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ABSTRACT

In the search for habitable extrasolar planets, the ability to separate and de-

tect the dim planet’s light from its much brighter host star is paramount. The

inherent polarization properties of optical systems can lead to small but sig-

nificant deviations from ideal imaging behavior, possibly hindering the ability

of that system to detect exoplanets. In this work, the polarization aberrations

in a telescope/coronagraph optical system are modeled with polarization ray

tracing software. The effect of these polarization aberrations on the corona-

graph’s ability to suppress on-axis starlight is analyzed, and an algorithm for

mitigation of some of the polarization aberrations is provided.

This dissertation lays the foundation for modeling and analyzing polarization

aberrations in telescope/coronagraph systems and shows that, in the absence

of adaptive optics, both isotropic and anisotropic polarization aberrations de-

grade a coronagraph’s ability to suppress starlight. The contrast is a measure

of on-axis starlight suppression. With isotropic polarization aberrations, the

contrast is degraded by two orders of magnitude relative to the ideal, polariza-

tion aberration-free case. Anisotropy modeled on the primary mirror further

degraded the contrast by two orders of magnitude relative to the isotropic

case. Modeling polarization aberrations shows how coatings negatively affect

the possible contrast of a coronagraph.
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CHAPTER 1

Introduction

NASA astrophysics asks three big questions[1]: how does the universe

work? How did we get here? Are we alone? In an effort to find an-

swers these questions, four large mission concepts studies[2] (LUVOIR, HabEx,

OST, and Lynx) have been undertaken for the 2020 Decadal Survey. These

mission concepts will strive to explore neighboring planetary systems around

sun-like stars, explore the growth of black holes and galaxies, and probe the

origins and underlying physics of the cosmos across a broad range of wave-

lengths of light. One of the common characteristics of each of these mission

concepts is the assessment of habitable conditions of planets orbiting distant

stars (exoplanets).

To date, nearly 4,000 exoplanets have been discovered[3]. These planets range

from large, gas giants to small, rocky worlds. As telescope technology ad-

vances, so too does our ability to detect fainter exoplanets. In the search

for extra-terrestrial life, this ability to detect fainter earth-like planets in the

habitable zone around distant stars is indispensable. Current techniques for

detecting exoplanets include radial velocity, astrometry, transit, gravitational

microlensing, and direct imaging[4, 5, 6, 7, 8, 9, 10, 11].

The radial velocity method uses Doppler measurements of a star to calculate

the period, distance, and shape of orbit and the mass of the orbiting planet.
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Astrometry uses plane of sky variations in a star’s position to yield the true

inclination and orientation of a planetary orbit. Transit detection is possible

when an exoplanet transits across our line of sight of a star when making its

orbit. In this case, the star will exhibit brief, periodic fluctuations in intensity

which signals the presence of an orbiting planet. Gravitational microlensing

detects planets by the direct gravitational perturbation of a background source

of light by a foreground planet. Direct imaging of exoplanets seeks to separate

and directly detect the light coming from an exoplanet from its parent star.

As opposed to the indirect imaging techniques, direct imaging of exoplanets

allows for the acquisition of the spectra of the exoplanets. Spectroscopy of an

exoplanet provides one of the only feasible ways to determine the habitability of

an exoplanet in a star’s habitable zone. Thus finding earth-like exoplanets and

characterizing their atmospheres in the search for extra-terrestrial life depends

on accurate and precise direct imaging techniques.

There are two main techniques to disentangle a parent star’s photons from an

exoplanet’s photons: a coronagraph and a starshade. Coronagraphs[12, 13]

act to remove the parent star’s light inside of a telescope while starshades[14]

fly outside of the telescope and externally block the parent star’s light[15].

These instrument have differing capabilities and limitations, and some current

telescope designs utilize a hybrid system that uses both a coronagraph and

starshade[16]. Whether through a starshade, coronagraph, or combination

thereof, the ultimate goal is to directly image a distinct image of the exoplanet

orbiting a distant star and examine its spectra for signs of the ability to support

life[17].
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1.1 Motivation and Research Objectives

Current coronagraph designs are planned to allow future space based telescopes

to directly image faint earth-like exoplanets, whose reflected light is around 10

billion times fainter than the parent star[11]. With such extreme starlight

suppression, any small source of error in the telescope can potentially limit the

telescope/coronagraph system’s ability to detect an exoplanet. One such source

of error that tends to be overlooked is the inherent polarization properties of

the surfaces that make up an optical system. According to Breckinridge et.

al[18], “[t]he point spread function for astronomical telescopes and instruments

depends not only on geometric aberrations and scalar wave diffraction but also

on those wavefront errors introduced by the physical optics and the polarization

properties of reflecting and transmitting surfaces within the optical system."

The research objective of this dissertation is to seek answers to these questions:

do polarization effects limit a telescope’s ability to detect exoplanets? And

what can be done about polarization aberrations to compensate for or mitigate

their effects?

1.2 Methodology

To address these issues, a way to model the effects of polarization in opti-

cal systems and coronagraph designs is needed. Additionally, the design of a

current or multiple current telescope and coronagraph designs are essential.

The modeling and analysis software this dissertation utilizes is Polaris-

M[19, 20, 21], polarization ray tracing software that incorporates a suite of

optical analysis functions written in Wolfram’s Mathematica. Polaris-M was
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developed from the ground up at the University of Arizona to incorporate

many advanced polarization analysis features. It has the added advantage of

residing in Mathematica, giving Polaris-M access to the vast functionality of

Mathematica.

While Polaris-M is fully capable of modeling the polarization effects of an

optical system via polarization ray tracing, some coronagraph effects require

diffraction algorithms. So in conjunction with Polaris-M, coronagraph model-

ing code is implemented in MATLAB[22, 23].

For current telescope and coronagraph designs, the Jet Propulsion Laboratory

provided the optical layout for their habitable exoplanet observatory and the

designs for the coronagraph it will use. Additionally, Goddard Space Flight

Center provided the optical layout for their large UV, optical, and infrared

surveyor mission.

By utilizing Polaris-M’s polarization ray tracing, coronagraph modeling code,

and the provided telescope designs, this dissertation analyzes the effect of polar-

ization in coronagraph systems. The steps are: (1) import the optical systems

provided into Polaris-M, (2) use Polaris-M’s polarization ray tracing functions

to determine polarization effects in the optical system without the corona-

graph, (3) use diffraction algorithms developed in MATLAB with Polaris-M

inputs to determine polarization effects with the coronagraph, and finally (4)

compare the results from the diffraction algorithms with polarization consid-

erations versus the outputs with no polarization considerations. The analysis

presented in this dissertation shows how coatings negatively affect the contrast

of a coronagraph. Therefore, polarization should be taken into account when
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designing adaptive optics and wavefront control lest the faint exoplanet’s signal

be masked by polarization effects.

1.3 Dissertation Outline

This dissertation is broken into seven parts. Chapter 1 (this chapter) intro-

duces the topic of this dissertation and provides some general background in-

formation. Chapter 2 provides the theoretical groundwork necessary to under-

stand polarized light, polarization ray tracing, and polarization aberrations.

It also defines two polarization properties, diattenuation and retardance, and

details how Polaris-M is used. In chapter 3, the basic foundation of image for-

mation in an imaging system is covered, an explanation of how coronagraphs

operate is supplied, and a detailed example using a specific type of corona-

graph, a vector vortex, is given. Chapter 4 analyzes the optical layouts for the

two real optical systems, HabEx and LUVOIR, provided for this dissertation.

The analysis of these systems in Polaris-M is explained, and calculation of the

contrast from the coronagraphs (with and without polarization aberrations) is

provided. Chapter 5 talks about mitigation techniques for polarization aber-

rations and presents an alternate optical layout to minimize the polarization

aberrations in the HabEx system. In chapter 6, Polaris-M is utilized to calcu-

late longitudinal chromatic aberration from dielectric coated reflecting surfaces.

Lastly, chapter 7 is the concluding chapter.
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CHAPTER 2

Polarization and Polaris-M

This chapter gives a brief introduction to the formalism used to describe po-

larization, defines a few key parameters associated with polarization, and de-

scribes a few of the key functionalities of the polarization ray tracing program,

Polaris-M.

2.1 Polarized Light

Electromagnetic radiation travels as a wave, where the electric and magnetic

portions of the field each oscillate transverse to both each other and the direc-

tion of propagation of the light [24]. The simplest light wave is the plane wave,

which has an electric field at a point in space, r, and time, t, given by[25]:

E(r, t) = E0e
i 2π
λ
k·r−ωt (2.1)

λ is the free space wavelength of the light, k is the direction of propagation

of the wave, and ω is the frequency of the wave given by the relationship c =

ωλ/(2π). c is the speed of light in vacuum. The polarization of the light is the

direction of oscillation of the electric field, given by E0. For light traveling along

the z-axis, polarized light can be decomposed into two orthogonal components

along the x- and y-directions.
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Ex(z, t) = Ex0e
i 2π
λ
z−ωt (2.2)

Ey(z, t) = Ey0e
i 2π
λ
z−ωt+φ (2.3)

φ is the relative phase between the x- and y-electric fields. When φ = 0 or

φ = π, the two fields will trace out a line in the x-y plane as z or t varies.

Such a case is deemed linear polarization. When φ = π/2 and Ex0 = Ey0, the

two electric fields will trace out a circle as z or t varies. This is the circular

polarization case. For all other cases, the two electric fields will trace out an

ellipse, creating elliptical polarization.

For example, figure 2.1 shows three cases of linearly polarized light: horizon-

tally polarized light will oscillate along the x-axis, vertically polarized light will

oscillate along the y-axis, and 45◦ linearly polarized light will oscillate at an

angle of 45◦ counterclockwise relative to the x-axis. Circularly polarized light,

shown in figure 2.2, will rotate around in the x-y plane, with the tip of the

electric field direction tracing out a circle as the wave goes through a full cycle

of oscillation. When the amplitude of the two orthogonal components of the

polarization are unequal and the relative phase between the two components

is not 0, π, or π/2, the resulting polarization state is elliptical, as seen in figure

2.3.
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(a) (b) (c)

Figure 2.1: Light propagates as an EM wave. Linearly polarized light has an
electric field that oscillates in a preferential linear direction. Different linear
polarization states include (a) x-polarized, (b) y-polarized, and (c) 45◦ polar-
ized

(a) (b)

Figure 2.2: Circularly polarized light has an electric field that rotates in the
transverse plane as the light goes through a full cycle. (a) shows circular light
as viewed from an arbitrary angle with respect to the propagation direction.
(b) shows circular light as viewed down the axis of propagation with a su-
perimposed circle showing the path the circular polarization traces out as it
propagates down the axis.
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(a) (b)

Figure 2.3: Elliptical polarized light occurs when the two orthogonal compo-
nents of the polarized light have unequal amplitudes and the relative phase
between the two is not 0, π, or π/2. (a) shows elliptical light as viewed from
an arbitrary angle with respect to the propagation direction. (b) shows ellip-
tical light as viewed down the axis of propagation with a superimposed ellipse
showing the path the polarization traces out as it propagates down the axis.

2.1.1 Jones Calculus

A common mathematical description of polarized light and polarization prop-

erties of optical elements is the Jones formalism[26, 27, 28, 29, 30, 31, 32, 33].

By making the assumption that the plane wave’s direction of propagation is

along the z-axis, Jones calculus uses two element Jones vectors, E, to describe

polarized light, and two by two Jones matrices, J, to describe polarizing ele-

ments.

E =

Ex
Ey

 (2.4)
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J =

Jxx Jxy

Jyx Jyy

 (2.5)

Equation 2.4 shows that light traveling along the z-axis can be decomposed

into two orthogonal components; a component along the x-axis, Ex, and a

component along the y-axis, Ey. If the light is not traveling along the z-axis,

then the two components of the Jones vector instead represent local coordinates

associated with a plane transverse to the direction of propagation [34]. When

an incident Jones vector, E1, interacts with a polarizing element, the resulting

electric field after the interaction, E2, is given by the multiplication of the

Jones matrix with the input Jones vector:

E2 = J · E1 =

Jxx Jxy

Jyx Jyy

 ·
Ex
Ey

 =

JxxEx + JxyEy

JyxEx + JyyEy

 (2.6)

As can be seen from equation 2.6, the elements of the Jones matrix specify how

much of the original polarization states exits in the same orientation (e.g. Jxx

maps input x-polarized light into output x-polarized) and how much exits in

the orthogonal orientation (e.g. Jxy maps input y-polarized light into output

x-polarized light.) Each polarizing elements in a system has its own Jones

matrix, and the total system Jones matrix can be represented by the matrix

multiplication of the sequence of Jones matrices the light passes through. It is

important to note that in equation 2.7, the first Jones matrix the light interacts

with is the rightmost Jones matrix while the last Jones matrix is the leftmost.
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Jtotal = JQ · JQ−1 . . .J2 · J1 =
1∏

q=Q

Jq. (2.7)

2.1.2 Polarization Properties: Diattenuation and Retardance

The diattenuation of a polarizing element is a measure of how strongly it

polarizes the light passing through. It can also be defined as the exiting degree

of polarization when unpolarized light is incident upon a polarizing element.

A retarder is an optical element that causes a polarization dependent optical

path length (phase) change in the light that interacts with the retarder. The

calculation of diattenuation and retardance from a Jones matrix depends on

the properties of the Jones matrix.

Jones matrices generally fall into one of two categories: homogeneous or

inhomogeneous[35]. Which category a Jones matrix falls under depends on

the eigenvectors of the Jones matrix. The eigenvectors of a Jones matrix (also

known as eigenpolarizations) are the two input Jones vectors that are the same

as the output Jones vector for that Jones matrix (scaled by an eigenvalue). The

two eigenpolarizations, Eq and Er, of the Jones matrix J have the property:

J · Eq = ξqEq = Aqe
−iφqEq

J · Er = ξrEr = Are
−iφrEr (2.8)

ξq and ξr are the complex eigenvalues corresponding to the eigenpolarizations,

Aq and Ar are the amplitudes of the eigenvalues, and φq and φr are the phases

of the eigenvalues. When Eq and Er are orthogonal (E†q · Er = 0), the corre-

sponding Jones matrix is homogeneous. When Eq and Er are not orthogonal
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(E†q · Er 6= 0), the corresponding Jones matrix is inhomogeneous.

2.1.2.1 Homogeneous Jones Matrices

In the case of a homogeneous Jones matrix, the two polarization properties

diattenuation and retardance are straightforward to calculate. Diattenuation

and retardance of a homogeneous Jones matrix are defined as:

D =
A2
q − A2

r

A2
q + A2

r

, 0 ≤ D ≤ 1 (2.9)

δ = |φr − φq|, 0 ≤ δ ≤ π (2.10)

A diattenuation of zero indicates that the element transmits all polarization

equally, while a diattenuation of 1 indicates that the element is a perfect po-

larizer, allowing only one polarization state to be transmitted. The retardance

measures the phase difference between eigenpolarizations after interaction with

a retarder. Common retarding elements are quarter-wave (δ = π/2) and half-

wave (δ = π) retarders.

The classification of a homogeneous Jones matrix depends on its diattenua-

tion, retardance, and eigenpolarizations. Jones matrices with eigenpolariza-

tions that are linear are classified as linear diattenuators or linear retarders.

Similarly, circular eigenpolarizations lead to circular diattenuators and circular

retarders while elliptical eigenpolarizations lead to elliptical diattenuators and

elliptical retarders.
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2.1.2.2 Inhomogeneous Jones Matrices

For inhomogeneous Jones matrices, calculating the diattenuation and retar-

dance requires a few extra steps. Using polar decomposition[36], a Jones ma-

trix can be expressed as the product of a purely retarding unitary matrix (U)

and purely diattenuating Hermitian matrix (H)

J = UH (2.11)

These unitary and Hermitian components are calculated using singular value

decomposition[37]

J = WΣV† =

wx,1 wx,2

wy,1 wy,2


Λ1 0

0 Λ2


v∗x,1 v∗y,1

v∗x,2 v∗y,2

 (2.12)

W and V are unitary matrices and Σ is a diagonal matrix of singular values.

The maximum amplitude transmission for J is Λ1, corresponding to input state

(vx,1, vy,1) and output state (wx,1, wy,1). Similarly, the minimum transmission

is is Λ2, corresponding to input state (vx,2, vy,2) and output state (wx,2, wy,2).

The diattenuation of J is then

D =
Λ2

1 − Λ2
2

Λ2
1 + Λ2

2

(2.13)

The unitary and Hermitian components are thus calculated as

U = WV† (2.14)

H = VΣV† (2.15)
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The retardance of the pure retarder is found by calculating the eigenvalues of

U and taking the difference of the phase of those eigenvalues.

2.2 Polarization Ray Tracing Calculus

The caveat for using Jones calculus is that the light under consideration must

be propagating in only one direction, with local coordinates transverse to the

direction of propagation defining the two orthogonal components of the electric

field. To use Jones calculus in optical systems which have changing directions

of propagation of the light (either by reflection or refraction of a single ray

or a curved wavefront with different propagation directions for each ray), a

local coordinate system is required for each ray segment. These local coordi-

nate systems lead to complications due to the intrinsic singularities of local

coordinates[38]. To avoid carrying the local coordinates along with each ray

segment, a method for performing polarization ray tracing in three dimensions,

polarization ray tracing calculus, is used in lieu of Jones calculus.

2.2.1 PRT Matrices

A polarization ray tracing (PRT) matrix, P, is a three by three matrix that

describes the interaction of a three dimensional electric field with a polarizing

element in global coordinates[39]. Additionally, the P matrix describes how

the direction of propagation will change after interacting with a polarizing

element.

Eout = P · Ein (2.16)
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k̂out = P · k̂in (2.17)

Similar to Jones calculus, the total effects of an optical system can be condensed

to the matrix multiplication of each ray’s P at each surface.

Ptotal = PQ ·PQ−1 . . .P2 ·P1 =
1∏

q=Q

Pq. (2.18)

The transformation from a Jones matrix to a PRT matrix, or vice versa, is a

straightforward sequence of rotations into and out of local coordinates for each

surface interaction. Since Jones matrices represent the electric field in a plane

transverse to the direction of propagation, the s- and p-polarization states and

the propagation vector (k̂) form a natural basis set for local coordinates. Given

the incident and exiting propagation vectors of a ray from a surface, k̂in and

k̂out, the incident and exiting s- and p- directions are given by:

ŝin =
k̂in × k̂out

|k̂in × k̂out|
, p̂in = k̂in × ŝin (2.19)

ŝout = ŝin, p̂out = k̂out × ŝout (2.20)

Equation 2.19 breaks down at normal incidence. In this special case, the s- and

p- coordinates are degenerate and can be chosen arbitrarily (as long as (̂s, p̂, k̂)

form a right hand system). Two orthogonal rotation matrices are constructed

from the incident and exiting (̂s, p̂, k̂) coordinates to rotate between global and

local coordinates. These orthogonal matrices are
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O−1in =


ŝin,x ŝin,y ŝin,z

p̂in,x p̂in,y p̂in,z

k̂in,x k̂in,y k̂in,z

 (2.21)

Oout =


ŝout,x p̂out,x k̂out,x

ŝout,y p̂out,y k̂out,y

ŝout,z p̂out,z k̂out,z

 (2.22)

O−1in operates on the incident electric field defined in global coordinates and

projects it into the local coordinates of the surface. Oout does the opposite,

operating on the electric field in local coordinates to project it into global

space. A PRT matrix is formed by

P = Oout · J ·O−1in (2.23)

where J is the Jones matrix of the surface interaction. For reflecting or re-

fracting surfaces, the Jones matrix is defined in terms of the Fresnel reflection

or transmission coefficients

Jt =


ts 0 0

0 tp 0

0 0 1

 , Jr =


rs 0 0

0 rp 0

0 0 1

 (2.24)

ts, tp, rs, and rp are the (complex) Fresnel transmission and reflection coeffi-

cients for the surface. Conversely, the Jones matrix of a PRT matrix can be

determined by rearranging equation 2.23.
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J = O−1out ·P ·Oin (2.25)

This Jones matrix is a three by three quantity due to the three dimensional

nature of the PRT. However, the third row and column don’t carry any po-

larization information and can be dropped. The actual Jones matrix is simply

the upper left two by two portion of the three by three Jones matrix.

2.2.2 Converting PRTs to a Jones Pupil

While the three dimensional description of polarization using PRT matrices

provides a great workaround for the problem of tracking local coordinates, the

three dimensional nature of the results can be hard to communicate. Visual-

ization of the three dimensional nature of the PRT matrices can be difficult,

and two dimensional descriptions of polarization information are much more

easily communicable. The most common way to present polarization aberra-

tions is as a set of spatially dependent Jones matrices, the Jones pupil [40].

The Jones pupil describes the linear mapping of the polarization state of rays

at the entrance pupil to the polarization state at the exit pupil and it contains

all of the polarization effects of the system as a function of position in the exit

pupil.

To calculate the Jones pupil, the polarization ray tracing program Polaris-M

traces a grid of rays to the exit pupil of an optical system and extracts the

cumulative PRT matrix (equation 2.18) for each ray, creating a grid of cu-

mulative PRTs. The program then transforms the PRT matrix into a Jones

matrix for each ray in the grid by using equation 2.25. When the cumulative
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PRT is used, Oin and Oout in equations 2.21 and 2.22 are defined by the local

coordinate systems entering and exiting the system rather than the local coor-

dinates entering and exiting a surface. Two common sets of local coordinates

for spherical surfaces, dipole and double pole coordinates, are shown in Ap-

pendix A. The result of this transformation is a grid of Jones matrices, where

each individual Jones matrix is associated with a particular pupil coordinate.

As an example, a simple parabolic reflecting surface’s Jones pupil is calculated

utilizing Polaris-M. The parabolic mirror, shown in figure 2.4, has a focal length

of 12.5 mm, a diameter of 20 mm, and is coated with a thick layer of aluminum.

The index of refraction for this aluminum is n = 0.666 + 5.58i. To sample the

properties of the mirror, a collimated rectangular grid of rays (51 ray across

by 51 rays wide, total of 2601 rays) at a wavelength of 500 nm is traced from

a distance of 10 mm before the mirror until the focal point of the mirror.

The grid of rays is spaced such that it overfills the mirror, so some of the

rays don’t make it to focus. In this simple system, the entrance pupil, stop,

and exit pupil are all the mirror surface, so the Jones pupil will describe the

polarization properties of the rays after they interact with the mirror.
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Figure 2.4: A simple parabolic reflecting surface modeled in Polaris-M. The
focal length is 12.5 mm and the diameter is 20 mm. A grid of rays enters from
the left, reflects off of the parabolic mirror, then comes to focus.

Once the grid of rays has been traced through the system, Polaris-M takes the

rays at the exit pupil and converts their PRTs to Jones matrices. The Jones

matrices are then ordered into a Jones pupil, show in figure 2.5. The Jones

pupil has a circular shape because the mirror’s surface is circular, cutting off

any rays that fell outside of the mirror’s circular support. The amplitude of the

on-diagonal elements are compliments of one another, with the "xx" amplitude

having minimums along the horizontal and maximums along the vertical while

the "yy" amplitude has minimums along the vertical and maximums along the

horizontal. Similar behavior can be seen in the on-diagonal phase of the Jones

pupil. The off-diagonal amplitudes are quite small, indicating that there is not

much polarization mixing for this system. The off-diagonal phase maps have

jump discontinuities, going through a π phase shift at points in the pupil where

the amplitude goes through a zero.
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Figure 2.5: Amplitude (a) and phase in radians (b) of the Jones pupil for
a simple parabolic mirror. The difference in the on-diagonal (XX and YY)
amplitudes across the pupil indicates that this system will have pupil position
dependent diattenuation, while the difference in the on-diagonal (XX and YY)
phases indicates that this system will have pupil position dependent retardance.

2.2.2.1 Polarization Aberrations

The Jones pupil is a particularly powerful tool for visualizing polarization aber-

rations because it allows for quick comparison of the Jones matrix elements

across the pupil. Polarization aberrations are deviations from ideal behavior,

and the ideal wavefront is transmitted with uniform polarization state for ar-

bitrary inputs which is represented by a Jones matrix equal to the identity

matrix. Thus, polarization aberrations are represented by deviations of a ray’s

Jones matrix from an identity matrix. The polarization aberrations of a system

can be divided into diattenuation aberration, polarization dependent transmis-

sion, and retardance aberration, polarization dependent optical path (phase)

difference.

Diattenuation aberration describes how different rays preferentially transmit

one polarization state over another. For this parabolic mirror, the differences

in the amplitude of the on-diagonal elements of the Jones pupil are indicative
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of the diattenuation. Similarly, retardance aberration is present in a system

that imparts a different amount of phase on one polarization state relative to

another. The differences in the on-diagonal phases maps are indicative of the

retardance in this system.

Another helpful visualization technique to highlight the diattenuation and re-

tardance of a surface is the polarization aberration map. Polarization aberra-

tion maps are two dimensional vector maps that represent the pupil position

dependent diattenuation or retardance of a particular surface. The length of

the line in the map is indicative of the magnitude of the diattenuation or retar-

dance while the direction of the line shows the axis of maximum transmission

for diattenuation and the fast axis for retardance. The scale bars in the lower

right of each plot show the maximum value in the vector map.

0.0051

Diattenuation Map

(a)

0.0425

Retardance Map

(b)

Figure 2.6: Polarization vector maps for a simple parabolic mirror. The diat-
tenuation map (a) shows that the diattenuation magnitude increases quadrati-
cally from the center of the pupil outward and the orientation of the maximum
transmitting polarization is tangentially oriented. The retardance map (b)
shows that, like the diattenuation, the retardance magnitude increases quadrat-
ically from the center of the pupil outward and the orientation of the fast axis
is radially oriented. The diattenuation and retardance are zero at the center
of the pupil because the angle of incidence is zero for the center of the pupil
and thus there is no difference in the Fresnel reflection coefficients. It should
be noted that the diattenuation and retardance orientations are orthogonal for
every point in this pupil.
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2.2.2.2 Sources of Polarization Aberrations

As light propagates through an optical system, it will interact with optical sur-

faces and polarizing elements throughout the system which alter its amplitude,

phase, and polarization orientation. When the polarizing element alters the

amplitude or phase of the light based on the polarization state, that element

will contribute to the polarization aberrations of the system. For example,

when reflecting off of a metal mirror, the Fresnel reflection coefficients are dif-

ferent for s- and p-polarized light[41]. The Jones matrix for such an interaction

takes on the form of the upper left two by two shown in equation 2.24. Since

rs and rp are only the same at normal incidence, the Jones matrix will not

be an identity matrix for this interaction at non-normal incidences, leading

to diattenuation and retardance aberration. Another source of polarization

aberrations is form birefringence in thin film coatings on optical elements [42].

Form birefringence is refractive anisotropy due to the micro-structure formed

in the process of depositing metal thin films [43]. The structure of the thin film

as it is evaporated onto a substrate can become amorphous in some areas and

columnar in others, leading to birefringence. The effects of form birefringence

can be seen in section 4.2.4.1.

2.2.3 Amplitude Response Matrix and Point Spread Function

The amplitude response function of an image forming system using scalar image

formation theory is the Fourier transform of the exit pupil function. The square

magnitude of the amplitude response function yields the point spread function

(PSF)[44]. In order to express the effects of polarization aberrations on image
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formation, we use the Jones pupil instead of the scalar exit pupil function. The

Fourier transform of each component of the Jones pupil yields the amplitude

response matrix (ARM)[45].

ARM =

F{Jxx} F{Jxy}

F{Jyx} F{Jyy}

 (2.26)

Here, F is the spatial Fourier transform of the pupil. For a plane wave inci-

dent on the system with Jones vector E, the ARM details the electric field

distribution (amplitude and phase) at the image plane, given by ARM · E.

Figure 2.7 shows the magnitude of the amplitude response matrix calculated

from the Jones pupil in figure 2.5. Since the on-diagonals are very similar

to a unit circular aperture (only small amplitude and phase variations across

them), the on-diagonals of the ARM are close do a diffraction limited circular

aperture’s amplitude response. The off-diagonals of the ARM are 2-3 orders

of magnitude smaller than the on-diagonal elements and exhibit an even split-

ting into four parts. This splitting is due to the structure in the off-diagonals

of the Jones pupil.
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Figure 2.7: Magnitude of the amplitude response matrix of parabolic mirror
surface, normalized by the maximum of the XX component. The on-diagonals
are similar to a diffraction limited circular pupil’s amplitude response. The
off-diagonals have structure due to the shape of the off-diagonals of the Jones
pupil.

For unpolarized input illumination, the incident X and Y polarized light are

incoherent with respect to one another. This means that the field distribu-

tion represented by each component of the amplitude response matrix will

add incoherently in intensity. Thus the PSF for unpolarized light has four

components[18]:

PSF = |ARMxx|2 + |ARMxy|2 + |ARMyx|2 + |ARMyy|2 (2.27)

Figure 2.8 shows the PSF of this system, plotted on a log scale for easier visu-
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alization. The off-diagonals of the ARM are about three orders of magnitude

smaller than the on-diagonals, so their contribution to the system PSF will be

six orders of magnitude smaller than the on-diagonals. Due to these extremely

small off-diagonals, the PSF of this system is very close to an Airy disk.

PSF

-6

-4

-2

0

Figure 2.8: PSF plot of a simple parabolic mirror system. This PSF has been
normalized and plotted on a log scale for easier visualization. Since the on-
diagonals of the ARM are much larger in amplitude than the off-diagonals and
there are only small amounts of diattenuation and retardance, the PSF looks
like an Airy disk.

2.3 Polarization Ray Tracing With Polaris-M

To conclude this section, the steps for a typical Polaris-M ray trace and analysis

are outlined. A step by step outline can be seen in table 2.1. More in-depth

information about Polaris-M and polarization ray tracing calculus can be found

in [19, 39, 46].

The first step to polarization ray tracing an optical system is to define the sur-

faces of the system. Each surface in Polaris-M has eleven properties, including

a vertex, surface normal, aperture size, and coating specification. Unlike many
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other commercial ray tracing programs, Polaris-M utilizes global Cartesian

coordinates and defines surfaces vertices and surface normals in that global

context. There is no need for dummy surfaces to account for tilts and decen-

ters. Once the optical system has been defined, a polarization ray trace needs

a ray or set of rays to trace through the system. Each ray has 29 different pa-

rameters, some of which include ray position, propagation vector, wavelength,

optical path length, and PRT matrix. Rays traced through a system in Polaris-

M have each of their 29 parameters updated after every surface interaction,

and new ray segments are added to that ray set, making the ray data at any

optical surface extremely easy to extract.

Polaris-M’s ray tracing algorithm utilizes well-established procedures to geo-

metrically trace each ray to determine the physical path that ray will take[47],

calculating the propagation vector, position, and optical path length at each

step. At each interface, Polaris-M determines the ray’s angle of incidence at the

surface and calculates the Fresnel reflection or transmission coefficients given

the surface’s material and/or thin film specification for that ray’s angle of in-

cidence and wavelength. Then, using equations 2.23 and 2.24, these Fresnel

coefficients are converted into a PRT for that ray. The ray trace continues until

either the ray reaches an absorbing surface or fails to find a surface interaction

and is terminated. If multiple rays are being traced, a single ray is traced until

it is terminated or absorbed, and then the next ray in the ray set is traced

until all of the rays have been traced.

Polarization analysis in Polaris-M is easily conducted through a suite of func-

tions that calculate everything discussed in this chapter: the Jones pupil, the
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amplitude response matrix and PSF, polarization vector maps, and much more.

To create smoothly varying pupil maps, an appropriate number of rays should

be traced through the system. In the example shown in figure 2.5, a square

grid of 51x51 rays was traced. To create an even smoother plot (at the cost of

computational time), the ray grid can be increased.

1. Define surfaces for each element in the optical system

2. Define an input ray or set of rays to trace

3. Trace rays through the system

4. Create a Jones pupil from a dense grid of rays traced through the
system

5. Create a diattenuation and retardance vector map

6. Create the amplitude response matrix from the Jones pupil

7. Create the point spread function

Table 2.1: Steps for polarization ray tracing and analyzing the polarization
properties of a system
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CHAPTER 3

Controlling Light With a

Coronagraph

3.1 Introduction

There are two main challenges to direct imaging of exoplanets: (1) spatially

resolving the off-axis planet PSF from the on-axis star PSF and (2) suppressing

the starlight enough that the much dimmer planet light is able to be detected.

The first challenge, resolution, is dictated by the size of the telescope’s primary

mirror and the wavelength of the light. It is also constrained by the ability

of the telescope to correct for common path phase errors with adaptive optics

(A/O). Adaptive optics will be addressed in a later section, though not in

depth. The second challenge, starlight suppression, is addressed by the use

of a coronagraph. This chapter will give a brief overview of image formation

in telescopes and how resolution is determined, introduce coronagraphy, and

discuss some of the computational considerations of calculating the effects of a

coronagraph on a PSF. We will end the chapter with an example of applying a

specific type of coronagraph, a vector vortex, to a simple imaging system. The

code to create the figures for this chapter is provided in appendix F.
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3.2 Image Formation Simulation Using Fourier Optics

In scalar imaging theory, the imaging elements of an optical system can be

lumped into a "black box", and the properties of the system can be described

by specifying how that black box transfers light from the entrance pupil of the

system to the exit pupil of the system, the amplitude transfer function [44]. For

a perfect imaging system, the amplitude transfer function is a scaled version of

the pupil function, P (x, y), a function that details the shape of the exit pupil.

In general, wavefront errors (aberrations) may be present in an optical system,

so the generalize pupil function takes on the form

P(x, y) = P (x, y)eikW (x,y) (3.1)

where P is the generalized pupil function, k = 2π/λ, and W(x,y) is a path-

length error. The Fourier transform of the (scaled) generalized pupil function

is the amplitude impulse response of the system. The modulus square of the

amplitude impulse response is the point spread function (PSF) of the system.

In vector imaging theory, the generalized pupil function is replaced with the

Jones pupil and the amplitude impulse response is replaced with the amplitude

response matrix, detailed in chapter 2.

An ideal imaging system has a Jones pupil that is an identity matrix within

the finite extent of the pupil. That is
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J(r, θ) =



1 0

0 1

 r ≤ D
2

0 0

0 0

 r > D
2

(3.2)

where D is the diameter of the exit pupil. Using Fraunhofer diffraction to

represent the propagation of the wavefront from the exit pupil to the image

plane as a scaled Fourier transform of J(r, θ) [48], the amplitude response

matrix for an ideal system can be written as:

ARM(r, θ) = eikzei
k
2z

(r2) A

iλz

2J1(
kDr
2z

)
kDr
2z

1 0

0 1

 (3.3)

A = πD
2

4
, z is the distance from the exit pupil to the image plane, and J1 is

the Bessel function of the first kind, first order. When using ray tracing to

calculate the Jones pupil and amplitude response matrix, the continuous cases

shown in equations 3.2 and 3.3 are implemented with discrete samples across

the pupil/image plane. Figure 3.1 shows the Jones pupil for an ideal imaging

system from a ray trace using perfect coatings (i.e. the reflection coefficient

from each surface is always unity) and figure 3.2 shows the modulus square of

the amplitude response matrix of the ideal Jones pupil on a log10 scale. The

amplitude response matrix is calculated using discrete Fourier transforms. The

optical system used to create this Jones pupil and ampltide response matrix

is the same parabolic reflecting surface used in chapter 2, but with perfect

coatings instead of aluminum coatings.
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Figure 3.1: Jones pupil for an ideal imaging system. The size of the pupil is 20
mm across with 51 samples in each direction. The spacing between samples is
0.4 mm.
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Figure 3.2: Zoomed in plot of the square magnitude of the amplitude response
matrix. The red circle in the XX and YY elements represents the radial position
corresponding to 1.22λz/D in the image plane.

The amplitude response matrix here was calculated by first zero-padding the

Jones pupil to ten times its original size, from 51x51 samples across the pupil

to 511x511 samples across the pupil (the zero-padding is odd numbered to

ensure we sample the chief ray). The spacing between samples in the ARM is

given by:

∆s =
λ ∗ L
n ∗∆x

(3.4)

L is the distance from the exit pupil to the image plane, n is the number of

samples across the Jones pupil (including zero-padding), and ∆x is the spacing
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of the Jones pupil. For this example, the wavelength is 500 nm, L is equal to

the focal length, 12.5 mm, n is 511, and ∆x is 0.4 mm. Thus, the spacing

between samples in the ARM is 3 ∗ 10−5 mm. The central core of the on-

diagonal patterns in figure 3.2 has a diameter of 2.44 λ ∗ z/D because the

Bessel function first goes to zero at a radial position of 1.22λ ∗ z/D. This

means that the central core is 7.6∗10−4 mm across, allowing about 25 samples

across the core for this example. More samples in the ARM can be calculated

by increasing the zero-padding of the Jones pupil.

The diameter of the core of the PSF sets the diffraction limited resolution

of the telescope. According to the Rayleigh resolution criteria[49], any two

object points are considered barely resolved if they are separated by 1.22λz/D.

It is for this reason that the angular resolution of telescopes are generally

approximated as simply λ/D.

In this idealized case, the off-diagonals of the ARM are zero because the off-

diagonals of the Jones pupil are zero. The on-diagonals take on the form of

the Airy pattern, the expected, diffraction limited PSF of a circular pupil.

In the non-ideal case, the Jones pupil is no longer an identity matrix like in

figure 3.1, but both the phase and amplitude across the pupil will vary due to

aberrations like we saw in figure 2.5. The Fourier transform of the aberrated

Jones pupil will change the PSF by broadening the central core which reduces

the resolution of the telescope. Correcting the wavefront is the subject of

adaptive optics[50], wherein deformable mirrors in the optical system are fitted

with different shapes to change the intensity distribution in the image plane.

However, A/O systems depend on scalar, not vector, imaging theory. The
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extent to which A/O can correct an aberrated Jones pupil are discussed later.

3.3 Coronagraphy

The ratio of the flux of a star to a planet orbiting that star is on the order of 1010

for earth-like exoplanets[11]. Due to the much larger flux of the parent star, the

stellar PSF will overwhelm the exoplanet’s PSF. So even with a perfect imaging

system, it is necessary to find a way to suppress the starlight in order to detect

an exoplanet. Coronagraphy is a means of suppressing bright starlight so as

to search for faint companions[51]. The coronagraph this dissertation analyzes

consists of a phase mask and Lyot filter that, in conjunction, serve block the

core of the PSF of an on-axis point source and suppress the bright diffraction

rings, removing light that would otherwise reduce the dynamic range of the

image, enabling faint off-axis planets to be observed [52]. The most iconic

example of a coronagraph is the Lyot coronagraph.
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Figure 3.3: Demonstrating how a Lyot coronagraph operates (adapted from
Sivaramakrishnan et al. 2001). This telescope is an on-axis Cassegrain with a
secondary mirror, so the pupil has a central obscuration.

As shown in figure 3.3, a Lyot coronagraph works by inserting a binary am-

plitude mask at an intermediate image plane. This occulting mask serves to

block the central core of the on-axis star’s PSF but allow an off-axis planet’s

light to propagate through the system. Another mask, the Lyot stop, is used

downstream of the original occulting mask to reject the light that is diffracted

from the occulting mask. At the final image plane, most of the on-axis star

light has been rejected, allowing the dimmer planet light to be detected. Simi-

lar to the Lyot coronagraph, focal plane phase mask coronagraphs implement a

mask at an intermediate image plane. However, instead of a binary amplitude

mask, a phase mask is used instead. The coronagraph that this dissertation is

concerned with is the vector vortex coronagraph[53].
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3.3.1 Vector Vortex Coronagraph

A vector vortex mask is a space-variant birefringent optical element[51]. The

fast axis of a vector vortex rotates at a rate proportional to the angle of any

point in the vortex relative to the center. This has a similar effect as a scalar

vortex phase mask represented by eilφ, where φ is the angle in polar coordinates

and l is the topological charge. This charge determines how many 2π rotations

occur in the phase as φ goes from 0 to 2π.

Figure 3.4: Basic example of how the scalar vortex coronagraph operates.
Figure is courtesy of Ruane et. al

Figure 3.4, from Ruane et. al [54], shows a basic telescope schematic with

a scalar vortex charge 2 (l = 2) mask and Lyot stop. The wavefront at the

first pupil is uniform and free of aberrations. The vortex mask is placed at an

intermediate image plane where the field will be close to an Airy diffraction

pattern. Using Fourier optics, the field at the next pupil plane is a scaled

Fourier transform of the product of the electric field distribution at the mask

and the phase mask. Due to the high spatial variation of the phase mask near

the center of the Airy pattern, where most of the energy is located, the Fourier
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transform of the product of the phase mask and Airy pattern causes this energy

to be dispersed into a ring of light at the second pupil, leaving a dark central

hole. The Lyot stop at this second pupil is sized to be slightly smaller than

this ring of light, rejecting anything outside of its spatial extent. The result is

that the on-axis starlight is suppressed in the final image plane.

The basic schematic of a telescope with a vector vortex follows the same process

as figure 3.4, except the first and second scalar pupils are replaced with Jones

pupils and the scalar phase mask is replaced with the Jones matrix of a vector

vortex. The Jones matrix of the vector vortex is given by[55]:

VVm(x, y) =

cos(m tan−1(y/x) sin(m tan−1(y/x))

sin(m tan−1(y/x) − cos(m tan−1(y/x)

 (3.5)

where m is the charge of the vortex.

In contrast to the on-axis starlight, off-axis planet light will have a shifted and

scaled Airy pattern in the intermediate image plane. Because the off-axis Airy

pattern does not have its peak at the center of the phase mask, where the

highest spatial variations occur, the resulting field for the planet light at the

Lyot stop is not diffracted into a ring of light like the on-axis star light. This,

in turn, means that the off-axis planet light is not rejected by the Lyot stop

and propagates to the final image plane.

3.3.2 System Performance Metric

The principal coronagraph performance metric is contrast. There are a few dif-

ferent variations of this contrast. According to Krist [56], "Contrast is defined

... as the ratio of the peak pixel value of the unocculted stellar point spread
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function (PSF) to the mean per-pixel surface brightness measured within a

specified field around the star." Alternatively, the contrast can be calculated

as the planet’s irradiance normalized by the star’s irradiance[57]. In this dis-

sertation, the contrast will be defined as the PSF of a telescope with a coron-

agraph mask inserted normalized by the maximum value of the PSF with no

coronagraph mask inserted.

C =
PSFmasked(x, y)

PSFunocculted(0, 0)
(3.6)

3.4 Numerical Methods for Modeling Coronagraphs

Calculating the PSF of an optical system requires ray tracing and Fourier

optics. Ray tracing is used to determine the Jones pupil that transfers light

from the entrance pupil of an optical system to its exit pupil. Fourier optics

is then used to calculate the PSF by Fourier transforming the Jones pupil

and taking its modulus squared. Modeling the effects of a coronagraph on

an electric field also requires diffraction algorithms, which cannot be applied

in the middle of a ray trace. The novel approach to properly modeling an

optical system with a coronagraph mask is to use pupil decomposition to split

the optical system into two separate systems, use ray tracing to determine the

Jones pupil for each system and Fourier optics to calculate the effect of the

coronagraph mask on the electric field at the intermediate image plane and the

final PSF of the system.
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3.4.1 Pupil Decomposition

Consider an optical system divided into two separate subsystems, system A and

system B, where the exit pupil of A is the entrance pupil of B. The coronagraph

mask is located at an intermediate image plane between A and B. System A

encompasses all the optics up to (but not including) the coronagraph mask, and

system B encompasses all the optics after (but not including) the coronagraph

mask. The advantage of this pupil decomposition is that the Jones pupil of each

subsystem (denoted JPA and JPB) can be computed from ray traces which do

not need to be repeated for varying coronagraph mask designs[58]. Without the

coronagraph mask inserted into the system, the total Jones pupil is JPB ·JPA,

the matrix multiplication of the two pupils. The following steps are taken to

calculate the effects of the coronagraph mask via pupil decomposition. (n.b.

these steps use the vector vortex charge 6 mask, but these steps apply when

using any focal plane mask)

1. Calculate the electric field distribution at the mask by taking the spatial

Fourier transform of JPA, F = F{JPA}.

2. Apply the vector vortex coronagraph mask,M, to the electric field dis-

tribution at the intermediate image plane, M = F � M. � is the

Hadamard product, which is an element by element multiplication rather

than a matrix multiplication.

3. Take the inverse Fourier transform of M , JPm = F−1{M }, to calculate

the necessary pupil distribution that would yield a field distribution equal

to M .
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4. Take the product of JPm and JPB, JPtotal = JPB · JPm, to calculate

the Jones pupil for the entire optical system including the coronagraph

mask.

5. Take the modulus square of the spatial Fourier transform of JPtotal to

determine the PSF of the system with the mask inserted, PSFmasked =

|F{JPtotal}|2

These steps serve to encode the effects of the coronagraph focal plane mask

into the Jones pupil for the fore-optics of an optical system. These effects are

then propagated to the final image plane by combining the Jones pupils of the

fore-optics with the Jones pupil of the optics after the coronagraph focal plane

mask and using this total system pupil to generate the PSF of the occulted

system.

Careful consideration of the sampling scheme is necessary when calculating the

Fourier transform of the vector vortex due to the increase in spatial frequency

towards the center of the vortex. One method to handle these higher spatial

frequency variations, the semi-analytic method, was developed for coronagraph

applications [59]. This algorithm applies two discrete Fourier transform (DFT)

operations: (1) a DFT that highly samples the central region of the field at-

tenuated by the vector vortex, M , and (2) a DFT that more coarsely samples

the entire attenuated field. These two DFTs are then stitched together in the

pupil plane via a windowing algorithm to yield JPm.
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3.5 Example Implementation of VV6

This section goes through an example of simulating a vector vortex coronagraph

in a simple telescope system. We will assume ideal pupils here for ease of

implementation, but the next chapter will have real pupils calculated from

models of actual telescope designs. The basic setup is the same as in figure

3.4. The Jones pupil is an identity matrix inside of the pupil. The vector

vortex is applied at an intermediate image plane. An inverse Fourier transform

of the masked field via the semi-analytic method yields the masked pupil.

Multiplication of the masked Jones pupil with the Jones pupil for the second

half of the system gives the total system Jones pupil. The modulus square

of the Fourier transform of the system Jones pupil provides the PSF of the

system with the vector vortex applied.

3.5.1 Step 1: Calculate the Electric Field at the Intermediate Image

Plane

The first step to applying the vector vortex to our perfect imaging system is to

calculate the electric field distribution at the intermediate image plane, which

were shown in figures 3.1 and 3.2.

3.5.2 Step 2: Apply the Mask

Once the electric field at the intermediate image plane has been calculated,

the next step is to apply the vector vortex mask.
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Figure 3.5: The Jones matrix for a vector vortex charge 6 (a) and the product of
the vector vortex mask with the amplitude response matrix for an ideal imaging
system (b). The pixel spacing is the same for each plot, and is identical to the
spacing from figure 3.2

Figure 3.5a shows the Jones matrix for the vector vortex charge 6. Figure 3.5b

details the magnitude of the electric field immediately after the vector vortex

mask. The off-diagonals are zero while the on-diagonals are similar to Airy

patterns that are modulated as the azimuth changes.

3.5.3 Step 3: Calculate Pupil With Mask Encoded Into It

Now that we have the electric field distribution from interaction with the vector

vortex mask (figure 3.5b), the next step is to take an inverse Fourier transform

of that electric field to get back to the first pupil via the semi-analytic method.

This is done by choosing one small, tightly sampled region of the masked

electric field near the center and a larger, more sparsely sampled region across

the entirety of the masked electric field. Discrete Fourier transforms (DFT) are

applied to both regions, then the two DFT’d samples are added together in the

pupil plane. The output of this inverse Fourier transform is the necessary Jones
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pupil distribution that will create the electric field distribution calculated in

step 2. The result of the inverse Fourier transform can be seen in figure 3.6.
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Figure 3.6: The first pupil with the effects of the vector vortex phase mask
encoded into it. The effect of the vector vortex is to redistribute the light at
the core of the intermediate image plane into a ring of light at the pupil. The
original pupil is 20 mm across, but this pupil shows a 40 mm section in the
pupil plane to illustrate how the light is redistributed due to the vector vortex.
The diameter of the ring of light is the same size as the original pupil, 20 mm
across.

The scale provided in figure 3.6 shows that inside the original pupil there is

almost no amplitude. Instead, the amplitude has been distributed into a ring

(the so-called ring of fire) that is the same in diameter as the original pupil.
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3.5.4 Step 4: Calculate Entire System Jones Pupil

Utilizing the reverse of pupil decomposition, the next step is to calculate the

Jones pupil for the entire optical system from its constituent Jones pupils.

This is simply the multiplication of the two Jones pupils for the system, the

updated masked Jones pupil and the Jones pupil for the second half of the

system. For our perfect imaging system, the Jones pupil for the second half

of the system will be similar to the first pupil: unit amplitude and no phase

variation across a circular aperture. However, the second pupil also has the

effects of the Lyot stop, causing the diameter of the second pupil to be smaller

than the first pupil. In this case, it has been setup so that the Lyot stop has

a diameter that is 0.9 the diameter of the first pupil.
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Figure 3.7: Jones pupil for the entire system with the effects of the vector
vortex mask.

It is interesting to note that, while it looks like the amplitude in the dark center

is zero in figure 3.6, the residual shown in figure 3.7 still has some non-zero

amplitude. In the perfect case where the Airy pattern and vector vortex mask

at the intermediate image plane are both infinite in extent and continuous,

there would be no residual leftover in the dark hole. However, a real mask

cannot be infinite in extent and the discretization of the mask and pupil lead

to numerical artifacts. This leads to a small amount of on-axis light getting

through the system even with the vector vortex mask applied.
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3.5.5 Step 5: Determine PSF With Mask Applied

The last step is to calculate the PSF of the masked system at the final image

plane. Figure 3.8 shows the four components of the ARM that have been

modulus squared, on a logarithmic scale. Each component has been normalized

by the maximum of the |ARM |2 of the system with no mask installed, so it

follows our definition of contrast.
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Figure 3.8: Components of the |ARM |2 of a perfect imaging system with a
vector vortex charge 6 mask applied, plotted on a log10 scale. This plots have
been normalized by the maximum value of the |ARM |2 of the system with no
coronagraph.

The total PSF of this system for unpolarized input light is the sum of all four

components shown in figure 3.8. However, since the off-diagonals are zero, it’s

simply the sum of the on-diagonal elements.
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3.5.6 Effects on an Off-Axis Planet

Steps 1-5 are now repeated for an off-axis planet to see the effects of the

vector vortex when the center of the vector vortex mask does not align with

the center of the off-axis planet’s Airy diffraction pattern. An off-axis planet

was simulated by ray tracing the same system as before, but this time the

propagation direction of the wavefront was rotated around the y-axis by an

angle of 5 λ/D, or 0.000125 radians. The result of this tilt is that the phase

of the Jones pupil picks up a linear phase while the amplitude stays the same.

The off-diagonals show noisy phase due to the off-diagonals being machine

precision zero (with values around 10−20 + 10−20i).
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Figure 3.9: Jones pupil for an off-axis planet. The system is still perfectly
reflecting, so there are no amplitude variations across the pupil. The phase of
the pupil has a linear phase due to the tilt of the wavefront at the pupil (the
phase is wrapped to π here so it is hard to see the linearity).

The amplitude response matrix corresponding to this off-axis planet’s Jones

pupil is shown in figure 3.10. The tilt angle of the wavefront is 5λ/D, which

should correspond to a physical shift of 5λf/D, or 0.0015625 mm. This is

exactly where the peak value is in figure 3.10.
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Figure 3.10: Magnitude squared of the amplitude response matrix for the off-
axis planet. Compared to figure 3.2, the center of this pattern is shifted along
the x-direction.

Comparing the on-axis star’s ARM and off-axis planet’s ARM, we can explicitly

see the shift. Figure 3.11 shows the XX component of the |ARM |2 for the

planet and star together for different ratios of the flux of the planet. As the

planet gets dimmer, it is harder and harder to discern the planet from the rings

of the star’s light distribution. The vector vortex operates to block the star’s

light so the dimmer planet can be seen.
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Figure 3.11: Comparison of the XX component of the |ARM |2 for the on-axis
star and off-axis planet for different ratios of the planet to star flux. (a) flux
ratio of 1, (b) flux ratio of 0.1 (planet has 10% of star’s flux), and (c) flux ratio
of 0.001 (planet has 0.1% of star’s flux).

Figure 3.12 shows the product of the vector vortex mask with the off-axis

planet’s ARM. Unlike the on-axis star’s case (figure 3.5b), the center, highly

spatially varying portion of the vector vortex does not align with the center of

amplitude response matrix. This mis-alignment will cause the Jones pupil for

the off-axis planet with the vector vortex applied to be closer to the original

input Jones pupil than the "ring of fire" we would see from the on-axis starlight.



CHAPTER 3. CONTROLLING LIGHT WITH A CORONAGRAPH 74

-0.003 0. 0.003

-0.003

0.

0.003

x (mm)

y
(m
m
)

Masked ARMXX

0

1

2

3

-0.003 0. 0.003

-0.003

0.

0.003

x (mm)

y
(m
m
)

Masked ARMXY

-0.003 0. 0.003

-0.003

0.

0.003

x (mm)

y
(m
m
)

Masked ARMYX

-0.003 0. 0.003

-0.003

0.

0.003

x (mm)

y
(m
m
)

Masked ARMYY

0

1

2

3

Figure 3.12: Product of the vector vortex charge 6 with the amplitude response
matrix for the off-axis planet.

Figure 3.13 shows the Jones pupil with the effects of the vector vortex as well

as the Jones pupil for the entire system (incorporating the effects of the Lyot

stop). The light in the pupil has not been redistributed into a ring around the

pupil, so it will propagate through the Lyot stop and to the final image.
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Figure 3.13: (a) Amplitude of Jones pupil at the first pupil for the off-axis
planet. Unlike the on-axis star, the vector vortex has not redistributed the
off-axis planet light into a ring, so it will propagate through the Lyot stop and
to the final image plane. (b) Amplitude of the Jones pupil for the entire system
for the off-axis planet. Unlike the on-axis star case, the Jones pupil for the
off-axis planet still has most of its light propagate through the system

The corresponding |ARM |2 plot for the off-axis planet is shown in figure 3.14.

The light from the planet has not been attenuated like the on-axis star. The

amount of on-axis starlight that makes it through to the final image plane is

extremely small. In contrast, a large amount of the original off-axis planet

light is able to make it through the vector vortex to the final image plane. To

calculate the relative amount of on-axis and off-axis light that makes it through

the system, Parseval’s theorem is used to calculate the total power from the

pupil maps. Parseval’s theorem states that[60]:

∫ ∞
−∞
|f(x)|2dx =

∫ ∞
−∞
|F (ξ)|2 dξ (3.7)

where f(x) and F (ξ) are a Fourier transform pair. The total integrated power

at the image plane is given by the integral of the PSF. Since the PSF is simply

the modulus square of the ARM and the ARM and Jones pupil are a Fourier
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transform pair, Parseval’s theorems allows us to calculate the total power by

taking the modulus square of the Jones pupil and summing all the elements

together. Thus, summing up the modulus square of each point in the pupil in

figure 3.1 and comparing it to the sum of the modulus square of every point

in the pupil in figure 3.7, the amount of on-axis starlight that arrives at the

final image plane after interacting with the vector vortex is calculated to be

10−8 of the original input. For the off-axis planet, the sum of the modulus

square of every point in the tilted pupil, figure 3.9, is compared to the sum

of the modulus square of every point in the masked tilted pupil, figure 3.13.

The amount of off-axis planet light that arrives at the final image plane after

interacting with the vector vortex is calculated to be 67% of the original input

planet light.
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Figure 3.14: |ARM |2 for the off-axis planet with the vector vortex mask on
a log10 scale, normalized by the maximum of the unocculted, on-axis star’s
|ARM |2 so the two can be directly compared. Though there are some slight
variations from an Airy pattern, the planet light has not been attenuated as
much as the on-axis starlight.
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Figure 3.15: Comparison of the PSF at the final image plane for the sum of
an on-axis star and an off-axis planet with different ratios of the planet to star
flux. (a) flux ratio of 1, (b) flux ratio of 10−4, and (c) flux ratio of 10−7.

Figure 3.15 shows the sum of the on-axis star’s PSF with the off-axis planet’s
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PSF for different ratios of the planet-star flux. The planet light overwhelms the

final image plane when its flux is greater than 10−4 of the star’s flux. When the

planet’s flux becomes dimmer than 10−7 of the star’s flux, the residual starlight

that the vector vortex could not attenuate becomes visible. The analysis so far

has been with perfect imaging. In the next section, the polarization aberrations

for a more complex telescope/coronagraph system are calculated and the effect

of the polarization aberrations on the contrast are calculated.
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CHAPTER 4

Telescope and Coronagraph

Simulation

4.1 Introduction

This chapter applies the methods of polarization ray tracing, described in chap-

ter 2, and image formation in coronagraph systems, described in chapter 3, to

analyze the polarization effects on contrast in HabEx. HabEx is one of the

candidate flagship missions being studied in detail by NASA, the habitable

exoplanet observatory [61], HabEx. Pupil decomposition and polarization ray

tracing are used to create Jones pupils for the fore-optics (everything before the

coronagraph) and post-optics (everything after the coronagraph) and calculate

the contrast of HabEx in these configurations: (1) ideal case, (2) the isotropic

coating case, and (3) the anisotropic primary coating case. The Polaris-M

code used to polarization ray trace HabEx is supplied in appendix D. The

Matlab code used to incorporate the effects of the vector vortex coronagraph

is supplied in appendix E. A second mission, the large UV, optical, IR surveyor

mission[62] (LUVOIR) is also analyzed using polarization ray tracing, and the

Jones pupil of its fore-optics is detailed at the end of the chapter. The code to

create most of the figures in this chapter is provided in appendix G.
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4.2 HabEx

HabEx is a concept for a mission to directly image planetary systems around

Sun-like stars. Its primary goal is to directly image Earth-like exoplanets,

and characterize their atmospheric content. HabEx will have multiple config-

urations and access to different instruments including: a "workhorse" camera

capable of imaging from the UV to near-IR, a high resolution UV spectrograph,

a starshade, and a coronagraph. This dissertation only studies the 450-550 nm

channel of the coronagraph which is one half of the "blue" channel, but the

same process applied in this chapter is applicable to all wavelengths. Extensive

literature about the other instruments is found in references [63, 64, 65, 66, 67].

4.2.1 Optical Prescription

The HabEx coronagraph system contains 15 reflecting surfaces: ten curved

mirror surfaces and five flat mirror surfaces. Two of the flat mirror surfaces

are deformable mirrors but are modeled as flat mirrors. Figures 4.1 and 4.2,

taken from Martin et. al 2017, display the overall telescope system and the

coronagraph subsystems. As shown in figure 4.2, the coronagraph mask sits

at the intermediate image plane before off-axis parabola (OAP) 4. The fore-

optics of the HabEx coronagraph is every optical surface before the coronagraph

mask. It is comprised of 11 reflecting surfaces (six curved surfaces and five flat

mirrors). The post-optics is every optical surface after the coronagraph mask.

It contains four reflecting surfaces, all of which are OAPs. Figure 4.3 shows an

alternate view of the post-optics and fore-optics of the "blue" channel.
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Figure 4.1: Side view of the HabEx telescope optical system

Figure 4.2: Zoomed in view of the HabEx coronagraphs. Left is the "blue"
channel, right is both channels together.

Fore-opticsPost-optics

Flat

Flat

Flat

DMs

Coronagraph Mask

OAP

OAP

OAP

Coronagraph Mask

OAP

OAP

OAP
Dichroic

Figure 4.3: Alternate view of the post-optics and fore-optics for the "blue"
channel. Light from the tertiary mirror is incident on the flat mirror in the
upper left of the "fore-optics" figure.
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The first two mirrors in the HabEx coronagraph layout (primary and sec-

ondary) are aluminum coated mirrors overcoated with 25 nm of magnesium

fluoride. Every subsequent mirror is coated with FSS99-600, a highly reflec-

tive multilayer coating on silver. The prescription for FSS99-600 can be found

in Appendix C. Figure 4.4 shows the reflectance and phase change for s- and

p-polarized light at 500 nm for a coating of 25 nm of MgF2 on aluminum.

Figure 4.5 shows the reflectance and phase change for s- and p-polarized light

at 500 nm for FSS99.
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Figure 4.4: Thin film performance of 25 nm MgF2 on aluminum at a wave-
length of 500 nm. (a) shows the reflectance of the s- and p-polarized light
versus angle of incidence. (b) shows the reflected phase for s- and p-polarized
light versus angle of incidence
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Figure 4.5: Thin film performance of FSS99-600 at wavelength 500 nm. (a)
the s- and p-reflectance versus angle of incidence. (b) the s- and p-reflected
phase

Table 4.1 shows the angles of incidence (AOIs) in radians for the chief ray at
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each surface. It also shows the minimum and maximum angles of incidence for

rays traced to those surfaces.

Chief AOI Max AOI Min AOI
M1 0.125625 0.209709 0.0442911
M2 0.140142 0.235599 0.0496826
M3 0.096655 0.106247 0.0872098
Folds 0.146103 0.146104 0.146103
FSMs 0.255159 0.25516 0.255159

Dichroic 0.785398 0.785399 0.785398
Dichroic back 0.504705 0.504705 0.504705

M4 0.0996687 0.119605 0.0800525
M5 0.0996687 0.119604 0.080053
DM1 0.122172 0.122173 0.122172
Fold 0.122172 0.122173 0.122172
DM2 0.174533 0.174534 0.174532
M6 0.173246 0.178055 0.168444

Coronagraph mask 4.55413 ∗ 10−6 0.0107238 4.55413 ∗ 10−6

M7 0.173246 0.178054 0.168447
Lyot stop 2.4872 ∗ 10−6 6.82699 ∗ 10−6 2.20517 ∗ 10−7

M8 0.119425 0.124291 0.11458
Field stop mask 0.238853 0.248581 0.229163

M9 0.119428 0.12429 0.114583
M10 0.0748598 0.0773301 0.0723998

Table 4.1: Chief ray, maximum, and minimum AOIs in radians for each surface
in HabEx

4.2.2 HabEx Polarization Ray Trace Outputs: Jones Pupil and

ARM

The Jones pupil of optics before the mask will be referred to as JPA and the

Jones pupil of optics after the mask as JPB. As described in chapter 3, there

are five steps to calculating contrast with a vector vortex coronagraph: (1) cal-

culate the field at the coronagraph mask plane via Fourier transform of JPA,

(2) apply the coronagraph mask, (3) inverse Fourier transform the modulated

field to get a modulated pupil (called JPmasked), (4) form a system end-to-end

Jones pupil via multiplication of JPB and JPmasked, and (5) Fourier transform
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and modulus square the system Jones pupil to calculate the PSF. The calcu-

lation of the Jones pupils JPA and JPB is carried out with a polarization ray

trace in Polaris-M.

Figure 4.6 shows the Jones pupil for the fore-optics returned from the polariza-

tion ray trace. This pupil was created by tracing a sqaure grid of 101x101 rays

in Polaris-M. The spacing between pixels in the Jones pupil is 3.8 mm. The left

side shows the amplitude of the Jones pupil and the right side shows the phase

in radians of the Jones pupil. The amplitude of the pupil is relatively close to

an identity matrix, scaled by a factor of about 0.82. This difference from unity

is caused by absorption of the light at each of the 10 reflecting surfaces. The

small off-diagonals indicate that leakage from input x-polarized or y-polarized

into an orthogonal polarization state makes up only a small fraction of the

light. The XX and YY elements are different in distribution because the s-

and p- coefficients of reflection are slightly different at non-normal angles of

incidence. The on-diagonal phase terms reveal that the fore-optics suffer from

astigmatism and differing amounts of tilt. The π phase jump in the phase of

the off-diagonals is the result of the zero crossing in the amplitude of the off-

diagonals. Figure 4.7 shows the cumulative diattenuation and retardance of the

fore-optics. The RMS diattenuation and retardance across the the fore-optics

Jones pupil is 0.0322077. The closer the RMS diattenuation and retardance is

to zero, the closer the Jones pupil is to the identity matrix.



CHAPTER 4. TELESCOPE AND CORONAGRAPH SIMULATION 85

A
XX

0.818

0.821
A

XY

0.000

0.018

A
YX

0.000

0.018
A

YY

0.819

0.821

(a)

XX

0.938

1.079
XY

-0.608

2.627

YX

-3.136

3.127
YY

1.009

1.135

(b)

Figure 4.6: JPA for a wavelength of 500 nm. (a) is the amplitude of the Jones
pupil, (b) is the phase of the Jones pupil in radians
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Figure 4.7: Diattenuation and retardance maps for JPA. M6 is the sixth non-
flat mirror in the system and is the optical element right before the coronagraph
mask plane, making it the last element in the fore-optics.

Figure 4.8 shows the Jones pupil for the optics after the coronagraph mask

returned from the polarization ray trace. This pupil was created by tracing

a square grid of 101x101 rays in Polaris-M. The pixel spacing for this Jones

pupil is 0.8 mm. The left side shows the amplitude and the right side shows

the phase in radians. Similar to JPA, the amplitude is very close to a scaled

identity matrix. The amplitudes are not unity due to absorption from the four

reflecting surfaces. The phase reveals that the optics after the mask plane do
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not introduce as much astigmatism as the optics before the mask. Instead, the

phase of the XX and YY elements show slight tilts in different direction which

will cause the center of the final image to be slightly shifted depending on the

polarization of the light. Figure 4.9 shows the cumulative diattenuation and

retardance of the optics after the coronagraph mask. The magnitude of the

diattenuation and retardance for JPB are an order of magnitude smaller than

the diattenuation and retardance for JPA, indicating that the optics after the

coronagraph mask barely contribute to the overall polarization aberrations of

the entire system. The RMS diattenuation and retardance across the post-

optics Jones pupil is 0.00202847.
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Figure 4.8: JPB for a wavelength of 500 nm. (a) is the amplitude of the Jones
pupil, (b) is the phase of the Jones pupil in radians
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Figure 4.9: Diattenuation and retardance maps for JPB. M7-M10 make up
the last four mirrors in HabEx after the coronagraph mask.

The amplitude response matrix (ARM) associated with JPA details the electric

field distribution at the coronagraph mask plane. To calculate the ARM, each

element of the Jones pupil was zero-padded by a factor of four before taking a

discrete Fourier transform. Figure 4.10 shows the ARM corresponding to the

Jones pupil shown in figure 4.6 on a log10 scale. The x and y axes are reported

in arcseconds of angle on sky. The DFT extended out to ±1.6 arcseconds, so

this plot is zoomed by a factor of about 3. The ARM has been normalized by

the maximum value of the ARM. The on-diagonals are very similar to an Airy

pattern. The maximum value of the YY component is slightly larger than the

XX component, but they are very close to one another. The off-diagonals are

about two orders of magnitude smaller than the on-diagonal components and

contain a bisected structure running through their center vertically.
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Figure 4.10: Amplitude response matrix of JPA at 500 nm on a log10 scale.
The on-diagonals are similar to an Airy pattern, while the off-diagonals have
bifurcated structure due to the shape of the off-diagonals of the Jones pupil.

4.2.3 Implementing the Vector Vortex

Now that we have JPA, JPB, and the electric field distribution at the coron-

agraph mask plane from the polarization ray trace, the vector vortex can be

implemented and the PSF at the final image plane can be calculated. The

Jones matrix of the vector vortex is given by[55]:

VVm(x, y) =

cos(m tan−1(y/x) sin(m tan−1(y/x))

sin(m tan−1(y/x) − cos(m tan−1(y/x)

 (4.1)

where x and y are spatial coordinates in the coronagraph mask plane and
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m is the charge (index) of the vector vortex. The vector vortex mask under

consideration for HabEx is a charge 6 vector vortex. Figure 4.11 shows a visual

representation of the Jones matrix for a charge 6 vector vortex mask.
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0

1
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XY
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0

1
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YX
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0

1
VV6

YY

-1

0

1

Figure 4.11: Jones matrix for a vector vortex charge 6 mask. The retardance
is a half-wave for every point in the vector vortex.

The semi-analytic method[59] is used properly sample the highly spatially vary-

ing center of the vector vortex mask. This is done by applying a Tukey (tapered

cosine)[68] windowing function to the product of the ARM and the vector vor-

tex mask to select the highly varying core of the ARM/vortex product. The

inverse of the windowing function selects the outer, less varying portion of

the ARM/vortex product. Inverse DFTs of each windowed section are then

stitched together to yield the masked Jones pupil. The masked pupil is shown

in figure 4.12. The masked Jones pupil is the same size as the original Jones

pupil for the fore-optics.
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Figure 4.12: Amplitude of the Jones pupil at 500 nm with the vector vortex
coronagraph. The ring of light around the pupil is the expected result of
applying the vector vortex.

The masked pupil shows a "ring of fire", a distribution of light into a ring in

the pupil. Though it is hard to see with the given color scale, there is still

light inside the ring of fire. This residual light is a consequence of both the

polarization aberrations and the finite extent of the coronagraph mask itself.

To calculate contrast, the overall Jones pupil for the system both with and

without the vector vortex mask needs to be calculated. The overall Jones pupil

for the system without the mask is the matrix product JPtotal = JPB · JPA.

The system Jones pupil with the coronagraph mask is JPtotal,masked = JPB ·

JPmasked. Figure 4.13 shows the magnitude and phase of the total system pupil

with no mask. Figure 4.14 shows the diattenuation and retardance maps of

the end-to-end Jones pupil. The RMS diattenuation and retardance for the

Jones pupil without the mask is 0.0337945, which is very similar to the RMS

diattenuation and retardance for the fore-optics’ Jones pupil. Figure 4.15 shows
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the magnitude and phase of the total system pupil with the vector vortex mask

applied.
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Figure 4.13: Magnitude (a) and phase in radians (b) of the total system Jones
pupil at 500 nm with no mask applied.
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Figure 4.14: Diattenuation and retardance maps for JPtotal. M10 is the last
mirror in the HabEx system, making these maps cumulative for the entire
system. Like the Jones pupil plots in figure 4.13, the diattenuation and re-
tardance maps for the end-to-end Jones pupil are similar to diattenuation and
retardance maps for JPA. This is because the four mirrors after the corona-
graph mask contribute very little to the overall polarization aberrations of the
system.
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Figure 4.15: Magnitude (a) and phase in radians (b) of the total system Jones
pupil at 500 nm with a vector vortex 6 mask applied. Large variations in the
amplitude exist near the edges of the pupil. The phase is symmetric in the
off-diagonals and anti-symmetric in the on-diagonals.

The total system pupil without the vector vortex mask looks very similar to

JPA, with some slight changes to the overall magnitude and phase. The total

system pupil with the vector vortex mask shows the residual light that is able

to pass through the vector vortex that is not rejected by the Lyot stop. There

are high variations in the amplitude near the edges of each component of the

system Jones pupil with the vector vortex, while the inner portion of the pupil

is more slowly varying. The Lyot stop itself is applied to JPB as an opaque

binary mask with a radius that is 95% of the size of JPB. Some of the high

variations near the edges of the pupil could be eliminated by applying a smaller

Lyot stop, but at the cost of losing light that can make it through the system.

In the ideal case, the Jones pupil with the mask applied should have no light

leftover after the Lyot stop. However, the finite size of the coronagraph mask

itself leads to some of the on-axis light still getting through.
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4.2.4 Contrast

Once the total pupil for the system has been calculated, all that is left to

determine the system contrast is to find the PSF of the system with no mask

and the PSF of the system with the mask. For unpolarized illumination, the

four components of the amplitude response matrix are incoherent with respect

to one another[18]. The system PSF (with or without the mask) is the sum

of the intensities represented by the square modulus of the components of

the ARM (with or without the mask), PSF = |ARMXX |2 + |ARMXY |2 +

|ARMY X |2 + |ARMY Y |2.

The contrast for three different circumstances is presented here: the ideal case,

the isotropic coatings case, and the isotropic coatings case with an anisotropic

map applied to the primary mirror. The ideal case replaces the Jones pupils

calculated from the polarization ray trace with identity matrices within the

circular support of the pupil. The isotropic coatings case is calculated directly

from the polarization ray trace, using the pupils already shown above. The

anisotropic primary case utilizes the isotropic Jones pupils but adds in an

anisotropic map before the first Jones pupil to simulate the effects of form

birefringence on the primary mirror.

4.2.4.1 Form Birefringence

Form birefringence is refractive anisotropy due to the micro-structure of the

metal thin film. Mirror form birefringence can also contribute to polarization

aberrations. For example, in the process of depositing a thin film coating of

aluminum, the microscopic grain structure of the aluminum may be amorphous
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in certain regions and columnar in other regions. This columnar structure

appears to be attributed to oxidation of the tiny vapor droplets as they adhere

to the glass substrate. This anisotropy leads to regions of the mirror exhibiting

spatially-varying retardance associated with the deposition process.

The coating geometry used to deposit large area primary mirrors (> 12m2) is

different than that used for smaller mirrors (< 2m2). The spatial dependence

of the polarization reflectivity of a bare aluminum 3.75-meter diameter test

sphere was measured at the University of Arizona Mirror Lab by Daugherty

(2018)[42]. This mirror is used for optical wavefront testing of the 8-meter

GMT primary mirrors. The bare aluminum was deposited using the same

chamber and processes employed to coat the primary mirror for the Mayall

4-meter telescope at Kitt Peak National Observatory. The coating shows a

spatial dependence of the polarization reflectivity caused by form birefringence.

Figure 4.16 shows the Jones matrix associated with the form birefringence. To

understand the potential role of primary mirror form birefringence in image

formation, this form birefringence measurement was scaled and applied to the

primary mirror of HabEx.
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Figure 4.16: Jones matrix amplitude (a) and phase in radians (b) of the bire-
fringence map of the 3.75-meter diameter test sphere. The XX and YY com-
ponents of the amplitude are unity across the map. The phase of the XX
component is zero across the entire map due to convention in the conversion
of the birefringence map from a Mueller matrix into a Jones matrix.

4.2.4.2 Two Dimensional Contrast Plots

The contrast maps presented here are broadband maps, utilizing PSFs for

wavelengths in the waveband [450, 550] nm, the "blue" channel of the HabEx

coronagraph. These broadband maps are created by calculating the PSF with

the coronagraph mask at each wavelength, summing them together incoher-

ently, calculating the PSF without the coronagraph mask at each wavelength,

summing them together incoherently, then finally normalizing the broadband

PSF with the mask by the maximum value of the broadband PSF without

the mask (this maximum is at the center of the final image plane in these

calculations).

Contrast(x, y) =

∑550nm
λ=450nm PSFV V 6(x, y, λ)∑550nm
λ=450nm PSFnomask(0, 0, λ)

(4.2)

Figure 4.17 shows the PSF calculated for five wavelengths with ideal apertures

and no vector vortex mask on a log10 scale as well as the PSF of the sum
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of all five wavelengths. Figure 4.18 shows the PSFs with ideal apertures and

the vector vortex mask. The spacing between pixels in these PSFs is 0.003

arcseconds. At this sampling, there is no detectable shear between the XX and

YY components of the ARM. However, higher sampling of the ARM (down to

tenths of milliarcseconds) would reveal slight shifts in the center maximum for

the XX and YY components of the ARM and thus a slight elongation of the

center of the PSF.
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Figure 4.17: PSF for the ideal aperture case and no vector vortex mask on a
log10 plot. (a) - (e) show the individual wavelengths’ PSFs while (f) shows the
sum of all the PSFs.
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Figure 4.18: PSF for the ideal aperture case with the coronagraph mask on a
log10 plot. (a) - (e) show the individual wavelengths’ PSFs while (f) shows the
sum of all the PSFs.

Figure 4.19 shows the PSF calculated for five wavelengths with isotropic coat-

ings on the mirror surfaces and no vector vortex mask on a log10 scale as well

as the PSF of the sum of all five wavelengths. Figure 4.20 shows the PSFs with

isotropic coatings on the mirror surfaces and the vector vortex mask.
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Figure 4.19: PSF for the isotropic coatings case and no vector vortex mask on
a log10 plot. (a) - (e) show the individual wavelengths’ PSFs while (f) shows
the sum of all the PSFs.
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Figure 4.20: PSF for the isotropic coatings case with vector vortex mask on a
log10 plot. (a) - (e) show the individual wavelengths’ PSFs while (f) shows the
sum of all the PSFs.
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Figure 4.21 shows the PSF calculated for five wavelengths with isotropic coat-

ings on the mirror surfaces, the form birefringence map on the primary, and

no vector vortex mask on a log10 scale as well as the PSF of the sum of all five

wavelengths. Figure 4.22 shows the PSFs with isotropic coatings on the mirror

surfaces, the form birefringence map on the primary, and the vector vortex

mask.
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Figure 4.21: PSF for the isotropic coatings case, birefringence map on the
primary, and no vector vortex mask on a log10 plot. (a) - (e) show the individual
wavelengths’ PSFs while (f) shows the sum of all the PSFs.
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Figure 4.22: PSF for the isotropic coatings case, birefringence map on the
primary, with vector vortex mask on a log10 plot. (a) - (e) show the individual
wavelengths’ PSFs while (f) shows the sum of all the PSFs.

Figure 4.23 shows two dimensional plots of the contrast calculated for the

each of the three cases: (a) ideal apertures, (b) isotropic coatings on every

mirror surface, and (c) isotropic coatings on every mirror surface and the form

birefringence map added to the primary mirror.
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Figure 4.23: Contrast plots on a log10 scale for (a) ideal apertures, (b) isotropic
coatings on every mirror, and (c) isotropic coatings on every mirror and the
form birefringence map added to the primary mirror.
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The contrast degrades as we move from ideal apertures to isotropic coatings by

a few orders of magnitude. After adding the form birefringence to the primary

mirror, the contrast degrades by another couple orders of magnitude. This is

more immediately obvious when we take a closer look at cross-sectional slices

through the two dimensional contrast maps.

4.2.4.3 Cross-sectional Slices of Contrast

Figure 4.24 is arguably the most important figure in this dissertation. It shows

horizontal and vertical cross-sectional slices through the two dimensional con-

trast maps on a log10 scale. These slices are nearly symmetric about the center

of two dimensional contrast maps, so the horizontal range spans only [0, .5]

arcseconds. The gap between the black curve, representing ideal contrast,

and the blue and red curves, representing contrast with isotropic coatings and

contrast with an anisotropic primary mirror respectively, is several orders of

magnitude regardless of position in the final image plane. This indicates that

the ability of the vector vortex to suppress on-axis starlight worsens as po-

larization aberrations are added to the system. The difference between the

isotropic case and anisotropic primary case is greatest near the center of the

final image plane. This indicates that form birefringence will severely limit a

coronagraph’s ability to suppress light near the ideal case’s inner working an-

gle. The inner working angle is the smallest separation angle at which a faint

exoplanet can theoretically be detected when the coronagraph is in use[69].

The inner working angle for the "blue" channel’s coronagraph is reported to

be 2.5λ/D or 58 milliarcseconds[67].
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Figure 4.24: (a) Horizontal and (b) vertical cross-sectional slice through the two
dimensional contrast maps for the HabEx telescope with a VV6 coronagraph.

4.2.5 Closing Remarks

In modern coronagraph applications, there is often a system of wavefront con-

trol that is used to "dig out" a dark hole[70], an area in the final image plane

where unwanted on-axis starlight has been moved and redistributed to other

parts of the image plane. This control is achieved by using correcting ele-

ments, often deformable mirrors, to change the wavefront as it propagates to

the final image plane. Processes like electric field conjugation [71] are used

in scalar image formation to calculate the effect of probing different parts of

the deformable mirror on the final image plane. However, with polarization

considerations, the wavefront at the final image plane is the incoherent sum

of the four elements of the modulus square of the ARM, and the deformable

mirrors can not correct all four elements at once. It can correct for any one of

these four elements or the mean of all four elements.

The contrast analysis presented here does not include adaptive optics. Im-

plementation of wavefront control with polarization considerations was not

feasible for the author, but the results presented here (most importantly figure
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4.24 stand as a cautionary tale; modeling polarization aberrations shows how

coatings negatively affect the possible contrast of a coronagraph. Therefore,

polarization should be taken into account when designing adaptive optics and

wavefront control that dig out the dark hole in the final image plane lest the

faint exoplanet’s signal be masked by polarization effects.

4.3 An Aside About Index of Refraction Interpolation in Ray Trac-

ing Programs

When different ray tracing programs trace an optical system, if their thin film

packages are different, the resulting Jones pupils will inevitably be different.

This section presents an interpolation issue noted when comparing the thin

film outputs from OpticStudio’s Zemax [72] and AiryOptics’ Polaris-M [21].

4.3.1 Background

Reflecting surfaces in an optical system are generally coated with a dielectric

thin film stack to both protect the surface and enhance the reflection from

the surface. The polarization properties from the metal coated surface as

well as the thin film stack need to be calculated so that the overall affect of

the polarization properties of the system can be assessed. The polarization

properties of a surface are dictated by the angle of incidence at the surface

and the indices of refraction for each layer of the thin film stack. Thus any

thin film analysis program needs both angle and refractive index to return

meaningful polarization data. A ray tracing program will calculate the angle

of incidence from the ray trace itself, so all that needs to be supplied is the index
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of refraction for the thin film. In Zemax, this data is supplied to the program

in the form of a coating file. This coating file contains index of refraction data

for different materials and prescriptions for different thin films. The refractive

index is input as a table of data with three columns: wavelength, real part of

the index of refraction, and imaginary part of the index of refraction. Table

4.2 shows an example for aluminum.

Wavelength (µm) n (real) k (imaginary)
0.400000 0.400000 -4.450000
0.436000 0.470000 -4.840000
0.450000 0.510000 -5.000000
0.492000 0.640000 -5.500002
0.500000 0.665936 -5.576610
0.546000 0.820000 -5.990000
0.578000 0.930000 -6.330000
0.650000 1.300000 -7.110000
0.700000 1.550000 -7.000000
0.750000 1.800000 -7.119999
0.800000 1.990000 -7.050000
0.850000 2.080000 -7.150001
0.900000 1.960000 -7.700000

Table 4.2: Example of refractive index tabulated data for aluminum

But what if the ray trace needs refractive index data at a wavelength not

present in the table of refractive index data fed into the program? For example,

what if 633nm light was being traced through the system? Since the table of

data has 578nm and 650nm data, but no data point in between, the program

must use its own interpolation to extract the value of the real and imaginary

parts of the refractive index at that wavelength.

4.3.2 Thin Film Performance, No Subroutine Interpolation

Before looking at the outputs of the thin film packages with interpolated input

data, we should first confirm that the thin film subroutines in Polaris-M and
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Zemax agree with one another with a given index of refraction. One of the

data points in table 4.2 is 700nm, so we’ll look at the reflection coefficients

from the two programs at this wavelength. Figure 4.25 shows the difference

between Zemax and Polaris-M for the magnitudes and phases of the reflection

coefficients when using data from a non-interpolated wavelength. Across a

broad range of angles, the differences between the two thin film subroutines are

very small, on the order of 10−6. The rapid oscillations seen in the difference of

the phase is due to the precision of the numerical data extracted from Zemax.

These non-zero differences do show that there is a slight difference in the thin

film algorithms, and it is up to the reader whether differences at these levels are

significant. For the purpose of this paper, this level of agreement is acceptable.
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Figure 4.25: Difference between Zemax and Polaris-M reflection (magnitude
and phase) for a non-interpolated wavelength, 700nm
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4.3.3 Thin Film Performance With Subroutine Interpolation

Figure 4.26 shows the difference between Zemax and Polaris-M for the magni-

tudes and phases of the reflection coefficients when using data from an inter-

polated wavelength. Whereas the differences at a non-interpolated wavelength

were on the order of 10−6, the differences with an interpolated wavelength are

on the order of 10−3. So allowing each program to do its own interpolation

leads to differences in the calculated magnitude and phase that are three orders

of magnitude worse than the non-interpolated case.
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Figure 4.26: Difference between Zemax and Polaris-M reflection (magnitude
and phase) for an interpolated wavelength, 633nm

4.3.4 Current Solution

Since the only thing that changed between calculating the thin film perfor-

mance at 700nm and 633nm was the interpolation, we have established that

the interpolation algorithm that Zemax and Polaris-M use are different. It is

not within the scope of this dissertation to deem either algorithm "correct" or
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"incorrect". With all else being the same, the polarization dependent pupils

that Zemax and Polaris-M output will be different because of this interpola-

tion issue. Consulting with Jet Propulsion Lab optical engineer Stefan Martin,

the current solution to this problem was deemed to be straightforward; don’t

let the programs use their interpolation. Instead, the interpolation is done

by hand, then that data is fed into the table of refractive index values. This

way, the programs won’t use their own interpolation and go back to being in

agreement at the 10−6 level. Table 4.3 shows the new input data set to be

fed into Zemax and Polaris-M. Figure 4.27 shows the results when we force

both Polaris-M and Zemax to recognize 633nm as a data point in its table of

refractive index data. Once again, the rapid oscillations seen in figure 4.27 are

attributed to issues with precision from the data extracted from Zemax.

Wavelength (µm) n (real) k (imaginary)
0.400000 0.400000 -4.450000
0.436000 0.470000 -4.840000
0.450000 0.510000 -5.000000
0.492000 0.640000 -5.500002
0.500000 0.665936 -5.576610
0.546000 0.820000 -5.990000
0.578000 0.930000 -6.330000
0.633000 1.206590 -6.981450
0.650000 1.300000 -7.110000
0.700000 1.550000 -7.000000
0.750000 1.800000 -7.119999
0.800000 1.990000 -7.050000
0.850000 2.080000 -7.150001
0.900000 1.960000 -7.700000

Table 4.3: Example of refractive index tabulated data for aluminum. The
highlighted row shows the forced interpolation for 633nm that has been added
to the table
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Figure 4.27: Difference between Zemax and Polaris-M reflection (magnitude
and phase) for a wavelength that was interpolated by hand, 633nm

4.4 LUVOIR

The Large UV/Optical/IR Surveyor (LUVOIR) is a concept for a multi-

wavelength space observatory. This mission will investigate a broad range of

science, from the epoch of reionization, through galaxy formation and evolu-

tion, star and planet formation, to solar system remote sensing. LUVOIR also

has the goal of characterizing a wide range of exoplanets, including those that

might be habitable or even inhabited[62]. LUVOIR will have access to a UV-

optical-NIR coronagraph, imager and spectrographs for the optical and NIR

channels, a high definition imager for astronomical imaging, and ultra-violet

multi-object spectrograph[73, 74, 75, 76, 77]. Presented here is a preliminary

analysis of the polarization properties of LUVOIR’s visible channel corona-

graph fore-optics.
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4.4.1 Optical Prescription

The fore-optics of the LUVOIR coronagraph system (that is, everything before

the coronagraph focal plane mask) has 15 reflecting surfaces. The first four

surfaces have a coating of 21 nm of lithium fluoride on aluminum, the next four

surfaces (surfaces five to eight) have a coating of 25 nm of magnesium fluoride

on aluminum, and every surface beyond that is coated in FSS99. Figure 4.28

shows the reflectance and phase change for s- and p-polarized light at 542 nm,

which is the central wavelength of the visible channel, for a coating of 21 nm

of lithium fluoride on aluminum. See figures 4.4 and 4.5 for the performance of

the other two coatings (n.b. those figures are for a reference wavelength of 500

nm, but the performance does not change appreciably between 500 nm and

542 nm).
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Figure 4.28: Thin film performance of 21 nm LiF on aluminum at a wavelength
of 542 nm. (a) shows the reflectance of the s- and p-polarized light versus angle
of incidence. (b) shows the reflected phase for s- and p-polarized light versus
angle of incidence

Figures 4.29, 4.30, and 4.31 (taken from Bolcar et. al 2017 and Bolcar et.

al 2018) show the on-axis version of the LUVOIR system’s optical telescope

element (OTE) and the corongraph paths. A second, off-axis architecture is

being considered[78]. Bolcar only shows the on-axis version, but this analysis



CHAPTER 4. TELESCOPE AND CORONAGRAPH SIMULATION 110

will utilize the off-axis version of the main telescope assembly to avoid the

central obscuration of the primary.

Figure 4.29: LUVOIR OTE optical design. First-order optical parameters are
shown in the inset.

Figure 4.30: Block diagram of the coronagraph instrument. Light from the
OTE enters in the upper left corner and a sequence of dichroic beamsplitters
separates the UV, Vis, and NIR channels of the instrument.
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Figure 4.31: Top-down view of just the NIR channel of the coronagraph. Light
enters from the OTE perpendicular to the plane in the upper right hand corner
before being sent to the pair of deformable mirrors.

Though the current plans for the LUVOIR primary involve a primary aperture

made of segmented hexagons, this analysis makes the simplifying assumption

that the primary is continuous across its surface and that the planform area of

the primary is equal to the area of the circle that circumscribes the outer-most

hexagons.

4.4.2 Polarization Ray Trace of Fore-Optics Outputs: Pupil and

ARM

Figure 4.32 shows the Jones pupil for the fore-optics returned from the LU-

VOIR polarization ray trace. The pupil is about 3.7 mm across and sampled

with 101x101 ray grid. The left side shows the amplitude of the pupil and the

right side shows the phase in radians. The off-diagonals amplitudes are about

36 times smaller than the on-diagonals, so only a relatively small amount of the

light is transformed into an orthogonal polarization state. The on-diagonals

are close to one another in magnitude; there’s only about 1% difference be-
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tween the XX and YY amplitude. This difference arises from the different

amplitude reflection coefficients for the coatings, compounded by the fact that

there are 15 reflections which magnify the small differences in the s- and p-

reflection coefficients. The on-diagonal phases show (in order from greatest to

least amount) tilt, astigmatism, and coma. The off-diagonals suffer a π phase

jump at the zero crossing that occurs in the center of the off-diagonal amplitude

maps. Figure 4.33 shows the cumulative diattenuation and retardance maps

for the fore-optics. The RMS diattenuation and retardance for the fore-optics

is 0.0581159.
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Figure 4.32: Magnitude (a) and phase in radians (b) of the LUVOIR fore-optics
at 542 nm.
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Figure 4.33: Cumulative diattenuation and retardance maps for the fore-optics
of LUVOIR at 542 nm.
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The amplitude response matrix associated with the LUVOIR fore-optics Jones

pupil is shown in figure 4.34. The ARM was calculated by zero-padding Jones

pupil by a factor of five and then taking a DFT. The figure is shown on a log10

scale and has been normalized by the maximum value of the XX component and

has been zoomed in to a range of [-50,50] microns along x and y. This ARM is

very similar to the HabEx fore-optics ARM (figure 4.10). The on-diagonals are

close to an Airy pattern. The maximum value of the YY component is slightly

larger than the XX component. The off-diagonals are about two orders of

magnitude smaller than the on-diagonal components and contain a bisected

structure running through their center vertically.
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Figure 4.34: Amplitude response matrix of LUVOIR fore-optics Jones pupil
at 542 nm on a log10 scale. The on-diagonals are similar to an Airy pattern,
while the off-diagonals bifurcated due to the structure in the off-diagonals of
the Jones pupil.
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4.5 Conclusion

Polarization ray tracing was utilized to model the polarization aberrations of

the HabEx coronagraph system and the fore-optics of the LUVOIR corona-

graph system. These polarization aberrations, which can be seen from the

deviations of the system Jones pupil from an identity matrix, serve to reduce

the contrast of the coronagraph, inhibiting the ability to detect faint exoplan-

ets. Adaptive optics were not modeled in these simulations; the deformable

mirrors were modeled as stationary flat mirrors. Form birefringence was con-

sidered on the HabEx primary mirror, and it degraded the contrast beyond the

isotropic coatings case. Therefore, polarization aberrations need to be included

in adaptive optics modeling and tolerance analysis of the form birefringence

should be carried out to ensure the contrast is not compromised.



115

CHAPTER 5

Polarization Mitigation Algorithm

This chapter describes one technique to mitigate some of the polarization aber-

rations inherent in an optical system. What follows is an explanation of how

to rotate fold mirrors in an optical system to decrease the average diatten-

uation and retardance in an optical system and details an algorithm for the

optimization of those fold mirror rotations.

5.1 Polarization Aberration Mitigation

The polarization aberrations diattenuation and retardance arise as a conse-

quence of the difference in s-polarized and p-polarized Fresnel reflection and

transmission coefficients as a function of angle of incidence. There are a few

strategies to control and mitigate polarization aberrations. These include (1)

reducing angles of incidence at each surface in an optical system, (2) reduc-

ing coating-induced polarization, (3) employing polarization compensating el-

ements, and (4) using a crossed fold mirror configuration[18].

5.1.0.1 Angles of Incidence

Diattenuation and retardance are quadratic with respect to the angle of inci-

dence (assuming the angles are not too large). Thus reducing the maximum

angle of incidence at an optical surface will help reduce the diattenuation and
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retardance. Reducing the maximum angle of incidence can be achieved by

reducing the f-number of the surface and changing fold mirror orientations to

shallower deviation angles.

5.1.0.2 Coating-induced Polarization

As the angle of incidence at a coated interface changes, the coefficients of

reflection or refraction for s-polarized and p-polarized light will also change.

How quickly these coefficients change with respect to angle and one another

is dependent on the thin film prescription of the coating. The prescription

may be optimized to adjust the diattenuation and retardance of the coating,

thereby reducing the polarization aberrations of the system. However, it is be

difficult to do so over a large range of angles or for multiple wavebands.

5.1.0.3 Polarization Compensating Elements

Diattenuation and retardance from an optical system can be compensated by

inserting diattenuators and retarders that have equal magnitude but orthogonal

orientation to the system diattenuation and retardance. Such elements can be

viewed as the matrix inverse of the Jones pupil for the aberrated system. One

possibility is to use liquid crystal polymers to fabricate an optical element that

matches the spatially varying diattenuation and retardance in magnitude but

orthogonally oriented[79]. However, the uniformity of liquid crystal retarders

are usually around λ/50 while the retardance fluctuations for the HabEx system

are on the scale of milliwaves (λ/1000), so it is not feasible to correct for these

small polarization aberrations with liquid crystals.
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5.1.0.4 Crossed Fold Mirrors

A crossed fold mirror configuration in which the s-orientation of the first fold

mirror becomes the p-orientation at the second fold mirror will compensate

for both diattenuation and retardance[80]. One point in the pupil can be

completely compensated (zero diattenuation and retardance) while the rest of

the pupil will have reduced diattenuation and retardance.

5.2 Rotating Surface Orientations

The crossed fold mirror configuration has been shown to compensate the po-

larization aberrations for a single angle to zero and leaves a linear variation of

diattenuation and retardance for a spherical wavefront[81]. A second pair of

crossed fold mirrors can compensate the remaining linear variation and leave

reduced quadratic variation in a large field of view. While the crossed fold

mirror configuration can be applied such that a fold mirror compensates for

the fold mirror immediately before it, this compensating principle can be ap-

plied to any system that contains any number of fold mirrors (not necessarily

in sequence) and does not have to be illuminated with a spherical wavefront.

Instead of changing the orientation of a fold mirror to compensate for a fold

mirror immediately before it, a fold mirror’s orientation can be chosen to com-

pensate for the overall system’s aberrations.

5.2.1 Figure of Merit

Since the goal of using the fold mirrors is to compensate for diattenuation and

retardance, the figure of merit will depend on the rotation angle of the fold
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mirrors. The figure of merit selected is RMS diattenuation and retardance mag-

nitude across the field of view. To calculate the diattenuation and retardance

magnitudes from a Jones matrix, we first turn to the Pauli representation of a

Jones matrix following Chipman’s methodology[82].

J =

jxx jxy

jyx jyy

 = c0

1 0

0 1

+ c1

1 0

0 −1

+ c2

0 1

1 0

+ c3

0 −i

i 0


= c0σ0 + c1σ1 + c2σ2 + c3σ3

= c0

(
σ0 +

c1
c0
σ1 +

c2
c0
σ2 +

c3
c0
σ3

)
= c0 (σ0 + f1σ1 + f2σ2 + f3σ3)

(5.1)

c0, c1, c2, and c3 are the complex Pauli coefficients. The coefficient c0 is related

to the unpolarized amplitude and phase change, f1 and f2 are related to the

linear diattenuation and retardance, and f3 is related to the circular diattenu-

ation and retardance. The c coefficients are directly calculated from the Jones

matrix elements.

c0 =
jxx + jyy

2
, c1 =

jxx − jyy
2

, c2 =
jxy + jyx

2
, c3 =

i(jxy − jyx)
2

(5.2)

For weakly polarizing elements like mirrors (weak meaning the diattenuation

and retardance magnitudes << 1), the Jones matrix can be written as[82]
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J ≈ ρ0e
−iφ0

(
σ0 +

DH − iδH
2

σ1 +
D45− iδ45

2
σ2 +

DL − iδL
2

σ3

)
(5.3)

DH , D45, and DL are the horizontal, 45◦, and circular diattenuations and δH ,

δ45, and δL are the horizontal, 45◦, and circular retardances. Using equations

5.1 and 5.3, for weak polarization effects the f-coefficients take on the form

f1 =
DH − iδH

2
, f2 =

D45 − iδ45
2

, f3 =
DL − iδL

2
(5.4)

So the real part of f1 is half the linear horizontal/vertical diattenuation, the

imaginary part of f1 is half the linear horizontal/vertical retardance, the real

part of f2 is half the linear ±45◦ diattenuation, the imaginary part of f2 is half

the linear ±45◦ retardance, the real part of f3 is half the circular diattenuation,

and the imaginary part of f3 is half the circular retardance.

To calculate the RMS diattenuation and retardance magnitudes, a grid of

rays is traced through the optical system and the Jones matrix for each ray

is calculated. Using that Jones matrix, the f-coefficients can be calculated

using equations 5.1-5.4. Then the root mean square of the diattenuation and

retardance magnitude for all rays in the field of view is calculated as

Ξ = 2

√√√√ 1

N

N∑
n=1

|f1,n|2 + |f2,n|2 + |f3,n|2 (5.5)

where f1,n, f2,n, and f3,n are the f-coefficients for the nth ray in the field of

view. Minimizing Ξ will minimize the distance of the Jones matrices in the

field of view from an identity matrix, and thus minimize the overall polarization

aberrations. If it is more important to specifically eliminate diattenuation
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but not retardance or vice versa, Ξ can be modified by applying weighted

coefficients to the real or imaginary parts of the f-coefficients in eq. 5.5.

5.3 Example Application of Rotating Surface Orientations

The HabEx optical system has five fold mirrors in its current design. Figure

5.1 shows the HabEx optical layout from the first fold mirror (fourth optical

surface) until the fifth fold mirror (twelfth optical surface). The blue surfaces

are the fold mirrors, the green surfaces are the front and back of the dichroic,

and the red surfaces are OAPs. Collimated light enters this part of the system

on the right side of the figure and proceeds through the system, reflecting a

collimated beam off of the last fold mirror in the bottom left of the figure. The

dichroic serves to divide the system into two channels. Shown here is the trans-

mitted channel, for wavelegnths between 450 nm and 672 nm. Wavelengths

longer than 673 nm will be deflected downwards from the green surface in the

figure.
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Figure 5.1: Original HabEx optical layout from first fold mirror (fourth optical
surface) to fifth fold mirror (twelfth optical surface). The blue surfaces are the
fold mirrors, the green surfaces are the front and back surfaces of the dichroic,
and the red surfaces are OAPs. The red arrow in the lower right indicates the
direction of the light arriving at the fourth mirror surface.

In this section, different surface orientation rotations will be applied to these

fold mirrors to lower the polarization aberrations of the original system. It

is important to note that while these rotations may lower the polarization

aberrations, the compactness of the system is potentially lost. Thus what is

reported here is an academic exercise and not a comment or suggestion for a

better opto-mechanical system layout.
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5.3.1 Rotating a Fold Mirror in HabEx

Before delving into the rotation of every fold mirror in the system simultane-

ously, we’ll start by looking at the effect of rotating each fold mirror individu-

ally. The approach taken here is to leave the angle of incidence of each ray at

a surface the same when applying these rotations. To do so, the first step is to

extract the propagation vector incident on the fold mirror’s surface from a ray

trace. It is helpful that all the fold mirrors in HabEx are in collimated space,

so the propagation vector of any of the rays will suffice for this calculation.

Once the incident propagation vector is known, two rotation transforms are

calculated: one transform gives the three dimensional rotation around the in-

cident propagation vector as a function of rotation angle, the second transform

gives the three dimensional rotation around the incident propagation vector

anchored around a given vertex. The first rotation transform is then applied

to the fold mirror’s surface normal to produce the rotated surface normal.

Similarly, the second rotation transform is applied to the fold mirror’s surface

vertex to produce the rotated surface vertex.

Rotating a surface upstream of any optical element will affect the vertex and

surface normal of every optic downstream. These rotation transforms also have

to be applied to every surface after the rotated mirror’s surface. Once these

transforms have been applied, the updated system with its rotated fold mirror

is then polarization ray traced, and Ξ can be calculated. Table 5.1 outlines the

step by step process to updating the optical system with rotated fold mirrors.
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1. Ray trace original system
2. Extract propagation vector incident on fold mirror of interest
3. Create rotation transform that rotates about propagation vector,
R1

4. Apply R1 to fold mirror’s surface normal and the surface normal of
every mirror after the fold mirror
5. Create rotation transform that rotates about propagation vector
relative to an anchor vertex, R2

6. Apply R2 to fold mirror’s surface vertex and the vertex of every
mirror after the fold mirror
7. Repeat 1-6 for every fold mirror that is rotated
8. Polarization ray trace rotated system and calculate Ξ

Table 5.1: Steps for calculating Ξ as a function of fold mirror rotations

Figure 5.2 shows the calculated value of Ξ as each of the five fold mirrors are

individually rotated through 360◦. As the rotation angle changes, Ξ tends to

change sinusoidally. This is to be expected because the axis of a polarization

element (max transmission for polarizer or fast axis for retarder) is modulo

180◦, meaning that rotating them by steps of 180◦ should be the same as not

rotating them at all. Since rotating these fold mirrors essentially rotates the

s-orientation and p-orientation of the surface, rotating those orientations by

180◦ should have very little effect. Immediately, we can note that the original

system, which will have all five rotation angles for these mirrors be at 0◦, is not

at a minimum for Ξ. While rotating the orientations of the first two fold mirrors

(the fourth and fifth surfaces in the layout) away from 0◦ actually increases

our merit function, rotating any of the other three fold mirrors (surfaces 10,

11, and 12 in the optical layout) away from 0◦ serves to reduce Ξ.
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Figure 5.2: Plot of Ξ versus rotation angle, in degrees, as each of the five fold
mirrors are indiviudally rotated.

So now that we know that our merit function can be reduced, the question

becomes (1) what is the minimum value we can reduce it to and (2) what is

the best approach for finding that minimum?

5.3.2 Rotating All Five Fold Mirrors in HabEx

We know from figure 5.2 that the original set of orientations for the five fold

mirrors does not sit at a minimum for Ξ. Simply by rotating the fourth fold

mirror (the eleventh surface) by about 90◦, Ξ drops from 0.28 down to almost

0.1. Since a rotation angle of about 90◦ is also near a minimum for the third

and fifth fold mirrors (surfaces 10 and 12), one might assume that Ξ could

be further reduced by also rotating those fold mirrors by 90◦. The problem,

however, is that the relationship between the five fold mirror angles and Ξ is

complex, and changing any one angle will affect the influence of changing the

other four angles. Thus simply using the angles that show minima in figure

5.2 will not produce a global minimum for Ξ.

Since Polaris-M is built inside of Mathematica[83], minimization of the
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merit function can be implemented with Mathematica’s built in optimization

routines[84]. By defining a function that calculates Ξ from a Polaris-M ray-

trace, Mathematica’s NMinize function was implemented to calculate the five

mirror orientations that minimized Ξ. This minimization was done at only

one wavelength, 500 nm. Additional optimization could be implemented by

accounting for changes in the diattenuation and retardance across wavelength,

but only 500 nm was used for this round of optimization. The optimization

routine and code used in the optimization process can be found in Appendix

B.

5.3.3 Original System Vs Optimized System

The outputs from the minimization routine compared to the original system

orientation are detailed in table 5.2. The angles in the table are relative rota-

tions about the surface normal from the original system’s layout, so the original

system’s angles are all zero.

Original Optimized
Ξ 0.2807199 0.0104598
θ4 0 182.032◦

θ5 0 107.936◦

θ10 0 187.287◦

θ11 0 348.068◦

θ12 0 65.3966◦

Table 5.2: Ξ for the original system and the optimized system

Figure 5.3 shows the original HabEx system layout and the rotated system

layout that has been optimized to minimize for polarization aberrations. The

180◦ rotation of the first fold mirror results in the input collimated beam coming

in from the left side of the figure (figure 5.3b. The two figures are shown from
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the same view points in global space.

(a) (b)

Figure 5.3: Original HabEx optical layout (a) and rotated HabEx optical layout
(b) from first fold mirror (fourth optical surface) to fifth fold mirror (twelfth
optical surface). The blue surfaces are the fold mirrors, the green surfaces are
the front and back surfaces of the dichroic, and the red surfaces are OAPs. The
red arrow in the lower right of (a) and lower left of (b) indicate the direction
of the light arriving at the fourth mirror surface.

Figures 5.4 and 5.5 show the entire system Jones pupils for the original HabEx

layout and the compensated layout using the fold mirror rotation angles shown

in table 5.2. The left side of the figures shows the amplitude of the pupil and

the right side shows the phase in radians of the pupil.
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Figure 5.4: Magnitude (a) and phase in radians (b) of the original HabEx
optical system for λ = 500nm
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Figure 5.5: Magnitude (a) and phase in radians (b) of the compensated HabEx
optical system for λ = 500nm

The most immediate difference between the original layout’s Jones pupil and

the compensated layout’s Jones pupil is the structure of the amplitude and

phase. The zero that runs through the off-diagonal amplitudes and corre-

sponding π phase jump in the off-diagonal phases have rotated by 90◦. The

distribution of the on-diagonal amplitudes are also rotated by 90◦. However,

by design, we kept the angles of incidence on the fold mirrors the same between

the original system and the compensated system, so the amplitude of the on-

diagonals only change by a fraction of a percent. The on-diagonal phases are

relatively similar, with an overall piston term being the most notable change.

From eq. 5.3, the Jones pupils shown in figures 5.4 and 5.5 can be decomposed

into a non-polarizing term, c0, a term that encompasses the diattenuation, and

a term that encompasses the retardance. The non-polarizing term can be split

into the non-polarizing amplitude, ρ0, and non-polarizing phase or wavefront,

e−iφ0 . The diattenuation (D) and retardance (δ) magnitudes are

D =
√
D2
H +D2

45 +D2
L, δ =

√
δ2H + δ245 + δ2L (5.6)
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Using the relationships in eq. 5.4, eq. 5.6 can be rewritten as

D = 2
√

R{f1}2 + R{f2}2 + R{f3}2, δ = 2
√

I {f1}2 + I {f2}2 + I {f3}2

(5.7)

where R{f} takes the real part of f and I {f} takes the imaginary part of f.

Figures 5.6 and 5.7 show the unpolarized amplitude, ρ0, and unpolarized phase,

φ0, for the original system, compensated system, and the difference between

the two.
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Figure 5.6: Unpolarized magnitude for the original system (a) and the com-
pensated system (b) for λ = 500nm. The difference between the two is shown
in (c)

Average Wavefront
Original System

-2.075

-2.050

-2.025

-2.000

-1.975

(a)

Average Wavefront
Compensated System

-2.075

-2.050

-2.025

-2.000

-1.975

(b)

Phase Change
Original-Compensated

-0.004

-0.002

0

0.002

0.004

(c)

Figure 5.7: Unpolarized wavefront for the original system (a) and the compen-
sated system (b) in radians for λ = 500nm. The difference between the two is
shown in (c)

The differences in the unpolarized amplitude and phase between the original
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system and the compensated system are relatively small, on the order of hun-

dreths of a percent for the amplitude and tenths of a percent for the phase.

Since the purpose of the compensating system is to compensate for polarization

aberration, it is to be expected that non-polarized wavefront and apodization

does not change appreciably between the two configurations. The diattenua-

tion and retardance magnitudes, on the other hand, should vary appreciably

between the two configurations. Figures 5.8 and 5.9 show the diattenuation and

retardance magnitudes of the two configurations, as well as their differences.
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Figure 5.8: Diattenuation magnitude for the original system (a) and the com-
pensated system (b) for λ = 500nm. The difference between the two is shown
in (c)
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Figure 5.9: Retardance magnitude for the original system (a) and the compen-
sated system (b) in radians for λ = 500nm. The difference between the two is
shown in (c)

The maximum change in the diattenuation magnitude relative to the original
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configuration is about 26%. The difference shown in figure 5.8 is symmetric

about zero. The red upper portion indicates that that region of the pupil has

more diattenuation in the compensated configuration. The blue central and

lower portion indicates that that region of the pupil has less diattenuation

in the compensated configuration. Overall, there is a greater portion of the

pupil that has less diattenuation, resulting in an overall decrease in the average

diattenuation across the pupil.

The maximum change in the retardance magnitude relative to the original

configuration is about 41%. The difference shown in figure 5.9 indicates that

much of the pupil has less retardance, as indicated by the blue portion of the

pupil. There is only a small portion at the top of the pupil that has more

retardance in the compensated configuration. There is an overall decrease in

the average retardance across the pupil.

5.4 Closing Remarks

Metal coated mirrors and dielectric thin film coated reflecting surfaces cause

polarization aberrations due to the variations of the Fresnel reflection coeffi-

cients with angle of incidence. By choosing the appropriate configuration for

the fold mirrors, it is possible to compensate some of the polarization aberra-

tions of an optical system. The proper choice of configuration depends on the

merit function to be evaluated. The chosen merit function in this discussion

was RMS diattenuation and retardance magnitude. These magnitudes can be

easily calculated for most reflecting systems using the weak polarizing assump-

tion. Minimizing this merit function is equivalent to minimizing polarization
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aberrations in the system.

The optimized rotation angles about the surface normals for the five flat fold

mirrors of the HabEx optical system were θ4 = 182.032◦, θ5 = 107.936◦,

θ10 = 187.287◦=, θ11 = 348.068◦, and θ12 = 65.3966◦. With these fold mirror

rotations, the average retardance of the system was reduced by a factor of 3

while the average diattenuation of the system was reduced by a factor of 20%.

The unpolarized wavefront and apodization did not change appreciably. How-

ever, with these rotation angles, the compactness of the original system is lost.

This analysis is not meant to be a critic on the current HabEx design, but is

rather an academic exercise to show proof of concept and carry the design one

step further.
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CHAPTER 6

Longitudinal Chromatic

Aberration

6.1 Introduction

In an ideal polychromatic imaging system, spherical wavefronts from the exit

pupil converge to a point in the image plane [85, 86]. Misaligned components,

spectral refractive index variations, and the geometry of the surfaces of an

optical system lead to aberrations, which are departures from these spherical

wavefronts [49]. This chapter is focused on longitudinal chromatic aberration

and its relation to the wavefront aberration defocus, a quadratic departure

from a spherical wavefront.

Longitudinal chromatic aberration is the change in effective focal length of an

image forming system with wavelength [87, 88, 89]. In refracting systems, the

wavelength dependence of the angle of refraction from Snell’s law causes the

focal point for different wavelengths to be separated. In reflecting systems,

however, the law of reflection is wavelength independent. When scalar ray

tracing analyzes a reflecting system, the focal point for all wavelengths coin-

cide because all ray paths will have the same optical path length. But with

polarization ray tracing, focal shifts are observed for paraxial rays. This is
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also understood from using the small angle approximation for the reflected

phase change of a coated interface, which is quadratic with angle of incidence.

Thus wavefronts of different wavelengths at the exit pupil acquire different

quadratic phases from dielectric coated reflecting surfaces[90]. In the paraxial

regime, these phase differences in a reflecting system across wavelength are

longitudinal chromatic aberrations. They degrade the image quality in poly-

chromatic imaging systems and can cause unforeseen challenges in broadband

optical systems that need precision alignment. What follows is a method for

describing and calculating the longitudinal chromatic aberrations induced by

dielectric coated mirrors.

Section 6.2 defines the wavefront aberration defocus and highlights the differ-

ence between how conventional scalar ray tracing software and polarization ray

tracing software represent aberrations. Section 6.3 describes the calculation of

longitudinal chromatic aberration from reflections off of a bare metal surface

and dielectric coated metal surface. Section 6.4 discusses the physical shifts

in focus that arise as a consequence of the longitudinal chromatic aberration.

Section 6.5 provides our conclusions.

6.2 Aberration Representation

In practice, conventional ray tracing uses geometric rays to model propagation

of the electric field of light. The phase change of the light along a ray segment

is calculated from its optical path length (OPL),

φ =
2πOPL

λ
, OPL = nd, (6.1)
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where λ is the wavelength of the ray, n is the index of refraction of the media

the ray is propagating through, and d is the physical distance the ray trav-

els in that medium. Since wavefront aberrations are deviations of the phase

fronts relative to a reference sphere, conventional ray tracing uses optical path

difference (OPD) as the primary means of computing and displaying the wave-

front aberration function, W (x, y, λ) [72]. The OPD for a ray is defined as the

difference between that ray’s optical path length and the chief ray’s optical

path length, where the optical path length is measured from the source to a

reference sphere at the exit pupil[91].

This scalar wavefront aberration function does not encompass polarization ef-

fects (such as the Fresnel reflection coefficients for s- and p-polarized light) in

an optical system. To capture these effects, polarization ray tracing is used to

calculate the polarization aberration function, an eight-valued function written

as a spatially varying Jones matrix [92].

JP(x, y, λ) =

Jxx(x, y, λ) Jxy(x, y, λ)

Jyx(x, y, λ) Jyy(x, y, λ)

 (6.2)

JP is eight-valued because all four components (Jxx, Jxy, Jyx, Jyy) are complex

valued. This Jones matrix can be decomposed into four components: the

wavefront aberration, W , from the coatings and ray OPDs, the amplitude

transmission, A, and diattenuation and retardance components in the form of

a Jones matrix, J. The wavefront aberration and amplitude transmission are

scalar terms.
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JP(x, y, λ) = A(x, y, λ)ei2πW (x,y,λ)/λJ(x, y, λ) (6.3)

The amplitude transmission, A, is calculated from the average magnitude of

Jxx and Jyy while the wavefront aberration, W , is calculated from the average

phase of Jxx and Jyy. J can be further broken down into linear horizontal,

linear 45◦, and circular diattenuation and retardance terms or diattenuation

and retardance piston, tilt, and defocus terms[18, 93, 94, 95, 96]. The two

scalar terms, A and W , have been separated from the Jones matrix term, J,

to emphasize the unpolarized amplitude and wavefront terms at the exit pupil,

but in practice the spatially varying Jones matrix of eq. 6.2 is given by a

polarization ray trace and A and W must be calculated from Jxx and Jyy.

An example calculation of A, W , and J utilizing a polarization ray trace is

provided in Appendix C.

6.2.0.1 An Aside About Coating-Induced Astigmatism

In the paraxial regime, the Jones matrix in eq. 6.3 is referred to as the linear

retardance defocus term [90, 92, 97], and it is responsible for coating-induced

astigmatism. The magnitude of this coating-induced astigmatism is propor-

tional to the difference between the s- and p-reflected phase changes and can

be seen as quadratic retardance across the pupil (thus the name retardance

defocus). An example calculation of the astigmatism seen from the linear re-

tardance defocus term is provided in Appendix C.
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6.2.1 Defocus Representation

Defocus is a longitudinal aberration, causing shifts in the focal point of the

system along the optical axis [89, 98]. Aberrated wavefronts with defocus take

on the the form of a quadratic relative to the reference wavefront. For scalar ray

tracing, this quadratic shows up in the OPD of rays traced through the system.

For polarization ray tracing, this quadratic shows up in the exponential term

in eq. 6.3.

For example, figure 6.1 shows two different OPD plots generated from a scalar

ray trace. The prescription of the parabolic mirror used to create these plots

can be found in Appendix C. The left side figure shows the OPD plot when the

image plane is at paraxial focus. The right side of the figure shows the same

system with the image plane moved by 0.1 mm along the optical axis towards

the mirror. These OPD plots show the relative pupil position along the x-axis

and the wavefront aberration in waves along the y-axis. The example system is

axially symmetric, so the plots as a function of relative x-position and relative

y-position in the pupil are the same. The vertical scale the left side of figure

6.1 is 10−5 waves while the vertical scale on the right side is 20 waves.
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(a) (b)

Figure 6.1: OPD plots for (a) a system with no defocus and (b) the same system
with defocus. W is the amount of aberration, in waves. Py and Px are scaled
coordinates in the entrance pupil along the y-axis and x-axis, respectively. The
range of the plot for (a) is 10−5 waves and the range of the plot for (b) is 20
waves.

For an optical system free of geometric aberrations, the optical path length for

every ray is identical, so the OPD for each ray is zero, as shown in figure 6.1a.

When geometric defocus is introduced into the system by shifting the image

plane towards the mirror, the OPD of rays changes quadratically away from

the center of the pupil, as shown in figure 6.1b.

Figure 6.2 shows a plot similar to the OPD plots in figure 6.1a, except this

time, the average reflected phase was calculated from a polarization ray trace

[21]. Polarization ray tracing incorporates the effects of geometric phase (OPD)

and polarization dependent phase (Fresnel/amplitude reflection coefficients).

Figure 6.2 shows a quadratic change across the pupil. Since the OPDs of the

rays have not changed, this quadratic phase is a direct result of the polarization

properties of the coating. This quadratic changes as the wavelength changes,

leading to chromatic aberration. Thus, longitudinal chromatic aberration in

a reflecting system appears when the wavefront at the exit pupil displays a

quadratic departure from a spherical wavefront due to the OPDs and amplitude

reflection coefficients that vary with wavelength.
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Figure 6.2: Example of quadratic phase for a dielectric coated reflecting surface.
The same parameters were used for this system that created the OPD plot
shown in figure 6.1a, except this system was polarization ray traced. The
geometric aberrations for this surface are zero, but the amplitude reflection
coefficients impart varying phase across the surface, causing defocus. The
change of the quadratic across wavelength is chromatic aberration from this
dielectric coated reflecting surface. The prescription and calculation process
for this reflected phase are provided in Appendix C.

Light rays reflecting off of surfaces obey the law of reflection. The angle of

reflection is the same as the angle of incidence [99]. Since the angle of reflection

is not wavelength dependent, an OPD plot for a single reflecting surface will be

invariant across wavelength. It is for this reason that it is generally assumed

that reflecting optical systems display no longitudinal chromatic aberration;

the geometric ray paths should be the same for all wavelengths. However,

the wavefront at the exit pupil of a system is determined by the OPD and

any phases due to reflection, which are described by the Fresnel reflection

coefficients (for bare surfaces) or amplitude reflection coefficients (for thin film

coated surfaces)[90]. The amplitude reflection coefficients are expressed as:
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αs(λ, θ) = ξs(λ, θ)e
iφs(λ,θ) (6.4)

αp(λ, θ) = ξp(λ, θ)e
iφp(λ,θ) (6.5)

where ξs and ξp are the amplitude coefficients on reflection from a thin film

for the s- and p-polarization states and φs and φp are the phase changes on

reflection from a thin film for the s- and p-polarization states. Both ξ and φ are

dependent on the wavelength (λ) and angle of incidence (θ). These amplitude

coefficients encompass both amplitude and phase change after reflection from

a thin film. From polarization aberration theory (eq. 6.3), the wavefront

aberration function is the average of the s- and p-polarized phase changes from

a reflecting surface. So while the geometrical optical path lengths from a ray

trace may be identical, the complex Fresnel or amplitude reflection coefficients

do contribute phase changes to the wavefront.

6.3 Chromatic Aberrations from a Metal-Coated Mirror

Chromatic aberration in a reflecting imaging system is the wavelength variation

of defocus at the exit pupil from a fixed reference spherical wavefront. Such

a defocused wavefront is created when a collimated beam of light interacts

with a curved reflecting surface, like a spherical or parabolic primary mirror,

or when a converging beam of light interacts with a flat reflecting surface. An

approximately linear variation in the angle of incidence across the reflecting

surface leads to defocus. Non-linear variations in the angle of incidence across
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the surface lead to higher order aberrations that are beyond the scope of this

paper. Flat reflecting surfaces with an incident collimated beam will only

contribute a piston term because the angle of incidence for every ray on the

mirror will be the same.

This section (1) shows that bare reflecting curved surfaces do not contribute

longitudinal chromatic aberration, (2) details how the amplitude reflection co-

efficients from a dielectric coated curved reflecting surface give rise to defocus

aberration, and (3) shows how the quadratic coefficient for the wavefront re-

flecting from a surface is calculated.

6.3.1 Bare Metal Reflecting Surfaces

The Fresnel reflection equations are used to calculate the reflected phase from

a metal surface. Consider an incident medium with a purely real index of

refraction, n1, a reflecting substrate with complex index of refraction, n2− ik2,

and angle of incidence, θ. The complex reflection coefficients for s-polarized

and p-polarized light are given by [49]:

rs =
n1 cos θ −

√
(−ik2 + n2)2 − n2

1 sin θ2

n1 cos θ +
√

(−ik2 + n2)2 − n2
1 sin θ2

(6.6)

rp =
(−ik2 + n2)

2 cos θ − n1

√
(−ik2 + n2)2 − n2

1 sin θ2

(−ik2 + n2)2 cos θ + n1

√
(−ik2 + n2)2 − n2

1 sin θ2
(6.7)
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Figure 6.3: Reflected phase from aluminum as a function of angle of incidence
at λ = 500 nm, n = 0.666 - 5.57i. (a) shows the s-polarized phase, p-polarized
phase, and average of s- and p-polarized phases. (b) zooms in on the average
of the s- and p-polarized phases, showing the absence of a quadratic term but
presence of higher even ordered terms.

It is important to note that the Fresnel equations, eqs. 6.6 and 6.7 are defined

for a right-handed coordinate system [49] such that, upon reflection, the p-

polarized reflection coefficient is given a negative sign due to the change of basis

(p-direction flips after reflection). This will show up as a π phase shift that is

not related to the actual reflected phase. In figure 6.3a, the reflected phases

are not π apart because this phase change on reflection has been accounted

for.

Figure 6.3a shows the phase of the Fresnel reflection coefficients for s-polarized

light, p-polarized light, and the average of s- and p-polarized light reflecting off

of aluminum at 500 nm (n = 0.666 - 5.57i) as a function of angle of incidence.

Figure 6.3b is a zoomed in view of the average reflected phase. While the s-

and p-polarized phases both have significant quadratic terms of opposite sign,

the average reflected phase has a fourth and higher even order terms but no

quadratic contribution. To prove there is no quadratic term in the average

reflected phase, eq. 6.6 and eq. 6.7 are expanded in a Taylor series to second
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order around the origin.

rs ≈ −1 +
2ik2n1 + 2n2

1 + 2n1n2

k22 + (n1 + n2)2
+

(
ik2n1 + n1n2

k22 + n2
2

− 2ik2n1 + 2n2
1 + 2n1n2

k22 + (n1 + n2)2

)
θ2

(6.8)

rp ≈ 1− 2ik2n1 + 2n2
1 + 2n1n2

k22 + (n1 + n2)2
+

(
ik2n1 + n1n2

k22 + n2
2

− 2ik2n1 + 2n2
1 + 2n1n2

k22 + (n1 + n2)2

)
θ2

(6.9)

To calculate the phase change on reflection, the arctangent of the ratio of the

imaginary part to the real part of the reflection coefficient, η, is calculated. To

first order, the Taylor series of the arctangent function is

ArcTan[η] ≈ η (6.10)

The ratio of imaginary part to real part of the s- and p-reflection coefficients

are

ηs =
Im[rs]

Re[rs]
=

k2n1((−2 + θ2)k22 − θ2n2
1 − 2θ2n1n2 + (−2 + θ2)n2

2)

k42 + n2(θ2n1 + n2)(−n2
1 + n2

2) + k22((−1 + 2θ2)n2
1 + θ2n1n2 + 2n2

2)

(6.11)

ηp =
Im[rp]

Re[rp]
= − k2n1((2 + θ2)k22 − θ2n2

1 − 2θ2n1n2 + (2 + θ2)n2
2)

k42 − k22((1 + 2θ2)n2
1 + θ2n1n2 + 2n2

2) + θ2n1 − n2)n2(n2
1 − n2

2)

(6.12)
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Expanding eq. 6.11 and eq. 6.12 in a Taylor series to second order yields

φs ≈ −
2k2n1

k22 − n2
1 + n2

2

+
k2n1(k

4
2 + 2k22 + n4

1 + 2k22n
2
2 − 2n2

1n
2
2 + n4

2)

(k22 + n2
2)(k

2
2 − n2

1 + n2
2)

2
θ2 (6.13)

φp ≈ −
2k2n1

k22 − n2
1 + n2

2

− k2n1(k
4
2 + 2k22 + n4

1 + 2k22n
2
2 − 2n2

1n
2
2 + n4

2)

(k22 + n2
2)(k

2
2 − n2

1 + n2
2)

2
θ2 (6.14)

The coefficient of the quadratic term in eq. 6.13 and eq. 6.14 are equal in

magnitude but opposite in sign and will cancel with one another when added

together. Taking the average of eq. 6.13 and eq. 6.14, the average reflected

phase to second order is

φavg =
φs + φp

2
≈ − 2k2n1

k22 − n2
1 + n2

2

(6.15)

This demonstrates the important result that there is no angle dependent

quadratic component to the average reflected phase. Thus there is no defo-

cus imparted by bare reflecting surfaces. With no defocus, there is no chro-

matic change of focus from bare metals. Thus, bare reflecting surfaces show no

longitudinal chromatic aberration.

6.3.2 Dielectric Thin Film Coatings on Metal-Coated Surfaces

While uncoated reflecting surfaces do not generate longitudinal chromatic aber-

ration, dielectric coated reflecting surfaces generate longitudinal chromatic

aberration. Figures 6.4a, 6.4b, and 6.4c show a few examples of the reflected

phase from multilayer coatings versus angle of incidence, calculated at a wave-

length of 500 nm from a polarization ray trace. These example multilayer
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coatings are: (1) Macleod 188, a five layer dielectric stack[100], (2) FSS99-

600, an enhanced reflection coating on silver for use in space-based telescopes

like HabEx [67], and (3) protected aluminum which uses enhanced reflection

coatings of three separate quarter wave stacks of hafnium oxide and silicon

dioxide[101]. The prescription of the Macleod 188 stack assumes no dispersion

in each material (index of refraction is constant across wavelength). These

coating prescriptions are provided in Appendix C.

The defocus contribution of a parabolic or spherical mirror and its coating in

the paraxial regime can be seen as the quadratic phase imparted by the reflect-

ing surface. As opposed to the average reflected phase from bare aluminum

(figure 6.3) which had the quadratic contribution from s- and p- cancel one an-

other, these three multilayer thin films all show average reflected phases with

a non-zero quadratic phase.
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Figure 6.4: Reflected phase at 500 nm for (a) Macleod 188, (b) FSS99-600,
and (c) protected aluminum multilayer thin film coatings. The solid red curve
is the s-polarized reflected phase, the dotted blue curve is the p-polarized
reflected phase, and the dashed black curve is the average of s- and p-polarized
reflections. Across this range of angles of incidence, both s- and p-polarized
phases are predominately quadratic which contributes defocus to the wavefront.

We define the quadratic coefficient of the reflected phase from a multilayer

coating as:

Φ2(λ) = lim
θ0→0

φs(θ0;λ)+φp(θ0;λ)

2
− φ(0;λ)

θ20
(6.16)

Φ2 is the calculated quadratic coefficient, θ0 is the angle of incidence, φs(θ0)

and φp(θ0) are the s-polarized and p-polarized reflected phases at θ0, and φ(0)

is the reflected phase at normal incidence. In practice, Φ2 is evaluated as a

finite difference by replacing the limit in eq. 6.16 with a small angle for θ0.

The defocus magnitude in radians at each wavelength is calculated as the av-
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erage phase change that the reflecting surface induces on the marginal ray[90],

∆Wdefocus,radians = Φ2θ
2
marg (6.17)

The chromatic aberration for a dielectric coated reflecting surface is seen as

variations in the quadratic coefficient with wavelength. Using eq. 6.16 with a

small angle of incidence, θ0 = 0.1, the quadratic coefficient is plotted against

wavelength in figures 6.5a-6.5c. Larger fluctuations in the quadratic coefficient

indicate more chromatic aberration while smaller changes in the quadratic

coefficient across wavelength indicate less chromatic aberration. Of particular

interest in these plots of quadratic coefficients are where the areas of relatively

small changes in the quadratics occur. For Macleod 188, this region occurs for

wavelengths shorter than 500 nm and between 550 nm and 750 nm, while for

FSS99, the variations are very small after about 450 nm. For the protected

aluminum, this region occurs between about 550 nm and 750 nm. These regions

line up with the regions of highest reflectivity for each coating, shown in figures

6.6a-6.6c.
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Figure 6.5: Quadratic coefficients of the average reflected phase from (a)
Macleod 188, (b) FSS99-600, and (c) protected aluminum versus wavelength.



CHAPTER 6. LONGITUDINAL CHROMATIC ABERRATION 148

Macleod 188

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

λ (μm)

R
ef
le
ct
an
ce

Reflectance vs. wavelength

(a)

FSS99

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.80

0.85

0.90

0.95

λ (μm)

R
ef
le
ct
an
ce

Reflectance vs. wavelength

(b)

Protected Al

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.70

0.75

0.80

0.85

0.90

0.95

1.00

λ (μm)

R
ef
le
ct
an
ce

Reflectance vs. wavelength

(c)

Figure 6.6: Normal incidence reflectance of (a) Macleod 188, (b) FSS99-600,
and (c) protected aluminum versus wavelength. Regions of high reflectance
correspond to regions of small changes in the quadratic coefficient.

The wavelength regions of lower chromatic aberration are observed to be the

same as the regions of higher reflectivity for these thin films. This is fortunate

for thin film designers because thin films designed for high reflection will natu-

rally have low chromatic aberration in the highly reflecting regions. But many

optical systems are illuminated with wavelengths not in the highly reflecting

band, and operating at these wavelengths will lead to larger amounts of chro-

matic aberration. This is because in regions of low reflectance, the constructive

and destructive interference between the partial waves changes rapidly with an-

gle, and the phase changes (and thus coating induced aberrations) tend to be

larger[102].
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6.4 Physical Shifts from Defocus

The longitudinal chromatic aberration of these coatings will cause a shift in

the focal point as a function of wavelength. The relationship between the

magnitude of the defocus aberration and the physical focal shift, εz, is given

by[103]:

∆Wdefocus,µm = − εz
8(f#)2

(6.18)

∆W is the defocus calculated from eq. 6.17, reported in physical units. To con-

vert the aberration magnitude from radians to physical units, the magnitude

in radians is divided by 2π and multiplied by the wavelength.

∆W =
Φ2(λ)θ2margλ

2π
(6.19)

εz is the physical shift along the optical axis from ideal focus, and f# is the

f-number of the system, the ratio of the system focal length to the entrance

pupil diameter. Rearranging eq. 6.18, the physical shift associated with the

defocus aberrations calculated is given by:

εz = −8(f#)2∆W =
−8(f#)2Φ2θ

2
margλ

2π
(6.20)

The units of εz are units of wavelength. Figures 6.7a-6.7c show the physical

shift of focus in microns (in red) and the corresponding defocus magnitude at

the exit pupil in milliwaves (in blue) for an f/12.5 reflecting surface which has

a marginal ray angle of incidence of 0.02 radians (1.15◦) with various coatings.
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Figure 6.7: Physical focal shift in microns (red curves) and the corresponding
amount of defocus in milliwaves (blue curves) as a function of wavelength for
(a) Macleod 188, (b) FSS99-600, and (c) protected aluminum.

Inside the highly reflective regions of each coating, the variations in focal point

shift across wavelength is less than a tenth of a micron. Outside of the highly

reflective regions, the focal shifts vary more rapidly as wavelength changes,

with peak variations on the order of about 0.06 microns for FSS99, about 1

micron for Macleod 188, and about 0.4 microns for protected aluminum.

The significance of these focal shifts depends on how tolerant the optical system

is to defocus, which is dependent on depth of focus. Depth of focus is propor-

tional to the f-number, so a faster system will have a smaller depth of focus

while a slower system will have a larger depth of focus. Thus faster systems

are generally less tolerant to defocus while slower systems are more tolerant

to defocus. The depth of focus should be calculated and compared to the fo-
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cal shifts for a fast system to determine whether the longitudinal chromatic

aberration introduced by a surface’s coatings are significant.

6.5 Conclusions

It is widely assumed that reflecting surfaces do not exhibit longitudinal chro-

matic aberration because the paths of light rays follow the wavelength indepen-

dent law of reflection, whereas lenses do have longitudinal chromatic aberration

because the refractive index in Snell’s law is wavelength dependent. However,

dielectric coated reflecting elements introduce chromatic aberration due to the

wavelength dependent nature of the amplitude reflection coefficients. A Taylor

series expansion of the Fresnel reflection coefficients showed that bare reflecting

surfaces do not have a quadratic component and, therefore, cannot contribute

to longitudinal chromatic aberrations.

Using finite differences, quadratic coefficients were calculated for various thin

film coatings across wavelength, and the variations in these coefficients were

shown to cause different wavelengths of light to have their focal points shifted

by different amounts. The magnitude of these focal shifts were dependent

on the specific coating, with image shifts on the order of 0.1-0.4 microns for

protected aluminum and up to 0.8 microns for Macleod 188. FSS99, the highly

reflective coating for spaced based applications, was shown to exhibit the lowest

amount of longitudinal chromatic aberration, fluctuating by only 0.06-0.08

microns for most of its spectrum, 400 nm - 1000 nm.

Since defocus is calculated from the quadratic coefficient, which is dependent

on the prescription of the dielectric coating, and marginal ray angle of inci-
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dence at the mirror, which is dependent on the system’s numerical aperture,

the longitudinal chromatic aberration induced by a dielectric coated reflecting

surface will change with the coating and numerical aperture of the system.

Additionally, the variations in the quadratic coefficient vary significantly faster

outside of the coating’s passband, so operating at wavelengths not within the

passband will contribute to the chromatic aberration.
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CHAPTER 7

Conclusion and Future Work

7.1 Summary

The research objective of this dissertation was to seek answers to these ques-

tions: do polarization effects limit a telescope’s ability to detect exoplanets and

their spectra? If polarization does indeed negatively affect a telescope’s ability

to do science, is it the limiting factor? What can be done to compensate for

or mitigate polarization effects? And are there other polarization effects that

have been generally overlooked in optical systems?

In order to answer these questions, the polarization ray tracing program,

Polaris-M, was used to analyze the polarization aberrations of two optical

systems, HabEx and LUVOIR. Diffraction algorithms in MATLAB were used

to determine how these polarization aberrations interacted with one of the

proposed coronagraphs for HabEx, a vector vortex coronagraph. A commonly

used metric to measure how well a telescope/coronagraph system is suppressing

on-axis starlight, the contrast, was calculated without polarization aberrations,

with polarization aberrations, and with polarization aberrations and form bire-

fringence associated with coating a large primary mirror. Comparison of the

contrast from these three situations revealed that, when no adaptive optics are

utilized, adding in polarization aberrations degraded the contrast by several
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orders of magnitude. Adding in form birefringence associated with coating a

large primary mirror to the isotropic polarization aberrations, the contrast was

further degraded by two orders of magnitude.

A technique for reducing/mitigating polarization aberrations was explored. By

properly choosing fold mirror orientations, it was shown that the magnitude

of the overall diattenuation was reduced by a factor of 1.2 while the overall

retardance was reduced by a factor of 2.95. An algorithm to optimize the fold

mirror orientations of an optical system was created and demonstrated.

Polarization ray tracing was also used to show that reflecting surfaces con-

tribute longitudinal chromatic aberration to an optical system. A simple

parabolic reflecting mirror was analyzed with different dielectric coatings to

show how they contributed to the chromatic aberration.

7.2 Future Work

While it has been shown that the polarization aberration due to the thin film

coatings and form birefringence in a telescope/coronagraph system will degrade

the contrast, this analysis was done without the use of adaptive optics. Any

real coronagraph system will undoubtedly utilize some form of adaptive optics.

Current adaptive optics algorithms like FALCO[22] or PROPER[104] do not

incorporate polarization into their calculations. One of the future goals of

this work is to fully model and completely analyze the polarization effects

of a coronagraph system with working adaptive optics. But to do so, either

the current algorithms will need to have polarization added to them, or new,

polarization-specific algorithms will need to be written.
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Other future work that is soon to be undertaken at the University of Arizona is

analysis of a dichroic for the HabEx optical system. In its current design, the

dichroic in the HabEx layout acts as an ideal surface, i.e. it perfectly passes

or reflects the light incident on each of its surfaces. Of course, this is not how

a real dichroic acts. To better model how the dichroic will affect the polar-

ization aberrations in HabEx, an off-the-shelf dichroic will soon be analyzed

in a polarimeter at the polarization lab. That data will be incorporated into

the polarization ray tracing model of HabEx. Depending on how this dichroic

affects polarization aberrations, one of the next steps might include attempting

to design or optimize the design of a dichroic for the HabEx system.

7.3 Conclusion

The goal of this dissertation was to determine if polarization aberrations im-

pede a telescope/coronagraph system’s ability to detect exoplanets and their

spectra. The answer to this question is still open ended, though this disser-

tation has laid the ground work for answering it. In the absence of adaptive

optics and wavefront control, the polarization aberrations degrade the contrast

of a vector vortex by several orders of magnitude. However, since any real op-

erating telescope will almost assuredly use some form of adaptive optics, more

work must be done to incorporate the effects of polarization into the field of

coronagraphy and adaptive optics.
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APPENDIX A

Dipole/Double Pole Coordinate

Systems

It is often of interest to convert between a three dimensional polarization ray

tracing matrix function(defined in global coordinates on a sphere) into a two

dimensional Jones pupil (defined in local coordinates) to better visualize the

information on a computer screen or printed paper. This appendix details two

of the local coordinate systems, dipole coordinates and double pole coordi-

nates, that are commonly used to convert three dimensional polarization PRT

matrices into two dimensional Jones matrices.

A.0.0.1 Dipole Coordinate System

The first coordinate system discussed here is the dipole coordinate system,

like Earth’s latitude and longitude system. This coordinate system is defined

relative to a polar axis, âloc, which defines the location of two singularities

(poles). For an arbitrary propagation vector, k̂, the local x-coordinate and

y-coordinate are defined as:
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x̂loc =
âloc × k̂

|âloc × k̂|

ŷloc = k̂× x̂loc

(A.1)

For example, if the dipole axis is chosen to be along the z-axis, âloc = (0, 0, 1),

the two poles of this dipole coordinate system will be at (0,0,1) and (0,0,-1).

Figure A.1 shows the local coordinates of a dipole system with such a dipole

axis. Highlighted in figure A.2, the local coordinates vary rapidly when the

propagation vector approaches one of the poles of the dipole coordinate system.

(a) (b)

Figure A.1: Dipole coordinate system with the dipole axis oriented along the
z-axis shown from two different view angles. The red arrows show the local
x-basis while the green arrows show the local y-basis.
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(a) (b)

Figure A.2: (a) Dipole local x-coordinates and (b) dipole local y-coordinates.
As the propagation vector approaches the pole, the local x and y-coordinates
change rapidly.

When the propagation vector lies in the same direction as the dipole axis (k̂ =

±âloc), equation A.1 becomes singular. To avoid problems using the singularity

when using the dipole basis to convert between PRTs and Jones matrices,

any rays with propagation vectors in the small area around the dipoles are

treated as special cases and their local basis vectors are set to constants. The

dipole coordinate system best depicts the polarizations of spherical wavefronts

emerging from linear polarizers[105].

A.0.0.2 Double Pole Coordinate System

The second coordinate system is the double pole coordinate system. According

to the Hairy Ball Theorem[106], any continuous tangent vector field on a sphere

must disappear at at least two points, i.e. no set of local coordinates exist such

that there is no singularity across a sphere. In the case of the dipole coordinate

system, two singularities exist, one at each pole. The double pole coordinate
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system, on the other hand, is constructed such that these two singularities

coincide, making a double pole at one point. The double pole coordinate

system is defined by the axis of the antipole, âloc (the direction opposite of the

double pole), and the local x-coordinate at the antipole, x̂0. With those two

chosen, the double pole coordinates are:

x̂loc = R · x̂0

ŷloc = R · (âloc × x̂0)

(A.2)

where R is a rotation about axis r̂ by angle θ, r̂ = k̂× âloc, and θ = −cos−1(k̂ ·

âloc). Figure A.3 shows the double pole with âloc = (0, 0, 1) and x̂0 = (1, 0, 0).

This puts the double pole at (0,0,-1). The left side of the figure shows the +z

hemisphere, the furthest propagation vectors from the double pole. The local

coordinates are smoothly and slowly varying for these propagation vectors. The

right side of the figure shows the -z hemisphere, which contains the double pole.

As the propagation vectors approach the double pole, the local coordinates vary

rapidly, going through 4π rotations as the propagation vector goes through a

2π rotation about the double pole. Figure A.4 highlights the rapid variation

of the local x and local y coordinates around the double pole.
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(a) (b)

Figure A.3: Double pole coordinate system with the double pole axis oriented
along the z-axis shown from two different view angles. (a) shows the local
coordinates near the anti-pole while (b) shows the local coordinates near the
double pole.

(a) (b)

Figure A.4: (a) Double pole local x-coordinates and (b) double pole local y-
coordinates. As the propagation vector approaches the pole, the local x and
y-coordinates change rapidly. A full circle (2π rotation) around the double
pole results in a 4π rotation of the local coordinate’s orientation.

When the propagation vector lies in the same direction as the double pole (k̂ =

−âloc), equation A.2 becomes singular. The double pole coordinate system best

depicts the polarization of light exiting an ideal lens.
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APPENDIX B

NMinimize and Minimizing Ξ in

Mathematica

Mathematica’s NMinimize function takes in a function and set of constraints

then numerically steps through iterations of that function to locate a local

or global minimum. This appendix provides the functions that were used to

calculate Ξ and the Mathematica and Polaris-M code necessary to do the fold

mirror rotation and optimization.



Rotate surface function
Function
rotateSurface[centerRay_,surfaceToRotate_,θ_,systemToRotate_:newmasktoend]
This function takes in ray data, surface data, and a rotation angle and returns the optical system where 
all succeeding  elements are rotated about the mirror’s normal.

Inputs 
centerRay: ray traced data for a single ray through the center of the system
surfaceToRotate: which fold mirror surface that is going to be rotated
θ: the angle that the surface will be rotated (in radians)
systemToRotate: parameters of the optical system that will be rotated. Defaults to the original system 
with no surfaces rotated.

Outputs
rotatedHabex: the new system layout with rotated fold mirrors

Mathematica code:



rotateSurface[centerRay_, surfaceToRotate_, θ_, systemToRotate_: originalSys] :=

Module{surfBeforeray, surfray, rotaxis, rotpoint, vertexrot,

normrot, rotsurfNorm, rotsurfvert, rotcenterVertex, rotatedHabex},

surfBeforeray = Select[centerRay, #〚ray`surfaceID〛 ⩵ surfaceToRotate - 1 &];

surfray = Select[centerRay, #〚ray`surfaceID〛 ⩵ surfaceToRotate &];

rotaxis = surfBeforeray〚1, ray`k〛;

rotpoint = surfray〚1, ray`r〛;

vertexrot = RotationTransform[θ, rotaxis, rotpoint];

normrot = RotationTransform[θ, rotaxis];

rotsurfNorm = Table[normrot[surfNorm〚ii〛], {ii, Length@surfNorm}];

rotsurfvert = Table[vertexrot[surfvert〚ii〛], {ii, Length@surfNorm}];

rotcenterVertex = Table[vertexrot[centerVertex〚ii〛], {ii, Length@surfNorm}];

rotatedHabex = systemToRotate;

TablerotatedHabex〚ii, sys`a〛 = normrot[systemToRotate〚ii, sys`a〛];

rotatedHabex〚ii, sys`v〛 = vertexrot[systemToRotate〚ii, sys`v〛];

rotatedHabex〚ii, sys`aperture〛 = True &;

, {ii, surfaceToRotate, 23};

Return[rotatedHabex];

The rotateSurface function does the following:
-selects the ray incident on the surface to be rotated

-extracts propagation direction incident on the surface

-selects the ray exiting the surface to be rotated
-extracts vertex of surface interaction with ray

-calculates two rotation transforms, one for rotating surface normals and one for rotating surface 
vertices

-applies rotation transforms (both surface normal and vertex) to the mirror being rotated and every 
subsequent mirror in the optical system

-updates the optical system with the newly calculated optical surfaces

-sets the apertures to be open

Pauli representation of Jones matrix function

2     code for appendix.nb



Function
PRTtoPauli[PRT_,q_,Oin_]
This function takes in ray data and calculates the Jones matrix of that ray’s interaction with the optical 
system. Using the weak polarization approximation, it decomposes that Jones matrix into a non-
polarizing coefficient and 3 coefficients that relate to the linear horizontal, linear 45 °, and circular 
diattenuation and retardance. 

Inputs
PRT: Polarization ray tracing matrix from a polarization ray trace
q: Parallel transport matrix from a polarization ray trace
Oin: Unitary matrix that transforms between the local coordinates and global coordinates for the ray 
entering the system

Output
c0: non-polarizing term of the Jones matrix
f1: linear horizontal diattenuation and retardance term
f2: linear 45° diattenuation and retardance term
f3: Circular diattenuation and retardance term 

Mathematica code:

PRTtoPauli[PRT_, q_, Oin_] := Module{Oout, j, c0, c1, c2, c3, f1, f2, f3},

Oout = q.Oin;

j = Inverse[Oout].PRT.Oin〚1 ;; 2, 1 ;; 2〛;

c0 =
j〚1, 1〛+ j〚2, 2〛

2
;

c1 =
j〚1, 1〛- j〚2, 2〛

2
;

c2 =
j〚1, 2〛+ j〚2, 1〛

2
;

c3 =
ⅈ j〚1, 2〛- j〚2, 1〛

2
;

f1 =
c1

c0
;

f2 =
c2

c0
;

f3 =
c3

c0
;

Return[{c0, f1, f2, f3}];

Function
f[θ4_,θ5_,θ10_,θ11_,θ12_]
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This function takes in the five rotation angles of the fold mirrors and returns the value of the merit 
function Ξ. The ?NumericQ that appears in the actual code is there to tell Mathematica that the inputs 
to the function are numeric quantities and not symbolic. This makes it easier for the optimizer to 
process the function.

Inputs
θ4: Rotation angle of the first fold mirror (the fourth surface in HabEx)
θ5: Rotation angle of the second fold mirror (the fifth surface in HabEx)
θ10: Rotation angle of the third fold mirror (the tenth surface in HabEx)
θ11: Rotation angle of the fourth fold mirror (the eleventh surface in HabEx)
θ12: Rotation angle of the fifth fold mirror (the twelth surface in HabEx)

Output
Ξ: merit function for RMS diattenuation and retardance magnitude

Mathematica code:

Merit function
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f[θ4_?NumericQ, θ5_?NumericQ, θ10_?NumericQ, θ11_?NumericQ, θ12_?NumericQ] :=

Module{rot4, rot5, rot10, rot11, rot12, surface4out, surface5out, surface10out,

surface11out, numrays, xsize, ysize, raysin, raysout, lastrays, PRT, Q, pauli, Ξ},

rot4 = rotateSurface[singleout, 4, θ4 °, originalSys];

surface4out = TraceRays[singlein, rot4];

rot5 = rotateSurface[surface4out, 5, θ5 °, rot4];

surface5out = TraceRays[singlein, rot5];

rot10 = rotateSurface[surface5out, 10, θ10 °, rot5];

surface10out = TraceRays[singlein, rot10];

rot11 = rotateSurface[surface10out, 11, θ11 °, rot10];

surface11out = TraceRays[singlein, rot11];

rot12 = rotateSurface[surface11out, 12, θ12 °, rot11];

config`rayID = 1;

numrays = 11;

xsize = 2 * size〚1〛;

ysize = xsize;

raysin = CreateCollimatedRectRayGrid[xsize, ysize, numrays, numrays,

ray`λ → .5, ray`k → rayk, ray`r → rayr, ray`surfaceOrder →

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 20, 22, 23}];

raysout = TraceRays[raysin, rot12];

lastrays = Select[raysout, #〚ray`surfaceID〛 ⩵ 23 &];

PRT = lastrays〚All, ray`PRTCumulative〛;

Q = lastrays〚All, ray`QCumulative〛;

pauli = Table[PRTtoPauli[PRT〚ii〛, Q〚ii〛, sin, pin, Oin], {ii, Length@lastrays}];

Ξ =
1

Length@lastrays
TotalNorm /@ pauli〚All, 2 ;; 4〛2

 ;

Return[Ξ];

Execute optimization
Using all of the previously defined functions (some of which depend on Polaris-M functionality), the 
following code is used to call Mathematica’s optimization routines for the five fold mirror angles that 
minimize the merit function, Ξ. The absolute timing function used here helps to keep track of how long 
the optimization process takes. The NMinimize function is constrained so that the allowable angles for 
surface rotations are confined to the unit circle, i.e. every angle can only go from 0 to 360°.

AbsoluteTiming[

NMinimize[{f[θ1, θ2, θ3, θ4, θ5], 0 ≤ θ1 ≤ 360 && 0 ≤ θ2 ≤ 360 && 0 ≤ θ3 ≤ 360 &&

0 ≤ θ4 ≤ 360 && 0 ≤ θ5 ≤ 360 }, {θ1, θ2, θ3, θ4, θ5}]]

Additional options can be used with the NMinimize:
The EvaluationMonitor option can keep count of the number of evaluations

The StepMonitor option can be set to print out the current values of the five angles being optimized as 
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well as the value of the merit function at each step in the process. 

These two options were not used in the code because the minimization process took approximately 18 
hours, so the list printed out by EvaluationMonitor and StepMonitor would be extremely long.
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APPENDIX C

Chromatic Aberration

This appendix details the prescription and calculations used to create figures

6.1 and 6.2, the exact thin film coatings for FSS99-600, Macleod 188, and

protected aluminum, and shows the astigmatism that appears when there is

a quadratic difference between the phase of s- and p-polarized light reflecting

from a surface. Table C.1 lists the surface parameters of the example reflecting

surface that was geometrically ray traced in Zemax to create OPD plots and

polarization ray traced in Polaris-M to create reflected phase plots showing the

coating induced phase contribution. Table C.2 lists the coating parameters for

FSS99-600, Macleod 188, and protected aluminum.

Radius of curvature 25 mm
Conic κ = −1
Aperture Size (diameter) 1 mm
Focal length 12.5 mm
Coating Various (detailed below)
Marginal Ray AOI 0.02 radians

Table C.1: Parameters for the example parabolic reflecting surface
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Coating FSS99-600 Macleod 188 Protected Al
Layer 1 65 nm HfO2 50 nm, n = 2.3 80 nm HfO2

Layer 2 60 nm SiO2 83.3 nm, n =
1.38

107.5 nm SiO2

Layer 3 15 nm HfO2 50 nm, n = 2.3 80 nm HfO2

Layer 4 0.101 nm Cr 83.3 nm, n =
1.38

107.5 nm SiO2

Layer 5 - 50 nm, n = 2.3 80 nm HfO2

Layer 6 - - 107.5 nm SiO2

Substrate Ag Al Al

Table C.2: Coating specifications for FSS99-600, Macleod 188, and protected
aluminum

The first layer in table C.2 is the top layer of the coating, furthest from the

substrate. The increasing layers progress towards the substrate.

Figure C.1 shows the Jones pupil (eq.6.2) for the example parabolic reflecting

surface with a protected aluminum coating created by polarization ray tracing

an on-axis grid of 40401 rays (201x201 square grid) with a wavelength of 500

nm in Polaris-M. The reference sphere for this pupil is a sphere of radius 12.5

mm, centered on the optical axis 12.5 mm away from the focal point of the

mirror. The left side of the figure shows the amplitude of the Jones pupil and

the right side of the figure shows the phase of the Jones pupil in radians. The

Jones pupil is relatively close to an identity matrix, indicating relatively low

amounts of polarization aberration. The sharp edges in the off-diagonal phases

are π phase jumps due to the zero crossings in the off-diagonal amplitudes. The

phase of the xx component and the yy component are nearly identical on this

colorbar. This is because the s- and p- reflected phases for protected aluminum

are very similar to one another (see figure 6.4c at max angle of incidence equal

to the marginal ray’s angle of incidence of 0.02 radians).
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Figure C.1: Jones pupil for the protected aluminum parabolic reflecting sur-
face, detailed in table C.1, at 500 nm. (a) is the amplitude of the Jones pupil
and (b) is the phase of the Jones pupil in radians.

The average amplitude reflected from this parabolic mirror surface, shown in

figure C.2a, is the average of the on-axis amplitude components, Axx and Ayy.

This corresponds to the amplitude transmission term, A(x, y, λ), in eq. 6.3.

The average reflected wavefront, shown in figure C.2b, is the average of the

on-axis phase components, φxx and φyy. This corresponds to the wavefront

aberration term, 2πW (x,y,λ)
λ

, in eq. 6.3.

A horizontal slice through the average reflected wavefront was used to create

the 500 nm curve in figure 6.2, with an additional step of subtracting off the

piston term such that the phase at the center of the pupil was zero. The 400 nm

and 600 nm curves were created by polarization ray tracing a grid of rays at the

400 nm and 600 nm, calculating Jones pupils for those wavelengths, extracting

the average reflected wavefront, and taking a horizontal slice through that

wavefront.
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Figure C.2: Average amplitude (a) and average wavefront in radians (b) of the
protected aluminum parabolic reflecting surface at 500 nm.

Figure C.3 shows the phase of the on-diagonal elements of the Jones pupil

after the average phase is factored out. These correspond to the phase of

the on-diagonal terms of the Jones matrix term, J(x, y, λ) in eq. 6.3. This

astigmatism results from the quadratic variation of retardance for the coating

on the parabolic surface, which arises from the difference in the s- and p-

reflected quadratic phase as seen in figure 6.4c.
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Figure C.3: Astigmatism in the on-diagonal phase terms after the average
phase is subtracted out. (a) shows the astigmatism from the XX element, (b)
shows the astigmatism from the YY element. The legend for these figures is
in radians.
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APPENDIX D

Polaris-M Code for Ray Tracing

HabEx



Ray Trace Setup and trace

□ System Parameters

surfacedata =

Import["D:\\Public\\Documents\\Updated optical system HabEx\\surface parameters.dat",

"Data", CharacterEncoding → "Unicode", HeaderLines → 20];

(*import surface data from a file created from Zemax*)

surfaces = {"surface number", "surface name", "surface physical radius"};

(*contains data regarding which surfaces in the Zemax file are optical surfaces

rather than dummy surfaces. Also contains data regarding physical size of

optical surfaces. Actual data can't be shown due to ITAR restrictions.*)

radii = surfacedata〚surfaces〚All, 1〛, 3〛;

κ = surfacedata〚surfaces〚All, 1〛, -2〛;

size = surfaces〚All, 3〛;

□ Surf Vertex

surfvertandnorm =

Import["D:\\Public\\Documents\\Updated optical system HabEx\\global surface vertices

and normals.dat", "Data", CharacterEncoding → "Unicode", HeaderLines → 23];

surfvert = Table[surfvertandnorm〚ii ;; ii + 2, 4〛, {ii, 1, 67, 3}];

(*surface vertices from Zemax*)

In[15]:=



□ Surf Norm

surfvertangle = Table[surfvertandnorm〚ii ;; ii + 2, 5〛, {ii, 1, 67, 3}];

tilt[α_,β_,γ_]:=RotationMatrix[α,{1,0,0}].

RotationMatrix[β,{0,1,0}].RotationMatrix[γ,{0,0,1}].{0,0,1};

surfNorm = Table[tilt[surfvertangle〚ii,1〛°,surfvertangle〚ii,2〛°,surfvertangle〚ii,3〛°],

{ii,Length@surfvertangle}];

pos = Position[radii, n_ /; n < 0]〚All, 1〛;

Table[surfNorm〚ii〛 = -surfNorm〚ii〛; radii〚ii〛 = -radii〚ii〛, {ii, pos}];

(*surface normals from Zemax. Zemax gives the surface normals as rotations angles,

so this code applies those rotation angles to the {0,0,1} vector to

calculate the surface normals. The table at the end changes the sign on

the radius of curvature so that the surfaces curve the correct way.*)

□ Center Vertex

vertexdata =

Import["D:\\Public\\Documents\\Updated optical system HabEx\\center ray trace.dat",

"Data", CharacterEncoding → "Unicode", HeaderLines → 22];

centerVertex = Table[vertexdata〚surf, 2 ;; 4〛, {surf, surfaces〚All, 1〛}];

(*Since many of the surfaces HabEx are OAPs,

the center of the surface may not align with the surface vertex. centerVertex is

the position data for a ray that was traced through the center of the system,

giving locations of the center of the optical surfaces*)

□ Mirror coatings MgF2

coatindexMgF2 = {"USERISOTROPIC_MGF2jeff", "USERISOTROPIC_ALjeff"};

coatthicknessMgF2 = 25 * 10-3, .1;

(*prescription for magnesium fluoride on aluminum. 25 nm of mgf2 on 100 nm of aluminum*)

□ Mirror coatings FSS99

coatthicknessAg = 10-3 65, 60, 15, .101, 150, 100 * 103;(*thickness of metal coating"*)

coatindexAg = {"USERISOTROPIC_HFO2", "USERISOTROPIC_SIO2", "USERISOTROPIC_HFO2",

"USERISOTROPIC_CR", "USERISOTROPIC_AG", "USERISOTROPIC_SIO2"};

(*prescription for FSS99-600

65 nm hfo2, 60 nm sio2, 15 nm hfo2, .101 nm cr,150 nm silver, 100 micron sio2*)
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System setup
habexToMask = Table

CreateSurface

sys`surfID → ii,

sys`surfaceLabel → surfaces〚ii, 2〛,

sys`shape`type → If[κ〚ii〛 ⩵ 0, "Plane", "AnamorphicAsphere"],

sys`a → surfNorm〚ii〛,

sys`v → surfvert〚ii〛,

sys`material1 → If[ii ⩵ 7, "UserIsotropic_FusedSilicaJeff", "Air"],

sys`material2 → If[ii ⩵ 6 ∨ ii ⩵ 14, "UserIsotropic_FusedSilicaJeff", "Air"],

sys`mode → If[ii ⩵ 14, {"Absorb"}, If[ii ⩵ 6 ∨ ii ⩵ 7, {"Refract"}, {"Reflect"}]],

sys`coating`type → If[ii ⩵ 6 ∨ ii ⩵ 7, "Perfect", "Isotropic"],

sys`coating`thickness →

If[ii < 3, coatthicknessMgF2, If[ii ⩵ 6 ∨ ii ⩵ 7 ∨ ii ⩵ 14, {}, coatthicknessAg]],

sys`coating`indices → If[ii < 3, coatindexMgF2,

If[ii ⩵ 6 ∨ ii ⩵ 7 ∨ ii ⩵ 14, {}, coatindexAg]],

sys`aperture → Evaluate[Norm[{#1 - centerVertex〚ii, 1〛, #2 - centerVertex〚ii, 2〛,

#3 - centerVertex〚ii, 3〛}] ≤ Norm[size〚ii〛] ] &,

sys`shape`curvX → Ifκ〚ii〛 ⩵ 0, 0,
1

radii〚ii〛
,

sys`shape`curvY → Ifκ〚ii〛 ⩵ 0, 0,
1

radii〚ii〛
,

sys`shape`conicKX → If[κ〚ii〛 ⩵ 0, 0, κ〚ii〛],

sys`shape`conicKY → If[κ〚ii〛 ⩵ 0, 0, κ〚ii〛]

, {ii, 14};

(*habexToMask creates the first half of the habex system,

going from primary mirror to coronagraph mask plane. The table

above sets up the optical system by assigning the proper shape, vertex,

surface normal, material, coating, and aperture to each optical surface.*)
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In[35]:= habexMaskToEnd = Table

CreateSurface

sys`surfID → ii - 14,

sys`surfaceLabel → surfaces〚ii, 2〛,

sys`shape`type → If[κ〚ii〛 ⩵ 0, "Plane", "AnamorphicAsphere"],

sys`a → surfNorm〚ii〛,

sys`v → surfvert〚ii〛,

sys`material1 → If[ii ⩵ 20, "UserIsotropic_FusedSilicaJeff", "Air"],

sys`material2 → If[ii ⩵ 21 , "UserIsotropic_FusedSilicaJeff", "Air"],

sys`mode → If[ii ⩵ 23, {"Absorb"},

If[ii ⩵ 16 ∨ ii ⩵ 18 ∨ ii ⩵ 20 ∨ ii ⩵ 21 ∨ ii ⩵ 23, {"Refract"}, {"Reflect"}]],

sys`coating`type → If[ii ⩵ 16 ∨ ii ⩵ 18 ∨ ii ⩵ 20 ∨ ii ⩵ 21 ∨ ii ⩵ 23,

"Perfect", "Isotropic"],

sys`coating`thickness → If[ii ⩵ 16 ∨ ii ⩵ 18 ∨ ii ⩵ 20 ∨ ii ⩵ 21 ∨ ii ⩵ 23,

{}, coatthicknessAg],

sys`coating`indices → If[ii ⩵ 16 ∨ ii ⩵ 18 ∨ ii ⩵ 20 ∨ ii ⩵ 21 ∨ ii ⩵ 23,

{}, coatindexAg],

sys`aperture → Evaluate[Norm[{#1 - centerVertex〚ii, 1〛, #2 - centerVertex〚ii, 2〛,

#3 - centerVertex〚ii, 3〛}] ≤ Norm[size〚ii〛] ] &,

sys`shape`curvX → Ifκ〚ii〛 ⩵ 0, 0,
1

radii〚ii〛
,

sys`shape`curvY → Ifκ〚ii〛 ⩵ 0, 0,
1

radii〚ii〛
,

sys`shape`conicKX → If[κ〚ii〛 ⩵ 0, 0, κ〚ii〛],

sys`shape`conicKY → If[κ〚ii〛 ⩵ 0, 0, κ〚ii〛]

, {ii, 15, 23};

(*habexMaskToEnd sets up the second half of the system*)

In[36]:= newmasktoend = Prepend[habexMaskToEnd, habexToMask[[-1]]];

newmasktoend[[1, sys`material2]] = "Air";

newmasktoend[[1, sys`mode]] = "Refract";

newmasktoend[[1, sys`coating]] = {"Perfect", ""};

(*newmasktoend puts the two parts of the system together*)

□ Starting position and k-vector

rayk = vertexdata〚1, 5 ;; 7〛;

rayr = vertexdata〚1, 2 ;; 4〛;

Ray Trace

wavelengths =
1

1000
{450, 475, 500, 525, 550};
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(*trace wavelengths .450-.550 μm*)

Do

λ = wavelengths〚ii〛;

dir = CreateDirectory

"D:\\Public\\Documents\\Updated optical system HabEx\\" <> ToStringλ * 103;

config`rayID = 1;

numrays = 101;

xsize = 2 size〚1〛;

ysize = xsize;

rays = CreateCollimatedRectRayGrid[xsize, ysize, numrays, numrays,

ray`r → rayr, ray`λ → λ, ray`k → rayk, ray`surfaceOrder → Range[14]];

(*This creates an input grid of rays that will be traced through the system*)

raysout = AbsoluteTiming[TraceRays[rays, habexToMask]];

(*traces the grid of rays through the first part of the system*)

sysAXP = -15 864.33;

(*distance from coronagraph mask plane to exit pupil of system A*)

sysBXP = -6654.086;

(*distance from final image plane to exit pupil of system B*)

{sysAXPrays, jp} = myJonesPupil[habexToMask, raysout〚2〛, sysAXP, 14, numrays];

(*myJonesPupil is functionally the same as the Polaris-

M function JonesPupil. The only difference is JonesPupil returns

the Jones pupil of the system while myJonesPupil returns the

Jones pupil and the rays at the exit pupil of the system.*)

Exportdir <> "\\jpA " <> ToStringλ * 103 <> " nm.h5",

{Re@jp, Im@jp}, {"Datasets", {"real", "imaginary"}};

(*export the Jones pupil data to a file*)

gridA = myRebuildGrid[sysAXPrays, numrays];

(*myRebuildGrid rearranges the flattened list of rays back into a grid of rays*)

config`rayID = 1;

sysBrays = CreateCollimatedRectRayGrid[1, 1, numrays, numrays, ray`r → {0, 0, 0},

ray`λ → λ, ray`k → {0, 0, 1}, ray`surfaceOrder → {14, 1, 2, 3, 4, 5, 7, 6, 8, 9}];

sysBinput = Table[ReplacePart[sysBrays〚ii, jj〛,

{ray`r → gridA〚ii, jj, ray`r〛,

ray`k → gridA〚ii, jj, ray`k〛,

ray`S → gridA〚ii, jj, ray`S〛,

ray`status → If[gridA〚ii, jj, ray`status〛 ⩵ -8, 1, -1]}],

{ii, numrays}, {jj, numrays}];

(*this part essentially resets all the ray data besides the position,

k-vector, and status so that the rays at the exit pupil of the

first system can be traced through the second part of the system.*)

sysBraysout = TraceRays[sysBinput, newmasktoend];

{sysBXPrays, jpB} = myJonesPupil[habexMaskToEnd, sysBraysout, sysBXP, 9, numrays];

Exportdir <> "\\jpB " <> ToStringλ * 103 <> " nm.h5",
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{Re@jpB, Im@jpB}, {"Datasets", {"real", "imaginary"}};

(*trace rays through the second part of the system,

get the Jones pupil, export Jones pupil data to file*)

, {ii, Length@wavelengths};

Smaller ray trace for polarization vector maps
(*PVMs need fewer rays, otherwise they would take far too long to calculate and

plot. This part redoes the full system ray trace with a sparse grid of rays*)

totalSys = Join[habexToMask, habexMaskToEnd];

totalSys〚14, sys`material2〛 = "Air";

totalSys〚14, sys`mode〛 = {"Refract"};

Table[totalSys〚ii, sys`surfID〛 = totalSys〚ii, sys`surfID〛 + 14, {ii, Range[15, 23]}];

λ = 500  1000;

config`rayID = 1;

numrays = 11;

xsize = 2 size〚1〛;

ysize = xsize;

rays = CreateCollimatedRectRayGrid[xsize, ysize, numrays,

numrays, ray`r → rayr, ray`λ → λ, ray`k → rayk, ray`surfaceOrder →

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 20, 22, 23}];

raysout = AbsoluteTiming[TraceRays[rays, totalSys]];

□ surface by surface maps (AOI, dia, ret)

In[62]:= scale = 100 {8, 8, 8, 5, 3, 1, 2, 5, 5, 5, 5, 5, 5, .5, 5, 5, 10, 10, 10, 10, 10, 10};

diascale =

1 000 000 {.1, .1, 1, .5, .1, .5, .5, .5, .5, .5, .5, .2, .2, .5, .2, .5, .5, .5, .5, .5, .5, 1};

retscale = 5000 {1, 1, 5, 3, 1, 1, 2, 5, 5, 1, 1, 1, 1, .5, 1, 5, 1, 10, 5, 10, 10, 10};

vectormaps = Table[Row[{

Graphics[PolarizationVectorMap[raysout〚2〛, ii, "AOI", scale〚ii〛],

PlotLabel → surfaces〚ii, 2〛<> "\nAOI", ImageSize → 200],

Graphics[PolarizationVectorMap[raysout〚2〛, ii, "Diattenuation", diascale〚ii〛],

PlotLabel → surfaces〚ii, 2〛<> "\nDiattenuation", ImageSize → 200],

Graphics[PolarizationVectorMap[raysout〚2〛, ii, "Retardance", retscale〚ii〛],

PlotLabel → surfaces〚ii, 2〛<> "\nRetardance", ImageSize → 200]}],

{ii, {1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 15, 17, 19, 22}}]
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Retardance

,

0.1781

M6

AOI

0.0005

M6

Diattenuation

0.0179

M6

Retardance

,

0.1781

M7_recollimate

AOI

0.0005

M7_recollimate

Diattenuation

0.0179

M7_recollimate

Retardance

,
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0.1243

M8

AOI

0.0003

M8

Diattenuation

0.0088

M8

Retardance

,

0.1243

M9_recollimate

AOI

0.0003

M9_recollimate

Diattenuation

0.0088

M9_recollimate

Retardance

,

0.0773

M10

AOI

0.0001

M10

Diattenuation

0.0034

M10

Retardance



□ surface by surface cumulative maps

cumulativeDia = 100 000 * .5;

cumulativeRet = 5000 * .3;

cumulativemaps = Row[{

Graphics[PolarizationVectorMap[raysout〚2〛,

22, "Diattenuation", cumulativeDia, Cumulative → True],

PlotLabel → Style["Cumulative Diattenuation", Bold, 16], ImageSize → 300],

Graphics[PolarizationVectorMap[raysout〚2〛, 22, "Retardance",

cumulativeRet, Cumulative → True],

PlotLabel → Style["Cumulative Retardance", Bold, 16], ImageSize → 300]}]
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0.003

Cumulative Diattenuation

0.0876

Cumulative Retardance
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Generate Tukey window
function w = generateTukeyWindow( Nwindow, RHO, alpha )

Nlut = round(10*Nwindow);
p = linspace(-Nwindow/2,Nwindow/2,Nlut);
lut = tukeywin(Nlut,alpha);

w = interp1(p,lut,RHO,'linear',0);
end

Semi-analytic method code
function OUT = vortexCoronagraph_Pup2Pup( IN, FPM, apRad, lambdaOverD,
 RHO, N, algo, operation, inVal, outVal, useGPU )
%vortexCoronagraph_Pup2Pup Propagates from the input pupil to output
 pupil
%   Uses either an FFT or local DFT

    showPlots2debug = false;

    if(useGPU)
        IN = gpuArray(IN);
    end
    if( strcmp(algo,'fft') && ~strcmp(operation,'adj') )

        EP = IN;
        OUT = myifft2(myfft2(EP).*FPM);

 elseif( strcmp(algo,'fft') && strcmp(operation,'adj') )

        LP = IN;
        OUT = myifft2(myfft2(LP).*conj(FPM));

    elseif( strcmp(algo,'dft') )

        cut_rad1 = inVal*lambdaOverD;
        cut_rad2 = outVal*lambdaOverD;

        windowKnee = 1-cut_rad1/cut_rad2;
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        D = 2*apRad;

        NA = 2^(nextpow2(D))+2;
        crop = N/2-NA/2+1:N/2+NA/2;

        % DFT vectors
        x = ((0:NA-1)-NA/2)/D;
        u1 = ((0:N-1)-N/2)/lambdaOverD;
        u2 = ((0:N-1)-N/2)*2*cut_rad2/N;

        windowMASK1 = generateTukeyWindow( 2*cut_rad2*lambdaOverD,
 RHO, windowKnee ) ;
        windowMASK2 = generateTukeyWindow( N, RHO, windowKnee ) ;

        if(useGPU)
            x = gpuArray(x);
            u1 = gpuArray(u1);
            u2 = gpuArray(u2);
            windowMASK1 = gpuArray(windowMASK1);
            windowMASK2 = gpuArray(windowMASK2);
        end
        if(~strcmp(operation,'adj'))

            EP = IN;
            EP = EP(crop,crop);
            if showPlots2debug;
 figure;imagesc(abs(EP));axis image;colorbar; title('Cropped
 pupil'); end;

            %%%%%%% Large scale DFT

            FP1 = (N/lambdaOverD)/
(D*N)*exp(-1i*2*pi*u1'*x)*EP*exp(-1i*2*pi*x'*u1);
            if showPlots2debug;
 figure;imagesc(log10(abs(FP1).^2));axis image;colorbar; title('Large
 scale DFT'); end;
            LP1 = (N/lambdaOverD)/
(D*N)*exp(1i*2*pi*x'*u1)*(FP1.*FPM.*(1-
windowMASK1))*exp(1i*2*pi*u1'*x);

            %%%%%%% Fine sampled DFT

            FP2 = 2*cut_rad2/
(D*N)*exp(-1i*2*pi*u2'*x)*EP*exp(-1i*2*pi*x'*u2);
            if showPlots2debug;
 figure;imagesc(log10(abs(FP2).^2));axis image;colorbar; title('Fine
 sampled DFT'); end;
            LP2 = 2*cut_rad2/
(D*N)*exp(1i*2*pi*x'*u2)*(FP2.*FPM.*windowMASK2)*exp(1i*2*pi*u2'*x);

            OUT = padarray_centered(LP1+LP2,NA,NA,N);
            %disp('Propagating through vortex with forward DFT.');
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            if showPlots2debug;
 figure;imagesc(abs(LP1+LP2));axis image;colorbar; title('Lyot
 plane'); end;
            if showPlots2debug; figure;imagesc(abs(LP1+LP2-
EP));axis image;colorbar; title('Lyot plane - Entrance Pupil'); end;
        elseif(strcmp(operation,'adj') )

            LP = IN(crop,crop);

            %%%%%%% Large scale DFT

            FP1 = (N/lambdaOverD)/
(D*N)*exp(-1i*2*pi*u1'*x)*LP*exp(-1i*2*pi*x'*u1);
            EP1 = (N/lambdaOverD)/
(D*N)*exp(1i*2*pi*x'*u1)*(FP1.*conj(FPM).*(1-
windowMASK1))*exp(1i*2*pi*u1'*x);

            %%%%%%% Fine sampled DFT

            FP2 = 2*cut_rad2/
(D*N)*exp(-1i*2*pi*u2'*x)*LP*exp(-1i*2*pi*x'*u2);
            EP2 = 2*cut_rad2/
(D*N)*exp(1i*2*pi*x'*u2)*(FP2.*conj(FPM).*windowMASK2)*exp(1i*2*pi*u2'*x);

            OUT = padarray_centered(EP1+EP2,NA,NA,N);
        end
    else
        error('Error. \nChoose algo = fft or dft. \nChoose forward or
 adj operation.')
    end
    if(useGPU)
        OUT = gather(OUT);
    end
end

Vector vortex function
function [ FPM,RHO,THETA ] = VVR( N,charge,xvals)

[X,Y] = meshgrid(xvals,xvals); % Grids with Cartesian (x,y)
 coordinates
[THETA,RHO] = cart2pol(X,Y);  % Grids with polar (rho,theta)
 coordinates

FPM = zeros(N,N,2,2);
FPM(:,:,1,1) = cos(charge*THETA);
FPM(:,:,2,2) = -cos(charge*THETA);
FPM(:,:,1,2) = sin(charge*THETA);
FPM(:,:,2,1) = sin(charge*THETA);

FPM(N/2+1,N/2+1,1,1) = 0;
FPM(N/2+1,N/2+1,1,2) = 0;
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FPM(N/2+1,N/2+1,2,1) = 0;
FPM(N/2+1,N/2+1,2,2) = 0;

end

Function to read in pupil data and interpolate
to scaled pupil size

function [ PartA,PartB ] = ReadPupilsInterp( N,Np,lambda)

pupilB = pupilFromh5(['C:\Users\jeffdavis\Documents\HabEx Pupils
 white light\10-30-18 prescription\Correct JP\jpB ' num2str(lambda) '
 nm.h5']);

pupilA = pupilFromh5(['C:\Users\jeffdavis\Documents\HabEx Pupils
 white light\10-30-18 prescription\Correct JP\jpA ' num2str(lambda) '
 nm.h5']);

[Xp,Yp]=meshgrid(linspace(1,101,Np),linspace(1,101,Np));
PartA=zeros(N,N,2,2);
PartB=zeros(N,N,2,2);

for n=1:2
    for m=1:2
temp =
 interp2(squeeze(real(pupilA(:,:,n,m))),Xp,Yp)+1i*interp2(squeeze(imag(pupilA(:,:,n,m))),Xp,Yp);
temp = (padarray(temp,[((N-Np)+1)/2 ((N-Np)+1)/2],'pre'));
temp = (padarray(temp,[((N-Np)-1)/2 ((N-Np)-1)/2],'post'));
PartA(:,:,n,m) = temp;
temp =
 interp2(squeeze(real(pupilB(:,:,n,m))),Xp,Yp)+1i*interp2(squeeze(imag(pupilB(:,:,n,m))),Xp,Yp);
temp = (padarray(temp,[((N-Np)+1)/2 ((N-Np)+1)/2],'pre'));
temp = (padarray(temp,[((N-Np)-1)/2 ((N-Np)-1)/2],'post'));
PartB(:,:,n,m) = temp;
    end
end

end

Apply VVR isotropic
function [ JP_A_masked,PartA,PartB,dx,apRad ] =
 ApplyVVRisotropic(lambda,charge)

D=[];%diameter of primary in meters, redacted due to ITAR restrictions

N = 2^12;% Computational grid
Np= 2^10;% Number of points we interpolate to for the pupil diameter
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R = N/Np;%Number of aperature diameters that fit across the
 computational grid

lambdaOverD = (lambda*10^-9)/D;
lambdaOverDmean = (500*10^-9)/D;
xvals=linspace(-R/lambdaOverDmean,R/lambdaOverDmean,N+1);%R*D/lambda
 range
xvals=xvals(1:(end-1));
dx=abs(xvals(1)-xvals(2));%[# of D/lambda per pixel]
apRad = round(1/lambdaOverD*1/dx); % # pixels across aperature radius

[ FPM,~,~ ] = VVR(N,charge,xvals);

[ PartA,PartB ] = ReadPupilsInterp(N,2*apRad+1,lambda);

% % Defines the coordinate systems
[X,Y] = meshgrid(-N/2:N/2-1); % Grids with Cartesian (x,y) coordinates
[~,RHO] = cart2pol(X,Y);  % Grids with polar (rho,theta) coordinates

% Computes the masked PartA
JP_A_masked=zeros(N,N,2,2);

for n=1:2
    for m=1:2
        JP_A_masked(:,:,m,n) =
 vortexCoronagraph_Pup2Pup( squeeze(PartA(:,:,m,n)),
 squeeze(FPM(:,:,m,n)), apRad, R, RHO, N, 'dft', 'forward',0.1/2,
 1.5*4, false );
    end
end

end

Main script
reads in Jones pupils, interpolates them to a scaled pupil size, applies the vector vortex mask to the electric
field distribution at the coronagraph mask plane and DFTs to get the masked Jones pupil, calculates the
end-to-end Jones pupil with and without the vector vortex mask applied, and calculates the ARM^2 for each
wavelength with and without the vortex mask. The sum of the 4 components of the ARM^2 yields the PSF.

% waveset = [450,475,500,525,550]

% D=4;

% N = 2^12;
% Np = 2^10;
% isotropic_psf_no_mask = zeros(N,N,2,2);
% isotropic_psf_with_mask = zeros(N,N,2,2);
% isotropic_contrast_temp = cell(1,length(waveset));
% charge = 6;
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% for ii = 1:length(waveset)

% lambda = waveset(ii);

% [maskedA,partA,partB,dxtemp,apRad]=
 ApplyVVRisotropic(lambda,charge);

% crop = (N-2*apRad)/2 + 1: (N+2*apRad+2)/2;
% cropMask = maskedA(crop,crop,:,:);
% cropA = partA(crop,crop,:,:);
% cropB = partB(crop,crop,:,:);

% total_no_mask = cell2pupil(pupilmultiply(cropB,cropA));
% total_with_mask = cell2pupil(pupilmultiply(cropB,cropMask));

% padsize = (N-2*apRad)/2;

% total_no_mask = padarray(total_no_mask,[padsize padsize],'pre');
% total_no_mask = padarray(total_no_mask,[padsize-1
 padsize-1],'post');

% total_with_mask = padarray(total_with_mask,[padsize padsize],'pre');
% total_with_mask = padarray(total_with_mask,[padsize-1
 padsize-1],'post');

% for n = 1:2
% for m = 1:2
% isotropic_psf_no_mask(:,:,m,n) =
 abs(fftshift(fft2(fftshift(total_no_mask(:,:,m,n)))).*dxtemp.^2).^2;
% isotropic_psf_with_mask(:,:,m,n) =
 abs(fftshift(fft2(fftshift(total_with_mask(:,:,m,n)))).*dxtemp.^2).^2;
% end
% end

% hdf5write(['C:\Users\jeffdavis\Documents\Dissertation\Figures
\Chapter 4\HabEx psfs\isotropic_psf_no_mask_' num2str(lambda)
 '.h5'],'real',real(isotropic_psf_no_mask((N-Np)/2:(N+Np)/2,(N-Np)/2:
(N+Np)/2,:,:)))
% hdf5write(['C:\Users\jeffdavis\Documents\Dissertation\Figures
\Chapter 4\HabEx psfs\isotropic_psf_with_mask_' num2str(lambda)
 '.h5'],'real',real(isotropic_psf_with_mask((N-Np)/2:(N+Np)/2,(N-
Np)/2:(N+Np)/2,:,:)))

Published with MATLAB® R2018a
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Chapter 3 Figure Creation
The following code was used to create all the figures shown in chapter 3.

Parabolic mirror setup, Jones pupil, and ARM
The following code setups up the system for a parabolic mirror, traces rays that reflect off the parabolic 
mirror, and calculates the Jones pupil and ARM/PSF for the system

□ Mirror Setup

In[ ]:= parabolicMirror = 

CreateSurface

sys`surfID → 1,

sys`surfaceLabel → "Parabolic Mirror",

sys`shape`type → "Conic",

sys`shape`curv →
-1

25
,

sys`shape`conicK → -1,

sys`v → {0, 0, 0},

sys`a → {0, 0, 1},

sys`material1 → "Air",

sys`material2 → "Air",

sys`mode → {"Reflect"},

sys`aperture → Norm[{#1, #2}] < 10 &,

sys`coating`type → "Perfect",

sys`coating`thickness → {1000},

sys`coating`indices → {"UserIsotropic_aljeff"},

CreateSurface

sys`surfID → 2,

sys`surfaceLabel → "Detector",

sys`shape`type → "Plane",

sys`v → {0, 0, -12.5},

sys`a → {0, 0, -1},

sys`aperture → Norm[{#1, #2}] < 1 &,

sys`mode → {"Absorb"};

□ Ray trace

In[ ]:= config`rayID = 1;

rays = CreateCollimatedRectRayGrid[20, 20, 51, 51, ray`λ → .5,

ray`k → {0, 0, 1}, ray`surfaceOrder → {1, 2}, ray`r → {0, 0, -5}];



In[ ]:= raysout = TraceRays[rays, parabolicMirror];

□ Jones pupil

In[ ]:= {jp, xloc, yloc} = JonesPupil[{raysout, parabolicMirror, -12.5}];

pupil = jp〚1〛;

absjones = Abs[pupil];

argjones = Arg[pupil];

labels = {{"XX", "XY"}, {"YX", "YY"}};

In[ ]:= pupilticks = Subdivide[-10, 10, 4];

In[ ]:= ampgrid =

Grid[Table[ArrayPlot[absjones〚All, All, ii, jj〛, PlotLegends → BarLegend[Automatic,

LabelStyle → Directive[Black, Bold, 30]], (*Background→ Black,*)

ColorFunction → GrayLevel, PlotLabel → Style["A"labels〚ii,jj〛, Bold, Black, 40],

ImageSize → Large, DataRange → {{-10, 10}, {-10, 10}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

{{pupilticks, None}, {pupilticks, None}}, FrameStyle → Directive[Black, Bold, 30]

], {ii, 2}, {jj, 2}], Alignment → Left]

□ Spacing in Jones pupil and PSF

(*p606 in pl&os, spacing in psf*)

(*Δs =
λ*effl

n Δx
=

wavelength * focal length

number of samples in exit pupil * exit pupil spacing
*)

Δx = 0.4 * 10-3;

n = 511;

λ = 500 * 10-9;

effl = 12.5(*mm*);

Δs =
λ * effl

n - 1 Δx
(*mm*);

□ PSF

In[ ]:= psf = JonesPSF[jp, FTRatio → 10];

In[ ]:= l = Length[psf[[1]]];

In[ ]:= ξ = Range-
l - 1

2
,
l - 1

2
;

psflength = ξ * Δs;

In[ ]:= ticks = Round[Subdivide[1, Length@psflength, 6]];
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psfplotxx = ArrayPlotLog10@Abs[psf〚1, All, All, 1, 1〛]2
,

DataRange → {{Min@psflength, Max@psflength}, {Min@psflength, Max@psflength}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

Roundpsflength〚ticks〛, 10-3 // N, None, Roundpsflength〚ticks〛, 10-3 // N, None,

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotRange → {{-.004, .004}, {-.004, .004}}, PlotLabel → Style["ARMXX", Black, Bold, 40]

In[ ]:= circ = GraphicsRed, Thickness[.01], Circle{0, 0}, 1.22
λ effl

.02


psfplotxy = ArrayPlotChop@Abs[psf〚1, All, All, 1, 2〛]2,

DataRange → {{Min@psflength, Max@psflength}, {Min@psflength, Max@psflength}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

Roundpsflength〚ticks〛, 10-3 // N, None, Roundpsflength〚ticks〛, 10-3 // N, None,

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → Automatic, PlotRange → {{-.004, .004}, {-.004, .004}},

PlotLabel → Style["ARMXY", Black, Bold, 40]

In[ ]:= psfplotyx = ArrayPlotChop@Abs[psf〚1, All, All, 2, 1〛]2,

DataRange → {{Min@psflength, Max@psflength}, {Min@psflength, Max@psflength}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

Roundpsflength〚ticks〛, 10-3 // N, None, Roundpsflength〚ticks〛, 10-3 // N, None,

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → Automatic, PlotRange → {{-.004, .004}, {-.004, .004}},

PlotLabel → Style["ARMYX", Black, Bold, 40]

psfplotyy = ArrayPlotLog10@Abs[psf〚1, All, All, 2, 2〛]2
,

DataRange → {{Min@psflength, Max@psflength}, {Min@psflength, Max@psflength}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

Roundpsflength〚ticks〛, 10-3 // N, None, Roundpsflength〚ticks〛, 10-3 // N, None,

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotRange → {{-.004, .004}, {-.004, .004}}, PlotLabel → Style["ARMYY", Black, Bold, 40]

psfgrid = Grid[{{Show[psfplotxx, circ], psfplotxy},

{psfplotyx, Show[psfplotyy, circ]}}, Alignment → Left]

Use VV6 mask
The following code sets up the vector vortex charge 6 mask and applies it to the ARM at the corona-
graph mask plane

In[ ]:= v11 = Table[Cos[6 * ArcTan[x, y]], {x, Subdivide[-1, 1, 510]}, {y, Subdivide[-1, 1, 510]}];

In[ ]:= v12 = Table[Sin[6 * ArcTan[x, y]], {x, Subdivide[-1, 1, 510]}, {y, Subdivide[-1, 1, 510]}];

v21 = v12;

v22 = -v11;
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vv6 = Transpose[{{v11, v12}, {v21, v22}}, {3, 4, 1, 2}];

In[ ]:= masked = psf〚1〛* vv6;

In[ ]:= maskedlabel = {{"Masked ARMXX", "Masked ARMXY"}, {"Masked ARMYX", "Masked ARMYY"}};

maskedplot = GridTableArrayPlotChop@Abs@masked〚All, All, ii, jj〛,

DataRange → {{Min@psflength, Max@psflength}, {Min@psflength, Max@psflength}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"},

FrameTicks → Roundpsflength〚ticks〛, 10-3 // N, None,

Roundpsflength〚ticks〛, 10-3 // N, None,

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotRange → {{-.004, .004}, {-.004, .004}},

PlotLabel → Style[maskedlabel〚ii, jj〛, Black, Bold, 40],

{ii, 2}, {jj, 2}, Alignment → Left

In[ ]:= masklabel = {{"VV6XX", "VV6XY"}, {"VV6YX", "VV6YY"}};

In[ ]:= maskplot =

GridTableArrayPlotvv6〚All, All, ii, jj〛, DataRange → {{Min@psflength, Max@psflength},

{Min@psflength, Max@psflength}}, Frame → True, FrameLabel → {"y (mm)", "x (mm)"},

FrameTicks → Roundpsflength〚ticks〛, 10-3 // N, None,

Roundpsflength〚ticks〛, 10-3 // N, None,

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotRange → {{-.004, .004}, {-.004, .004}},

PlotLabel → Style[masklabel〚ii, jj〛, Black, Bold, 40],

{ii, 2}, {jj, 2}, Alignment → Left;

Masked JP_A, total system Jones pupil, and 
total system ARM 2

This code imports data for and makes plots of the Jones pupil distribution with the vector vortex 
applied, the total system Jones pupil, and the total system ARM

□ JP_A masked

In[ ]:= {real, imag} =

Import["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 3\\maskedA.h5",

{"Datasets", {"real", "imaginary"}}];

In[ ]:= jpAmasked = Transpose[real + ⅈ imag, {3, 4, 1, 2}];

In[ ]:= sub =
Length[jpAmasked]

2
;

δ =
sub

4
;
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In[ ]:= pupilticks2 = Subdivide[-20, 20, 4];

In[ ]:= jpm = Grid[Table[ArrayPlot[Abs@jpAmasked〚sub - δ ;; sub + δ, sub - δ ;; sub + δ, ii, jj〛,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

(*Background→ Black,*)ColorFunction → GrayLevel,

PlotLabel → Style["JP masked"labels〚ii,jj〛, Bold, Black, 40],

ImageSize → Large, DataRange → {{-20, 20}, {-20, 20}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

{{pupilticks2, None}, {pupilticks2, None}}, FrameStyle → Directive[Black, Bold, 30]

], {ii, 2}, {jj, 2}], Alignment → Left]

□ Total Jones pupil with no mask

{real, imag} = Import[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 3\\jp_no_mask.h5",

{"Datasets", {"real", "imaginary"}}];

nomask = Transpose[real + ⅈ imag, {3, 4, 1, 2}];

jptotalnomask =

GridTableArrayPlotAbs@nomasksub -
δ

2
;; sub +

δ

2
, sub -

δ

2
;; sub +

δ

2
, ii, jj,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 20]],

(*Background→ Black,*)ColorFunction → GrayLevel,

PlotLabel → Style["Total JP no mask"labels〚ii,jj〛, Bold, Black, 26],

ImageSize → Large, DataRange → {{-10, 10}, {-10, 10}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

{{pupilticks, None}, {pupilticks, None}}, FrameStyle → Directive[Black, Bold, 20]

, {ii, 2}, {jj, 2}, Alignment → Left

□ Total Jones pupil with mask

{real, imag} = Import[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 3\\jp_with_mask.h5",

{"Datasets", {"real", "imaginary"}}];

withmask = Transpose[real + ⅈ imag, {3, 4, 1, 2}];

In[ ]:= jptotalwithmask =

GridTableArrayPlotAbs@withmasksub -
δ

2
;; sub +

δ

2
, sub -

δ

2
;; sub +

δ

2
, ii, jj,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

(*Background→ Black,*)ColorFunction → GrayLevel,

PlotLabel → Style["Total JP with mask"labels〚ii,jj〛, Bold, Black, 40],

ImageSize → Large, DataRange → {{-10, 10}, {-10, 10}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

{{pupilticks, None}, {pupilticks, None}}, FrameStyle → Directive[Black, Bold, 30]

, {ii, 2}, {jj, 2}, Alignment → Left;
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□ Setup spacing for ARM plots

R = 4;

lambdaOverD = 500 * 10^-9  0.02;

xvals = Subdivide-R  lambdaOverD, R  lambdaOverD, 212;

xvals = xvals〚1 ;; -2〛;

dx = Abs[xvals〚1〛- xvals〚2〛];

xi = Subdivide-1  2 * dx, 1  2 * dx, 212;

xi = xi〚1 ;; -2〛;

nomaskticks = RoundSubdivide-10
λ effl

.02 * .9
, 10

λ effl

.02 * .9
, 4, 10-4 // N

nomaskpsflabel =

"|ARM 2 No MaskXX", "|ARM 2 No MaskXy", "|ARM 2 No MaskYX", "|ARM 2 No MaskYY";

withmaskpsflabel = "|ARM With MaskXX
2", "|ARM With MaskXy

2",

"|ARM With MaskYX
2", "|ARM With MaskYY

2";

maxnomask = Max[Abs[psfnomask]]

□ ARM with no mask

{real, imag} = Import[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 3\\psf_no_mask.h5",

{"Datasets", {"real", "imaginary"}}];

psfnomask = Transpose[real + ⅈ imag, {3, 4, 1, 2}];

nomaskpsfplot = GridTableArrayPlotChop@
Abs@psfnomask〚All, All, ii, jj〛

maxnomask
, Frame → True,

FrameLabel → {"y (mm)", "x (mm)"}, DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → 10
λ effl

.02 * .9
{{-1, 1}, {-1, 1}},

FrameTicks → {{nomaskticks, None}, {nomaskticks, None}},

FrameStyle → Directive[Black, Bold, 20], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 20]],

PlotLabel → Style[nomaskpsflabel〚ii, jj〛, Black, Bold, 20],

{ii, 2}, {jj, 2}, Alignment → Left

□ ARM with mask

In[ ]:= {real, imag} = Import[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 3\\psf_with_mask.h5",

{"Datasets", {"real", "imaginary"}}];

psfwithmask = Transpose[real + ⅈ imag, {3, 4, 1, 2}];
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In[ ]:= withmaskpsfplot =

GridTableArrayPlotChop@
Abs@psfwithmask〚All, All, ii, jj〛

maxnomask
, Frame → True,

FrameLabel → {"y (mm)", "x (mm)"}, DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → 10
λ effl

.02 * .9
{{-1, 1}, {-1, 1}},

FrameTicks → {{nomaskticks, None}, {nomaskticks, None}},

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotLabel → Style[withmaskpsflabel〚ii, jj〛, Black, Bold, 40],

{ii, 2}, {jj, 2}, Alignment → Left

Off-axis planet
This code recalculates the Jones pupils and ARMs (with and without the vector vortex mask) for an off-
axis planet, simulated by rotating the incoming light’s propagation vector by 5λ/D relative to the star’s 
propagation vector.

□ Setup rotation angle

In[ ]:= tiltang =
5 λ

.02

In[ ]:= tiltk = RotationMatrix[tiltang, {0, 1, 0}].{0, 0, 1}

□ Trace tilted rays

In[ ]:= config`rayID = 1;

tiltrays = CreateCollimatedRectRayGrid[20, 20, 51, 51,

ray`λ → .5, ray`k → tiltk, ray`surfaceOrder → {1, 2}, ray`r → {0, 0, -5}];

tiltout = TraceRays[tiltrays, parabolicMirror];

□ Jones pupil for tilted rays

The ‘myJonesPupilWithExitPupil’ function traces the tilted rays to the star’s reference sphere instead of 
making a reference sphere for the off-axis planet. XP is the surface representing the star’s reference 
sphere.

In[ ]:= {tiltrays, tiltjp} = myJonesPupilWithExitPupil[parabolicMirror, tiltout, -12.5, 2, 51, XP];
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In[ ]:= ampgridtilt =

Grid[Table[ArrayPlot[Round[Abs[tiltjp〚All, All, ii, jj〛]], PlotLegends → BarLegend[

Automatic, LabelStyle → Directive[Black, Bold, 20]], (*Background→ Black,*)

ColorFunction → GrayLevel, PlotLabel → Style["A"labels〚ii,jj〛, Bold, Black, 26],

ImageSize → Large, DataRange → {{-10, 10}, {-10, 10}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

{{pupilticks, None}, {pupilticks, None}}, FrameStyle → Directive[Black, Bold, 20]

], {ii, 2}, {jj, 2}], Alignment → Left]

In[ ]:= arggridtilt =

Grid[Table[ArrayPlot[argtilt〚All, All, ii, jj〛, PlotLegends → BarLegend[Automatic,

LabelStyle → Directive[Black, Bold, 20]], (*Background→ Black,*)

ColorFunction → Hue, PlotLabel → Style["ϕ"labels〚ii,jj〛, Bold, Black, 26],

ImageSize → Large, DataRange → {{-10, 10}, {-10, 10}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

{{pupilticks, None}, {pupilticks, None}}, FrameStyle → Directive[Black, Bold, 20]

], {ii, 2}, {jj, 2}], Alignment → Left]

□ ARM for tilted rays

In[ ]:= psftilt = JonesPSF[{tiltjp, 0.37354440480612294`,

{0.`, 0.`, -1.7763568394002505`*^-15}, {0.`, 0.`, -1.`}, 0.5`}, FTRatio → 10];
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psfplottiltxx = ArrayPlotLog10@Abs[psftilt〚1, All, All, 1, 1〛],

DataRange → {{Min@psflength, Max@psflength}, {Min@psflength, Max@psflength}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

Roundpsflength〚ticks〛, 10-3 // N, None, Roundpsflength〚ticks〛, 10-3 // N, None,

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotRange → {{-.004, .004}, {-.004, .004}}, PlotLabel → Style["ARMXX", Black, Bold, 40]

psfplottiltyy = ArrayPlotLog10@Abs[psftilt〚1, All, All, 2, 2〛],

DataRange → {{Min@psflength, Max@psflength}, {Min@psflength, Max@psflength}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

Roundpsflength〚ticks〛, 10-3 // N, None, Roundpsflength〚ticks〛, 10-3 // N, None,

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotRange → {{-.004, .004}, {-.004, .004}}, PlotLabel → Style["ARMYY", Black, Bold, 40]

psfplottiltxy = ArrayPlotChop@Abs[psftilt〚1, All, All, 1, 2〛],

DataRange → {{Min@psflength, Max@psflength}, {Min@psflength, Max@psflength}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

Roundpsflength〚ticks〛, 10-3 // N, None, Roundpsflength〚ticks〛, 10-3 // N, None,

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → Automatic, PlotRange → {{-.004, .004}, {-.004, .004}},

PlotLabel → Style["ARMXY", Black, Bold, 40]

psfplottiltyx = ArrayPlotChop@Abs[psftilt〚1, All, All, 2, 1〛],

DataRange → {{Min@psflength, Max@psflength}, {Min@psflength, Max@psflength}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

Roundpsflength〚ticks〛, 10-3 // N, None, Roundpsflength〚ticks〛, 10-3 // N, None,

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → Automatic, PlotRange → {{-.004, .004}, {-.004, .004}},

PlotLabel → Style["ARMYX", Black, Bold, 40]

psftiltgrid = Grid[{{psfplottiltxx, psfplottiltxy}, {psfplottiltyx, psfplottiltyy}},

Alignment → Left]

□ Compare on-axis star PSF with off-axis planet PSF with differing flux ratios

In[ ]:= starplanetPSF =

ArrayPlotLog10Abs[psf〚1, All, All, 1, 1〛]2
+ Abs[psftilt〚1, All, All, 1, 1〛]2

,

DataRange → {{Min@psflength, Max@psflength}, {Min@psflength, Max@psflength}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

Roundpsflength〚ticks〛, 10-3 // N, None, Roundpsflength〚ticks〛, 10-3 // N, None,

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotRange → {{-.004, .004}, {-.004, .004}},

PlotLabel → Style["Star + Planet", Black, Bold, 30]
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In[ ]:= starplanetPSF1 =

ArrayPlotLog10Abs[psf〚1, All, All, 1, 1〛]2
+ .1 Abs[psftilt〚1, All, All, 1, 1〛]2

,

DataRange → {{Min@psflength, Max@psflength}, {Min@psflength, Max@psflength}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

Roundpsflength〚ticks〛, 10-3 // N, None, Roundpsflength〚ticks〛, 10-3 // N, None,

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotRange → {{-.004, .004}, {-.004, .004}},

PlotLabel → Style["Star + Planet", Black, Bold, 30]

In[ ]:= starplanetPSF3 =

ArrayPlotLog10Abs[psf〚1, All, All, 1, 1〛]2
+ .001 Abs[psftilt〚1, All, All, 1, 1〛]2

,

DataRange → {{Min@psflength, Max@psflength}, {Min@psflength, Max@psflength}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

Roundpsflength〚ticks〛, 10-3 // N, None, Roundpsflength〚ticks〛, 10-3 // N, None,

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotRange → {{-.004, .004}, {-.004, .004}},

PlotLabel → Style["Star + Planet", Black, Bold, 30]

□ Apply vector vortex

In[ ]:= maskedtilt = psftilt〚1〛* vv6;

In[ ]:= maskedtiltplot = GridTableArrayPlotChop@Abs@maskedtilt〚All, All, ii, jj〛,

DataRange → {{Min@psflength, Max@psflength}, {Min@psflength, Max@psflength}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"},

FrameTicks → Roundpsflength〚ticks〛, 10-3 // N, None,

Roundpsflength〚ticks〛, 10-3 // N, None,

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotRange → {{-.004, .004}, {-.004, .004}},

PlotLabel → Style[maskedlabel〚ii, jj〛, Black, Bold, 40],

{ii, 2}, {jj, 2}, Alignment → Left

□ JP_A masked for tilted rays

In[ ]:= {real, imag} = Import["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

3\\jpa_mask_tilted.h5", {"Datasets", {"real", "imaginary"}}];

In[ ]:= jpAmaskedtilt = Transpose[real + ⅈ imag, {3, 4, 1, 2}];

In[ ]:= jpmtilt = Grid[Table[ArrayPlot[Chop@Abs@jpAmaskedtilt〚All, All, ii, jj〛,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

(*Background→ Black,*)ColorFunction → GrayLevel,

PlotLabel → Style["Planet JP masked"labels〚ii,jj〛, Bold, Black, 40],

ImageSize → Large, DataRange → {{-10, 10}, {-10, 10}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

{{pupilticks, None}, {pupilticks, None}}, FrameStyle → Directive[Black, Bold, 30]

], {ii, 2}, {jj, 2}], Alignment → Left]
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□ End-to-end Jones pupil

In[ ]:= {real, imag} = Import["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

3\\totl_mask_tilted.h5", {"Datasets", {"real", "imaginary"}}];

withmask = Transpose[real + ⅈ imag, {3, 4, 1, 2}];

In[ ]:= jptotalwithmasktilted = Grid[Table[ArrayPlot[Chop@Abs@withmask〚All, All, ii, jj〛,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

(*Background→ Black,*)ColorFunction → GrayLevel,

PlotLabel → Style["Planet Total JP with mask"labels〚ii,jj〛, Bold, Black, 40],

ImageSize → Large, DataRange → {{-10, 10}, {-10, 10}},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"}, FrameTicks →

{{pupilticks, None}, {pupilticks, None}}, FrameStyle → Directive[Black, Bold, 30]

], {ii, 2}, {jj, 2}], Alignment → Left]

□ PSF with mask

In[ ]:= {real, imag} = Import["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

3\\total_psf_tilted.h5", {"Datasets", {"real", "imaginary"}}];

psfwithmasktilt = Transpose[real + ⅈ imag, {3, 4, 1, 2}];

In[ ]:= withmaskpsfplot =

GridTableArrayPlotIfii + jj ⩵ 3, Chop@
Abs@psfwithmasktilt〚All, All, ii, jj〛

maxnomask
,

Chop@Log10@ReverseTranspose
Abs@psfwithmasktilt〚All, All, ii, jj〛

maxnomask
, {2},

Frame → True, FrameLabel → {"y (mm)", "x (mm)"},

DataRange → {{xi〚sub - δ〛, xi〚sub + δ〛}, {xi〚sub - δ〛, xi〚sub + δ〛}},

PlotRange → 10
λ effl

.02
{{-1, 1}, {-1, 1}},

FrameTicks → {{nomaskticks, None}, {nomaskticks, None}},

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotLabel → Style[withmaskpsflabel〚ii, jj〛, Black, Bold, 40],

{ii, 2}, {jj, 2}, Alignment → Left
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□ Compare on-axis star with VV6 and off-axis planet with VV6 for differing flux 
ratios

In[ ]:= starPlanetpsf0 = ArrayPlot

Log10
1

maxnomask
Chop@Reverse[Transpose[Abs@psfwithmasktilt〚All, All, 1, 1〛], {2}] +

psfwithmask〚sub - δ ;; sub + δ, sub - δ ;; sub + δ, 1, 1〛,

Frame → True, FrameLabel → {"y (mm)", "x (mm)"},

DataRange → {{xi〚sub - δ〛, xi〚sub + δ〛}, {xi〚sub - δ〛, xi〚sub + δ〛}},

PlotRange → 10
λ effl

.02
{{-1, 1}, {-1, 1}},

FrameTicks → {{nomaskticks, None}, {nomaskticks, None}},

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotLabel → Style["Star + Planet", Black, Bold, 40]

In[ ]:= starPlanetpsf4 = ArrayPlot

Log10
1

maxnomask
10-4 Chop@Reverse[Transpose[Abs@psfwithmasktilt〚All, All, 1, 1〛], {2}] +

psfwithmask〚sub - δ ;; sub + δ, sub - δ ;; sub + δ, 1, 1〛,

Frame → True, FrameLabel → {"y (mm)", "x (mm)"},

DataRange → {{xi〚sub - δ〛, xi〚sub + δ〛}, {xi〚sub - δ〛, xi〚sub + δ〛}},

PlotRange → 10
λ effl

.02
{{-1, 1}, {-1, 1}},

FrameTicks → {{nomaskticks, None}, {nomaskticks, None}},

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotLabel → Style["Star + Planet", Black, Bold, 40]

In[ ]:= starPlanetpsf7 = ArrayPlot

Log10
1

maxnomask
10-7 Chop@Reverse[Transpose[Abs@psfwithmasktilt〚All, All, 1, 1〛], {2}] +

psfwithmask〚sub - δ ;; sub + δ, sub - δ ;; sub + δ, 1, 1〛,

Frame → True, FrameLabel → {"y (mm)", "x (mm)"},

DataRange → {{xi〚sub - δ〛, xi〚sub + δ〛}, {xi〚sub - δ〛, xi〚sub + δ〛}},

PlotRange → 10
λ effl

.02
{{-1, 1}, {-1, 1}},

FrameTicks → {{nomaskticks, None}, {nomaskticks, None}},

FrameStyle → Directive[Black, Bold, 30], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotLabel → Style["Star + Planet", Black, Bold, 40]
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In[ ]:= starPlanetpsf10 = ArrayPlotLog10
1

maxnomask

10-10 Chop@Reverse[Transpose[Abs@psfwithmasktilt〚All, All, 1, 1〛], {2}] +

psfwithmask〚sub - δ ;; sub + δ, sub - δ ;; sub + δ, 1, 1〛,

Frame → True, FrameLabel → {"y (mm)", "x (mm)"},

DataRange → {{xi〚sub - δ〛, xi〚sub + δ〛}, {xi〚sub - δ〛, xi〚sub + δ〛}},

PlotRange → 10
λ effl

.02
{{-1, 1}, {-1, 1}},

FrameTicks → {{nomaskticks, None}, {nomaskticks, None}},

FrameStyle → Directive[Black, Bold, 20], ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 20]],

PlotLabel → Style"|StarXX
2
+ |PlanetXX

2", Black, Bold, 20
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Chapter 4 Figure Creation
The following code was used to create the figures shown in chapter 4.

The first set of code creates the figures for each of these using 500 nm light:
 -the ARM at the coronagraph mask plane
 -the product of the vector vortex and ARM at the coronagraph mask plane
 -the Jones pupil distribution with the vector vortex applied (JPA_masked)
 -the Jones pupil for system A (fore-optics)
 -the Jones pupil for system B (post-optics)
 -total Jones pupil with vector vortex
 -total Jones pupil without vector vortex
 -PSF with vector vortex
 -PSF without vector vortex
 
 The second set of code creates the figures for each of the following for polychromatic light ([450, 475, 
500, 525, 550] nm light):
-PSF with no mask and ideal apertures (no aberrations)
-PSF with VV6 mask and ideal apertures (no aberrations)
-PSF with no mask and isotropic coatings
-PSF with VV6 mask and isotropic coatings
-PSF with no mask and isotropic coatings and form birefringence on primary mirror
-PSF with VV6 mask and isotropic coatings and form birefringence on primary mirror
-2D contrast for the ideal, isotropic, and anisotropic cases
-Horizontal and vertical slices through the 2D contrast plots
 
 



500 nm light

□ Setup the object spacing angle on sky

n = 212;

np = 210;

r = n / np;

lambdaOverD = (*omitted due to ITAR*)

xvals = Subdivide-r  lambdaOverD, r  lambdaOverD, n;

xvals = xvals〚1 ;; -2〛;

dx = Abs[xvals〚1〛- xvals〚2〛];

xi = Subdivide-1  2 * dx, 1  2 * dx, n;

xi = xi〚1 ;; -2〛;

xi = xi * 206 265;

xi = xi
n - np

2
;;

n + np

2
;

□ ARM at coronagraph mask plane

In[ ]:= {re, im} = Import[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 4\\arma_500.h5",

{"Datasets", {"real", "imaginary"}}];

arma = Transpose[re + ⅈ im, {3, 4, 1, 2}];

In[ ]:= ticksh = Subdivide[-.5, .5, 4];

In[ ]:= armlabel = {{"ARMXX", "ARMXY"}, {"ARMYX", "ARMYY"}};

In[ ]:= range3 = {{{-6, 0}, {-8, -2}}, {{-8, -2}, {-6, 0}}};

In[ ]:= armaplot = GridTableArrayPlotTransposeReverseLog10
Abs[arma〚All, All, ii, jj〛]

Max[Abs[arma]]
,

Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, range3〚ii, jj〛},

FrameTicks → {{ticksh, None}, {ticksh, None}},

FrameStyle → Directive[Black, Bold, 30], ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 500, PlotLabel → Style[armlabel〚ii, jj〛, Black, Bold, 40],

{ii, 2}, {jj, 2}, Alignment → Left

□ Vector vortex charge 6

In[ ]:= vv6data = Table[

{{Cos[6 ArcTan[x, y]], Sin[6 ArcTan[x, y]]}, {Sin[6 ArcTan[x, y]], Cos[6 ArcTan[x, y]]}},

{x, Subdivide[-1, 1, 1024]}, {y, Subdivide[-1, 1, 1024]}];
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In[ ]:= vv6data〚513, 513〛 = {{0, 0}, {0, 0}};

In[ ]:= vv6data2 = RotateRight[vv6data〚All, All, 1, 1〛, {1, 1}];

vv6data3 = RotateRight[vv6data〚All, All, 1, 2〛, {1, 1}];

vv6data4 = RotateRight[vv6data〚All, All, 2, 1〛, {1, 1}];

vv6data5 = RotateRight[vv6data〚All, All, 2, 2〛, {1, 1}];

In[ ]:= vv6total = {{vv6data2, vv6data3}, {vv6data4, vv6data5}};

In[ ]:= vv6arm = arma * Transpose[vv6total, {3, 4, 1, 2}];

In[ ]:= maskedarmlabel = {{"Masked ARMXX", "Masked ARMXY"}, {"Masked ARMYX", "Masked ARMYY"}};

In[ ]:= vv6armaplot =

GridTableArrayPlotLog10TransposeReverse
Abs[vv6arm〚All, All, ii, jj〛]

Max[Abs[vv6arm]]
 /.

Indeterminate → None, Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}(*,range3〚ii,jj〛*)},

FrameTicks → {{ticksh, None}, {ticksh, None}},

FrameStyle → Directive[Black, Bold, 30], ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 500, PlotLabel → Style[maskedarmlabel〚ii, jj〛, Black, Bold, 40],

{ii, 2}, {jj, 2}, Alignment → Left;

□ Jones pupil distribution with the vector vortex

In[ ]:= {re, im} = Import[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 4\\masked_jp_500.h5",

{"Datasets", {"real", "imaginary"}}];

ring = Transpose[re + ⅈ im, {3, 4, 1, 2}];

In[ ]:= absringlabel = {{"AXX", "AXY"}, {"AYX", "AYY"}};

argringlabel = {{"ϕXX", "ϕXY"}, {"ϕYX", "ϕYY"}};

In[ ]:= absringplot =

GridTableArrayPlotTranspose[Reverse[Abs[ring〚All, All, ii, jj〛]]], Frame → False,

ColorFunction → Blend[{Black, Blue, Green, Red, Purple}, #] &,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 300, PlotLabel → Style[absringlabel〚ii, jj〛, White, Bold, 40],

Background → Black, {ii, 2}, {jj, 2}, Alignment → Left;

In[ ]:= argringplot =

GridTableArrayPlotTranspose[Reverse[Arg[ring〚All, All, ii, jj〛]]], Frame → False,

ColorFunction → Blend[{Black, Blue, Green, Red, Purple}, #] &,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 300, PlotLabel → Style[argringlabel〚ii, jj〛, White, Bold, 40],

Background → Black, {ii, 2}, {jj, 2}, Alignment → Left;
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□ Jones pupil A without vector vortex

In[ ]:= {re, im} = Import["C:\\Users\\jeffdavis\\Documents\\HabEx Pupils white light\\10-30-18

prescription\\Correct JP\\jpA 500 nm.h5", {"Datasets", {"real", "imaginary"}}];

In[ ]:= pupilA = re + ⅈ im;

In[ ]:= absA = Replace[Abs[pupilA], t_ /; t ⩵ 0. → None, {4}];

argA = Replace[Arg[pupilA], t_ /; t ⩵ 0. → None, {4}];

In[ ]:= absAplot = GridTableArrayPlotabsA〚All, All, ii, jj〛, Frame → False,

ColorFunction → Blend[{Black, Blue, Green, Red, Purple}, #] &,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 300, PlotLabel → Style[absringlabel〚ii, jj〛, White, Bold, 40],

Background → Black, {ii, 2}, {jj, 2}, Alignment → Left

In[ ]:= argAplot = GridTableArrayPlotargA〚All, All, ii, jj〛, Frame → False,

ColorFunction → Blend[{Black, Blue, Green, Red, Purple}, #] &,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 300, PlotLabel → Style[argringlabel〚ii, jj〛, White, Bold, 40],

Background → Black, {ii, 2}, {jj, 2}, Alignment → Left

□ Jones pupil B

In[ ]:= {re, im} = Import["C:\\Users\\jeffdavis\\Documents\\HabEx Pupils white light\\10-30-18

prescription\\Correct JP\\jpB 500 nm.h5", {"Datasets", {"real", "imaginary"}}];

In[ ]:= pupilB = re + ⅈ im;

In[ ]:= absB = Replace[Abs[pupilB], t_ /; t ⩵ 0. → None, {4}];

argB = Replace[Arg[pupilB], t_ /; t ⩵ 0. → None, {4}];

In[ ]:= absBplot = GridTableArrayPlotabsB〚All, All, ii, jj〛, Frame → False,

ColorFunction → Blend[{Black, Blue, Green, Red, Purple}, #] &,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 300, PlotLabel → Style[absringlabel〚ii, jj〛, White, Bold, 40],

Background → Black, {ii, 2}, {jj, 2}, Alignment → Left

In[ ]:= argBplot = GridTableArrayPlotargB〚All, All, ii, jj〛, Frame → False,

ColorFunction → Blend[{Black, Blue, Green, Red, Purple}, #] &,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 300, PlotLabel → Style[argringlabel〚ii, jj〛, White, Bold, 40],

Background → Black, {ii, 2}, {jj, 2}, Alignment → Left

□ Total system Jones pupil with vector vortex

In[ ]:= {re, im} = Import["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\total_pupil_with_mask.h5", {"Datasets", {"real", "imaginary"}}];

In[ ]:= jptotMask = Transpose[re + ⅈ im, {3, 4, 1, 2}];
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In[ ]:= abstot = Replace[Abs[jptotMask], t_ /; t ⩵ 0. → None, {4}];

argtot = Replace[Arg[jptotMask], t_ /; t ⩵ 0. → None, {4}];

In[ ]:= abstotplot =

GridTableArrayPlotTranspose[Reverse[abstot〚All, All, ii, jj〛]], Frame → False,

ColorFunction → Blend[{Black, Blue, Green, Red, Purple}, #] &,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 300, PlotLabel → Style[absringlabel〚ii, jj〛, White, Bold, 40],

Background → Black, {ii, 2}, {jj, 2}, Alignment → Left;

In[ ]:= argtotplot =

GridTableArrayPlotTranspose[Reverse[argtot〚All, All, ii, jj〛]], Frame → False,

ColorFunction → Blend[{Black, Blue, Green, Red, Purple}, #] &,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 300, PlotLabel → Style[argringlabel〚ii, jj〛, White, Bold, 40],

Background → Black, {ii, 2}, {jj, 2}, Alignment → Left;

□ Total system Jones pupil without vector vortex

In[ ]:= jptotnomask = Table[pupilB〚ii, jj〛.pupilA〚ii, jj〛, {ii, 101}, {jj, 101}];

In[ ]:= abstotnomask = Replace[Abs[jptotnomask], t_ /; t ⩵ 0. → None, {4}];

argtotnomask = Replace[Arg[jptotnomask], t_ /; t ⩵ 0. → None, {4}];

In[ ]:= abstotnomaskplot = GridTableArrayPlotabstotnomask〚All, All, ii, jj〛, Frame → False,

ColorFunction → Blend[{Black, Blue, Green, Red, Purple}, #] &,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 300, PlotLabel → Style[absringlabel〚ii, jj〛, White, Bold, 40],

Background → Black, {ii, 2}, {jj, 2}, Alignment → Left

In[ ]:= argtotnomaskplot = GridTableArrayPlotargtotnomask〚All, All, ii, jj〛, Frame → False,

ColorFunction → Blend[{Black, Blue, Green, Red, Purple}, #] &,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 300, PlotLabel → Style[argringlabel〚ii, jj〛, White, Bold, 40],

Background → Black, {ii, 2}, {jj, 2}, Alignment → Left

□ PSF with vector vortex mask

In[ ]:= psftotMask = Transpose[

Import["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 4\\HabEx

psfs\\isotropic_psf_with_mask_500.h5", {"Datasets", {"real"}}], {3, 4, 1, 2}];

In[ ]:= range4 = {{{-5, 0}, {-9, -3}}, {{-9, -3}, {-5, 0}}};

In[ ]:= totlabel = "|Total Masked ARMXX
2", "|Total Masked ARMXY

2",

"|Total Masked ARMYX
2", "|Total Masked ARMYY

2";
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In[ ]:= psftotMaskPlot =

GridTableArrayPlotTransposeReverseLog10
psftotMask〚All, All, ii, jj〛

Max[psftotMask]
,

Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, range4〚ii, jj〛},

FrameTicks → {{ticksh, None}, {ticksh, None}},

FrameStyle → Directive[Black, Bold, 30], ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 500, PlotLabel → Style[totlabel〚ii, jj〛, Black, Bold, 30],

{ii, 2}, {jj, 2}, Alignment → Left

In[ ]:= sum = psftotMask〚All, All, 1, 1〛+ psftotMask〚All, All, 1, 2〛+

psftotMask〚All, All, 2, 1〛+ psftotMask〚All, All, 2, 2〛;

In[ ]:= sumpsftotMaskPlot = ArrayPlotTransposeReverseLog10
sum

Max[sum]
,

Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, {-6, 0}},

FrameTicks → {{ticksh, None}, {ticksh, None}},

FrameStyle → Directive[Black, Bold, 30], ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 500, PlotLabel → Style["PSF with Mask", Black, Bold, 40]

□ PSF with no vector vortex mask

In[ ]:= psftotnoMask = Transpose[

Import["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 4\\HabEx

psfs\\isotropic_psf_no_mask_500.h5", {"Datasets", {"real"}}], {3, 4, 1, 2}];

In[ ]:= range5 = {{{-12, 0}, {-15, -4}}, {{-15, -4}, {-12, 0}}};

In[ ]:= ticksh = Subdivide[-.5, .5, 4];

In[ ]:= totnomasklabel =

"|No Mask ARMXX
2", "|No Mask ARMXY

2", "|No Mask ARMYX
2", "|No Mask ARMYY

2";

In[ ]:= psftotnoMaskPlot =

GridTableArrayPlotTransposeReverseLog10
psftotnoMask〚All, All, ii, jj〛

Max[psftotnoMask]
,

Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, range5〚ii, jj〛},

FrameTicks → {{ticksh, None}, {ticksh, None}},

FrameStyle → Directive[Black, Bold, 30], ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 500, PlotLabel → Style[totnomasklabel〚ii, jj〛, Black, Bold, 40],

{ii, 2}, {jj, 2}, Alignment → Left

In[ ]:= sumnomask = psftotnoMask〚All, All, 1, 1〛+ psftotnoMask〚All, All, 1, 2〛+

psftotnoMask〚All, All, 2, 1〛+ psftotnoMask〚All, All, 2, 2〛;
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In[ ]:= sumpsftotnoMaskPlot = ArrayPlotTransposeReverseLog10
sumnomask

Max[sumnomask]
,

Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, {-12, 0}},

FrameTicks → {{ticksh, None}, {ticksh, None}},

FrameStyle → Directive[Black, Bold, 30], ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

ImageSize → 500, PlotLabel → Style["PSF No Mask", Black, Bold, 40]

Polychromatic light

□ Function to plot and return psf for a single wavelength

In[ ]:= psfplots[filepath_, label_, range_] := Module{n, np, r, psf, lambdaOverD,

data, xvals, dx, xi, ticks, plot, xxplot, yyplot, xyplot, yxplot},

n = 212;

np = 210;

r = n / np;

lambdaOverD = 500 * 10^-9  4;

xvals = Subdivide-r  lambdaOverD, r  lambdaOverD, n;

xvals = xvals〚1 ;; -2〛;

dx = Abs[xvals〚1〛- xvals〚2〛];

xi = Subdivide-1  2 * dx, 1  2 * dx, n;

xi = xi〚1 ;; -2〛;

xi = xi * 206 265;

xi = xi
n - np

2
;;

n + np

2
;

ticks = Subdivide[-.5, .5, 4] // N;

data = Import[filepath, {"Datasets", {"real"}}];

data = Transpose[data, {3, 4, 1, 2}];

psf =

data〚All, All, 1, 1〛+ data〚All, All, 1, 2〛+ data〚All, All, 2, 1〛+ data〚All, All, 2, 2〛;

plot = ArrayPlot[Log10@psf, Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, range},

FrameTicks → {{ticks, None}, {ticks, None}}, FrameStyle → Directive[Black, Bold, 20],

ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 20]],

PlotLabel → Style[label, Black, Bold, 20]];

Return[{psf, plot}];


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□ Ideal no mask

In[ ]:= {data450, plot450} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 4\\HabEx

psfs\\ideal_psf_no_mask_450.h5", "Ideal PSF\nλ = 450 nm", {16, 28}];

In[ ]:= {data475, plot475} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 4\\HabEx

psfs\\ideal_psf_no_mask_475.h5", "Ideal PSF\nλ = 475 nm", {16, 28}];

In[ ]:= {data500, plot500} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 4\\HabEx

psfs\\ideal_psf_no_mask_500.h5", "Ideal PSF\nλ = 500 nm", {16, 28}];

In[ ]:= {data525, plot525} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 4\\HabEx

psfs\\ideal_psf_no_mask_525.h5", "Ideal PSF\nλ = 525 nm", {16, 28}];

In[ ]:= {data550, plot550} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 4\\HabEx

psfs\\ideal_psf_no_mask_550.h5", "Ideal PSF\nλ = 550 nm", {16, 28}];

In[ ]:= polyidealpsf = data450 + data475 + data500 + data525 + data550;

polyidealplot =

ArrayPlot[Log10@polyidealpsf, Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, {16, 29}},

FrameTicks → {{ticks, None}, {ticks, None}}, FrameStyle → Directive[Black, Bold, 30],

ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotLabel → Style["Ideal PSF\n[450-550] nm", Black, Bold, 40]];

□ Ideal with mask

In[ ]:= {data450, plot450} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\ideal_psf_with_mask_450.h5",

"Ideal Apertures with VV6\nλ = 450 nm", {12, 20}];
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In[ ]:= {data475, plot475} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\ideal_psf_with_mask_475.h5",

"Ideal Apertures with VV6\nλ = 475 nm", {12, 20}];

{data500, plot500} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\ideal_psf_with_mask_500.h5",

"Ideal Apertures with VV6\nλ = 500 nm", {12, 20}];

{data525, plot525} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\ideal_psf_with_mask_525.h5",

"Ideal Apertures with VV6\nλ = 525 nm", {12, 20}];

{data550, plot550} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\ideal_psf_with_mask_550.h5",

"Ideal Apertures with VV6\nλ = 550 nm", {12, 20}];

polyidealmaskpsf = data450 + data475 + data500 + data525 + data550;

In[ ]:= polyidealplot = ArrayPlot[Log10@polyidealmaskpsf,

Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, {12, 20}},

FrameTicks → {{ticks, None}, {ticks, None}}, FrameStyle → Directive[Black, Bold, 30],

ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotLabel → Style["Ideal Apertures with VV6\n[450-550] nm", Black, Bold, 40]]

□ Isotropic no mask

In[ ]:= {data450, plot450} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter 4\\HabEx

psfs\\isotropic_psf_no_mask_450.h5", "Isotropic Surfaces\nλ = 450 nm", {18, 30}];

In[ ]:= {data475, plot475} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\isotropic_psf_no_mask_475.h5",

"Isotropic Surfaces\nλ = 475 nm", {18, 30}];

{data500, plot500} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\isotropic_psf_no_mask_500.h5",

"Isotropic Surfaces\nλ = 500 nm", {18, 30}];

{data525, plot525} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\isotropic_psf_no_mask_525.h5",

"Isotropic Surfaces\nλ = 525 nm", {18, 30}];

{data550, plot550} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\isotropic_psf_no_mask_550.h5",

"Isotropic Surfaces\nλ = 550 nm", {18, 30}];

polyisotropicpsf = data450 + data475 + data500 + data525 + data550;
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In[ ]:= polyidealplot = ArrayPlot[Log10@polyisotropicpsf,

Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, {18, 30}},

FrameTicks → {{ticks, None}, {ticks, None}}, FrameStyle → Directive[Black, Bold, 20],

ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 20]],

PlotLabel → Style["Isotropic Surfaces\n[450-550] nm", Black, Bold, 20]]

□ Isotropic with mask

In[ ]:= {data450, plot450} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\isotropic_psf_with_mask_450.h5",

"Isotropic Surfaces with VV6\nλ = 450 nm", {16, 25}];

In[ ]:= {data475, plot475} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\isotropic_psf_with_mask_475.h5",

"Isotropic Surfaces with VV6\nλ = 475 nm", {16, 25}];

{data500, plot500} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\isotropic_psf_with_mask_500.h5",

"Isotropic Surfaces with VV6\nλ = 500 nm", {16, 25}];

{data525, plot525} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\isotropic_psf_with_mask_525.h5",

"Isotropic Surfaces with VV6\nλ = 525 nm", {16, 25}];

{data550, plot550} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\isotropic_psf_with_mask_550.h5",

"Isotropic Surfaces with VV6\nλ = 550 nm", {16, 25}];

polyisotropicmaskpsf = data450 + data475 + data500 + data525 + data550;

In[ ]:= polyidealplot = ArrayPlot[Log10@polyisotropicmaskpsf,

Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, {16, 25}},

FrameTicks → {{ticks, None}, {ticks, None}}, FrameStyle → Directive[Black, Bold, 20],

ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 20]],

PlotLabel → Style["Isotropic Surfaces with VV6\n[450-550] nm", Black, Bold, 20]]

□ AnIsotropic no mask

In[ ]:= {data450, plot450} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\anisotropic_psf_no_mask_450.h5",

"Anisotropic Surfaces\nλ = 450 nm", {16, 29}];
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In[ ]:= {data475, plot475} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\anisotropic_psf_no_mask_475.h5",

"Anisotropic Surfaces\nλ = 475 nm", {16, 29}];

{data500, plot500} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\anisotropic_psf_no_mask_500.h5",

"Anisotropic Surfaces\nλ = 500 nm", {16, 29}];

{data525, plot525} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\anisotropic_psf_no_mask_525.h5",

"Anisotropic Surfaces\nλ = 525 nm", {16, 29}];

{data550, plot550} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\anisotropic_psf_no_mask_550.h5",

"Anisotropic Surfaces\nλ = 550 nm", {16, 29}];

polyanisotropicpsf = data450 + data475 + data500 + data525 + data550;

In[ ]:= polyidealplot = ArrayPlot[Log10@polyanisotropicpsf,

Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, {16, 29}},

FrameTicks → {{ticks, None}, {ticks, None}}, FrameStyle → Directive[Black, Bold, 20],

ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 20]],

PlotLabel → Style["Anisotropic Surfaces\n[450-550] nm", Black, Bold, 20]]

□ AnIsotropic with mask

In[ ]:= {data450, plot450} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\anisotropic_psf_with_mask_450.h5",

"Anisotropic Surfaces with VV6\nλ = 450 nm", {15, 25}];

In[ ]:= {data475, plot475} =

psfplots["C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\anisotropic_psf_with_mask_475.h5",

"Anisotropic Surfaces\nλ = 475 nm", {15, 25}];

{data500, plot500} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\anisotropic_psf_with_mask_500.h5",

"Anisotropic Surfaces\nλ = 500 nm", {15, 25}];

{data525, plot525} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\anisotropic_psf_with_mask_525.h5",

"Anisotropic Surfaces\nλ = 525 nm", {15, 25}];

{data550, plot550} = psfplots[

"C:\\Users\\jeffdavis\\Documents\\Dissertation\\Figures\\Chapter

4\\HabEx psfs\\anisotropic_psf_with_mask_550.h5",

"Anisotropic Surfaces\nλ = 550 nm", {15, 25}];

polyanisotropicmaskpsf = data450 + data475 + data500 + data525 + data550;
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In[ ]:= polyidealplot = ArrayPlot[Log10@polyanisotropicmaskpsf,

Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, {15, 25}},

FrameTicks → {{ticks, None}, {ticks, None}}, FrameStyle → Directive[Black, Bold, 20],

ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 20]],

PlotLabel → Style["Anisotropic Surfaces\n[450-550] nm", Black, Bold, 20]]

□ Contrast 2D

In[ ]:= idealcontrast =
polyidealmaskpsf

Max[polyidealpsf]
;

In[ ]:= idealcontrastplot =

ArrayPlot[Log10@idealcontrast, Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, {-14, -3}},

FrameTicks → {{ticks, None}, {ticks, None}}, FrameStyle → Directive[Black, Bold, 30],

ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]], PlotLabel →

Style["Ideal Contrast\n[450-550] nm", Black, Bold, 40], ClippingStyle → Black]

In[ ]:= isotropiccontrast =
polyisotropicmaskpsf

Max[polyisotropicpsf]
;

In[ ]:= isotropiccontrastplot = ArrayPlot[Log10@isotropiccontrast,

Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, {-14, -3}},

FrameTicks → {{ticks, None}, {ticks, None}}, FrameStyle → Directive[Black, Bold, 30],

ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotLabel → Style["Isotropic Contrast\n[450-550] nm", Black, Bold, 40]]

In[ ]:= anisotropiccontrast =
polyanisotropicmaskpsf

Max[polyanisotropicpsf]
;

In[ ]:= anisotropiccontrastplot = ArrayPlot[Log10@anisotropiccontrast,

Frame → True, FrameLabel → {"y (arcsec)", "x (arcsec)"},

DataRange → {{xi〚1〛, xi〚-1〛}, {xi〚1〛, xi〚-1〛}},

PlotRange → {{-.5, .5}, {-.5, .5}, {-14, -3}},

FrameTicks → {{ticks, None}, {ticks, None}}, FrameStyle → Directive[Black, Bold, 30],

ImageSize → Large, ColorFunction → GrayLevel,

PlotLegends → BarLegend[Automatic, LabelStyle → Directive[Black, Bold, 30]],

PlotLabel → Style["Anisotropic Contrast\n[450-550] nm", Black, Bold, 40]]
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□ Contrast 1D slice

In[ ]:= hcontrast1D =

ListPlotTransposexi, Log10@idealcontrast
Length@idealcontrast + 1

2
, All,

Transposexi, Log10@isotropiccontrast
Length@idealcontrast + 1

2
, All,

Transposexi, Log10@anisotropiccontrast
Length@idealcontrast + 1

2
, All,

Frame → True, FrameStyle → Directive[Black, Bold, 30], PlotLegends →

Placed[{Style["Ideal Apertures", Bold, 30, Black], Style["Isotropic Surfaces",

Bold, 30, Black], Style["Anisotropic Primary", Bold, 30, Black]}, Top],

ImageSize → 750, Joined → True, FrameLabel → {"x (arcsec)", "Contrast"},

PlotRange → {{0, .5}, {-13, -3}}, PlotMarkers → {"x", "o", "+"},

PlotStyle → {Directive[Black, Thick], Directive[Red, Thick], Directive[Blue, Thick]}

In[ ]:= vcontrast1D =

ListPlotTransposexi, Log10@idealcontrastAll,
Length@idealcontrast + 1

2
,

Transposexi, Log10@isotropiccontrastAll,
Length@idealcontrast + 1

2
,

Transposexi, Log10@anisotropiccontrastAll,
Length@idealcontrast + 1

2
,

Frame → True, FrameStyle → Directive[Black, Bold, 30], PlotLegends →

Placed[{Style["Ideal Apertures", Bold, 30, Black], Style["Isotropic Surfaces",

Bold, 30, Black], Style["Anisotropic Primary", Bold, 30, Black]}, Above],

ImageSize → 750, Joined → True, FrameLabel → {"y (arcsec)", "Contrast"},

PlotRange → {{0, .5}, {-13, -3}}, PlotMarkers → {"x", "o", "+"},

PlotStyle → {Directive[Black, Thick], Directive[Red, Thick], Directive[Blue, Thick]}
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