
 
 

 
 
 
 
 
 

Ground Truth Tool for Verification of Small Boat Tracking 
 

by  

Zachary Rovig 

 

 
 

A Thesis Submitted to the Faculty of the  

COLLEGE OF OPTICAL SCIENCES 

In Partial Fulfillment of the Requirements 

For the Degree of 

 
MASTER OF SCIENCE 

 
 

In the Graduate College 
 
 

THE UNIVERSITY OF ARIZONA 

2021



2 
 

 
 
 
 

THE UNIVERSITY OF ARIZONA 
GRADUATE COLLEGE 

 
As members of the Master’s Committee, we certify that we have read the thesis prepared by 

  Zachary Rovig, titled Ground Truth Tool for Verification of Small Boat Tracking and recommend  
  that it be accepted as fulfilling the thesis requirement for the      Master’s Degree. 

 
          College of Optical Sciences

 

Date:    
Dr. Lloyd LaComb   

Date:    
Dr. Pierre Blanche 

Date:    
Dr. Amit Ashok 

Final approval and acceptance of this thesis is contingent upon the candidate’s submission of the 
final copies of the thesis to the Graduate College. 
 
We hereby certify that we have read this thesis prepared under our direction and recommend that 
it be accepted as fulfilling the Master’s requirement. 

Date:    
Dr. Lloyd LaComb  
Master’s Thesis Committee Co-Chair 
College of Optical Sciences 

Date:    
Dr. Pierre Blanche 
Master’s Thesis Committee Co-Chair 



3 
 

ACKNOWLEDGEMENTS 

I want to thank my advisor, Dr. Lloyd LaComb for making this whole process enjoyable 
and being available to me whenever I needed help. I also want to thank Dr. Pierre Blanche for 
accepting me into his lab as an undergraduate and helping me build essential skills in optics. 
Finally, I want to acknowledge my classmates and say thank you for all those hours we spent 
together in the optics lounge ironically laughing about our small failures, which seemed so 
important at the time. 



4 
 

DEDICATION 
 

To my parents, Chris and Christy . Thank you for all your love and support.  
  



5 
 

Table of Contents 
Abstract  ............................................................................................................................................................ 7 

1 Introduction ................................................................................................................................................... 8 

2 Background and Related Work ..................................................................................................................... 9 

2.1 Multispectral and Polarimetric Approaches ........................................................................................... 9 

2.2 Automatic Tracking Algorithms ............................................................................................................. 14 

3 Multispectral/Hyperspectral Polarimetric Imaging ................................................................................... 17 

3.1 Background  ........................................................................................................................................... 17 

3.2 Statements on Optical Design  .............................................................................................................. 20 
 

4 Automatic Tracking Recognition (ATR) ....................................................................................................... 25 

4.1 ATR Background .................................................................................................................................... 25 

4.2 Data Fusion ............................................................................................................................................ 25 

4.3 Kalman Filtering..................................................................................................................................... 26 

4.4 Reed – Xiaoli Anomaly Detection .......................................................................................................... 29 

4.5 Detection Results .................................................................................................................................. 30 

5 Verification Via Ground Truthing ................................................................................................................ 32 

5.1 Ground Truth Data Background ............................................................................................................ 32 

5.2 Developed Ground Truth Tool .............................................................................................................. 34 

6 Conclusions .................................................................................................................................................. 37 

APPENDIX A – TABLE OF ACRONYMS  ........................................................................................................... 39 
 

References ...................................................................................................................................................... 40 
 



6 
 

List of Figures 
1 Image of a tank in thermal equilibrium captured with infrared camera. (Left) in- 

tensity image. (Right) Degree of linear polarization.(Courtesy: David Cenault, 
Polaris).1 

2 Reflection coefficient versus angle of incidence (from surface normal) for an air- 
water interface 

3 Block diagram of focusing lens and detector 
4 Plot of Atmospheric Opacity (%) versus Wavelength (m) with system spectral re- 

gions highlighted 
5 Plan view (left) and cross sectional view (right) on Sony’s IMX250MZR sensor. 

Each pixel’s polarizing filter (C) is coated with an anit-reflective layer (B) and is 
positioned between the microlens (A) and the light sensitive photodiode (E). Image 
from Sony Corporation2 

6 Preliminary Zemax optical model of the five band imaging system 
7 Preliminary Data Fusion and Analysis Model (courtesy of Dr. Mark Neifeld) 
8 Tracking algorithm system architecture (credit: Dr. Abhijit Mahalanobis) 
9 ROC curves from RXD results (credit: Dr. Abhijit Mahalanobis) 
10 Single Frames from each polarization channel (1-4) and same spectral band 
11 Screenshot of the GUI from the developed Ground Truth App 
12 Screenshot of the GUI from the developed Ground Truth App with Tab selection 

highlighted 
13 Screenshot of the ”Review” tab after point selection is finished 
14 Screenshot of the tables on the ”Point Selection” tab (left) and ”Review” tab (right) 



7 
 

Abstract 
 
 The U.S. Navy is in need of an imaging system to perform new defense strategies such as the Find-Fix- Track-

Target-Engage-Assess (F2T2EA) to minimize threats from fast attack crafts in geopolitical hotspots. F2T2EA 

requires near-instantaneous detection and tracking of fast attack crafts in littoral waters. In this paper, we present 

a multispectral polarimetric imaging (MSPI) system, automatic target detection and tracking algorithm, and custom 

ground truth data tool for tracking verification. A review of studies using multispectral imaging for object detection 

and automatic tracking algorithms was done and is shared in the early sections of this paper. The designed MSPI 

system uses dichroic mirrors along with division of focal plane (for visible and NIR bands) and division of amplitude 

(for SWIR, MWIR, and LWIR bands) to separate the spectral bands and polarization components, respectively. The 

tracking algorithm adopts techniques from Kalman filtering and Reed – Xiaoli anomaly detection. Results from the 

developed tracking algorithm are reported. The results show that including single frame spatial analysis as a comple- 

ment to motion detection across several frames improves the detection and tracking performance of the algorithm. The 

custom ground truth app allows manual tracking of up to twelve objects, frame incrementation, and linear interpolation 

of between selected points. 
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1 Introduction 

 
Small fast-moving boats, such as the Fast Attack Craft (FAC) and the Fast Inshore Attack Craft 

(FIAC), are constantly threatening the assets of the US Navy. Various US adversaries have recently 

engaged in aggressive interactions using FACs. These encounters occur in geopolitical hotspots 

such as the Straits of Hormuz3 and off the coast of Somalia.4 The incidents occurring in the Straits 

of Hormuz involved multiple Iranian FIACs approached a US guided-missile destroyer at high 

speeds with their crew-served weapons manned. The crew of the US guided-missile destroyer tried 

multiple times to warn off the FIACs with radio communications, sirens, and the ship’s whistle to 

no avail. The US guided-missile destroyer was forced to resort to firing warning shots from the 

ships 0.50 caliber guns when the FIACs came within 900 yards, finally causing them to break off. 

This is one of several events that have occurred in the Straits of Hormuz in the last few years. 

Further, Iran and North Korea have some of the largest numbers of FAC’s in operation. North 

Korea alone operates more than 300 FAC’s,5 while Iran has developed a fleet of ‘swarm boats’ to 

harass vessels in the heavily congested littoral waters of the Persian Gulf. The US Navy is intro- 

ducing new strategies such as Find-Fix-Track-Target-Engage-Assess (F2T2EA) and applying ad- 

vanced solutions to reduce the threat of FACs in littoral waters. Using multispectral electro-optical 

imaging to quickly spot, locate, and monitor small fast attack crafts is a key force multiplier for 

the US Navy. Current electro-optical systems are usually configured for ground-based operations 

and do not consider the effects of ocean waves and wakes, which may be cause for confusion in 

identification and tracking systems. The Navy needs an improved electro-optical/infrared (EO/IR) 

imaging system for detection, and identification of small, fast, agile boats in the littoral theatre. 

Better protection for US naval forces can be provided with a multispectral EO system with im- 
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proved discrimination in ocean waters. Improved discrimination and identification can be obtained 

with the ability to use the wakes generated by fast attack boats. 

The overarching goal of this project is to provide an imaging and tracking system to improve 

discrimination of FAC/FIACs in littoral waters. To accomplish this goal, a prototype multispectral 

polarimetric imaging system and corresponding target recognition algorithms were developed and 

are presented, generally, in this paper. These designs are presented on behalf of my team at Uni- 

versity of Arizona and TIPD: Dr. Lloyd LaComb, Dr. Pierre Blanche, Dr. Amit Ashok, Dr. Mark 

Neifeld, and Dr. Abhijit Mahalanobis. My contribution to the project lies within the development 

of a tool to establish ground truth data, which can be seen in greater detail in section 5.2. 

 
2 Background and Related Work 

 
2.1 Multispectral and Polarimetric Approaches 

 
Various studies have focused on small boat detection in the visible and IR spectral bands. Of these 

studies, some notable DoD-authored papers provide a basis for design considerations and method- 

ologies. The methods used in these studies include imaging system design using MWIR and LWIR 

bands in night-time detection6 and required sensor parameters necessary for boat detection when 

using visible and MWIR spectral bands.7 The Naval Postgraduate School has also produced some 

research on using polarization to improve contrast for boat detection in ocean settings. One study 

highlights the potential improvements and complications of including polarization measurements.8 

Further effects of polarization on land-based image contrast and measurement techniques are de- 

scribed from Snik and Craven-Jones et al1 

The paper focused on nighttime boat detection, by Buss and Ax,6 compared the performance 

of MWIR and LWIR spectral bands. Although the requirements and specifications outlined are 
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different from this project, the paper still presents a sound methodology. The spectral bands can- 

didates were determined viable based on the long detection range (several miles). Buss and Ax 

found that thermal infrared bands were going to be the only viable options since the reflected-light 

spectra (visible to short-wave IR) show poor target contrast on the ocean surface and nighttime/low 

visibility conditions cannot be overcome and active illumination was not an option. Thermal imag- 

ing provides potential for a higher target contrast over many environmental conditions. The hull 

of ships and many materials commonly found on marine vessels have a higher emissivity than the 

water and reflected sky. Furthermore, any heat sources aboard the vessel such as people, power 

sources, engine signatures, etc. will provide additional signal contrast than the hull of the vessel 

itself. 

For nighttime boat detection, Buss and Ax considered five spectral bands in the thermal IR: 

broadband MWIR (3.4 – 5.0 µm), narrow MWIR (3.4 – 4.2 µm), notched MWIR (3.4 – 4.15 µm and 

4.6 – 4.8 µm), cooled LWIR (8.0 – 10.5 µm), and uncooled LWIR (8.0 – 12.0 µm). It is important 

to note that the narrow MWIR cuts off at the beginning of the CO2 absorption line and the notched 

MWIR uses a filter to cut out the CO2 absorption from 4.2 – 4.6 µm. The cooled vs uncooled 

LWIR refers to the detector type that was used with each band. The uncooled detectors have 

lower sensitivity than the cooled detectors, but they boast low prices and low overhead achieved by 

eliminating the cooler. Four spectral bands, out of the five originally considered(broadband MWIR 

was excluded), were simulated through the Navy Littoral database at a target range of 12 miles and 

atmospheric transmissions were observed. It was shown that the LWIR show higher transmission 

in their highest transmission cases, but faster drop-offs in transmission compared to the narrow 

and notched MWIR bands. These simulation results were considered in the design of the imaging 

system developed for our project. 
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Krapels and Driggers7 used a target discrimination criterion to determine the requirements for 

successful sensor realization. The criterion was used to characterize the performance of existing 

infrared sensors and in the design of new conceptual sensors. Daytime and nighttime performances 

were explored in visible and MWIR spectral bands, respectively. The experimental approach in- 

volved developing a representative target set for small watercrafts and collecting signatures for 

creating a target identification perception experiment. Trained observers then participated in the 

identification experiments and the results of these experiments were used to determine the sensor 

discrimination criteria. The boat signatures were collected during the day in the MWIR (3 – 5 µm), 

LWIR (8 – 12 µm), and visible bands. However, only the MWIR and visible bands were processed 

for this article. A total of 576 signatures were collected and processed consisting of 12 watercrafts 

viewed at 12 aspect angles in each of the two wavelengths bands. 

The results from the observer perception experiment were presented as an average probability 

of identification across all the observers. The probabilities were determined by comparing the 

cycles on target value to the N50 and V50 discrimination criterion. The 50% probability of small 

boat identification (N50) was 4.0 cycles on target in the visible band and 2.8 cycles on target in the 

daytime MWIR band. For primary metric used in the Army and Marine Corps, the 50% probability 

of boat identification (V50) is 14.0 cycles on target in the visible and 10.6 cycles on target in the 

daytime MWIR. In this case, “cycles on target” was converted from cycles per milliradian by 

multiplying the limiting frequency by the target angular subtense.7 The discrimination criteria 

presented in this paper is important to consider when choosing a sensor for the marine target 

tracking system. 

A study done by Cooper et al.8 at the Navy Postgraduate School (NPS), measured the effects of 

polarization on target-to-background contrast measurements. The data was collected using MWIR 
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(3 – 5 µm) and LWIR (8 – 12 µm) with polarizers mounted in either the vertical or horizontal po- 

sitions. The polarization data was taken in pairs with the polarization axis being rotated manually 

between image pair collection. The collected data showed that when the polarizer is oriented in 

its horizontal position, the apparent sea radiance is more effectively reduced. Reducing the sea 

radiance around the target increases the overall contrast between the target and background. This 

result led Cooper et al. to infer that the sea surface radiance is primarily vertically polarized, while 

the target ships were much less so. 

This study also researched the impact of different solar angles by capturing images at different 

times throughout the day from 9am – 9pm. The goal was to show the contribution of solar reflec- 

tions to the overall degree of polarization of the sea surface. It was determined that the morning 

periods provided a more obvious improvement in target-to-background contrast. The horizontal 

polarizer also enhances the interface contrast between the sky and the sea, helping to locate the 

horizon line within the field of view. The results of the study show that man-made targets did 

not show a significant polarization preference, the sea background was predominantly vertically 

polarized, and horizontal polarizers provide a higher contrast between the targets and the sea- 

background. It was also found that LWIR provides a higher horizon and target-to-background 

contrast than the MWIR band. It is expected that the emission polarization will be more prominent 

in the LWIR band and the reflection polarization more so in the MWIR band. 

Polarization data provides information that cannot be obtained using spectral data alone. Po- 

larization properties depend on the surface roughness, shape, and orientation of the object. For 

land-based detection, object-to-background contrast can be significantly improved for objects in 

thermal equilibrium with their environments.1 Figure 1 shows an example of thermal IR cameras 

and two images, one captured in intensity and the other captured with a degree of linear polariza
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tion. 
 

Fig 1 Image of a tank in thermal equilibrium captured with infrared camera. (Left) intensity image. (Right) Degree of 
linear polarization.(Courtesy: David Cenault, Polaris).1 

 
 

Polarization measurement techniques are shared by Snik and Craven-Jones et al based on the 

results from a workshop on “Polarimetric Techniques & Technology”.1 Measurement techniques 

that are designated as being in the spatial domain are considered the most straightforward. These 

techniques include separation of polarization using a polarizing beam splitter (PBS) prior to the 

sensors and using microgrid polarizers to separate each polarization state at each pixel on the de- 

tector. PBS systems can be designed to yield four beams to provide measurements of the Stokes 

parameters (shown in equation 1). These systems allow for instantaneous polarization measure- 

ments but can be bulky and difficult to boresight each sensor. Division of focal plane methods 

through microgrid polarizers create grids of pixels, each pixel (or block of pixels) measuring a dif- 

ferent degree of linear polarization. Focal plane division also provides instantaneous polarization 

methods and removes the issue of bore sighting multiple sensors, however, at the cost of reduced 

spatial resolution. Both techniques discussed here are considered in the prototype design shown in 

section 3.2. 
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2.2 Automatic Tracking Algorithms 
 
Tracking algorithms can take on many different forms. This project focused mainly on Kalman 

filtering-based approaches as they are often the best selection for video-based tracking. Kalman 

based tracking methods including successive clustering,9 optical flow,10 and mean shift tracking11 

are discussed in the following paragraphs. A more in-depth explanation of Kalman filters can be 

found in section 4.3. More complex automatic tracking algorithms can be created using machine 

learning and neural networks.12 These automatic trackers typically require extensive training data 

and excessive computational power. There is no readily available training data for this project so 

automatic tracking algorithms using machine learning were not chosen but are included here for 

completeness. 

In a study done by Bloisi,9 a visual detection method using Haar-like features was applied to 

detect and track boats on the water surface. Harr-like features are digital image features, adapted 

from Harr basis functions, that are used in object recognition. These features are adjacent, same- 

size rectangular regions that categorize subsections of an image. A Harr-like feature based system 

provides ad hoc domain knowledge more effectively than finite training data and operates much 

faster than a pixel-based system.13Using a Harr-like feature based approach requires little compu- 

tational power and therefore provides real-time results. The Haar-like classifier was trained using 

4000 images not containing boats and 1500 images showing different types of boats. The detection 

algorithm highlights the horizon and set a bounding box around each boat. Bloisi et al. found that 

limiting the detection area to below the horizon line decreases the number of false positives in the 

system. Finally, an additional weak classifier was established to recognize boat wakes and further 

increase the detection rate (DR) and reduce the false alarm rate (FAR). The final DR and FAR for 
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this study are 0.928 and 0.251, respectively, surveyed across a set of 100 randomly chosen images. 

In another study done by Bloisi,10 a video surveillance system (ARGOS) for boat traffic mon- 

itoring in Venice, Italy was presented. ARGOS is a four-camera system that surveys a stretch 

of canals 24 hours a day, 7 days a week. The tracking module used with ARGOS relies on op- 

tical flow, blob formation, and clustering. Optical flow considers the correlation between two 

consecutive frames to handle under and over detection, that is detecting fewer and more objects, 

respectively, than the actual number of objects. Optical flow finds the features that are present in 

both frames and creates a motion vector for each of the objects. An optical flow map is then created 

consisting of colored points with colors indicating moving direction. Clustering these optical flow 

maps helps improve detection effectiveness. Under detection is avoided when two boats are close 

but moving in opposite direction and over detection is avoided by discarding blobs with a small 

number of optical flow points. One of the limitations of the optical flow method occurs when a 

boat turns around itself. This could result in the motion vector of the boat drastically changing 

between frames and the boat being discarded for some frames. The tracking method presented in 

this study resulted in a high-count accuracy (0.941), an average position error of about 5 m, and 

average velocity error of about 1 km/hr. 
 

Comaniciu and Ramesh et al11 developed a tracking algorithm using isotropic kernels. The 

target is first represented by an ellipsoidal region within the image. An isotropic kernel then assigns 

smaller weights to pixels farther from the center of the ellipse. The target localization procedure 

then starts from the position of the target in the previous frame and searches in the surrounding 

pixels for the center of the target. Assumptions are made that require that the target position does 

not change drastically from the initial frame, which is most often valid for consecutive frames. This 

kernel-based target localization method was then integrated with a Kalman filtering framework. 
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The mean shift procedure finds the root of the gradient as a function of location. This corresponds 

to a similarity surface between target locations. When the Kalman filtering framework is applied 

the similarity surface is normalized and represented as a probability density function. Results were 

shown involving the tracking of a person’s hand. The algorithm was able to track the target hand 

even in the presence of complete occlusion by a similar object (the person’s other hand). This 

result is very promising for our project as there can be many instances where boats we want to 

track cross paths and/or become occluded by other boats. 

Over the last few years convolutional neural networks (CNN) have emerged as a powerful 

machine learning tool. CNNs have made significant improvements in computer vision problems, 

including object detection. An ATR system, developed by Nasrabadi,12 based on deep convo- 

lutional neural networks (DCNN) was used to detect targets in forward looking infrared (FLIR) 

scenes. Two scenes used for system evaluation were ground-based and taken during the summer 

in the Arizona desert and in the spring in central California. Targets in these datasets were shot at 

distances ranging from 688 to 3403 meters. The DCNN was made up of two networks: the first 

network is responsible for target detection and feed the results to the second network where targets 

are classified into their target types and false alarms from the first network are rejected. 

The DCNN was trained using a dataset of approximately 5,000 images for 100 epochs (passes 

on entire training dataset) in batches of 200. Training was an iterative process based on the per- 

formance of the network on the validation dataset. The DCNN was sent through three training 

processes before being evaluated on the test scenes in Arizona and California. Detection results 

were obtained before and after the second network rejected the false alarms received from the first 

network. Prior to false alarm rejection the DCNN achieved a probability of detection of 88% for 

0.35 false alarms per frame in the California dataset and 78% for 0.5 false alarms per frame in 
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the Arizona dataset. After false alarm detection in the second network the detection probabilities 

significantly improved, reaching 99.8% for 0.35 false alarms per frame in the California dataset 

and 97.9% for 0.5 false alarm per frame in the Arizona dataset.   It was expected that the Ari- 

zona dataset would prove to be the more difficult test for the DCNN as the images were taken 

in FLIR and the target-to-background temperature difference was less than that in the California 

datasets. This ATR system using DCNNs was shown to improve target detection and recognition 

probabilities when compared to previous state-of-the art systems. However, since this system was 

only evaluated on pre-collected datasets, there is no way to know how the tracking system would 

perform with real-time data collection and analysis. 

 
3 Multispectral/Hyperspectral Polarimetric Imaging 

 
3.1 Background 

 
Multispectral polarimetric imaging provides images with multiple spectral bands and polarization 

information. Multispectral imaging (MSI) and Hyperspectral imaging (HSI) are described and a 

comparison between the two techniques is made in the following paragraphs. Further, the addition 

of polarization components and how that information can complement the spectral data will be 

discussed. MSI describes methods of spectral imaging where the obtained images contain multiple 

(as many as tens) spectral bands. Often the spectral bands of interest are not fully contained within 

the visible spectrum, covering parts of the ultraviolet (UV) and infrared (IR) regions. As shown in 

section 3.2, the multispectral imaging system designed for this project contains five spectral bands 

ranging from the visible to thermal IR bands. The limited number of spectral bands results in a low 

spectral resolution and may not collect all the information needed for small object detection. In 

this case, small objects are relative to the ground sampling distance (GSD) of the imaging system. 
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A large GSD can result in the objects of interest being embedded in a single pixel and, therefore, 

difficult to resolve with limited MSI data. The superior spectral resolution of HSI can improve 

detection ability for both sub-pixel and larger objects. 

HSI sensors make use of many contiguous spectral bands to expand on the capabilities of 

multispectral imaging sensors. The high spectral resolution allows HSI sensors to discriminate 

between more subtle objects and features, when compared to multispectral imaging sensors. It 

is intuitive to think of HSI as an extension of multispectral imaging, but in reality, it is not that 

simple. Chang14 came up with a good analogy to relate the two techniques. Chang describes the 

difference between MSI and HSI to be like the differences between real analysis and complex 

analysis in mathematics. The intuitive interpretation that multispectral imaging is a special case 

of hyperspectral imaging is as incorrect as thinking that real analysis is a special case of complex 

analysis. 

Because of the increased number of spectral bands, an HSI pixel contains more data than a 

multispectral imaging pixel. Multispectral pixels must rely on surrounding image pixels to provide 

spatial correlation and information to help make up for the limited spectral information, hence, 

why multispectral image processing techniques are spatial domain based. HSI pixels can contain 

information from targets that are subpixel size and, therefore, cannot be identified by visual in- 

spection. Subpixel targets may not be detectable using the spatial domain-based image processing 

techniques developed for multispectral imaging. For this reason, hyperspectral image processing 

techniques generally involve target-based detection instead. Examples of hyperspectral targets may 

include objects like drug/smuggler trafficking, military vehicles, or in this case FAC/FIACs. 

Polarization is an important physical quantity that describes how light interacts with an object 

during reflection, scattering, and transmission. A full description of polarized light can be seen in 



19 
 

equation 1. 
 
 

𝑆𝑆 = �
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𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐼𝐼𝑅𝑅𝐿𝐿𝐿𝐿

� (1) 

 

where I0, I45, I90, I135 are the intensity values of the linear polarization components at the angles 

denoted in the subscripts and ILHC and IRHC are the intensity values of left hand and right-hand 

circular polarization components. The S0 and S3 components of the Stokes vector are independent 

of the coordinate system, but the S1 and S2 components are dependent on the observation plane 

orientation. This polarization information can be measured using rotating polarizers, beam split- 

ters, or focal plane array (FPA) division. For this project, beam splitters and FPA division is being 

investigated and will be discussed in more detail in section 3.2. It is necessary to acquire multiple 

images in different polarization angles to improve the object discrimination capabilities. 

Polarization imaging techniques have been shown to improve signal-to-noise ratio and image 

contrast when compared to conventional imaging methods.15 The addition of polarization measure- 

ments can provide complementary information about how the imaged object is reflecting light. The 

four polarization components I0, I45, I90, I135, provide information about the material properties 

and orientation of the object. The relationship between reflection coefficient values and incidence 

angle can be shown for 0- and 90-degree linear polarizations. This relationship is determined by 

equations 2 and 3. Where n1 is the refractive index of the incident medium (marine air, in this 

case), n2 is the transmissive medium (sea water), θ1 is the angle of incidence, and θ2 is the angle 

inside the second medium. The calculated reflection coefficients are shown in figure 2. Figure 2 

shows that significant differences exist between the reflection coefficients of the two polarizations. 
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Fig 2 Reflection coefficient versus angle of incidence (from surface normal) for an air-water interface 

 
The expectation is that capturing images in multiple polarization angles will improve detection 

and tracker performance. Multiple polarization images will be used in the tracking algorithm for 

motion detection and spatial analysis. A more in-depth description of this process can be found in 

section 4.4. 

 
𝑅𝑅0 = �

𝑛𝑛1 cos(𝜃𝜃1) − 𝑛𝑛2 cos(𝜃𝜃2)
𝑛𝑛1 cos(𝜃𝜃1) + 𝑛𝑛2 cos(𝜃𝜃2)�

2

 (2) 

 
𝑅𝑅90 = �

𝑛𝑛1 cos(𝜃𝜃2) − 𝑛𝑛2 cos(𝜃𝜃1)
𝑛𝑛1 cos(𝜃𝜃2) + 𝑛𝑛2 cos(𝜃𝜃1)�

2

 (3) 

 

3.2 Statements on Optical Design 
 
The goal of the imaging system is to be able to detect small boats with a high degree of confidence 

at a distance of at least 10 km in noisy marine environment.16 The specific requirements of the 

imaging system can be seen below. 

 
1. Spectral Response: Visible to Long Wave Infrared (LWIR) 

 
• Visible: 0.4 - 0.7 µm 
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• Near Infrared (NIR): 0.7 - 0.9 µm 
 

• Short Wave Infrared (SWIR): 0.9 - 1.7 µm 
 

• Mid Wave Infrared (MWIR): 3.0 - 5.0 µm 
 

• Long Wave Infrared (LWIR): 8.0 - 14 µm 

 
2. Ability to switch between at least three field of views (FOVs); 

 
• Narrow: Less than or equal to 3 degrees x 3 degrees 

 
• Medium: 8 degrees x 8 degrees 

 
• Wide: 15 degrees x 15 degrees 

 
3. Boresighted and properly aligned sensors and FOVs 

 
The three field of view (FOV) requirements were met by calculating the effective focal length 

of the lens used to image the object onto the detectors. This lens will need a variable focal length 

to be capable of switching between three FOVs. This calculation and a depiction of the problem 

can be seen in equation 5 and figure 3, respectively. To achieve the three required system FOVs of 

3x3 degrees, 8x8 degrees, and 15x15 degrees, the effective focal length of the focusing lenses must 

be range from 396 mm to 78 mm. The system FOVs can be related to the minimum small boat 

detection criterion found in Krapels and Drigger’s paper7 described in section 2.1. The reported 

spatial frequencies that resulted in a 50% detection rate were 14.0 cycles on target in the visible and 

10.6 cycles for MWIR in the daytime. Using equation 6, we can calculate the minimum detector 

FOV to verify that the chosen detector size will be sufficient.  

 
𝐹𝐹𝐹𝐹𝑉𝑉 = 2 tan−1 �

𝐻𝐻
2𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒

�  
(4) 
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Fig 3 Block diagram of focusing lens and detector 
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The use of multiple bands is necessary to improve imaging performance as imaging in littoral 

waters can prove to be difficult. The presence of aerosols in the water/air boundary layer,17 chang- 

ing absorption of water as a function of wavelength,18 and the presence of marine life that may emit 

radiation in the bands of interest complicate the imaging process. As stated in section 2.1, studies 

have been done to show that the use of multiple wavelength bands helps improve imaging perfor- 

mance in a marine environment. Shaw and Burke,19 discuss how the selection of useful bands is 

dependent on the scattering and fluctuations of the atmospheric transition in the environment of 
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Fig 4 Plot of Atmospheric Opacity (%) versus Wavelength (m) with system spectral regions highlighted 
 
interest. 

 
The spectral bands chosen for this project are shown in list in section 3.2. These spectral bands 

were chosen by the Navy based off the ability to transmit through the atmosphere. Figure 4 shows 

the opacity of the atmosphere as a function of wavelength. The region of this plot that is of interest 

ranges from roughly 0.5 µm to 14 µm; the spectral bands being used are highlighted. Each spectral 

band offers different information that can be utilized in small boat detection. The visible spectrum 

can be used to filter out clouds, smoke, and haze (blue band) and capture ‘true-color’ images, the 

NIR and SWIR bands are strongly absorbed by water creating a contrast difference between the 

boat and the ocean surface, and thermal IR (MW and LWIR) are used to detect heat signatures 

coming from the boats. It is clear, from figure 4, that these spectral bands have experience high 

transmission through the atmosphere. 

As mentioned in section 3.1, light can be separated into its polarization components using rotat- 

ing polarizers, polarized beam splitters, or FPA division. Issues arise with each of these methods, 

as with any design choices to be made in optics. The rotating polarizer may not move fast enough 

for proper data acquisition and result in target movement between polarization images ; beam split- 
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Fig 5 Plan view (left) and cross sectional view (right) on Sony’s IMX250MZR sensor. Each pixel’s polarizing filter 
(C) is coated with an anit-reflective layer (B) and is positioned between the microlens (A) and the light sensitive 
photodiode (E). Image from Sony Corporation2 

 
ters require the use of multiple detectors and require careful alignment and matched FPAs; FPA 

division allows simultaneous collection and simplified alignment at the cost of image resolution. It 

was determined that the FPA division method will be the most effective way to meet the specified 

requirements. FPA division was chosen for the visible and NIR bands to reduce system space by 

reducing the number of components by six sensors and four beam splitters (when compared to di- 

vision of amplitude method), while still providing sufficient resolution to effectively perform target 

detection. Sony Corporation (Japan) released a CMOS sensor with integrated polarizers.2 Each 

individual pixel has its own polarizing filter, at polarization angles of 0, 45, 90, and 135 degrees. 

The filters are arranged in two-pixel blocks as shown in figure 5. 

Sony announced a 12.3MP version of this sensor that will allow 1K x 1K imaging of the 

first three Stokes components (S0, S1, S2) in a single camera. The CMOS camera can be used 

for polarization separation in the visible and NIR bands. As of late, a camera with integrated 

polarizers has not been found to work in the SWIR, MWIR, and LWIR bands. For these spectral 

bands, polarized beam splitters and multiple (4) cameras will need to be used. The preliminary 

design for this configuration can be seen in figure 6. Figure 6 shows a ‘flattened’ view of the four- 

camera measurement system for a single spectral band. The actual configuration will have fewer 
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Fig 6 Preliminary Zemax optical model of the five band imaging system 
 
beam splitters and be folded in three dimensions to minimize the overall volume. 

 

4 Automatic Target Recognition (ATR) 

 
4.1 ATR Background 

 
Automatic target recognition (ATR) is the ability of an algorithm to recognize objects based on 

data obtained from sensors.   ATR minimizes the need for a human operator to manually select 

the desired targets in image data. Removing manual selection from target recognition process 

allows for real-time tracking. There are many methods that can be used for target recognition, 

some can be seen in section 2.2. The following sections will also go into more detail on two more 

detection methods that are being used to detect FAC/FAICs in the ocean. These detection methods 

are Kalman filtering and Reed – Xiaoli anomaly detection. 

 
4.2 Data Fusion 

 
Initial processing must take place to align and normalize data collected across multiple sensors 

with different pixel counts, densities, and sensitivities. These basic operations can be seen in the 

left-hand column in figure 7. After proper alignment and normalization, the data can be ‘fused’ 
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Fig 7 Preliminary Data Fusion and Analysis Model (courtesy of Dr. Mark Neifeld) 

 
for single-frame spatial analysis. . Fusion of the spectral bands and polarization channels provides 

the greatest contrast for shape detection. Each of the polarization channels are analyzed sepa- 

rately before being combined to determine how tracking performance is affected. The right-hand 

column of figure 7 shows how the target detection loop will occur and introduces how the target 

detection method will be tolerant to the boat wake due to the adaptive data fusion process that was 

implemented. The wake-aware tracking accounts for multiple targets and viewing geometries to 

determine points of expected loss of tracking. 

 
4.3 Kalman Filtering 

 
A Kalman filter is a type of state observer that is used for stochastic systems (rather than deter- 

ministic systems). Kalman filtering is a two-step process that involves a prediction of some mea- 

surement and updating predictions based on said measurements. Kalman filtering is a recursive 

algorithm so these updated models are then used for the next states predictions and the algorithm 

repeats itself. The prediction of states and the measurements are represented as probability density 
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functions (PDF) with normal distributions and specified means and variances. A Kalman filter 

optimizes the extent to which the predicted estimate and the measurement are to be trusted in the 

updated model. The extent of the confidence depends on the variance of each distribution, smaller 

variance results in a thinner PDF and a higher probability of landing at the mean of the measure- 

ment. Once the weights of the predicted state estimate and the measurement state are determined, 

the two PDFs are multiplied together to create an updated PDF, also with a normal distribution, 

with a mean somewhere in between the previous values and a smaller variance. Kalman filters are 

often the best selection for video-based tracking because they provide a linear solution for discrete, 

(frame rate) stochastic, dynamic processes. The time evolved Kalman filter can be described by 

discrete linear equations (eqns. 8 and 9). 

 
x(t + 1) = A ∗ x(t) + B ∗ u(t) + w(t) (8) 

z(t) = C ∗ x(t) + D ∗ u(t) + v(t) (9) 

 
Where x is the process state vector, u is the control vector, z is the measurement vector obtained 

by a tracking algorithm, A is the state transition matrix, B is the state control matrix, C is the 

observation matrix, D is the measurement control matrix, w is the noise associated with the state, 

v is the noise associated with the measurement, and Q and R are the diagonal covariance matrices. 

The process state vector x contains variables related to the object translation, scale and orientation, 

and its velocity and acceleration.20 

As stated previously, Kalman filtering is a recursive algorithm that consists of two steps: state
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prediction and measurement update. The state prediction phase (equations 10 and 11) predicts 

the state vector at a time x, and the error matrix P. It important to remember that the state vector 

and error matrix are conditional probability predictions given the observations obtained at t-1. 

Equations 10 and 11 show how the state predictor phase is determined. 

 
x(t|t − 1) = A ∗ x(t − 1|t − 1) (10) 

P (t|t − 1) − A ∗ P (t − 1|t − 1) ∗ A + Q (11) 

 
where x(t) is the state at frame t, x(t|t−1) and x(t−1|t−1) are a priori and a posteriori estimation 

of the state vector, P (t|t − 1) and P (t − 1|t − 1) are the a priori and a posteriori estimation of the 

error matrix, and E is the expected value. The measurement update phase corrects the state vector 

x(t|t − 1) value and the error matrix P (t|t − 1) values by accounting for the z(t) measurement 

obtained by the tracker at each frame as shown in equations 12 - 14, where K(t) is the Kalman 

gain at frame t. 
 

t T −1 
K(t) = P (t|t − 1) ∗ C  ∗ (C ∗ P (t|t − 1) ∗ C  + R) (12) 
 
 
 

x(t|t) = x(t|t − 1) + K(t) ∗ (z(t) − C ∗ x(t|t − 1)) (13) 
 
 

P (t|t) = P (t|t − 1) + K(t) ∗ C ∗ P (t|t − 1)) (14) 
 
 

Kalman filtering has been the foundation for several marine tracking algorithms including succes-
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sive clustering,21 optical flow,10 mean shift tracking,11 histogram matching,22 and active contour 

tracking.23 Each of these listed methods have their strengths and weaknesses based on single band 

imaging typically used in marine tracking. 

It is common for FAC to engage in tactics that intentionally try to obscure the true number 

and/or position of boats. The obscuration of boats could lead to a collapse of the Kalman filter 

update phase as no new measurements on the ‘hidden’ boats can be made. The recursive algo- 

rithm would then have to be reset resulting in significant delays in tracking. It is hypothesized 

in this project that the multiple wavelength bands and polarization inclusion will help prevent the 

breakdown of tracking algorithms because of boat obscuration. 

 
4.4 Reed – Xiaoli Anomaly Detection 

 
Moving targets can be located by detecting statistical deviations in pixels across image frames (i.e., 

pixel changes over time). Here, it is assumed that the variations in the value of a background pixel 

are due to temporal noise. The temporal noise is assumed to be additive white Gaussian noise 

(AWGN) with a normal distribution of background pixels. As an object moves across the window 

of pixels being observed, the quantity shown in equation 15 will be large. 

 

log[pb(νk 
1 

)] ≈ − 
2 

(νk — µ)T Σ−1(νk — µ) (15) 
 

pb(νk) = N (µ, Σ) (16) 
 

This equation is the characteristic equation of a Reed – Xiaoli anomaly detector (RXD) where 
 
pb(νk) is the probability that a pixel will be a part of the background, νk is a vector with the 
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Fig 8 Tracking algorithm system architecture (credit: Dr. Abhijit Mahalanobis) 

 
values observed at the k-th pixel over several frames of data, µ is the mean value of the AWGN 

distribution, and Σ is the covariance of the AWGN distribution. The log quantity reaches its 

maximum when the pixel in question has a low probability of being a background pixel. A pixel has 

a low probability of being a background pixel when the variations in pixel intensity deviate from 

the AWGN distribution. The temporal analysis is done by arranging a pipeline of multiple frames 

for each polarization and spectral band. The RXD is then applied to detect the object motion over 

the set of frames. A depiction of this system architecture is shown in figure 8. An RXD anomaly 

score is then given to each of the channels and the channels are added to maximize probability of 

detection. Detection results will be discussed in section 4.5. It is also noteworthy to mention that 

single frame spatial analysis is done with the combined channels to perform shape detection. This 

process supplements the RXD motion detection and allows for increased detection probability. 

 
4.5 Detection Results 

 
Receiver operating characteristic (ROC) curves were generated for each of the separate channels. 

Figure 9 shows the ROC curves resulting from the RXD algorithm. It is clear the two of the 

polarization channels (channels 2 and 3) outperform the other two channels. A frame from each of 

the polarization channels is shown in figure 10. Channels 2 and 3 show a higher contrast between 
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Fig 9 ROC curves from RXD results (credit: Dr. Abhijit Mahalanobis) 

 
 

Fig 10 Single Frames from each polarization channel (1-4) and same spectral band 
 
the ocean and the boats than channels 1 and 4, so it can be expected that the tracker will have an 

easier time detecting the boats in channels 2 and 3. Figure 9 also shows an ROC curve generated for 

the combined channels. The ‘combined’ curve is obtained by adding the RXD scores from each of 

the channels, hence why it is pulled up to the highest performing polarization channel. Currently, 

it is difficult to determine whether combining each of the polarization channels is beneficial in 

improving tracker performance. 

Motion detection was performed in two scenarios: with and without single frame spatial analy- 

sis. When tracking was done with detection based only on RXD scores, the average track duration 

averaged 35%. This means that 35% of the total boat path was recognized by the tracking algo- 

rithm. When tracking was done with detection based on the product of RXD scores and spatial 

analysis scores, the average track duration increased to 55%. While it is not clear whether adding 

the polarization channels improves tracker performance, it is clear that motion analysis weighted 

with spatial analysis scores do improve tracker performance. 
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5 Verification via Ground Truthing 

 
5.1 Ground Truth Data Background 

 
Ground truth data contains a set of images, a set of labels on the images, and a model of defining 

the detected objects. This model should specify the count, location, and other key features about 

the detected objects. Carefully selected ground truth data provides a robust method of measuring 

a tracker algorithm’s precision and accuracy. Being able to properly understand performance and 

accuracy of tracking algorithms is the primary purpose for establishing ground truth data. Ground 

truth data can vary for different tasks. Krig24 gives the examples of 3D image reconstruction and 

face recognition, one must recognize the different attributes of the ground truth data for each task. 

For face recognition, some of the ground truth data may require segmentation and labeling to define 

face location and orientation, size of face, and physical characteristics such as emotion, gender, and 

age. On the other hand, 3D reconstruction may need the raw pixels in the images and a reference 

mesh or point cloud for ground truthing. 

There are several categories that describe ground truth datasets:24 

 
• Synthetic produced: images are generated from computer models or renderings. 

 
• Real produced: a video or image sequence is designed and produced. 

 
• Real selected: real images are selected from existing sources. 

 
• Machine-automated annotation: feature analysis and learning method are used to extract 

features from the data. 

• Human annotated: an expert defines the location of features and objects. 
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• Combined: any mixture of the above. 
 

For this project, a ‘real selected’ ground truth dataset was created and used for validation of the 

tracking algorithm. This biggest challenge with using a real selected dataset is that a person must 

spend the time to create that dataset. This process is very tedious and can take many hours as, in 

this case, there are hundreds of frames and multiple objects to be selected on each frame. Since 

the collected data and tracking algorithm were developed specifically for this project, there are no 

previously existing ground truth datasets that can be used. A new ground truth dataset had to be 

established to effectively measure the performance of the tracking algorithm. A tool was developed 

using MATLAB App Designer™ to establish the ground truth dataset used in this project. 

The established ground truth data is used to quantitatively measure the accuracy of the de- 

veloped tracking algorithm. Quantitative accuracy measurements are accomplished by comparing 

the pixel coordinates for each object, provided by the tracking algorithm, to the pixel coordinates 

specified in the ground truth data. This analysis can be used to generate an error matrix and pin- 

point when/where location errors are most often occurring. Along with monitoring location errors, 

ground truth data can be used to determine false positive and false negative occurrences. False 

positives occur when the tracking algorithm detects an object that is not actually an object of 

interest and false negatives occur when the tracking algorithm does not detect an object of interest 

at all. Properly established ground truth data will contain information from each and every object 

of interest in the video in question, allowing us to determine when/where errors of commission 

and omission occur. 
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Fig 11 Screenshot of the GUI from the developed Ground Truth App 

 
5.2 Developed Ground Truth Tool 

 
It was necessary to develop a tool that can be made easily accessible to a team and provide an 

intuitive user interface to make the ground truthing process as efficient as possible. To accomplish 

this, a ground truthing app was created in MATLAB App Designer™. A screenshot of the graphical 

user interface (GUI) can be seen in figure 11. There are buttons to load in the video files in need 

of ground truth datasets, start the selection process, undo a selection, save the corresponding data, 

and buttons used to select and confirm object selection. Once object selections are confirmed, the 

frame number the object is located on, the object number, and the X and Y coordinates of the 

object (in pixel values), are presented in the table to the left of the image. 

Figure 12 shows the different tabs available in the GUI. There is a “Point Selection” tab that 

is used for the manual object selection and a “Review” tab that is used to view the selected points 

plotted on top of a frame from the selected video. The “Review” tab is used to ensure that all 

selected points came out as expected and there are no obvious errors. The app also has the option 
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Fig 12 Screenshot of the GUI from the developed Ground Truth App with Tab selection highlighted 

 
to skip a certain number of frames that is deemed appropriate by the user. This can be used, for 

example, when the objects do not show obvious movement in consecutive frames. This feature 

helps eliminate redundant data and speeds up the ground truth process. In case the user defines 

a frame increment that is too large the app has a built-in linear interpolation function that will 

estimate the position of each object on the frames that were skipped. The interpolated points will 

be plotted as stars, while the selected ground truth points will be plotted as filled in circles on the 

“Review” plot. The hope is that the “Review” plot will provide the user with the information to 

decide if a finer frame increment is necessary or not. A screenshot of the “Review” plot is shown 

in figure 13. 

It is important to note that the data presented in the table in the “Point Selection” tab is not the 

same as the data presented in the “Review” tab. The data presented in the “Point Selection” tab 

consists only of the manually selected data points, while the data presented in the “Review” tab 

consists of the manually selected data points and each of the interpolated points. To differentiate 
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Fig 13 Screenshot of the ”Review” tab after point selection is finished 

 
the points that were manually selected from the points that were interpolated, the cells that con- 

tain frames where selection occurred are highlighted green. A screenshot of the two tables with 

example data is shown in figure 14. 

The point selection process involves two button presses: 1. To initiate the point selection 

(presumably after all necessary zoom/pan have occurred to accurately select boat position) and 2. 

To confirm that the selected point is accurate and can be entered into the table. If the initial point 

selected is an error, a new point can be selected (before confirmation of the first) to replace the 

prior selection. Selection can take place as many times as needed before confirming the proper 

data point. If the user finds themselves in a position where they have confirmed a data point that 

they did not wish to confirm, there is an “Undo” button that will restart the selection process for the 

current frame. The “Undo” button will clear all the selected/confirmed points from the data table 

for that frame and the user will have to start again. It is hoped that the user will rarely have to use 

this function as they are given the option to re-select an infinite number of times before confirming 

the selected point. 
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Fig 14 Screenshot of the tables on the ”Point Selection” tab (left) and ”Review” tab (right) 

 
To provide further guidance in point selection, the location of each object from the previous 

frame is plotted on the current frame. Each object is assigned a number (based on click order) and 

a corresponding color that can be found in the tables in the lower right-hand corner of the GUI. 

Plotting the previous location of each object is expected to provide a trajectory for each of the 

objects and assist in keeping the initial click order. Each of the datasets containing just the selected 

points and both the selected and interpolated points can be saved as ASCII text files. These files 

can be loaded into Excel™ or MATLAB™ for processing. 

 
6 Conclusions 

 
A general layout of the multispectral polarimetric imaging system has been presented along with 

a high-level description of the accompanying tracking algorithm. Within the optical design, the 

importance of the chosen spectral bands, focal plane resolution, and polarization was described. 
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The spectral bands chosen for this prototype: visible (0.4 – 0.7 µm), NIR (0.7 – 0.9 µm), SWIR (0.9 
 
– 1.7 µm), MWIR (3.0 – 5.0 µm), and LWIR (8.0 – 12.0 µm). These bands show high atmospheric 

transmission and provide necessary contrast data for target discrimination and tracking. It was also 

noted that the minimum pixel count for the focal plane array must be at least 1K x 1K for accurate 

FAC detection at 10 km at the widest FOV (15 degrees). Finally, the importance of polarization 

in the different bands to increase sensitivity in boat wakes and features was shown. The tracking 

algorithm was developed using Kalman filtering and (RXD) with verification of results produced 

via the developed ground truth tool. Detection and tracking results were also reported, and it was 

found that including single-frame spatial analysis along with motion detection improved overall 

tracking performance (from 35% track duration to 55%). The developed ground truth tool provides 

an effective method of establishing ground truth data for the collected images. The established 

ground truth data will be used to quantitatively analyze the performance of the tracking algorithm 

and help determine where tracking issues may occur. This tool achieves the goal of being easily 

accessible by being a stand-alone desktop app that can be downloaded and ran on any computer. 
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APPENDIX A – TABLE OF ACRONYMS  
 

Acronym/Initialism Expression 
FAC/FAIC Fast Attack Craft/Fast Attack Inshore Craft  
F2T2EA  Find Fix Track Target Engage Assess  
EO/ IR  electro optical/ infrared  
NIR  near infrared  
SWIR  shortwave infrared  
MWIR  midwave infrared  
LWIR  long wave infrared  
PBS  polarizing beam splitter  
DR detection rate  
FAR  false alarm rate  
ATR  automatic target recognition  
CNN  convolutional neural network  
DCNN  deep convolutional neural network  
FLIR  forward looking infrared  
MSI  multi spectral imaging  
HSI  hyperspectral imaging  
GSD ground sampling distance  
FPA focal plane array  
FOV field of view  
CMOS  complementary metal oxide semiconductor  
PDF  probability density function  
AWGN  additive white gaussian noise  
RXD Reed – Xiaoli anomaly detection  
ROC receiver operating characteristic  
GUI  graphical user interface  
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