is double-plane symmetric about the local x and 

y axes. Thus, it is possible to perform shape adjustment in three pairs, where the shape adjustment 

mechanism of each pair exhibits single-plane symmetry. 

To preserve symmetry, each of the shape adjustment modes should be equally separated. 

In this manner, the ideal mechanism for shape adjustment is for a hexagon shaped heliostat where 

Figure 4.1: Surface sag error for a fixed shape heliostat. The nominal 
radius of curvature is 80 m and the angle of incidence is 45°. The RMS 

slope error is 2.4 mrad. 
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shape adjustment occurs at each of the 6 corners. The 6 corners are divided into 3 pairs, each with 

corners at 180° orientation, each pair adjusted with the same sag change. The performance of such 

a design was verified using ANSYS. 

What is attainable from a heliostat mirror supplier is piece of flat back silvered glass. The 

average toroidal shape was bent into such a glass mirror by adjustment of 19 pad actuators, separate 

from the bending mode actuators. The bending mode actuators were used to bend the shape 

throughout the day relative to the preloaded shape. 

An FEA model in ANSYS was created by Nick Didato where a flat piece of 3 mm thick 

glass was mounted on the 19 pads attached to a frame. Force was exerted on the 6 corners of the 

mounting frame such that the shape of the glass was bent towards each of the three required modes 

in turn. The maximum sag for each mode was set to 1 mm. The sag data for each type of bending 

was exported and further processed in MATLAB. A sag plot of each of the modes is shown in 

Figure 4.2 along with the sag errors for each mode. The RMS slope error in each case is close to 

0.2 mrad RMS, well within 1 mrad RMS slope error. 

The forces are exerted on the 6 corners of the frame by attaching a variable length strut to 

each corner with the other end of each strut attached to a back-center node. This back-center node 

consists of three linear actuators where each pair of 180° oriented struts attaches to one of the 

actuators, thus providing the means for changing the length of two struts in concert. In this manner 

a truss structure is formed. This structure is dual purpose. First, it allows the frame to be bent in 

the three independent modes, and second it stiffens the frame so that gravitational deflection is 

minimized. A linear combination of the bending of opposing corners in pairs can be used to obtain 

any of the three independent modes (see Figure 4.3). 
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As previously mentioned, the glass is mounted onto the frame with 19 pads, 18 of which 

were used to set the average toroidal shape. This is desirable for two reasons: the RMS slope error 

is less when the shape of the mirror is adjusted by the 18 pads, and the total shape change possible 

Figure 4.2: ANSYS model of bending modes of a 3 mm hexagon shaped piece of glass mounted 
on 19 pads each attached to a hexagon shaped frame. Forces were exerted on the 6 corners of 
the frame in pairs. Each of the 6 corners needed to be adjusted in concert to obtain each of the 

desired bending modes independently. For the case of 1 mm maximum sag the RMS slope errors 
are close to 0.2 mrad for each of the bending modes. The left column is the net shape change, 
and the right column is the error in net shape change from the pure mode. The top row is for 
curvature (X2+Y2), middle row for oblique astigmatism (2XY), and bottom row for vertical 

astigmatism (X2 – Y2). 
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is greater when the initial shape of the mirror is near a median surface shape. This second reason 

is because the linear actuators have a maximum force that they can exert. The maximum sag 

surface could not be achieved if the 3 linear actuators had to force the surface into the right shape 

beginning with a flat mirror. Therefore, a median surface shape was set by the mounting pads, and 

active adjustment of the mirror was accomplished with the 3 linear actuators, where the full range 

of desired surfaces was within the force limitations of the linear actuators. 

A back view of the final structure is shown in Figure 4.4. The 6 struts are clearly visible 

along with the 3 linear actuators. The series of wires shown each go to motors attached to the 18 

pads that were used for adjusting the initial shape of the mirror. This was chosen to increase the 

speed and accuracy of the initial shape adjustment but would not be required for a commercial 

version of this heliostat. 

Figure 4.3: Schematic of deformable shape heliostat mounted on an altazimuth tracker (left). Three 
pairs of struts are attached to the 6 corners of the heliostat and each pair attached to one of three 

linear actuators (middle). Cross section showing motion of one linear actuator causing the attached 
two corners to move by approximately the same change in linear actuator length (right). In this 

manner the 6 corners can be deflected by adjustment of the linear actuators, thus allowing curvature, 
oblique astigmatism, and vertical astigmatism to be induced into the surface independently. 
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This prototype heliostat should be 

viewed as a proof of concept. Many 

aspects of this design may make it too 

expensive for commercial heliostats, 

such as the slewing bearing dual-axis 

tracking mechanism, or the requirement 

to manually adjust the initial shape of the 

heliostat with an array of motors. With 

additional research into a commercial 

application of this heliostat the potential 

for a low-cost heliostat is there. For 

example, the use of a truss structure to 

stiffen the frame requires less steel than 

the traditional fish-bone structure. Cost is also less for the mirror since there is no need to make a 

curved surface via thermal slumping or grinding and polishing. Only a flat mirror is required, 

which is bent into the appropriate shape. 

Having the heliostat structural requirements well defined led to the requirements for the 

metrology system. First, the heliostat shape change requirements were on the order of many 

millimeters. An interferometric null test was thus impractical, considering the shape errors that 

were inherently part of the mirror because of the type of structure used for mounting and bending 

the flat mirror into shape. A deflectometry non-null system could have been used for measuring 

the mirror shape, but this would have required a large distance from the mirror to keep the 

Figure 4.4: Back view of prototype heliostat structure. The 
altazimuth tracking mechanism is visible along with the 18 

adjustable pads and the 3 linear actuators, each attached to a 
pair of struts. 
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measurement near the center of curvature, or possibly a very large display used at a closer distance. 

The accuracy of a deflectometry measurement would have been very good, perhaps too good. Such 

a metrology system may have been like purchasing an airplane to fly from your house to the 

grocery store. What this heliostat needed was something far less accurate, only 0.2 mrad! 

Defining the surface information needed for a successful prototype is helpful for 

determining the type of measurement. First, the beginning surface is a piece of flat glass. This 

heliostat used glass provided by Rioglass Solar with <1.0 mrad RMS flatness. The additional 

surface errors caused by bending the glass could then only occur at the pads and between pads 

because the beginning surface was continuous. To properly sample the spatial changes of the 

surface, the frequency of the measurement 

needs to be higher than the frequency of the 

pads. The hexagon with three pads on a side 

then needs to be measured by at least four 

lasers on a side, thus requiring 37 lasers (see 

Figure 4.5). 

In order to fit the approximately cubic 

curves formed along three pads, the surface 

needs to be sampled at a minimum of the pad 

frequency. However, this is similar to 

sampling at the Nyquist frequency of an 

optical system, therefore a higher sampling 

frequency is ideal. At much higher spatial 

Figure 4.5: Minimum number of sampling points required 
to determine sag shape. The mounting pads are shown as 
black filled circles and the sampling points are shown as 

red outline circles. This sampling is determined by the ways 
the shape can be adjusted. The sampling needs to be at 

least twice the frequency of the pads. 
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frequencies more surface information is gained, though the ability to correct for such higher spatial 

frequency errors is not possible using the adjustable pads alone. Therefore, for the purposes of this 

experiment, only 37 sampling points were required. Thus, the idea of a laser Hartmann 

measurement was implemented. 

4.3 Preliminary Laser Hartmann Measurement 

The traditional Hartmann method involves placing a point source near the center of 

curvature of a concave mirror and covering the aperture of the mirror so that light reflects only 

from an array of holes. Thus, the pupil is sampled over a collection of discrete points. Two 

photographic exposures are taken near the focus of the mirror, one before the focus and the other 

after. Traditionally a well collimated light source has been used for Hartmann measurements, thus 

for a parabolic mirror there is ideally no spherical aberration observed [42]. However, 

measurement from the center of curvature is also possible. By correlating pairs of spots on the 

photographic plate the wavefront slope error at a particular hole (i.e. pupil position) can be 

measured (see Figure 4.6). 

The problem with the Hartmann method is a significant loss of incident light, which leads 

to a lower signal to noise ratio. Additionally, creating an aperture mask with holes to cover meter 

class optics is rather cumbersome. Using the so-called Laser Hartmann method, these challenges 

of the traditional Hartmann method are overcome by using an array of lasers to sample the pupil. 

A high signal to noise ratio is then attainable and there is no need for a large covering for meter-

class optics. 



98 

 

There are two different approaches to the laser Hartmann method. The first approach 

involves steering a single laser across the aperture and measuring the reflected spot location for 

each aperture position. The second method involves creating an array of lasers that are precisely 

positioned and passing each beam through an imaging lens to image the laser array onto the test 

mirror. An initial experiment was performed using this first method. A single laser was placed near 

the center of curvature of a mirror (150 m). A screen was placed close to the laser. Based on the 

reflected laser spots each associated with a pupil position, the slopes across the mirror were 

calculated, and the surface integrated (see Figure 4.7). The results of the experiment revealed a 

few important reasons why a fixed laser array was more desirable. 

Figure 4.6: Center of curvature Hartmann measurement layout. A point source is reflected into the beam path by a 
beam splitter. Light is reflected only across an array of holes due to a mask covering the test mirror. This reflected 

light then passes through the beam splitter and passes through two different exposure plates. By correlation of pairs 
of spots between the plates the surface slope error can be determined. In this case, a parabolic surface is being 

tested, thus spherical aberration is present. 
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First, steering the single laser was time consuming. Each position required >20 seconds 

and two people. A measurement with 37 lasers would then require >10 minutes. This amount of 

time was not unreasonable, but the process was quite cumbersome. Second, a high level of 

mechanical precision was required (<1/4 of an arcminute). This involved using screw actuators on 

large cantilever beams held in place by springs. Making such a system that was automated would 

have been ideal but would have required additional time and funding. Third, the size of the free-

space propagating laser beam expanded significantly over 150 m. 

By gaussian beam propagation theory, the laser has approximately a spherical wavefront 

as it expands towards the test mirror. The laser used was 550 nm with a beam waist size of 

approximately 1 mm, found inexpensively online. The Rayleigh range of a gaussian beam laser is 

𝑍𝑍0 = 𝜋𝜋𝑤𝑤02

𝜆𝜆
, 

where 𝑤𝑤0 is the initial beam waist diameter and 𝜆𝜆 is the wavelength. The Rayleigh range of a laser 

is associated with the distance at which the beam size has expanded to twice the area of the initial 

beam spot. When propagating a laser beam over a greater distance, the beam waist diameter is 

determined by 

𝑤𝑤(𝑍𝑍) = 𝑤𝑤0�1 + � 𝑍𝑍
𝑍𝑍0
�
2
. 

Eq. 4-1 

Eq. 4-2 

Figure 4.7: Initial experiment with laser Hartmann metrology. A laser was steered to direct the beam to positions 
across the test mirror, and the reflected spot was measured at the screen. The distance from the laser to the mirror 

was 150 m. 
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In our experiment, the Rayleigh range of the laser was 5.7 m. Thus, the beam waist size 

can be approximated by 

𝑤𝑤(𝑍𝑍) = 𝑤𝑤0𝑍𝑍
𝑍𝑍0

= 𝜆𝜆𝑍𝑍
𝜋𝜋𝑤𝑤0

, 

which shows that the beam waist size grows in proportion to the distance traversed when that 

distance is much greater than the Rayleigh range. 

In the actual experiment the beam expanded from approximately a 1 mm spot to 1”, close 

to the prediction of gaussian beam theory of 20 mm. If the mirror had been perfectly flat, then the 

beam would have been ~52 mm when it reflected back to the screen. If the mirror had been 

perfectly spherical then the beam should have been near 1 mm, the same as the output. However, 

the mirror was mounted in a similar fashion to the final heliostat, glued on a series of pads, which 

bent a flat mirror into the ideal shape. This naturally introduced errors into the surface. 

Using a FARO arm the initial shape of the mirror was set. Based on surface measurements, 

there was a periodic ripple across the surface of the mirror with a PV amplitude of approximately 

0.4 mm. Modelling this in Zemax (using 

Chebyshev polynomials) shows that the 

geometric spot size (see Figure 4.8) is 

much greater than the ideal return beam 

size of 1 mm. The beam grows to ~40 mm. 

Yet in the measurement process, the 

observed laser beam size was even larger 

(see Figure 4.9). The core of the spot was 

about 1 foot in diameter surrounded by 

Eq. 4-3 

Figure 4.8: Geometric spot for 150 m radius of curvature 
heliostat with periodic ripple. The ripple was modelled using 

Chebyshev polynomials. The maximum size of the beam grows 
from 1 mm at the laser to ~40 mm at the screen. 
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many fluctuations. This is much greater than what 

was expected, and thus deserves some explanation.  

The heliostat mirror for this experiment was 

a piece of glass that was intended for architectural 

use. Therefore, high frequency ripples could have 

been present across the surface. This is the most 

likely reason for the beam spread. Additionally, 

there was dust covering the mirror because it had 

been outside for several days. This caused the 

fringes observed in the laser spot because the screen 

was located at the ideal focus of the mirror (i.e. the Fourier transform of the aperture was located 

at the screen). One other explanation is wind. The wind was blowing, which caused the heliostat 

to vibrate during each measurement and caused deviations 

in the laser beam path. Thus, parts of the laser beam 

refracted away from the core. 

Despite this large spot size, it was possible to 

measure the surface of this heliostat using this laser 

Hartmann metrology method. Low order surface errors 

were measured to within 0.5 mrad, which was less than the 

desired 0.2 mrad. Given the large increase in spot size and 

the tedious nature of moving the laser beam manually, 

modifications were made to this experiment to increase the speed and reduce the environmental 

Figure 4.9: Laser spot formed near center of 
curvature of a heliostat mirror. The picture is 

approximately 4 feet square. 

Figure 4.10: Front view of prototype 
actively focused heliostat. 
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factors affecting the measurement. Thus, a fixed array of lasers was used to measure the final 

heliostat (see Figure 4.10).  

4.4 Changes to Laser Hartmann Measurement 

The traditional Hartmann measurement involved photographic exposures a few minutes 

each, also requiring very careful placement of the films so that the measurement was accurate. The 

time for measurement can be optimistically approximated as ~10 minutes, most of which was idle. 

This is of course the physical measurement only, not the time to setup the experiment. The 

mechanical laser Hartmann 

measurement required >10 

minutes for a full aperture 

measurement, most of which 

was active, though the 

process could be automated. 

In contrast, using a laser 

array controlled by a computer, it is possible to obtain a Hartmann measurement of a heliostat 

mirror in a couple seconds. In addition to changing the movable laser to a fixed laser array, a few 

beneficial changes were made to the experiment. 

One change to this experiment was making it truly in situ. Heliostats reflect sunlight 

towards a central tower. Therefore, an in-situ measurement involves measuring the shape of the 

heliostat from the tower. Thus, the lasers for this Hartmann measurement would ideally be placed 

at the focus of each heliostat (see Figure 4.11). For a spherically shaped heliostat the returning 

beams would then be collimated and spread across an area similar in size to the heliostat.  

Figure 4.11: In situ metrology system using the laser Hartmann technique. 
Lasers, mounted to a power tower, are near the focus of a heliostat, and direct 

beams onto the heliostat. Light is reflected from the heliostat and is incident 
upon a screen. Positions of the spots on the screen are recorded and slope 

errors of the heliostat can be calculated. 
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In reality, shape errors spread the beams even more and the ideal screen should be twice 

the size of the heliostat. The addition of a large screen is not ideal, but there are significant 

advantages to this geometry. By placing the lasers at the focus of a heliostat, the effects of any 

shape errors are reduced by a factor of two (traversing half the distance compared to a center of 

curvature measurement). Thus, the spot size increase due to high frequency slope errors is less. 

Also, all the heliostats in a field can be measured from the same location. An additional advantage 

is that the spot on the screen is no longer the Fourier transform of the pupil (i.e. fringes from dust 

particles are not observed). Clearly, this geometry is more favorable provided the screen does not 

become too large. 

In this experiment, there were still complications with using high quality lasers alone. First, 

the total cost of a laser array composed of 37 high quality lasers is in the thousands of dollars. 

Second, each laser needs to be angularly positioned with high accuracy. Third, using such an array 

on a heliostat field would require motion of each laser when measuring heliostats at different 

distances.  

Figure 4.12: For the in situ laser Hartmann metrology system, an imaging lens acts as a projector to focus the 
laser beams onto the surface of the heliostat. In this manner the gaussian beam expansion of the laser is 

reduced, and the only precision required is in the placement of the lasers. 
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A simple optics trick was used to get around these problems by using a lens to image an 

array of cheap diode lasers onto the heliostat (see Figure 4.12). The advent of the diode laser has 

led to the high-volume production of monochromatic, reasonably collimated, bright, and 

inexpensive light sources (Figure 4.13). The laser size is 3 x 1 mm and the divergence varied 

between 1 and 5 mrad. 

Aiming an array of lasers at a lens is straightforward and 

does not require high precision. In fact, using a lens means the 

laser does not even need to be well-collimated! Thus, the array 

can be composed of laser diodes and the cost can be significantly 

reduced. The only precision needed is in the machining of the 

laser array. 

The imaging lens is essentially acting like a projector lens, where the selection of the lens 

is determined by the desired magnification. For a good sampling, the spot size of each laser would 

ideally be similar to the size of the output laser. However, if this were the case then any angular 

divergence in the initial laser beam would be similarly present in the beam reflecting from the 

heliostat. Étendue is the name of the game. Some of the purchased diode lasers had a beam 

divergence of ~5 mrad. Across distances >100 m such a beam would expand to > 0.5 m and the 

spot would be challenging to detect. Of course, there is also the practicality issue associated with 

using a lens with a >25 m focal length, which would be required for one to one imaging. Therefore, 

it is advantageous to select a lens that magnifies the size of the spots. 

For example, magnifying the laser size by a factor of 20 with a lens reduces the divergence 

of the beam by the same factor. Thus, for the worst-case laser (5 mrad divergence), the beam 

Figure 4.13: $0.67 diode laser, 635 
nm 
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divergence would be 0.25 mrad and the beam would expand by about 1” across 100 m rather than 

half a meter. This comes with the cost of a much coarser sampling of the heliostat, but sampling 

across ~1” sections on the heliostat mirror was all that was required for this experiment. Due to 

gaussian expansion this is in fact close to the best that could be done with a 1 mm aperture higher 

quality laser. 

This smaller divergence of the laser beam can also be explained by gaussian beam 

propagation theory. Imaging the lasers onto the mirror creates the equivalent situation of a series 

of large lasers emitting from the heliostat mirror with the angular direction determined by the local 

slope of the heliostat mirror. In this manner, the initial gaussian beam waist is 1”. Thus, the 

Rayleigh range is >5 km. The gaussian beam expansion is very small across distances of a few 

hundred meters. The only added expansion of the laser beam is associated with the surface error 

of the mirror. 

The initial experiment used architectural mirrors with large high frequency slope errors. 

The final experiment used mirrors from Rioglass Solar, which are intended for heliostat use. With 

an initial slope error <1 mrad, the laser beam would in the worst case expand by 100 mm across 

100 m. The low order slope errors associated with the bending of the heliostat mirror only change 

the direction of the beam, not the size. There is of course a caveat to that statement. The locally 

induced curvatures across the mirror are generally toroidal due to the ideally toroidal shape of a 

heliostat at large angles of incidence. Therefore, local astigmatism in the surface causes the beam 

shape to be altered slightly, but this effect tended to reduce the spot size rather than increase it. 
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4.5 The Laser Array 

For the actual measurement of the fully functional 

heliostat, the focal length of the heliostat was chosen to 

be 40 m. According to FEA analysis by Nick Didato, this 

was a good focal length for high concentration while 

minimizing surface errors. Thus, the laser beam 

expansion in the worst case was 40 mm (if the high 

frequency errors in the heliostat mirror were 1 mrad), and 

essentially nothing due to gaussian beam propagation.  

The diode lasers used in this experiment were of an interesting form where the spot size 

was rectangular in shape with 1 mm by 3 mm diameter at the laser, though the laser aperture was 

axially symmetric and about 3 mm in diameter. The imaging lens was imaging the laser aperture; 

thus, the size of the laser spots was determined by the laser aperture, not the size of the laser spot. 

Somewhat arbitrarily, to obtain 20X magnification of the lasers the ideal focal length lens was 2 

m and the beam sizes at the mirror were roughly 2.5” (see Figure 4.14). This was not a problem 

because the Hartmann slope calculations rely upon the centroid of the spot. 

Concerning the focusing lens, in the worst-case beam expansion of 5 mrad a laser spot is 

~1” in diameter, thus a 1” diameter lens was suitable. Most of the lasers were roughly the same 

size at the lens as when they exited the laser (~3 mm). Thus, the lasers needed to be positioned 

only with ~1/3 of a degree precision, almost two orders of magnitude less precise than in the 

mechanical laser Hartmann experiment. In this manner, the lasers were placed in precision 

machined holes and glued in place with UV curing glue, all by hand (Figure 4.15). The distribution 

Figure 4.14: Spot size at the mirror. Note, 
pixels with values less than half the maximum 
pixel value were filtered to reduce the effects 
of stray light. Thus, the full size of the spot is 

not shown. 



107 

 

of the holes was determined by the magnification of the 

imaging lens and the shape of the heliostat, which was 

hexagonal. 

Simply turning on each of the lasers in turn via 

the laser controller and observing their location within 

the lens was all that was needed to verify alignment. 

Turning on all the lasers together showed that most of 

the laser light was passing through the clear aperture of 

the lens. Additionally, a projected pattern of the lasers 

onto the heliostat mirror, made visible by an array of overlaid Lambertian surfaces, showed that 

the image of the laser array was properly formed on the heliostat mirror (see Figure 4.16). 

Creation of the laser controller presented unique challenges itself. First, it was determined 

that to uniquely identify each spot for a measurement, each laser needed to be turned on 

sequentially. This was necessary because in many situations the laser spots were intersecting on 

Figure 4.15: Picture showing the process for 
aligning laser diodes and gluing them in place. 

Figure 4.16: Laser projector detail. (a) Laser array composed of diode lasers each turned on. (b) Laser spots with 
most of the light passing through the clear aperture of the lens. (c) Projected laser spots incident upon the heliostat 

mirror. The distribution of diode lasers was chosen according to the shape of the heliostat mirror and the 
magnification provided by the imaging lens. 
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the screen. Thus, it was important to be able to quickly turn on and off each laser in a precisely 

timed manner. An Arduino Mega 2560 was suitable for this, especially since the diode lasers only 

required 5V to function. Therefore, an Arduino by itself could control the lasers by turning on and 

off digital output pins. However, controlling 37 lasers each with their own circuit would have been 

very messy. It was determined that N-type MOSFETs should be used in an array controlled by the 

Arduino. 

An N-type MOSFET is essentially a variable 

resistor dependent on the input voltage to the “gate” pin of 

the MOSFET. FQP30N06L N-type MOSFETs were used 

because when applying a 5V voltage to the gate, the 

resistance of the MOSFET is nearly zero, and when no 

voltage is applied to the gate (0V) the resistance is very 

large (see Figure 4.17). If used as a supply to a laser, the 

“source” pin is connected to the 5V voltage supply of the 

Arduino and the “drain” pin is connected to the positive 

lead of the laser. If used to close the circuit, the “source” pin is connected to the negative lead of 

the laser and the “drain” is connected to ground. The number of lasers that can be controlled then 

goes as the square of the number of pairs of MOSFETs. 

This is illustrated in Figure 4.18. This figure represents an example circuit showing how to 

control 25 lasers with 10 digital input pins of a microcontroller. Five positive lines in red are 

created, each activated by their own MOSFET. Five negatve lines in blue are also created each 

with their own MOSFET. The red circles in the 5x5 array are each connection points for the 

Figure 4.17: FQP30N06L N-type MOSFET 
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positive lead of a laser diode, and the blue circles in the 5x5 array are each connection points for 

the negative lead of a laser diode. If the pin in column 2 turns on, then the red wire in column 2 

becomes hot, but no current can flow because the resistance on all the blue lines is “infinite”. If 

Figure 4.18: Example circuit showing how to control 25 lasers with 10 digital input pins of a microcontroller. 
Resistors are used to ensure digital pins are not overdrawn on current, and to ensure the gait voltage drops to zero 
when the digital pin turns off. Five “hot” lines are created, each activated by their own MOSFET. Five “cold” lines 
are also created each with their own MOSFET. The red circles in the 5x5 array are each connection points for the 
positive lead of a laser diode, and the blue circles in the 5x5 array are each connection points for the negative lead 
of a laser diode. If the pin in column 2 turns on, then the red wire in column 2 becomes hot, but no current can flow 

because the resistance on all the blue lines is “infinite”. If the pin in row 5 is then simultaneously turned on, the 
resistance in the blue wire in row 5 drops to nearly zero and current can flow through the laser diode. 
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the pin in row 5 is then simultaneously turned on, the resistance in the blue wire in row 5 drops to 

nearly zero and current can flow through the laser diode in row 5 column 2. 

Using this type of arrangement, the number of lasers that can be controlled is equal to the 

number of row pins times the number of column pins. Thus, if a laser array were made for a large 

36 m2 heliostat, and 400 lasers were needed to obtain the desired sampling, only 40 pins would be 

required, and the laser array could be controlled by one Arduino Mega 2560. In the actual 

arrangement only 37 lasers were needed, thus only 13 pins would have been required. However, 

to simplify circuitry 14 pins were used, which could have controlled 49 lasers. Due to the geometry 

of the heliostat (i.e. the heliostat being hexagonal), the corner lasers were unnecessary and only 37 

lasers were required. The gridded approach was still used due to its clean wiring. 

4.6 Measurement Calculations 

The laser array was only one part of the full metrology system. The rays reflected from the 

heliostat mirror needed to be sufficiently visible on the receiving screen so that a scientific camera 

could capture an image of each spot. A Mako U 1.3MP monochrome camera was chosen using a 

35 mm F/1.65 fixed focal length C series lens from Edmund Optics. 

The size of the screen was 8 ft by 8 ft, close to twice the size of the hexagonal heliostat 

(1350 mm flat to flat). The separation of the heliostat and screen was close to 120 ft with the screen 

and laser array near each other (see Figure 4.19). A retroreflective material was used for the screen 

so that spots were very visible when the camera viewed the screen from the heliostat direction. 

Mapping the screen onto the camera sensor gave a resolution of about 2.4 mm per pixel; plenty of 

resolution to measure the >2” laser spots. The maximum speed of a single measurement was 

throttled by the maximum frames per second of the Mako U camera, which was ~160 FPS. 
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Additionally, the camera operated with significant fluctuations in FPS. Due to the poor timing of 

Windows 10, the camera needed to take two pictures for each laser flash to guarantee an image 

was captured when one of the lasers was on. Thus, for 37 lasers a minimum of 74 images was 

required. At such a speed, the physical measurement took less than one second. Note, the Arduino 

laser controller could flash lasers at >1000 times per second, but this would require a poorly timed 

camera to take images at 2000 FPS. The exposure times would then be ~1/2000th of a second, 

perhaps too short to obtain good data.  

To calculate the local slope across the aperture of the heliostat a knowledge of the geometry 

of the laser array, heliostat, and screen were necessary. The calculation then involved referencing 

the positions of all the spots relative to the center spot position. In order to measure the center spot 

positions, the centroid of each spot was calculated. This involved a weighted sum of the pixel 

values where the weighting factor was the pixel position. Converting the pixel positions to real 

space distances then provided the physical location of the laser spots on the screen. These centroid 

calculations for the x and y dimensions were simply 

 

Figure 4.19: System setup for laser Hartmann measurements. 
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𝐶𝐶𝑥𝑥 = ∑𝑃𝑃(𝑥𝑥𝐻𝐻)𝑥𝑥𝐻𝐻
∑𝑃𝑃(𝑥𝑥𝐻𝐻)

 and 

𝐶𝐶𝑦𝑦 = ∑𝑃𝑃(𝑦𝑦𝐻𝐻)𝑦𝑦𝐻𝐻
∑𝑃𝑃(𝑦𝑦𝐻𝐻)

, 

where 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the pixel numbers/positions and 𝑃𝑃 is the pixel value at the associated pixel 

positions. Thus, the laser spot locations on the screen were measured, and the slope could be 

calculated. 

 The slope calculation was performed in two dimensions independently. In Figure 4.20, a 

beam leaving the laser lens traverses the distance from the laser lens (imaging lens) to the mirror. 

This distance is very large compared to the sag of the mirror; thus, the sag can be neglected 

(especially since all that was needed is 0.2 mrad precision). The laser then reflects from the mirror 

and traverses the distance from the mirror to the screen, which is not necessarily the same distance 

as from the lens to the mirror. The laser is incident upon the screen and measured and the location 

of the laser spot is calculated. A triangle is formed by this path with an apex angle that is twice the 

slope of the mirror at the reflected location. Therefore, the equation for the slope of the mirror at 

a given pupil position is 

 

Eq. 4-4 

Eq. 4-5 

Figure 4.20: Geometric illustration of the laser path from the laser lens to a pupil position in the mirror to the 
screen. This path forms a triangle with an apex angle that is twice the slope of the mirror. 
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𝑆𝑆𝑦𝑦 = 𝑦𝑦𝑚𝑚
2𝑑𝑑𝑚𝑚2𝐻𝐻

+ ∆𝑦𝑦
2𝑑𝑑𝑚𝑚2𝑠𝑠

, 

where 𝑦𝑦𝑚𝑚 is the marginal ray height, ∆𝑦𝑦 is the change in height of the laser from the marginal ray 

height, 𝑐𝑐𝑚𝑚2𝐻𝐻 is the distance from the mirror to the lens, and 𝑐𝑐𝑚𝑚2𝑠𝑠 is the distance from the mirror 

to the screen. Due to the need to separate the lens from the return laser beam path, the actual 

geometry involves offsetting the screen and laser lens, and the marginal ray heights and change in 

ray heights are all referenced relative to the central beam (see Figure 4.12). 

 With the slopes calculated, the RMS slope error for a given measurement was readily 

apparent. However, this RMS slope error was only for the low frequency shape errors in the mirror. 

The initial high frequency errors of the mirror were neglected. Knowing the slope error did not 

make it easy to know what the sag error in the mirror was. Knowledge of the sag error was 

necessary for knowing how to change the actuators’ settings. Therefore, software from Brookhaven 

National Laboratory was integrated into the software to take the slopes in x and y and their 

associated positions on the mirror. From this information the slopes were integrated to form a full 

surface map [10]. Due to the low sampling of the mirror, the software did not provide accurate 

results. To fix this, the slopes were cubic interpolated using MATLAB’s built in function, 

griddedInterpolant, before being integrated. 

4.7 The Laser Hartmann Measurement 

The laser Hartmann measurement thus consisted of the following steps: establish the 

geometry, align the laser array to the mirror, adjust the tip and tilt of the heliostat mirror to reflect 

the laser beams onto the screen, calibrate the camera, send a remote signal from the computer to 

the Arduino to run a preestablished program that flashes the lasers in sequence with a pre-

Eq. 4-6 
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calibrated timing, capture images with the camera, process the images to identify relevant data, 

calculate the laser spot centroids, calculate the slopes in two dimensions for all 37 laser spots, 

integrate the slopes with BNL software, compare the measured sag to the ideal sag, and calculate 

surface errors. 

The setup time for a given measurement was in the vicinity of 30 minutes to an hour. This 

included determination of the ideal shape by entering a date, time, and geometry for the Heliostat 

on Sun. The ideal shape was thus automatically calculated in MATLAB. With everything properly 

setup in the software and hardware a single click initiated a measurement. From that click to 

obtaining the surface error took less than 30 seconds, most of which was spent in establishing 

connections with the computer to the camera, connecting to the signal transmitter, sending a 

transmission, and post processing the data. The time over which the lasers flashed was less than 1 

second. After connections were established 

the first time, additional clicks led to surface 

error measurements in less than 15 seconds.  

The process of adjusting the 

heliostat towards the ideal shape then 

became the bottleneck. The initial shape 

setting was the lengthiest process since all 

18 pads needed to be adjusted sequentially. 

This would have taken >2 hours using the 

mechanical laser adjustment method. Using Figure 4.21: Laser spot patterns on the screen for four 
different heliostat shapes. 
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the laser array, the process took less than 30 minutes. 

After establishing the initial shape of the heliostat, other shapes for different times of day 

were obtained by adjusting solely the three linear actuators. Again, the laser Hartmann 

measurement was used to quickly determine shape errors. This process was much faster than the 

initial shape setting. In this manner, the heliostat was set to four different shapes for four different 

Figure 4.22: Matrix of surface measurements showing the final adjusted shape of the heliostat for four different 
solar positions after iterations towards the ideal shape. Left column is angles of incidence, which vary from nearly 

on-axis to >70 degrees. The second column is the measured surface shapes, which vary from highly toroidal to 
nearly spherical. The third column is the surface shape errors. The fourth column is the RMS errors of the heliostat 

mirror for surface sag, surface slope, and the slope error if a perfect sphere were used. 
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solar angles of incidence. The spot patterns on the screen for each of these shapes is shown in 

Figure 4.21 and the integrated surface shapes and errors are provided in Figure 4.22. 

Three out of the four heliostat surface shapes had less than 1 mrad RMS slope error relative 

to the ideal surface shape (determined by Eq. 3-15 and Eq. 3-17 through Eq. 3-19). If the surface 

had not been actively bent into shape, and instead had been a perfect sphere, the RMS slope errors 

would have been as bad as 9.9 mrad. Even at a moderate angle of incidence of 36° the slope error 

of a perfect sphere is 1.3 mrad and the ideal error budget has been used up. Note, the surface slope 

errors consist of a coupling of the slope errors in x and y. All RMS errors were calculated by square 

rooting the mean of the square values minus the mean of the values squared, as in 

𝜎𝜎𝑥𝑥 = √< 𝑥𝑥2 >  − < 𝑥𝑥 >2, 

where 𝑥𝑥 is the quantity under consideration. The total RMS surface slope error was then calculated 

by taking the modulus of the RMS slope errors in x and y. 

After setting the heliostat surface shape as close as possible to the ideal shape, the next test 

was taking the heliostat out into the sunlight and focusing the light onto a target 40 m away. In this 

experiment the target was to the East. The Sun reflected at angles varying from 8 degrees to 71 

degrees. The resulting solar images were well corrected and obtained concentrations of >90% 

ensquared energy into 0.5 m, a geometric concentration of nearly 6X over a large range of angles 

(see Figure 4.23). The heliostat was bent close to the ideal shape, and then allowed to relax to the 

initial set shape. In this manner, the benefits of bending a heliostat were manifest. 

The solar images were each measured using the same scientific camera used for measuring 

the laser spots. A neutral density filter was placed in front of the lens so that the exposure did not 

Eq. 4-7 
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saturate the sensor. The ensquared energies shown in Figure 4.23 should be considered 

Figure 4.23: Solar images for each angle of incidence considered categorized by subsections: (a) 
8°, (b) 36°, (c) 62°, and (d) 71°. The left solar image of each section is what is obtained by 
bending the heliostat frame with the three linear actuators. The right solar image of each 

subsection is what is obtained when no bending is induced by the three linear actuators. Below 
each set of solar images is their approximate ensquared energy in both the bending and no 

bending scenarios. The white box is 0.5 m square and represents a potential region of 
acceptance. 
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approximate since the measurement method and calculations did not consider precise radiometric 

quantities. An attempt was made to measure the screen with and without the solar image incident 

upon the screen, but due to a poor mounting scheme for the neutral density filter the background 

images could not be properly subtracted from the solar image measurements. Thus, a global 

subtraction of detector values was implemented where the subtracted value was determined by the 

average of a section of the target screen that appeared to not have any energy from the solar image. 

The results of the laser Hartmann measurement clearly show that this method works. High 

solar concentrations were made possible by bending a heliostat mirror close to ideal toroidal 

shapes, active bending made possibly with only three linear actuators. It is possible to use this laser 

Hartmann metrology system in situ, opening the possibility for a power tower field of actively 

shaped focusing heliostats. Using such a field would allow for high concentration of sunlight using 

only a few hundred to a few thousand heliostats, thus making it possible to generate hydrogen fuel 

or increase the efficiency of power plants. 

4.8 Future Metrology 

 The future of actively focusing heliostats is currently limited by heliostat metrology. If a 

rapid and sufficiently accurate metrology system(s) could be implemented, then the possibility of 

actively focusing heliostats becomes more concrete. In this section, a discussion of two 

commercial type heliostat metrology systems are proposed. The first is simply a modification of 

the metrology system already tested in a prototype setting. 

A commercial laser Hartmann metrology system would need to be able to measure each 

heliostat in a large field, perhaps covering distances from ~50 m to ~200 m. Since it is ideal to 

keep the lasers all fixed in their pointing, such a system could use a zoom lens, where the outer 
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elements act as a zoom beam expander (Donders telescope) and the back elements are fixed in 

relation to the laser array, acting as a telephoto lens. In the actual light path, a reverse telephoto 

Figure 4.24: Zoom lens used for laser Hartmann metrology at four different distances (a) 55 m, (b) 110 m, (c) 
165 m, and (d) 220 m. The top images show the heliostat mirrors at the various distances in relation to the laser 

Hartmann metrology system. The middle set of images shows the laser diodes with positioning unchanged for 
each distance. The bottom set of images shows in detail the alterations to the lens between zoom positions. The 
only element distance that changes is between element 3 and element 4 and element 4 and element 5. A reverse 

telephoto lens is thus formed followed by a variable beam expander. 



120 

 

lens images the laser array to a distant position followed by a variable beam expander that keeps 

the magnification constant for heliostats at varying distances (see Figure 4.24). The heliostat 

mirrors then reflect the laser beams to a screen near the laser array (perhaps mounted to the tower). 

An inexpensive camera could then be mounted near each heliostat for measuring the laser 

spots, or a zoom lens mounted onto a drone could quickly move between heliostats for rapid 

measurements. In either scheme the measurement process would ideally occur at night where stray 

light is less likely to corrupt surface measurements. 

A weakness of the laser Hartmann method is that it does not measure the gravitational 

deflection of the heliostat mirror, which varies with elevation angle. Ideally, the shape of the mirror 

should be measured when the heliostat mirror is oriented correctly to the Sun. Thus, a second 

metrology system is herein proposed, a solar wavefront metrology system (see Figure 4.25). 

Figure 4.25: Solar wavefront metrology system using sunlight to measure the heliostat shape in its operating 
condition where gravitational deflection comes into play. A solar image is formed by a heliostat on a distant 

wavefront sensor, at the tower near the receiver. The wavefront sensor consists of an array of lenses where each 
illuminated lens forms a pupil image. Measuring these images and processing the data leads to a slope error map, in 

a similar manner to a Pyramid scheme wavefront sensor. 
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In the proposed metrology system, an array of small lenses is distributed throughout the 

focus of a heliostat mirror, where each lens illuminated by the heliostat forms an image of the 

heliostat. To do this, at the tower receiver this fly’s eye array is placed just below the receiver to 

measure any heliostat by tilting the heliostat to reflect sunlight to this lens array. A camera is then 

used to measure the array of 

pupil images and dissects the 

images to form a slope error 

map across the heliostat in a 

similar manner to a Pyramid 

wavefront sensor (see section 

5.2). This method of 

measurement is well 

explained visually (see Figure 

4.26). 

If a heliostat were 

covered with a large mask so 

that only the central region 

was exposed, then that central 

region would act as a pinhole 

camera and form a dim solar 

image on the lenslet array. 

Each illuminated lenslet 

Figure 4.26: An array of pupil images formed where an ideally shaped 
heliostat is used in (a) and (b) and an astigmatically aberrated heliostat is 

used in (c). Sampling the pupil image array in (a) at the center of each pupil 
image recreates a low-resolution solar image. Similarly, in (b) sampling an 
off-axis pupil position forms a low-resolution solar image that is centered at 

the same location. For (c) the same off-axis pupil location forms a solar 
image that is offset due to astigmatism in the surface. Thus, the slope error 

across a heliostat mirror can be measured one pixel at a time. 
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would then form a pupil image, which would be essentially a dot (i.e. the exposed region of the 

heliostat). This array of dots could be directly correlated to the solar image. Thus, a low-resolution 

solar image could be recreated for that pupil position. 

Now consider a mask where only an off-axis section of the heliostat mirror is exposed. If 

the heliostat mirror was the correct shape, this off-axis section would form a solar image centered 

at the same location as the on-axis solar image. The slope error for this off-axis section would then 

be zero. Perhaps the shape of the mirror had some incorrect astigmatism. Then an off-axis section 

of the mirror would form a pupil image that was offset from the on-axis solar image. Thus, this 

off-axis section would have a slope error. 

Instead of sampling the heliostat slopes by blocking out everything but one small section 

at a time, obtaining an image of an array of pupil images provides the same information in one 

capture. By sampling an array of pupil images with the heliostat not covered, the location of the 

solar image formed by each pupil position can be measured. Using the centroid of each of these 

solar images, a slope error map can be formed relative to the on-axis pupil position, and these 

slopes can be integrated to form a surface map (see Figure 4.27). 

This second method is a null metrology measurement because it directly measures the 

shape error from ideal. In contrast, the laser Hartmann metrology system measures the absolute 

slope of the surface, therefore it is a non-null metrology measurement. Together these 

measurement methods play complementary rolls that determine the surface shape of a heliostat. 

The zoom Hartmann metrology system could measure the low frequency shape errors of heliostats 

at night with good fidelity, and the Solar wavefront metrology system could measure the mid 
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frequency shape errors while a solar plant was in operation. Also, the Solar wavefront metrology 

system could be implemented using the Moon or the stars, though some modifications to the 

Figure 4.27: Simulated measurements using Solar wavefront metrology. The top row is for an ideally shaped 
heliostat, second row for a heliostat with oblique astigmatism, third row for a heliostat with vertical astigmatism, 
and the fourth row for one of the heliostat surfaces measured in the laser Hartmann measurement. The minimum 

measurement error is about 0.2 mrad RMS, enough for heliostat metrology. 
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system shown above would be required. Starlight would require a larger number of lenses to obtain 

the necessary resolution. 

4.9 Future Application 

The potential for the prototype presented in this chapter to move power towers forward 

towards green hydrogen and biofuel generation is very promising. For all angles of incidence for 

the prototype experiment, ~6X geometric concentration was obtained. Scaling up this heliostat to 

a larger size would preserve the geometric concentration while increasing the total collected 

energy. 

Heliostat mirrors that are readily 

available have a maximum width of 2 meters. 

Scaling up this prototype heliostat to have a 

width that is a multiple of this maximum width 

of 2 meters is thus a logical choice. A size that 

would push the limits of this design while 

remaining feasible is a 6 meter flat to flat 

regular hexagonal heliostat (see Figure 4.28). 

At this size the heliostat has a collecting area of 31 m2. The scaling factor is 4.44, meaning 

the furthest distance for this heliostat to focus would be 180 m rather than 40 m, and the receiver 

would be 2.2 m square. The geometric concentration is then still 6X. Arranging hundreds of these 

heliostats into a power tower field makes it possible to obtain very high concentrations. In order 

to minimize cosine factor effects as well as the maximum sag change required to obtain the correct 

Figure 4.28: Scaled up version of prototype heliostat that 
would use 2 meter width readily available heliostat 
mirrors cut into 6 trapezoids and 1 hexagon. The 

collecting area is 31 m2. 
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toroidal surface for each heliostat, heliostats are arranged North of the receiver within +/- 45° of 

North (see Figure 4.29).  

In the proposed 

power tower field, 

heliostats are distributed 

within 50 meters to 180 

meters of the power 

tower. Due to the lower 

RMS surface slope 

errors required for 

heliostats closer than 

180 m, it is reasonable to 

state that all the light from closer heliostats will fall within the 2.2 m square receiver area. 

Therefore, each heliostat will be operating at ~6X concentration. In order to minimize blocking 

and shadowing, the ratio of heliostat area to land area is under one third. 

This particular arrangement follows a biomimetic pattern, which naturally reduces 

blocking and shadowing. The total number of heliostats is 243, meaning the geometric 

concentration of this proposed power tower is ~1,500X. The total collecting area is 7500 m2, 

making this is a 7.5 MW power tower. In this particular arrangement, 95% reflective heliostats 

and an average cosine factor of 0.84 (i.e. 30° angle of incidence) makes it possible to achieve 

1,200X solar concentration and the associated 1,500 °C, which enables the production of green 

hydrogen. 

Figure 4.29: Biomimetic power tower distribution using 243 actively deformable 
focusing heliostats with 31m2 collecting area each. Each heliostat operates at 

~6X concentration, thus the field operates at ~1,500X geometric concentration. 
This equates to 7500 m2 of collecting area, or a 7.5 MW power tower. 
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4.10 Conclusion 

Actively focusing heliostats have the potential to achieve high solar concentrations using 

in the hundreds or thousands of heliostats. This high concentration can be achieved throughout the 

day by actively changing the heliostat shape in three different modes: curvature, oblique 

astigmatism, and vertical astigmatism. 

The metrology required for measuring the surface shape of such heliostats is beyond the 

modern state of the art in terms of in situ measurement fidelity and/or speed. Two metrology 

systems were herein presented, one of which was made and implemented for the measurement of 

a 1.58 m2 hexagonal heliostat with active shape change capabilities. This first method involved the 

use of a laser array, which was imaged onto a distant heliostat. Laser beams were reflected from 

the heliostat to a retroreflective screen, and a scientific camera measured the laser spot location. 

After a series of calculations, a slope map and a surface shape were generated. The calculated 

surface errors were fixed by actuation of the heliostat. 

A laser Hartmann metrology system performs non-null slope measurements and can be 

used in situ on an entire power tower plant so long as a zoom lens is used to image the laser array, 

and a camera is located close to each heliostat being measured. Additionally, the measurement 

screen needs to be sufficiently large to receive reflected spots from each heliostat mirror, perhaps 

twice as big as the heliostats in use. 

A second metrology system was proposed that involves placing a wavefront sensor at the 

focus of a heliostat (i.e. in situ). This Solar wavefront sensor performs null slope measurements of 

a heliostat surface. A series of pupil images are formed by a lens array, the pupil images being 

dissected together to form a collection of solar images. The relative overlap of each solar image is 
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determined, and a slope error map is directly calculated. Integration of the slopes provides the 

surface sag error. 

Together these metrology systems play complementary roles that make it possible to obtain 

the fantastic shapes necessary to focus sunlight from on-axis to greater than 70° angle of incidence. 

A measurement using the laser Hartmann method takes <15 seconds to obtain surface shape errors, 

though the physical measurement takes ~1 second. A measurement using the Solar wavefront 

method takes a similar amount of time, though the physical measurement is only the exposure time 

of one image (1/100th of a second perhaps). 

The true limitation for a focusing heliostat is how well the surface shape can be corrected 

by active bending. This shape correction need only be to ~1 mrad RMS slope error, which was 

obtained for the 1.58 m2 hexagonal heliostat. Future developments may involve creating a larger 

heliostat, thus allowing for fewer heliostats in a power tower field while still obtaining a high solar 

concentration of 1,200X. One additional benefit to larger and fewer heliostats is the reduced time 

to measure all the heliostat mirror surfaces in a field, allowing for more time spent generating 

hydrogen fuel.
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CHAPTER 5 :  NULL METROLOGY DESIGN 

5.1 Introduction 

This chapter addresses four different types of null metrology techniques in some detail. 

Null metrology was briefly discussed in Chapter 1 and has been used wherever applicable in other 

chapters. Null type measurements are so powerful because they are directly measuring the error of 

an optical component from the ideal. The optical fabricator does not care so much what the shape 

of an optic is, but instead the optic error from the ideal. Thus, a null measurement is exactly what 

is desired. 

Null measurements are often obtained using interferometry or wavefront sensing, though 

a “virtual” null measurement is possible for deflectometry [43]. For interferometry a single 

wavelength light source is generally used with a long coherence length. Thus, wavefront errors 

imparted by an optic are compared to an ideal wavefront, which generally has traversed a shorter 

distance. For wavefront sensing, a guide star is used to directly measure the wavefront errors 

imparted by the atmosphere or even system errors in the telescope. This is generally accomplished 

with a Shack-Hartmann wavefront sensor a pyramid wavefront sensor. A pyramid wavefront 

sensor is of some special interest because of its similarity to the Solar wavefront sensor of section 

4.8. 

Each of the measurement techniques herein discussed rely on either interferometry or 

wavefront sensing, except for the last topic. The last topic introduces a technique similar in 

applicability to the virtual null deflectometry, but it is a true null test that does not require 

interchanging components for free form surface measurements (i.e. what is needed for aspheric 
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measurements for interferometry). This measurement device is dubbed the Chromatic Local 

Curvature (CLC) sensor. It builds on the heritage of the Chromatic Confocal Sensor, which will 

be discussed as an introduction to the CLC. 

5.2 Pyramid Wavefront Sensor 

In Chapter 4 two different metrology systems were discussed, one of which could perform 

null measurements. The null type test involved the use of the Sun to perform wavefront sensing. 

By examining the solar image formed by each part of the pupil, the local slope error across a 

heliostat mirror could be determined, and active correction of the mirror with at least three linear 

actuators would modify the mirror shape towards the ideal. An interesting and comparable 

measurement is found in pyramid wavefront sensors. By looking at a pyramid wavefront sensor 

the Solar wavefront sensor perhaps makes more sense in how it works. 

Starlight can be heavily aberrated as it transmits through the atmosphere. Large aperture 

telescopes are unable to obtain diffraction limited imaging due to ~1 arcsecond blurring by the 

atmosphere. However, for small fields of view, diffraction limited imaging can be obtained if 

adaptive optics are used. A deformable mirror compensates atmospheric wavefront errors. At a 

separate plane conjugated to the deformable mirror, a Shack Hartmann wavefront sensor is placed, 

which forms an array of star images. According to the displacement of the star images, local slope 

errors can be measured, and the wavefront error calculated by slope integration so that the shape 

change of the deformable mirror can be determined. 

An alternative to a Shack Hartmann sensor is a pyramid wavefront sensor. Interestingly, 

the tip of the pyramid for a pyramid wavefront sensor is placed at the star image. The image of the 

guide star is well centered and generally close to diffraction limited in a closed loop adaptive optics 
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system. The pyramid wavefront 

sensor then splits the star image 

into four parts, either by reflection 

or transmission. Four pupil images 

are then formed on four separate 

sensors (see Figure 5.1). Ideally 

the light from each section of the 

pupil will be equally divided 

among the four pupil images. 

Figure 5.2: Two examples of pupil images formed by a pyramid wavefront sensor. In the top row, an 
ideal situation is shown where each pupil image is equally bright. Looking at the same pixel from each 
pupil image shows there is no x-tilt or y-tilt in the 4-pixel star image. In the bottom row, one area of the 

wavefront has been aberrated and one-pixel position shows a deviated star image. 

Figure 5.1: Pyramid wavefront sensor. Light is focused on the pinnacle 
of the pyramid (left) and split into four parts with each part forming a 

pupil image (right). 
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Generally, fluctuations from the atmosphere will cause the light to be offset relative to the pinnacle 

of the pyramid. A global tilt will cause the entire star image to shift and perhaps two of the pupil 

images will be brighter, and two will be dimmer. A centroiding calculation would show that the 

star image had shifted, and a tilt in the deformable mirror would readily correct the measured 

global tilt. Local tilts across the aperture cause the correlated pixel to appear oppositely bright and 

dark in the pupil images (see Figure 5.2). Calculating the “centroid” of the star imaged formed by 

each pupil position (i.e. pixel position) allows for calculation of slope errors across the pupil. These 

errors can be corrected by locally changing the deformable mirror. 

Thus, a Solar wavefront sensor and a pyramid wavefront sensor are used to measure surface 

slope errors in a similar manner.  A Solar wavefront sensor is a generalization of a pyramid 

wavefront sensor. For the Solar wavefront sensor, the “star image” of the Sun is much larger and 

not diffraction limited, therefore the light should not be divided by a pyramid. Instead, a large fly’s 

eye array can be placed at the focus with each lenslet forming a pupil image. 

5.3 Sub-Aperture Fizeau 

In the paper, “6.5  m telescope for multi-

object spectroscopy over a 3° field of view” by 

Eads and Angel, published by Applied Optics, a 

large 1.56 m diameter gull wing lens is part of the 

design (see Figure 5.3) [44]. During the telescope design process, the shape of the lenses tended 

towards a gull wing. This is because the design was optimized for a large field of view and a highly 

constrained geometry. Cell phone cameras have similar requirements imposed upon them, which 

is why gull wing lenses are standard. The power of a gull wing lens to push a telescope to achieve 

Figure 5.3: Gull wing lens for a 6.5 m spectroscopic 
telescope with a 3° FOV. 

https://www.osapublishing.org/ao/abstract.cfm?uri=ao-59-22-g154
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-59-22-g154
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design requirements, especially for large fields of view and constraining geometries (e.g. the size 

of lenses), is very impressive. These types of lenses should continue to be investigated to enable 

the improvement of future telescopes. This telescope design is discussed in greater detail in 

Chapter 6. In this section, metrology for the gull wing lens required for the design is discussed. 

Proposed metrology for this lens involved the implementation of two techniques: a sub-

aperture Fizeau test and a full aperture transmission test. Both techniques would require the use of 

computer-generated holograms (CGH). In this first section is a detailed description for how a sub-

aperture Fizeau test could be performed. 

A Fizeau interferometer 

can be one of the simplest 

interferometers. Its functionality is 

readily explained by two pieces of 

glass with wedge. Light passing 

through the top piece of glass is 

reflected from the bottom surface, 

and light that passes through the 

top piece of glass reflects from the 

top surface of the bottom piece of glass. If light with a reasonably long coherence length is used 

(i.e. mercury source or laser), then these two beams will interfere where the optical path difference 

(OPD) between the beams is directly related to the thickness of the gap between the pieces of glass 

(see Figure 5.4). The equation for the OPD is 

𝑂𝑂𝑃𝑃𝐷𝐷 = 2𝑛𝑛𝑑𝑑 cos𝜃𝜃
𝜆𝜆

, Eq. 5-1 

Figure 5.4: Basic Fizeau interferometer. Two beams are interfered, one 
reflecting from the bottom surface of the top slab of glass and the other 
reflecting from the top surface of the bottom slab of glass. The initial 

beam comes in at some angle 𝜃𝜃 and the gap between the glass slabs has 
variable thickness t. 
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where 𝑛𝑛 is the index of refraction between the glass slabs (usually 1 for air), 𝑐𝑐 is the local separation 

of the glass slabs, 𝜃𝜃 is the incoming angle of the light, and 𝜆𝜆 is the wavelength. The light reflected 

from the top slab would perhaps be the reference beam and the light reflected from the bottom slab 

would be the test beam. 

 The basic Fizeau interferometer is generally more qualitative in measurements due to the 

lack of phase shifting. However, phase shifting of a basic Fizeau interferometer can be made 

possible by mounting the reference glass in an adjustable height mechanism. This mount could 

either be standing or attached to a commercial interferometer (see Figure 5.5). Piezo-electric 

transducers, which can move with steps less than 30 nm, would be suitable for phase shifting [45]. 

Phase-shifting interferometry generally requires surface motions of λ/8, or 79 mm. 

 Returning to the gull-wing lens, if a very small reference plate were able to be precisely 

moved to different positions above the lens, then interferomertic measurements could be taken to 

obtain a full 3D surface map. Over a small region, the gull-wing lens is approximately flat, thus a 

basic Fizeau interferometer is created. 

Figure 5.5: A schematic for mounting a reference plate above a test plate. The reference surface can move very 
close to the test surface and fine adjustments via piezo-electric transducers makes phase-shifting possible. 
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If a larger reference plate were used, there would be a toroidal departure of the test surface 

from the reference surface. The test would no longer be null, though perhaps the surface shape 

would still be measureable. If the reference plate were increased in size, eventually the departure 

from flat would be significant enough that fringe spacing would be of a higher frequency than the 

Nyquist frequency of the detector. Phase-unwrapping algorithms would no longer be correct, and 

a false measurement would be made. In the case of the gull-wing lens, interferometric 

measurements in this fashion would take a significant amount of time. 

This process could be significantly faster if instead of having a reference flat, a best fit 

reference toroid were used. A CGH could even be written on the reference surface to correct for 

residual aberrations, making the test truly null. This method was suggested in the previously 

mentioned paper by Eads and Angel. However, a way to perform phase-shifting was not addressed. 

A real experiment may consist of a toroidal reference surface suspended above the gull wing lens. 

Piezoelectric stepper motors would be used for phase shifting, and an extended mercury lamp 

would be used as a source. This would ensure that fringes were visible across the surface. 

Great care would need to be 

taken to ensure the toroidal reference 

surface did not scratch the gullwing 

lens. The reference optic would 

perhaps need to be removed from the 

gullwing lens each time the gullwing 

lens was rotated for a different 

subsection measurement. In this 

Figure 5.6: Schematic of interferometric measurement of a large 
gullwing lens. A toroidal reference surface is suspended above the 

gullwing lens. Phase shifting is induced by piezoelectric transducers. 
An extended source mercury lamp is used so that fringes are visible 
across the aperture of the reference surface. An annular ring would 

be measured by rotating the gullwing lens, and stitching 
measurements together. 
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manner a series of annular rings would be stitched together to form a full surface map. A schematic 

view of this system is shown in Figure 5.6. Eight 100 mm square toroidal plates would need to be 

made to measure the full clear aperture of this optic [44]. 

5.4 Full Aperture Gullwing 

After one surface of the double gullwing lens was made to the desired precision and 

measured using the sub-aperture Fizeau tests, the other surface could be tested in a similar manner. 

However, grinding and polishing the other surface using perhaps swing-arm metrology would 

allow the said surface to be within a few microns of the ideal shape. Then, a full aperture 

transmission test could be used instead of the sub-aperture Fizeau test. This would make the final 

polishing steps quick and would ensure the two surfaces were well aligned. Note, a transmission 

test appears possible due to the low-power appearance of the gull-wing lens. The thickness appears 

nearly constant, thus light transmission through the lens may not significantly refract light beyond 

testing capabilities. 

The setup for this experiment is shown in “6.5 m telescope for multi-object spectroscopy 

over a 3° field of view.” A point source from perhaps a Fizeau type interferometer is reflected by 

a beam splitter into the gullwing lens. Light transmits through the gullwing lens and reflects from 

a large spherical mirror. Light then transmits again through the gullwing lens, passes through the 

beam splitter, and a focusing lens. A CGH is then introduced to clean up residual wavefront errors 

before the light comes to a focus. In order to return the light to the interferometer, a high precision 

steel ball could be placed centered at the focus after the CGH. Light would then return through the 

system to the interferometer (see Figure 5.7). 
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This optical design reduces the 

wavefront error to be corrected by a CGH 

to 240 waves, well within the capabilities 

of a CGH. The issue with this experiment 

is that the beam splitter, spherical mirror, 

and the corrector lens need to be made 

with high precision so that only the error 

in the gullwing lens is measured. 

However, this cost may be comparable or 

less than the cost of making 8 toroidal test 

plates, each with a CGH imprinted upon 

the toroidal surface. Also, it is important to consider that the time to take a measurement is 

significantly reduced by a full aperture test. 

Methods for measuring large gullwing lenses push state of the art metrology and 

manufacturing techniques to the limit. It is certainly feasible that this gullwing lens could be 

manufactured within the desired specifications, though the cost may be significant. Future 

developments in metrology may make such lenses much cheaper to measure. 

5.5 Confocal Chromatic Sensor 

Another metrology technique of interest is found in the confocal chromatic sensor (CCS). 

The CCS uses chromatic aberration (chromatic change in focus) to perform high precision surface 

measurements with a large dynamic range. These devices are commercially available and have 

been useful in measuring highly aspheric surfaces as well as surfaces with steep height changes 

Figure 5.7: A potential arrangement for a full aperture 
transmission test of a large gullwing lens. A beam splitter 

reflects light from an interferometer into the gullwing lens. A 
spherical mirror reflects the transmitted light, which returns 
through the gullwing lens and transmits through the beam 

splitter. The aberrations in the beam are significantly reduced by 
a corrector lens and then a final wavefront cleanup is performed 
by a CGH near the focus. A ball reflector is centered at the focus 

so that light will return to the interferometer, thus making a 
second double pass on the gullwing lens. 
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(step surfaces). Current methods involve laterally moving surfaces underneath the sensor at a 

known speed, or perhaps rotating a lens element while laterally shifting the CCS, creating a spiral 

measurement of the surface. The result is usually a low spatial sampling, but high accuracy height 

measurement (<1μm precision).  

It is relevant to understand the working 

principles of a CCS. A CCS uses chromatic change 

in focus to create a continuous range of focal 

planes. Placing a reflective surface at one of these 

focal planes will cause only the wavelength that 

focuses at the reflective surface to return through 

the CCS with a high signal. A spectrometer then 

analyzes the returned beam to see which color 

returned (see Figure 5.8). Based on the callibration 

of the sensor, a given color is associated with a 

certain distance from the sensor.  

A modern commercial CCS is in a “cateye” 

configuration, a common configuration for both 

interferometers and point source microscopes. In this configuration, light is focused on the surface. 

A different, but also very common, configuration is the confocal configuration, where a surface is 

placed concentric about a focus. Both interferometers and point source microscopes are commonly 

used in the confocal position, but confocal chromatic sensors are not. Thus, a potential 

modification to the use of a CCS is to measure a surface in a confocal configuration  (see Figure 

Figure 5.8: A simple schematic of a chromatic 
confocal sensor. White light is collimated and then 

focused by a chromatically aberrated lens. Different 
colors of light focus in different focal planes. A 

reflective surface in a given focal plane will cause 
the associated color to return through the sensor 
with high signal while other colors diverge and 

return with low signal. 
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5.9). This slight modification to a CCS lays the groundwork for the chromatic local curvature 

sensor (CLCS). 

5.6 Chromatic Local Curvature Sensor 

Using the CCS in a confocal configuration without further modifications will result in the 

color of light that focuses 

at a point concentric with 

the surface under test 

returning through the CCS 

to the spectrometer with 

high signal (i.e. if the 

surface is concentric with 

the green focus, then green light will be measured). A confocal configuration then has little 

difference from a cateye configuration, so long as the surface being measured is spherical. 

However, no mirror is perfectly spherical though. What this means is that the spectrometer won’t 

just read a single color with high signal. Rather a spectrometer will read a small range of colors 

where the peak color (wavelength) is associated with the best fit sphere (see Figure 5.10). While 

Figure 5.9: Confocal configuration with a chromatic confocal sensor. 

Figure 5.10: Two representative signals from different measurements. The cateye 
configuration yields a sharp peak at 550 nm. The confocal configuration also 

peaks at 550 nm, but due to irregularities in the spherical surface the signal will 
be broadened slightly. 
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knowing the best fit sphere of a surface is useful and important, manufacturers may be more 

interested in how spherical a surface is. They want to know what the error from a sphere is. Thus, 

more significant modifications are required to make this system work.  

A Zemax model was created for a multiple exposure method (see Figure 5.11). Light from 

a monochrometer (or spectrally filtered white light) enters the system from the left. The white light 

is spectrally filtered, and then passes through a 50/50 beam splitter. A chromatic lens focuses each 

of the wavelengths at a different focal plane. Light then propagates to the optic being measured 

(perhaps an aspheric surface), reflects, and returns to the chromatic lens. The beam splitter then 

sends the light to an achromatic lens, which focuses the light onto a pinhole. Wavelengths that 

Figure 5.11: A chromatic local curvature sensor. Spectrally filtered light is focused by a chromatic lens, reflects 
from an aspheric surface, passes through the chromatic lens again, reflects from a beam splitter, focuses by an 

achromatic lens, is spatially filtered by a pinhole, is collimated by another achromatic lens imaging the pupil onto a 
CMOS sensor where a series of time separated pupil images are formed. The chromatic focal shift allows for local 

curvatures to be measured with peak to valley changes in distance from the center of curvature of +/- 2.5 mm. 
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were not confocal at the various locations across the pupil are significantly filtered by the pinhole. 

The spatially filtered beam then propagates to another achromatic lens, which collimates the light 

and forms a pupil image on a CMOS sensor. 

In the Zemax model, the chromatic lens is a 2” diameter F/4 lens with diffraction limited 

performance at each individual visible wavelength. The chromatic change in focus is +/- 2.5 mm 

centered near 550 nm wavelength. An F/2 paraboloidal mirror 112 mm in diameter is tested, which 

has an aspheric departure from the base radius of 0.02 mm. The achromatic lens is similarly F/4, 

but diffraction limited for the full visible spectrum. The pinhole size chosen was 50 μm. This is 

large enough to ensure diffraction from the edges of the pinhole do not affect the measurement, 

but small enough to ensure that non-confocal light is filtered out. A scaled down version of the 

first achromatic lens is used to then collimate the light, which is then incident upon the CMOS 

sensor (multiple wavelengths are shown simultaneously in Figure 5.12). Note, an achromatic lens 

may not be the best candidate for forming pupil images since imaging is occurring through the 

chromatic lens. Thus, an alternative 

chromatically aberrated lens is necessary so 

that all the pupil images are in focus at the 

same plane. 

A single-shot method is also a 

possibility for the CLCS, however this 

requires the use of a diffraction grating and 

designating specific regions of a CMOS 

sensor to be associated with a specific 
Figure 5.12: Spot diagrams on the CMOS sensor. The 

separate wavelengths are compiled from separate 
exposures, clearly visible in annular rings. 
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wavelength range. Spectral blurring would need to be carefully considered. Yet, with a single-shot 

method, measurements could be obtained more quickly. Variations due to air motion or shape 

change in a deformable mirror could potentially be measured. 

For the multiple exposure approach, if the CMOS sensor ran at 100 FPS then 100 

wavelength bands could be measured each second. In interferometry, extra time can cause 

vibrations to corrupt the phase measurement of a surface, which is why single-shot measurements 

are so powerful. For the CLCS, there is no phase measurement, no phase unwrapping, etc. 

Therefore, actively changing surfaces may not be measurable, but there does not appear to be the 

same negativities for the CLCS as for interferometry by taking multiple exposures for a surface 

measurement. 

There is one subtlety to this measurement that should be explored to gain a better 

appreciation for the complexity of this sensor. Aligning the optic under test to the CLCS may prove 

to be very challenging because of the implementation of a 

pinhole at the focus of a lens. A small tilt in the test mirror 

of 0.2° will walk the beam completely off a 50 μm pinhole. 

Thus, either the position of the pinhole should be variable, 

or the test mirror needs to be aligned with high precision 

(~0.001°). If the pinhole position is variable, the spot 

position should be measurable. Thus, a custom beam splitter, 

similar to a Shack cube [46], should be implemented, except 

each surface should have curvature such that the confocal 

white light is not dispersed. In this manner a CMOS sensor 

Figure 5.13: Concentric beam splitter 
introduced into beam path so a CMOS 
sensor can be used to centroid the spot. 

Then the pinhole position can be 
automatically adjusted to assist in 

alignment.  
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could be placed in the separate light path to get the centroid of the focus, and the pinhole position 

could be automatically adjusted for correct alignment (see Figure 5.13).  

The CLCS has a great potential to open the doors to rapid precision freeform optics 

metrology. Like deflectometry, there is no need for implementing special optics for different 

aspheric surfaces. Whether the optic under test is axially symmetric, off-axis, near spherical, or 

highly aspheric, a chromatic local curvature sensor may be the universal metrology instrument 

required to make these optics of the future possible. And if an optic is measurable, then the door 

for manufacturing is opened. 

5.7 Conclusion 

This chapter has been a brief discussion of various null metrology techniques used for a 

variety of optical components. Understanding the pyramid wavefront sensor helps in better 

understanding the Solar wavefront sensor of Chapter 4. The Fizeau sub-aperture test revealed how 

highly aspheric surfaces can be measured using basic interferometry techniques. Additionally, a 

transmission test for a gullwing lens was discussed to show it is possible to measure such an optic 

without sub-aperture stitching. Note, this is relevant to the mobile phone industry where gullwing 

lenses are a staple. Current metrology methods involve sub-aperture stitching techniques, thus not 

every lens is measured. A rapid full aperture test would make it possible to measure every lens, 

and thus obtain even tighter tolerances. Tighter tolerances that will be necessary as cellphone 

manufactures push towards better cameras. 

A modern metrology system, the confocal chromatic sensor (CCS), was introduced as a 

primer for a new concept metrology system, the chromatic local curvature sensor (CLCS). The 

CLCS makes it possible to perform full aperture tests of aspheric elements. The conceptual system 
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shown in this chapter can measure an F/2 paraboloidal mirror without null optics. Highly aspheric 

surfaces can be measured if the chromatic change in focus becomes larger. Though each 

wavelength should still obtain a diffraction limited spot, which is challenging with a large 

chromatic change in focus. Further developments of the CLCS could lead to rapid high precision 

metrology of freeform surfaces, even freeform surfaces with significant peak to valley variations 

in shape. 
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CHAPTER 6 :  TELESCOPE OPTICAL DESIGNS 

6.1 Introduction 

This chapter is different from any of the previous chapters in that it is a compilation of 

optical designs for telescopes with different applications in mind. Several of the designs build upon 

the heritage of other telescope designs and modern telescopes that have been constructed. The 

design goals of many of the telescopes were based on improvement over previous telescopes with 

the limitation often being the ability to optimize within a specific imaging criterion for a larger 

field of view. Two of the designs presented have previously been published in papers, where 

detailed analyses including some tolerancing, and deeper discussion of scientific applications. The 

focus of this presentation is the nominal optical performance of the designs; thus, these designs do 

not fully represent a manufacturable telescope. A full tolerance analysis of each design would still 

be required, among other things, like mechanical design. Additionally, a new class of telescopes 

is introduced, the double Cassegrain, of which the four mirror 20-m telescope is a variant. 

6.2 Ground Based Wide-field 6.5 m Spectroscopic Telescope 

In the previously mentioned paper, “6.5 m telescope for multi-object spectroscopy over a 

3° field of view”, a detailed description of such a telescope is provided. The design in this paper 

was inspired by a large 6.5 m F/1.25 primary mirror blank with a 1.3 m center hole, manufactured 

by the Mirror Lab. The use of this mirror had not been designated when it was initially casted, thus 

potential applications were explored. The goal for this design was to obtain a wide field, 3.0° field 

of view for multi-object spectroscopy. The ideal focal ratio for optimal fiber optic coupling 

https://www.osapublishing.org/ao/abstract.cfm?uri=ao-59-22-g154
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-59-22-g154
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efficiency is near F/3.7. Thus, the design was optimized for this focal ratio. In the published paper 

there are few details on the design process. Herein is a more detailed description of the 

requirements in the merit function, such as the size of the elements, locations of elements, and the 

field sampling necessary for high order aspheres. A unique 1.56 m gull-wing lens was required to 

make this design possible. Lenses of this nature and size have been previously manufactured and 

implemented into telescopes [47]. 

The most challenging aspect of the design was fitting the 3.0° F/3.7 focus through the 1.3 

m center hole. The minimum size of the field occurs near the focus, which is 1.26 m in diameter. 

Also, no elements were allowed inside the primary center hole due to the greater seismic risks 

associated with such a geometry. Having a fast focus with geometric constraints, a wavelength 

range from 365 nm to 900 nm and a large 3° FOV made it essential for highly aspheric elements 

to be used. 

These are constraints very similar in nature to what cell phone lens designers have enforced 

upon them. A cell phone has very demanding thickness constraints. Thus, the only solution to 

collecting more light for imaging is to make the lens with a very fast focal ratio to improve low 

light performance. Modern cellphones have been able to achieve focal ratios less than 2. 

Additionally, the first surface is usually the stop so that the maximum amount of light can be 

collected. Visible light needs to be imaged for a large field of view. Because of these constraints, 

and many others, cell phone lenses almost always have one or more highly aspheric gullwing 

lenses. Section 5.3 revealed that this telescope design requires a gullwing lens, just like cell phones. 

The main difference of course is the scale. 
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When highly aspheric elements are used, in optimization it is necessary to sample the field 

with a much greater density than when using spherical elements. In many cases, 3-5 field sampling 

points are plenty to ensure an optical design meets the imaging criteria across the FOV (for 

spherical surfaces). Not so when highly aspheric elements are used. A good rule of thumb is to 

have 3 field sampling points plus the number of higher order terms, otherwise different segments 

of the lenses can be optimized for solely one field of view and the intermediate fields are poorly 

optimized. In the spectroscopic telescope design, the aspheric elements went out to 14th order, thus 

there were 6 higher order terms (including conic constant). Using this rule of thumb, at least 9 

sampling points were used, which ensured that the optical performance was well optimized across 

the FOV. Truthfully, this is just for preliminary optical design. The field performance at a higher 

density should be at least evaluated before a final design is settled upon. 

Another constraint of the optical designs of this telescope was the size of the elements used. 

The largest lenses that can be created with high optical quality and a large bandwidth are composed 

of fused silica. The size of fused silica lenses is limited to about 2 m, however at that size the 

elements become quite heavy (one element of such size approaches 1 ton), and structural support 

becomes extra challenging. Thus, the lenses were kept to less than 1.6 m in diameter, perhaps half 

the weight of a 2 m lens. This requirement of smaller apertures caused the lenses to be clustered 

close to the large 1.2 m diameter focus, which drove the optical design space towards a limited 

geometry region. The lenses could not be too close to the 1.3 m center hole. 

Another significant optical design challenge was in the correction for atmospheric 

dispersion. Due to the large size of the elements being used, and the large bandwidth desired, 

traditional rotating prisms were not considered. Additionally, the counterrotating wedged elements 
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such as are used in DESI, limited the optical design space. No, the correction of atmospheric 

dispersion was accomplished by introduction of a prism into the system by lateral motion of 

spherical elements, as originally proposed by Saunders [48]. This increased the size of two of the 

elements, but they were still less than 1.6 m, as desired. The elements used were not both kept to 

a low power as is recommended. Thus, on-axis coma was introduced into the design. To 

compensate for this as well as astigmatism and tilt, the secondary mirror must be laterally displaced 

as well, though by much smaller increments. 

In this manner, multiple configurations were optimized for elevation angles of 40°, 50°, 

70°, and zenith pointing, each for a large 3° field of view over 365 nm to 900 nm. The chief ray 

angles were kept close to normal on a curved image plane so that manufacturing of fiber positions 

would only require the fibers to be normal to the curved surface, rather than at some oblique angles. 

The lenses were kept to less than 1.6 

m in diameter and aspect ratios ≈20 

or less. All lenses were kept at least 

≈2” away from the primary mirror 

(i.e. none inside the central hole). 

With the merit function properly 

setup, and after several global 

searches, a design involving 5 lenses 

was chosen for further optimization. 

A Cassegrain design was chosen to 

keep the overall length of the Figure 6.1: 3D layout of the 3° 6.5-m spectroscopic telescope final 
design. 

 



148 

 

telescope reasonable. Additionally, this would keep the tolerances somewhat loose compared to a 

three-mirror telescope. The final design settled on is shown in Figure 6.1. 

The imaging performance across the field of view from zenith pointing down to 40° 

elevation is 80% of the polychromatic light within 1.2”, or 140 μm diameter. Since this design is 

not diffraction limited, geometric spot diagrams provide a good representation of optical 

performance, shown in Figure 6.2. Spots are shown only along the positive y direction from 0° to 

1.5° for two configurations, zenith pointing and 40° elevation. Preliminary evaluations in Zemax 

showed that exposures could occur over periods of time near 15 minutes before atmospheric 

dispersion has changed enough where adjustments in the lateral motion of the correcting elements 

is required. Thus, changes in distortion by lateral motion of the correcting elements is not required 

during exposures. Note, the max distortion of this design is ~1%. Thus, distortion would need to 

be carefully calibrated. The prescription for this telescope is given in Table 6-1. 

Figure 6.2: Spot diagrams across the field of view for both  zenith pointing and 40° elevation. Note, the 
polychromatic encircled energy is nearly 100% into the 140 μm (1.2 arcsecond) circles shown. 
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6.3 Double Cassegrain 

The Ritchey-Chretien solution for a Cassegrain telescope takes only three input parameters 

(the separation of the mirrors, the back focal distance, and the focal length) and the shapes of the 

mirrors are analytically determined (i.e. the radii of curvature and conic constants). This solution 

can be obtained by using 4th order aberration theory with aspheric wavefront adjustments [52]. 

Obtaining analytical solutions for other telescopes is possible using 4th order aberration theory, but 

it is very challenging once there are more than two powered mirrors. However, if there are still 

only two powered mirrors, but four reflections instead of two, an analytical solution is still 

Table 6-1: Prescription for wide-field 6.5 m spectroscopic telescope when Zenith pointing. Lateral motions of 
surfaces 2, 5-6, and 11-12 are required for atmospheric dispersion correction. 
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possible. The solution to this scenario is called the double Cassegrain telescope. The double 

Cassegrain telescope opens the doorway to a new class of telescopes.  

The double Cassegrain telescope consists of two mirrors of relatively low power. Light 

reflects from the outer ring of the primary mirror to the outer ring of the secondary mirror. It then 

reflects from the inner ring of the primary mirror and then central region of the secondary mirror. 

The primary mirror has one conic constant, and the inner and outer parts of the secondary mirror 

have two different conic constants. The only 

parameters required are the same as for a 

Cassegrain telescope, the separation of the 

mirrors, the back focal distance, and the focal 

length (see Figure 6.3). With three different 

conic surfaces three aberrations can be 

corrected: spherical, coma, and astigmatic 

aberrations. 

In general, the primary is 

hyperboloidal with a large aperture, which 

introduces a lot of negative spherical aberration, as well as some coma and astigmatism. The 

secondary also tends to be hyperboloidal, which introduces an opposite amount of spherical 

aberration, coma, and astigmatism. A slightly converging beam is then incident on the smaller 

central region of the hyperbolic primary, and only a small amount of positive spherical aberration 

is introduced. The central region of the secondary mirror tends to be elliptical, which allows for 

negative spherical aberration to be introduced. Collectively, three different conics allows for 

Figure 6.3: General layout of double Cassegrain 
telescope. Light reflects from both the primary mirror and 
secondary mirror twice. The inner part of the secondary 

mirror has a different conic constant from the outer, 
though the radius of curvature is identical. 
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perfect 4th order correction of three aberrations. With spherical, coma, and astigmatic aberrations 

corrected, the imaging surface is the Petzval surface. Note, this means that if a solution is found 

where the radii of curvature of both mirrors is identical, then the Petzval surface is flat. 

The advantages of the double Cassegrain telescope include a larger field of view, a compact 

geometry, and an alignment procedure like a Cassegrain telescope. The challenges involve more 

complicated baffling, and a large central obscuration. To view the analytical solution to this 

telescope, see Appendix E. 

As a specific example, if a telescope were desired where the separation of the mirrors is 

100 mm, the back focal distance is 125 mm, the focal length is 1000 mm, and the focal ratio is F/7. 

A Ritchey-Chretien telescope would only be diffraction limited in the visible spectrum over a 0.3° 

FOV, and a Double-Cassegrain telescope would be diffraction limited in the visible spectrum over 

Figure 6.4: A 140 mm Ritchey-Chretien telescope design (left) and a Double-Cassegrain telescope design (right) 
both with the same mirror separation, back focal distance, and focal length. The field of view by area is more than 

10 times as much for the Double-Cassegrain. 
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a 1.0° FOV, both with curved focal surfaces. Additionally, the Cassegrain telescope has steeper 

curvatures to fit within the same geometry, thus there is tight tolerancing (see Figure 6.4). 

The Double-Cassegrain telescope can serve as a starting point for a wide variety of 

telescope designs. Faster focal ratios are possible while retaining diffraction limited imaging if 

higher order even aspheric terms are implemented during optimization. The real limitation is the 

necessity for baffling. While the secondary mirror and baffling of a Ritchey-Chretien Cassegrain 

telescope can block <10% of the incoming light, the Double-Cassegrain telescope must block 

>40% of the incoming light or straylight will degrade the imaging. As a result, the diffraction-

limited resolution tends to be worse and the contrast of the MTF at high spatial frequencies is 

reduced. Nevertheless, large fields of view are readily attainable. 

Other adjustments to the Double-Cassegrain telescope include variation of the radii of 

curvature of the inner primary and secondary surfaces, which can allow for faster and more 

compact geometries. Additionally, the separation of mirrors can be varied to obtain interesting 

geometries where central obscuration can be reduced, and baffling can be simplified. Of course, 

Figure 6.5: A Gregorian-Cassegrain variant of the Double-Cassegrain telescope for a 2.5 m diffraction limited UV 
telescope with a 1.0° FOV (left). The baffling blocks about 30% of the incoming light (right). Note, the Petzval 

surface is flat. 
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the alignment is no longer like a Cassegrain telescope at that point. Nevertheless, new axially 

symmetric telescope designs are possible beginning with the Double-Cassegrain solution. 

A few examples illustrate the power of a four-reflection telescope. A Gregorian-Cassegrain 

variant makes it possible to create a 2.5-M F/9.0 diffraction-limited UV (360 nm) space telescope 

with a wide 1.0° field of view. Additionally, the baffling blocks only 30% of the incoming light 

(see Figure 6.5). 

Another variant retains the fixed separation of the primary and secondary mirrors but varies 

the radii of curvature of the inner surfaces as well as the even aspheric terms. About 56% of the 

light is obscured, but the 8.4 m telescope focuses at F/9.0 for a 5.0° FOV with 80% of the encircled 

energy at 550 nm into <0.4 arcseconds. The telescope is capable of being perfectly baffles, though 

this is the cause for the large central obscuration (see Figure 6.6). 

Figure 6.6: 5.0° 8.4 m double Cassegrain telescope (left). The telescope is fully baffled, admitting only light 
within +/- 2.5° (right). 
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6.4 Four Mirror 20-m Space Telescope with Diffraction Limited 1.0° FOV 

In the paper “A 20 m wide-field diffraction-limited telescope”, published by Phil. Trans A, 

a telescope design is introduced with applications as a space telescope or potentially a Moon 

telescope near an outpost on the Moon. The paper, written by Eads and Angel, provides greater 

details on the potential applications of such a telescope [53]. This telescope is another four-

reflection telescope, though all four mirrors are separated, and the design is closer in nature to a 

Cassegrain-Mersenne rather than a double Cassegrain. Contained within this section is a deeper 

discussion of the design process for this telescope, and the motivation for the design goals. Due to 

the discussion of similar content, there is some overlap between this section and the cited paper. 

Modern telescopes are moving towards an improvement over the Hubble Space Telescope 

(HST) in one of two ways. Telescopes are either moving to a larger field of view with the same 

resolution (as in the Roman Space Telescope [54]) or they are moving toward a larger aperture 

with higher resolution (as in LUVOIR [55]). No modern telescopes are seeking to improve upon 

both in a significant manner. Thus, it is of interest to push the limits of modern telescopes by 

increasing both the field of view and the diffraction limited imaging. The Hubble Space telescope 

has a field of view of several arcminutes. The goal of the proposed telescope design was to increase 

this field of view to 60 arcminutes. Additionally, a diffraction limited resolution of ~0.01” would 

improve upon Hubble by nearly an order of magnitude, thus a 20-m primary mirror aperture was 

chosen. 

If the field of view is a few arcminutes, classical solutions to such a large telescope involve 

3-mirror or 4-mirror anastigmats [56,57]. With modern lens design tools, it is possible to take one 

of these classical designs and push it towards a more powerful design, where the limitations for 

https://royalsocietypublishing.org/doi/full/10.1098/rsta.2020.0141
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performance are often geometric 

constraints, such is vignetting. Due to 

the desire for a pupil image in the 

system, where wavefront errors from 

the primary mirror could be corrected 

for a wide field, a 4-mirror design was 

investigated with a form similar to 

Sasián’s [58], but allowing for all 

mirrors to be aspheric out to the 14th 

order. 

A few additional design goals 

were established to push the design 

towards a solution that was fully baffled, had small vignetting, worked at F/4, and operated from 

UV through IR. The goal of a focal ratio greater than or equal to F/4 was so that the image could 

be adequately sampled at 1μm wavelength with available HgCdTe detectors with 10μm pixels. 

Additionally, working at a faster focal ratio of F/4 keeps the detector size smaller for a large 1.0° 

field, and reduces the vignetting for large off-axis field angles. 

The optical design settled upon is shown in Figure 6.7. The path of rays is such that the 

primary and secondary mirrors form a cassegrain telescope that is poorly corrected. The size of 

the focus is such that it is smaller than the central obscuration of the pupil image formed on the 

quaternary. Also, locating M4 at the cassegrain focus made it possible to minimize the size of M4 

so that it did not cause vignetting of rays reflected from the primary mirror. The ratio of central 

Figure 6.7: Optical design of a 20-m telescope with a 1° FOV. 
Baffles are put in place to show the simplicity and to confirm 

stray-light performance of the telescope. 
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hole size of M4 relative to the outer diameter could not exceed the ratio of central obscuration of 

the primary relative to the primary diameter. 

After the cassegrain focus, light reflects from M3 and a pupil image is then formed on M4. 

Light then comes to a focus through a hole in M3. One issue with this design is the direct light 

path from M2 to the focus. Thus, a baffle between M3 and M4 is necessary to block light along 

this straylight path. This placement is unfortunate, since it causes off-axis field angles to have three 

additional central obscurations. Fortunately, these obscurations do not amount to very much (see 

Figure 6.8). 

The on-axis central obscuration causes 9% of the light to be removed from the pupil while 

off-axis angles get no worse than 22% of the light removed from the pupil. This does have an 

effect on the PSFs for off-axis angles, but it is not so great that the strehl ratio is significantly 

affected. In Figure 6.9, the PSFs for the telescope across the field of view and for different 

wavelengths are provided. The 250 nm and 500 nm wavelengths would be imaged onto a silicon 

detector and the HgCdTe detector would be used for the 1 μm and above wavelengths, both of 

which have predicted future sized pixels. The performance at 500 nm out to nearly +/- 20’ is above 

80% strehl, which is 10 times the diffraction limited field of LUVOIR at 500 nm (by solid angle). 

Figure 6.8: Central obscuration of pupil versus field angle. On-axis has 91% of the light transmitted to the image 
plane while large field angles have less due to baffling (78% at the edge of the field). 
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The straylight performance of this telescope is nearly perfect. The baffles shown in Figure 

6.7 are modelled as perfectly absorbing surfaces (in a real telescope, they would be made with a 

series of concentric rings). Using these baffles, a reverse ray trace was performed from the image 

plane. The source was the size of the detector, and angles varied out to +/-90° for the initial trace. 

A very large detector was placed in front of the telescope to determine what rays were able to make 

it out of the telescope. No rays were detected outside +/- 0.5° angle of incidence upon the detector. 

The converse of this ray trace must also then be true. Any rays traced from the sky towards the 

telescope outside of +/- 0.5° field angle cannot make it to the detector plane. Thus, the telescope 

is well baffled. The resulting relative radiant intensity of this reverse ray trace is provided in Figure 

Figure 6.9: PSFs for the 20-m telescope across the field of view for various wavelengths. The strehl ratio for each 
PSF is provided below each. Contour lines are spaced at 10% intervals from 5% up to 95%. Diffraction limited 

performance is obtained for 250 nm out to +/- 10’, and 500 nm out to +/-20’. 1 μm wavelength is not quite 
diffraction limited at the edge of the field, but still has a high strehl ratio of 49%. Two types of imagers are 

presented where the silicon imager has 1 μm pixels and the HgCdTe imager has 2.5 μm pixels. Both are guesses at 
what may be possible in a few decades. Due to noise limitations, multiple exposures would be required, a method 

used by cell phones, which often use ~1 μm pixels. 
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6.10. It is notable that the radiant intensity follows the expected form of 91% on-axis and 78% off-

axis (from Figure 6.8). 

In conclusion, this 20-m 

telescope forms a basis for further 

investigation for the manufacture of a 

large space or lunar-based telescope. 

The optical performance shows a 

resolution gain by a factor of 8 

compared to Hubble, also with a 

larger field of view. Some discussion 

of tolerancing and methods for 

making such a telescope, as well as 

placement on the moon, are provided in “A 20 m wide-field diffraction-limited telescope” [53]. 

6.5 Oxygen Spectroscopic Telescope with 300,000 Resolution 

Earth-like exoplanets are of great scientific and public interest. Whether a planet has 

primitive life is indicated by the presence of oxygen in the atmosphere made by that life. Thus, life 

on exoplanets can be identified by observing the oxygen absorption spectrum from distant stars 

that pass through a transiting exoplanet. 

It is possible to identify these spectral characteristics of an exoplanet using a large 

telescope. However, it may be cheaper and more powerful to use a collection of small telescopes, 

~1 m in diameter. The E-ELT has a diameter of 39 m, which has a collection area of 1100 m2 [49]. 

Using a large array of 1m telescopes would require ~1,500 telescopes to have a similar collection 

Figure 6.10: Reverse ray trace from the image plane of the telescope. 
Rays outside the desired +/- 0.5° FOV do not make it to the sky, 

therefore rays outside this FOV do not make it from the sky to the 
image plane. Interestingly, the relative radiant intensity follows the 
same profile as shown in the pupil images. On-axis angles transmit 
with ~90% efficiency and edge of the field angles transmit with <80 

efficiency. 
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area. To analyze the spectrum of light passing through an exoplanet, each telescope would image 

the associated star into a fiber, and bundles of fibers would feed to custom Littrow spectrometers. 

Multiple spectrometers would be necessary to accomplish the task, about five. 

There is a trade space to be explored where light gathering power is balanced against the 

need for adaptive optics. If smaller 0.5 m telescopes are used, then only fast tip-tilt is needed to 

keep a high strehl star image centered on the fiber. A tip-tilt mirror would be used to keep the 

brightest speckle centered on the fiber so that the fiber coupling efficiency is maximized [50]. 

However, four times as many telescopes and spectrometers are needed compared to a 1.0-m 

telescope. Additionally, the light gathering power of a single 0.5 m telescope may make it 

necessary for ~1-hour exposures for a magnitude 12.5 star. There is a trick that could be used to 

make a 0.5 m telescope possible though. It is necessary to understand the workings of the 

spectrometer before this trick can be adequately explained. 

A Littrow spectrometer uses light emitting from a line of fibers placed at the focus of an 

achromatic lens. This light is thus collimated by the said lens. Placing a tilted reflective echelle 

grating in the collimated space will cause the spectrum to reflect with angular separation, in 

perhaps the vertical direction. This spectrally separated light then returns through the achromatic 

lens and comes to a focus in the same plane where the fibers are located. At this plane a CCD or 

CMOS sensor is placed to obtain a measurement of the split spectrum. The trick for using a 0.5 m 

fiber telescope involves the use of a CCD. 

If a CCD were used, then each row of pixels could be associated with a certain wavelength 

of light coming from multiple fibers running down an entrance slit. Instead of reading one pixel, 

the charge from an entire row could be accumulated before readout, giving plenty of a 
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photoelectrons to get above the noise. The issue with this trick is getting all the fibers from different 

telescopes aligned just right. This can be challenging because the use of an echelle grating produces 

smile distortion at off-axis positions. 

Yuan et. al state that smile distortion for a diffraction grating can be derived from the 

grating equation. It is geometric distortion that should be corrected in the design phase [51]. Since 

a straight line of fibers produces a parabolically curved spectrum, the converse is true, and this 

distortion can be corrected by having the fibers positioned in the opposite curve. The tolerancing 

of the fiber positions is rather tight, within a few microns. Though according to Yuan et. al this is 

desirable to keep the data reduction simple. Thus, a CCD could be used to read out one row of data 

at a time, and 0.5 m telescopes are made practical. 

Reading out data in a photon starved scenario is possible, but perhaps not ideal. Therefore, 

a 1-m fiber telescope may be the better option. However, a deformable mirror and adaptive optics 

wavefront correction is then necessary to obtain a high strehl ratio, and an associated high fiber 

coupling efficiency. The telescope was chosen to have an F/5 focal ratio to couple well into the 

fiber. At 765 nm wavelength (the oxygen wavelength) an F/5 focal ratio produces an airy disk 

(width across first dark ring) that is about 9 microns in diameter. Fibers 9 micron in diameter are 

commercially available, which is why F/5 was chosen. These fibers also have claddings around 

125 microns in diameter, which limits the number of fiber feeds to a given spectrometer. Another 

advantage to F/5 is that a prime focus telescope can be used without the need of other powered 

mirrors and will still obtain nearly diffraction limited imaging for a +/- 1 arcminute field, all that 

is necessary for finding. Additionally, an array of 1-m telescopes could be mounted on the same 
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structure, and the balance of the structure is reasonable with the adaptive optics and fiber located 

~5 meters above the primary.  

One other desirable characteristic of 0.5 or 1.0 m telescopes is to make them robust so that 

a dome is not necessary to protect the telescope, and to integrate a fast tip-tilt mirror to compensate 

for wind rocking the telescope. A large portion of the cost of a telescope is then removed. This 

could require an optically non-distorting glass window above the fiber across the whole entrance 

aperture to protect the mirror coating. However, the additional weight at the top of the telescope 

causes structural challenges. We have explored the use of a back silvered mangin primary mirror 

instead. The coating would be well protected on the back of the primary mirror and based on solar 

experience, would last many decades. Since the focal ratio is only F/5, chromatic change in focus 

is small. 

The design of the telescope is thus a paraboloidal mangin mirror with a Newtonian fold 

mirror, and subsequent fold mirrors for minimizing geometry.  A deformable mirror for the 1.0 m 

telescope could be a Newtonian fold mirror, or a subsequent mirror. A spectral filter could then be 

used to transmit the oxygen band (from 759 nm to 771 nm) and reflect all other wavelengths to a 

wavefront sensor for determining deformable mirror shape changes. This wavefront sensor may 

only need to be a pyramid wavefront 

sensor due to the small 1-m size of the 

telescope. The mangin mirror could be 

cheaply made by spin casting (on 

perhaps liquid tin), and then figuring 

the final shape on one or both surfaces. 
Figure 6.11: Shape error from spin casting a 1-m paraboloidal 

mangin mirror working at F/5, to the median shape. 
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For an F/5 1.0 m telescope spun to a median radius of curvature this would require the front and 

back surfaces to have ~9 microns PV polished out (see Figure 6.11). 

The prescription for the telescope is provided in Table 6-2. The Newtonian fold mirror 

removes the central 6.5” of the incoming light, a small 2.6% loss of light. A second fold mirror 

helps to minimize geometry while also providing the means for wavefront correction as a 

deformable mirror. A final dichroic mirror transmits the oxygen spectrum and reflects all other 

Table 6-2: Prescription for mangin mirror paraboloidal fiber telescope for oxygen spectroscopy. 

Figure 6.12 Layout of mangin fiber telescope with a 2 arcminute FOV working at F/5 from 0.4 – 1.0 micron 
wavelength. The Newtonian fold mirror is followed by a second fold mirror, which could be deformable. This is not 

located at a pupil position; thus, atmospheric correction only occurs on-axis. A dichroic mirror transmits the 
oxygen spectrum to a fiber and reflects the remaining light onto a CMOS sensor or wavefront sensor. 
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wavelengths to a wavefront sensor or CMOS for tip-tilt. Figure 6.12 shows the system layout in 

detail. 

This telescope design reveals a way to make a cheap, yet powerful array of telescopes for 

spectroscopic applications. Additionally, this design is optimized for high efficiency throughput 

to the spectrometer. At F/5 the numerical aperture (NA) of the focused beam is 0.1, below the 

maximum NA of most fibers. Also, since the fiber is sized similar to the airy disk, up to 84% of 

the collected light is coupled into the fiber. After transmission through a multi-mode fiber, the 

light will have a larger NA, thus the lens in the spectrometer for imaging the fibers would work at 

F/4 to ensure collection of all the light. 

The spectrometer takes fibers from an array of Mangin Newtonian telescopes. The goal of 

the spectrometer design was to search for A band oxygen absorption (759 nm to 771 nm) with a 

resolving power of 300,000 to get high signal to noise ratio. The Littrow spectrograph uses a 400 

mm focal length achromatic lens with a large field of view. It collimates light from the fiber inputs 

onto a large 100 mm by 400 mm echelle grating with 74° blaze angle (see Figure 6.13). The echelle 

grating used at 74° angle of incidence was modelled in Zemax with 78.5 lines/mm and using 32nd 

order.  

Figure 6.13: Littrow spectrometer with fiber input at the focus of an achromatic lens, which collimates the light onto 
a reflective echelle grating. Returning light is spectrally separated and images onto an array of sensors. 
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This diffraction grating 

dramatically separates the oxygen 

spectrum across 44 mm at the 

focus of the achromatic lens, with 

each PSF approximately 7.4 μm 

in diameter. Putting in 765 nm 

and 765.0026 nm results in the 

cross section of the PSFs shown 

in Figure 6.14. The two PSFs are separated such that their minima are overlapping, thus a 

resolution of 300,000 is obtained. If resolution is instead defined by the Rayleigh criterion, then 

the resolving power is 600,000. The CCD or CMOS sensor used needs perhaps 3 μm pixels to well 

sample the diffraction limited spots. 

The horizontal dimension of the fiber line is 48 mm across, and the fibers follow a nearly 

parabolic curve, where the edges of the line are displaced by 5 mm relative to the center (i.e. the 

sag of the curve). This produces spectra that are all dispersed in a similar manner (i.e. minimizing 

smile distortion). The reflection from the 

echelon grating brings symmetry into the 

lens, which significantly reduces any 

distortion in the lens, but due to the grating 

there is still some residual pincushion 

distortion. The blue part of the spectrum is 

shifted slightly up and outward at the edges 

Figure 6.14: Cross section of two point spread functions overlapped. A 
small spectral separation of 0.0026 nm results in a complete separation 
of the airy disks, i.e. 300,000 resolution. Note, if resolution is defined by 
the peak of one PSF located at the minimum of the other PSF, then the 

resolution is increased to 600,000. 

Figure 6.15: Axial view of Littrow spectrometer. Fiber inputs 
are in black, the returning beams are shown according to 

their color in the oxygen spectrum. CMOS or CCD sensors 
would be tiled in an array on the image surface that 

minimizes distortion effects. 
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of the field and the red part of the spectrum is shifted slightly down and outward at the edges of 

the field, both about 75 μm (see Figure 6.15). This slightly distorted spectrum can be remedied by 

placing an array of sensors across the image plane where sensors at the edge of the field are slightly 

clocked. By combination of this spectrometer with fiber feeds from hundreds of telescopes, and 

by using multiple spectrometers, a high spectral resolution of oxygen wavelengths from distant 

stars is possible. 

In particular, this design shows that by using a series of Newtonian Mangin telescopes that 

feed star images into fibers at the diffraction limit, in the spectral region from 759 nm to 771 nm 

can be analyzed with 300,000 resolution. If resolution is defined by the Rayleigh criterion, then 

the oxygen spectrum is resolved with 600,000 resolution. If fibers could be position in the imaging 

plane within 125 μm of each other, then over 400 telescopes could feed fibers to a single Littrow 

spectrometer. To obtain the light gathering power of an ELT about 1,500 1.0-m aperture telescopes 

would be required, though adaptive optics for each telescope would be required. If smaller 0.5 m 

telescopes were used then only a fast tip tilt mirror would be required, but the effects of distortion 

would need to be well-corrected so that each wavelength could be read out in a row. Whichever 

variant is used, the telescope array as discussed in this section could inexpensively open the doors 

to direct observation of exoplanet spectra to determine if a given exoplanet has life produced 

oxygen. 

6.6 Conclusion 

This chapter has been a compilation of several optical designs for telescopes. Two of the 

designs have powerful spectroscopic applications from Earth. The first design would require a 

deeper investigation into the manufacture of large gull-wing lenses but could prove to be a useful 
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addition for dark energy characterization. The second design is an inexpensive option for moving 

towards Earth-like exoplanet identification by use of a large array of small 1-m telescopes each 

feeding fibers to Littrow spectrometers. The third design has the potential to be a next generation 

UVOIR telescope with a large field of view and a high resolution (8 times better than Hubble). 

Additionally, it could serve as a spectroscopic telescope, depending on the carousel of instruments 

chosen. 

Optical design of modern telescopes has been greatly enhanced by the new tools and 

software that have been placed into the hands of the optical designer. A merit function can be 

defined to show improvement for any number of design parameters, allowing the discovery of 

designs that could not be found years ago. These new designs often rely upon the heritage left by 

optical designers of the past. More specialized and even free-form optics may soon become the 

norm, only made possible because of the progress made by scientists who have gone before. 
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CONCLUSIONS 

This dissertation has been a presentation of optical and metrology designs for telescopes 

and solar energy. While seemingly unrelated, both areas rely upon the same principles of optical 

sciences: geometric optics, aberration theory, diffraction theory, interferometry, laser propagation, 

etc. The main difference between the two areas is the precision and accuracy necessary to fulfill 

system requirements. 

For solar optics, <1 mrad RMS accuracy is all that is desired. The angular size of the sun 

is 0.5° or 8.7 mrad. Thus, the solar disk can be blurred to a size of about 10.7 mrad, where 

concentration is reduced by one third. Even at this level, solar energy can still be well used for 

electricity or heat generation (or hydrogen fuel generation). Because of this reduced accuracy 

requirement, the metrology for solar optics is either non-existent, or low in accuracy as well. It is 

proposed that only 0.2 mrad RMS metrology accuracy is required to obtain surface errors within 

1 mrad RMS (at least for low-order surface errors). An experiment using a Laser Hartmann 

metrology system was herein presented, which showed an inexpensive heliostat metrology system 

that obtained the desired measurement accuracy for an actively focusing heliostat. 

In contrast, telescope metrology systems require ~3 orders of magnitude higher accuracy 

and precision. Telescope optics are regularly finished to <20 nm RMS surface error. This is 

accomplished using expensive and specialized metrology systems, such as interferometers or 

tracking lasers. The Laser Hartmann metrology system for a deformable heliostat cost <$1,000 in 

equipment. Telescope metrology systems easily break $100K. Solar optics solely care about 

getting the Sun’s light within a certain geometry. Telescopes have a similar goal, but also desire 
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to form detailed images of stars and exoplanets. While diffraction theory is applicable to solar 

optics (e.g. mid-spatial frequency errors can scatter and diffract light into higher orders), telescopes 

are much more concerned with the effects of diffraction (e.g. the point spread function of a 

telescope depends on the Fourier transform of the entrance pupil of the telescope and the system 

aberrations). 

Optical design and metrology can be applied fluidly between the two areas of solar optics 

and telescopes. There are additional complications to telescopes that require greater care in design 

and manufacturing, but generally there is a large level of funds that make it possible to achieve 

performance goals. In contrast, solar optics do not require so much precision in manufacturing, but 

they are greatly limited by cost. Competing with fossil fuels is challenging. Thus, there is a high 

level of creativity and care when designing a solar energy system. Achieving <1 mrad RMS errors 

for <$1/W is not easy. 

Regardless of the area of consideration, the breadth of the optical sciences allows for its 

application to many different situations. When the goal is to define and achieve system 

requirements, the way that light interacts with objects can be predicted in different ways: Ray 

tracing, diffraction theory, Maxwell’s equations, etc. Part of defining and achieving system 

requirements is to know which theory should be used for a given scenario. This is part of what it 

means for an optical scientist to “Know thy requirements.” 
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 : DERIVATION OF THE IDEAL HELIOSTAT SHAPE  

This appendix shows in detail the calculations that led to the surface coefficients given in 

Chapter 3. Two approaches are given for the derivation of the tangential and sagittal radii of 

curvature: Aberration theory and the Coddington equations. Following the derivation of radii of 

curvature is the derivation of shape coefficients for an alt-azimuth mounted heliostat mirror. 

 4th Order Derivation 

According to 4th order aberration theory, there are five possible aberrations for an optical 

system: Spherical (𝑊𝑊040), Coma ( 𝑊𝑊131), Astigmatism (𝑊𝑊222), Field Curvature (𝑊𝑊220), and 

Distortion (𝑊𝑊311) (see section 1.4). Of these aberrations, only Spherical, Coma, and Astigmatism 

contribute to a spherical surface mirror. According to the Seidel coefficient formulas, the 

aberrations are as follows: 𝑊𝑊040 = 1
8
𝑆𝑆𝐼𝐼 = −𝑦𝑦3𝑦𝑦4/32, 𝑊𝑊131 = 1

2
𝑆𝑆𝐼𝐼𝐼𝐼 = −𝑢𝑢�𝑦𝑦2𝑦𝑦3/4, 𝑊𝑊222 =

1
2
𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 = −𝑢𝑢�2𝑦𝑦𝑦𝑦2/2, 𝑊𝑊220 = 0, and 𝑊𝑊311 = 0  [13]. In these equations 𝑦𝑦 is the surface power, 𝑦𝑦 

is the marginal ray height (or aperture radius), and 𝑢𝑢� is the chief ray slope (or optical angle). 

If the mirror shape is chosen to be a conic surface, then it is possible to cancel spherical 

aberration. The aspheric contribution of a mirror to the Seidel equations is 𝛿𝛿𝑆𝑆𝐼𝐼 = 𝑎𝑎, 𝛿𝛿𝑆𝑆𝐼𝐼𝐼𝐼 = 𝑦𝑦�
𝑦𝑦
𝑎𝑎, 

𝛿𝛿𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑦𝑦�
𝑦𝑦
�
2
𝑎𝑎, 𝛿𝛿𝑆𝑆𝐼𝐼𝐼𝐼 = 0, 𝛿𝛿𝑆𝑆𝐼𝐼 = �𝑦𝑦�

𝑦𝑦
�
3
𝑎𝑎, where 𝑎𝑎 = −𝜅𝜅𝑦𝑦3𝑦𝑦4/4, and 𝜅𝜅 is the conic constant [13]. 

Since the heliostat mirror is the stop of the optical system, a change to a conic surface only affects 

the first term (Spherical aberration). If the conic constant 𝜅𝜅 = −1 (i.e. a paraboloidal surface), then 

𝛿𝛿𝑆𝑆𝐼𝐼 = 𝑦𝑦3𝑦𝑦4/4. Thus, 𝛿𝛿𝑊𝑊040 = 𝑦𝑦3𝑦𝑦4/32 and Spherical aberration is perfectly corrected with no 

effect on Coma or Astigmatism. 
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Choosing a parabolic surface, the wavefront error function is 

𝑊𝑊�𝐻𝐻��⃗ , �⃗�𝜌� = 𝑊𝑊131�𝐻𝐻��⃗ ∙ �⃗�𝜌�(�⃗�𝜌 ∙ �⃗�𝜌) + 𝑊𝑊222�𝐻𝐻��⃗ ∙ �⃗�𝜌�
2
, 

which can be altered to  

𝑊𝑊(𝐻𝐻,𝜌𝜌,𝜃𝜃) = −𝑆𝑆�𝜙𝜙2𝑦𝑦3

4
𝐻𝐻𝜌𝜌3 cos 𝜃𝜃 − 𝑆𝑆�2𝜙𝜙𝑦𝑦2

2
𝐻𝐻2𝜌𝜌2 cos2 𝜃𝜃, 

where 𝑦𝑦 is the aperture radius, thus 𝜌𝜌𝑦𝑦 = 𝑆𝑆 = √𝑋𝑋2 + 𝑌𝑌2 . Choose 𝐻𝐻 to be in the tangential plane. 

Thus, 𝑢𝑢�𝐻𝐻 = 𝑢𝑢�𝑠𝑠𝑆𝑆𝑛𝑛 (the optical angle of the Sun), 𝑌𝑌 = 𝑆𝑆 cos 𝜃𝜃. The wavefront error function 

simplifies to 

𝑊𝑊(𝑋𝑋,𝑌𝑌, 𝑆𝑆) = −𝑆𝑆�𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙2𝑟𝑟2𝑌𝑌
4

− 𝑆𝑆�𝑠𝑠𝑠𝑠𝑠𝑠2 𝜙𝜙𝑌𝑌2

2
, 

which depends on the Solar angle in a quadratic manner. The second term, which is ∝ 𝑌𝑌2, is the 

astigmatic term. This astigmatism can be corrected by making an additional aspheric adjustment 

to the surface shape (i.e. an additional wavefront term). 

An increase in the optical path difference (OPD) is associated with a decrease in the surface 

sag. Additionally, a change in the surface sag results in twice the change in OPD, due to the double 

pass nature of reflective surfaces. Therefore, to correct for astigmatism, the change in sag must be  

∆𝑍𝑍 = −𝑆𝑆�𝑠𝑠𝑠𝑠𝑠𝑠2 𝜙𝜙𝑌𝑌2

4
= −𝑆𝑆�𝑠𝑠𝑠𝑠𝑠𝑠2 𝑌𝑌2

2𝑅𝑅
, 

which is half of the astigmatic wavefront error. 

 The sag of the surface becomes 

𝑍𝑍 = 𝑌𝑌2

2𝑅𝑅
(1 − 𝑢𝑢�𝑠𝑠𝑆𝑆𝑛𝑛2 ) + 𝑋𝑋2

2𝑅𝑅
, 

which is a perfect parabola when the Sun is on-axis, as expected. 

One other alteration to the sag is required. Aberration theory is based on the axial distance 

from the vertex being unchanged for different fields of view. In other words, the “z distance” is 

Eq A-1 

Eq A-2 

Eq A-3 

Eq A-4 

Eq A-5 
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unchanged, but the traversed distance at off-axis angles increases (i.e. the hypotenuse, see Fig. 

A-1). This is not the case for heliostats where the distance from the vertex of the mirror to the 

target is unchanged for different angles. Thus, a defocus term needs to be added.  

 

This can be calculated by approximating the required change in focus (see Fig. A-2) where 

∆𝐹𝐹 = 𝐹𝐹 − 𝐹𝐹�1 + 𝑢𝑢�𝑠𝑠𝑆𝑆𝑛𝑛2 ≈ 𝐹𝐹 − 𝐹𝐹 �1 + 𝑆𝑆�𝑠𝑠𝑠𝑠𝑠𝑠2

2
�, 

which reduces to  

∆𝐹𝐹 = −𝑆𝑆�𝑠𝑠𝑠𝑠𝑠𝑠2 𝐹𝐹
2

= −𝑆𝑆�𝑠𝑠𝑠𝑠𝑠𝑠2 𝑅𝑅
4

. 

 For a mirror, the change in focus is equivalent to twice the change in radius, 

∆𝑅𝑅 = 2∆𝐹𝐹 = −𝑆𝑆�𝑠𝑠𝑠𝑠𝑠𝑠2 𝑅𝑅
2

. 

 The change in sag of the mirror can be calculated using this change in radius and the ideal 

sag of the mirror: 

𝑍𝑍 =
𝑆𝑆2

2𝑅𝑅
 

∆𝑍𝑍
∆𝑅𝑅

= −
𝑆𝑆2

2𝑅𝑅2
 

Eq A-6 

Eq A-7 

Eq A-8 

Eq A-9 

Eq A-10 

Fig. A-1: Ray diagram showing the increase in focal 
distance at off-axis angles. 

Fig. A-2: Section of Fig. A-1 showing the required 
change in focus. 
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∆𝑍𝑍 = −
𝑆𝑆2

2𝑅𝑅2
∆𝑅𝑅 =

𝑆𝑆2

2𝑅𝑅2
𝑢𝑢�𝑠𝑠𝑆𝑆𝑛𝑛2 𝑅𝑅

2
=
𝑢𝑢�𝑠𝑠𝑆𝑆𝑛𝑛2 𝑆𝑆2

4𝑅𝑅
 

The addition of Eq A-11 to Eq A-5 provides 

𝑍𝑍 = 𝑌𝑌2

2𝑅𝑅
�1 − 𝑆𝑆�𝑠𝑠𝑠𝑠𝑠𝑠2

2
� + 𝑋𝑋2

2𝑅𝑅
�1 + 𝑆𝑆�𝑠𝑠𝑠𝑠𝑠𝑠2

2
�, 

which is the ideal shape for the heliostat mirror to correct for astigmatism. The tangential and 

sagittal radii of curvature are thus: 

𝑅𝑅𝑑𝑑 = 𝑅𝑅/(1 −
𝑢𝑢�𝑠𝑠𝑆𝑆𝑛𝑛2

2
) 

𝑅𝑅𝑠𝑠 = 𝑅𝑅/(1 +
𝑢𝑢�𝑠𝑠𝑆𝑆𝑛𝑛2

2
) 

Coma is still present when choosing a surface with these radii of curvature. However, the 

amount of coma is significantly reduced at off-axis angles because of the increase of tangential 

radius of curvature at larger angles. In this scenario, coma does not increase linearly with the field 

of view. Rather, it is of a cubic form with no Coma on-axis or at ~80° angle of incidence (from Eq 

A-3): 

𝑊𝑊max(𝑢𝑢�𝑠𝑠𝑆𝑆𝑛𝑛)  = −𝑆𝑆�𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙2𝑦𝑦3

4
= −𝑆𝑆�𝑠𝑠𝑠𝑠𝑠𝑠(1−𝑆𝑆�𝑠𝑠𝑠𝑠𝑠𝑠2 /2)2𝑦𝑦3

𝑅𝑅2
. 

The plot of Eq A-15 shows that the 

maximum wavefront error is ~50 waves 

for an F/27 1.5 m mirror (see Fig. A-3). 

The maximum reflected slope error can be 

calculated by taking the derivative of 𝑊𝑊 

with respect to 𝑌𝑌, then plugging in 𝑦𝑦 to get 

the maximum error. This turns out to be 

Eq A-11 

Eq A-12 

Eq A-13 

Eq A-14 

Eq A-15 

Fig. A-3: Maximum wavefront error with active correction 
of astigmatic aberrations. λ is 550 nm, y is 750 mm, R is 

80000 mm. 
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~0.1 mrad maximum reflected slope error, which is much smaller than the errors introduced by 

bending a flat panel heliostat mirror. 

Note, these equations are technically only valid for “small” angles of incidence. This is 

because 4th order aberration theory, while useful, is based upon the marginal and chief rays, which 

are accurate for only “small” angles. However, the final wavefront error equation (Eq A-15) is 

remarkably accurate. In contrast, the equations for the radii of curvature (Eq A-13 and Eq A-14) 

would introduce significant surface slope error for large angles of incidence. In order to derive 

radii of curvature that work for all angles of incidence, aberration theory is superseded by the 

Coddington equations. 

 Coddington Derivation 

The Coddington equations [13] are designed specifically to model astigmatic contributions 

by a surface. There are two imaging equations for the sagittal and tangential planes: 

𝑛𝑛′

𝑠𝑠′
− 𝑛𝑛

𝑠𝑠
= 𝑛𝑛′ cos�𝐼𝐼′�−𝑛𝑛 cos (𝐼𝐼)

𝑅𝑅𝑠𝑠
, 

𝑛𝑛′ cos2�𝐼𝐼′�
𝑑𝑑′

− 𝑛𝑛 cos2(𝐼𝐼)
𝑑𝑑

= 𝑛𝑛′ cos�𝐼𝐼′�−𝑛𝑛 cos (𝐼𝐼)
𝑅𝑅𝑡𝑡

. 

In these equations, 𝑛𝑛′ is the index of refraction in image space, 𝑛𝑛 is the index of refraction 

in object space, 𝑠𝑠′ is the sagittal image distance, 𝑠𝑠 is the sagittal object distance, 𝑐𝑐′ is the tangential 

image distance, 𝑐𝑐 is the tangential object distance, 𝐼𝐼 is the angle of incidence in object space, 𝐼𝐼′ is 

the angle of exitance in image space, 𝑅𝑅𝑠𝑠 is the sagittal radius of curvature of the surface, and 𝑅𝑅𝑑𝑑 is 

the tangential radius of curvature.  For a heliostat mirror imaging the Sun, 𝑛𝑛′ = −1, 𝑛𝑛 = 1, 𝐼𝐼′ =

−𝐼𝐼, and 𝑠𝑠 = 𝑐𝑐 = ∞. The equations thus reduce to 

Eq A-16 

Eq A-17 

Eq A-18 



174 

 

−1
𝑠𝑠′

= −2cos(𝐼𝐼)
𝑅𝑅𝑠𝑠 

, 

−cos2(𝐼𝐼)
𝑑𝑑′

= −2cos(𝐼𝐼)
𝑅𝑅𝑡𝑡

. 

In these equations, 𝑠𝑠′ is the sagittal focal distance and 𝑐𝑐′ is the tangential focal distance. 

The effective tangential and sagittal radii of curvature can thus be defined as 𝑅𝑅𝑠𝑠,𝑑𝑑𝑒𝑒𝑒𝑒 = 2𝑠𝑠′ and 

𝑅𝑅𝑑𝑑,𝑑𝑑𝑒𝑒𝑒𝑒 = 2𝑐𝑐′, and the effective radii of curvature are calculated as 

𝑅𝑅𝑠𝑠,𝑑𝑑𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑠𝑠/cos (𝐼𝐼), 

𝑅𝑅𝑑𝑑,𝑑𝑑𝑒𝑒𝑒𝑒 = Rt cos(𝐼𝐼). 

In order to have both effective radii of curvature such that the sagittal and tangential focal 

distances are the same, the sagittal and tangential radii of curvature should be chosen such that 

𝑅𝑅𝑠𝑠,𝑑𝑑𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑑𝑑,𝑑𝑑𝑒𝑒𝑒𝑒 = 𝑅𝑅. Thus, 

𝑅𝑅𝑠𝑠 = 𝑅𝑅 cos (𝐼𝐼), 

𝑅𝑅𝑑𝑑 = 𝑅𝑅/cos(𝐼𝐼). 

The effective radii of curvature are changed by the angle of incidence. The actual radii of 

curvature are chosen so that the effect caused by off-axis angles is corrected. Performing a 

polynomial expansion on these equations yields 

𝑅𝑅𝑠𝑠 = 𝑅𝑅 (1 − 𝐼𝐼2

2!
+ 𝐼𝐼4

4!
− 𝐼𝐼6

6!
+ ⋯ ), 

𝑅𝑅𝑑𝑑 = 𝑅𝑅/(1 − 𝐼𝐼2

2!
+ 𝐼𝐼4

4!
− 𝐼𝐼6

6!
+ ⋯ ). 

Removing terms higher than order 2, and applying a reciprocal binomial approximation to 

Eq A-24 yields 

𝑅𝑅𝑠𝑠 ≈ 𝑅𝑅/(1 + 𝐼𝐼2

2
), 

Eq A-19 

Eq A-20 

Eq A-21 

Eq A-22 

Eq A-23 

Eq A-24 

Eq A-25 

Eq A-26 
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𝑅𝑅𝑑𝑑 ≈ 𝑅𝑅/(1 − 𝐼𝐼2

2
). 

If 𝐼𝐼 is replaced by 𝑢𝑢�𝑠𝑠𝑆𝑆𝑛𝑛2  then we recover Eq A-13 and Eq A-14, which validates the use of 

aberration theory. An alternative comparison of 4th order theory and the Coddington equations for 

astigmatism has been previously established [59]. With more exact equations for the desired radii 

of curvature the shape of the mirror can be calculated for an alt-azimuth mounted heliostat. 

 Shape Coefficients for an Alt-Azimuth Mounted Heliostat 

A heliostat is designed to reflect 

sunlight onto a target, which scenario is 

composed of three vectors, the solar vector 

𝑆𝑆, mirror vector 𝑀𝑀��⃗ , and tower vector 𝑇𝑇�⃗  (see 

Fig. A-4). The plane containing all three of 

these vectors is the tangential plane. The 

angle of astigmatism on the surface of the 

heliostat mirror is given by the projection of the solar vector onto the surface of the mirror 

𝑆𝑆𝐶𝐶𝑟𝑟𝑑𝑑𝑗𝑗𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑. 

The orientation of the solar vector is 

essential to calculating the shape of the 

heliostat. The widely accepted equations for 

calculating the solar position were initially 

discovered by Jean Meeus [60]. The NOAA 

solar position calculator is based on these 

Eq A-27 

Fig. A-4: A heliostat focusing sunlight onto a tower. This 
scenario defines three important vectors: the solar vector 𝑆𝑆, 

mirror vector 𝑀𝑀��⃗ , and tower vector 𝑇𝑇�⃗ . Included also is the 
projection of the solar vector onto the surface of the mirror 

𝑆𝑆𝐶𝐶𝑟𝑟𝑑𝑑𝑗𝑗𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑 . 

Fig. A-5 Illustrations showing the azimuth and elevation 
angles. +z is East and +x is North. 
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equations [61]. For increased speed, a MATLAB® function was created to perform these 

calculations (see Appendix B). The solar position is defined by the azimuth and elevation angles 

(see Fig. A-5). The elevation angle is defined as the angle from the nearest horizon point to the 

Sun. The azimuth angle is defined as the clockwise angle from North to the Sun. These angles 

establish a spherical polar coordinate system for the position of the Sun. The solar vector can then 

be defined as 

𝑆𝑆 = (𝑐𝑐𝑆𝑆𝑠𝑠(𝛾𝛾𝐴𝐴) 𝑐𝑐𝑆𝑆𝑠𝑠(𝐸𝐸𝑆𝑆) , 𝑠𝑠𝑖𝑖𝑛𝑛(𝐸𝐸𝑆𝑆) , 𝑠𝑠𝑖𝑖𝑛𝑛(𝛾𝛾𝐴𝐴) 𝑐𝑐𝑆𝑆𝑠𝑠(𝐸𝐸𝑆𝑆)). 

The mirror vector is found by combination of the solar vector and normalized tower vector: 

𝑀𝑀��⃗ = 𝑆𝑆+𝑇𝑇�⃗

�𝑆𝑆+𝑇𝑇�⃗ �
. 

The mirror vector can then be used to calculate the elevation and 

azimuth angles of the heliostat. The initial pointing of the heliostat is 

defined as East. This may seem arbitrary but is chosen because surfaces 

in non-sequential OpticStudio® are initially placed with their optical 

axes pointing along the z-axis. In order to have East, North, and Up all 

pointing along positive axes directions, the z-axis was chosen to point 

East and the x-axis was chosen to point North, leaving the y-axis to point 

Up. Thus, the heliostat azimuth angle 𝜑𝜑 is defined as a counterclockwise rotation about the y-axis 

and the heliostat elevation angle 𝜃𝜃 is defined as a counterclockwise rotation about the local x-axis 

of the heliostat surface. Based on the geometry given in Fig. A-6, 

𝜑𝜑 = atan2 �𝑀𝑀𝑥𝑥
𝑀𝑀𝑧𝑧
�, 

𝜃𝜃 = asin�𝑀𝑀𝑦𝑦�, 

Eq A-28 

Eq A-29 

Eq A-30 

Eq A-31 

Fig. A-6: A diagram 
outlining the two angular 

rotations of an alt-azimuth 
mounted heliostat to point 
the heliostat in the correct 
direction. +z is East and 

+x is North. 
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where 𝑀𝑀𝑥𝑥, 𝑀𝑀𝑦𝑦, and 𝑀𝑀𝑧𝑧 are the three components of the mirror vector in the x, y, and z directions, 

respectively. Note, atan2(x) returns an angle between 0 and 2π. 

 The angle of incidence on the mirror surface is provided by 

𝐼𝐼 = acos (𝑀𝑀��⃗ ∙ 𝑆𝑆) . 

To define the angle of astigmatism on the surface of the 

heliostat mirror, the local x and y-axes need to be defined in global 

coordinates (see Fig. A-7). The local y-axis is perpendicular to the 

mirror vector. Because of this orthogonality the y-component of the 

local y-axis is equivalent to the length of the projection of the mirror vector onto the x-y plane. 

Additionally, the projection of the local y-axis onto the x-z plane points 180° from the similarly 

projected mirror vector, but the magnitude of the projected local y-axis is the same as the y-

component of the mirror vector. Therefore, the local y-axis can be calculated by 

𝑌𝑌�⃗𝐻𝐻𝑑𝑑𝑝𝑝𝐶𝐶𝐻𝐻 = (−𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃) 𝑐𝑐𝑆𝑆𝑠𝑠 (𝑦𝑦), cos (𝜃𝜃), −𝑠𝑠𝑖𝑖𝑛𝑛(𝜃𝜃) 𝑠𝑠𝑖𝑖𝑛𝑛 (𝑦𝑦)). 

 The local z-axis is just the mirror vector, which makes the local x-axis 

�⃗�𝑋𝐻𝐻𝑑𝑑𝑝𝑝𝐶𝐶𝐻𝐻 = 𝑌𝑌�⃗𝐻𝐻𝑑𝑑𝑝𝑝𝐶𝐶𝐻𝐻 × �⃗�𝑍𝐻𝐻𝑑𝑑𝑝𝑝𝐶𝐶𝐻𝐻. 

 With the local x, y, and z axes of the mirror in global coordinates, any vector defined in 

the global coordinate system can be defined in terms of the local axes of the mirror. Using basic 

vector algebra, the projected solar vector is determined by subtracting the component that points 

in the direction of the mirror vector, and then normalizing, which yields 

𝑆𝑆𝐶𝐶𝑟𝑟𝑑𝑑𝑗𝑗𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑆𝑆−�𝑀𝑀��⃗ ∙𝑆𝑆���⃗ �𝑀𝑀��⃗

�𝑆𝑆−�𝑀𝑀��⃗ ∙𝑆𝑆���⃗ �𝑀𝑀��⃗ �
. 

Eq A-32 

Eq A-33 

Eq A-34 

Eq A-35 

Fig. A-7: Schematic showing 
the local y-axis of the heliostat 

mirror relative to the global 
coordinate system. 
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 The projected solar vector can then be converted into the local axes of the mirror for easily 

defining the angle of astigmatism. The rotation matrix that should be applied is 

𝑅𝑅� = �
�⃗�𝑋𝐻𝐻𝑑𝑑𝑝𝑝𝐶𝐶𝐻𝐻
𝑌𝑌�⃗𝐻𝐻𝑑𝑑𝑝𝑝𝐶𝐶𝐻𝐻
�⃗�𝑍𝐻𝐻𝑑𝑑𝑝𝑝𝐶𝐶𝐻𝐻

� = �
𝑋𝑋𝑥𝑥 𝑋𝑋𝑦𝑦 𝑋𝑋𝑧𝑧
𝑌𝑌𝑥𝑥 𝑌𝑌𝑦𝑦 𝑌𝑌𝑧𝑧
𝑍𝑍𝑥𝑥 𝑍𝑍𝑦𝑦 𝑍𝑍𝑧𝑧

�. 

 The local solar vector is then defined as 

𝑆𝑆𝐻𝐻𝑑𝑑𝑝𝑝𝐶𝐶𝐻𝐻 = 𝑅𝑅�𝑆𝑆𝐶𝐶𝑟𝑟𝑑𝑑𝑗𝑗𝑑𝑑𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑 = (𝑆𝑆𝑥𝑥, 𝑆𝑆𝑦𝑦), 

which can be directly used to calculate the angle of astigmatism: 

𝛾𝛾𝐴𝐴 = atan2 �𝑆𝑆𝐶𝐶
𝑆𝑆𝑥𝑥
�. 

 The angle of astigmatism determines the orientation of the 

ideal toroid (see Fig. A-8). In a target-aligned heliostat [38], the 

heliostat is able to rotate about the mirror vector, thus keeping 

toroid oriented correctly in the tangential plane. For an alt-azimuth 

mounted heliostat, the toroidal shape must rotate about the mirror 

vector. Thus, the toroid must be defined in terms of the local x and 

y axes of the mirror. The ideal toroid in a rotated coordinate system is given by 

𝑍𝑍 = 𝑌𝑌′2

2𝑅𝑅𝑡𝑡
+ 𝑋𝑋′2

2𝑅𝑅𝑠𝑠
, 

where 𝑅𝑅𝑑𝑑 and 𝑅𝑅𝑠𝑠 are given by Eq A-22 and Eq A-23, 𝑍𝑍 is the sag of the surface, and 𝑋𝑋′ and 𝑌𝑌′ are 

the rotated coordinates. These rotated coordinates in terms of local coordinates are given by: 

𝑋𝑋′ = 𝑆𝑆𝑦𝑦𝑥𝑥 − 𝑆𝑆𝑥𝑥𝑦𝑦, 

𝑌𝑌′ = 𝑆𝑆𝑥𝑥𝑥𝑥 + 𝑆𝑆𝑦𝑦𝑦𝑦, 

which come from the local solar vector (Eq A-37). 

Eq A-36 

Eq A-37 

Eq A-38 

Eq A-39 

Eq A-40 

Eq A-41 

Fig. A-8: In this figure 𝛾𝛾𝐴𝐴 is the 
angle of astigmatism, Y’ is the 
rotated y-axis (also the local 
solar vector), and X’ is the 

rotated x-axis. 
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 Plugging in the rotated coordinates in terms of local x and y coordinates provides the ideal 

sag of the surface: 

𝐴𝐴 = �𝑆𝑆𝑥𝑥𝑥𝑥+𝑆𝑆𝐶𝐶𝑦𝑦�
2

2𝑅𝑅𝑡𝑡
+ �𝑆𝑆𝐶𝐶𝑥𝑥−𝑆𝑆𝑥𝑥𝑦𝑦�

2

2𝑅𝑅𝑠𝑠
. 

 This expression is suitable for use in the computer, but greater insight into the composition 

of the surface is found by reducing this expression. After much algebraic manipulation the surface 

can be decomposed into three separate modes, 

𝐴𝐴 = 1
4
� 1
𝑅𝑅𝑡𝑡

+ 1
𝑅𝑅𝑠𝑠
� (𝑥𝑥2 + 𝑦𝑦2) + 𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦 �

1
2𝑅𝑅𝑡𝑡

− 1
2𝑅𝑅𝑠𝑠
�2𝑥𝑥𝑦𝑦 + 1

2
� 1
2𝑅𝑅𝑡𝑡

− 1
2𝑅𝑅𝑠𝑠
� �𝑆𝑆𝑥𝑥2 − 𝑆𝑆𝑦𝑦2�(𝑥𝑥2 − 𝑦𝑦2), 

which expression can be further simplified to 

𝐴𝐴 =
1
4

(𝐶𝐶𝑑𝑑 + 𝐶𝐶𝑠𝑠)(𝑥𝑥2 + 𝑦𝑦2) +
1
4

(𝐶𝐶𝑑𝑑 − 𝐶𝐶𝑠𝑠) sin(2𝛾𝛾𝐴𝐴) 2𝑥𝑥𝑦𝑦 +
1
4

(𝐶𝐶𝑑𝑑 − 𝐶𝐶𝑠𝑠) cos(2𝛾𝛾𝐴𝐴) (𝑥𝑥2 − 𝑦𝑦2) 

with 𝐶𝐶𝑑𝑑 = cos(𝐼𝐼) /𝑅𝑅 and 𝐶𝐶𝑠𝑠 = 1/(𝑅𝑅 cos(𝐼𝐼)). 

This functional form of the surface sag shows that the surface is made up of three different 

terms: power (𝑥𝑥2 + 𝑦𝑦2), oblique astigmatism (2𝑥𝑥𝑦𝑦), and vertical astigmatism (𝑥𝑥2 − 𝑦𝑦2). These 

are of the same form as the Zernike standard surface polynomials. These also happen to be the 

bending modes that are naturally part of a flat plate  [62,63]. Thus, the desired shape can be readily 

induced into a flat back-silvered mirror. 

 In its final form, the surface shape equation and its three coefficients are given by 

𝑎𝑎1 = 1
4

(𝐶𝐶𝑑𝑑 + 𝐶𝐶𝑠𝑠), 

𝑎𝑎2 = 1
4

(𝐶𝐶𝑑𝑑 − 𝐶𝐶𝑠𝑠) sin(2𝛾𝛾𝐴𝐴), 

𝑎𝑎3 = 1
4

(𝐶𝐶𝑑𝑑 − 𝐶𝐶𝑠𝑠) cos(2𝛾𝛾𝐴𝐴), 

𝐴𝐴 = 𝑎𝑎1(𝑥𝑥2 + 𝑦𝑦2) + 𝑎𝑎2(2𝑥𝑥𝑦𝑦) + 𝑎𝑎3(𝑥𝑥2 − 𝑦𝑦2). 

Eq A-42 

Eq A-43 

Eq A-44 

Eq A-45 

Eq A-46 

Eq A-47 

Eq A-48 
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 The angle of astigmatism, 𝛾𝛾𝐴𝐴, is found by combination of Eq A-28 through Eq A-38. A 

MATLAB® function is given in Appendix C to calculate these coefficients. 
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 : SOLAR POSITION MATLAB® CODE 

function [A1,A2] = 
SolarPositionCalculatorV3(Lat,Lon,TZone,Year,Month,Day,Time) 
%This function uses equations from the NOAA Solar Calculations 
excel file 
%,found free online, to calculate Solar Azimuth and Elevation 
angles. 
%Using latitude, longitude, timezone, localtime, year, month, 
and day, the  
%solar azimuth and elevation angles are calculated. 
  
%If there are no input arguments, then calculations are 
performed for 
%September 15, 2020 at Noon in Tucson, AZ. If Time is not 
included, it is 
%set to Noon and the function returns sunrise and sunset times. 
If Time is 
%given, then the function returns the Solar Azimuth and Solar 
Elevation 
%angles 
  
%The NOAA solar position calculations are based on equations 
from 
%Astronomical Algorithms by Jean Meeus. For more information 
visit: 
%https://www.esrl.noaa.gov/gmd/grad/solcalc/calcdetails.html#:~:
text=General,minutes%20outside%20of%20those%20latitudes. 
  
%By Ryker W. Eads at The University of Arizona 
  
%8/14/2020 
%V1 - RWE: Uses reads and writes from excel spread sheet from 
NOAA. 
%8/19/2020 
%V2 - RWE: Updated calculator to no longer need excel 
spreadsheet. 
%8/19/2020 
%V3 - RWE: Fixed incorrect calculations, and decreased 
computation time by 
%vectorization. 
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if nargin == 0 
    Lat = 32.0944; 
    Lon = -110.8147; 
    TZone = -7; 
    Year = 2020; 
    Month = 6; 
    Day = 21; 
    Time = 12/24;%Out of 1 
elseif nargin == 6 
    Time = 0.5;%Out of 1 
elseif nargin ~= 7 
    errmsg = ['Incorrect number of inputs. Read notes at 
beginning of function.' ...  
    ,'(Lat,Lon,TZone,Year,Month,Day,[Time])']; 
    errordlg(errmsg) 
end 
  
  
DateNumber = datenum(Year,Month,Day);%Serial date in matlab 
  
ExDate = DateNumber - 693960;%Convert to serial date in excel 
  
JulDay = ExDate + 2415018.5 + Time - TZone/24;%Julian day 
  
JulCen = (JulDay-2451545)/36525;%Julian century 
  
%Geometric mean long sun (deg) 
GMLS = mod(280.46646+JulCen.*(36000.76983 + 
JulCen*0.0003032),360); 
  
%Geometric mean anom sun (deg) 
GMAS = 357.52911+JulCen.*(35999.05029 - 0.0001537*JulCen); 
  
%Eccentric Earth Orbit 
EEO = 0.016708634-JulCen.*(0.000042037+0.0000001267*JulCen); 
  
%Sun Eq of Ctr 
SEOC = sin(radians(GMAS)).*(1.914602-
JulCen.*(0.004817+0.000014*JulCen))+ ...  
    sin(radians(2*GMAS)).*(0.019993-
0.000101*JulCen)+sin(radians(3*GMAS))*0.000289; 
  
%Sun True Long (deg) 
STL = GMLS + SEOC; 
  



183 

 

%Sun Trun Anom (deg) 
STA = GMAS + SEOC; 
  
%Sun Rad Vector (AUs) 
SRV = (1.000001018*(1-EEO.^2))./(1+EEO.*cos(radians(STA))); 
  
%Sun App Long (deg) 
SAL = STL-0.00569-0.00478*sin(radians(125.04-1934.136*JulCen)); 
  
%Mean Oblique Ecliptic (deg) 
MOE = 23+(26+((21.448-JulCen.*(46.815+JulCen.*(0.00059-
JulCen*0.001813))))/60)/60; 
  
%Obliq Corrected (deg) 
OC = MOE+0.00256*cos(radians(125.04-1934.136*JulCen)); 
  
%Sun Rt Ascen (deg) 
SRA = 
degrees(atan2(cos(radians(OC)).*sin(radians(SAL)),cos(radians(SA
L)))); 
  
%Sun Declin (deg) 
SDE = degrees(asin(sin(radians(OC)).*sin(radians(SAL)))); 
  
%Variable y 
vy = tan(radians(OC/2)).^2; 
  
%Eq of Time (minutes) 
EOT = 4*degrees(vy.*sin(2*radians(GMLS))-
2*EEO.*sin(radians(GMAS)) ...  
    +4*EEO.*vy.*sin(radians(GMAS)).*cos(2*radians(GMLS)) ...  
    -0.5*vy.^2.*sin(4*radians(GMLS))-
1.25*EEO.^2.*sin(2*radians(GMAS))); 
  
%HA Sunrise (deg) 
HASR = 
degrees(acos(cos(radians(90.833))./(cos(radians(Lat))*cos(radian
s(SDE))) ...  
    -tan(radians(Lat))*tan(radians(SDE)))); 
  
%Solar Noon (LST) 
SN = (720-4*Lon-EOT+TZone*60)/1440; 
  
%Sunrise Time (LST) 
SRT = (SN*1440-HASR*4)/1440; 
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%Sunset Time (LST) 
SST = (SN*1440+HASR*4)/1440; 
  
%Sunlight Duration (minutes) 
SD = 8*HASR; 
  
%True Solar Time (minutes) 
TST = mod(Time*1440+EOT+4*Lon-60*TZone,1440); 
  
%Hour Angle (deg) 
if(TST/4<0) 
    HA = TST/4+180; 
else 
    HA = TST/4-180; 
end 
  
%Solar Zenith Angle (deg) 
SZA = degrees(acos(sin(radians(Lat))*sin(radians(SDE)) ...  
    +cos(radians(Lat))*cos(radians(SDE)).*cos(radians(HA)))); 
  
%Solar Elevation Angle (deg) 
solelu = 90 - SZA; 
  
%Approximate Atmospheric Refraction (deg) 
AAR = zeros(size(solelu)); 
  
%Switch cases 
C1 = solelu>=85; 
C2 = (solelu>=5)&(solelu<85); 
C3 = (solelu<5)&(solelu>=-0.575); 
C4 = solelu<-0.575; 
  
if sum(C1)>0%Ensure there are elements in existence that meet 
the case 
    AAR(C1) = 0; 
end 
if sum(C2)>0 
    AAR(C2) = (58.1./tan(radians(solelu(C2)))-
0.07./tan(radians(solelu(C2))).^3 ...  
            +0.000086./tan(radians(solelu(C2))).^5)/3600; 
end 
if sum(C3)>0 
    AAR(C3) = (1735+solelu(C3).*(-518.2+solelu(C3).* ...  
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            (103.4+solelu(C3).*(-
12.79+solelu(C3)*0.711))))/3600; 
end 
if sum(C4)>0 
    AAR(C4) = -20.772./tan(radians(solelu(C4)))/3600; 
end 
  
%Solar Azimuth Angle (deg) 
theta = degrees(acos(((sin(radians(Lat))*cos(radians(SZA))) ...  
        -
sin(radians(SDE)))./(cos(radians(Lat))*sin(radians(SZA))))); 
solaz = mod(180 + (1-sign(HA))*180 + sign(HA).*theta,360); 
     
%Solar Elevation Angle Corrected (deg) 
solel = solelu + AAR; 
  
if nargin == 6 %If time is not included, return Sunset and 
Sunrise 
    A1 = SRT; 
    A2 = SST; 
else %If there are no arguments, or 7 arguments, return solar az 
and el. 
    A1 = solaz; 
    A2 = solel; 
    if nargin == 0 
        A1 = [A1,A2];%Display azimuth and elevation 
    end 
end 
  
function rad = radians(deg) 
    %Convert degrees to radians 
        rad = deg*pi/180; 
end 
  
function deg = degrees(rad) 
    %Convert radians to degrees 
        deg = rad*180/pi; 
end 
  
end 
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 : HELIOSTAT SHAPE COEFFICIENTS MATLAB® CODE 

function [a1,a2,a3,rot_astig,rotaz,rotel,I]  ...  
    = HeliostatShapeProperties(solaz,solel,towerVec) 
%% This program calculates the ideal analytical heliostat shape 
and 
%orientation for heliostats on dual-axis az-el mounts. 
  
%The tangential and sagittal radii of curvature are calculated 
for the 
%given geometry at the specified time. Due to the nature of az-
el heliostat 
%mounts, the angle of astigmatism on the surface of the 
heliostat mirror 
%must vary throughout the day to correct for off-axis 
aberrations properly. 
%The effective radii of curvature are derived from the 
Coddington 
%equations: Rt = R/cos(AOI), Rs = R*cos(AOI). Thus, to correct 
for 
%astigmatism, the tangential and sagittal radii of curvature 
must be 
%changed to make the correction, i.e. set Rt = R*cos(AOI) and Rs 
= 
%R/cos(AOI). Then sunlight will focus both in the tangential and 
sagittal 
%planes at the same distance, R/2, from the mirror vertex. The 
shape must 
%be aligned such that the plane containing the solar vector, 
tower vector, 
%and mirror vertex is the tangential plane. Thus, the astigmatic 
shape must 
%be locally rotated on the surface of the mirror to keep the 
tangential 
%radius of curvature in the tangential plane. 
  
%solaz is the Solar Azimuth angle(s), solel is the Solar 
Elevation angle(s) 
%and towerVec is the tower vector, which is defined as the 
vector from the 
%heliostat to the tower target. The input angles should be in 
units of 
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%degrees. The tower vector should be in units of mm. +x is 
North, +z is 
%East, and +y is up. 
  
%As an example, a tower vector [10000,20000,-40000] means the 
target is 10 
%m North of the heliostat, 20 m up, and 40 m West. 
  
%The outputs are the shape coefficients, a1, a2 and a3, which 
are used in 
%the equation Z = a1*(x^2+y^2) +a2*(2*x*y)+a3*(x^2-y^2). 
rot_astig is the 
%angle of astigmatism defining the orientation of the tangential 
radius of 
%curvature relative to the local x-axis of the mirror. rotaz is 
the 
%required rotation of the heliostat mirror about its azimuth 
axis, and 
%rotel is the rotation about the elevation axis. I is the angle 
of 
%incidence, which is needed to calculate toroidal curvatures, 
and is an 
%optional output for further calculations (such as cosine 
factor). 
  
%% Establish solar positions. 
solazrad = solaz'*pi/180; 
solzerad = (90 - solel')*pi/180;%Convert to Zenith angle 
  
numTimes = length(solel);%Number of times at which to calculate 
shape 
%% Define Tower Vector 
%All units in mm 
% towerVec = [0 0 -40000];%+X is North, +Z is East, +Y is Up 
if norm(towerVec)>0 
    towerVec_u = towerVec/norm(towerVec);%Normalized tower 
vector from mirror to target 
else 
    a1=NaN; 
    a2=NaN; 
    a3=NaN; 
    rot_astig=NaN; 
    rotaz=NaN; 
    rotel=NaN; 
    I=NaN; 
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    errordlg('Invalid Tower Vector. Please read function 
description.') 
    return; 
end 
  
%% Calculate angle of incidence and angle of astigmatism 
solVec_u = [cos(solazrad).*sin(solzerad), cos(solzerad), ...  
    sin(solazrad).*sin(solzerad)];%Solar vector from mirror to 
sun 
tVecRep = repmat(towerVec_u,size(solVec_u,1),1);%Repeat tower 
vector for 
%calculations 
mVec = tVecRep + solVec_u;%Mirror pointing vector = tower vector 
+ solar vector 
mVec_u = zeros(size(mVec));%Preallocate 
for i = 1:numTimes 
    mVec_u(i,:) = mVec(i,:)/norm(mVec(i,:));%Normalized mirror 
pointing vector 
end 
  
rotaz = atan2(mVec_u(:,1),mVec_u(:,3))*180/pi;%Rotate mirror 
about 
%local Y-axis, i.e. Vertical vector, beginning with mirror 
pointed East. 
rotel = -asin(mVec_u(:,2))*180/pi;%Rotate mirror about local x-
axis, Zemax input 
%Note, rotel is actually -rotel, for ease in entering into 
Zemax. 
%% 
%Elevation axis calculation 
% Mx = mVec_u(:,1); 
% My = mVec_u(:,2); 
% Mz = mVec_u(:,3); 
% Nz = -My.*Ny.*Mz./(Mx.^2+Mz.^2); 
% Nx = -My.*Ny.*Mx./(Mx.^2+Mz.^2); 
  
Ny = cos(rotel*pi/180); 
Nx = -sin(-rotel*pi/180).*sin(rotaz*pi/180); 
Nz = -sin(-rotel*pi/180).*cos(rotaz*pi/180); 
  
newY = [Nx,Ny,Nz];%Local Y-axis 
  
sol_dot_m = zeros(numTimes,1);%Preallocate 
solVec_proj = zeros(size(mVec_u)); 
sol_proj_u = solVec_proj; 
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for i = 1:numTimes 
    %Dot product of solar and mirror vectors 
    sol_dot_m(i) = solVec_u(i,:)*mVec_u(i,:)'; 
    %Subtract the mirror normal vector component of solar vector 
to project 
    %the solar vector onto the mirror plane. 
    solVec_proj(i,:) = solVec_u(i,:) - sol_dot_m(i)*mVec_u(i,:); 
    %Normalize projected solar vector for later calculations. 
    sol_proj_u(i,:) = solVec_proj(i,:)/norm(solVec_proj(i,:)); 
end 
  
AOIrad = acos(sol_dot_m);%Angle of incidence 
I = AOIrad*180/pi; 
  
newZ = mVec_u;%Local Z-axis of mirror 
newX = zeros(size(newZ)); 
for i = 1:length(I) 
    newX(i,:) = cross(newY(i,:),newZ(i,:));%Local X-axis of 
mirror, derived form Y and Z axes 
end 
  
S = zeros(size(sol_proj_u)); 
for i = 1:numTimes 
    %Rotation matrix for reducing vectors to two dimensions on 
the mirror 
    %plane 
    Mrot = [newX(i,:);newY(i,:);newZ(i,:)]; 
    %Rotate the projected solar vector 
    S(i,:) = Mrot*sol_proj_u(i,:)'; 
     
end 
%Calculate the angle of astigmatism 
rot_astig = atan2(S(:,2),S(:,1))*180/pi; 
rot_astig(rot_astig<0) = rot_astig(rot_astig<0) + 360; 
%% Establish non-rotated surface shape 
RofC = 2*norm(towerVec);%No astigmatism radius of curvature. 
R_tan = RofC./cos(I*pi/180);%Local y radius of curvature 
R_sag = RofC.*cos(I*pi/180);%Local x radius of curvature 
  
%% Calculate rotated shape 
%Change to curvatures for calculations 
C_tan = 1./(R_tan); 
C_sag = 1./(R_sag); 
%Derived from analytical calculations 
a1 = (C_tan + C_sag)/4; 
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a2 = (C_tan - C_sag).*S(:,1).*S(:,2)/2; 
a3 = (C_tan - C_sag).*(S(:,1).^2-S(:,2).^2)/4; 
end 
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 : SELECTED PUBLICATION 

Optical design for a fly’s eye CPV system with large, on-axis dish solar concentrator 

Reproduced from [R. W. Eads, J. Hyatt, and R. Angel, "Optical design for a Fly’s eye CPV system 

with large, onaxis dish solar concentrator," in AIP Conference Proceedings (2019), Vol. 2149.], 

with the permission of AIP Publishing . 

https://aip.scitation.org/doi/abs/10.1063/1.5124190
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 : DOUBLE CASSEGRAIN MATLAB® CODE 

%This script takes the mirror separation, back focal distance, 
and focal 
%length of the desired telescope and calculates the ideal radii 
of 
%curvature and conic constants for a Ritchey-Chretien telescope 
and a 
%Double-Cassegrain telescope. 
%% b,d,f user input 
clc, clear 
prompt = {'Enter separation of mirrors [mm]:','Enter back focal 
distance: [mm]', ... 
    'Enter focal length of telescope [mm]:'}; 
dlgtitle = 'Input'; 
dims = [1 45]; 
definput = {'100','125','1000'}; 
answer = inputdlg(prompt,dlgtitle,dims,definput); 
  
    d=str2double(answer{1}); 
    b=str2double(answer{2}); 
    f=str2double(answer{3}); 
  
%% If boundary conditions are met, calculate: 
if f>d/(sqrt(2)-1) && b+d<sqrt(f^2-2*d*f) && b>0 && f>0 && d>0 
     
rad1 = d.*f.*(2.*b+(-3).*d+2.*f).*(b.^2+(2.*d+(-1).*f).*f).^(-
1)+(-1).*( ... 
d.^2.*f.*(b.^2+(2.*d+(-1).*f).*f).^(-2).*(4.*b.^3+(-
4).*b.^2.*(d+( ... 
-2).*f)+d.^2.*f+4.*b.*f.*((-1).*d+f))).^(1/2);%Radius of 
curvature of primary 
  
rad2 = (-2).*(f.*(4.*d.^4.*f+4.*d.^3.*(2.*f+(-
1).*rad1).*rad1+2.*d.^2.*(4.*f+ ... 
  (-3).*rad1).*rad1.^2+2.*d.*(2.*f+(-
1).*rad1).*rad1.^3+f.*rad1.^4).*(8.*d.*f+ ... 
  rad1.*(4.*f+rad1)).^(-
2)).^(1/2)+2.*f.*(6.*d.^2+6.*d.*rad1+rad1.^2).*(8.* ... 
  d.*f+rad1.*(4.*f+rad1)).^(-1);%Radius of curvature of 
secondary 
  
%Conic constant of primary mirror 



196 

 

k1 = d.^(-2).*rad2.^(-2).*(8.*d.^4+8.*d.^3.*(rad1+(-
2).*rad2)+2.*d.* ... 
rad1.*rad2.^2+(-1).*rad1.^2.*rad2.^2+2.*d.^2.*(rad1.^2+(-5).* 
... 
rad1.*rad2+4.*rad2.^2)).^(-1).*(64.*d.^8+64.*d.^7.*(4.*rad1+(-
3).* ... 
rad2)+rad1.^4.*rad2.^3.*((-
1).*rad1+rad2)+2.*d.*rad1.^3.*rad2.^2.* ... 
(3.*rad1.^2+(-8).*rad1.*rad2+4.*rad2.^2)+8.*d.^6.*(50.*rad1.^2+( 
... 
-84).*rad1.*rad2+25.*rad2.^2)+8.*d.^5.*(38.*rad1.^3+(-112).* ... 
rad1.^2.*rad2+75.*rad1.*rad2.^2+(-10).*rad2.^3)+d.^2.*rad1.^2.* 
... 
rad2.*((-16).*rad1.^3+76.*rad1.^2.*rad2+(-
84).*rad1.*rad2.^2+21.* ... 
rad2.^3)+2.*d.^4.*(56.*rad1.^4+(-280).*rad1.^3.*rad2+335.* ... 
rad1.^2.*rad2.^2+(-
103).*rad1.*rad2.^3+4.*rad2.^4)+2.*d.^3.*rad1.* ... 
(8.*rad1.^4+(-80).*rad1.^3.*rad2+170.*rad1.^2.*rad2.^2+(-98).* 
... 
rad1.*rad2.^3+11.*rad2.^4)); 
  
%Conic constant of secondary mirror (outer ring) 
k2 = d.^(-2).*rad1.^(-1).*(d+rad1).^(-1).*(2.*d+rad1).^(-
2).*rad2.^(-1) ... 
.*(8.*d.^4+8.*d.^3.*(rad1+(-2).*rad2)+2.*d.*rad1.*rad2.^2+(-1).* 
... 
rad1.^2.*rad2.^2+2.*d.^2.*(rad1.^2+(-5).*rad1.*rad2+4.*rad2.^2)) 
... 
.^(-1).*(512.*d.^11+256.*d.^10.*(9.*rad1+(-
10).*rad2)+2.*rad1.^5.* ... 
rad2.^5.*((-1).*rad1+rad2)+d.*rad1.^4.*rad2.^4.*(19.*rad1.^2+(-
45) ... 
.*rad1.*rad2+22.*rad2.^2)+32.*d.^9.*(134.*rad1.^2+(-333).*rad1.* 
... 
rad2+164.*rad2.^2)+32.*d.^8.*(132.*rad1.^3+(-
567).*rad1.^2.*rad2+ ... 
626.*rad1.*rad2.^2+(-176).*rad2.^3)+d.^2.*rad1.^3.*rad2.^3.*((-
83) ... 
.*rad1.^3+334.*rad1.^2.*rad2+(-
356).*rad1.*rad2.^2+100.*rad2.^3)+ ... 
d.^3.*rad1.^2.*rad2.^2.*(188.*rad1.^4+(-1221).*rad1.^3.*rad2+ 
... 
2244.*rad1.^2.*rad2.^2+(-1392).*rad1.*rad2.^3+240.*rad2.^4)+8.* 
... 
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d.^7.*(290.*rad1.^4+(-
2018).*rad1.^3.*rad2+3859.*rad1.^2.*rad2.^2+ ... 
(-2436).*rad1.*rad2.^3+416.*rad2.^4)+8.*d.^6.*(84.*rad1.^5+(-
986) ... 
.*rad1.^4.*rad2+3060.*rad1.^3.*rad2.^2+(-
3349).*rad1.^2.*rad2.^3+ ... 
1284.*rad1.*rad2.^4+(-128).*rad2.^5)+2.*d.^4.*rad1.*rad2.*((-
101) ... 
.*rad1.^5+1127.*rad1.^4.*rad2+(-3399).*rad1.^3.*rad2.^2+3664.* 
... 
rad1.^2.*rad2.^3+(-1404).*rad1.*rad2.^4+144.*rad2.^5)+2.*d.^5.*( 
... 
40.*rad1.^6+(-997).*rad1.^5.*rad2+5229.*rad1.^4.*rad2.^2+(-
9298).* ... 
rad1.^3.*rad2.^3+6172.*rad1.^2.*rad2.^4+(-1376).*rad1.*rad2.^5+ 
... 
64.*rad2.^6)); 
  
%Conic constant of "quaternary" mirror (inner annulus of 
secondary) 
k4 = (-1).*d.^(-1).*(d+rad1).^(-1).*(d+(-
1).*rad2).*(8.*d.^3+4.*d.* ... 
rad1.*(rad1+(-2).*rad2)+4.*d.^2.*(3.*rad1+(-2).*rad2)+(-1).* ... 
rad1.^2.*rad2).^(-2).*(8.*d.^4+8.*d.^3.*(rad1+(-2).*rad2)+2.*d.* 
... 
rad1.*rad2.^2+(-1).*rad1.^2.*rad2.^2+2.*d.^2.*(rad1.^2+(-5).* 
... 
rad1.*rad2+4.*rad2.^2)).^(-1).*(512.*d.^11+2560.*d.^10.*(rad1+(-
1) ... 
.*rad2)+rad1.^5.*rad2.^4.*(rad1.^2+(-5).*rad1.*rad2+4.*rad2.^2)+ 
... 
128.*d.^9.*(42.*rad1.^2+(-
91).*rad1.*rad2+40.*rad2.^2)+128.*d.^8.* ... 
(48.*rad1.^3+(-171).*rad1.^2.*rad2+164.*rad1.*rad2.^2+(-40).* 
... 
rad2.^3)+d.*rad1.^4.*rad2.^3.*((-2).*rad1.^3+29.*rad1.^2.*rad2+( 
... 
-60).*rad1.*rad2.^2+28.*rad2.^3)+2.*d.^2.*rad1.^3.*rad2.^2.*(5.* 
... 
rad1.^4+(-58).*rad1.^3.*rad2+182.*rad1.^2.*rad2.^2+(-
176).*rad1.* ... 
rad2.^3+44.*rad2.^4)+32.*d.^7.*(129.*rad1.^4+(-683).*rad1.^3.* 
... 
rad2+1090.*rad1.^2.*rad2.^2+(-
586).*rad1.*rad2.^3+80.*rad2.^4)+8.* ... 
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d.^5.*rad1.*(44.*rad1.^5+(-488).*rad1.^4.*rad2+1757.*rad1.^3.* 
... 
rad2.^2+(-2494).*rad1.^2.*rad2.^3+1336.*rad1.*rad2.^4+(-200).* 
... 
rad2.^5)+(-2).*d.^3.*rad1.^2.*rad2.*(16.*rad1.^5+(-
185).*rad1.^4.* ... 
rad2+733.*rad1.^3.*rad2.^2+(-1096).*rad1.^2.*rad2.^3+564.*rad1.* 
... 
rad2.^4+(-64).*rad2.^5)+32.*d.^6.*(51.*rad1.^5+(-387).*rad1.^4.* 
... 
rad2+937.*rad1.^3.*rad2.^2+(-852).*rad1.^2.*rad2.^3+262.*rad1.* 
... 
rad2.^4+(-16).*rad2.^5)+8.*d.^4.*rad1.*(4.*rad1.^6+(-76).* ... 
rad1.^5.*rad2+430.*rad1.^4.*rad2.^2+(-
959).*rad1.^3.*rad2.^3+840.* ... 
rad1.^2.*rad2.^4+(-240).*rad1.*rad2.^5+8.*rad2.^6)); 
  
%Petzval curvature (i.e. imaging surface curvature) 
P = -4/rad1+4/rad2; 
%Petzval radius 
Prad = 1/P; 
else 
    rad1 = NaN; 
    rad2 = NaN; 
    k1 = NaN; 
    k2 = NaN; 
    k4 = NaN; 
    msg = ['Boundary conditions violated for Double-Cassegrain 
Solution.', ... 
        ' All values must be positive numbers and the focal 
length should', ... 
        ' be much larger than the mirror separation. See code 
line 19 for more details.']; 
    errordlg(msg) 
end 
  
%% Cassegrain Solution 
r1 = 2.*d.*(b+(-1).*f).^(-1).*f;%Radius of curvature of primary 
r2 = 2.*b.*d.*(b+d+(-1).*f).^(-1);%Radius of curvature of 
secondary 
  
%Conic constant of primary mirror 
k1Cass = (b+(-1).*f).^(-3).*((-1).*b.^3+2.*b.*d.^2+3.*b.^2.*f+(-
3).*b.* ... 
  f.^2+f.^3); 
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%Conic constant of secondary mirror (outer ring) 
k2Cass = (b+d+(-1).*f).^(-3).*((-1).*b.^3+(-
1).*d.^3+d.^2.*f+d.*f.^2+f.^3+ ... 
  b.^2.*(d+3.*f)+b.*(d.^2+(-2).*d.*f+(-3).*f.^2)); 
  
%Petzval curvature (i.e. imaging surface curvature) 
P = -2/r1+2/r2; 
  
%Petzval radius 
PradCass = 1/P; 
%% Display data 
  
format longG 
format compact 
fS = '%.6f'; 
R1 = num2str(r1,fS); 
R2 = num2str(r2,fS); 
Rad1 = num2str(rad1,fS); 
Rad2 = num2str(rad2,fS); 
K1 = num2str(k1,fS); 
K1Cass = num2str(k1Cass,fS); 
K2 = num2str(k2,fS); 
K2Cass = num2str(k2Cass,fS); 
K4 = num2str(k4,fS); 
K4Cass = 'NaN'; 
T = 
table({R1;Rad1},{R2;Rad2},{K1Cass;K1},{K2Cass;K2},{K4Cass;K4},'V
ariableNames', ...  
    {'R1','R2','K1','K2','K4'},'RowName',{'Ritchey-
Chretien','Double-Cassegrain'}); 
disp(T) 
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