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ABSTRACT

Digital radiography systems are important diagnostic tools for modern medicine.
The images are produced when x-ray sensitive materials are coupled directly onto
the sensing element of the detector panels. As a result, the size of the detector
panels is the same size as the x-ray image. An alternative to the modern DR system
is to image the x-ray phosphor screen with a lens onto a digital camera. Potential
advantages of this approach include rapid readout, flexible magnification and field
of view depending on applications.

We have evaluated lens-coupled DR systems for the task of signal detection by
analyzing the covariance matrix of the images for three cases, using a perfect detector
and lens, when images are affected by blurring due to the lens and screen, and for a
signal embedded in a complex random background. We compared the performance
of lens-coupled DR systems using three types of digital cameras. These include a
scientific CCD, a scientific CMOS, and a prosumer DSLR camera.

We found that both the prosumer DSLR and the scientific CMOS have lower
noise than the scientific CCD camera by looking at their noise power spectrum. We
have built two portable low-cost DR systems, which were used in the field in Nepal
and Utah. We have also constructed a lens-coupled CT system, which included a
calibration routine and an iterative reconstruction algorithm written in CUDA.
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CHAPTER 1

INTRODUCTION

Digital radiography systems are important diagnostic tools for modern medicine.
They can be divided into two general groups using two different readout processes.
The first is based on storage phosphors where the x-ray image is first stored in an
x-ray converter in a cassette form which later requires a separate optical readout
process to record the image. Typically, this separate readout process requires human
intervention to transfer the storage phosphor cassette from the patient to the laser-
scanning station. Systems that acquire images using this method are commonly
known as Computed Radiography (CR) systems, and they have been commercially
available for almost two decades. They are used for various applications and produce
images with excellent image quality; however, they are not the focus of this disser-
tation. For more information, see the review articles by Rowlands (Rowlands, 2002)
and Kato (Kato, 1994), and the American Association of Physicists in Medicine
(AAPM) Report No. 93. (AAPM, 2006).

In the second group of radiography systems, the x-ray image is detected and
read out by the same device without any human intervention. These are commonly
known as Digital Radiography (DR) systems and are the focus of this chapter.

1.1 Digital Radiography (DR) detectors

Modern x-ray digital radiography (DR) detectors were made possible by the con-
siderable investment into developing active-matrix liquid-crystal flat-panel display
(AMLCD) found in modern monitors and flat-screen TVs. This technology created
a way of manufacturing large-area integrated circuits called active-matrix arrays
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that enabled semiconductors, such as amorphous silicon, to be deposited across a
large area on glass substrates. The medical device community took advantage of
this technology, which formed the basis of digital radiography detectors. Sometimes
called flat-panel detectors (FPD), they are built by coupling x-ray-sensitive materi-
als with the active-matrix arrays that are created to store and read out the products
of the x-ray interactions with sensitive materials, resulting in an image. There are
two general approaches to creating an x-ray detector, direct and indirect. We will
give a brief overview of the two approaches in the following section.

1.1.1 Direct approach

Figure 1.1: A cross-section of a photoconductor pixel1. The charges are first generated by an

incident x-ray photon, then collected onto a capacitor. The collected charges will pass through

a charge amplifier during readout when the gate line turns on the thin-film transistors (TFT) at

each pixel.

1Reprinted from: Curr. Appl. Phys., 6, Kasap, S. O., M. Zahangir Kabir, and J. A. Rowlands,

Recent advances in X-ray photoconductors for direct conversion X-ray image detectors, pp. 288-

292, Copyright(2006), with permission from Elsevier.
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Figure 1.2: (a) A photoelectron is ejected from the K-shell by the absorption of an incident x-ray

photon. (b) A characteristic x-ray photon is emitted when an electron from the L-shell is dropped

down to fill the vacancy left by the photoelectron. (c) An Auger electron is ejected from its orbital

shell when the energy released by the transitioning electron is absorbed (Kieranmaher, 2015).

The terms direct and indirect refer to the outputs of initial x-ray interactions
with the detection material rather than the design of the active-matrix arrays. In the
direct approach, an x-ray interaction with a photoconductor produces electron-hole
pairs at the interaction site. The detector signal is produced directly by collecting
the electrons when an electric field is applied to the photoconductor, shown in
Fig 1.1. The x-ray sensitivity is the photoconductor’s ability to convert incident
x-rays into collectible charges, and it is affected by several properties.

The first property is the quantum efficiency of the photoconductor material.
The quantum efficiency refers to the absorbed fraction of incident radiation that is
useful in creating electron-hole pairs. The quantum efficiency for an x-ray photon
with energy E is given by ηQ = 1 − exp[−α(E , Z, ρ)T ], where T is the material’s
thickness, α is the linear attenuation coefficient of the material and is a function
of the x-ray energy (E), the average atomic number of the material (Z), and the
density of the material (ρ). High quantum efficiency can be achieved by increasing
the material’s thickness, choosing a material with high Z value, or density.

A second property that affects the photoconductor’s x-ray sensitivity is the gen-
eration of electron-hole pairs. The predominant interaction of diagnostic x rays with
a photoconductor medium is via the photoelectric effect, where the energy of an x-
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ray photon is transferred to the photoconductor’s atom, and an electron is liberated
from the atom’s inner shell, shown in Fig. 1.2a. The liberated electron is also called
a photoelectron. This event leaves behind a vacancy at the atom’s inner shell, and
is quickly filled by an electron from an outer orbital shell, which is in turn filled
by an electron transitioning from a more distant shell. This process of electrons
cascading from one shell to another can release energies in the form of characteristic
x-rays each with energy equal to the difference between the two transition shells,
shown in Fig. 1.2b. This cascading process can also release energies to eject Auger
electrons, where the energy released by a cascading electron is used to eject another
electron from its orbital shell, shown in Fig. 1.2c. While the electrons cascade down
to fill the vacancy created by the first photoelectron, the vacancy moves up through
the outer shells of the atom to the photoconductor’s valence band. This vacancy
is also referred to as a hole. The characteristic x-rays released by the cascading
electrons can also be absorbed within the photoconductor’s medium to create more
electron-hole pairs and more characteristic x-rays, albeit with electrons at higher
orbital shells. This process will continue until all of the radiative energies have been
absorbed. The Auger electrons and the original photoelectron can also travel in the
photoconductor’s medium to create more electron-hole pairs by ionization until they
lose all of their energies and come to a stop. As a result, many electron-hole pairs are
created by the absorption of one x-ray photon (Bushberg et al., 2002; Hajdok et al.,
2006). The total charge generated from one absorbed photon is e E/W±, where e is
the charge of an electron, E is the energy of the incident x-ray photon, and W±, is
the energy required to create one electron-hole pair. W± depends on the band-gap
energy and in some cases such as a-Se, on the applied electric field (Kasap et al.,
2006).

Another important property of the photoconductor is the mean distance traveled
by a charge carrier. In order to read out an image, the liberated charge carriers
must be collected onto an external storage element before they are lost within the
photoconductor material. These charge carriers can be lost either by recombination



21

of electrons with holes or they can be trapped at an unoccupied energy level between
the conduction and valence band. Electrodes that are placed on opposite ends of
the material’s surface create an electric field, which causes the free electrons and
holes to drift in the opposite directions. The mean distance traveled by a charge
carrier before it is trapped or lost is called Schubweg. This distance is given by
S = μτE, which depends on the carrier’s drift mobility (μ), lifetime (τ), and the
applied electric field (E). It is important that this distance is much longer than the
thickness of the photoconductor material. For example, at an applied field of 10
Vμm−1, this distance is typically between 0.3 to 3 mm for an electron, and 6.5 to
65 mm for a hole in amorphous Selenium (a-Se). The typical thickness of a-Se used
for diagnostic imaging is between 0.2 to 1 mm (Rowlands and Yorkston, 2000).

Problems that can affect x-ray detectors made with photoconductors are image
lag and ghosting produced within the photoconductor material. Image lag refers
to the carried-over image produced from one exposure to the next. This is caused
by the trapped charges from one exposure becoming detrapped and read out in the
subsequent image. Ghosting refers to the trapped charges acting as recombination
centers for the generated charges. These recombination centers effectively reduce
the lifetime of the charge carriers and the x-ray sensitivity. Both image lag and
ghosting can be minimized by making sure the carrier’s mean drift distance is larger
than the material’s thickness.

Various x-ray photoconductor materials are used in commercial products, such
as CdTe, CdZnTe, CdSe, PbO, PbI2, and HgI2. However these product applications
typically involve small areas, less than 10 cm2. Large area panels that are over
30 cm × 30 cm or greater, are typically made using amorphous Selenium (a-Se).
Due to its use as a photoreceptor for xerography (Mort, 1989), and it ability to be
deposited over a large area, a-Se is one of the most common photoconductor used
in direct commercial digital radiography systems.

The biggest disadvantage of using a-Se is that it requires an internal field of
approximately 10 Vμm−1 to activate. So for a 500 μm layer, the activation require-
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(a) (b)

(c)

Figure 1.3: Circuit for photoconductor based DR systems using (a) Conventional system, (b)

Zener diode, and (c) dual-gate TFT.

ment is ∼5,000 V . Both positive and negative bias voltage can be applied at the top
electrode. Shown in Fig 1.3a, if the applied bias voltage is positive, electrons are
collected at the top electrode and holes are collected at the bottom charge collection
electrode. The capacitance of the a-Se layer is much smaller (∼0.002 pF) than the
pixel capacitor (∼1 pF) so the majority of the applied voltage is dropped across
the photoconductor layer. When the panel is left without scanning, dark or signal
current will cause the potential on the pixel electrode to rise towards the applied
bias voltage. A voltage of ∼50 V can cause permanent damage to the thin-film
transistor (TFT). A simple method to protect the TFT is to use a negative bias at
the top electrode so negative charges are collected at the pixel electrode. Eventually
the charges accumulated at the storage capacitor will cause the TFT to partially
turn on, and this will prevent the large potential from accumulating on the pixel
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(the gate voltage is not negative enough to turn off the TFT). Other methods are
also used to protect the TFT. One method is to put a Zener diode in parallel with
the storage capacitor. Another method is to modify the TFT to incorporate a sec-
ond gate. Shown in Fig. 1.3b-c, both methods will allow the allow the potential
accumulated on the pixel to drain away if it exceeds a predetermined safe design
value. However since these charges are drained out along the read-out lines, pixels
sharing the same read-out lines as the over-exposed pixel can potentially contain
corrupted information (Kasap and Rowlands, 2002; Rowlands and Yorkston, 2000).
Another disadvantage of a-Se is that it has a relatively low atomic number, Z =
34, which is not suitable for higher diagnostic x-ray energies (∼60 keV). As a result,
a-Se is usually used in mammography devices operating at 20-30 kVp.

1.1.2 Indirect approach

In the indirect approach, detection materials such as phosphors or scintillators are
placed in close contact with the active-matrix array. An x-ray interaction in the
detection material produces lower-energy photons typically in the visible range.
These lower-energy photons are then collected by a photosensitive element, such as
a photodiode in each pixel, which in turn generates electrical charges. These charges
are then stored and read out by the active-matrix array to form an image. The term
indirect refers to the fact that x-ray interactions are detected indirectly using the
electrical charges produced by the lower energy photons from the detection material
rather than the electrical charges produced directly within the detection material.

The most common materials used in flat-panel detectors that employ the indi-
rect approach are Gd2O2S : Tb and CsI : Tl. Historically, powdered phosphors were
deposited on plastic screens and were mainly used in x-ray imaging to expose pho-
tographic films; scintillators were grown as crystals and were used to detect high
energy x- and gamma-rays (Nikl, 2006). Although phosphor screens and scintillators
were prepared differently, the fundamental physics behind both are identical.
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Figure 1.4: Energy band structure of (a) a semiconductor/photoconductor and (b) a scintilla-

tor/phosphor.

The initial interaction between scintillators and photoconductors is identical,
where photoelectric absorption takes place and many electron-hole pairs are created
from the absorption of a single x-ray photon. In an insulating crystal, the band-
gap, Eg, between the valence and conduction band is large. So, less electron-hole
pairs are created, and the energy released when an electron and a hole recombine
is usually re-absorbed inside the material. As a result, very few secondary photons
are released. In a scintillator or phosphor, we desire the radiative energy to escape
the material without re-absorption and the conversion process to be more efficient.

In a scintillator or phosphor, the lattice defects and/or impurities introduce
local discrete energy levels between the forbidden gap. When electrons and holes
are created by the x-ray photon, the holes in the valence band will quickly move up
into the ground states created by the defects and/or impurities. When an electron
moving in the conduction band encounters these ionized sites, it can drop down
into the local energy level and de-excite into the ground state (Knoll, 2010). A
more common process is via an exciton, where the electron in the conduction band
is bound to a hole in the valence band. This exciton can move freely in energy
levels that are slightly below the conduction band. When the exciton encounters
an unoccupied energy level inside the forbidden gap, both the hole and electron are
captured simultaneously. This releases a photon with energy equal to the difference
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between the local excite and ground state energy, which is smaller than the band-
gap. Typically this energy is approximately 2-3 eV, which is in the visible range.
This secondary photon cannot be re-absorbed to create more electron-hole pairs,
so it is free to exit the material. Since many electron-hole pairs are created by
the absorption of one x-ray photon, and the energy of an x-ray photon is much
larger than the energy of a visible photon, many visible photons are created in
the scintillator or phosphor by one x-ray photon. For example, in Gd2O2S : Tb
at ∼20% conversion efficiency, a 60 keV x-ray photon incident on the screen will
produce approximately 5,000 green photons each with energy ∼2.4 eV.

Figure 1.5: Cross section of a phosphor screen2.

Figure 1.6: The effects of (a) a thick phosphor layer, (b) a thin phosphor layer, and (c) an

absorptive backing of x-ray screens on spatial resolution.

The main issue with phosphor screens is that optical scattering within the screen
affects the spatial resolution, which depends on the screen thickness. A thicker screen
increases the probability of x-ray interactions, but lowers the spatial resolution.
When a photon exits a phosphor grain, it will scatter off the neighboring phosphor

2Reprinted from Barrett, H. H. and W. Swindell(1981). Radiological Imaging - The Theory of
Image Formation, Detection, and Processing Volume 1. Academic Press, Copyright(1981), with

permission from Elsevier.
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grains until it escapes the screen. The final location where the photon is detected
may not be the same as the initial x-ray interaction. This spread of secondary
photons lowers the spatial resolution. Shown in Fig. 1.5, phosphor screens are
typically made with several layers starting with a stiff plastic support to discourage
severe bending. The phosphor powders are sandwiched between a protective layer
and a backing layer. The backing layer can be made with an absorptive material
to discourage optical diffusion. This increases the spatial resolution at the cost
of lowering the total number photons escaping the screen. The backing layer can
also be made with a white diffusive material to increase the light output but at
the cost of lowering spatial resolution. These effects are seen in Fig 1.6. Newer
types of scintillators such as columnar CsI : Tl are grown as crystals in needle-like
structures, which help to guide the emitted photons toward the exit surface. These
structures allow thicker scintillators to be made, which increase the probability
of x-ray absorption while limiting the spread of visible photons to within a few
column structures, shown in Fig. 1.7. The result is a scintillator with higher spatial
resolution than the phosphor screen even if both were made to have the same x-ray
absorption and light output.

Figure 1.7: Gd2O2S : Tb phosphor and CsI scintillator viewed under SEM (VIDISCO, 2014).
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Figure 1.8: Schematic diagram of the main components of an active matrix array that are used

to control the readout process © 2008 IEEE (Fahrig et al., 2008).

1.1.3 Readout arrays

Although the active-matrix arrays designed for detectors employing indirect and
direct approach are slightly different, the readout schemes for both are exactly the
same. This process is not like the readout method used in a charge-coupled de-
vices (CCD), where the signals are transferred through pixels in columns and read
out through a common output amplifier. Here the signal in each pixel element is
transferred directly to the readout amplifier. Shown in Fig. 1.8, each row of the
active-matrix array requires a separate gate line, and each column of the array pix-
els is connected to a separate data line each with its own charge amplifier. During
readout, the gate line in the first row of the array is turned on while all other rows
are put in their off state. This action turns on the thin-film transistors (TFTs) in
the first row, and the signals from each pixel in the first row are transferred through
the data line. Once all the pixels have been read out in this row, the control switches
the first row to the off state and turns on the second row, where the same procedure
repeats again until all pixels in the flat-panel array have been read out.
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1.1.4 Fill factor

Figure 1.9: Mushroom electrodes are used to increase the effective fill-factor of a pixel.

One of the most important factors in flat-panel detector is the fill factor, which
is the fraction of the pixel area that is sensitive to incoming signal. In the indirect
approach, this is the fraction of the photodiode area in the entire pixel that includes
the photodiode, electrodes, the readout switch, and various control lines. The fill
factor in the direct approach can be much higher because the use of mushroom
electrodes. The mushroom electrodes extend over the top of the switching elements
and bends the electric field, so the charges can drift away from dead zones and are
collected onto the capacitor as seen in Fig. 1.9.

The design rule that is used to fabricate a particular active-matrix array governs
many factors such as the thickness of the metallic lines and gaps between neighboring
pixels, which are usually independent of the pixel sizes. As a result, as pixels are
made into smaller and smaller sizes, the fill factor will drop significantly. This is
seen in Fig. 1.10.

1.2 Lens-coupled x-ray detectors

In a lens-coupled x-ray detector system, an x-ray phosphor screen is imaged with
a lens onto a digital camera. Potential advantages of this approach include low
cost; easy interfacing with existing computers and display software; rapid readout;
flexibility in using different phosphors and different magnifications for particular



29

Pixel size (μm)
0 50 100 150 200 250

G
eo
m
et
ri
ca
l
fi
ll
fa
ct
or

0

0.2

0.4

0.6

0.8

1

5μm

10μm

20μm

Design rule
gap distance

Figure 1.10: The geometric fill factor of pixels with different design rules and pixel sizes. Here

the gap size is the distance between electrodes/photodiodes.

applications, and the consequent ease of trading field of view for spatial resolution.
Moreover, the crystalline silicon sensors used in digital cameras are inherently much
less noisy than the amorphous silicon sensors used in flat-panel devices, and they
can be cooled to reduce the noise further if desired

For clinical applications, the basic problem comes down to the collection effi-
ciency of the photons produced by the phosphor or scintillator. Enough photons
from the phosphor screen need to be collected so the noise on the detector is limited
by photon noise instead of inherent detector noise. Although collection efficiency
of flat-panel detectors depends on their fill-factor, the collection efficiency of lens-
coupled x-ray detectors depends on the lens’ numerical aperture (NA).

The collection efficiency is the fraction of the solid angle from the source that
is collected by the lens and focused onto the camera detector. If we consider an
on-axis source with a right circular cone, the solid angle can be calculated using

Ω =
2π∫
0

dφ

Θ1/2∫
0

sin θ cos θ dθ = π sin2 Θ1/2, (1.1)

where θ, φ, and Θ1/2 are shown in Fig. 1.11. For a lens, the NA is equal to n sinθ,
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Figure 1.11: Solid angle dω and projected solid angle dΩ.

where n is the refractive index of the medium in front of the lens (n = 1 in air), and
θ is the angle of the marginal ray with respect to the optical axis at the object. So
the solid angle collected by a lens in air is

Ωlens = πsin2θ = πNA2. (1.2)

The solid angle of the source can be calculated similar to Eq. 1.1, and if the source
is Lambertian, then Ωsource = π. The collection efficiency of the lens is then

η = Ωlens

Ωsource

= sin2Θ1/2 = NA2, (1.3)

which holds true for all lenses used in air.

The magnification of a lens, m, is given by

m = −q/p, (1.4)

where p is the distance from the object to the lens’ front principal plane (P), and q is
the distance from the lens’ rear principal plane (P′) to the image. This is shown at
the top diagram in Fig. 1.12. If the lens is used in conditions that do not satisfy the
paraxial approximation but are well corrected for spherical and coma aberrations,
we can use the Abbé sine condition to derive the collection efficiency. Shown at the
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Figure 1.12: The Abbé sine condition.

bottom diagram in Fig. 1.12, the Abbé sine condition uses spherical surfaces rather
than principal planes. Here the distance p and q are the radius of the spherical
surface rather than the distance of the object and image to the principal planes.
The condition states that p sinθ = q sinθ′ even when the paraxial approximation
(sinθ ≈ tanθ ≈ θ) does not hold true, which might be the case when imaging a
large object with a lens that has a large NA. The collection efficiency of the lens
used under the Abbé condition is

ηAbbé = m2sin2θ′, (1.5)

where θ′ is the angle of the marginal ray in image space.

If the lens is used in conditions that satisfy the paraxial approximation, then we
can use the F-number of the lens to calculate the collection efficiency. The F-number
describes the image-space cone of light for an object at infinity. Under the paraxial
approximation, this cone of light is approximately equal to (Greivenkamp, 2004)

F ≡ fE

DEP

, (1.6)
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where DEP is the diameter of the entrance pupil and fE is the effective focal length.
When two lenses are set to image at infinity and are mounted in a snout-to-snout
fashion, then the diameter of the exit pupil is equal to the diameter of the entrance
pupil. The light cone between the two lenses is collimated and the numerical aper-
ture of the lens-set is equal to the image forming cone of light described by the
F-number. The collection efficiency for the lens-set is then

ηlens−set = 1
F 2 . (1.7)

This set up can be used when unit magnification between the object and image is
desired.

When a single lens is used in conditions that satisfy the paraxial approximation.
For example, when the object is not at infinity but the distance between the object
and lens is still quite large. We can use the working F-number to describe the
image-forming cone as,

Fw ≈ (1 + |m|) F. (1.8)

The marginal ray angle in image space can then be related to the working F-number
as,

sinθ′ = 1
2Fw

= 1
2F (1 + |m|) . (1.9)

The collection efficiency of the lens under paraxial approximation is equal to

ηparaxial = m2

4F 2(1 + |m|)2 . (1.10)

While the phosphor screen must be at least the size of the object to be imaged,
the lens must be able to capture the entire field of view (FOV) onto a CMOS or CCD
detector with a limited size. For a fixed FOV and a small detector, we must move
the lens and detector away from the object in order to fit the entire image of the
object onto the sensor. In order to increase the collection efficiency, which depends
on the marginal ray angle, we can move the lens and detector to decrease p, which
will increase m. This means the detector size must be made larger. Alternatively,
we can increase the marginal ray angle by increase the aperture size of the lens.
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This means using a lens with a high numerical aperture (NA). In order to have
both a large FOV and a high collection efficiency, we need both a large detector
and a lens with high NA. Commercial lenses with high NA (or low F-number)
can be purchased at reasonable prices. A F-1.4 DSLR lens can be purchased at
approximately $600. Detectors with large sensor size can be extremely expensive
and difficult to manufacturer. As a result, previous lens-coupled x-ray detector
systems have been limited to small-scale imaging applications (Kim et al., 2005; Lee
et al., 2001; Madden et al., 2006; Tate et al., 2005).

Recent sensor technology has improved tremendously, making it easier to pur-
chase a camera with a large sensor size. Current consumer-grade digital single-lens
reflex (DSLR) cameras can be purchased with 36 mm × 24 mm detector size at
around $2000. This improvement in sensor size allows us to decrease the distance
between the lens and phosphor screen, therefore improving the photon collection
efficiency while maintaining a large field of view.

In this dissertation, two x-ray imaging systems, a digital radiography (DR) sys-
tem and a computed tomography (CT) system were built using the concept of lens-
coupled detector system. These systems are introduced in chapter 2. A method of
evaluating x-ray CT detectors using an observer model is presented in chapter 3.
The x-ray CT system presented in this dissertation is a fully functioning image sys-
tem complete with calibration and reconstruction algorithms. These algorithms are
explained in chapters 4 and 5.
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CHAPTER 2

DESIGN AND CONSTRUCTION OF X-RAY IMAGING SYSTEMS

2.1 Introduction

Access to modern digital radiology is very limited in developing countries (Wootton
et al., 2009). The Himalayan regions of Nepal, India, Pakistan and Tibet present
special difficulties because of lack of adequate roads, inconsistent or nonexistent
power grids, little internet access, and few trained physicians. In Nepal, for example,
all of the remote district hospitals and many health outposts have x-ray facilities, but
they are all film-based. There are very few resident radiologists, and teleradiology
is rare (Graham et al., 2003; Wootton et al., 2009).

The goal of our work is to develop an inexpensive x-ray imaging system intended
for wide dissemination in the Himalayan regions of Nepal and other rural areas in
developing countries.

Two types of x-ray imaging systems with large fields of view (FOV) have been
built. This section describes the design and construction of these two systems:
the portable digital radiography system (DR) and the computed tomography (CT)
system. Both systems were based on a similar concept, where a phosphor screen is
imaged onto a pixelated detector using a fast lens. The digital radiography system
is solely a 2D planar-imaging system that includes a phosphor screen, lens, and
camera. The CT system is a test bench that can be used to test the performance
of x-ray imaging systems using various scintillation screens and cameras. The CT
system has a powerful research-grade x-ray tube that allows current and output kVp
adjustments with a relatively small source spot size. In addition, the CT system is
equipped with adjustable apertures, a rotary stage, and linear translation stages that
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allow the system to test x-ray detection performances at different magnifications.

2.2 Design considerations for the DR system

2.2.1 Cameras and lenses

The DSLRs considered here are “full-field” cameras, which means that the sensor
is approximately the same size as a frame of 35 mm film (24 mm × 36 mm). This
format is also referred to in the DSLR world as FX. Cameras in this class include
the Canon 6D and 5D Mark III, and the Nikon D810, D750 and Df. Even larger
sensors are also available; for example, the MegaVision E6 which has a 37 mm ×
49 mm sensor, but it is substantially more expensive than the “prosumer” (profes-
sional/consumer) full-field cameras.

A 24 mm × 36 mm sensor operated at 12:1 demagnification will allow the imaging
of 29 cm × 43 cm FOV, adequate for chest radiography. For comparison, a 37 mm
× 49 mm sensor will cover a comparable field at 8:1 demagnification. Of course,
smaller FOVs require proportionally smaller demagnification factors. With a full-
field camera, a 12 cm × 18 cm FOV can be achieved at 5:1 demagnification.

(a) (b)

Figure 2.1: Two methods of achieving color selectivity using (a): the Bayer filter (Wikipedia,

2006): or (b): the Foveon X3 technology (Wikipedia, 2007).
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Most of DSLRs are color cameras. The color selectivity can be achieved with two
methods. The most common is by placing a mosaic color filter, commonly known
as a Bayer filter, over the photosensitive pixels (Fig. 2.1a). Usually, half of the
pixels are sensitive to green light, a quarter of them are sensitive to blue light, and a
quarter to red light. These color filters are a distinct drawback because they reduce
the quantum efficiency of the sensor. Fortunately, half of the pixels are well matched
to the emission spectrum of green rare earth x-ray screens, such as gadolinium oxy-
sulfide (Gd2O2S : Tb). A less common method of creating color sensitivity on the
detector is the Foveon X3 sensor (Foveon, 2010). Sensors that use this technology
feature three layers of pixels, each detecting a different color (RGB) to form a direct
color-image sensor that can capture color in a way very similar to color film cameras
(Fig. 2.1b). It is possible that more photons entering the camera will be detected
by the Foveon X3 sensor compared to a mosaic sensor, particularly matching to the
emission spectrum of Gd2O2S : Tb since the green light from the x-ray screen needs
to pass through only a thin layer of blue sensor before being absorbed by the second
layer of green sensor. Unfortunately, this technology is relatively new, and only a
limited number of cameras currently made by Sigma Corporation employ the Foveon
sensor. The Foveon X3 sensor has been noted as noisier than the sensors in other
DSLRs that use the Bayer filter at low-light conditions (CNET, 2004; Digicams,
2003). The only black-and-white DLSR, named “Henri”, is made by Leica. It would
provide a huge increase in collection efficiency though the camera itself costs over
$8,000. Another way to artificially produce a black and white camera is by carefully
removing the color filter on top of the sensor. A company called LDP, LLC has been
doing this since 1996. This procedure typically terminates the camera’s warranty
with the original manufacturer, and they are able to convert only a limited number
of cameras (MaxMax.com, 2014).

Most of the new DSLRs use CMOS (complementary metal oxide semiconductor)
sensors rather than CCDs (charge-coupled devices), which means that they have
circuitry for charge integration, preamplification, noise control, and readout switch-
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ing at each individual pixel. This circuitry greatly improves the camera’s noise
performance (see Sec. 2.2.3), but it reduces the silicon area that is available for the
photosensors, and that in turn would further reduce the quantum efficiency were it
not for two clever optical tricks employed by most of the major DSLR manufactur-
ers. The first is to use an array of microlenses to concentrate light on the active
sensor area, shown in Fig. 2.2. For light arriving at the sensor at normal incidence,
each microlens focuses the light into the center of its photodetector element, but for
non-normal incidence, the light could be diverted to the insensitive areas between
photodetectors.

Figure 2.2: (a) A pixel is used without microlens. (b) A pixel is used with microlens.

This latter problem is avoided with so-called “digital” lenses, which simply means
that they are intended to be used with digital cameras. The important feature of
digital lenses is that they are telecentric in image space, so the chief ray is always
perpendicular to the sensor plane and hence parallel to the optical axes of the
microlenses. The result is that nearly all of the light transmitted by the lens and
color filters arrives at the active area of the CMOS sensor.

Canon, Nikon, and other manufacturers supply fixed-focus (non-zoom) F/1.4
digital lenses for full-field DSLRs. Older lenses designed for use with 35 mm film
cameras such as the Nikkor 50 mm, F/1.2, can also be used, but sensitivity at high
field angle will be sacrificed because the lenses are not telecentric. Specialty lenses
as fast as F/0.7 are available on the surplus market, but they do not usually cover
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the full FX format.

2.2.2 Spatial resolution

The full-field DSLR sensors all have nominally either 12 or 24 megapixels (MP).
The 12 MP cameras (e.g., Canon 5D or Nikon D700) have approximately a 2,800
× 4,300 array of 8.5 μm × 8.5 μm pixels, and the 24 MP cameras (e.g., Canon 5D
Mark II or Nikon D3X) have approximately a 4,000 × 6,000 array of 6 μm × 6
μm pixels. If we consider 12:1 demagnification as for chest radiography, the 12 MP
cameras provide effectively 100 μm × 100 μm pixels at the x-ray screen, and the 24
MP cameras provide 72 μm × 72 μm pixels. Larger effective pixels can readily be
achieved by binning the sensor pixels during readout.

Fixed-focus lenses designed for use with full-field DSLRs and used at full aperture
typically have about 30 lp/mm resolution at 50% MTF, which corresponds to a focal-
plane resolution of about 15 μm FWHM. At a demagnification of 12:1, therefore,
the lens contribution to the resolution at the x-ray screen is about 2.5 lp/mm at
50% MTF or 180 μm FWHM.

The other significant contributor to spatial blur is the screen itself. Lanex screens
(Gd2O2S : Tb) yield resolutions in the range of 1-3 lp/mm at 50% MTF depending
on the speed of the screen. Columnar CsI screens, now available in chest size, can
be as good as 5 lp/mm at 50% MTF and can have a thickness of 150 μm (Nagarkar
et al., 1997). The demagnification does not affect the screen contribution to the
resolution.

2.2.3 Noise

A major concern with using DSLRs for DR is collecting sufficient light from the
x-ray screen (Hejazi and Trauernicht, 1997). At 10:1 demagnification, a stan-
dard F/1.4 camera lens will collect about 0.01% of the light emitted by a Lam-
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bertian source. Measured conversion efficiencies (from x-ray energy to optical en-
ergy) of Gd2O2S : Tb or La2O2S screens are in the range of 18-20% (Kandaraks and
Cavouras, 2001), which means that a single 60 keV x-ray photon will yield approxi-
mately 5,000 optical photons, each with energy around 2.5 eV (green). If we collect
0.15% of them, then only 7 photons will reach the camera sensor, and if the sensor
quantum efficiency is around 25% (see Sec. 2.2.1), we obtain around 2 photoelectron
per x-ray photon. These numbers improve somewhat if we use an F/1.2 lens or if we
consider a smaller demagnification, and they could be improved further by removing
the color filter or using one of the new brighter phosphors such as columnar CsI,
LaBr3, or ceramic scintillators such as GLuGAG and GGAG (Cherepy et al., 2009;
Wang et al., 2012).

In addition to the x-ray photon noise, the noise generated in the DSLR, referred
to generically as read noise, is a major issue. The potential contributors to read
noise are dark current; kTC noise, which arises from resetting the gated integrators
in either CMOS or CCD sensors; thermal noise in the electronics, and 1/f or flicker
noise. Of these components, we can readily dismiss dark-current noise, which is
negligible compared to the other noise sources for the short exposures used in x-ray
imaging. Similarly, pure thermal (Johnson) noise is negligible compared to kTC
and 1/f noise in most practical sensors. With respect to the two remaining noise
sources, modern CMOS sensors have a huge advantage over CCD sensors, even over
expensive scientific-grade cameras, basically because they place a lot of electronic
circuitry at the individual pixels rather than at the end of a charge-transfer chain
as with a CCD (Magnan, 2003).

To understand this point, consider first kTC noise, which is endemic in both
CMOS and CCD sensors. In both, the charge produced by the light is converted
to a voltage by storing it on a capacitor, which should be reset to zero after each
conversion. Basic thermodynamics, however, shows that the residual voltage on the
capacitor cannot be truly zero but instead fluctuates with a variance of kT/C (k
= Boltzmann’s constant, T = absolute temperature, C = capacitance). One way
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of suppressing kTC noise (which really should be called kT/C noise) is a process
called correlated double sampling (CDS) in which the voltage on the capacitor is
measured after each reset and then again after the charge is stored and before the
next reset; the difference between the readings is proportional to the photoinduced
charge with little residual error from the thermodynamic effects. Alternatively, a
process called active reset can be used in which feedback control drives the residual
voltage on the capacitor close to zero.

In a modern CMOS sensor, there is an integrating capacitor and a CDS or
active-reset circuit at each pixel. The capacitor is reset and the sensor is exposed
to light for a frame period (100-200 msec for a sensor that operates at 5-10 frames
per second, as many DSLRs do), and then the capacitor is reset again. The CDS or
active-reset circuit must therefore operate only once per frame, but the circuits at
all pixels can operate in parallel, so the overall processing rate is millions of times
higher. In a CCD, by contrast, the signal remains in the form of charge until it is
shifted out to a capacitor. There is just one reset and CDS or active-reset circuit,
and it must operate serially at the pixel rate rather than the frame rate.

There is a similar advantage to CMOS detectors with respect to thermal noise,
which has a variance that is proportional to bandwidth. The lower circuit bandwidth
associated with parallel processing at the pixel level automatically results in lower
noise. The 1/f noise is further eliminated by CDS at the pixel level. One way to
see this is to note that if the power spectral density, S(f), varies as |f |−β, then its
Fourier transform, the noise autocorrelation function, satisfies R(τ) ∝ |τ |β−1, which
approaches a constant as β → 1 (see Barrett and Myers (2004), Sec. 3.3.7). As a
result, low-noise, scientific-grade CCDs are often read out at only 50,000 pixels per
second, while prosumer DSLRs can go over a thousand times faster.

An excellent source for quantitative comparisons of CCD and CMOS cameras
and sensors is the Clarkvision website (Clark, 2014). Tables and graphs given there
show that prosumer DSLRs typically have an RMS read noise equivalent to about
3-5 electrons, but scientific-grade CCD cameras and sensors can be up to ten times
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worse, in spite of their much higher cost and much lower bandwidth.

2.2.4 Image quality and Detective Quantum Efficiency (DQE)

A simple way to understand the effect of read noise on objective (task-based) image
quality is to assume that all of the light emitted from a single x-ray interaction
and collected by the lens ends up on a single pixel in the camera sensor. With the
numbers given in Sec. 2.2.3, this might be a valid assumption if we use 2 × 2 or 3
× 3 pixel binning.

With this assumption, the performance of an ideal linear (Hotelling) ob-
server (Barrett and Myers, 2004) for the task of detecting a known signal on a
known background can readily be derived. The Hotelling detectability is given by,

SNR2
Hot =

M∑
m=1

k̄2(ΔNm)2

σ2
read + Nm(k̄ + k̄2)

(2.1)

where the sensor contains M pixels, each of which is denoted by an index m; σ2
read

is the variance of the read noise (expressed in electron units and assumed to be the
same for all pixels); Nm is the mean number of x-ray interactions imaged to pixel
m when there is no signal present; ΔNm is a small change in that number when
a signal is present, and k is the mean number of photoelectrons produced by each
x-ray interaction (again assumed to be independent of m).

Following Gagne (Gagne et al., 2003), we can define a task-specific DQE (de-
tective quantum efficiency) by dividing the Hotelling detectability for the actual
detector by the detectability on the same task for an ideal detector that has no
read noise and k̄ >> 1. For the task of detecting a uniform disk object on a flat
background, we find

DQE = k̄2N

σ2
read + N(k̄ + k̄2)

(2.2)

where N is the common value of Nm for all pixels in the disk region. If the disk
region is large compared to the optical blur, for example for detection of a 1 mm
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lesion, this same expression is obtained even without assuming that all of the light
from one x-ray photon is imaged to a single camera pixel.
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Figure 2.3: DQE for detection of a uniform disk lesion on a flat background. (a): DQE vs. x-ray

fluence (absorbed photons per 100 μm pixel) for fixed optical efficiency (2 photoelectrons per x-ray

photon) and difference camera read-noise variances. (b): DQE vs. optical efficiency for different

x-ray fluences and noise levels. Typical Nm in DR is 500 photons per pixel, and typical σ2
read in

a modern DSLR is about 25 photons per pixel(5 electrons RMS).

The dependence of DQE on read noise, optical efficiency and x-ray fluence is
shown in Fig. 2.3. Several limits are of interest. If there is no read noise but the
lens is very inefficient so that k̄ << 1 the equation above predicts that the DQE of
the detector (not including the x-ray screen) is simply k̄. If there is no read noise
but the lens is sufficiently efficient that k̄ >> 1, then we get DQE = 1. The case
of interest, however, is when k̄ ∼ 1 and the read noise is not zero. In that case, we
can still get nearly quantum-limited performance, provided the x-ray fluence is high
enough; if Nm(k̄ + k̄2) >> σ2

read, then the read-noise term in the denominator can
be neglected and the DQE is k̄2/(k̄ + k̄2). In order to do high-quality DR with a
DSLR, therefore, it is very important to choose a camera with low read noise.
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2.3 Prototype digital radiography system

A prototype digital radiography system was built with help from Jared Moore,
Brian Miller, Stephen Moore, Heather Durko, and Lars Furenlid. Based on the
cost and the design considerations above, we chose a Nikon D700 camera with an
AF-S Nikkor 50 mm F/1.4G lens for the prototype. Because we elected not to use
a folding mirror, the x-rays transmitted by the screen impinged on the camera. By
measuring the x-ray transmittance of the lens, however, we found that the x-ray
flux on the camera sensor was very small. No radiation damage was expected, and
with several thousand x-ray exposures to date, none has been observed.

(a) (b) (c)

Figure 2.4: The imaging components that were used in the DR system, (a): Nikkor lens, (b):

Nikon D700 camera, and (c): phosphor screen.

The imaging components inside the DR system are shown in Fig. 2.4. The system
is constructed on an extruded aluminum frame that folds down into a small suitcase
as shown in Fig. 2.5a. The vertical assembly on the right side in that figure is an
opaque bakelite sheet with a standard Lanex screen mounted on the side facing the
camera. The screens are interchangeable, and both Lanex Regular and Lanex Fast
have been used. There is a light-tight felt cloth shroud, where only a thin camera
cable needs to emerge from the shroud during operation, shown in Fig. 2.5b.

For transport, the suitcase contains the aluminum frame and x-ray screens, the
shroud, a laptop computer, a solar panel for charging the computer and camera,
a dosimeter and miscellaneous tools. Exclusive of the camera, which was carried
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(a) (b)

Figure 2.5: First portable DR system that went to Nepal. (a): The uncovered prototype DR

system showing an x-ray screen on the right and Nikon D700 DSLR camera on the left. The frame

folds down into the suitcase for transport. (b): The same system but covered with a light-tight felt

shroud in place. The system is shown as set up in the Manang District Hospital, Chame, Nepal,

with the breast phantom in position for imaging.

separately, the DR system weighs about 45 pounds. The total cost of the system,
including the camera, laptop, and lens, was less than $5,000.

The prototype system was taken to Nepal in spring, 2009, and tested in two
clinics in the Kathmandu valley and in two district hospitals along the Annapurna
Circuit Trail. Because all locations had existing x-ray tubes, no x-ray source was
transported. A standard breast phantom was imaged with varying kVp and mAs and
camera ISO settings at all four locations in Nepal and also in the Radiology Depart-
ment of the University of Arizona. Comparison film-screen images were obtained
at the Nepali locations, and Computed Radiography (CR) images were obtained in
Arizona. Radiation exposure incidents on the phantom were measured in all cases.

A sample comparison using a breast phantom is shown in Fig. 2.6. The film image
on the right was acquired in Nepal but brought back to Arizona and digitized by
photographing it with the Nikon D700 camera, attempting to match the contrast
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presentation with that of the DSLR image on the left as closely as possible. All
features of interest are visible in both images, but uneven development and several
white blotches, probably from foreign matter on the screen, are evident on the film-
screen image.

(a) (b)

Figure 2.6: Images of the breast phantom taken with the same exposure in a Himalayan clinic in

Nepal, (a): an image taken with the DSLR system, and (b): an image taken with a local film-screen

technique.

A second comparison, conducted entirely in Arizona, is illustrated in Fig. 2.7.
In this case, a human skeleton embedded in plastic was the phantom, and the
comparison was between the DSLR system and a Fuji CR system. The exposure
conditions, noted in the caption, are not identical in this case, but we again made
an effort to match the display contrasts. There is no evident difference in feature
visibility.

2.3.1 Second prototype DR system

A second DR system was built in 2012 and delivered to Dr. Wendell Gibby, a ra-
diologist from Utah. Slight adjustments were made to the first system because Dr.
Gibby desired to test the DR system using his own camera at various magnifications;
thus, this system does not include its own DSLR camera. This second system is
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(a) (b)

Figure 2.7: Magnified portions of chest-phantom images taken at the University of Arizona with

two different DR systems. (b): DSLR system, 80 kVp, 25mAs, ISO 4000. (b): Fuji XG5000

Computed Radiography system, 109 kVp, 10mAs.

slightly bigger than the first unit, although it is still collapsible. Instead of using a
folding mechanism, we made so that the camera can be slid into different magnifi-
cation positions to adjust for different fields of view. The entire system fits inside a
large Pelican camera case and can be transported on wheels. Figure 2.8 shows the
second system in SolidWorks, both in the measurement setup and the collapsible
setup.

(a) (b)

Figure 2.8: The second portable DR system, showing (a): the DR system in imaging mode, (b):

the system collapsed.
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2.3.2 DR system results

When used with conventional x-ray screens, modern prosumer DSLRs are attrac-
tive detectors for DR. Compared to other consumer digital cameras, they have much
lower read noise and substantially larger sensors, reducing the demagnification fac-
tor needed to cover a given FOV and hence increasing the light-collection efficiency.
The use of microlenses to direct the light to the photosensitive region of each pixel
along with telecentric “digital lenses” results in a sensor fill factor of, effectively,
100%. For large fields of view (e.g., chest radiography), the optical collection effi-
ciency is approximately 1 photoelectron per x-ray interaction, but this number can
be improved either by using smaller fields or by removing the color filter on the
camera. Because the DSLR read noise is so low, the DQE (not including the screen
absorption) for a disk-detection task can exceed 50%. Compared to scientific-grade
CCD cameras, the DSLRs have significant advantages in cost, read noise, and read-
out speed. They cannot compete with CCDs in terms of quantum efficiency or
dark current, but neither of these characteristics is critical for DR. Compared to
current CsI or amorphous selenium flat-panel detectors, the main advantage of the
DSLR approach is cost and readout speed. The resolution and noise performance
of the DSLR system may be comparable to those of flat-panel detectors, but more
studies are needed to confirm this conjecture. Compared to film-screen systems in
rural clinics, a major advantage of the DSLR approach is the digital character of
the data. A DSLR provides an instant digital image for display manipulation and
telemedicine, and it eliminates concerns about control of the developing process.
Moreover, the large dynamic range of the cameras should lead to fewer incorrect
exposures than with film. The DSLRs may also offer advantages over film-screen in
terms of resolution, noise, and the dose required for equal objective image quality,
but many more studies are needed in this area. Finally, we note that the DSLR
approach has the potential to bring fluoroscopy into rural settings; some DSLRs can
take continuous data at 30 fps.
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2.4 Prototype Computed Tomography (CT) System

The previous results from the DR systems were very promising, and we were inter-
ested in testing different cameras and x-ray screen combinations. In addition, we
wanted to test how well this concept would work on a CT system. Therefore, the
prototype computed tomography system was built. The system setup is shown in
Fig. 2.9. Since this is only a prototype test-bench system, we decided to rotate the
object on a leveled surface rather than rotating the x-ray tube and detector system
on a gantry, thereby reducing the system’s complexity while still maintaining our
objectives. The frame of the CT system was built using extruded aluminum from
80/20 Inc., and an x-ray tube was mounted to a fixed location. The x-rays gener-
ated from the tube were converted to visible light after they have passed through
the vertical x-ray phosphor screen located behind the cylindrical object, seen in
Fig. 2.9b. The visible light from the phosphor screen is re-directed vertically via
a 45° front-surface folding mirror. The camera and lens are mounted on a vertical
translation stage to minimize direct x-ray exposure to the camera sensor.

(a) (b)

Figure 2.9: The CT system configuration, (a): system model designed in SolidWorks, (b): the

system setup in the lab.

Many safety measures were taken to minimize accidental x-ray exposure. All
three entrances into the lab were wired with visible warning signs which will light
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up when x-rays are generated. These entrances were also attached to magnetic
on/off switches that will shut off the power to the x-ray tube immediately if any
doors are opened while the x-rays were being generated. A hand-held “deadman’s”
switch was wired into place behind a shielded room to ensure that an operator is
present at all times while x-rays were being generated. This is an extra safety step
so that the operator can monitor the scanning process in order to prevent anything
disastrous from happening. A 36 ′′× 36 ′′× 5/8 ′′size lead sheet was placed behind
the CT system to prevent direct x-rays from penetrating the room. These safety
components are shown in Fig. 2.10 - 2.11.

(a) (b) (c)

Figure 2.10: Safety mechanisms installed in the x-ray room. (a): x-ray warning sign, (b):

magnetic on/off switch on doors, (c) “deadman’s” switch.

2.4.1 X-ray source

The CT test bench system is equipped with a very powerful research-grade x-ray
tube from Fisher Scientific, shown in Fig. 2.12. It can generate x-ray beams up to
130 kVp with maximum current at 0.5 mA and any voltage and current values in
between, although operation at low voltage and high current is not recommended.
The x-ray tube has a small spot size which can vary with output power and operating
voltage. The spot sizes are shown in Table 2.1. Resolution of our x-ray imaging
system can depend on the source size. This is because a finite x-ray source can be
viewed as a collection of point sources, where each point source creates an image
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Figure 2.11: The lead shield for stopping direct x-rays.

of the object at the phosphor screen. An extended source would not affect the
resolution if the object were infinitely thin and placed directly against the phosphor
screen. However, anything less than this ideal situation would affect the resolution.
When the distance between the x-ray source, object, and phosphor screen is large,
then the resolution ultimately depends on the size of the x-ray source. Smaller spot
sizes allow the x-ray images to have higher resolution, although smaller spot sizes
also limit the total output produced by the x-ray tube. This problem can be easily
overcome by increasing the exposure time on the camera since scan duration is not
our top priority. The x-ray tube also has a very wide angular illumination output,
with a nominal angle at 54°. This allows us to limit the distance between the x-ray
tube and the phosphor screen.
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Figure 2.12: The x-ray tube.

≤ 10 μm @ 8 watts, 50-130 kV
≤ 22 μm @ 16 watts, 50-130 kV
≤ 48 μm @ 32 watts, 70-130 kV
≤ 100 μm @ 65 watts, 130 kV

Table 2.1: The x-ray tube spot sizes.

2.4.2 Cameras

We have three different cameras at our disposal to test on the CT system, shown
in Fig. 2.13 and Table 2.2. These are the Andor Neo, Nikon D700, and the PIXIS
2048B. The Andor Neo employs a scientific CMOS sensor with rapid frame rates
up to 30 fps at full frame and is capable of operating at -40°C using built-in ther-
moelectric (TE) coolers in air. The camera is purchased with a LabView software
development kit (SDK) and a 4 GB data acquisition board so that we can acquire
data bursts at frame rates faster than the computer file-write speed. The Neo cam-
era was integrated into the CT software in LabView. Currently, the camera’s sensor
temperature is cooled by attaching an external water cooler for longer CT scan rou-
tines. The Andor Neo camera has a microlens array in front of the detector. The
quantum efficiency is approximately 55% at Gd2O2S : Tb’s emission wavelength.

The PIXIS 2048B is an ultrasensitive CCD camera, which has a large detector
and pixel size compared to the Andor camera, and can cool down to -60°C in air.
The camera has a very slow acquisition speed of 100 kHz, which is the mode used
for image acquisition. The camera also has a higher readout speed at 2 MHz, which
is used for adjusting the lens and field of view. The quantum efficiency is over 95%
at Gd2O2S : Tb’s emission wavelength. The D700 Nikon camera was described in
the previous section.
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(a) (b)

Figure 2.13: Cameras used to test the CT system. (a): Andor Neo sCMOS camera, (b): PIXIS

2048B CCD.

Cameras Princeton PIXIS Andor Neo Nikon D700

Sensor Type CCD scientific CMOS CMOS

Pixel Pitch 13.5 μm 6.5 μm 8.5 μm

Array Size 2048×2048 2560×2160 4256×2832

Imaging Area 27.6×27.6 (mm2) 16.6×14 (mm2) 36×24 (mm2)

Readout Speed 100 kHz 100 MHz 60 MHz

Microlens array No Yes Yes

Color Filter No No Yes, Bayer

Table 2.2: Cameras for the CT system.

2.4.3 Shutter

A shutter assembly, mounted to the front of the x-ray tube, is used to stop the x-ray
beam, reduce x-ray exposure to the operator, and to prevent the tube from being
repeatedly turned on and off. The shutter assembly was originally designed by Jared
Moore for the FaCT system, and it has been modified to stop higher-energy x-rays.
The shutter assembly is composed of a tungsten epoxy shutter, a rotary solenoid,
and an optical sensor all mounted to an aluminum holder that can accommodate
various x-ray filters, shown in Fig. 2.14.
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Figure 2.14: The x-ray shutter assembly.

Figure 2.15: Electronic PCB board for the shutter system.

The shutter assembly is controlled by an electronic prototype circuit board
(PCB) designed by Lars Furenlid, shown in Fig. 2.15. The PCB controls the rotary
solenoid by first feeding the solenoid with a large burst of current. This current ro-
tates the solenoid and throws the shutter plate to the open position. An oscillating
holding current follows the large current burst, keeping the shutter at the open po-
sition and preventing the solenoid from overheating. Fig. 2.16 shows the schematic
diagram for the shutter board, and Appendix A provides a list of the components
that were used for the shutter. The optical switch is used to make sure the shutter
is fully open. The PCB is powered by a +24 VDC power supply. The trigger that
controls the shutter is held at +5VDC when the shutter is fully closed and will open
when the the trigger is set to ground. This trigger signal for the shutter assembly
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is controlled via a National Instruments USB DAQ module. The shutter assembly
trigger is integrated into the CT acquisition software.

2.4.4 Aperture assembly

The aperture assembly is used to mask the x-ray beam so that its projection size
is slightly larger than the imaging field of view. The maximum beam size at the
lead shield should never exceed the size of the lead shield itself (36 ′′× 36 ′′). The
aperture assembly is constructed using four tungsten copper alloy plates (CW80)
purchased from Leading Edge Metals & Alloys Inc., shown in Fig 2.17. The plate
thickness (1/8 ′′) was calculated to ensure very little x-ray penetration (2.9 × 10−10

at 100 kVp, and 0.038% at 150 kVp). Linear translation stages, purchased from
Velmex Inc., were used to move individual tungsten blades.

2.4.5 Software control

The x-ray source, aperture assembly, rotation stage, and the Anor Neo camera
are integrated using LabView. This software also includes an x-ray tube warm up
routine, CT scanning routine. A region-of-interest can be selected for the aperture
assembly by either sending commands to individual motors, or using the graphic
interface by dragging the cursors in the panel. The front control panel for the
software is shown in Fig. 2.18.

2.5 Summary

We have described the components that were used to construct both the digital
radiography system and the prototype computed tomography system. For the digital
radiography system we have explained the reasoning behind our camera selection
and lens selection; for the CT system, we have shown the major components and
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the subassemblies in the system. We have also shown the safety features that were
employed in the CT system.
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Figure 2.17: Aperture assembly
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CHAPTER 3

FEASIBILITY STUDY USING MODEL OBSERVER

3.1 Introduction

When evaluating an imaging system, it is often useful to first use a model observer
to compute the performance of the system. One can optimize the imaging system
by calculating its performance using the model observer for a particular task with
multiple input parameters. Considerable research has been performed in computed
tomography (CT) on signal detection in flat backgrounds under various conditions,
but little has been done with complex, random backgrounds. In this chapter we
present a new way to evaluate the detector for signal detection tasks using raw
projection data. This work utilizes the channelized Hotelling observer and the cor-
relation between all pairs of channels over discrete angles to compute the signal-to-
noise ration (SNR) as a figure of merit for the detector. The variables considered
are number of incident x-ray photon per pixel, mean number of photoelectrons per
x-ray photon, variance of camera read noise, the number of detector pixels, and the
lumpiness of the background. The detector considered is a scintillator coupled to a
small pixelated detector by a lens.

The best observer that can be used is the ideal observer or Bayesian observer,
defined as the observer that utilizes all statistical information available regarding the
task to maximize task performance as measured by Bayes risk or some other related
measure of performance (Barrett et al., 2013; Barrett and Myers, 2004). However
this method requires us to know the exact probability density function for all possible
input, which is next to impossible. A much simpler observer is the Hotelling observer
that only requires us to know the mean and covariance of our images. Although
this sounds simple, even the Hotelling observer is computationally intensive and
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very impractical. The Hotelling observer can be approximated by a number of
channels, or mathematical functions. Different channels can be selected depending
on the tasks at hand. An advantage to the channelized Hotelling observer is that
it requires less computation to calculate the covariance matrix of the observer. We
chose to use the channelized Hotelling observer to measure the system performance.

3.2 Theory

In x-ray imaging, the x-ray photons are attenuated when they pass through a ma-
terial. For a monochromatic incident x-ray beam, the attenuation of the x-rays
depends on the attenuation coefficient of the material and is expressed by the equa-
tion (Barrett and Myers, 2004),

Nm = N0 exp
[
−

∫ ∞

0
dl μ(rm − ŝml)

]
, (3.1)

where N0 is the mean number of x-ray photons that would strike detector m with no
object present, rm is the 3-D vector specifying the location of the detector m, ŝm is a
unit vector from the source to detector m, and μ(r) is the attenuation function of the
object. This equation assumes all rays from the x-ray point source to the detector
subtend small angles (cos(θ) ≈ 1), so N0 is the same for all m. The attenuation
function of the object for this simulation is,

μ(r) = μH2o sph(r/D) + Δμ(r), (3.2)

where μH2o is the attenuation coefficient of water, r is a 3-D vector in Cartesian
coordinate, sph(r/D) is a spherical function of diameter D, where sph(r/D) = 1
for|r| < D/2, and 0 otherwise. The lumpy background model used by Rolland is
Δμ(r), and is given by,

Δμ(r) =
K∑

j=1
Δμ0 exp

(
−|r − rj|2

2r2
b

)
, (3.3)

where rj is a random vector confined to a spherical diameter d, K is the random
number of Gaussian lumps in the background, Δμ0 is the amplitude of the lump,
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and rb is the rms radius of the Gaussian lumps. Note that K is taken from a Poisson
distribution with mean K and rj is taken from a uniform distribution. The values K

and Δμ0 are chosen so the mean of the lumpy background is equal to the attenuation
coefficient of water. From Eqn. 3.1, the mean number of x-ray photons incident on
the detector when Δμ(r) � d is,

Nm ≈ N0m

{
1 −

∫ ∞

0
dlΔμ(rm − ŝml)

}
≡ N0m[1 − Δpm], (3.4)

where N0m ≡ N0 exp{−μH2o

∫ ∞
0 dl sph[(rm − sm)/D]} and Δpm ≡ ∫ ∞

0 dl Δμ(rm −
ŝml). Because the read noise has zero-mean, we can write the projected value of the
object on the detector m in electron units as,

ḡm0 = ηk̄N0m[1 − Δpm], (3.5)

which is the conditional mean for a single realization of the lumpy background, with
the data averaged over the Poisson fluctuations of the number of x-ray photons,
over the photoelectron generation process, and over read noise. In this equation,
η is the quantum efficiency of the detector and k̄ is the number of photoelectrons
produced per incident x-ray photon. These values are assumed to be the same for
all detectors. The overall mean, including an average over lumpy backgrounds, is
then given by,

¯̄gm0 = ηk̄N0m[1 − Δp̄m]. (3.6)

The signal used in this study is a 2-D Gaussian function. In the signal-present case,
the projected value on the detector and its mean are ḡm1 = ηk̄ N0m[1 − Δpm − Δsm]
and ¯̄gm1 = ηk̄ N0m[1 − Δp̄m − Δs̄m], where Δsm ≡ ∫ ∞

0 dl Δμs(rm − ŝml), and Δμs

is the signal amplitude. When both measurement noise and object variability are
taken into account, the general covariance matrix in component form is defined
by (Barrett and Myers, 2004),

[Kg]mm′ ≡ 〈〈[gm − ¯̄gm][gm′ − ¯̄gm′ ]〉g|Δμ〉Δμ. (3.7)

Equation 3.7 simplifies down to two terms, one representing the average noise co-
variance and the other representing the object variability. These two terms are
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described by the equation,

[Kg]mm′ = [Knoise
g ]mm′ + [Kobj

ḡ ]mm′ . (3.8)

The noise term in the data covariance matrix is diagonal because we are assuming
that there is no light spread in the scintillator (e.g. columnar scintillator crystals)
and in the coupling optics between scintillator and optical detector. It follows from
Burgess variance theorem (Barrett and Myers, 2004; Burgess, 1959) that the covari-
ance matrix due to noise is,

[Knoise
g ]mm′ = δmm′ [σ2 + η2N0m(σ2

k + k̄2)〈(1 − Δpm)2〉Δμ]. (3.9)

In equation 3.9, σ2 is the variance of the camera read noise and σ2
k is the variance

in the number of photoelectrons per x-ray photon. These variables are assumed to
be the same for all detectors. The covariance matrix representing object variability
is not diagonal, and its elements are given by,

[Kobj
ḡ ]mm′ = η2k̄2N0mN0m′〈[Δpm − Δp̄m][Δpm′ − Δp̄m′ ]〉Δμ. (3.10)

The observer used for the task of signal detection is the channelized Hotelling
observer. The application of using channelized observers for medical image-quality
assessment is well established. It began with the work of Myers (Myers, 1985)
and Myers and Barrett (Myers and Barrett, 1987), who introduced the channel-
ized Hotelling observer. Others have used the channelized observer to estimate the
ideal linear observer in order to assess images (Abbey and Bochud, 2000; Barrett
and Abbey, 2001; Gallas and Barrett, 2003). Detailed treatments can be found in
Abbey (Abbey, 1998) and Abbey and Bochud (Abbey and Bochud, 2000); for the
purpose of this work, only the essential equations are provided for SNR calculation.

The SNR for the channelized Hotelling observer is given by,

SNR2
Hot = [Δv̄t]K−1

v [Δv̄], (3.11)

where Δv̄ = Ut(ḡ1 − ḡ0), Kv = Ut(Kg)U, and U is the channel template. In this
study we used 5 channels and the observer templates are the Laguerre-Gauss func-
tions. This set of functions is used to detect the Gaussian signal because they form
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a basis on the space of rotationally symmetric square-integrable functions. They
can represent any rotationally symmetric function that is square integrable if an
infinite number of terms were used. Since we have prior knowledge of the signal,
both its exact location and the fact that the signal is rotationally symmetrical, the
Laguerre-Gauss functions are a good choice for the observer template. Note that
these channels were chosen not to mimic human performance but to estimate the
ideal-observer performance.

3.3 Simulation Model

For this simulation, the object function parameters D and d are 500 mm and 20 mm,
respectively. The attenuation coefficient of water (μH2o) is 0.02 mm−1. Figure 3.1
provides the overall system geometry considered in this study. The object function,
measured from the center, is placed 500 mm behind the x-ray point source. The
screen is placed 1000 mm away from the x-ray source. The size of the screen is 80
mm×80 mm. The projection data are calculated using a fixed detector size and a
varying number of pixels. The radius of each lump for the random background was
set to 4.5 mm and the mean number of lumps that resides inside the sphere with
diameter d was set to 180. The radius of the lumps and the mean number of lumps
where chosen so that two points closer together has higher correlation compared with
two points farther apart. The projection of the object function is calculated for 36
discrete angular increments about its vertical axis for both signal-present and signal-
absent cases. The process is then repeated several hundred times using different
object functions for various signal sizes and amplitudes. The channelized-Hotelling
observer is trained for each signal radius, and the channelized covariance matrix
is calculated between all pairs of channels as a function of angle. The final SNR
represents the ability of the detector to detect the signal using the raw projection
data over 36 discrete angles. Figure 3.2 is an example of the Laguerre-Gauss channel
template for one particular signal size.
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Figure 3.1: System geometry

Figure 3.2: The first 5 channels of Laguerre-Gauss function for signal diameter = 2 mm

3.4 Results

The Hotelling observer implements the optimal linear discriminant. The correlation
between each pairs of channels of the Hotelling observer is calculated for all pro-
jection angles. As a result, the relationship between each angle and channel pair
increases the information content of the covariance matrix and the observer’s ability
to discriminate between signal-present and signal-absent cases. Figure 3.3 shows
the cross correlation between all pairs of Hotelling channels over 360 degrees. With
our problem set-up, the covariance matrix is statistically stationary in the angle
variable, so only one angle is needed in these plots.
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Figure 3.3: covariance values between channel pairs over projection angles

There is a linear relationship between the contrast of the signal at the detector
and the SNR, so a contrast-detail diagram can be calculated for a fixed SNR value.
The variables considered here are k̄, N0, σread, the number of pixels in the detec-
tor, and the type of background (i.e. uniform vs. random). Figure 3.4 shows the
relationship between the variables considered in this study. The contrast vs. detail
diagrams were displayed in log-log scale to show that for a fixed SNR value, the con-
trast required to detect the signal increases as the signal size decreases. As expected,
N0, σread, and k̄ are big factors that contribute to the performance of the detector as
shown in Fig. 3.4a 3.4b 3.4c. The figures showed that an increase in N0 and k̄ pro-
vided better detector performance while σread decreased performance. Figure 3.4d
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showed that for a fixed incident N0 per detector area, the performance decreased
slightly with increased number of detector pixels. Note that for all of the results,
we did not see a point where the slope of the contrast-detail diagram transitioned
from linear slope to asymptotic slope. According to Wagner and Brown (Wagner
et al., 1979) this transition should occur when the signal size is near the spatial
resolution limit of the detector. We did not observe a significant change in the slope
when signal sizes reached the detector pixel size. A similar pattern was also noticed
in Sain’s (Sain and Barrett, 2003) modular gamma camera experiment where the
channelized Hotelling observer was also employed with Laguerre-Gauss templates.
Further evaluations are needed to verify this anomaly.

3.5 Conclusions

Using the channelized Hotelling observer on raw projection data over CT projec-
tion angles, we have shown that, at a fixed observer SNR, the contrast required to
detect a signal increases dramatically as the signal size decreases. The contrast-
detail diagram was presented for different variables including number of incident
x-ray photons per pixel, read noise of the camera, the number of photoelectrons per
pixel collected by the detector, the number of pixels in the detector and the type
background (flat vs. random background). We have shown that this method uses
the angle correlation information in the data to calculate signal detectability and it
can be very useful to optimize the imaging system.
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Figure 3.4: Contrast-Detail diagram for SNR = 2 using a detector with 816 × 816 pixels for

η = 1 and σread = 2. (a): k̄ = 2, and σread = 2 when N0 =10, 50 and 100. (b): k̄ = 2, and

N0 = 50 when σread =1, 2 and 5. (c): N̄0 = 50 and σread = 2 when k̄ =1, 2, 5 and 16. (d): using

4 detectors with 816 × 816 pixels, 612 × 612 pixels, 408 × 408 pixels, and 306 × 306 pixels when

σread = 2, N0 = 50 photons/0.01 mm2, and k̄ = 2. (e): CD diagram for lumpy background and

uniform background when N0 = 50, σread =1, and k̄ =2
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CHAPTER 4

GEOMETRICAL CALIBRATION OF THE CT SYSTEM

4.1 Background

The geometry of the computed tomography system can be described using a set of
global parameters. These parameters are crucial for the reconstruction algorithm in
order to provide the best object resolution. Since it is impossible to know precisely
the geometry of the system after assembly, a calibration method is needed in order
to calculate these system parameters and to account for misalignment of the system
prior to image reconstruction.

In tomography, it is well known that using inaccurate parameters can produce
severe artifacts (Li et al., 1994a,b; Wang et al., 1998). Methods for estimating
geometrical parameters of tomographic scanners have been investigated by many
groups since 1987, starting with Gullberg (Gullberg et al., 1987). Some calibration
methods tend to be specific to the 2-dimensional parallel-beam geometry (Azevedo
et al., 1990; Busemann-Sokole, 1987); others are only for 2-dimensional fan-beam
geometry (Crawford et al., 1988; Gullberg et al., 1987; Hsieh, 1999). In these earlier
methods, the overall approach to calibration is to estimate the geometric parameters
by first measuring the locations of point objects on the detector and determining
the analytic expressions for these point-object locations as functions of the unknown
scanner parameters and unknown positions of the point objects. This step pro-
vides a set of nonlinear equations, which are then solved using an iterative method
such as the Levenberg-Marquard algorithm (Rougee et al., 1993). The downside of
this method is that the algorithms rely heavily on a highly nonlinear parameter-
estimation problem and are highly sensitive to the initial estimations and the order
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in which the parameters are estimated. There are questions of stability and unique-
ness of the parameters. It is uncertain if local minima exist or if more than one set
of calibration parameters can satisfy these equations. This work was later extended
to 3-dimensional cone-beam scanners (Gullberg et al., 1990); however, the degrees
of freedom were restricted, and some shift parameters were assumed to be known.

To avoid initialization and convergence problems created by the Levenberg-
Marquard algorithm, many authors have proposed methods that employ direct cal-
culations of the system parameters. In 1999, a method was proposed by Bronnikov
that required only two 180°-opposed projection images of a circular aperture. Later
authors such as Noo et al., Yang et al., and Cho et al. had similar ideas in which
they used a set of intermediate equations to describe the projection-orbit data of
fiducial markers (Cho et al., 2005; Noo et al., 2000; Yang et al., 2006). The equa-
tions proposed by Noo and Yang were slightly different from each other. In Cho’s
case, they used a rapid prototype printer to create a phantom that contains multiple
fiducial markers to produce several sets of rings about the rotation axis so that the
phantom does not need to be rotated during data acquisition. However, all of these
methods are limited to a restricted set of parameters, usually omitting out-of-plane
rotation of the detector. In 2004, Smekal (Smekal et al., 2004) introduced another
analytical method to solve for all system parameters except that some parameters
are presented together as ratios rather than individual values. The advantage of
this method is that it is insensitive to the precise extraction of the phantom point
projection location on the detector. In 2008, Panetta and coworkers (Panetta et al.,
2008) proposed a new method in which they measured the misalignment param-
eters of a cone-beam scanner by minimizing a geometry-dependent cost function.
This cost function is computed from the projection data of a generic object; hence,
no a-priori knowledge of the object shape or position is required. In 2011, Jared
Moore used maximum-likelihood expectation-maximization (MLEM) algorithm to
estimate all system parameters by calculating the projection of a known phantom
at two 90°-opposed angles.
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In the next section, we will describe the calibration method that was used for the
prototype x-ray CT system. We will first define the global coordinate system, then
we will describe the steps and methods that were used to find all system calibration
parameters.

4.2 Defining Geometric Parameters

A global coordinate system is used to describe the scan geometry of the CT system,
and a local coordinate axis is later used to describe the points on the misaligned
detector. The z-axis is defined as the rotation axis of the object and is set by the
rotation stage; the y-axis is defined as a perpendicular line to the z-axis. It passes
through the x-ray source and through the ideal x-ray screen plane and camera sensor
plane, where both are ideal in the sense that they are perpendicular to the y-axis.
The y-axis is also referred to as the optical axis of the system. The x-axis is defined
as a line that is perpendicular to both the y-axis and z-axis. Fig. 4.1a shows the
global coordinate system with the ideal x-ray screen plane and ideal camera sensor
plane.

When we define the global coordinate system, we have assumed that the x-ray
source is infinitesimally small and does not change with the tube current or voltage.
In reality, the x-ray focal spot has a finite size as shown in Chapter 2. Its size
increases with both kVp and mAs. Knowing that the size is finite and changing, we
still made this assumption because the calibration method is insensitive to the focal
spot size change. In addition, we can apply the calibration parameters obtained at
one x-ray tube setting to other techniques (i.e. different mAs).

Next, we need to choose a set of geometric parameters that can be used to define
the CT system. These parameters will be used later in the reconstruction algorithm.
Although each component in the system can potentially have up to six degrees of
freedom, it is not always necessary to treat each component individually and to
use all six variables for every component. Instead, we can define a smaller set of
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Figure 4.1: (a): The global coordinate system. (b): The eight global parameters that are used

to describe the CT system, where the ideal x-ray screen and ideal camera sensor are treated as

one unit and are described by one set of global misalignment position and orientation parameters

(dx, dz, θx, θy, θz) with one additional optical magnification factor M that is used to scale down

the x-ray screen onto the camera sensor by the lens. The distance between the x-ray source and

the ideal x-ray screen is defined as R, and the distance between the x-ray source and the rotation

axis is Rf .

parameters that summarizes the overall geometry of the system by making some
simple assumptions. The first assumption is that the lens focuses every point on the
x-ray screen within the lens’ field-of-view (FOV) onto the camera sensor. We made
this assumption because we expect the lens to be well corrected for distortion, at
least within the center of FOV. Since the lens is designed for a full-frame sensor,
distortion on a smaller sensor, such as the Andor Neo is minimum. In addition,
we use only the center part of the image for calibration, therefore we have ignored
any distortion in image by the lens at the outer edges. This condition eliminates
any misalignment between the x-ray screen, the lens, and the camera. As a result,
we can describe the misalignment of these three components as one detector unit.
In practice, we cannot change the alignment between the lens and camera as they
are fitted together using a mechanical mount (Nikon F-mount), and we have not
noticed any distortion in the calibration images we have taken using the Andor Neo
camera. In addition, the commercial Nikon lens has a large depth of focus, which
depends on the F-number, however we did not perceive any defocus within the field
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of view on the phosphor screen for the camera positions that we have used.

We have also assumed that the x-ray screen is large enough that any lateral
shift in its plane does not change the final image on the camera sensor. These
assumptions allow us to decrease the set of calibration parameters to eight values.

Fig. 4.1b shows the eight global parameters that are used to describe the CT
system. The detector unit is defined as the combination of the x-ray screen, lens
and camera, where the x-ray screen plane is conjugate to the camera sensor plane
with a magnification factor M set by the lens. The optical axis passes through the
center of the x-ray unit and is defined as the center of the camera sensor magnified
back onto the x-ray screen. The eight global parameters are: R, Rf , dx, dz, θx, θy,
θz and M , where R is the distance between the x-ray source and the detector unit,
Rf is the distance between the x-ray source and the rotation axis, dx and dz are the
position misalignments of the center of the detector unit away from the optical axis
in either x and z direction respectively, and θx, θy, and θz are the angular rotations
of the detector unit about its respective axes. These essential parameters are used
in the reconstruction algorithm described later in Chapter 5.

Figure 4.2: The six nuisance parameters that describe the misalignment position and orientation

of the phantom.
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In order to estimate all of the global parameters, we needed to add an additional
six parameters to complete our calculation. These are called nuisance parameters
and, just as the name indicates, these parameters are not necessary to define the
geometry of the system, however, the calibration method we used required them
to be estimated in order to complete our calculation. These six nuisance param-
eters are used to describe the position and orientation of the calibration phantom
(x0, y0, z0, θobj

x , θobj
y , θobj

z ) shown in Fig. 4.2.

4.3 Calibration Method

We have employed three steps in order to compute all of the calibration and nuisance
parameters, as follows:

1. Calculate the lens optical magnification power, M .

2. Calculate the majority of global parameters using Smekal’s method, which
includes θx, θy, θz, dx, dz, and R.

3. Calculate the nuisance parameters (x0, y0, z0, θobj
x , θobj

y , θobj
z ) and find Rf .

4.3.1 Calculate lens magnification power

Figure 4.3: Resolution chart from Edmund Optics.
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Figure 4.4: Procedure for obtaining the optical magnification factor (M) using Edmund Optics’

resolution chart.

The optical magnification can be measured under white light by placing an item
of a known size at the phosphor screen and measuring the image size of the object
scaled on the sensor. In practice, we used a resolution chart purchased from Edmund
Optics, shown in Fig. 4.3 and focused our camera on the 1 line per mm bar section
of the resolution chart. For each row of the image, we fitted the data to the first
order of the Fourier series using the “fit()” function in MATLAB. The phase shift
of each row of the image corresponds to the bar target rotation. Once the image is
corrected for rotation by use “imrotate()” function, we can then average the image
over rows and calculate the period of the bar target. This procedure is illustrated
in Fig. 4.4.

4.3.2 Calculate global parameters

In order to find the global system parameters, we opted to use Smekal’s calibration
method (Smekal et al., 2004) that derives explicit analytic expressions for a set of
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fiducial markers. This method does not require precise knowledge of the marker’s
spatial location inside the phantom; rather, it uses the marker’s projection orbit
on a misaligned detector for the calculation. These orbits are first analyzed using
Fourier components with low spatial frequency. The parameters are then calculated
based on each individual point marker from the Fourier coefficients by using a series
of equations. The averages of the parameters over the set of fiducial markers are
used as the final result. The corresponding standard deviations for each parameter
are used as error bars in the estimation.

Figure 4.5: Calibration steps to calculate global parameters.

In this section, we will focus on the main ideas and equations that were used
to calculate the calibration parameters. Detailed derivations are given in the pa-
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per (Smekal et al., 2004). The system geometry and a graphical representation of
the method are shown in Fig. 4.5, where the global coordinate system and system
parameters are defined similar to those given in Fig. 4.1. The main idea behind
Smekal’s method is to first describe the relationship between the point markers and
the projection orbit by a set of linear equations based on the rotation matrix of
the misaligned detector (step 1). This set of equations is a function of the system
parameters and initial marker positions. Next, the projection orbit is parameterized
using a set of Fourier series coefficients (step 2). Then, it is a matter of finding the
relationship between the Fourier series coefficients and the linear equations through
various intermediate coefficients in order to disentangle the system parameters while
eliminating dependencies on the initial marker positions.

In step 1, we can describe the projection orbits of point markers on the mis-
aligned detector using the system parameters. Shown in Fig. 4.5, a point on the
true misaligned detector (x′, y′, z′), with detector coordinates (u, v), can be written
as,

uû + vv̂ + d = uOx̂ + vOẑ + d

= x′x̂ + (y′ − R + Rf )ŷ + z′ẑ,
(4.1)

where d = dxx̂ + dyŷ + dz ẑ is the distance between the center of the
ideal detector and the misaligned detector, O is a 3 × 3 rotation ma-
trix that maps the vectors (x̂, ẑ) to (û, v̂) using θx, θy, θz shown in Eq. 4.2.

O =

⎛
⎜⎜⎜⎜⎝

cos θy cos θz − sin θy sin θx sin θz −cos θx sin θz −cos θz sin θy − cos θy sin θx sin θz

cos θz sin θy sin θx + cos θy sin θz cos θxcos θz cos θy cos θz sin θx − sin θy sin θz

cos θx sin θy −sin θx cos θy cos θx

⎞
⎟⎟⎟⎟⎠

(4.2)

Generally speaking, it is not ideal to describe the point (u, v) using the coordi-
nate (x′, y′, z′), i.e. y′ �= R − Rf . Instead, we can describe the point using the ideal
coordinate (uid, vid) where this perfect alignment counter part (i.e. y′ = R−Rf ) con-
nects the rays from the x-ray source, through the focus, and to the points (x′, y′, z′)
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using the equation,
x′ = y′ + Rf

R
uid, z′ = y′ + Rf

R
vid. (4.3)

Inserting Eq. 4.3 into Eq. 4.1, we can obtain the ideal orbit in terms of the real orbit
on the misaligned detector as

⎛
⎜⎝uid

vid

⎞
⎟⎠ = R

R′
y + o21u + o23v

⎛
⎜⎝

⎛
⎜⎝o11 o13

o31 o33

⎞
⎟⎠

⎛
⎜⎝u

v

⎞
⎟⎠ +

⎛
⎜⎝dx

dz

⎞
⎟⎠

⎞
⎟⎠ (4.4)

Thus, the inverse relationship for the real orbit in terms of the ideal orbit for Step
1 can be obtained by using some matrix manipulations, and the result is as follows:

⎛
⎜⎝u

v

⎞
⎟⎠ = 1

det Q

⎛
⎜⎝ o33 − o23v

id/R −(o13 − o23u
id/R

−(o31 − o21v
id/R) o11 − o21u

id/R

⎞
⎟⎠ ×

⎛
⎜⎝uid′ − dx

vid′ − dz

⎞
⎟⎠ (4.5)

where, ⎛
⎜⎝uid′

vid′

⎞
⎟⎠ =

R′
y

R

⎛
⎜⎝uid

vid

⎞
⎟⎠ (4.6)

and the determinant in Eq. 4.5 is given as,

det Q = (o11 − o21u
id/R)(o33 − o23v

id/R)

−(o13 − o23u
id/R)(o31 − o21v

id/R).
(4.7)

In Step 2, we need to parameterize the point marker’s projection orbit on the
misaligned detector using the Fourier coefficients. We can write the discrete real
Fourier series as follows,

un = U0

2 +
N/2−1∑

k=1
(Uk cos(kαn)) + Ũk sin(kαn) + (−1)(n−1) UN/2

2 , (4.8)

with similar expressions for vn. The real Fourier coefficients are given by:

Uk = 2
N

N∑
n=1

un cos(kαn), k = 0, ...., N/2,

Ũk = 2
N

N∑
n=1

un sin(kαn), k = 1, ..., N/2 − 1
(4.9)
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and analogously for Vk and Ṽk. Only the first three Fourier components were needed
in the misalignment calculation. Thus, the method is insensitive to high frequency
fluctuations and uncertainties that stem from marker-point extraction between dif-
ferent projection angles. These Fourier coefficients and the results from Step 1 are
used to calculate the final system parameters by going through some intermediate
equations. These equations are shown in Appendix X.

The result of Smekal’s method calculates ten parameters. These are the detector
rotation misalignment, θx,θy,θz, detector position misalignment, dx,dz, R, and R′

y,
where R′

y = R + dy. This method also provides the object marker initial location
with respect to Rf , i.e., x0/Rf , y0/Rf , z0/Rf . Unfortunately, Rf and marker initial
locations are presented together and can no longer be separated using Smekal’s
calibration method.

4.3.3 Calculating the nuisance parameters and Rf

In order to calculate Rf , we have opted to use an iterative search method. Numerous
search algorithms can be used to look for a parameter vector that resides in a multi-
dimensional space. We have opted to use the contracting-grid algorithm that allows
the identification of a function’s minimum in a fixed number of iterations using a
fixed grid size (Hesterman et al., 2010). Along this search process for Rf , the values
for six nuisance parameters were also calculated.

The contracting grid algorithm is based on maximum-likelihood estimation. The
maximum-likelihood method can generally be formulated as a search over parameter
space using (Barrett and Myers, 2004),

θ̂ = arg max
θ

λ(θ|g) = arg max
θ

pr(g|θ), (4.10)

where θ is a vector composed of parameters of interest, g is the data vector, λ is
the likelihood of observing g, and θ̂ is a vector of estimated parameters. The data
vector g is composed of the pixel values in the image for all projection angles. If
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the noise in the detector pixels are independent and identically distributed, where
each pixel can be modeled using a zero-mean Gaussian function, then Eq. 4.10 is
reduced to

arg min
θ

‖g − ḡ(θ)‖2, (4.11)

where ḡ(θ) is the mean of the image data vector without noise. Thus the maximum-
likelihood solution to Eq. 4.10 is to search over θ in order to minimize the least-
squares difference between g and ḡ. The image data vector without noise is calcu-
lated using the imaging equation,

ḡ(θ) = H(θ)f̄(θ), (4.12)

where H is the imaging system matrix. This means H, f̄ , and ḡ must be re-calculated
each time a new θ is used in the search algorithm.

Unfortunately this method is not viable due to computation constraints. For
example, the projection of an phantom object was calculated in simulation with 643

voxels over 360 degrees at 2-degree increment, where each projection image was 10242

pixels. This computation took over 30 seconds in CUDA. Even if only 2 grids were
used per parameter value, this means each contracting-grid iteration would require
the same calculation to be repeated 128 times, totaling over an hour per iteration. In
an actual experiment where the the number of object voxels and parameter grids are
required to be much larger, the calibration step would take too long to be realistic.
Instead, we have decided to replace f̄(θ) by a set of coordinate locations for each
fiducial markers in the global coordinate system (x̄i, ȳi, z̄i). The imaging matrix,
H, can be replaced by first applying a rotation and translation matrix onto each
marker’s position to incorporate the position and orientation misalignment of the
object, then use Eq. 4.3-4.7 to obtain ūi and v̄i, which are the projection positions
of the markers on the misaligned detector. These are used in place of ḡ(θ). The
image data, g is replaced by the coordinates of the fiducial markers obtained from
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image data, (ûi, v̂i), which are acquired via centroid estimation using,

ûi =

N∑
n=1

ginuin

Ni∑
n=1

gin

, v̂i =

N∑
n=1

ginvin

Ni∑
n=1

gin

, (4.13)

where gin is the pixel value at location uin for the ith fiducial marker. The
contracting-grid algorithm was applied to search over θ by minimizing the least-
squares difference, d, between ūi, v̄i and ui, vi using

d =
∑

i

√
(ūi − ûi)2 + (v̄i − v̂i)2. (4.14)

We note that by reducing data size and performing centroid estimation, the noise
models on ûi and v̂i are no longer zero-mean Gaussian functions.

The parameter grid used in the algorithm is a discrete set of numbers each
centered about the parameter value. The initial spacing within each parameter
grid is Δθ0 = Di/(N − 1), where Di is the grid size and N is the number of grid
points used for each parameter, which we have kept as a constant value. Since we can
physically measure each parameter in the beginning, at least within a few millimeters
or degrees, the grids are centered about these initial values. We have set the grid
size, Di for distance measurements to be ±5 mm and orientation measurements to
be ±3°. We have chosen to set the number of grid points, N , to be 4 in order to
limit the amount of time used in each iteration. In the subsequent iterations, the
grid size for the kth iteration contracts to a smaller size using

Δθk = Δθk−1

γ
, (4.15)

where γ is the contracting rate, and a new set of parameters are chosen as the new
grid centers. The contracting-grid algorithm can broken down into five steps:

1. For each parameter θi, create a region of physically reasonable grid size.

2. Use Eq. 4.11 and calculate the least-squared results of all parameter grid com-
binations.
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3. Find the set of parameters that generated the lowest least-squared result. This
is the starting point for the next iteration.

4. Contract the grid size for centered about the parameters from the previous
step using Eq. 4.15.

5. Repeat Steps 2-4 until the algorithm reaches a preset number of iterations.

Detailed information regarding the contracting-grid search algorithm is given in the
paper by Jacob Y. Hesterman (Hesterman et al., 2010).

Through experimentation, we have found that it is more efficient to first ob-
tain a rough estimate of the parameters, Rf , θobj

z , θobj
x , and θobj

y before using the
contracting-grid algorithm. A rough estimation of Rf can be found by using the
vertical separation between the point markers on the projection image (Δz0) of a
known phantom and applying it to the values Δz0/Rf calculated from the previous
section. θobj

x is the initial rotation orientation of the point markers about the z-
axis, changing this value does not affect the overall projection locations of the point
markers but it does greatly contribute to the least-squares sum of the contracting-
grid algorithm. Therefore, we have approximated its value in order to minimize the
search duration later. Finally, the values for θobj

x and θobj
y are iterated over 360° to

obtain the initial parameters.

4.3.4 Calibration results

Figure 4.6 shows the projections of the ball bearings from experiment vs. the pro-
jections of point markers using the calibration parameters. We have tested vari-
ous number of grid points ranging from 2 to 10 and contracting rate from 1.05 to
1.3. Larger grid size requires more time to compute while slower contracting rate
takes longer to converge. Through experimentation, we have settled to use 100
contracting-grid iterations with a 4 grid points for each parameter at a contracting
rate of 1.05.
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Figure 4.6: Projection of the ball bearings from experiment vs. the projection of the point markers

using the calibration parameters after 100 iterations with a grid size of 4 and a contracting rate of

1.05.

Table 4.3.4 shows the calibration results of the CT system. Note that Rf is
calculated using the contracting-grid algorithm without using a noise model. We
have obtained the standard deviation on Rf by plotting the mean-squared error
between experimental and calibration result for various Rf values centered at the
Rf found via calibration. Shown in Fig. 4.7, we can see that Rf can deviate ±1 mm
to still remain within %0.5 of the mean-squared error obtained with calibration.

The most important angular measurement is θy because it accounts for the image
rotation about the optical axis. Errors in this parameter can result in severe artifacts
in the reconstruction image. Both θx and θz are less important; in fact, these values
were assumed to be zero in some calibration methods (Cho et al., 2005; Noo et al.,
2000; Yang et al., 2006).
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Figure 4.7: The deviation of Rf against the mean-squared error obtained using results obtained

from calibration.

4.4 Calibration Phantom

The phantom used in the calibration process was designed in SolidWorks and printed
using the rapid prototype machine at the Center for Gamma-Ray Imaging (CGRI).
The phantom is composed of two separate pieces: a large bracket that is mounted
on the rotation stage and a smaller insert where a number of ball bearings and sizes
can be attached. The bracket and multiple inserts are shown in Fig. 4.8.

The bracket is designed so that the center of the ball bearings on the inserts
is 60 mm from the center of the rotation axis on the bracket. The smaller insert
has a conical end so it is easy to align the vertical axis of the markers against the
bracket holder. The ball bearings are made out of stainless steel and are purchased
from McMaster-Carr. Three different bearing sizes (1/16′′, 1/8′′, 3/16′′ and 1/4′′)
were purchased and tested. Through experiments we have found that the 1/8′′ ball
bearings worked the best.



84

Parameter Value Standard Deviation

R 1106.3 (mm) 2.43 (mm)
Rf 900.7 (mm) 1 (mm)
dx 4.01 (mm) 0.0028 (mm)
dz -1.40 (mm) 0.10 (mm)
θx -0.019 (radians) 1.0743 (radians)
θy 0.0039 (radians) 0.0003 (radians)
θz -0.0047 (radians) 0.0089 (radians)
M 13.1 0.24

Table 4.1: Calibration Results

4.4.1 Extract phantom marker locations

In order to use the calibration method described in Section 4.3, we must be able to
extract the 2-dimensional coordinate location of the point markers on the detector
using the phantom ball bearing projection images. The raw projection image at one
angle is shown in Fig. 4.9.

Upon close inspection, although we can see the ball bearings clearly, the image
is littered with small clusters of high-value pixels, also shown in Fig. 4.9. These
clusters of bright pixels are the result of direct x-ray interactions, where the x-ray
energies are deposited inside the detector, resulting in high detector values. They
cannot be completely eliminated even after we carefully shield the camera with
lead plates. The locations of these clusters are random and vary from image to
image; typically higher x-ray tube energies (>60 kVp) produce more clusters than
lower x-ray tube energies. However, we wish to calibrate using higher x-ray tube
energies because while the projection of the steel ball bearings will remain dark,
the projection of the plastic phantom material will be lighter. The higher contrast
difference between the two materials allows us to extract the ball bearing location
more easily without having to repeat the same experiment again, without the ball-
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(a) (b)

Figure 4.8: (a) Calibration phantom bracket, and (b) inserts with different ball bearings.

bearings. Fortunately, we can eliminate the majority of these high-value clusters
by thresholding the entire image. The result is an intermediate image with the
majority of phantom structures removed, as well as the majority of these high-
value clusters, leaving only the clusters of ball bearing projections and other smaller
clusters left over from the phantom structures. Unfortunately, at this stage, we
cannot simply use well-known clustering algorithms such as k-means to extract the
centroid locations. This is because the algorithm require us to fix the number of
clusters in the image. While we know the number of ball bearing clusters we need to
identify, we do not know the number of smaller clusters left over after thresholding
since it varies in every image. Instead, we use a slightly more tedious method to
search for each ball bearing projection cluster. This method can be summarized by
the following steps:

1. Sort all points in the main image array by their y-coordinate.

2. Retrieve the first point’s x and y coordinate and set it as the center of the
cluster.

3. Find the next point that is closest to the first point.
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Figure 4.9: Projection of the calibration phantom at one angle. The image taken used 100 kV

x-ray at 200 μA with a 2 second exposure time.

4. Re-calculate the center cluster coordinate using the neighboring point by av-
eraging the x and y coordinate of the points.

5. Iterate through all points and repeat Step 3-4 until all points that are close
to each other have been approximately identified and calculate a mean cluster
coordinate using these identified points.

6. Recalculate the center coordinate for the cluster using all of the points iden-
tified in Step 5, then iterate through all points again in the main image array
to ensure that no points for this cluster were missed.

7. Reject this cluster if it is too small in terms of size or the number of points.

8. Record the cluster center coordinate and remove all points from this cluster
from the main image array.

9. Repeat Step 2-8 until the image cluster size reaches zero.

The cluster center is simply the mean of the x-coordinate and y-coordinate of
the cluster points. The main idea for this method is to assume that points close to
each other belong in the same cluster. This is the reasoning behind Step 1, where we
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needed to first sort all points by their coordinate position. We reason that, after all
points are sorted, then if we iteratively go through all points in the main array, all
points that are within a cluster should be very close to each other. We use the mean
cluster point as a reference to determine whether the next point should be included in
the current cluster. The criterion for this determination is distance. If the distance
between the current cluster center and the next point is close, then we classify the
next point as a cluster point and repeat until we have searched iteratively through
all points in the image array, Step 2-6. The distance used in this method is the
approximate image size of the ball bearing measured visually using one calibration
image. Once a cluster is identified, we look through all of the points in the array
once more to ensure that no points that should have been included in this cluster
were not over looked(Step 6). Once this cluster is identified, we classify this cluster
as either a ball bearing projection cluster, or a background noise cluster based on
how many points are in this cluster and the cluster physical size (step 7). The limit
on the number of points and size limit were approximated using one calibration
image by visual inspection. A secondary array maps the points in the image array
to the newly identified cluster; thus, these points are not used when the algorithm
repeats Step 2-8 in search for a new cluster. Since this method iterates through the
main image array twice for each cluster, outwardly it can be a very slow method.
However, since we remove all points in the cluster each time a cluster is identified,
the method speeds up as more clusters are found. In fact, once the raw projection
image is thresholded (before using this method), we are left with only approximately
10,000 - 30,000 points, which is very manageable size using MATLAB. In the end,
this method only takes about 1-2 seconds to identify and calculate the centroid
coordinates in each raw calibration image. The calibration code can be downloaded
from the git public repository: https://bitbucket.org/hxfan/matlab_calc.

Figure 4.10 provides a graphical description of the clustering algorithm described
in this section. In this figure, each point represents a point from the projection image
after thresholding. The number above each point represents its rank order after the
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points are sorted by the coordinate position (y coordinate). The cluster center
point is used as a reference to find the next cluster point, and it is recalculated after
the next cluster point is identified. Shown in the figure, once the 6th cluster point
is identified, the distance between the center-of-mass point and point 7 exceeds
Rpoint cluster; therefore, points 7 and 8 do not belong to cluster 1 and will not be
used to calculate the next cluster center point. Also shown is the cluster center
point after point 24 is identified. The distance d3 between the cluster point point
and point 25 exceeds Rpoint cluster therefore point 25 is also ruled out and does not
belong to cluster 1. Cluster 2 includes points 7, 8, 13, and 14; however, because this
cluster is too small so it is classified as noise cluster. Point 25 is also ruled out as
belonging to any cluster. Clusters 1 and 3 are classified as ball-bearing projection
clusters with corresponding centroid positions.

Figure 4.10: A graphical description of the clustering algorithm.
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4.5 Summary

In this chapter, we have described the calibration method for the prototype CT
system. We began by providing an overview of some of the existing methods for
calibrating bench-top x-ray CT systems. Then, we followed by defining the geom-
etry of the system and describing the steps that were taken to extrapolate all 14
parameters of the system. The final results of the system parameters are shown in
Section 4.3.4. The last two sections of this chapter describes the physical calibration
phantom and the algorithm that were used to extract the ball bearing projection
points from raw calibration images.
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CHAPTER 5

CT RECONSTRUCTION

The essential goal of any reconstruction is to use the information gathered to es-
timate the parameters associated with the object. In the case of CT, we use the
information gathered on the detector over a range of angles to calculate the x-ray at-
tenuation coefficients of the object voxels. CT systems have evolved tremendously
over the years, and reconstruction algorithms have also evolved dramatically to
support the various types of systems. There are two general approaches to recon-
struction: analytical and iterative. In this chapter, we give a brief overview of these
general techniques used for CT reconstruction, followed by an explanation of the
method that was used for our system.

The first clinical CT scanner, installed in 1971, was a dedicated brain imager that
used a single detector. In 1973, a whole-body CT scanner was introduced (Ulzheimer
and Flohr, 2009). Up until 1990, most clinical CT scanners used the fan-beam
geometry with axial rotation. In the early 1990s, out of the desire to cover an
entire human organ, the first single-slice helical CT scanner was introduced. Ever
since, helical geometry has been the main configuration for all clinical CT scanners.
In 1996, Elscint was the first to develop a CT system that had two detector rows
and could acquire two images slices with every rotation of the gantry. A few years
later, General Electric (GE) came out with the first four-slice CT scanner and
was quickly followed by all other major CT manufacturers. The term multi-slice
CT, also called multi-detector-row CT (MDCT), quickly became the trend with
manufacturers pushing for more detector rows, from 16 rows in 2002 (ImPACT,
2002) to 320 slices in late 2007 by both Philips and Toshiba (Ulzheimer and Flohr,
2009). The industry’s push for larger volume coverage and faster scan time has
fueled the need to develop newer and more efficient reconstruction algorithms.
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5.1 Analytic Reconstruction Techniques

The most common method of image reconstruction for the earlier CT scanners was
the fan-beam filtered back-projection algorithm. At the heart of the reconstruction
algorithm is the Radon transform, which relates a function f(r) to the collection
of line integrals of that function λ(p, φ). Shown in Eq. 5.1, the projection line is
described using r · n̂ = p, where n̂ is a unit vector making an angle φ to the x-axis,
shown in Fig. 5.1.

λ(p, φ) =
∫

∞
d2r f(r)δ(p − r · n̂). (5.1)

Figure 5.1: The 2D Radon transform of a 2-D object and its Fourier transform.

To invert the Radon transform, the projection data on the detector at each angle
go through a Fourier transform. The Fourier transform of the projection data along
a projection angle represents the Fourier transform of the object along the same
projection angle as seen on the right of Fig. 5.1. The Fourier transformed data are
then filtered in the spatial-frequency domain by a ramp filter, then back-projected
into object space to reconstruct the original object. This algorithm is also known
as the Filtered Back-Projection (FBP). For the fan-beam geometry, typically the
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projection data are gathered and rebinned into parallel projection sets before taking
the inverse Radon transform to obtain the reconstructed slices.

CT scanning geometries can be divided into two general categories, depending
on the targeted region of interest (ROI) within the body. The first category is cir-
cular/axial orbit scanning, where the patient remains stationary and the source and
detector traces a circle around the patient. This orbit is typically used to image
smaller features of the body, such as the brain or the heart. The circular-scanning
geometry has the advantage of being very simple and fast, especially when the data
acquired must be synchronized with a physiological signal, such as an electrocar-
diogram (EKG). The most widely used reconstruction algorithm is the Feldkamp-
Davis-Kress (FDK) reconstruction (Feldkamp et al., 1984). The algorithm is very
similar to the conventional fan-beam reconstruction, but the off-axis rays of the
cone beam are weighted by a cosine term in order to approximate them as the 2D
fan-beam rays. The FDK algorithm works well when the cone angle is moderate,
and many authors have proposed alternative methods to fix and compensate the
image slices at the outer edges of the cone beam (Chen, 2003; Hu, 1996; Katsevich,
2003).

The second and the most widely used scanning method is the helical geometry.
During data acquisition, the patient bed moves in an axis that is perpendicular to
the rotation plane of the gantry so the source and detector traces a helix around
the patient. There are two approaches to use the data acquired with helical scan to
reconstruct the patient body. These are the approximate and exact reconstruction
methods. The most common method to solve this problem is the approximate recon-
struction technique derived from the original FDK algorithm and later generalized
to spiral scan by Ge Wang (Wang et al., 1993). Many authors have also succeeded in
creating helical cone-beam algorithms based on the Feldkamp method (Kachelrieß
et al., 2000; Kudo and Saito, 1991; Noo et al., 1999; Smith and Chen, 1992; Tang
et al., 2006a; Tang and Hsieh, 2004; Tang et al., 2006b; Wang et al., 1992; Yan
and Leahy, 1992). As noted by Wang, “The key idea is to correct cone-beam data
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into fan-beam counterparts in a heuristic way. As a primary example, a cone-beam
datum along an oblique ray can be approximately converted to the fan-beam coun-
terpart along a transverse ray by multiplying the former with the cosine of the angle
between the oblique and transverse rays” (Wang et al., 2007).

Figure 5.2: Helix-and-two-circles scan path for ROI imaging as proposed by Tam et al..

Methods of solving for exact cone beam image reconstruction have been inde-
pendently reported by Tuy, Smith, and Grangeat as early as 1983 (Grangeat, 1991;
Smith, 1985; Tuy, 1983). The requirement in all of these algorithms is that all the
x-rays from the source that pass through the object must be covered by the detector.
For example in Tuy’s condition, every plane that intersects with the object must also
intersect with the x-ray source orbit at least once. However, objects in medicine and
many industrial inspections are very long, which would require a very large detector
to cover the entire length of the object. In addition, in most of these objects, only
a smaller section is of interest. The problem of reconstructing for a smaller ROI
without scanning the entire object is extremely challenging. Intuitively, we need to
collect all of the x-ray paths that penetrate the ROI for reconstruction. However,
because parts of these x-ray beams are “corrupted” by other parts of the objects,
they no longer represent the ROI exclusively. We can attempt to reconstruct the
“corrupted” parts of the x-ray paths, but the data are often missing because the



94

detector was not large enough to collect all of the information. This problem is
known as data truncation, or missing data. The exact solution to an long object
problem with a ROI was proposed by Tam in 1998 using a spiral-and-two-circle scan
path for ROI imaging (Tam et al., 1998), as shown in Fig. 5.2. Unfortunately, it is
not entirely trivial to merge the truncated data from multiple helical turns. This
problem was not solved until early 2002 by Katsevich’s algorithm (Katsevich, 2002,
2003, 2004).

Figure 5.3: Different scanning trajectories for complete sampling. (a) circle-plus-line; (b) circle-

plus-arc; (c) dual circles; and (d) saddle.

Since Katsevich’s invention, various sophisticated formulas have been proposed
and developed for exact reconstruction using longitudinally and transversely trun-
cated projection data and for various scanning geometries shown in Fig. 5.3. How-
ever, although these algorithms are highly sophisticated and novel, they are com-
putationally expensive compared to the popular FBP algorithms, not to mention
the difficulties in building the hardware for these orbits. Currently, most CT man-
ufacturers still use the approximate cone-beam reconstruction algorithms instead
of exact cone-beam reconstruction algorithms for two reasons. First, the data re-
quirements for exact reconstruction are still too difficult due to physical constraints.
Second, the approximate algorithms already provide very good and sometimes even
better performance compared to the exact reconstruction method, which may not
have the best noise characteristics (Wang et al., 2008). It will be interesting to see
when exact algorithms will replace approximate algorithms in the future.
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5.2 Iterative Reconstruction Techniques

Figure 5.4: The general process of iterative algorithm1. The compare step involves calculating a

correction term by comparing the predicted and measured data, which is then backprojected onto

the object space to generate a new estimate of the object.

Iterative techniques attempt to reconstruct the object using projection images
in an iterative fashion, where the estimate of the object at the current iteration will
be used for the next iteration. All iterative reconstruction methods consist of three
major steps. First, the forward model of the system calculates an estimate of the
raw data utilizing either prior knowledge of the object or using a blank object in
the first iteration. Second, the estimated raw data and the real measured data are
compared, and a correction term is calculated. Third, the correction term is back-
projected onto the object space and multiplied by the current object to to create a
new estimate. Shown in Fig. 5.4, this process is repeated until either a fixed number
of iterations is reached or the object estimation reaches a predefined criterion.

1Reprinted from: Physica Medica, 28, Bester, M., Kolditz, D., and Kalender, W. A., Iterative

reconstruction methods in X-ray CT, pp. 94-108, Copyright(2012), with permission from Elsevier.
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5.2.1 Algebraic Reconstruction Techniques

From a historical perspective, the first reconstructed CT image was created using the
iterative algebraic reconstruction technique (ART) based on Kaczmarc’s algorithm,
where the method attempts to find the object by solving a series of linear equations
iteratively in

A x = b. (5.2)

In terms of image reconstruction, x is N ×1 with elements represent the object voxel
values that need to be reconstructed, A is a M × N system matrix that models the
production of the image data, and b is M ×1 where the elements represent the pixels
values of the measured raw data. Both x and b are often constrained to be positive
in the algorithm based on the assumption that negative attenuation values and
negative detector values are not possible. The entries of the matrix A correspond
to x-rays from the source through the object volume to the detector pixels. Solving
for the object voxel values involves solving Eqn. 5.2, where A is most likely not a
square matrix and is fairly large in size. The iterative rule to solve for the object
voxel value can have the general form

x̂k+1 = x̂k + B[b − Ax̂k], (5.3)

where B is an N × M matrix. This type of iterative algorithm is found by mini-
mizing the quadratic difference between the experimental data the data generated
by A (Barrett and Myers, 2004). Algorithms such as simultaneous ART (SART),
ordered-subset (OS) version of SART, and other variations of SART or OS-SART
all follows this general form (Wang and Jiang, 2004; Yu et al., 2011)

Starting from ART, a series of algorithms evolved that would try to converge to
the solution faster, to reduce noise, and to reduce problems with streak artifacts;
however, in general, all ART-based methods are non-statistical and model the ge-
ometry of the acquisition process better than common analytical methods based
on FBP. Therefore, ART-based methods can better deal with sparse data and an
irregular sampling of acquisition positions (Beister et al., 2012).
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5.2.2 Statistical Iterative Reconstruction Techniques

Statistical iterative reconstruction techniques have been used extensively in single
photon emission tomography (SPECT) and positron emission tomography (PET),
where low photon rates and noise are the major issues. Due to public awareness of
CT radiation and a need to reduce the risks associated with x-ray radiation, there has
been a push to transition from FBP to statistical iterative reconstruction techniques,
which has the potential of lowering radiation doses while suppressing image noise
with low-dose scan techniques. Therefore, it is crucial that the mathematical models
used for the CT system are accurate, and the modeling errors are suppressed so they
do not grow during the iterative process. There are two types of models that are
typically used in iterative reconstruction algorithms: a physical model that involves
the geometry of the system and a statistical model that attempts to formulate the
noise within the imaging system.

Unlike the analytical reconstruction techniques, where many physical assump-
tions must be made to allow for the mathematics to be more manageable, physical
models used by the iterative algorithm can account for any physical process and
are only limited by the computational power of the processing computer. For ex-
ample, analytical solutions usually assume that the x-ray focal spot is infinitely
small; the shapes and dimensions of the detector cells are ignored so that all x-ray
photon interactions are assumed to take place at the center of the detector cells.
Iterative reconstruction algorithms require no prior assumption about the geom-
etry of the system. For example, a commonly used model is to launch multiple
pencil rays from various locations on the x-ray focal spot that has a finite size.
These pencil rays passes through an image voxel at different positions and land at
different detector pixels to mimic different x-ray photon paths through an object.
The summation of the x-rays at each detector cell is then used to approximate the
CT image system, shown in Fig. 5.5a. Needless to say, this method is extremely
time-consuming and computationally intensive. Another commonly used approach
is to model the “shadow” cast by each image voxel onto the detector cells and rely
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(a) (b)

Figure 5.5: Common physical models used for the iterative reconstruction algorithm2. (a) The

pencil beam model; and (b) the point-response model.

on the point-response function to model the forward projection process of the CT
system. This point-response function is non-stationary and changes with the voxel
location to account for different magnifications and orientations, shown in Fig. 5.5b.
Comparatively, this method is computationally more efficient (Hsieh et al., 2013).

The statistical model or the noise model used in the iterative reconstruction
algorithm attempts to incorporate the statistics of the detected photons into the
reconstruction process. The random processes may include incident photon flux
variations, also known as the Poisson distribution. Though Poisson distribution is
still approximate due to the poly-energetic nature of the x-ray photons created by
the source in CT. In addition, the variation in the number of photons produced in
the scintillator by polychromatic x-ray photons, shot noise in the photodiodes, and
noise in the readout electronics all contribute to the noise in the images used in
the reconstruction algorithm. The most common noise model used is the zero-mean
Gaussian noise.

2Hsieh, J., B. Nett, Z. Yu, K. Sauer, J. B. Thibaut, and C. A. Bouman (2013). Recent

Advances in CT Image Reconstruction. Curr. Radiol. Rep., 1, pp. 39-51, with kind permission

from Springer Science and Business Media.
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Once both the geometry and noise of the CT system are properly modeled, a
cost function is chosen. The iterative process searches for the minimum of the cost
function, and the solution that minimizes this cost function is the reconstructed ob-
ject. This cost function, sometimes called an objective functional, typically consists
of two components: a data agreement term that evaluates the difference between the
experimental data and the data generated by the model, and a regularizing term,
sometimes called a penalty function that depends only on the object and serves as
a prior, such as positivity. If the functional is strictly convex, then the minimum
is unique, and all algorithms should obtain the same image if they were to run to
convergence. In practice, however, iterative algorithms may not be run to conver-
gence, and the resulting image depends on the algorithm, the initial estimate, and
the stopping rule.

5.3 Maximum-Likelihood Expectation-Maximization (MLEM) algorithm

In this project, we used the Maximum-Likelihood Expectation-Maximization al-
gorithm for the reconstruction process without any regularization functions. The
MLEM algorithm is shown in Eq. 5.4 (Wernick and Aarsvold, 2004), where gi are
the image pixel values over all projection angles and represent the attenuation val-
ues of x-rays through the object voxels onto each detector pixels, Hij is the imaging
matrix that models the x-ray imaging system and maps each object voxel value to
all image pixel value for all projection angles, and fj are the object voxel values, and
represent the x-ray attenuation coefficient of the object integrated over the object
voxel. The index j and k are used to represent the object voxels, and i is indexed
over image pixels on the detector for all projection angles.

f̂
(n+1)
j =

f̂
(n)
j∑

i′
Hi′j

∑
i

Hij
gi∑

k
Hikf̂

(n)
k

(5.4)

∑
k

Hikf̂
(n)
k takes the current object voxel values, f̂

(n)
k , and calculates its forward

projection image over all angles. The forward projection images are then divided
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into the data image vector, gi, over all angle. The result, gi∑
k

Hik f̂
(n)
k

, is a ratio

between the set of simulated projection images and the experimental data. This
ratio is then back-projected into object space, and is used to correct the estimate
of the current object. The next iteration for object voxels, f̂n+1

j , is calculated by
multiplying correction term by the current object voxel values, f̂

(n)
j , and scaled by

the sensitivity Sj. The sensitivity , Sj = ∑
i′

Hi′j, is calculated by summing the
H matrix over all detector pixels and projection angles, which represents the back
projection of the detector values from all projection angles onto the object voxel
values.

The most important factor in the MLEM algorithm is the imaging matrix, H,
that models the imaging system. The H matrix can be measured in PET or SPECT,
where a point source is scanned throughout the entire volume of the object, and sig-
nals are recorded for every object point at every detector pixel for all detectors.
To measure the H matrix for CT using this method is nearly impossible because
the H matrix would have to be astronomically large due to the number of detec-
tor pixels and projection angles. Instead of using a stored H matrix, we opted to
model the CT system and compute the H matrix as operators by calculating the
forward projection and backward projection processes on-the-fly using a Graphics
Processing Unit (GPU). The forward projection process is the equivalent of calcu-
lating ∑

k
Hikf̂

(n)
k in Eq. 5.4, and the same backward projection process is used to

calculate both the sensitivity, ∑
i′

Hi′j, and in computing the correction term to the
object, ∑

i
Hij

gi∑
k

Hik f̂
(n)
i

.

5.4 CT model and projector calculation

In x-ray imaging, the mean output of the mth detector element is a function of
many factors such as the size of the source, its temporal and spectral distribution,
the spectral and temporal response of the detector element and the x-ray attenuation
of the object that is also a function of incident x-ray energy. All of these factors
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must be integrated over their respective space along x-rays from the source to the
detector element in order to fully describe the mean value at the mth detector
element. Even if we make assumptions that the spectral response of the detector
is the same for all elements and is independent of direction and position of the
radiation, the attenuation coefficient of the object is independent of energy, we are
still left with a nonlinear equation that relates the attenuation coefficient of the
object to the value at the mth detector element, as

ḡm ∝
∫
P

d2r
∫
2π

dΩ dm(r, ŝ) Lp(r − ŝ�0, ŝ) exp
⎡
⎣−

�0∫
0

d�′μtot(r − ŝ�′)
⎤
⎦ , (5.5)

where, dm(r, ŝ) is the detector response function, Lp(r, ŝ) is the photon radiance of
the source, μtot(r, ŝ) is the object’s x-ray attenuation coefficient, and the equation is
integrated over P , the detector plane, and the solid angle, 2π ster collected by the
detector element (Barrett and Myers, 2004). This equation is nonlinear with respect
to the attenuation coefficient, which is what we want to estimate in reconstruction.
However, we can still take the logarithm of Eq. 5.5 and calculate its approximation
by expanding the exponential term in a Taylor series. The result is

ln ḡm ∝ −
∫
P

d2r
∫
2π

dΩ dm(r, ŝ)Lp(r − ŝ�0)
⎡
⎣ �0∫

0

d�′μtot(r − ŝ�′)
⎤
⎦ , (5.6)

which is now a linear function that relates the mean detector value to the attenuation
coefficient of the object. This equation describes a blurred ray from the source to
the mth detector element. If we make further assumptions that all x-rays originate
from a point source and that the detector response function is a delta function so

dm(r, ŝ) Lp(r − ŝ�0) ∝ δ(r − rm)δ(ŝ − ŝm), (5.7)

Then Eq. 5.5, becomes

ln ḡm ∝
⎡
⎣−

�0∫
0

d�′ μtot(rm − ŝm�′)
⎤
⎦ . (5.8)

The log of a detector element is linearly proportional to a line integral over the
attenuation coefficient of the object. If we approximate the object as a set of cubic
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voxels, where the value of each voxel is equal to the average attenuation coefficient of
the object over that voxel. Then this line integral is a summation of the attenuation
values of the voxels multiplied by the length of the ray that passed through the
voxels. For complete derivation of Eq. 5.5, refer to sections 16.1.4 and 16.1.7 in
(Barrett and Myers, 2004).

A pencil-beam model was used for both the forward and backward projection
process, where we assumed that each x-ray beam is launched from an infinitely small
x-ray point source. This pencil beam travels towards the geometrical center of each
detector pixel. Along the way, the contributions from every voxel for each ray is
calculated using Siddon’s algorithm (Siddon, 1985). This model does not account
for any scatter in the object, and it assumes that the x-ray beam is monochromatic.

Figure 5.6: The (a) forward and (b) backward projection process.

In the forward projection process, the final values at the each of the detector
elements represent the summation of the product between the length of the ray that
passed through each voxel and the value at each voxel, shown in Fig. 5.6a. This
final value at each of the detector element is lnḡm in Eq. 5.8. In the backward
projector, the order is reversed. We take the value at the detector element, trace
a ray backward through the object volume to the x-ray source. For every voxel
penetrated by that ray, we calculate the length of the ray that passed through the
voxel. This length is expressed as a fraction of the total ray length through the
object volume, and is multiplied by the value at the detector element, shown in
Fig. 5.6b. This process was repeated for all x-rays traced to all detector pixels.
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Figure 5.7: Considering a 2-dimensional object (a) as the intersection areas of orthogonal sets of

equally spaced, parallel lines (b).

In the next section we will explain briefly the Siddon’s algorithm and how we
modified the algorithm so it can be implemented on the GPU.

5.4.1 Siddon’s algorithm

Siddon’s algorithm is a method of calculating the exact radiological path for a
three-dimensional voxel array. Instead of directly calculating the intersections of
the ray with each pixel, it calculates the ray’s intersection with three parallel planes
in the object volume {x, y, z}. For simplicity, a 2-dimensional object is shown in
Fig. 5.7. Since the lines are equally spaced, it is only necessary to determine the
first intersection. The other intersections can then be automatically generated by
recursion.

For a 3-dimensional CT volume array of (Nx − 1, Ny − 1, Nz − 1) voxels, the
orthogonal sets of equally spaced, parallel planes can be written as,

Xplane(i) = Xplane(1) + (i − 1) dx (i = 1, ..., Nx),

Yplane(j) = Yplane(1) + (j − 1) dy (j = 1, ..., Ny),

Zplane(j) = Zplane(1) + (k − 1) dz (k = 1, ..., Nz),

(5.9)

where dx, dy, and dz are the distances between the x, y, and z planes, respectively.
They are also the lengths to the sides of the volume voxel. We can calculate a ray’s
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intersection with the initial and final planes of the volume array, initiating at the
point, P1 = (X1, Y1, Z1), and terminating at the point, P2 = (X2, Y2, Z2), by first
calculating a set of minimum and maximum parametric values for that ray using
the following equation,

αx(1) = Xplane(1) − X1

X2 − X1
, αx(Nx) = Xplane(Nx) − X1

X2 − X1
,

αy(1) = Yplane(1) − Y1

Y2 − Y1
, αy(Ny) = Yplane(Ny) − Y1

Y2 − Y1
,

αz(1) = Zplane(1) − Z1

Z2 − Z1
, αz(Nz) = Zplane(Nz) − Z1

Z2 − Z1
.

(5.10)

If the denominator, (X2 − X1), (Y2 − Y1), or (Z2 − Z1), is equal to zero, then the
ray is parallel to that particular plane, and the corresponding αx, αy, or αz will be
undefined and excluded from the calculation. These equations calculate the surface
planes of the CT volume against the initial and final points of the ray.

Figure 5.8: Siddon’s algorithm showing the minimum and maximum parametric values for a ray

passing through a 2D object array.
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Once the values from Eq. 5.10 are found, two parametric values that are used
to indicate the initial and final intersections of the ray with the object volume are
determined using,

αmin = max{0, min [αx(1), αx(Nx)] ,

min [αy(1), αy(Ny)] , min [αz(1), αz(Nz)]},

αmax = min{1, max [αx(1), αx(Nx)] ,

max [αy(1), αy(Ny)] , max [αz(1), αz(Nz)]}.

(5.11)

If αmax is less than or equal to αmin, then the ray does not intersect the object
volume and that ray will be excluded from the calculation. αmin and αmax are
scaled against the total distance between P1 and P2, and are valued between 0 and
1. These variables are shown in 2-dimensions in Fig. 5.8.

Once we have determined the intersections of the ray with the surface planes of
the object volume, we can then calculate the plane indices that will be intersected
by the ray inside the object volume using the following equations,

if (X2 − X1) ≥ 0

imin = Nx − [Xplane(Nx) − αmin(X2 − X1) − X1] /dx,

imax = 1 + [X1 + αmax(X2 − X1) − Xplane(1)] /dx.

if (X2 − X1) ≤ 0

imin = Nx − [Xplane(Nx) − αmax(X2 − X1) − X1] /dx,

imax = 1 + [X1 + αmin(X2 − X1) − Xplane(1)] /dx,

(5.12)

and with similar expressions for jmin, jmax, kmin, and kmax. Note that values when
(X2 − X1) = 0, (Y2 − Y1) = 0, and (Z2 − Z1) = 0 had been excluded from these
calculations. The indices are rounded towards nearest integers, though care must
be taken when calculating the indices near the object surface planes. In execution,
both the upper and lower bound integers were calculated, and the actual indices
were selected based on the values of αmin and αmax. This was done to avoid errors
that may occur in execution because the calculations were done using floating-point
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precision. The corresponding parametric values to each index are computed using,

αx(i) = [Xplane(i) − X1]/(X2 − X1)

= αx(i − 1) + dx/(X2 − X1)
(5.13)

with similar expressions for αy, and αz.

Once the parametric values {αx}, {αy}, and {αz} for the ray are calculated,
we can then determine the length of the ray that passed through a voxel by first
merging the parametric values into one large set as, {α} = {{αx}, {αy}, {αz}}, and
sorting {a} in ascending order from the lowest to the highest value. The path length
through a voxel can then be calculated using,

l(m) = d12 [α(m) − α(m − 1)] (m = 1, ..., n), (5.14)

where the quantity d12 is the distance between P1 and P2, and is determined by,

d12 =
[
(X2 − X1)2 + (Y2 − Y1)2 + (Z2 − Z1)2

]1/2
, (5.15)

and n is the number of elements in the set {a},

n = (imax − imin + 1) + (jmax − jmin + 1) + (kmax − kmin + 1) + 1. (5.16)

This calculation is graphically represented in Fig. 5.9 in two-dimensions.

To locate the particular voxel index, i(m), j(m), k(m), bounded by αm−1 and
αm, we can use the following equation,

i(m) = 1 + [X1 + αmid(X2 − X1) − Xplane(1)] /dx,

j(m) = 1 + [Y1 + αmid(Y2 − Y1) − Yplane(1)] /dy,

k(m) = 1 + [Z1 + αmid(Z2 − Z1) − Zplane(1)] /dz,

(5.17)

where αmid is,
αmid = [α(m) + α(m − 1)] /2. (5.18)

Finally, the total radiological path, d, for one ray may be calculated using,

d =
m = n∑
m = 1

l(m)ρ [i(m), j(m), k(m)]

= d12

m = n∑
m = 1

[α(m) − α(m − 1)] ρ [i(m), j(m), k(m)] ,

(5.19)
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Figure 5.9: A detailed view of the variables for the Siddon’s algorithm in 2-dimensions.

where ρ [i(m), j(m), k(m)] is the voxel value of the object volume at voxel index
i(m), j(m), k(m).

Normally, d is calculated using a loop until a desired number of rays are reached.
However, each ray corresponds to one detector element and is independent of each
ray. We can utilize the GPU’s parallel computing capability to trace all rays simul-
taneously by assigning one CUDA thread per ray.

The ray-trace process can be accomplished by following the Siddon’s algorithm
up until Eq. 5.12. Since each ray is traced simultaneously, we cannot calculate and
presort the entire set, {α}, for each ray on the GPU. Instead we opted to calculate
and sort {α} on-the-fly, where parametric values αx, αy, and αz are calculated
simultaneously and independently on the GPU device memory for each ray starting
with αx(1), αy(1), αz(1). A loop is used to trace the rays from beginning to end.
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Each time the loop executes, the minimum of the three values is found, we then
increment the alpha index by 1 only for the parametric value of the corresponding
plane. This minimum value is set to α(m) and is used to calculate for d along with
the value from the previous loop, α(m−1). The loops are carried out until all values
in the set, {α}, were computed because we know both αmin and αmax from previous
calculations and all the indices of the object planes for all rays. In addition, because
the number of elements, n, in the set, {α}, can be calculated using Eq. 5.16, we can
also set the loop to run for a fixed number of iterations equal to the ray with the
maximum n while setting a proper terminating condition for all other rays in the
loop so the extra loops does not effect rays that have already completed the trace
process. As a result, α is not computed all at once, but rather computed and
sorted on-the-fly where only the most current of the two values, α(m) and α(m − 1)
are stored in device memory. Figure 5.10 shows a diagram of the Siddon’s algorithm
implementation in CUDA.

5.4.2 Forward and backward projector calculation

The forward projector was implemented following Siddon’s algorithm and Fig. 5.10,
where each x-ray originates from the x-ray point source and travels to the pixel center
of each detector element. The object voxel contribution to the ray was calculated
using Eq. 5.19. The treatment for the backward projector is very similar to the
forward projector, with exception to an added CUDA function, atomicAdd(). In
the forward projection, each voxel index is calculated from the ray intersections with
the planes of the object volume, and the contribution of voxel values to each ray is
independent of other rays (i.e. the voxel values were read by the CUDA threads via
read-only access, and tracing rays only involved reading the object voxel values).
However, in the backward projection the CUDA threads require that the object
voxels need to have both read and write access, but since different ray needs access
to the same voxel and the voxel value changes depending on the access sequence of
the threads. This requires an additional step of using atomicAdd() function that
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guarantees access to the voxel value is sequential and without interference from other
threads. In other words, no other thread can access this address until the operation
is complete. For further information about this function refer to the CUDA toolkit
documentation (NVIDIA, 2014). Note because of this additional function, most
of the bottleneck to the MLEM algorithm occurs here. Another bottleneck occurs
when {α} is being sorted.

5.4.3 Sensitivity calculation

Figure 5.11: Algorithm for sensitivity calculation.

The sensitivity voxels, ∑
i′

Hi′j in Eq. 5.4, represents the contribution of all detec-
tor values at all projection angles on the object volume. The procedure to compute
the sensitivity volume is to first set all detector values to one, then back filling the
object voxel values using the back projector for all scanned angles, S = H t1. The
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Figure 5.12: A Central slice of the sensitivity volume calculated using a fixed CT geometry and

scan angles for three different object volume setup.

values in the sensitivity volume depends on the geometry of the CT system, number
and size of the object volume, number of detector pixels, and scan routine. As a re-
sult, it is always computed in the beginning of every reconstruction event. However
if one were to use a different data set while keeping geometry, object volume, and
detector pixels constant, then sensitivity volume does not need to be recalculated
and can speed up the reconstruction process.

The actual sensitivity of the CT system depends only on the CT geometry. The
sensitivity volume that is calculated in the reconstruction algorithm requires both
the CT geometry, scan routine and object voxel parameters that are defined in the
parameter sheet. When setting up the parameter sheet for reconstruction, the voxel
volume parameters specify the region of space that will be reconstructed. Ideally,
we want the targeted regions of the object to lie within the sensitive regions of
the CT system so all rays traced from the x-ray source to the detector pixels will
pass through the targeted region at every single projection angle. Sometimes it
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(a)

(b) (c)

Figure 5.13: A slice of the reconstructed phantom in the (a) x-y plane (b) x-z plane, and (c) y-z

plane, calculated using 512 × 512 × 128 voxels after 10 iterations, where each voxel size is 0.25

mm × 0.25 mm × 0.5 mm in the x, y, and z direction.

is advantageous to perform a test run by calculating only the sensitivity volume
before calculating multiple reconstruction iterations to ensure that the size of the
object volume is within the sensitive region. Figure 5.12 shows a central slice of the
sensitivity volume for three different object volume setups with a fixed CT geometry
and scan routine. Figure 5.12a shows that the object volume is smaller and is within
the sensitive region of the CT system. Figure 5.12c shows that much of the object
volume lies outside the region, so much of the GPU memory and processing power is
wasted in this setup. Figure 5.12c shows that majority of the object lies within the
region. This is the optimum setup for reconstruction because we are not wasting
GPU memory and processing power by computing voxels that do not lie inside
the CT field of view defined by the detector and CT geometry. We are also not
restricting ourselves to a smaller field of view than necessary, as in Fig. 5.12a.

5.4.4 Reconstruction results

We took CT projection images of the breast phantom that was used in the DR
system. Figure 5.13 shows a few slices of the reconstructed object after 10 iterations
using 512 × 512 × 64 voxels. Each voxel is 0.25 mm × 0.25 mm in the x-y plane,
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and 1 mm in the z-axis.

We have noticed that, dx and θy are the two parameters in the CT system that
are most critical for obtaining accurate reconstruction images. To demonstration
this, we have calculated projection images of a thin rectangular box in simulation
using the same CT geometry as the breast phantom used in Fig. 5.13. The box is
32 mm long and the cross section of the box is 0.75 mm × 1.75 mm oriented so
its long axis is parallel and centered on the z-axis (rotation axis). Reconstruction
slices are shown in in Fig. 5.14 with small amount of deviation introduced to dx, dz,
θx, θy, and θz to simulate mis-calibration. We can see that even if dx is perturbed
by 0.5 mm, the resulting reconstruction slices present a ring structure around the
object. When θy is changed by 1°, then the resulting reconstruction image slices
also present a ring-structures, however, the size of this ring structure changes in
different slices. A shift in dz is similar to moving the object in the z-axis, so the
reconstruction slice is located at a different vertical position on the object. A change
in either θx and θz are less noticeable. In fact, even when θx or θz are perturbed by
as much as 10°, the reconstruction slice shows little change. The length of R and
Rf specify the x-ray magnification, so a mis-calibration in either one of the values
results in the reconstructed object size to change. The size of the reconstructed
object is also affected by the optical magnification. So when the object size is wrong
in the reconstruction, it is difficult to know whether the error is due to a mistake in
optical magnification or mis-calibration in R and Rf . For more on how to use the
reconstruction program, refer to Appendix B.

5.5 Summary

In this chapter we have described the reconstruction method used for the prototype
CT system. We first began by providing an overview of different types of recon-
struction techniques. Then, we described the MLEM method that was used in our
system. The forward and backward projectors were calculated based on Siddon’s
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method and the entire reconstruction algorithm was implemented on the GPU. We
have shown a reconstructed object and noted some of the artifacts that can be cre-
ated by mis-calibrating the system. The reconstruction code is sourced controlled
using git, and a copy of the reconstruction code can be pulled from a public reposi-
tory at: https://hxfan@bitbucket.org/hxfan/ct_reconstruction.git.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The introduction chapter gave a brief overview of the two types of digital radiography
systems used in the market today. In both types of systems, the size of the detector
panel is equal to the size of the x-ray image. We have discussed a type of DR system
where a lens is used to image an x-ray phosphor screen onto a digital camera. In
order to cover a large field of view, the lens demagnifies the visible-light image
created by the phosphor onto the camera sensor. One motivation behind the lens-
coupled digital x-ray detector system was that it can be used in countries where
access to modern medicine can be difficult. We provided the equations to calculate
the collection efficiency for the lens-coupled system in chapter 1.

In chapter 2, we demonstrated this idea by building a low-cost portable digital
radiography unit (with special thank you to Brian Miller, Jared Moore, Stephen
Moore, Heather Durko, and Lars Furenlid). Pictures taken in Nepal using the
hospital x-ray source were compared to images taken with our system and their the
film-screen technique. We observed that the method used to develop x-ray films
was less controlled in the Nepalese villages compared to the methods that were
used in the US. As a result, spots was observed in the x-ray film. These spots are
non-existent in the image acquired using our system.

In chapter 3, we simulated a computed-tomography system to calculate the per-
formance of a lens-coupled detector system using the channelized-Hotelling observer.
We found that the angular correlation information in the data can be used to calcu-
late signal detectability. This method can be very useful in optimizing an imaging
system.

In the planar imaging system, we have observed the effect of blur by the phosphor
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screen and the camera lens by measuring the system resolution and the noise power
spectrum. The noise power spectra were measured for the three different cameras
described in chapter 2, and for three different magnifications. These experiments
were described in Appendix D. In the near future, we would like to look at the effect
of the blur by comparing the three cameras for a signal detection task with different
number of incident x-ray photons and with different number of photoelectrons per
x-ray photons. We would also like to observe the effect of blur for a camera by
comparing its performance in uniform and lumpy background for a range of x-ray
photons.

The planar imaging system worked very well, and we were also interested in ap-
plying the same concept to a computed tomography (CT) system. The construction
of this system was shown in chapter 2. This prototype CT system can be used to
test the performance of the lens-coupled concept using different cameras. It is capa-
ble of acquiring projection images by rotating an object over 360 degrees. Once the
system was built and the hardware units were integrated in LabView, the calibration
of the system was described in chapter 4. An iterative reconstruction algorithm for
the system was written using CUDA. This reconstruction algorithm and results of
the CT reconstruction using a DSLR camera were presented in chapter 5.

While we were constructing the CT system, both Nikon and Leica released newer
cameras using large sensors that do not have color filters. The one by Nikon is a
CMOS senor while the Leica uses a CCD. The specification of the Nikon camera
indicated that it has a much higher quantum efficiency in the Gd2O2S:Tb’s emission
spectrum. It will be very interesting to test the camera and compare its performance
with the Princeton and Andor camera. It will also be interesting to test the perfor-
mance of these cameras using columnar CsI instead of Gd2O2S:Tb to see if spatial
resolution can be improved. However a large CsI will be expensive. The ability to
scan in helical orbit can be implemented to improve the CT system. Finally the
detective quantum efficiency of the detector system can be measured and compared
to other commercial DR systems.
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APPENDIX A

PARTS LIST

A.1 CT system-shutter

Component Manufacturer/Vendor Part NO.

Rotary solenoid Ledex H-2995-025
Shutter plate Tungsten Heavy Powder & Parts custom
Optical switch Digikey OPB-981-T51Z

Table A.1: Main components used for the shutter.



119

Symbol Part Number/Value Description
U1 SN74AHC1G04 Single schmitt-trigger inverter gate
U2 LM556 Dual timer
U3 SN74ACT08 Quadruple 2-input positive-AND gates
C1 10 nF Capacitor
C2 680 nF Capacitor
C3 10 nF Capacitor
C4 10 nF Capacitor
R1 100 kΩ Resistor
R2 51 kΩ Resistor
R3 24 kΩ Resistor
R7 100 Ω Resistor
R8 100 Ω Resistor
R9 510 Ω Resistor
R10 510 Ω Resistor

D1-D3 1N4148W-TP General Purpose diodes
N/A 100 nF Capacitors for the back of the board

Table A.2: Components used for the solenoid board
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APPENDIX B

RECONSTRUCTION CODE

The reconstruction code can be pulled from a public repository at: https://hxfan@

bitbucket.org/hxfan/ct_reconstruction.git.

The main class used to calculate image reconstruction is called: sid-
don_recon. This class has three main functions, a1_FORWARD_PROJECTION(),
a1_RECON_MLEM(), and a1_BACKWARD_PROJECTION. The function that
is used to for image reconstruction is called a0_RECON_MLEM, which is an itera-
tive MLEM algorithm. The forward and backward projection functions can be used
for simulation. The forward projection function can be used to calculate projection
images of a simulated phantom. This function can be very helpful in diagnosing
problems occurred in the reconstruction due to a mis-calibration especially when
the simulated phantom can be printed using a rapid prototype printer. Phantoms
designed in SolidWorks can be used as input in the forward projection function.
For detail converting SolidWorks models to binary file is found in Jared Moore’s
dissertation (Moore, 2011).

The input for all three functions is a configuration text file, which sets the ge-
ometry of the CT system, detector size, object volume, and scan parameters. This
text file is used to modified the parameter values without recompiling the recon-
struction code. The configuration file also includes the file paths of the projection
images for the reconstruction and backward projection function, and the object vol-
ume file name for the forward projection function. The file paths were setup so the
images used in the backward projection and reconstruction function do not need to
be loaded into the computer’s RAM all at once, which saves a lot of the computer’s
memory since the projection images can be quite large.
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Once the reconstruction code is compiled, the program will first check for data
files and size consistencies against the values in the configuration file before pro-
ceeding to do any calculations. However, it will not check for the memory size so
one must make sure both the host and device has enough RAM for the calculation.
As a default setting, after each MLEM iteration, the reconstruction function will
write the reconstructed object to a file in the folder set in the configuration file, if
the folder is left empty, then folder that house the projection images will be used. A
configuration file will also be written to the same file location as the reconstructed
object at the end of the execution to record the values that was used in reconstruc-
tion algorithm. This file has the extension, “.info” to differentiate between the input
configuration file that normally has the extension “.cfg”. All outputs of the functions
are written in binary in “little-endian” as floats. The inputs used in the functions
are also required to be saved in the same format.

The origin, (0, 0, 0), is located at the center of the object volume. A shift can be
added to the object volume under “object parameters”. The default detector center
is calculated with respect to the number of transaxial and axial pixels, a shift can
be added to indicate that the projection images on detector are shifted. This can be
useful if the projection images from the camera are cropped with a shift off-center.

The version control software, git, can be downloaded at: http://git-scm.com/.
It can be used for any types of files, such as LabView vis, MatLab scripts, C++/C
files, and tex files. A quick tutorial can be found at http://git-scm.com/docs/

gittutorial.
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APPENDIX C

MOFFITT MULTI-MODALITY IMAGING SYSTEM

C.1 Introduction

The Moffitt box is a multi-modality imaging system that was built to image tu-
mor cells grown within the window chambers on mice. In addition to white light,
the system can be used to detect and track cell growth by imaging the red and
green fluorescent proteins that were transfected on the tumor cell lines in mice.
The system can also be used to image positrons and electrons emitted from radio-
pharmaceuticals, which are injected into mice to track cancer cells and their growth.
The system has also been shown to image Cherenkov radiation. The design of the
system was inspired by Dr. Katherine Creath. This imaging system was built and
later delivered to the Moffitt Cancer Center in Florida on 2/7/2011.

C.2 Design and Construction

The exterior chamber of the system is constructed by welding 1/16′′ steel plates
to avoid light leaks at the corners and edges of the enclosure. The exterior of the
chamber was powder coated to create a black matte finish. The welding and powder
coating was provided by R&R Electrical Manufacturing Co. in Tucson. The interior
of the chamber was spray painted in-house using Nextel Suede-coating 3101 and 5523
primer to minimize reflection with the inner chamber surfaces. A copper plate and a
grounding cable were attached to the outside of the chamber to avoid static charges
from building up on the chamber surfaces. Ten individual openings located in a
small unit at the back of the chamber allow various cables to be fed through. The
front and back of the system are shown in Fig. C.1.



123

F
ig

ur
e

C
.1

:
T

he
(a

)
fr

on
t

an
d

(b
)

ba
ck

of
th

e
M

offi
tt

im
ag

in
g

sy
st

em
.



124

(a) (b)

Figure C.2: (a) The light source used on the Moffitt box and (b) a light pipe supported by a

flexible arm and magnetic base inside the chamber.

The Moffitt imaging system uses a powerful Xenon white light source (MAX-302,
300W Asahi Spectra). The light source can house up to eight 25 mm color filters,
which can be used to adjust the spectrum of the output light. These filters are used
to excite the tumor cells within the window chamber that were transfected with
fluorescence protein. Filters for both red fluorescent and green fluorescent proteins
were purchased for the Moffitt imaging system. The output of the light source is
connected to dual-head light pipes (purchased from Asahi Spectra), and are inserted
through the top of the chamber. Light-tight seals are applied at the entrances using
pipe grommets and black silicone caulk. Black heat-shrink tubes are used to cover
the light pipes to avoid reflection with the pipe’s surfaces inside the chamber. Two
flexible and adjustable arms with magnetic-base are used to hold the light pipe
tips, and are used to adjust the illuminations on the window chamber. These were
purchased from McMaster-Carr. The light source and one of the flexible arms are
shown in Fig. C.2.

The images are captured using an ultra-sensitive CCD camera that is mounted
to the top of the chamber with an opening for the CCD sensor. The camera used is
the PIXIS 2048B from Princeton Instruments. A rubber gasket is placed between
the front surface of the camera and the chamber’s top surface to create a light-tight
seal. Typically, two F/1.2 50mm lenses are mounted in a snout-to-snout fashion with
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(a) (b)

Figure C.3: (a) The filter slide can be mounted between two 50 mm lens and can accommodate

up to three emission filters.

both lenses set to focus at infinity in order to achieve unit image magnification. The
Moffitt system also includes a telephoto lens, which allow images to be taken under
different magnifications. Various magnifications can be adjusted by changing the
focal length of the telephoto lens. The focal lengths ratio between the two lenses
provides the magnification of the imaging system. A filter slide was designed and
printed using rapid prototype printer. This slide contains two pieces, an outer
housing that is used to attach the lenses at the front snout, and an inner tray so
emission filters can be placed inside. For red fluorescent protein (RFP), we excited
the protein with a filter centered at 561 nm (bandwidth = 14 nm), and collected
the light emission using a filter centered at 609 nm (bandwidth 54 = nm). For
green fluorescent protein (GFP), we used a filter centered at 482 nm (18 nm) for
excitation, and a filtered at 525 nm (45 nm) for emission. The filter selection can
be adjusted by pulling the plunger and sliding the inner tray to the target filter
position. The lens and filter slide are shown in Fig. C.3.

The mouse with window chamber can be secured by a plastic holder. The plastic
holder is machined with three small holes so screws from the window chamber can
be placed inside to ensure the mouse does not move during experiments. The plastic
holder is placed on a horizontal platform that is connected to a vertical translation
stage. During experiments, the window chamber is adjusted into the focus of the
camera and lens system by moving the vertical stage (Newmark NLS8 500 mm).
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Figure C.4: Program front panel to control horizontal and vertical stages.

Two horizontal stages each controlled with a linear actuator are used to change the
lateral positions of the window chamber on the platform. The vertical and hori-
zontal stages are communicated through their respective motion controllers using a
program written in LabView. The front panel of the LabView program is shown
in Fig. C.4. A modification was made to the vertical motion controller so the LED
limit switches that were used on the stage can be turned off during image acquisi-
tion. The modification was done by toggling the power to the LEDs using an unused
serial cable pin on the motion controller. The voltages to the serial pin were used
to turn the limit switch LEDs on and off. This modification was done with helps
from Dr. Lars Furenlid.

For fluorescence imaging, the appropriate excitation and emission filters are se-
lected for the target protein labeled on the cells. For electron or positron imaging, a
thin scintillator film is placed on top of the window chamber with the glass covering
removed so the visible photons emitted from the scintillator film by incident charged
particles are collected onto the camera sensor. For more information regarding the
imaging techniques, refer to Liying’s work (Chen et al., 2009). Images of a mouse’s
window chamber taken under white light, fluorescence from RFP, and electrons from
18-F are shown in Fig. C.5.
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(a) (b) (c)

Figure C.5: The image acquired with a window chamber using (a) white light, (b) fluorescence

from RFP, and (c) visible light emitted from the scintillator film created by incident electrons,

which are released by the injected FDG-18F.
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APPENDIX D

NOISE POWER SPECTRUM COMPARISON

We have acquired x-ray images using three different digital cameras, the Andor Neo,
the Princeton PIXIS 2048B and the Nikon D700 that were described in chapter
2. Each camera was placed behind an x-ray screen (Lanex Gd2O2S:Tb) and a
commercial lens (Nikkor F1.4G 50 mm) was used to couple the image from the x-
ray phosphor screen onto the camera sensor. Each lens-camera system was placed
at three different distances behind the phosphor screen, and uniform x-ray flood
images were acquired at different magnification settings. The highest magnification
was 1, where a 1 mm sized image at the x-ray screen produces a 1 mm sized image
on the camera sensor. This was done by using two identical lenses so the entrance
pupil of one lens is adjacent to the other, with both lenses set to focus at infinity,
as shown in Fig. D.1. The images acquired with the two magnifications less than
one were performed using only one lens, and the cameras were placed away from
the screen so the magnfication equals to 1/6.5 and 1/13.5 (i.e. a 1 mm object at
the screen produces a 1/6.5mm and 1/13.5mm image at the detector respectively).
All images were acquired using the same camera integration time (5 seconds) and
x-ray tube setting (90 kVp 0.4 mA).

We have demonstrated previously that the lens itself is capable of stopping ma-
jority of direct x-rays without any damage to the camera sensor. However, scattered
x-ray photons can still enter the camera sensor. For the highest magnification (m
= 1), the lens pairs and camera were placed inside a lead-lined box with an open
entrance for the lens. This box was used to prevent scattered x-rays from hitting
the camera sensors. Images taken at the latter two magnifications were acquired by
placing a 45° folding mirror between the x-ray screen and the camera to avoid direct
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Figure D.1: The setups to acquire images for magnifications = 1, 1/6.5 and 1/13.5.

x-rays. Additional lead shields were placed around the camera to reduce scattered
x-rays from hitting the sensor.

D.1 Measuring noise power spectra

The typical way of measuring noise power spectrum (NPS) is to use one x-ray flood
image and divide it into smaller non-overlapping regions. Each smaller region is
then de-trended to eliminate background non-uniformity in the image before a two-
dimensional Discrete Fourier Transform (DFT) is applied to each region (Dobbins III
et al., 2006; Samei and Flynn, 2003; Zhou et al., 2011). The two-dimensional noise
power spectrum image is calculated by computing the variance over the number
of image regions from the same x-ray image. The assumption is that after de-
trending, the remaining noise in each image region is due to the noise in the detector.
The second assumption is that there are no correlations between opposite ends of
each image region. Since the DFT only diagonalizes a circulant matrix, while the
continuous Fourier tranform diagonalizes a Toeplitz matrix. This method ignores
any wrap-around effect the DFT can contribute and any-off diagonal component in
the covariance matrix is assumed to be zero.

A more tedious method of measuring NPS, but one that requires fewer assump-
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Figure D.2: The central horizontal and vertical axis of the 2-D NPS measured at m = 1.

tion, is to repeat the same x-ray measurement multiple times and extract only one
uniform region from each image. The NPS is then calculated over a succession of
images rather than smaller regions of the same image. This was done in all of our
noise power spectrum measurements.

The NPS for each camera is calculated using two sets of data acquired while the
x-ray tube was turned on. One set of 100 repeated x-ray flood images, and one set
of 100 repeated dark images taken with the lens cap in place. A smaller uniform
section of 256 × 256 pixels was extracted from each full-sized x-ray flood image and
the variance of the DFT coefficients were computed across the 100 images. This
calculation was also performed on the same section of 256 × 256 pixels extracted
from the set of dark images. The one-dimensional NPS is then plotted in log scale
at the central axis of the two-dimensional NPS image in both the horizontal and
vertical directions.

D.2 Results

The horizontal and vertical axis of the two-dimensional NPS measured at magnifi-
cation = 1, 1/6.5 and 1/13.5 are shown in Fig. D.2 - D.4, where the log of the noise
power spectrum is plotted against spatial frequency.

The NPS for each camera cuts off at different frequencies because they were
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Figure D.3: The central horizontal and vertical axis of the 2-D NPS measured at m = 1/6.5.
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Figure D.5: Covariance matrices calculated using 100 images taken with the Andor Neo camera

at magnification = 1 and 1/13.5. Each image region is 16×16 pixels.

all calculated using image regions with the same number of pixels (256 × 256), but
each camera has a different pixel size. The sampling cut-off frequency for the camera
with largest pixel size (Princeton) is lower than for the D700 and the Neo that have
smaller pixel sizes.

The NPS measured at magnification = 1 for all three cameras exhibit a Gaussian
peak centered at the zeroth spatial frequency. These were not seen at the two lower
magnifications. The Gaussian peak is due to the spatial blur created by interacting
x-ray photons at the phosphor screen and the effect of the point spread function by
the lens.

The diagonal elements of the covariance matrix calculated using the DFT co-
efficients are the two-dimensional NPS, while the off-diagonal elements are often
ignored. Fig. D.5 - D.7 show the covariance matrices calculated using 100 images
each with 16 × 16 pixels taken at magnification = 1 and magnification = 1/13.5. The
off-diagonal elements can clearly be seen in the images taken at unit magnification
compared to images taken at lower magnification.

There was little difference between the horizontal and vertical axis of the NPS
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Figure D.6: Covariance matrices calculated using 100 images taken with the Nikon D700 at

magnification = 1 and 1/13.5. Each image region is 16×16 pixels.
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Figure D.8: The central horizontal and vertical axis of the 2-dimensional NPS measured using

dark frames acquired with the x-ray tube turned on.

measured in both the Princeton and the Andor cameras under all three magnification
settings. The Nikon D700 has 12 parallel high-speed readout channels that allows the
voltage signals from multiple columns to be read out simultaneously. The parallel
readout process shows up on the NPS in the horizontal axis as periodic sharp peaks.
This effect can be seen more clearly in the NPS calculated using the set of dark
images, shown in Fig. D.8.

The noise power spectra of the dark images for all three cameras are not flat,
which can be caused by scattered x-rays interacting directly with the camera sensors.
Although the majority of direct and scattered x-rays are stopped by either the lens
or the lead shields, a few scattered x-rays photons will inevitably land on the sensor.
Each scattered x-ray photon shows up in the image as a small cluster of high-valued
pixels. In order to account the effects of these scattered x-ray photons on the overall
noise power spectrum, a set of dark images were taken using a lens cap while the x-
ray tube is turned on so the scattered x-rays are also present in the dark frames. The
noise power spectra shown in Fig. D.2 - D.4 were the final result after subtraction
with the NPS calculated using these dark images.

We verified the effects of scattered x-rays on the noise power spectrum by taking
another set of dark images without turning on the x-ray tube. These plots are
shown in Fig. D.9. In both the Andor and the Princeton cameras, the noise power
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spectra are flat, which indicates that only white noise is present in the dark frames.
The Nikon D700’s NPS indicates that there is inherent noise pattern on the sensor.
Contrary to both scientific cameras, we noticed that the effects of scattered x-ray
photons were not present in the images taken with the Nikon D700. Also, the
values in the dark images from the D700 were close to zero although there is no
cooling capability. We credit these differences and the patterns shown in the dark
NPS to the proprietary on-board image processing algorithm used by the camera.
This algorithm, which actively suppresses noise and thresholds each image before
it is read out, cannot be turned off. The use of this algorithm also explains why
there are few differences between the NPS of the dark images taken with the x-
ray tube turned on and the images acquired with the x-ray tube turned off using
the D700 camera. A smaller difference in the magnitude of the noise is observed
between the two sets of dark images taken with the Andor camera compared to the
Princeton CCD camera. This is because the Andor camera also has an on-board
noise suppressing filter that corrects hot pixels by replacing the noisy pixels with
the mean values of the neighboring pixels. However, the filter used in the Andor
camera is not as robust as the one used in the D700, so the effects of scattered x-ray
photons are still seen in images acquired with the Andor camera . The Princeton
CCD does not have noise suppressing capability, so the effects of scattered x-ray
photons are much more prominent. As a result, the NPS of the dark images taken
with the Princeton camera is higher than both the Andor and Nikon cameras.

The NPS level on the horizontal axis is higher than on the vertical axis for
the Andor camera. This level is shown in the NPS of the dark images taken with
and without x-rays, Figs. D.8 and D.9. We have noticed that the dark frames of
the Andor camera exhibit striping patterns in the column direction as shown in
Fig. D.10. We contribute this to the fact that each column in the Andor sensor uses
a different amplifiers so small variations between these column amplifier cause small
differences in the horizontal and vertical axis of the NPS. We verify this presence by
looking at one dark image. When the dark image is summed over columns and rows,
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Figure D.9: The central horizontal and vertical axis of the 2-D NPS measured using dark frames

acquired without x-rays.
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the noise variance across columns is higher than the noise variance across rows, seen
in Fig. D.10.

In traditional film photography, the ISO-number indicates the sensitivity of the
film to light level, often referred as the speed of the film. Bright scenes are taken
using low speed films and darker environments are taken with films that have a
higher ISO-number. This concept is carried over to consumer-grade digital cameras
even though they do not employ film. The ISO-number on a DSLR indicates that
the sensor will behave in a way similar to a film with the same ISO at the same light
level. While changing the ISO in a film camera involves switching to a different film,
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the sensor used in a DSLR cannot be changed. The sensitivity of the detector, the
number of photoelectrons produced at a particular light level, does not change under
different ISO settings in a DSLR camera. The variations in ISO setting is achieved by
selecting different reference voltages used by the gated integrator. The same number
of photoelectrons produced at different ISO settings are assigned to different output
values by the analogue-to-digital converter (ADC) after amplification. This method
produces a nosier image at higher ISO settings because the small amount of noise
present in the electronic circuit that would otherwise be assigned to values closer
to zero at low ISO is amplified and assigned to much larger values. The result is
seen in the difference between the noise spectra calculated using images taken by
the Nikon D700 at ISO-1600 and at ISO-6400. The NPS differ by a factor of 16,
which translates to signal gain of 4 from images taken at ISO-1600 to those taken
at ISO-6400.
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