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ABSTRACT

Nonlinear photonics has provided a scientific cornerstone for a majority of mod-

ern technology during the past half-century, such as diversifying laser wavelengths,

manufacturing nanostructures, and guiding the design of telecommunication sys-

tems. Moreover, it keeps supporting the emergence of novel applications, includ-

ing high-resolution spectroscopy, atomic clocks, and especially quantum technology.

However, in photonic quantum state engineering, current recipes for design and mod-

eling are impotent in specific quantum applications, for which advanced techniques

are urgently needed. In this dissertation, the quantum-level interplay between the

linear response of integrated photonic devices and multiple nonlinearities within

the system has been investigated in detail. We utilize these interactions to man-

age the generation of limit-breaking quantum photonic states, including customized

temporal-spectral entanglement, high-brightness quantum sources, and high-purity

quantum states.
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CHAPTER 1

Introduction

In nature, most systems are inherently nonlinear, such as the biosphere we live in

and the intelligence we have. Unlike linear systems, whose solutions can be clearly

determined by a linear transformation, the states and dynamics of nonlinear sys-

tems can not be described as a linear combination of any characteristics. A simple

modification of the input may influence the system and lead to a counterintuitive

output. Therefore, a plethora of phenomena, either beautiful or chimerical, har-

monic or chaotic, can be tailored from nonlinear systems. This built-in enigma

makes the physical world unpredictable with partial knowledge but o↵ers surprises

at any time.

Fortunately, nonlinear systems are not always too complex to be solved by hu-

mankind. Scientists have examined some simple nonlinear systems in laboratories

and learned their possible behaviors. During the past half century, the rapid devel-

opment of mathematical modeling and computing technologies has provided various

tools for e�ciently solving and simulating simple nonlinear systems, which accu-

mulates more insights towards real complex systema. With these techniques, we

understand the world and its dynamics better than ever. Now, we benefit from

the short-term forecast for weather, astronomy, and even some parts of the global

economy.

Nonlinearity does not only produce puzzles. However, it could be a key to

solving the puzzles. There are many practical nonlinear systems embedded into

the apparatus that keep rolling our world into new eras, including engines and

aerodynamics for transportation, semiconductors for computers and smartphones, as

well as laser systems and optical amplifiers for the Internet. In recent years, scientists

also find that the nonlinearity in the computation models is essential for achieving

artificial intelligence, which, if possible, will bring a huge wave of revolutions to
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our lives. Therefore, it could be confidently predicted that, in the future, more

newly-designed nonlinear systems will be applied to technologies around us.

Among known nonlinear systems, nonlinear photonics contain fruitful research

topics tightly bonded with the information technologies and beyond, such as laser,

imaging, communication, sensing, and computation. They enjoy incomparable ad-

vantages of the highest traveling speed and high bandwidth. Moreover, applications

based on nonlinear photonics have the potential to be miniaturized and integrated

into chip-scale devices. They benefit from less energy consumption since a smaller

volume of optical fields will provide higher energy density and nonlinearity.

To date, nonlinear photonic phenomena keep drawing interest from scientists

and engineers as there are challenges toward profitable upgrades over the current

technology. On the other side, nonlinear photonics has already been shining for

decades in quantum information processing. Quantum photonic platforms can be

operated at room temperature by choosing high-frequency photons as the informa-

tion carrier. They are also the only solution to e�ciently convey quantum informa-

tion through long distances, such as quantum communication and quantum remote

sensing. Photonic nonlinearities are needed to generate designated quantum states,

such as squeezed state, and operate them universally. Despite the importance, the

current recipes in quantum state engineering are less e↵ective than the requirements

of most promising applications. New techniques for exceeding the current limits are

necessary.

Fortunately, since photonic nonlinearity fundamentally derives from the light-

matter interactions at the sub-wavelength scale, it is possible to overcome the limits

based on recent developments of nonlinear integrated photonics. They enable the

fabrication of nano-scale artificial geometries that can enhance and modify the non-

linear e↵ects by their fruitful linear responses. This dissertation primarily concen-

trates on our recent discoveries and developments in integrated nonlinear photonics

as they can provide insights and solutions to some challenges in quantum state

engineering.

To understand the novel e↵ects enabled by integrated nonlinear photonics and



15

their impact on applications, it is necessary to prepare the necessary mathematical

tools and physical models beforehand. In Chapter 2, we are going to introduce

a simplified interpretation of the quantized electromagnetic fields, the concept of

photons, and the squeezed bosonic fields. Hence, the leading nonlinear photonic

e↵ects can be clearly mapped onto photon-photon interactions. We then discuss

the linear and nonlinear dynamics in a photonic cavity. In the end, the cascaded

nonlinearities are introduced.

In Chapter 3, we show that a single photonic cavity can show linear properties

of dressed modes [1]. Combined with the nonlinear e↵ect, we can experimentally

generate the photonic Mollow triplet by the four-wave mixing. This unveils the

symbiosis between the linear and nonlinear properties of a single photonic cavity.

In Chapter 4, we demonstrate that the interplay among the linear responses

and multiple nonlinear e↵ects of a single photonic cavity can significantly alter the

e↵ective Kerr nonlinear coe�cient without redesigning the device [2]. It enables

the first in-situ control of the third-order nonlinearity of a fixed structure. The

manipulated coe�cient is reflected from the photon-pair-generation rate by the four-

wave mixing.

Moreover, in Chapter 5, we directly see the change in the e↵ective Kerr nonlin-

ear coe�cient by monitoring the self-phase modulation strength [3]. It is also the

first proof of the reconfigurable phase relation between third-order and cascaded

second-order nonlinearities. In the experiment, the anomalous Kerr coe�cient, i.e.

the negative Kerr e↵ect, is achieved. By applying this technique, we successfully

demonstrate the tunability between facilitating and suspending the spontaneous chi-

ral symmetry breaking in a nanophotonic platform, which was widely regarded as

impossible.

In Chapter 6, we proposed a route to generate high-purity pulsed squeezing in

an integrated photonic cavity [4]. The numerical simulation promises the possibility

of achieving the required squeezed level with current technology.

In Chapter 7, we proposed a machine-learning-assisted architecture to customize

the poling design [5]. This architecture helps us automatically optimize the poling
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profile toward the target time-energy correlation between generated photon pairs.

Typically, it can generate two identical pure single photons instead of a pair of

entangled photons, which is useful in Boson sampling and other applications requir-

ing high single-photon purity. Although in this work, the technique is applied to

the KTP crystals, the architecture indeed fits the integrated photonics by a slight

modification.

Besides those works, we have also investigated time-energy entanglement and the

arbitrary linear operation over the set of frequencies by time-resolved detection [6].

Furthermore, the nonlinear behavior of a system can emerge from the hybrid ac-

tion of single-photon measurement and feed-forward control, which can boost the

capability of quantum information processing. We develop a reinforcement-learning

architecture to generate a better strategy for the target task. The experiment con-

firms the quantum advantage of this type of quantum receiver in decoding quantum

information [7].
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vised the experiment, and wrote the paper supervised by L.F.

• Chaohan Cui, Liang Zhang, and Linran Fan. Control spontaneous symme-
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CHAPTER 2

Fundamental Theory

In this chapter, we are going to introduce a uniform mathematical framework with

quantized electromagnetic fields to describe the material-property-determined non-

linear photonic processes in waveguides and resonators. Most of the contents are

derived or summarized from famed textbooks [8, 9, 10, 11, 12, 13].

This methodical framework is provided to ease understanding of the theoretical

model of the following chapters. We will cover multiple aspects of the second and

third-order nonlinearities under the picture of photon-photon interaction. We will

also introduce the concept of phase matching and cavity enhancement, which have

been recognized as common techniques for boosting nonlinear e↵ects. In the end,

we will glance at the cascaded second-order nonlinearities.

2.1 Linearly Quantized Electromagnetic Field

Nonlinear photonics focuses on the interactions among electromagnetic fields across

the infrared, visible light, and ultraviolet spectra, with their wavelengths ranging

from sub-millimeter to one hundred nanometers. This spectrum span has dynamic

physical properties where materials behaviors are distinctive, and it has historical

connections with visual optics, which studies the light spectrum detectable by human

eyes.

The interaction between light and matter is direct within this spectral range. For

a longer wavelength towards the radio frequency region, the collective movement

of electrons in electrical conductors or the vibration of dipoles will cause severe

absorption, scattering, or re-emission. On the other hand, shorter wavelengths,

such as X-rays or gamma rays, are ionizing radiation that can damage or penetrate

most of the materials. Hence, weak but meaningful parametric interactions between
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light fields can emerge. To determine the nonlinear interaction, especially including

the quantum behavior, we need a quantized description of the linear electromagnetic

fields.

As a type of electromagnetic field, the dynamics of light fields follow the group

of Maxwell equations in Cartesian coordinates.

r ·D = ⇢, r⇥ E = �@B
@t (2.1)

r ·B = 0, r⇥H = J+ @D
@t (2.2)

D = "0E+P, H = B
µ0

�M (2.3)

In current nonlinear photonics, researchers are mostly focusing on the interaction

between light fields in transparent dielectric materials, where no free charge, current,

or magnetization exists. ⇢ = 0, J = 0, and M = 0. Since the nonlinear e↵ects

are generally weak, they are usually considered as a perturbation upon the linear

solutions for the electromagnetic field.

The linear basis are solutions to Maxwell’s equations. They constitute a linearly-

independent complete set, which means any solution of the Maxwell equations can

be decomposed into a linear superposition of these basis functions with suitable

weights. Conventionally, each basis function is presented as a product of a spatial

mode and a spectral mode. The spatial mode contains the distribution of the light

field in space, while the spectral mode indicates how the light field varies in time.

We begin with a discussion on monochromatic spatial modes. As a convention,

the light wave is propagating in the ẑ direction of a Cartesian coordinate system in

most situations considered in this dissertation.

2.1.1 Transverse Mode

In an infinite large isotropic transparent dielectric medium, the linear part of the

polarization in the homogeneous medium can be written as P = "0�(1)E. The

Maxwell equations can now be reduced to two homogeneous wave equations that
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are valid at any point within space-time.
✓
r2 � 1

c2
@2

@t2

◆
E = 0 (2.4)

✓
r2 � 1

c2
@2

@t2

◆
B = 0, (2.5)

where c = c0/n and n =
p
µ"0(1 + �(1)). In vacuum, we have c0 = 1/

p
µ0"0 =

299792458 nm ·GHz. The electromagnetic field can be expressed as plane waves

E(r, t;k,!) = E0(k,!)e
�i(!t�k·r) + E⇤

0
(k,!)ei(!t�k·r) (2.6)

B(r, t;k,!) =
1

!

⇥
k⇥ E0(k,!)e

�i(!t�k·r) � k⇥ E⇤

0
(k,!)ei(!t�k·r)

⇤
(2.7)

Each solution of the wave equations indicates an electromagnetic wave propagating

at the speed of light c along the direction defined by wave vector |k| = !/c. In this

case, the electric field E, the magnetic field B, and the wave vector k are mutually

perpendicular so that these solutions are transverse electromagnetic modes.

Any monochromatic light field at frequency ! can be decomposed into a series

of plane waves with di↵erent amplitudes associated with wave vectors.

Etot(r, t) =

Z
d3k E(r, t;k,!) (2.8)

Btot(r, t) =

Z
d3k B(r, t;k,!) (2.9)

Despite its convenience in theoretical modeling, the plane wave is always an

ideal solution that can not be fully realized in practice since there is always a finite

aperture in the optical setup. In bulk-optical experiments, researchers usually apply

lenses to put the waist of a Gaussian beam at the center of the nonlinear material

and ensure the e↵ective thickness to be shorter than the Rayleigh range. Therefore,

plane waves are reasonable approximations when considering nonlinear photonics in

bulk materials, unless the nonlinear e↵ect incurs a severe distortion of the wavefront.

However, in integrated photonics, the electromagnetic field is confined in the

structure composed of several types of materials with distinct refractive indices.

The waveguide is a typical design for guiding the light, which usually has a nontriv-

ial profile of the dielectric constant �(1)(x, y) in the x-y plane but uniform behavior
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along the z axis. As the electromagnetic wave is guided through, additional bound-

ary conditions make the electric and magnetic fields no longer both perpendicular

to the direction of propagation.

To solve the Maxwell equations, we intentionally choose either the electric or

magnetic field to be perpendicular to the direction of propagation, separating spatial

modes into either transverse electric or transverse magnetic modes, respectively. As

a result, an e↵ective wave vector � and a field distribution can be found to satisfy the

boundary conditions accordingly. The complete solution typically shows a profile

where a fixed transverse vector field is propagating along the z axis with a periodicity

of 1/�.

Fundamental TE mode Fundamental TM mode

22/3

Ideal planar waveguide Practically-designed waveguidea b

Fundamental mode

High-order mode

Figure 2.1: Transverse modes in waveguides. a. Electromagnetic field distri-
bution in slab waveguide. b. The simulation of a practical LiNbO3 waveguide by
Lumerical, Ansys Optics.

Depending on the geometry, the refractive indices, and the frequency of the

light field, a waveguide may hold none or multiple orders of transverse modes. We

use m � 0 to indicate the e↵ective wave vector for the mth mode. For example, we

designate the transverse magnetic zeroth mode as the TM0 mode or the fundamental

TM mode without ambiguity.

TEm : Em(r, t;!) = Em(x, y;!)e
�i(!t��mz) + E⇤

m(x, y;!)e
i(!t��mz), Em,z = 0 (2.10)

TMm : Bm(r, t;!) = Bm(x, y;!)e
�i(!t��mz) +B⇤

m(x, y;!)e
i(!t��mz), Bm,z = 0 (2.11)

Based on the decomposition in solving the Maxwell equations, The orthogonality
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holds between any two di↵erent orders of the same type of transverse field [13].

Z
dxdy E⇤

m(x, y;!)En(x, y;!) / �mn (2.12)
Z

dxdy B⇤

m(x, y;!)Bn(x, y;!) / �mn (2.13)

Therefore, the guided light field profile can now be described by a linear combination

in the mode basis.

TE field : Etot(r, t) =
X

m

⇣mEm(r, t;!) (2.14)

TM field : Btot(r, t) =
X

m

⇣mBm(r, t;!) (2.15)

Then, the determined transverse mode can be easily chosen as a basic dynamical

variable for mechanics guided by the Lagrangian and the Hamiltonian, which is

compatible to the field quantization as introduced below.

For the TEm mode, we can define the vector potential Am = {Am,0,Am} by,

Em = �rAm,0 �
@Am

@t
, Bm = r⇥Am. (2.16)

Thus, by inserting Am,0 = 0, a transverse vector potential field can be derived,

Am(r, t;!) =
1

i!

⇥
Em(x, y;!)e

�i(!t��mz) � E⇤

m(x, y;!)e
i(!t��mz)

⇤
, (2.17)

which obeys the Coulomb gauge r ·Am = 0. The Lagrangian density with the same

unit as energy density becomes

LTEm(Am, Ȧm;!) =
1

2


"0(1 + �(1))|Ȧm|2 �

|r⇥Am|2
µ0

�
(2.18)

=
1

2


"0(1 + �(1)(x, y))|Em(x, y;!)|2 �

|Bm(x, y;!)|2
µ0

�
. (2.19)

For the TMm mode, we can use the technique of the dual potential ⇤m =

{⇤m,0,⇤m} defined by,

Bm = µ0

✓
r⇤m,0 +

@⇤m

@t

◆
, Dm = r⇥⇤m. (2.20)
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Similarly, by setting ⇤m,0 = 0, a transverse dual potential field can be derived,

⇤m(r, t;!) =
i

µ0!

⇥
Bm(x, y;!)e

�i(!t��mz) �B⇤

m(x, y;!)e
i(!t��mz)

⇤
. (2.21)

The Lagrangian density becomes

LTMm(⇤m, ⇤̇m;!) =
1

2


µ0|⇤̇m|2 �

|r⇥⇤m|2
"0(1 + �(1))

�
(2.22)

=
1

2


|Bm(x, y;!)|2

µ0

� |Dm(x, y;!)|2
"0(1 + �(1)(x, y))

�
, (2.23)

which is essentially the negative version of the Lagrangian density for the vector

potential. Therefore, the two sets of transverse modes are mathematically equal in

the following derivations.

In this framework, we will no longer distinguish the choice of the dynamical

variables since they are dual representations. Then, the normalized primary field

profile, Em(r;!) or Bm(r;!) for either transverse mode profile can be replaced

by um(r;!) = u?m(x, y;!)ei�m(!)z with spatial-mode orthogonality
R
dr3 u⇤

mun =

Vm�mn, where Vm stands for the mode volume of the mth mode. The unit and mode

index associated with the fields will be omitted if there is no ambiguity. For any

normalized monochromatic single-transverse-mode field, the potential U and the

primary field functional variable � are

U(r, t;!) /
r

1

!2V

⇥
u(r;!)e�i!t � u⇤(r;!)ei!t

⇤
(2.24)

�(r, t;!) /
r

1

V

⇥
u(r;!)e�i!t + u⇤(r;!)ei!t

⇤
(2.25)

The other field X is

X(r, t;!) /
r

1

V

⇥
r⇥ u(r;!)e�i!t +r⇥ u⇤(r;!)ei!t

⇤
(2.26)

The Lagrangian density with suitable coe�cient for units reads

L(U, U̇;!) =
1

2

⇣
�|U̇|2 � ⌫|r⇥U|2

⌘
=

1

2

�
�|�(r;!)|2 � ⌫|X(r;!)|2

�
(2.27)

By definition, the canonical momentum field is

⇧0 =
@L

@(@tU0)
= 0, ⇧i =

@L
@(@tUi)

= �U̇i. (2.28)
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After Legendre transformation, the Hamiltonian density reads

H(U,⇧;!) =
1

2

�
�|�(r;!)|2 + ⌫|X(r;!)|2

�
(2.29)

Thus, for a monochromatic single-mode propagating field in dielectric materials,

the same time-invariant Hamiltonian density is obtained no matter which transverse

mode is chosen to be the primary variable.

H̃(r;!) =
1

2


"(r)|E(r;!)|2 + |B(r;!)|2

µ0

�
, " = "0(1 + �(1)) (2.30)

Based on orthogonality, the total Hamiltonian would be a sum of the Hamiltonian

of each mode. So far, we have figured out the characteristics of transverse modes

at a specific frequency. For other frequencies, the derivation is the same, but the

transverse mode profiles and e↵ective wave vectors will change depending on the

material and geometrical dispersion.

2.1.2 Spectral Mode

After obtaining the monochromatic transverse modes of the system, the last step

in representing an arbitrary light field is the link to a complete set of spectral basis

functions. The spectral mode determines the propagation characteristics of the light

field. Each frequency components can be a spectral basis function of the system and

the linear combination of them can form a spectral mode.

When space is finite with the periodic boundary condition, monochromatic fields

at some frequencies can no longer be kept in the system. Even though they can

be generated, they will destructively interfere with each other and fade away in

time. Particularly, when the finite system has a span L along the z axis, only the

monochromatic fields with e↵ective wave vector obeying an integer j = L�m,j/2⇡

can survive. The remaining spectral modes for each transverse mode now become

a set of discrete-frequency basis functions am,j(t) =
1

p
2⇡
e�i!m,jt. They have wave-

vector gap �� = 2⇡/L and frequency gap �! = 2⇡c/L in between. Furthermore,

they naturally hold the round-trip orthogonality
R T

0
dt a⇤m,jan,k = �mn�jk. Therefore,
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any normalized total field profile in a finite system can be expressed in this basis by

a set of normalized spectrum mode coe�cients
P

m,j |⇣m,j|2 = 1.

utot(r, t) =
X

m,j

⇣m,jum,j(r)am,j(t) + ⇣⇤ju
⇤

m,j(r)a
⇤

m,j(t) (2.31)

If the linear system is infinite in z direction, the spectrum can be continuous by

L ! +1, �� ! 0, and �! ! 0. Hence, each transverse mode is bonded to a set

of continuous monochromatic basis am,j(t) ! am(t;!) =
1

p
2⇡
e�i!t. These spectral

basis also have orthogonality
R
dt a⇤m(t;!

0)am(t;!) = �(!0 � !). Therefore, any

normalized total field profile can be described by the spectrum density ⇣m(!) with

normalization
P

m

R
d!|⇣m(!)|2 = 1.

utot(r, t) =
X

m

Z
d! ⇣m(!)um(r;!)am(t;!) + ⇣⇤m(!)u

⇤

m(r;!)a
⇤

m(t;!) (2.32)

The decomposition now gives a full description of the linear electromagnetic system.

!!"

!#$%

!(#)

!(# + &)

62 342 275

ω&

(#$%/(!"

ω'

a b

Figure 2.2: Micro-ring resonator. a. Sketch of a typical micro-ring resonator
with an intra-cavity mode and an input-output field. b. The transmitted power
response lineshape to the detuned input monochromatic pump field.

2.1.3 Resonator

The optical resonator, also known as the photonic cavity, is an artificial structure

that has the periodic boundary condition since it has a closed loop to trap light.

There are many geometries for resonators. In this thesis, we focus on the micro-ring
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resonator, which is the most common structure compatible with the demands of

integrated photonics.

By bending waveguides into a ring, a micro-ring resonator is constructed. For

the light field traveling in circles, both the transverse and spectral modes (azimuthal

modes from the top view) are defined accordingly by solving the bending waveguide

problem. Therefore, the intra-cavity field is a linear combination of orthogonal

modes. Without loss of generality, we pick one discrete mode a(t) and focus its

intra-cavity dynamics around the resonating frequency !0.

If the resonator is lossless, the energy within this discrete mode will last for-

ever. Otherwise, the field will decay in time without an energy supply. Hence,

these discrete modes are no longer spectral eigenstates of this open system, and a

continuous-spectral description is needed. Similar to in the infinite space case, we

use a(t;!) to describe the slowly-varying field with frequency at !. Moreover, we

may have an external source ain(t;!) to replenish the intra-cavity field a(t;!) at the

same frequency. The coupling between the input field and the intra-cavity field can

be modeled as a beamsplitter with a power transmittance rate ⌘.

At the beginning of each round-trip, the intra-cavity field is a(t). The amplitude

after round-trip time T is labeled as af (t+T ) = a(t)e�i!T��iT/2 with intrinsic power

loss rate �i. At the input and output ports of the beamsplitter, the state evolution

must obey

a(t+ T ) =
p

1� ⌘af (t+ T ) +
p
⌘ain(t+ T ) (2.33)

aout(t) =
p

1� ⌘ain(t)�
p
⌘af (t) (2.34)

For a high-quality cavity, the coupling rate ⌘, round-trip loss �iT , and the round-

trip phase shift (! � !0)T are much smaller than 1. We will check to see if this

assumption is self-consistent later. After switching to the rotation frame at !p, the

above evolution equations are reduced to the first order relationship.

a(t+ T )� a(t) = i(! � !0)Ta(t)�
�iT + ⌘

2
a(t) +

p
⌘ain (2.35)

The intra-cavity total energy is Ecav = Ve↵ |a(t)|2 / cT |a(t)|2 and the pump

power is Pin = Ve↵ |ain|2/T / c|ain|2. Then, we can define a normalized intra-cavity



28

amplitude ã(t) =
p
Ta(t) and the coupling loss rate ⌘/T = �c. Then, the dynamics

of normalized intra-cavity amplitude now reads as

ã(t+ T )� ã(t)

T
= i(! � !0)ã(t)�

�i + �c
2

ã(t) +
p
�cain (2.36)

For cases only involving slowly-varying fields, the round-trip time is negligible,

thus

˙̃a = i�ã� �

2
ã+

p
�cain (2.37)

aout = ain �
p
�cã (2.38)

where � = ! � !0 is the detuning relative to resonance and � = �i + �c stands for

the total loss rate. The equation of motion for the intra-cavity dynamics and the

boundary condition for input-output relation will be the starting point for almost

all cavity-based applications.

After solving the steady-state solution at dã/dt = 0, the spectral response to a

continuous-wave pump has a Lorentzian lineshape.

ã(�) =

p
�cain

�i� + �
2

, Ecav(�) =
�cPin

�2 + �2

4

(2.39)

aout(�) =


1� �c

�i� + �
2

�
ain,

Pout(�)

Pin

=
4�2 + (�i � �c)2

4�2 + �2
(2.40)

2.1.4 Field Quantization and the Concept of Photon

The electromagnetic modes provide all the classical knowledge of electrodynamics,

which is su�cient for describing many nonlinear photonic processes. However, classic

electro-dynamics are sometimes insu�cient in situations where the light field shows

a particle-like behavior, especially when being detected. In this case, the quantum

description of light and its interaction with matter is necessary, which expresses the

particle-wave duality of the light.

Photons, the particle manifestation of light, are massless basic particles carrying

definite energy ~!, momentum ~�, and spin 1 at the speed of light. The origin

of photon concept is the subject of a long-lasting historical debate, but it provides
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a clear picture for describing interactions with other systems, such as electrons in

atoms and solid states.

Technically, the second quantization of electromagnetic fields within a finite space

can lead to a somewhat restricted formalism of a photon1. To date, the conventional

quantum description of a monochromatic single-mode photon can be directly mod-

ified from the orthogonal basis we obtained before. The bridge to the quantum

world begins at the Poisson bracket over canonical field variables qi(r) and their

generalized momenta pj(r) in classic field theory.

{qi(r), pj(r0)} = �ij�(r� r0),

Z
dV {qi(r), pj(r0)} = �ij (2.41)

The second orthogonality after integration over the space holds when qi and pj are

associated with orthogonal mode profiles.

To go across the bridge and enter the quantum world, we impose the equal-time

canonical commutation relations between the primary field variables and generalized

momenta in Eq.(2.29). The mode-dependent equal-time canonical commutation

relations are

Z
dV "[Âm,j(r, t),

˙̂An,k(r
0, t)] = µ0[

˙̂⇤m,j(r, t), ⇤̂n,k(r
0, t)] = i~�mn�jk (2.42)

Then, we can introduce pairs of operators âm,j and â†n,k, following the commu-

tation relation [âm,j, â
†

n,k] = �mn�jk to establish the formalism. In the following

discussion, we concentrate on the single-mode field with the mode order subscripts

m, j omitted. After applying adjustment to units and convention to signs, the

monochromatic single-mode potential field operators can have the following forms

to maintain the above equal-time commutation relations.

Â(r, t;!) =

r
~

2"V !

⇥
u(r;!)âe�i!t + u⇤(r;!)â†ei!t

⇤
, (2.43)

or ⇤̂(r, t;!) = i

s
~

2µ0V !

⇥
u0(r;!)âe�i!t � u0⇤(r;!)â†ei!t

⇤
. (2.44)

1
Please refer to textbook [8] for a formally restricted quantization of the light field.
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Now, we can substitute the classic fields E and B by observable operators Ê and

B̂. The TE mode has the primary field of vector potential Â so that the fields are

Ê(r, t) = i

r
~!
2"V

⇥
u(r;!)âe�i!t � u⇤(r;!)â†ei!t

⇤
(2.45)

B̂(r, t) =

r
~

2"V !

⇥
r⇥ u(r;!)âe�i!t +r⇥ u⇤(r;!)â†ei!t

⇤
. (2.46)

The TM mode with the primary field of dual potential ⇤̂ are

B̂(r, t) =

r
~!µ0

2V

⇥
u0(r,!)âe�i!t + u0⇤(r,!)â†ei!t

⇤
(2.47)

D̂(r, t) = i

s
~

2µ0V !

⇥
r⇥ u0(r;!)âe�i!t �r⇥ u0⇤(r;!)â†ei!t

⇤
. (2.48)

Since the nonlinear e↵ects are mostly described by Ê and D̂, we need to transform

the TM mode profile for better illustration of nonlinearities later. By the identities

of u0 · (r⇥u0) = 0 and r⇥ D̂ = � @
@tB̂, we can re-define a normalized spatial mode

profile and phase by r⇥u0 ! |k|u in Eq.(2.48) and u0 ! 1

|k|r⇥u in Eq.(2.47) for

the TM mode. Therefore, the definitions of quantized field operators are identical

for both types of transverse modes. Later on, we will use two unit-free quadratures

Q̂ and P̂ to describe two observables of the light field.

Q̂ =
1p
2
(â+ â†), P̂ =

ip
2
(â† � â) (2.49)

Furthermore, the Hamiltonian operator Ĥ and photon number operator N̂ of

the enclosed quantized single-mode field is defined in

Ĥ =

Z
dV ˆ̃H =

1

2
~!(â†â+ ââ†) = ~!(â†â+ 1

2
) = ~!(N̂ +

1

2
), (2.50)

where the fast oscillation terms are negligible after spatial integration. The zero-

point energy is usually ignored, and the Hamiltonian becomes ~!â†â.
This quantized Hamiltonian follows a similar formalism as the quantum har-

monic oscillator, where â and â† are annihilation and creation ladder operators.

Indeed, photon fields can intuitively be interpreted as operators for consuming or

generating a photon at the target mode. Specifically, if we apply â† to the vacuum
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Figure 2.3: Quantum harmonic oscillator and squeezed field. a. The energy
diagram and wave functions of quantum harmonic oscillator expanded in Q basis.
b. illustration of a single-mode squeezed field in a phase diagram.

state, the state will become a single-photon state. Due to the quantum nature of

a monochromatic field, there is no meaning of where or when this photon should

be. To indicate more photons at the same mode, we have Fock states |ni, n � 0 to

represent a field containing n identical photons.

N̂ |ni = n|ni, â|ni =
p
n|n� 1i, â†|ni =

p
n+ 1|n+ 1i (2.51)

The evolution of operators is guided by the Heisenberg equation.

i~ d

dt
Ô = [Ô, Ĥ] (2.52)

Equivalently, the operator, after the evolution of time T , can be written in a direct

unitary transformation from the initial operator.

Ô(T ) = Û †(T )Ô(0)Û(T ), Û(T ) = exp

✓
1

i~

Z T

0

dt Ĥ
◆

(2.53)

Then we have â(t) = e�i!tâ(0) which is self-consist with the definition. Fur-

thermore, based on ladder operators and similar concepts from quantum harmonic

oscillators, we can construct a coherent state of light which is the eigenstate of the

operator â.

â|↵i = ↵|↵i, |↵i = e�
|↵|2
2

1X

n=0

↵n

p
n!
|ni = e�

|↵|2
2

1X

n=0

↵n

n!
(â†)n|0i (2.54)
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The e↵ective energy of a coherent state is ~!|↵|2.
Beyond that, we can construct a single-mode squeezed state of light by the

squeezing operator with a complex parameter ⇠ = rei� describing the intensity of

the squeezing operation.

Ŝ(⇠) = exp


⇠
(â†)2

2
� ⇠⇤

â2

2

�
, (2.55)

When we apply this to the vacuum field, a single-mode squeezed vacuum will be

generated.

|⇠i = Ŝ(⇠)|0i = 1p
cosh r

1X

n=0

[(2n)!]
1

2

2nn!
[ei� tanh r]n|2ni (2.56)

This mode is an eigenstate of another operator b̂|⇠i = 0. The squeezing operator

leads to the Bogoliubov transformation between b̂ and â.

b̂ = Ŝ(⇠)âŜ†(⇠) = cosh râ� sinh rei�â† (2.57)

The coherent and squeezed state of light both feature the minimum uncertainty of

conjugate observables.

(�Q̂)2(�P̂ )2 =
1

4
(2.58)

The coherent state has an equal variance for any quadrature direction, (�Q̂)2 =

(�P̂ )2 = 1

2
. Nevertheless, the squeezed state enjoys less variance in one quadrature

but a larger variance in another. For example, if the quadrature Q̂ is getting squeezed

to r,

(�Q̂)2 =
e�2r

2
, (�P̂ )2 =

e2r

2
. (2.59)

Now, considering the mode decomposition in previous subsections, any multi-

mode state can be written as a linear combination of a series of single-mode states.

For example, in a finite space decomposed by transverse modes {um,j} and spectral

modes {!m,j}, we can expand the generated single-photon state with amplitudes
P

m,j |⇣m,j|2 = 1 to a superposition state |ãphi =
P

m,j ⇣m,ja
†

m,j|0, 0, ..., 0i. This
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single-photon state has the normalization |hãph|ãphi|2 = 1. For a multi-mode system,

one of the total field operators reads

Êtot =
X

m,j

i

s
~!m,j

2"Vm,j

h
um,j âm,je

�i!m,jt � u⇤

m,j â
†

m,je
i!m,jt

i
. (2.60)

The Hamiltonian reads

Ĥ =
X

m,j

~!m,j â
†

m,j âm,j. (2.61)

This indicates that a single photon will have total energy as

Êph =
X

m,j

~!m,j|⇣m,j|2â†m,j âm,j. (2.62)

Multi-mode coherent light can be defined as either a superposition of spectral

modes,

|↵̃i = e�
|↵|2
2

1X

n=0

↵n

n!
(
X

m,j

⇣⇤m,j â
†

m,je
i!m,jt)n|0, 0, ..., 0i, (2.63)

or as a product state of multiple coherent single-mode fields,

|↵̃i = ⌦m,j|↵m,ji = |↵0,1,↵0,2, ...,↵m,j, ...i, (2.64)

If we focus only on two modes, there is a two-mode squeezed vacuum generated

by the transform

|⇠i12 = Ŝ12(⇠)|0, 0i, Ŝ12(⇠) = exp
h
⇠â†

1
â†
2
� ⇠⇤â1â2

i
. (2.65)

In the Fock basis, the two-mode squeezed vacuum reads

|⇠i12 =
1p

cosh r

1X

n1,n2=0

[ei� tanh r]n|n1, n2i. (2.66)

The covariance between the two modes will show quantum correlation or anti-

correlation. We will not go any deeper into the squeezed state here.

Energy exchange can occur between two modes â and b̂. Depending on the me-

chanics, the two modes could be di↵erent modes in one space or modes from two
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interacting spaces. The energy exchange obeys an arbitrary unitary transforma-

tion. In the interaction picture, this transformation has the form as ÛBS(t; �) =

exp
h
i�t
⇣
â†b̂+ b̂†â

⌘i
. This is commonly called a coupler or a beamsplitter, which

is a basic component in quantum photonics.

Û †

BS
âÛBS = cos(�t)â+ i sin(�t)b̂ (2.67)

Û †

BS
b̂ÛBS = cos(�t)b̂+ i sin(�t)â (2.68)

The energy oscillates between the two modes in time.

2.1.5 Quantized Field in an Infinite Space

The photon field in a finite space is successfully quantized via discrete operators.

When the volume approaches infinite, the spectral basis become continuous. This

means that the discrete operators âm,j must be generalized to incorporate the

continuous spectrum and hold the equal-time commutation relation under limita-

tions [14, 15] L ! +1, �� ! 0, and �! ! 0. Infinite space is always an approx-

imation since the light field is confined between the generation and the detection

apparatus. Such an approximation reduces the distracting details that the detector

would never resolve. It also gives us a way to describe the quantized traveling fields

and their interactions through propagation.

We impose the transformation âm,j ! �!1/2âm(!), with the spectral commuta-

tion relation,
⇥
âm(!), â†n(!

0)
⇤
= �mn�(!�!0). The Kronecker delta function becomes

the Dirac delta function, �jk ! �!�(! � !0). Unlike the discrete modes, âm(!) has

units of 1/
p
Hz. It can be understood as eliminating or generating a continuous

piece of the photon in transverse mode m with an infinitely small range of frequency

around !.

Then, the sum over discrete modes is converted by
P

j !
R

d!
�! . A single-photon

state represented by a normalized continuous spectral profile,
R
d!|⇣(!)|2 = 1, can

be written in

|ãphi =
X

m

Z
d! ⇣m(!)a

†

m(!)|0, 0, ..., 0i, |hãph|ãphi|2 = 1. (2.69)
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Similarly, the other states of the light fields can be generalized to the continuous-

spectral basis.

For each transverse mode, the Hamiltonian has the form of

Ĥm = ~
Z

d! !â†m(!)âm(!). (2.70)

Recalling the frequency gap �! = 2⇡c/L, the corresponding total field operator is

converted to the limit

Êm =

Z
d!p
2⇡

i

r
~!

2"0cSm

⇥
um(r;!)âm(!)e

�i!t � u⇤

m(r;!)â
†

m(!)e
i!t
⇤
, (2.71)

with Sm = �m

2⇡

R
2⇡/�m

0
dz
R
dxdy |um|2 .

In practice, the frequency dependence of the transverse modes is usually negli-

gible due to a small bandwidth or a weak dispersion. Hence, we can neglect the

transverse modes behavior initially. If we are not interested in the details within

a few cycles of wavelength, the propagation terms can also be isolated from spa-

tial mode by re-normalizing the transverse mode to an averaged value along the

propagation direction, Sm =
R
dxdy |u?m|2 and um = u?mei�mz.

By doing so, the free-propagating field operator can also be described on tempo-

ral basis. The creation or annihilation of a monochromatic photon at a specific time

t within a given transverse mode is defined by Fourier transforming the spectral

operators

âm(t) =
1p
2⇡

Z
d! âm(!)e

�i!t. (2.72)

The commutation relation on temporal basis has the form as

⇥
âm(t), â

†

n(t
0)
⇤
=

1

2⇡

Z
d!0d! �mn�(! � !0)e�i!(t�t0) = �mn�(t� t0) (2.73)

The last equation is held by identity
R
d! e�i!(t�t0) = 2⇡�(t� t0).

For each single-spatial-mode field, the field operator in continuous-temporal basis

becomes

Êm(t) = i

r
~!

2"0cSm

⇥
u?mâm(t)e

i�mz � u⇤

?mâ
†

m(t)e
�i�mz

⇤
. (2.74)



36

The instant total power operator going through the entire x�y plane can be written

approximately as

P̂m(t) =

Z
dxdy "0c|Êm(t)|2 = ~!â†m(t)âm(t). (2.75)

Recalling the Hamiltonian definition in Eq.(2.70) around !0, we can check Ĥm =
R
dt P̂m(t). This means that the slowly-varying traveling fields, which are usually

valid approximations in most experiments, can be e↵ectively modeled by continuous-

temporal mode and corresponding power operators. Hence, the other states of light

can also be defined on temporal basis. For example, a free-propagating single-mode

coherent state |↵(t)i at carrier frequency !0 with slowly-varying amplitude will have

time-dependent average power hP (t)i = ~!0|↵(t)|2.
With a similar treatment of approaching infinity, we can model the beamsplitter

for the quantized fields. The unitary transformation between two modes â(!) and

b̂(!) in infinite space becomes

ÛBS(✓) = exp

⇢
i✓

Z
d!
⇥
~a†(!)~b(!) + ~b†(!)~a(!)

⇤�
, (2.76)

which models a beamsplitter with conversion rate ⌘ = sin2(✓). ✓ is the parameter

of the coaxial interaction strength between the two modes.

Û †

BS
(✓)â(!)ÛBS(✓) = cos(✓)â(!) + i sin(✓)b̂(!) (2.77)

Û †

BS
(✓)b̂(!)ÛBS(✓) = cos(✓)b̂(!) + i sin(✓)â(!) (2.78)

When ✓ is small, ✓ ⇡ sin ✓ =
p
⌘. We can define a Hamiltonian to describe this

process by ÛBS = exp{ 1

i~
R
dt ĤBS}, where

ĤBS = ~p⌘
Z

d!p
2⇡

d!0

p
2⇡

h
â†(!)b̂(!0)ei(!�!0

)t + b̂†(!0)â(!)ei(!
0
�!)t

i
(2.79)

= ~p⌘
h
â†(t)b̂(t) + b̂†(t)â(t)

i
. (2.80)

By mapping back to the classic electric field, this is identical to the boundary con-

dition of the beamsplitter.



37

2.1.6 Quantized Field in a Resonator

The quantized formalism introduced above is suitable to describe the interactions

either among intra-cavity fields or among free-propagating fields. Despite this, we

still need a few more steps to draw the dynamics of a leaky resonator where the

discrete cavity modes are excited by the input light with a continuous spectrum.

Considering a micro-ring resonator as the standard case, the bus waveguide holds

the input and output fields with continuous spectral mode. The resonator holds the

discrete spectral modes âm,j at !m,j. The total Hamiltonian is separated into three

parts.

Ĥtot = Ĥin + Ĥcav + Ĥc (2.81)

First, the free-propagation Hamiltonian of input fields is apparently shown as

Ĥin = ~
X

m

Z
d! !â†m,in(!)âm,in(!). (2.82)

Then, if there is no coupling between intra-cavity and the input fields, the intra-

cavity Hamiltonian would stay in the form of Ĥcav =
P

m,j ~!m,j â
†

m,j âm,j since other

spectral modes are diminished by destructive interference with themselves. However,

within a single round-trip of the cavity, the continuous spectral modes are still alive.

The Hamiltonian for intra-cavity fields is also a free-propagation Hamiltonian with

continuous spectral modes around the resonance frequency !m,j.

Ĥcav = ~
X

m,j

Z

�!

d! !âm,j(!)
†âm,j(!) (2.83)

The coupling between intra-cavity and input fields happens at t > 0 and can

be described by a beamsplitter Hamiltonian with a small conversion rate ⌘ between

each pair of intra-cavity mode and input mode on the same basis.

Ĥc(t) = i~
X

m

hp
⌘â†m,j(t)âm,in(t)�

p
⌘âm,j(t)â

†

m,in(t)
i

(2.84)

We recover a unit-less intra-cavity mode operator at frequency !m,j by

âm(t) =

Z

�!

d!p
2⇡

âm(!)e
�i!t !

X

j

�!1/2âm,j(t)e
�i!m,jt, (2.85)
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while the input fields stays as âm,in(t) =
R

d!
p
2⇡
âm,in(!)e�i!t. Hence the Hamiltonian

at t = 0 becomes

Ĥc(0) = i~
X

m,j

Z
d!p
2⇡

q
�(c)m,j â

†

m,j âm,in(!)�
q
�(c)m,j âm,j â

†

m,in(!)

�
, (2.86)

where coe�cients �(c)m,j =
�!
2⇡ · ⌘ = c

L⌘.

Without loss of generality, we neglect the subscriptions and focus on only a

single-mode field âm,j ! â with the input field presented by âin. In the interaction

picture at on-resonance frequency, the input field is labeled in detuning � = !�!m,j.

The round-trip unitary transformation of the system can be written as

ÛT = exp

✓
1

i~

Z T

0

dt ˆ̃Hc

◆
= 1 +

✓
1

i~

Z T

0

dt ˆ̃Hc

◆
+

1

2

✓
1

i~

Z T

0

dt ˆ̃Hc

◆2

+ ... , (2.87)

with the coupling Hamiltonian at a specific time 0 < t < T .

ˆ̃Hc(t) = i~
Z

d�p
2⇡

hp
�(c)â†âin(�)e�i�t �

p
�(c)ââ†

in
(�)ei�t

i
(2.88)

Here, we first assume the finite-space commutation relation is valid for initial

states,
⇥
â, â†

⇤
= 1. After a short round-trip time T , the final intra-cavity field

becomes

âf = Û †

T âÛT = â+

"
â,

Z T

0

dt
ˆ̃Hc

i~

#
+

1

2

""
â,

Z T

0

dt
ˆ̃Hc

i~

#
,

Z T

0

dt
ˆ̃Hc

i~

#
+ ...

= â+
p
�(c)

Z T

0

dt

Z
d�p
2⇡

âin(�)e�i�t � �(c)T

2
â+O(T 2).

(2.89)

With the same unitary transformation, The field remaining in the bus waveguide

will immediately pass to the output port at time 0 < t < T .

âout(t) = lim
T!0

Û †

T âin(t)ÛT = âin(t)�
p
�(c)â+O(T 2) (2.90)

The above transformations can link the arbitrary input field to the excited

intra-cavity field. Technically, it is more convenient to Fourier transform the

time-dependent operators to slowly-varying spectral operators at each detune,

â(t) =
R

d�
p
2⇡
â(�)e�i�t, which is a continuous-spectral mode in the unit of 1/Hz.



39

Then, each monochromatic component follows the dynamics after applying the first-

order approximation at small T .

d

dt
â(�) = lim

T!0+

âf (!)� â(!)

T
=

✓
i� � �(c)

2

◆
â(�) +

p
�(c)âin(�) (2.91)

For the boundary condition of each frequency component,

âout(�) = âin(�)�
p
�(c)â(�). (2.92)

It is almost identical to the dynamics of classic fields but misses the description

of intrinsic loss. Fortunately, the energy loss to a Markovian environment can also

be modeled as energy exchange to an entire undetectable continuous mode in a

similar manner. With the intaking field from environment â(i) and the emitting

field â(e), we can apparently obtain the single-mode master equation and the equal-

time input-output relation as below.

dâ

dt
=

⇣
i� � �

2

⌘
â+

p
�(c)âin +

p
�(i)â(i) (2.93)

âout = âin �
p
�(c)â, â(e) = â(i) �

p
�(i)â (2.94)

The above equation of motion and the input-output relations are identical to the

derivation in references [9, 16].

The steady-state solution is

â(�) =

p
�(c)âin(�) +

p
�(i)â(i)(�)

�i� + �
2

(2.95)

An interesting fact is that the steady-state intra-cavity field operator, â(�), has

a di↵erent spectral commutation relation than free-propagating fields.

⇥
â(�), â†(�0)

⇤
=

�

�2 + �2

4

�(� � �0) (2.96)

This relation means the system can be somehow expanded by monochromatic field

operators â(�) since they are orthogonal spectral basis. However, the non-unity

means none of them can solely serve as a full description of an intra-cavity photon.

The conceptual explanation for this is that any photon excitation in the cavity must
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have an exponentially decaying amplitude in time so that it’s never a monochro-

matic field. The entity of any current intra-cavity photon should be described in a

superposition of operators â =
R

d�
p
2⇡

â(�), which holds the commutation relation.

Actually, this complete operator for the intra-cavity photon is exactly the initial

state at the beginning of each round, which confirms the validity of the assumption

beforehand.

⇥
â, â†

⇤
=

Z
d�p
2⇡

Z
d�0

p
2⇡

�

�2 + �2

4

�(� � �0) = 1 (2.97)

We can also check that the commutation relations of the output field are identical

to what the free-propagating quantized field should have.
h
âout(�), â†out(�

0)
i
= �(� � �0),

h
âout(t), â

†

out(t
0)
i
= �(t� t0) (2.98)

In addition, the linear motion of each mode is independent across multiple res-

onances. If all the light fields are coherent light, these equations and boundary

conditions are reduced to the classic cases.

Back to the lab coordinate, we have

d

dt
âm,j =

⇣
�i!m,j �

�m,j

2

⌘
âm,j +

q
�(c)m,j âm,in +

q
�(i)m,j â

(i)
m , (2.99)

âm,out = âm,in �
q
�(c)m,j âm,j . (2.100)

These equations of motion are equivalent to a set of master equations in the Heisen-

berg picture over the lab time-space coordinates.

i~ ˙̂am,j =
h
âm,j, Ĥ0

i
+
q
�(c)m,j âm,in +

q
�(i)m,j â

(i)
m , Ĥ0 =

X

m,j

!m,j â
†

m,j âm,j (2.101)

It can be interpreted that the cavity is an environment for discrete field operators

to evolve at the resonance frequency. If a discrete field operator carries multiple

spectral components, the portion not on the resonance will su↵er a phase change in

time.

We will use this type of master equation in later sections. It is worthwhile to

mention that they are only valid for the macroscopic time scale. For some dramatic

intra-cavity dynamics within a few rounds, it may not be a good approximation.
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2.1.7 Nonlinear Optical E↵ects

Optical nonlinearity is defined by the nonlinear response of a system to the external

light field. Generally, the total polarization density of a system can be expanded

into order series of the total electric field with tensor-like coe�cients �(n) for inho-

mogeneous materials.

Ptot = "0

✓
�(1) · Etot + �(2) : E2

tot
+ �(3)

... E3

tot
+ ...

◆
(2.102)

The second term of the right-hand side stands for the second-order nonlinearity,

while the third term describes the third-order nonlinearity. The dots indicate the

tensor product.

�(1) · Etot ⌘
X

j

�(1)

ij Etot,j (2.103)

�(2) : E2

tot
⌘
X

j,k

�(2)

ijkEtot,jEtot,k (2.104)

�(3)
... E3

tot
⌘
X

j,k,l

�(3)

ijklEtot,jEtot,kEtot,l (2.105)

When using vector potential as the primary field, the Lagrangian density be-

comes

L(A, Ȧ) = "0


1

2
(E2

tot
� c2B2

tot
) +

1

2
�(1)E2

tot
+

1

3
�(2)E3

tot
+

1

4
�(3)E4

tot
+ ...

�
(2.106)

The corresponding Hamiltonian density reads2

H̃ = "0


1

2
(E2

tot
+ c2B2

tot
+ �(1)E2

tot
) +

2

3
�(2)E3

tot
+

3

4
�(3)E4

tot
+ ...

�
(2.108)

2
The Hamiltonian has usually been expanded in orders of Dtot and �̃(i)

due to quantization over

the primary field A and conjugate field ⇧ = �D. The relations between tensor-like coe�cients

are clearly discussed in Ref. [9, 17].

H̃ =
µ0

2
B2

tot
+

1

2
�̃(1)D2

tot
+

1

3
�̃(2)D3

tot
+

1

4
�̃(3)D4

tot
+ ... (2.107)

. As far as we know, both conventions only result in di↵erent definitions of coe�cients. They will

not infect the relative behaviors of nonlinear phenomena discussed later.
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In experiment, it is more common to use the convention to reduce the rotating

symmetries of indices, which results in ordered nonlinear coe�cients by defining

�(2)

ijk
= 2�(2)

ijk, �
(3)

ijkl
= 3�(3)

ijkl, and so on [10]. Then without further mention, the

ordered Hamiltonian density becomes

H̃ = "0


1

2
(E2

tot
+ c2B2

tot
+ �(1)E2

tot
) +

1

3
�(2)E3

tot
+

1

4
�(3)E4

tot
+ ...

�
. (2.109)

It is possible to simulate the system directly from the full Lagrangian or the

derived Hamiltonian. Practically, in common materials, �(n) fades quickly when n

becomes larger. Hence, if the pump light field does not have extremely high power,

only the lower-order nonlinear e↵ects will perturb the system.

One conventional way to model the classic nonlinear system is to set up nonlinear-

coupled mode equations as a perturbation from the linear system. These nonlinear

mode equations are usually derived by decomposing the Hamiltonian into linearly-

defined modes. To better illustrate the mode decomposition, we begin with a discrete

spectrum.

Etot(t) =
X

m,j

⇣m,j(t)Em,je
�i(!m,jt��m,jz) (2.110)

The Hamiltonian is separated into a linear Hamiltonian density and a nonlinear

interaction Hamiltonian density.

H̃ = H̃0 + H̃I (2.111)

H̃0 =
"0
2
(E2

tot
+ c2B2

tot
+ �(1)E2

tot
) (2.112)

H̃int = "0

✓
1

3
�(2)E3

tot
+

1

4
�(3)E4

tot
+ ...

◆
(2.113)

The linear Hamiltonian density describes the linear time evolution of each mode,

keeping the phase relation and the dispersion among modes. The interaction Hamil-

tonian works in a perturbation manner. For a finite space, the Hamiltonian needs

integral over the whole interaction space.

H =

Z
dV H̃ , H0 =

Z
dV H̃0 , Hint =

Z
dV H̃int . (2.114)
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By substitution to decomposed modes, the interaction Hamiltonian is time-

dependent since multiple frequency components are involved in higher-order non-

linearities. However, in experiments, rapid oscillation may not get recorded by

devices under bandwidth limits. We can assume the interaction happens gradu-

ally for enough long time so that the interaction terms with disparate frequencies

are averaged down to negligible. Therefore, only the fields whose frequencies hold

conservation laws can have significant interaction rates with each other. For ex-

ample, second-order nonlinearity requires the sum frequencies of two fields to equal

another field. Otherwise, the interaction rate will be averaged to zero. Thus, we

can just retain those high-rate interaction terms in the Hamiltonian to simplify the

derivation.

For dealing with quantized fields, this technique also shows great e↵ectiveness in

formalism and agreement to experiments. By replacing linearly-defined modes with

quantized operators accordingly, the nonlinear dynamics of quantized fields can be

directly established.

Etot ! Êtot , H ! Ĥ , H0 ! Ĥ0 , Hint ! Ĥint . (2.115)

Moreover, the conceptual picture of photons and the interactions in between are

pedagogically more clear and clean. We can explain the microscopic interaction as

converting some photons into other photons. Hence, the relation rules in frequencies

and wave vectors become the conservation laws of energy and momentum, respec-

tively. In the following sections, we will introduce the model of optical nonlinear

e↵ects case by case.

2.2 Second-Order Nonlinearity

The second-order nonlinearity is also known as the �(2) e↵ect or Pockels e↵ect. This

type of interaction requires the material to have a �(2) coe�cient, which is usu-

ally found in non-centrosymmetric crystals. Among non-centrosymmetric crystals,

some crystals can show ferroelectric properties, which has a clear understanding

of how second-order nonlinearity is evoked. Ferroelectric material has a hysteresis
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loop when excited by a varying external field. It also owns spontaneous electric

polarization density when the external field is absent. We can Taylor expand the

relation between polarization density within orders of the electric field. Since each

branch of the hysteresis loop is not odd, there must be a non-zero second-order term,

which leads to the �(2) coe�cient. Other non-centrosymmetric materials also show

less symmetry in their response curve to the external field. Thus, they also have

non-zero �(2) coe�cients. If the crystal is transparent, then it could be used as an

optical medium for second-order nonlinearity.

For state-of-the-art platforms, doped phosphates and barium borate crystals,

such as KTP and BBO, are commercialized for manufacturing laser systems and

quantum experiments. For nano-fabrication purpose, widely-used high-�(2) materi-

als are gallium nitride (GaN), aluminum nitride (AlN), lithium niobate (LiNbO3),

and silicon carbide (SiC). Their �(2) ranges from 1-40 pm/V.

Depending on the setup of input and output fields, the second-order nonlinearity

has multiple manifestations. When only one input field is involved in the nonlinear

interaction, the second-order nonlinear e↵ect generates new fields with either double

or half the input frequency of the pump. For the case where the frequency is doubled,

we call it the second-harmonic generation (SHG). For the case of generating a half-

frequency field, we call it the parametric down-conversion (PDC).
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Figure 2.4: Second-order nonlinearity.

2.2.1 Second-Harmonic Generation

The SHG merges two photons from the pump field into one photon with doubled

frequency. From now on, the linear permittivity of the material is absorbed into the
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e↵ective volumes and cross-sections for better illustrations. Based on the quantized

linear fields in a box,

Êtot(t) = i

r
~!p

2"0

"
uSHGp
VSHG

âSHGe
�i2!pt +

upp
Vp

âpe
�i!pt

#
+ c.c., (2.116)

the total interaction Hamiltonian within the box has the form of 3

ĤSHG =
i~
2
(gSHGâ

†

SHG
â2p � g⇤

SHG
â†2p âSHG), (2.117)

where âSHG and âp are annihilation operators for the second-harmonic field and the

pump field with e↵ective mode volumes VSHG and Vp, respectively.

gSHG =

s
~!3

p

"0VSHGV 2
p

Z
dr3 u⇤

SHG
· �(2) : u2

p (2.118)

is the normalized photon-photon interaction rate (Hz) proportional to the spatial

overlapping between uSHG and up. The unitary transformation generated by this

time-invariant Hamiltonian is

ÛSHG(t) = e�
i
~ ĤSHGt (2.119)

Accordingly, the equations of motion are

d

dt
âSHG =

i

2
gSHGâ

2

p,
d

dt
âp = �ig⇤

SHG
â†pâSHG. (2.120)

It indicates that high conversion e�ciency requires small e↵ective volumes. If the

mode is confined to half of their original e↵ective volumes, the power conversion

e�ciency will be double higher.

In addition, the SHG is usually seen between traveling waves in experiments. For

this case, the evolution can be derived by following a reference wavefront. Therefore,

decomposed over z basis, the photon temporal profile is described as a spatial wave

package âm(z) = âm(�t)/
p
cm in the unit of 1/

p
m with z = �cmt. The equal-time

commutation relation is held by

[âm(z), â
†

n(z
0)] =

1

cm
[âm(t), â

†

n(t
0)] = �mn�(z � z0) (2.121)

3
By setting a di↵erent phase reference, the Hamiltonian can have the form of ĤSHG =

~
2
(gSHGâ

†
SHG

â2p + g⇤
SHG

â†2p âSHG). This does not influence the dynamics in most cases.
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The power operator of each mode passing the plane at z becomes

P̂m(z) = ~!mcmâ
†

m(z)âm(z). (2.122)

Hence, the power of the fields are

PSHG(z) = h~!SHGcSHGâ
†

SHG
(z)âSHG(z)i, Pp(z) = h~!pcpâ

†

p(z)âp(z)i (2.123)

The total field with slowly-varying operators along z-direction becomes

Êtot(z) = i

"r
~!SHG

2"0SSHG

uSHGâSHG(z)e
i!SHGz +

s
~!p

2"0Sp
upâp(z)e

i�pz

#
+ c.c. (2.124)

The interaction ends after the reference wavefront of the pump field passes

through a distance of L. As such, the unitary transformation is

ÛSHG(z) = e�
i
~
R z
0
dz0 P̂SHG(z) (2.125)

P̂SHG(z) =
"0
3cp

Z
dxdy �(2)E3

?tot
(z) (2.126)

=
i~
2

h
g?SHGâ

†

SHG
(z)â2p(z)e

�i��z � g⇤
?SHG

â†2p (z)âSHG(z)e
i��z

i
(2.127)

The normalized interaction rate is defined in the unit of 1/
p
m.

g?SHG =
1

cp

s
~!3

p

"0S2
pSSHG

✓Z
dxdy u⇤

?SHG
· �(2) : u2

?p

◆
. (2.128)

Similar to the case with a finite volume, the cross-section determines the e�ciency

of interactions between free-propagating fields. If the mode is confined to half the

e↵ective area, it will double the power e�ciency.

The evolution in the interaction picture is formed as

d

dz
âSHG =

i

2
g?SHGâ

2

pe
�i��z, (2.129)

d

dz
âp = �ig⇤

?SHG
â†pâSHGe

i��z. (2.130)

Here, �� = �SHG�2�p is the wave-vector mismatch, a.k.a. phase mismatch between

the interacting fields along the propagation direction. It describes the dislocation
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between traveling waves. When �� = 0, the fields are walking at the same pace

from an oscillation perspective. For this case, the interaction is phase-matched and

will obtain the highest possible interaction rate.

Considering the non-depleted CW pump, which means it keeps a constant power

throughout the process, the SHG power conversion e�ciency is

⌘SHG =
PSHG(L)

P 2
p

=
|g?SHG|2L2

2~!pcp
sinc2

✓
��L

2

◆
(2.131)

When the phase mismatch becomes larger, the overall nonlinear e�ciency will di-

minish quickly.

2.2.2 Phase-Matching Techniques

The phase mismatch forbids the nonlinear interactions that involve distinct frequen-

cies due to both the unavoidable chromatic dispersion in materials and geometric

dispersion led by structures such as waveguides. However, given a target process,

we can engineer the materials or structures to match the phase of traveling waves

to some extent. Here, we are going to introduce two widely-used techniques for

phase-matching.

The first technique is engineering the geometric dispersion to cancel out the

chromatic dispersion. This approach is usually applied when designing straight or

bending waveguides for high second-order nonlinearity. In the example of SHG, we

have the pump and second-harmonic fields traveling in the same waveguide. We

would like to optimize the width or height of the waveguide to let one mode of

each field have the same wave vectors, i.e., �SHG,m = �p,n. Generally, the mode of

a shorter wavelength field will have a larger e↵ective refractive index, whereas the

higher order mode will have a smaller e↵ective refractive index. Then, there would

be a sweet point where a higher-order second-harmonic mode will have the same

refractive index as a lower-order pump mode. By designing the waveguide at this

sweet point, phase-matching is guaranteed.

The second technique is called quasi-phase-matching. It introduces a periodic

change in the material along the propagation direction to compensate for the phase
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mismatch. In each period, the positive and negative phase mismatch will cancel with

each other so that the overall e�ciency will not diminish after a long propagation.

Pedagogically, this periodic change will incur a pseudo wave vector to the system,

which keeps a subtle balance with the phase mismatch.
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Figure 2.5: Illustrations of phase-matching techniques. a. Wave-vector re-
lations of phase-matching, phase mismatch, and quasi-phase matching. b. The
generated amplitude corresponding to the propagation distance and coherent length
⇤. c. Domains of periodic-poled crystal.

It is possible to inverse the phase mismatch by flipping the sign of �(2) in some

ferroelectric materials such as KTP and LiNbO3. To do so, we can apply an extreme

external static-electric field to pole a region of the ferroelectric material from one

hysteresis branch to the other. The material initial polarization density will be

forced to align with the external electric field and be fixed after tuning the external

field o↵. Hence, the value of �(2) coe�cient from Taylor expansion will flip the sign.

We can design the period based on the second-order nonlinear process we want.

Back to the example of non-depleted SHG, the quasi-phase matching is to have
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poling period ⇤ = 2⇡/��. The equation of motions along the propagation become

d

dz
âSHG =

i

2
G(z)g?SHGâ

2

pe
�i��z, (2.132)

d

dz
âp = �iG(z)g⇤

?SHG
â†pâSHGe

i��z, (2.133)

where

G(z) =

8
><

>:

1 if n⇤  z < (n+ 1

2
)⇤,

�1 if (n+ 1

2
)⇤  z < (n+ 1)⇤.

(2.134)

The output second-harmonic field amplitude is

âSHG =
i

2
g?SHGâ

2

p

Z L

0

G(z)e�i��z ⇡ i

2
g?SHGâ

2

p ⇥
2

⇡
sinc

✓
��L

2

◆
(2.135)

Despite the fact that the overall power e�ciency decreases by a factor of 4/⇡2, the

quasi-phase matching enables engineering high nonlinear e�ciency across a large

bandwidth with limited choices of materials.

2.2.3 Cavity Enhancement

In practice, the confined nonlinear interactions between discrete modes are usually

established inside a leaky cavity. Hence, the system will reach a steady state where

the input and output fields are balanced. Nevertheless, the leaky cavity can accu-

mulate much higher amplitudes of interacting fields by letting them cycle inside,

which enhances the overall nonlinear e�ciency.

Based on the linear Hamiltonians in Eq.(2.81)-(2.86) and the Hamiltonian Hint

of the target nonlinear process, such as (2.117), we can derive the general master

equation for an arbitrary intra-cavity field mode â as

˙̂a =
i

~ [Ĥ0 + Ĥint, â]�
�

2
â+

p
�câin. (2.136)

This will reduce to the equation of motion of a single-mode field in Eq.(2.93). The

boundary condition for the output field is

âout = âin �
p
�câ. (2.137)
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Here, we use the SHG process as an example to show how to solve the intra-

cavity dynamics. In this case, the discrete intra-cavity pump field b̂ is excited by the

input pump field b̂in. When cycling inside the cavity, the pump field is converted to

the discrete intra-cavity second-harmonic field â at a rate of g. The master equation

reads

˙̂b =
⇣
�i!0 �

�

2

⌘
b̂� ig⇤â+

p
�cb̂in, (2.138)

˙̂a =
⇣
�i!SHG � 

2

⌘
â+

ig

2
b̂2. (2.139)

The intra-cavity second-harmonic field has no external source but a total loss rate

of . After Fourier transforming to the spectral basis at ! for mode b̂ (2! for mode

â) and seeking for steady-state solutions, we obtain

0 =
⇣
i�p �

�

2

⌘
b̂� ig⇤â+

p
�cb̂in(!), (2.140)

0 =
⇣
i�SHG � 

2

⌘
â+

ig

2
b̂2, (2.141)

where �p = ! � !0 and �SHG = 2! � !SHG0 are cavity detunes. We can solve the

second equation first, which gives the steady relation between intra-cavity fields.

â(2!) = � igb̂2

i�SHG � /2
(2.142)

Inserting it back to the first equation, the pump depletion is shown as an additional

power-dependent loss rate.

b̂(!) =
�p

�cb̂in(!)
�
i�p � �

2

�
+ |g|2b̂(!)2

i�SHG�/2

(2.143)

One intriguing fact is if the second-harmonic mode has non-zero detune, the back-

action of the living second-harmonic field will alter both the phase shift and the

internal loss rate of the pump mode. The motion of field b̂ shows the power depen-

dency, which has a similar behavior as a type of third-order nonlinearity. We will

discuss it later. Now, before going into the next order of nonlinearity, let’s discuss

other manifestations of second-order nonlinearity.
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2.2.4 Sum-Frequency Generation

If the �(2) system has a pair of input fields, the second-order nonlinearity can gen-

erate a third field whose frequency is equal to the sum of two pump fields. This

process is called sum-frequency generation (SFG). In this way, SHG is a special case

of SFG, where the two input fields degenerate into one pump field.

Following a similar derivation as the SHG, the Hamiltonian of sum-frequency

generation in a box reads

ĤSFG = i~
h
gSFGâ

†

SFG
âp1âp2 � g⇤

SFG
â†p1â

†

p2âSFG
i
, (2.144)

with interaction rate

gSFG =

s
~!p1!p2(!p1 + !p2)

2"0VSFGVp1Vp2

Z
dV u⇤

SFG
· �(2) : up1up2 (2.145)

2.2.5 Parametric Down-Conversion

The parametric down-conversion (PDC) is the inverse process of the SFG, where a

single pump photon is split into a pair of single photons. Hence the Hamiltonian is

the same one.

ĤPDC = i~
h
gPDCâ

†

p
âsâi � g⇤

PDC
â†sâ

†

i âp
i
, (2.146)

with !p = !s + !i and

gPDC =

s
~!s!i!p

2"0VpVsVi

Z
dV u⇤

p
· �(2) : usui. (2.147)

Otherwise, if the output fields are degenerate, PDC can be treated as the inverse

process of SHG.

ĤPDC =
i~
2

⇥
gPDCâ

†

p
â2s � g⇤

PDC
â†2s âp

⇤
. (2.148)

Besides, if there is no seeded field to stimulate the process, PDC is also called the

spontaneous parametric down-conversion (SPDC).
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The generalizations of the above-confined interactions to traveling waves are

apparent after imposing the correct phase mismatch, such as �� = �s + �i � �p in

PDC.

Another interesting phenomenon is that the SPDC processes are able to generate

entangled photon pairs and even squeeze the light field. The unitary operator of

the SPDC process for traveling waves is generated by P̂SPDC. If the pump field is

a coherent state with amplitude ↵p, the unitary transform of length L with perfect

phase-matching becomes

ÛSPDC = exp
⇥
Lg?PDC↵

⇤

pâ
2

s � Lg⇤
?PDC

↵pâ
†2

s

⇤
= Ŝ(�2Lg?PDC↵

⇤

p). (2.149)

It has a similar form as the squeezing operator in Eq. (2.55). Similarly, the SPDC

process will lead to the two-mode squeezed fields as Eq. (2.65).

With the cavity enhancement, the dynamics of SPDC between input pump field

âp and generated signal field âs in a rate of g becomes

˙̂ap = (�i!p �
�

2
)âp +

g

2
â2s +

p
�câp,in +

p
�iâ

(i)
p (2.150)

˙̂as = (�i!s �


2
)âs � gâpâ

†

s +
p
câs,in +

p
iâ

(i)
s (2.151)

With on-resonance CW pump ↵(!p), the back-actions from the signal field and

environment are ignored. The first equation gives intra-cavity pump amplitude at

âp ! ✏ = 2
p
�c↵
� . After expansion in continuous spectral basis, we obtain the relation

between frequency components and their conjugations

0 = (i� � 

2
)âs(�)� g✏â†s(��) +

p
câs,in(�) +

p
iâ

(i)
s (�) (2.152)

0 = (�i� � 

2
)â†s(��)� g⇤✏⇤âs(�) +

p
câ

†

s,in(��) +
p
iâ

(i)†
s (��) (2.153)

The solution of the conjugate signal field with omitted subscript is

â†(��) =
�g⇤✏⇤â(�) +

p
câin(��) +

p
iâ(i)(��)

i� + 
2

(2.154)

Then, the on-resonance signal at around � = 0 obeys
✓
2

4
� |g✏|2

◆
â =



2

p
câin +



2

p
iâ

(i) + g✏
p
câ

†

in
+ g✏

p
iâ

(i)† (2.155)



53

With a suitable pump phase to make g✏ a positive real number, the output signal is

âout = âin �
p
câ (2.156)

=

 
1�

c

2

2

4
� |g✏|2

!
âin �

cg✏â
†

in

2

4
� |g✏|2

�
p
ci

�

2
â(i) + g✏â(i)†

�

2

4
� |g✏|2

(2.157)

The quadrature P̂out is

P̂out =
ip
2
(â†out � âout) =


2
+ g✏� c

2
+ g✏

P̂in +

p
ci


2
+ g✏

P̂ (i) (2.158)

The variance is

h(�P̂out)
2i =

✓ 
2
+ g✏� c

2
+ g✏

◆2

h(�P̂in)
2i+

✓p
ci


2
+ g✏

◆2

h(�P̂ (i))2i (2.159)

The input field and environment are all vacuum so that h(�P̂in)2i = h(�P̂ (i))2i = 1

2
.

Then, the output field from the cavity is squeezed since the variance is less than the

vacuum field. Considering g✏ = /2 and c = , the variance of the output field can

even be infinitely squeezed to zero.

When the squeezing is weak, i.e., g✏ << /2, the generated field will decay

fast in a few cycles. Hence, it is better to approximate the generated field at the

single-photon level in Schrödinger picture.

|�i = exp

✓
1

i~

Z T

0

dt ĤSPDC

◆
|0i ⇡ �gT ✏

â†2

2
|0i (2.160)

Similarly, in the continuous spectral limit, we have

|�i = exp

✓
1

i~

Z T

0

dt ĤPDC

◆
|00i ⇡ �g✏

Z
d� â†(�)â†(��)|00i (2.161)

Further discussion on second-order nonlinearities will be embedded in later sec-

tions when necessary. Now, we are diving into the next order of nonlinearity.

2.3 Third-Order Nonlinearity

All dielectric materials can show third-order nonlinearity under extremely-intense

pump fields. From a microscopic view, the polarization density will reach the bound-

ary of the cell so that it can not be proportional to the external field. At this point,



54

the electronic response of the material requires the approximation up to the third-

order nonlinear coe�cient, �(3), which is usually negative.

In nanophotonics, Si, SiN, SiO2, and other silicon-based materials are widely

used in fabrications. Their third-order nonlinear coe�cient leads to several unique

manifestations.
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Figure 2.6: Third-order nonlinearity.

2.3.1 Self-Phase Modulation

The self-phase modulation is what causes the power-dependent change in the refrac-

tive index. A general relation is

n = n0 + n2I, (2.162)

where I = P/S is the flux of the light field. For common crystals, n2 is usually

positive at the level of 10�20 � 10�17 m2/W [18]. In this process, only one pump

field â at ! is involved. Hence, the total field operator of this finite space is

Êtot(t) = i

r
~!
2"0V

u âe�i!t + c.c., (2.163)

and the Hamiltonian reads

ĤSPM = �~
4
gSPMâ

†2â2, (2.164)

with a positive photon-photon interaction rate

gSPM = �3

2

~!2

✏0V
�(3). (2.165)
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Inside the cavity with cavity mode â at resonance frequency !0, the SPM is

described in the equation of motion as

˙̂a =
⇣
�i!0 �

�

2

⌘
â+

igSPM
2

â†â2 +
p
�câin(!). (2.166)

The steady-state solution for the pump at ! follows the equation

â(!) =

p
�câin(!)�

�i� + �
2

�
+ igSPM

2
â†(!)â

. (2.167)

If the SPM happens in a traveling wave, g?SPM = �3

2

~!2

✏0S
�(3). Then we have

n2 = � 3

4✏0n0c
�(3), which goes back to the positive nonlinear refractive index.

2.3.2 Cross-Phase Modulation

More third-order nonlinear interaction will emerge if we are interested in two or

more fields. The cross-phase modulation happens when the power of another field

determines the additional phase of the target field. This e↵ect is inevitable when

any of the pump fields has notable power. Due to the homogeneity of coe�cient �(3)

in forward and backward directions, the XPM does not depend on whether the fields

are co-propagating or counter-propagating. Hence, for a system with two fields â1

and â2, we have

Êtot(t) = i

"r
~!1

2"0V1

u1 â1e
�i!1t +

r
~!2

2"0V2

u2 â2e
�i!2t

#
+ c.c.. (2.168)

The Hamiltonian becomes

ĤSPM = �~gXPMâ
†

1
â†
2
â1â2, (2.169)

with a positive photon-photon XPM interaction rate

gXPM = �3

2

~!1!2

✏0V1V2

Z
dV u⇤

1
u⇤

2
: �(3) : u1u2. (2.170)

. This XPM interaction rate is defined to match the scale of the SPM rate. Taking

both SPM and XPM into account, the intra-cavity dynamics follow

˙̂a1 =
⇣
�i!1 �

�1
2

⌘
â1 + i

⇣
gXPMâ

†

2
â2 +

gSPM
2

â†
1
â1
⌘
â1 +

p
�c1â1,in(!1), (2.171)

˙̂a2 =
⇣
�i!2 �

�2
2

⌘
â2 + i

⇣
gXPMâ

†

1
â1 +

gSPM
2

â†
2
â2
⌘
â2 +

p
�c2â2,in(!2). (2.172)
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It is noteworthy that if the overlapping ratio between modes is unity, i.e., gXPM =

gSPM, the phase shift by XPM is twice as much as SPM under the same amount of

power.

In addition, XPM can be easily generated for the interactions between more

fields since phase-matching is not involved in this process.

2.3.3 Four-Wave Mixing

If we focus on more fields involved in a �(3) system, the four-wave mixing will

inevitably a↵ect their dynamics, especially when their powers are high enough. In

the degenerate-pump FWM, the system has three modes labeled by âp for the pump,

âs for the signal, and âi for the idler. The total field is

Êtot(t) = i

"r
~!s

2"0Vs
usâse

�i!st +

r
~!i

2"0Vi
uiâie

�i!it +

s
~!p

2"0Vp
upâpe

�i!pt

#
+ c.c. (2.173)

FWM converts two pump photons into a pair of signal and idler photons or vice

versa. The total frequency of the generated photons is equal to the photon annihi-

lated. The Hamiltonian for degenerate pump FWM is

ĤFWM = �~
2

⇣
gFWMâ

†2

p âsâi + g⇤
FWM

â†sâ
†

i â
2

p

⌘
, (2.174)

with photon conversion rate

gFWM = �3

2

s
~!s!i!2

p

✏0VsViV 2
p

Z
dV u⇤2

p : �(3) : usui. (2.175)

The phase-matching is embedded inside the integral of spatial modes. This conver-

sion rate can also be reduced to the rate of SPM and XPM if the system has perfect

phase-matching, unity overlapping ratio, and the same mode volumes.

Under suitable conditions of the pump field, spontaneous FWM (SFWM) can

also generate the squeezed states of light since the dynamics can be reduced to a

form similar to the SPDC process. The discussion of this is embedded in the chapter

later.
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Moreover, the general form of FWM has four modes, which describe the photon

conversion from a pair of âp1 and âp2 to a pair of signal and idler photons. The

Hamiltonian is written in

ĤFWM = �~
⇣
gFWMâ

†

p1â
†

p2âsâi + g⇤
FWM

â†sâ
†

i âp1âp2
⌘
, (2.176)

with photon-pair conversion rate

gFWM = �3

2

s
~!s!i!p1!p2

✏0VsViVp1Vp2

Z
dV u⇤

p1u
⇤

p2 : �
(3) : usui. (2.177)

2.4 Cascaded Second-Order Nonlinearities

Nonlinearities are coherent processes that can happen simultaneously. Therefore,

the new fields generated by one nonlinearity may stimulate another type of non-

linearity. In the SHG process, we have seen that the back action from the second-

harmonic field can act equivalently as the SPM, which changes the phase and loss

of the pump field with power dependence. In the model of cascaded nonlinearities,

this back action is caused by PDC from the second-harmonic field cycling inside the

cavity.

SHG + PDC ! SPM or XPM (2.178)

Similarly, the second-harmonic field can trigger the SPDC process to generate pho-

ton pairs that are equivalent to SFWM.

SHG + SPDC ! SFWM (2.179)

The Hamiltonian describing the nonlinear photonic cavity with the cascaded-

second-order nonlinear processes can be written as

Hsys = H0 +H1 +H2, (2.180)

H0 = ~!pb̂†b̂+ ~!0â†â+ ~!+b̂
†

+b̂+ + ~!�b̂
†

�b̂�, (2.181)

H1 =
i~
2
(g2â†b̂2 � g⇤

2
âb̂†2), (2.182)

H2 = i~(g2â†b̂+b̂� � g⇤
2
âb̂†+b̂

†

�), (2.183)
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with a, b, b+, and b� representing the second-harmonic field, the pump field, the

signal field, and the idler field, respectively. H0 describes the free evolution of the

cavity. H1 describes the SHG process. H2 describes the PDC interaction among the

second-harmonic, signal, and idler modes. The nonlinear strength g2 for them can

be written as

g2 =

s
~!0!2

p

2✏0VaV 2

b

Z

V

dr3u⇤

a · �(2) : u2

b (2.184)

with ua and ub the transverse mode profile of the second-harmonic and pump fields,

respectively. The mode volumes are defined as Va = 2⇡Rna

RR
� dr

2|ua|2 and Vb =

2⇡Rnb

RR
� dr

2|ub|2, with R the ring radius, na and nb the refractive index for the

second-harmonic and pump modes, and � the cross-section. Here we assume that

the signal and idler modes share the same transverse mode profile with the pump

mode. While we do not include the interaction Hamiltonian for self-phase and cross-

phase modulation, the corresponding frequency shift can be taken into account by

re-defining the cavity resonance frequencies. Then the equations of motion can be

written as

˙̂a = (�i!0 �
�

2
)â+ g2(

1

2
b̂2 + b̂+b̂�) +

p
�câin +

p
�iâ

(i) (2.185)

˙̂b = (�i!p �


2
)b̂� g2âb̂

† +
p
cb̂in +

p
ib̂

(i) (2.186)

˙̂b+ = (�i!+ � +
2
)b̂+ � g⇤

2
âb̂†� +

p
c,+b̂+,in +

p
i,+b̂

(i)
+ (2.187)

˙̂b� = (�i!� � �
2
)b̂� � g⇤

2
âb̂†+ +

p
c,�b̂�,in +

p
i,�b̂

(i)
� . (2.188)

with �c, �i, � = �c + �i (c, i,  = c + i; c,±, i,±, ± = c,± + i,±) the

coupling, intrinsic, and total loss rate of the second-harmonic (pump; signal; idler)

mode respectively. The input operators of the second-harmonic, pump, signal, and

idler modes due to coupling loss (intrinsic loss) are labeled as âin, b̂in, b̂+,in, b̂�,in

(â(i), b̂(i), b̂(i)+ , b̂(i)+ ) respectively.

With coherent input power P into the pump mode b̂in =
q

P
~!p

e�i!t, Eq. (2.185)

and Eq. (2.186) can be treated classically using the mean fields hâi=↵, hb̂i=�. Then
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the static solutions of Eq. (2.185) and Eq. (2.186) are

� =

p
c�in

�i(! � !p) +

2
+ g2

2
|�|2

�2i(2!�!0)+
�
2

, ↵ =
1

2
g2�2

�i(2! � !0) +
�
2

(2.189)

In the non-depletion regime, the solution is further simplified to

� =

p
c�in

�i(! � !p) +

2

, ↵ =
1

2
g2�2

�i(2! � !0) +
�
2

. (2.190)

The e↵ective interaction Hamiltonian for the signal and idler modes is

H2 = i~(g2↵⇤b̂+b̂� � g⇤
2
↵b̂†+b̂

†

�) (2.191)

=
~
2


i|g2|2

i(2! � !0) +
�
2

�⇤2b̂+b̂� +
�i|g2|2

�i(2! � !0) +
�
2

�2b̂†+b̂
†

�

�
. (2.192)

Therefore, the overall process is equivalent to Kerr interaction Hamiltonian

HI = �~
2
(gc2b̂

†2b̂+b̂� + g⇤c2b̂
2b̂†+b̂

†

�) (2.193)

under coherent pump P with e↵ective third-order nonlinearity

gc2 = � i|g2|2
i(2! � !0) +

�
2

(2.194)

The equations of motion for the signal and idler modes are

˙̂b+ = (�i!+ � +

2
)b̂+ + i1

2
g⇤c2�

2b̂†� +
p
c,+b̂+,in +

p
i,+b̂
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+ (2.195)

˙̂b� = (�i!� � �
2
)b̂� + i1

2
g⇤c2�

2b̂†+ +
p
c,�b̂�,in +

p
i,�b̂

(i)
� , (2.196)

with output boundary conditions:

b̂+,out = b̂+,in �
p
c,+b̂+, b̂�,out = b̂�,in �

p
c,�b̂�. (2.197)

For the classical stimulate four-wave mixing with idler input �ie�i!it, the static

solution of Eq. (2.195) and Eq. (2.196) under the mean field approximation hb̂+i=�+,
hb̂�i=�� can be obtained

�� =
i1
2
g⇤c2�

2�⇤

+

i(!� � !i) +
�
2

, �+ =
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c,+�i

i(!+ � !i) +
+

2
� 1

4

|gc2|2|�|4

�i(!��!i)+
�
2

. (2.198)
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With on-resonance pump and idler input, the photon number conversion e�ciency

under perfect phase-matching !+ + !� = 2!p is

⌘ =
|�+,out|2
|�i|2

= 16c,+c,�|gc2|2|�|4

(+��|gc2|2|�|4)2
⇡ 16c,+c,�|gc2|2|�|4

2

+
2

�
(2.199)

For the photon-pair generation, the output state can be written as
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(2.200)

Therefore, the photon-pair generation rate under a weak pump can be calculated

as

R = h |b̂†+,outb̂+,outb̂
†

�,outb̂�,out| i / |gc2|2P 2

in
Q3

b , (2.201)

with Qb ⇡ !p

 ⇡ !+

+

⇡ !�
�

. This dynamics is identical to the third-order nonlinear

e↵ect.

Hence, cascaded second-order nonlinearity can mimic third-order nonlinearity

if the condition allows it. In the later chapters, we will show that the cascaded

second-order nonlinearity can interplay with the third-order nonlinearity to modify

the e↵ective strength to the range beyond the material constraints.
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CHAPTER 3

On-Chip Photon-Pair Generation in Dressed Modes: the Photonic Mollow Triplet†

3.1 Abstract

Making an analogy with atomic physics is a powerful tool for photonic technology,

witnessed by the recent development in topological photonics and non-Hermitian

photonics based on parity–time symmetry. The Mollow triplet is a prominent atomic

e↵ect with both fundamental and technological importance. Here we demonstrate

the analogue of the Mollow triplet with quantum photonic systems. Photonic en-

tanglement is generated with spontaneous nonlinear processes in dressed photonic

modes, which are introduced through coherent multimode coupling. We further

demonstrate the possibility of the photonic system to realize di↵erent configura-

tions of dressed states, leading to the modification of the Mollow triplet. Our work

would enable the investigation of complex atomic processes and the realization of

unique quantum functionalities based on photonic systems.

3.2 Main Article

3.2.1 Introduction

The modification of internal energy levels can lead to a dramatic change in the

optical response in atoms and molecules. As an example, one central peak with two

symmetric sidebands can be observed in the fluorescence spectrum of atomic systems

driven by a resonant optical field due to the energy splitting between dressed states,

which is known as Mollow triplet [19]. Along with Rabi oscillation, it is regarded as

an important confirmation of the light-atom interaction model in quantum optics

[20, 21]. Recently, the study of Mollow triplet has attracted a renewed interest due to

†
This chapter has been published previously as [1]
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Figure 3.1: Photonic analogue of Mollow triplet. a. Schematic to realize
Mollow triplet with quantum photonic systems. In a photonic ring cavity with one
coherent drive (green), a pair of signal (blue) and idler (red) photons are created from
spontaneous nonlinear processes. The signal and idler modes are further coupled to
two ancillary modes, respectively (light blue and pink). b. Joint spectral density
of signal-idler generation. The purple line shows the case with a continuous-wave
pump and non-zero dispersion. c. Energy-level diagram for the atomic system under
the resonant optical drive. The degeneracy is lifted between |e, ni and |g, n + 1i
with |ei (|gi) the atomic excited (ground) state and |ni the photon number state.
Rabi frequency is ⌦. Four transition paths are labeled with grey arrows. d. The
probability density for atomic transitions. The integral along the diagonal direction
(orange) is proportional to the fluorescence spectrum.

its potential applications in quantum information science [22, 23, 24, 25, 26, 27, 28,

29]. Highlighted by the capability of tailoring quantum correlations, Mollow triplet

shows great promise in engineering high-quality quantum emitters [23, 24]. Novel

quantum sensing schemes have also been demonstrated based on Mollow triplet [28,

29]. In addition, Mollow triplet has been used to study the coherent dynamics

of solid-state qubit systems such as quantum dots [23, 26, 27], superconducting

Josephson junctions [22], and diamond color centers [25].

The analogy between photonic resonances and atomic energy levels has enabled
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the investigation of complex photonic processes with established concepts of atomic

physics. Prominent examples include photonic crystals [30], topological photonic

systems [31], and parity–time symmetric systems [32]. It has led to the development

of important photonic technologies, including optical memories [33, 34, 35], topo-

logically protected laser [36, 37], structured light [38], etc. Atomic processes such as

quantum Hall e↵ect [39, 38], electromagnetically induced transparency [33, 34, 35],

and Ramsey interference [40], have all been realized with various photonic plat-

forms. While quantum interpretation is required to model atomic systems, it is

su�cient to describe the corresponding photonic processes in the classical picture.

Therefore, experimental demonstrations are also conducted with coherent optical

fields [33, 34, 35, 36, 37, 38, 39, 40]. The further expansion of the analogy between

photonic and atomic systems into quantum regime will be highly valuable for the

future development of photonic quantum information.

3.2.2 Theoretical Model

Here, we demonstrate the analogue of atomic Mollow triplet with all-photonic sys-

tems in the quantum regime. With entanglement generation, the proposed photonic

process cannot be interpreted in the classical picture nor realized with coherent

optical fields. The schematic of a general multi-mode-coupled photonic system is

shown in Fig. 3.1a. We start with a photonic ring cavity evanescently coupled to a

bus waveguide. A coherent drive is launched into the cavity to initiate the spon-

taneous nonlinear optical process (such as parametric down-conversion and sponta-

neous four-wave mixing). Non-degenerate correlated photon pairs can be generated

in symmetric signal and idler whispering gallery modes satisfying energy conser-

vation. While a series of optical whispering gallery modes are supported in the

photonic cavity, we focus on one signal-idler pair (âs and âi). At the same time,

the signal and idler modes are coherently coupled to the ancillary signal and idler

modes (b̂s and b̂i), respectively. The coherent coupling can be realized by addi-

tional pumps in nonlinear optical processes [41], microwave drives in electro-optic

devices [40], evanescently coupled photonic resonators [42], bidirectional coherent
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Figure 3.2: Entangled photon pair generation. a. The measurement setup.
TLD, tunable laser diode; EDFA, erbium-doped fiber amplifier; FPC, fiber polar-
ization controller; Cir., circulator; FBG, fiber Bragg grating; NF, notch filter; WSS,
wavelength selective switch; SSPD, superconducting single-photon detector. The
scale bar in the scanning electron microscope image is 20 µm. b. Transmission
spectrum of the photonic ring cavity. c. Single-photon spectrum. The signal (idler)
modes are labeled as s1-s5 (i1-i5). The notch filter (NF) regime is labeled in red. d.
Coincidence rates measured at all the signal/idler combinations. Strong coincidence
is only visible between symmetric signal-idler modes. e. Self-correlation function of
signal s4 mode with no heralding. The data (blue) is fitted with double-exponential
decay (red). f. Self-correlation measurement of signal s4 mode with idler i4 mode
as heralding.

coupling by back-scattering [43, 44] which is used in this work, etc. We use the

following Hamiltonian to describe the coupled multimode photonic system:

Ĥ =
X

k2(s,i)

~!k(â
†

kâk + b̂†kb̂k) + ~G(â†sâ
†

i + âsâi)+

~gs(â†sb̂s + âsb̂
†

s) + ~gi(â†i b̂i + âib̂
†

i ).

(3.1)

Here G is the splitting-free pump-enhanced coupling rate for the parametric nonlin-

ear process, gs (gi) is the coherent coupling strength between the signal (idler) mode

and the corresponding ancillary mode, and !k is the angular frequency for mode k

with k 2 (s, i). We also assume the signal (idler) mode and the corresponding
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ancillary mode have the same resonance frequency !s (!i).
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Figure 3.3: Observation of Mollow triplet with quantum temporal corre-
lations. a. Schematic showing that the signal-idler temporal correlation is the
Fourier transform of the joint spectrum density. The Mollow triplet is equivalent to
the convolution between one Lorentzian shape and three equal-distance delta func-
tions in frequency (blue). In the rotating frame of the central carrier frequency, the
Fourier transforms of the Lorentzian shape, and three equal-distance delta functions
are double-exponential decay and sinusoidal functions, respectively. Therefore, the
temporal correlation is the product of double-exponential decay and sine wave (red).
b. Linear transmission of signal s1 and idler i1 modes (cyan). Coupling strengths
gs ⇡ 2⇡⇥219 MHz and gi ⇡ 2⇡⇥131 MHz are obtained through the fitting with dou-
ble Lorentzian shape (red). c. Temporal correlation between signal s1 and idler i1
modes (blue) shows two sidebands introduced by signal and idler coherent coupling
with ancillary modes, respectively. The theoretical temporal correlation function is
shown in red. This proves the Mollow triplet structure in the joint spectral density.

The coherent coupling between the signal (idler) mode and the corresponding

ancillary mode leads to the re-normalization of the Hamiltonian, thus the creation

of the dressed signal (idler) modes âs ± b̂s (âi ± b̂i). Photon pair generation can

occur with four transition paths with di↵erent combinations of the dressed signal

and idler modes, shown as the four peaks in the joint spectral density (Fig. 3.1b).

If a broadband pump is used, all four transition paths can be e�ciently excited.
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Therefore, the biphoton spectrum is proportional to the integral of the joint spec-

tral density along the diagonal direction. With equal coupling strengths gs = gi, two

transition paths overlap in frequency. Therefore, one central peak with two side-

bands shows up in the spectrum, which is the same as the atomic Mollow triplet. If

a continuous-wave pump is used, the energy conservation requires that the sum of

signal and idler frequencies is constant. Therefore, the transition can only happen

along the anti-diagonal direction. With proper dispersion, a triplet structure can

also be observed (purple line in Fig. 3.1b, and more cases in Section 3.3.1).

In comparison, we also present the energy diagram of atomic systems resonantly

driven with an optical field (Fig. 3.1c). Dressed states are generated due to the

coherent coupling between degenerate states, leading to four transition paths for

spontaneous photon emission. The fluorescence spectrum is proportional to the

integral of transition probability density along the diagonal direction. Therefore, the

Mollow triplet with a central peak and two sidebands can be observed (Fig. 3.1d).

Clearly, the fluorescence emission in the atomic system shares a similar underlying

physics process with parametric photon pair generation in the photonic system. The

creation of dressed states and the interplay between di↵erent transition paths lead

to the generation of triplet spectral structures in both systems.

3.2.3 Experimental Results and Discussion

In our experiment, we use integrated ring resonators fabricated from single-

crystal aluminum nitride (AlN) on sapphire to demonstrate photonic Mollow triplet

(Fig. 3.2a). Entangled photon pairs are generated with spontaneous four-wave mix-

ing by launching a continuous-wave pump into the splitting-free resonance near

1547.60 nm (Fig. 3.2b). With broadband phase matching, photons are generated

in multiple modes spectrally symmetric to the pump resonance (Fig. 3.2c). With

energy conservation, a strong frequency correlation is only observed between sym-

metric signal and idler modes (Fig. 3.2d). We further isolate one signal mode and

measure the corresponding self-correlation function (Fig. 3.2e). As the idler photon

is discarded, the signal photon is in the single-mode thermal state showing bunching
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statistics. We obtain g(2)ss (0) = 2.01± 0.07, which is in agreement with the expected

value g(2)ss (0) = 2 for a single-mode thermal state [45]. With the strong frequency

correlation, we can further use the corresponding idler photon to herald the pres-

ence of the signal photon. As shown in Fig. 3.2f, the heralded self-correlation g(2)ssi(0)

shows non-classical anti-bunching behavior, with a minimum value close to zero.

This confirms that single photons are generated from the photonic ring cavity.

The photonic ring cavity supports both clockwise (CW) and counter-clockwise

(CCW) whispering gallery modes, corresponding to the original signal-idler and an-

cillary modes, respectively. The coherent coupling between CW and CCW modes is

introduced by the coherent backscattering in the ring cavity [46]. Therefore, entan-

gled photon pairs are generated in the dressed states consisting of CW and CCW

modes. Temporal correlation function between signal and idler photons g(2)si is mea-

sured to verify the photonic Mollow triplet. As shown in Fig. 3.3a, Mollow triplet

in joint spectral density can be considered as the convolution between a Lorentzian

function with three equal-distance delta functions. The temporal correlation g(2)si

is proportional to the Fourier transform of joint spectral density, thus the product

of double-exponential decay and sinusoidal function (Section 3.3.1). As a result,

sidebands can also be observed in the temporal correlation function (Fig. 3.3a). In

special cases with near-zero frequency detuning, the center peak in the frequency

domain can be suppressed. However, the temporal correlation still can show side-

bands (Section 3.3.1). Therefore, temporal correlation can accurately reflect the

coherent coupling condition for signal and idler modes. We first test the first signal-

idler pair (s1 and i1 in Fig. 3.2c). From the linear transmission, we can clearly

observe the mode splitting for both signal and idler modes, indicating that pho-

tonic dressed states are formed with the coherent superposition of CW and CCW

modes (Fig. 3.3b). From the mode splitting amplitude, we can estimate the coupling

strengths for the signal (gs ⇡ 2⇡⇥ 219 MHz) and idler (gi ⇡ 2⇡⇥ 131 MHz) modes,

respectively. The temporal correlation function between signal and idler photons

g(2)si is shown in Fig. 3.3c. In addition to the central peak, two sidebands are clearly

observed, proving the Mollow triplet structure in the joint spectral density. We
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further notice that the two sidebands are asymmetric in terms of both strength and

frequency separation from the central peak. This is caused by the di↵erence in the

signal and idler coupling strengths.
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Figure 3.4: Mollow phenomena with single sideband. a. Transmission spec-
trum of signal s2 and idler i2 modes (cyan). Only the idler mode shows coherent
coupling with gi ⇡ 2⇡⇥247 MHz. b. Measured temporal correlation between signal
s2 and idler i2 modes (blue). Only the left sideband is observed. c. Transmission
spectrum of signal s3 and idler i3 modes (cyan). Only the signal mode shows coher-
ent coupling with gs ⇡ 2⇡ ⇥ 175 MHz. d. Measured temporal correlation between
signal s3 and idler i3 modes (blue). Only the right sideband is observed. Coupling
strengths are obtained through fitting linear transmission with double Lorentzian
shape (red) in a and c. The theoretical temporal correlation functions are shown in
red in b and d.

For example, the Mollow triplet with atomic systems is usually symmetric, as

the energy splitting is the same for all energy levels [19, 20, 21]. Within our photonic

system, we can select the case where the coherent coupling for the signal mode is

almost absent, and only strong coupling for the idler mode is present. (s2-i2 pair

in Fig. 3.2c). From the linear transmission, we can see that the signal coupling is

unresolved, and the idler coupling (gi ⇡ 2⇡ ⇥ 247 MHz) is larger than the cavity

decay rate (Fig. 3.4a). In this case, only the left sideband is observed instead of two

symmetric ones, as dressed states are only formed for idler photons (Fig. 3.4b). Sim-

ilarly, we can also realize strong and near-zero coupling strengths for the signal and
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idler modes, respectively (s3-i3 pair in Fig. 3.2c). This configuration is confirmed

through linear transmission measurement (Fig. 3.4c). Only the right sideband is

observed, as dressed states are only formed for signal photons (Fig. 3.4d). By com-

paring two coupling configurations of signal-only splitting and idler-only splitting,

we e↵ectively conduct a reflection operation in the time domain. As a result, the

sideband originally on the left (leading the central peak as in Fig. 3.4b) moves to

the right (lagging the central peak as in Fig. 3.4d).

3.2.4 Conclusion

We have demonstrated the analogue of the atomic Mollow triplet with all-photonic

systems using on-chip entanglement generation in dressed photonic modes. This

work expands the analogy between atomic and photonic systems into the quan-

tum regime. It will enable the development of novel quantum photonic functions

such as quantum spectro-temporal shaping [47, 48, 49, 50, 51] and high-dimensional

quantum information processing [52]. Advanced coupling schemes such as dynamic

coupling control with nonlinear optics [41], and microwave drives [40] can further

unlock the capability to study complex physics processes with photons.

3.3 Supplementary Materials

3.3.1 Theoretical Description of Quantum Photonic Mollow Triplet

Dressed Photonic States

The Hamiltonian of the photonic system without the parametric nonlinear process

can be written as

Ĥ0 =~!s(â
†

sâs + b̂†sb̂s) + ~!i(â
†

i âi + b̂†i b̂i)

+~gs(â†sb̂s + âsb̂
†

s) + ~gi(â†i b̂i + âib̂
†

i ).
(3.2)

Here âs (âi) is the signal (idler) annihilation operator, b̂s (b̂i) is the annihilation

operator for the corresponding ancillary signal (idler) mode, !s (!i) is the angular

frequency for the signal (idler) mode, gs (gi) is the coupling strength between the
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signal (idler) and the corresponding ancillary mode. After re-normalization, the

Hamiltonian can be written as

Ĥ0 =~(!s + gs)

 
â†s + b̂†sp

2

! 
âs + b̂sp

2

!
+ ~(!s � gs)

 
â†s � b̂†sp

2

! 
âs � b̂sp

2

!

+~(!i + gi)

 
â†i + b̂†ip

2

! 
âi + b̂ip

2

!
+ ~(!i � gi)

 
â†i � b̂†ip

2

! 
âi � b̂ip

2

!
.

(3.3)

Dressed modes (â†s± b̂†s)/
p
2 and (â†i± b̂†i )/

p
2 are generated with angular frequencies

!s ± gs and !i ± gi, respectively.

Linear Transmission

The equation of motion for the signal âs and ancillary signal b̂s modes in Eq. (3.2)

can be written as

dâs
dt

=
i

~

h
Ĥ0, âs

i
� �as

2
âs +

p
�asi â(i)s +

p
�asc âs,in, (3.4)

db̂s
dt

=
i

~

h
Ĥ0, b̂s

i
� �bs

2
b̂s +

q
�bsi b̂(i)s +

p
�bsc b̂s,in, (3.5)

with the coupling decay rate �asc and �bsc , intrinsic decay rate �asi and �bsi , and total

decay rate �as = �asi + �asc and �bs = �bsi + �bsc for the âs and b̂s modes respectively.

The inputs from the intrinsic loss channels are â(i)s and b̂(i)s , and the input modes are

âs,in and b̂s,in for the signal and ancillary signal modes, respectively. With Fourier

transform, we obtain

0 =

✓
i�s �

�as

2

◆
âs(!)� igsb̂s(!) +

p
�asi â(i)s (!) +

p
�asc âs,in(!), (3.6)

0 =

✓
i�s �

�bs

2

◆
b̂s(!)� igsâs(!) +

q
�bsi b̂(i)s (!) +

p
�bsc b̂s,in(!). (3.7)

The classical equations of motion are obtained through averaging Eq. (3.6) and

Eq. (3.7).

0 =

✓
i�s �

�as

2

◆
As(!)� igsBs(!) +

p
�asc As,in(!) (3.8)

0 =

✓
i�s �

�bs

2

◆
Bs(!)� igsAs(!), (3.9)
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where As = hâsi, Bs = hb̂si, As,in = hâs,ini, and hâ(i)s i = hb̂(i)s i = hb̂s,ini = 0.

Therefore, the intra-cavity field amplitudes can be solved as

As(!) = �

2

4

⇣
i�s � �bs

2

⌘

�
i�s � �as

2

� �
i�s � �as

2

�
+ g2s

3

5p�asc As,in(!) (3.10)

Bs(!) = �
"

igs�
i�s � �as

2

� �
i�s � �as

2

�
+ g2s

#
p
�asc As,in(!). (3.11)

The output field of the signal mode is

As,out(!) = As,in(!)�
p
�asc As(!)

=

8
<

:1 + �asc

2

4

⇣
i�s � �bs

2

⌘

�
i�s � �as

2

� �
i�s � �as

2

�
+ g2s

3

5

9
=

;As,in(!).
(3.12)

The linear transmission is

Ts(�s) =

����
As,out

As,in

����
2

=

������
1 + �asc

2

4

⇣
i�s � �bs

2

⌘

�
i�s � �as

2

� �
i�s � �as

2

�
+ g2s

3

5

������

2

(3.13)

In the special case �as = �bs = �, the linear transmission is reduced to the double-

Lorentzian function as

Ts(�s) =

����
As,out

As,in

����
2

=

����1 + �c


1

(i�s + gs)� �
2

+
1

(i�s � gs)� �
2

�����
2

(3.14)

with the frequency separation equal to 2gs, which verifies the formation of dressed

states with resonant frequencies !s ± gs in Eq. (3.3). The derivations of linear

transmission for idler are identical to the signal.
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Joint Spectral Amplitude

With the Hamiltonian Ĥ0, the full quantum equations of motion can be written as

0 =

✓
i�s �

�as

2

◆
âs(!)� igsb̂s(!) +

p
�asi â(i)s (!) +

p
�asc âs,in(!), (3.15)

0 =

✓
i�i �

�ai

2

◆
âi(!)� igib̂i(!) +

p
�aii â(i)i (!) +

p
�aic âi,in(!) (3.16)

0 =

✓
i�s �

�bs

2

◆
b̂s(!)� igsâs(!) +

q
�bsi b̂(i)s (!) +

p
�bsc b̂s,in(!) (3.17)

0 =

✓
i�i �

�bi

2

◆
b̂i(!)� igiâi(!) +

q
�bii b̂

(i)
i (!) +

q
�bic b̂i,in(!). (3.18)

The intra-cavity fields are related to the input and output fields by the input-

output relation

8
>>>>>>><

>>>>>>>:

âs,out = âs,in �
p
�asc âs âi,out = âi,in �

p
�aic âi

â(e)s = â(i)s �
p
�asi âs â(e)i = â(i)i �

p
�aii âi

b̂s,out = b̂s,in �
p
�bsc b̂s b̂i,out = b̂i,in �

p
�bic b̂i

b̂(e)s = b̂(i)s �
q
�bsi b̂s b̂(e)i = b̂(i)i �

q
�bii b̂i

(3.19)

Here operators ôj,out and ô(e)j with o 2 {a, b} and j 2 {s, i} represent the output

fields for the bus waveguide and intrinsic loss channel, respectively. Therefore, we

can express âs and âi with output fields as

âs = �
igs

✓q
�bsi b̂(e)s +

p
�bsc b̂s,out

◆
+
⇣
i�s +

�bs

2

⌘⇣p
�asi â(e)s +

p
�asc âs,out

⌘

�
i�s +

�as

2

� ⇣
i�s +

�bs

2

⌘
+ |gs|2

(3.20)

âi = �
igi

✓q
�bii b̂

(e)
i +

p
�bic b̂i,out

◆
+
⇣
i�i +

�bi

2

⌘⇣p
�aii â(e)i +

p
�aic âi,out

⌘

�
i�i +

�ai

2

� ⇣
i�i +

�bi

2

⌘
+ |gi|2

. (3.21)

The degenerate-pump four-wave mixing interaction Hamiltonian with continuous

spectral basis in the cavity is at the scale of

Ĥint = i~
Z

d!p

2⇡

ZZ
d!sp
2⇡

d!ip
2⇡

â†s(!s)â
†

i (!i)✏
2(!p)e

i(!s+!i�2!p)t + h.c., (3.22)
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with ✏(!p) the intra-cavity pump profile determined by the input pump field and

the pump resonance. Here we choose four-wave mixing for demonstration. With

parametric down-conversion, the pump frequency and profile should be modified

accordingly [6]. Photon pairs will be generated in the cavity with the bi-photon

joint quantum state as

| i = e�
i
~
R T
0

dtĤint |0, 0i ⇡

1 +



2

ZZ
d!sp
2⇡

d!ip
2⇡

â†s(!s)â
†

i (!i)✏
2(
!s + !i

2
)

�
|0, 0i(3.23)

By plugging Eq. (3.20) and Eq. (3.21) into Eq. (3.23) and only keeping measur-

able ports âs,out and âi,out terms, we obtain the output bi-photon state as

| iout /
ZZ

d!sd!i �(!s,!i)â
†

s,out(!s)â
†

i,out(!i)|0, 0i (3.24)

with the joint spectral amplitude �(!s,!i) /
⇣
�i�s +

�bs

2

⌘⇣
�i�i +

�bi

2

⌘
✏2(!s+!i

2
)

h�
�i�s +

�as

2

� ⇣
�i�s +

�bs

2

⌘
+ |gs|2

i h�
�i�i +

�ai

2

� ⇣
�i�i +

�bi

2

⌘
+ |gi|2

i . (3.25)

The temporal correlation function can be further calculated from the joint spec-

tral amplitude by

g(2)si (ts, ti) =

����
ZZ

d!sp
2⇡

d!ip
2⇡
�(!s,!i)e

�i(!sts+!iti)

����
2

(3.26)

3.3.2 E↵ect of Pump Frequency Detuning

In our experiment, a continuous-wave pump is used as the pump for the parametric

nonlinear process. Therefore, the transition can only happen along the anti-diagonal

direction. The detune between the pump frequency and the signal-idler center fre-

quency is determined by the pump, corresponding to one anti-diagonal slice in the

joint spectral density. As the pump field is always in resonance with the pump pho-

tonic mode, the frequency detune is e↵ectively determined by the dispersion of the

photonic ring cavity. With zero dispersion !p = (!s + !i)/2, the anti-diagonal slice

passes through the center of the 2D transition probability plot, and the transition
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Normalized Signal-Idler
Time Correlation

(a) (b)

Δtω

(c)

Pu
m
p
de
tu
ni
ng
#

"!
""

Probability Density for
Signal-Idler Generation

Figure 3.5: Intepretation to the detuned photonic Mollow triplet. a, The
joint spectrum amplitude with di↵erent pump detuning (caused by dispersion) of the
photonic cavity. b, Biphoton spectrums and c, temporal correlations with di↵erent
detuning �/g= 0 (blue), 0.75 (orange), 1.5 (green), 2.25 (red), and 3.0 (purple). The
simulation presets �/�= 1.2 .

happens mainly between (â†s+ b̂†s)/
p
2 and (â†i � b̂†i )/

p
2, as well as (â†s� b̂†s)/

p
2 and

(â†i+b̂†i )/
p
2. As a result, the output bi-photon joint power spectrum shows two sym-

metric peaks (blue curves in Fig. S1). With large normal dispersion !p < (!s+!i)/2,

the transition between (â†s� b̂†s)/
p
2 and (â†i � b̂†i )/

p
2 will dominate with minor am-

plitude for transitions mainly between (â†s + b̂†s)/
p
2 and (â†i � b̂†i )/

p
2 as well as

(â†s � b̂†s)/
p
2 and (â†i + b̂†i )/

p
2. Therefore, the output bi-photon spectrum shows

a triplet structure with one central peak and two sidebands (green curves in Fig.

S1). With large anomalous dispersion !p > (!s + !i)/2, the transition between

(â†s + b̂†s)/
p
2 and (â†i + b̂†i )/

p
2 will dominate with lesser amplitude for transitions

between (â†s + b̂†s)/
p
2 and (â†i � b̂†i )/

p
2 as well as (â†s � b̂†s)/

p
2 and (â†i + b̂†i )/

p
2.

The output bi-photon spectrum will be similar to the normal dispersion case. By

definition, the dispersion will introduce a detuning term � = �s � �i.

3.3.3 Data for All Signal-Idler Pairs

Here we present the data for all signal-idler pairs, including the linear transmis-

sion for signal and idler modes, self-correlation of signal photons without heralding,
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Figure 3.6: Additional data. First row, signal linear transmission Ts; second row,
idler linear transmission Ti; third row, self-correlation of signal photons without
heralding g(2)ss ; fourth row, self-correlation of signal photons heralded by idler photons
g(2)ssi ; fifth row, the temporal correlation between signal and idler photons g(2)si . Data
and fitting are shown in blue and red, respectively.

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5
gs 210 MHz ⇡ 0 MHz 221 MHz 82 MHz 99 MHz
gi 154 MHz 217 MHz 91 MHz 188 MHz 232 MHz

g(2)ss (0) 1.91 1.87 2.01 2.01 2.00

g(2)ssi(0) 0.006 0.013 0.005 0.009 0.009

Table 3.1: Additional parameters. First row, gs fitted from linear transmission
Ts; second row, gi fitted from idler linear transmission Ti; third row, fitted peak
value of signal self-correlation without heralding; fourth row, fitted dip value of
signal self-correlation heralded by idler photons.
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self-correlation of signal photons heralded by idler photons, and temporal correla-

tion between signal and idler photons (Fig. 3.6). We can first see di↵erent mode-

splitting configurations and strengths for di↵erent signal-idler pairs. By fitting lin-

ear transmission with Eq. (3.13), we can obtain gs and gi values. We further fit the

self-correlation of signal photons without heralding using double-exponential decay

functions and obtain peak values close to 2, showing that the e↵ective mode number

(jitter-defined resolvable modes) is close to 1 [53]. With the self-correlation of signal

photons heralded by idler photons, we obtain minimum values close to 0, which

means the experiment is in the single photon regime. All values for fitted lines are

summarized in Table 3.1.
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CHAPTER 4

Reconfigurable Kerr Nonlinearity Enabled by Cascaded Second-Order Nonlinear

Processes†

4.1 Abstract

Nanophotonic cavities with Kerr nonlinearities are versatile platforms both to ex-

plore fundamental physics and to develop practical photonic technologies [54, 18,

52]. This is possible because nanoscale structures allow precise dispersion control

and provide significant field enhancement to improve excitation conditions. To im-

prove the functionality and performance of photonic devices even further, direct

control of the Kerr nonlinearity would be desirable. Here, we report the in situ

control of integrated Kerr nonlinearity through its interplay with the nonlinear pro-

cess of cascaded Pockels cells [55, 56, 57, 58, 59, 60]. We observe a Fano resonance

in the nonlinear spectrum rather than in the linear transmission [61], confirming

the quantum interference between competing optical nonlinear pathways. The Kerr

nonlinearity is tuned over a dynamic range of 10 dB without modifying the photonic

structure. We also demonstrate the suppression of the intrinsic material nonlinear-

ity, and we use the tuneable nonlinearity to control the spectral brightness and

coincidence-to-accidental ratio of single-photon generation.

4.2 Main Article

4.2.1 Introduction

The dynamic control of optical properties plays an indispensable role in a great

number of fields. The linear optical properties such as refractive index and ab-

sorption can be modified in nanophotonic circuits using a wide variety of phenom-

†
This chapter has been published previously as [2]
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ena including thermal [62], electrical [63, 64], mechanical [65], and free-carrier ef-

fects [66]. It allows the modulation of optical fields with broad applications ranging

from laser systems to optical communications. Recently, such linear control has

also been used to demonstrate functions including the reconfigurable generation of

topological photonic states [67, 68], the photonic acceleration of machine learning

algorithms [69, 70], and the realization of universal photonic quantum gates [71, 72].

Similarly, the control of optical nonlinear properties will lead to significant

scientific and technological advances. The enhancement of nonlinearity can ob-

viously benefit broad photonic technologies, including all-optical information pro-

cessing [73, 74, 75], quantum computing [76, 77, 78, 79], temporal-frequency con-

version [80, 47, 81], etc. The full coherent control of nonlinearity beyond simple

enhancement can further expand the scope of photonic technology. The nonlin-

earity suppression is critical to fundamentally improve the sensitivity of optical

sensors [82, 83] and the capacity of optical communications [84, 85]. The phase

inversion of the nonlinear interaction can enable the generation of unconventional

soliton states [86, 87]. Currently, nanophotonic Kerr-type nonlinear processes are

only controlled indirectly using intra-cavity photon number and dispersion. There-

fore, the achievable nonlinearity and functionality are limited to the material’s

intrinsic properties at specific wavelengths. Cascaded second-order nonlinearity

has been demonstrated as an e�cient method to increase the e↵ective third-order

strength [88, 89, 90, 91, 92, 93, 94, 95]. The simultaneous implementation and coher-

ent control of the cascaded second-order and third-order nonlinearities can further

expand the capability of photonic devices [55, 56, 57, 58, 96, 59, 60]. Such advanced

functions can only be realized by integrated photonic platforms with second-order

nonlinearity [97, 98].

In this Letter, the complete amplitude and phase control of e↵ective Kerr non-

linearity can be realized in a nanophotonic cavity by designing the interference with

cascaded Pockels processes. Besides the enhancement of Kerr nonlinearity, we also

observe unique phenomena including the nonlinearity suppression and Fano reso-

nances in the nonlinear regime. The e↵ective Kerr nonlinearity is highly tunable
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over 10 dB dynamic range with fixed photonic structures. We further validate the

control of Kerr nonlinearity in both classical and quantum regime through nonlinear

frequency conversion and single-photon generation.

FWM SHG PDC

Intrinsic Kerr

𝜔𝑝 𝜔𝑠𝜔𝑖 𝜔𝑝 𝜔𝑠𝜔𝑖 2𝜔𝑝

a b

Cascaded Pockels

Figure 4.1: E↵ective Kerr nonlinearity with cascaded Pockels process. a,
Intrinsic Kerr process. Two pump photons are annihilated to generate one signal and
one idler photon b, Cascaded Pockels process. Two pump photons are annihilated to
generate one second-harmonic photon, which drives the parametric down-conversion
to generate one signal and one idler photon.

4.2.2 Conceptual Model

In the degenerate configuration of Kerr nonlinear processes, two pump photons are

annihilated to generate one signal and one idler photon, or vice versa (Fig. 4.1a). The

nonlinearity is fixed by the material property and photonic structure. To modify the

Kerr nonlinearity, we design a cascaded Pockels nonlinear process shown in Fig. 4.1b.

In this process, two pump photons first combine to generate one second-harmonic

photon. Then the second-harmonic photon drives the parametric down-conversion

process in the same photonic cavity to generate one signal and one idler photon.

The e↵ective interaction Hamiltonian for the cascaded Pockels nonlinear process is

HI = �1

2
~(gcb̂†2p b̂sb̂i + g⇤c b̂

2

pb̂
†

sb̂
†

i ), (4.1)
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with b̂p, b̂s, and b̂i the annihilation operators of the pump, signal, and idler modes,

respectively (Section 4.3.1). The e↵ective cascaded Pockels nonlinear strength gc at

a single-photon level is defined as

gc =
�i|g2|2
i� + �/2

, (4.2)

with g2 the Pockels nonlinear strength, � the frequency detune between twice the

pump frequency and the second-harmonic mode, and � the decay rate of the second-

harmonic mode. This interaction Hamiltonian has the same form as intrinsic Kerr

nonlinear processes. With highly e�cient Pockels nonlinear processes, the e↵ective

Kerr nonlinearity can be significantly enhanced.
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Figure 4.2: Enhancement of Kerr nonlinearity. a, Scanning electron microscope
image of the fabricated aluminum nitride device with the ring cavity (blue), the bus
waveguide for the second-harmonic field (purple), and the bus waveguide for the
pump, idler, and signal fields (green). Scale bar 20 µm. b, Pump transmission
(green) and second-harmonic (purple) spectrum. Two sets of modes for FWM, with
(red) and without (gray) Pockels phase-matching, are labeled. c, The output optical
spectrum of the stimulated FWM. d, The output signal (red and gray) and second-
harmonic power (purple) with di↵erent pump power. e, The pump e�ciency (red
and gray) and second-harmonic power (purple) with di↵erent idler input power.
Results in c, d, and e using the reference mode set and the mode set with Pockels
phase-matching are presented in red and gray, respectively. Experimental data
(circles) are fitted with the theoretical model (solid lines).

To implement the cascaded Pockels nonlinear process, we use a nanophotonic
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ring cavity made of aluminum nitride (Fig. 4.2a). The phase-matching condi-

tion for the Pockels nonlinear process is satisfied using a high-order transverse-

magnetic (TM) second-harmonic mode and a fundamental TM pump mode (Sec-

tion 4.3.2). Strong second-harmonic generation is observed with pump wave-

length near 1518 nm (Fig. 4.2b). The second-harmonic generation e�ciency is

measured as ⌘ ⇡ 1800%/W, leading to the estimated Pockels nonlinear strength

g2 ⇡ 2⇡⇥81 kHz (Section 4.3.2). With the small decay rate of the second-harmonic

mode (� ⇡ 2⇡ ⇥ 4.5 GHz), we can expect the enhanced Kerr nonlinearity around

|gc| ⇡ 2⇡⇥3 Hz at zero frequency detune, which is six-fold higher than the intrinsic

value (g3 ⇡ 2⇡ ⇥ 0.5 Hz).

The enhancement of the Kerr nonlinearity is first verified with stimulated four-

wave mixing (FWM) for frequency conversion in the classical domain. With a strong

pump (Pp), we measure the conversion from the idler input (Pi) to the signal output

(Ps). We use two sets of modes from the same nanophotonic cavity to measure the

intrinsic and enhanced Kerr nonlinearity respectively. The pump mode of the refer-

ence set is not phase-matched to the Pockels nonlinear process. Therefore, only the

intrinsic Kerr nonlinearity contributes to the nonlinear frequency conversion. The

pump mode of the other set is phase-matched to the Pockels nonlinear process. As

a result, the enhanced Kerr nonlinearity dominates the nonlinear frequency conver-

sion. The two sets of modes share similar quality factors and coupling conditions.

Consequently, the influence of di↵erent cavity-enhancement factors and extraction

e�ciencies can be eliminated (Section 4.3.2). The generation of the signal field is

observed from the output optical spectrum with both mode sets (Fig. 4.2c). Com-

paring the two-mode sets, the signal output of the phase-matched set is significantly

higher than the reference set, even though the smaller pump and idler inputs are

used. To calibrate the enhancement factor, we fix the input idler power (Pi) and

vary the input pump power (Pp). To achieve the same signal output (Ps), the cas-

caded Pockels nonlinear process uses 7.5 dB less pump power than the intrinsic Kerr

nonlinearity (Fig. 4.2d). This agrees well with the di↵erence between the enhanced

and intrinsic Kerr nonlinearity (|gc/g3| ⇡ 6).The critical role of the Pockels nonlin-
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ear process is further confirmed by the increased second-harmonic generation with

respect to the pump power (Fig. 4.2d). The same conclusion is obtained from the

measurement with di↵erent input idler power (Pi). With the same pump power,

the cascaded Pockels process can generate approximately 15 dB stronger signal out-

put. The second-harmonic generation remains constant during the process, which

confirms that the second-harmonic field is generated from the pump.
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Figure 4.3: Quantum interference between nonlinear processes. a, Schematic
for the quantum interference between intrinsic Kerr and cascaded Pockels process.
b, Vector diagram showing the coherent interaction between the intrinsic Kerr and
cascaded Pockels process. Phase ' can be controlled by the frequency detune �.
Intrinsic Kerr nonlinearity is normalized to 1, and the tuning range of the e↵ective
Kerr nonlinearity is bounded to the circle with radius ⇠. c, Calculated e↵ective
Kerr nonlinearity |ge↵/g3| in logarithm scale. d, Calculated maximum and minimum
e↵ective Kerr nonlinearity. The shaded area indicates the accessible range of the
e↵ective Kerr nonlinearity.

The coherent interaction between multiple nonlinear processes can be used to

tune the overall nonlinear response. This enables complete control over the ampli-

tude and phase of the e↵ective Kerr nonlinearity. Taking both the intrinsic Kerr

strength g3 and cascaded Pockels nonlinear rate gc into account (Fig. 4.3a), the

e↵ective Kerr nonlinearity can be written as

ge↵ = g3 + gc = g3 �
i|g2|2

i� + �/2
(4.3)

The relative phase ' between the two nonlinear processes can be controlled by

the frequency detune � (Fig. 4.3b). Both constructive and destructive interference

can be realized, leading to the enhancement and suppression of the e↵ective Kerr

nonlinearity, respectively (Fig. 4.3c). Here, we define

⇠ = |g2|2/(g3�), (4.4)
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so that 2⇠ stands for the relative strength between the two nonlinear processes at

zero frequency detune. The maximum and minimum e↵ective nonlinear strength

|gmax/min| = g3

✓p
1+⇠2±⇠p
1+⇠2⌥⇠

◆1/2

can be obtained at frequency detunes � = �
2
(⇠ ⌥

p
1 + ⇠2). Therefore, a larger tuning dynamic range can be achieved with more

e�cient Pockels nonlinear processes (Fig. 4.3d).

4.2.3 Experiments
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Figure 4.4: Continuous tuning of Kerr nonlinear strength in the quantum
regime. a, c, Single-photon generation rate from spontaneous FWM using e↵ective
Kerr nonlinearity with ⇠ = 0.14 and ⇠ = 0.92 respectively. The data is normalized to
the count rate with the intrinsic Kerr nonlinearity (gray dashed line). b, d, Single-
photon generation rate from spontaneous parametric down-conversion with ⇠ = 0.14
and ⇠ = 0.92 respectively. e, Single-photon generation rate (red circle) with di↵erent
pump power. Calculated background dark count (black dashed), pump-induced
noise (green dashed), signal photon rate (red dashed), and total photon rate (red
solid) are plotted. All photon counting data are measured from signal resonances.
f, Signal-idler coincidence count with frequency detune � = �2⇡ ⇥ 0.7 GHz (red
point in c) and � = 2⇡⇥1.5 GHz (blue point in c). The pump power is 1 mW. The
accidental coincidence outside the coherent window is normalized to 1. g, CARs
under di↵erent pump power with frequency detune � = �2⇡ ⇥ 0.7 GHz (red) and
� = 2⇡ ⇥ 1.5 GHz (blue). Points: measured CARs from signal-idler coincidence.
Lines: calculated CARs from the calibrated signal, idler, and noise photon rates.

To verify the quantum interference between the cascaded Pockels and the intrin-

sic Kerr nonlinear processes, we perform single-photon generation with spontaneous

FWM. The frequency detunes � is precisely controlled through the device temper-

ature (Section 4.3.2). The pump light is tuned in resonance with the pump mode
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to ensure that the intra-cavity pump photon number remains constant. The single-

photon generation rate of the signal channel (proportional to |ge↵ |2) is recorded

to infer the e↵ective Kerr nonlinearity. We use two di↵erent Pockels nonlinear

strengths corresponding to ⇠ = 0.14 and ⇠ = 0.92, respectively by selecting two dif-

ferent phase-matching modes (Section 4.3.2). The single-photon count rate shows

Fano lineshape in both cases (Fig. 4.4a and c), indicating the coherent interaction

between two competing optical nonlinear processes. A larger tuning dynamic range

of the Kerr nonlinearity is achieved with the stronger Pockels nonlinear strength

(±0.6 dB with ⇠ = 0.14 vs. ±3.6 dB with ⇠ = 0.92), which matches our theoretical

model (Fig. 4.3c). As a reference, we also measure the single-photon generation

rate of the same signal channel with parametric down-conversion by pumping a vis-

ible laser into the cavity under di↵erent frequency detune (Fig. 4.4b and d), which

shows Lorentzian lineshape. This confirms the quantum interference between the

broad-band intrinsic Kerr process and the narrow-band cascaded Pockels nonlinear

process. It is noteworthy that Fano resonances in our experiment can only be ob-

served with a nonlinear spectrum, as the interference happens between nonlinear

processes. This is in contrast to Fano resonances introduced by linear coupling be-

tween resonators, where linear transmission is su�cient to observe the asymmetric

lineshape [61].

Finally, we demonstrate the control of the coincidence-to-accidental ratio (CAR)

of the single-photon generation by changing the e↵ective Kerr nonlinearity. CAR

is a critical parameter to characterize the quality of single photon sources. In the

low pump regime, background noise, and leaking pump dominate the total photon

count. Therefore, CAR can be improved by increasing the pump power. In the

high pump regime, multi-photon generation becomes the major noise source. As a

result, CAR drops with increased pump power. We first set the frequency detuning

� = 2⇡ ⇥ 1.5 GHz with ⇠ = 0.92 to achieve the maximum nonlinearity suppression

(blue point in Fig. 4.4c). We measure the cross-correlation between signal and idler

photons (g(2)) to extract the dependence of CAR on the pump power (Fig. 4.4f and

4.4g). The maximum CAR of 9± 1 is achieved using 3 dBm pump power. Next, we
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set the frequency detuning � = �2⇡⇥0.7 GHz to realize the maximum nonlinearity

enhancement (red points in Fig. 4.4c). The maximum achievable CAR is 47 ±
2 with -2 dBm pump power, corresponding to more than five-fold improvement.

We also calibrated photon rates of the background noise, pump-induced noise, and

parametric photon pairs (Fig. 4.4e) to directly calculate CAR, which agrees with

the result obtained from the coincidence measurement (Fig. 4.4f) (Section 4.3.3).

4.2.4 Discussion

We have demonstrated the quantum-level coherent interaction between intrinsic

Kerr and cascaded Pockels processes, leading to the in situ control of e↵ective Kerr

nonlinearity. This scheme can be readily implemented with other integrated pho-

tonic platforms with second-order nonlinearity [99, 100, 98]. In particular, the recent

development of thin-film lithium niobate photonic devices can significantly increase

the strength of the cascaded Pockels process. With the large Pockels coe�cient

(30 pm/V) and small visible cavity loss (� < 2⇡⇥40 MHz) [101], the e↵ective Kerr

nonlinearity can reach megahertz level with similar device sizes.Given that lithium

niobate photonic cavities can reach linewidth below 10 MHz with telecom wave-

lengths [98, 102], our scheme could lead to the demonstration of single-photon strong

coupling regime with Kerr nonlinearity, enabling the deterministic quantum logic

operations with all-photonic systems [77, 78, 79]. While the enhancement of Kerr

nonlinearity can directly find broad applications, it is also worth noting that func-

tionalities, including the suppression and phase tuning of Kerr nonlinearity, could

also open unique prospects for photonic technologies, such as eliminating nonlin-

ear noise and improving the dynamic range of optical sensing and communication

systems.

4.2.5 Methods

Device fabrication. Devices are fabricated from 1-µm AlN grown on sapphire sub-

strates by MOCVD. FOx-16 resist is used for patterning photonic circuits with
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electron-beam lithography. After development with TMAH, plasma etching with

Cl2/BCl3/Ar is used to transfer the pattern to the AlN layer. Finally, SiO2 cladding

is deposited by plasma-enhanced chemical vapor deposition (PECVD).

CAR measurement. When calculating CAR, the coincidence count is averaged

within the coincidence peak (± 1 ns) at zero delay. The accidental count is estimated

by averaging the coincidence count with a large time delay outside the peak.

4.3 Supplementary Materials

4.3.1 Theoretical Model of the E↵ective Kerr Nonlinearity with Cas-

caded Pockels Processes

The Hamiltonian describing the photonic device with both Pockels and Kerr non-

linear processes can be written as

Hsys = H0 +H1 +H2 +H3, (4.5)

H0 = ~!pb̂
†b̂+ ~!0â

†â+ ~!+b̂
†

+b̂+ + ~!�b̂
†

�b̂�, (4.6)

H1 =
~
2
(g2â

†b̂2 + g⇤
2
âb̂†2), (4.7)

H2 = ~(g2â†b̂+b̂� + g⇤
2
âb̂†+b̂

†

�), (4.8)

H3 = �~
2
(g3b̂

†2b̂+b̂� + g⇤
3
b̂2b̂†+b̂

†

�), (4.9)

with a, b, b+ and b� representing the second-harmonic field, the pump field, the

signal field, and the idler field, respectively. H0 describes the free evolution of the

cavity. H1 and H2 describe the Pockels process between the second-harmonic and

the pump modes, as well as among the second-harmonic, signal, and idler modes.

H3 describes the Kerr interaction among the pump, signal, and idler modes. The

minus sign is used to match the convention of self-phase modulation [103]. The

positive nonlinear strength for the Pockels and Kerr processes can be written as

g2 =

s
~!0!2

p

2✏0VaV 2

b

Z

V

dr3u⇤

a(~r) · �(2) : ub(~r)
2 (4.10)

g3 =
3

2

~!2

p

✏0V 2

b

Z

V

dr3u⇤2

b (~r) : ��(3) : ub(~r)
2 (4.11)
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with ua(~r) and ub(~r) the transverse mode profile of the second-harmonic and pump

fields, respectively. The mode volumes are defined as Va = 2⇡Rna

RR
� dr

2|ua(~r)|2

and Vb = 2⇡Rnb

RR
� dr

2|ub(~r)|2, with R the ring radius, na and nb the refractive

index for the second-harmonic and pump modes, and � the cross-section. Here

we assume that the signal and idler modes share the same transverse mode profile

with the pump mode. While we do not include the interaction Hamiltonian for self-

phase and cross-phase modulation, the corresponding frequency shift can be taken

into account by re-defining the cavity resonance frequencies. Then the equations of

motion can be written as

˙̂a = (�i!0 �
�

2
)â� ig2(

1

2
b̂2 + b̂+b̂�) +

p
�câin +

p
�iâ

(i) (4.12)

˙̂b = (�i!p �


2
)b̂� i(g2â� g3b̂+b̂�)b̂

† +
p
cb̂in +

p
ib̂

(i) (4.13)

˙̂b+ = (�i!+ � +
2
)b̂+ � i(g⇤

2
â� 1

2
g⇤
3
b̂2)b̂†� +

p
c,+b̂+,in +

p
i,+b̂

(i)
+ (4.14)

˙̂b� = (�i!� � �
2
)b̂� � i(g⇤

2
â� 1

2
g⇤
3
b̂2)b̂†+ +

p
c,�b̂�,in +

p
i,�b̂

(i)
� . (4.15)

with �c, �i, � = �c + �i (c, i,  = c + i; c,±, i,±, ± = c,± + i,±) the

coupling, intrinsic, and total loss rate of the second-harmonic (pump; signal; idler)

mode respectively. The input operators of the second-harmonic, pump, signal, and

idler modes due to coupling loss (intrinsic loss) are labeled as âin, b̂in, b̂+,in, b̂�,in

(â(i), b̂(i), b̂(i)+ , b̂(i)+ ) respectively.

With coherent input power P into the pump mode b̂in =
q

P
nb~!p

e�i!t, Eq. (4.12)

and Eq. (4.13) can be treated classically using the mean fields ¡â¿=↵, ¡b̂¿=�. Then

the static solutions of Eq. (4.12) and Eq. (4.13) are

� =

p
c�in

�i(! � !p) +

2
+ g2

2
|�|2

�2i(2!�!0)+
�
2

(4.16)

↵ =
� i

2
g2�2

�i(2! � !0) +
�
2

(4.17)

In the non-depletion regime, the solution is further simplified to

� =

p
c�in

�i(! � !p) +

2

. (4.18)
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↵ =
� i

2
g2�2

�i(2! � !0) +
�
2

. (4.19)

The e↵ective interaction Hamiltonian for the signal and idler modes is

H2 +H3 = ~(g2↵⇤b̂+b̂� + g⇤
2
↵b̂†+b̂

†

�)�
~
2
(g3�

⇤2b̂+b̂� + g⇤
3
�2b̂†+b̂

†

�) (4.20)

= �~
2


(g3 �

i|g2|2
i(2! � !0) +

�
2

)�⇤2b̂+b̂� + (g⇤
3
� �i|g2|2

�i(2! � !0) +
�
2

)�2b̂†+b̂
†

�

�
.

(4.21)

Therefore, the overall process is equivalent to Kerr interaction Hamiltonian

HI = �~
2
(ge↵ b̂

†2b̂+b̂� + g⇤
e↵
b̂2b̂†+b̂

†

�) (4.22)

under coherent pump P with e↵ective Kerr nonlinearity

ge↵ = g3 �
i|g2|2

i(2! � !0) +
�
2

(4.23)

The equations of motion for the signal and idler modes are

˙̂b+ = (�i!+ � +
2
)b̂+ + i

1

2
g⇤
e↵
�2b̂†� +

p
c,+b̂+,in +

p
i,+b̂

(i)
+ (4.24)

˙̂b� = (�i!� � �
2
)b̂� + i

1

2
g⇤
e↵
�2b̂†+ +

p
c,�b̂�,in +

p
i,�b̂

(i)
� , (4.25)

with output boundary conditions:

b̂+,out = b̂+,in �
p
c,+b̂+ (4.26)

b̂�,out = b̂�,in �
p
c,�b̂�. (4.27)

For the classical stimulate four-wave mixing with idler input �ie�i!it, the static

solution of Eq. (4.24) and Eq. (4.25) under the mean field approximation ¡b̂+¿=�+,

¡b̂�¿=�� can be obtained

�� =
i1
2
g⇤
e↵
�2�⇤

+

i(!� � !i) +
�
2

. (4.28)

�+ =

p
c,+�i

i(!+ � !i) +
+

2
� 1

4

|ge↵ |2|�|4

�i(!��!i)+
�
2

. (4.29)
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With on-resonance pump and idler input, the photon number conversion e�ciency

under perfect phase-matching !+ + !� = 2!p is

⌘ =
|�+,out|2
|�i|2

=
16c,+c,�|ge↵ |2|�|4
(+� � |ge↵ |2|�|4)2

⇡ 16c,+c,�|ge↵ |2|�|4
2+

2
�

(4.30)

For the spontaneous four-wave mixing, the output state can be written as

| i =
"
1� ig⇤

e↵
�2

2

ZZ
d!0

p
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d!00

p
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p
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00)
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#
|00i

+O(
c,+c,�|ge↵ |2|�|4

2+
2
�

|22i)

(4.31)

Therefore, the photon-pair generation rate under a weak pump can be calculated as

R = h |b̂†+,outb̂+,outb̂
†

�,outb̂�,out| i / |ge↵ |2P 2

in
Q3

b , (4.32)

with Qb ⇡ !p

 ⇡ !+

+

⇡ !�
�

.
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Figure 4.5: Linear measurement setup and device design. a, Measurement
setup for the linear transmission of the cavity. b, Simulation of phase-matching
condition between fundamental TM0 and second-harmonic TM2 modes. c, Simula-
tion of coupling field between the visible bus waveguide TM0 mode and cavity TM2

mode.
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c,+ c c,� +  �
Phase-matched set 145 MHz 153 MHz 162 MHz 273 MHz 338 MHz 424 MHz

Reference set 150 MHz 166 MHz 124 MHz 275 MHz 365 MHz 297 MHz

Table 4.1: Coupling rate and total loss rate for each resonance fitted from
Fig. 4.6b.

4.3.2 Device Characterization

The cavity loss rates and coupling conditions are obtained from the linear transmis-

sion with the setup shown in Fig. 4.5a. We use two lens fibers to couple light into

and out of the device. Two on-chip wavelength-division multiplexers (WDM) are

used to combine and separate the fundamental and second-harmonic fields. Two bus

waveguides are designed to e�ciently couple the fundamental and second-harmonic

fields into the cavity respectively (Fig. 4.5b). Phase matching is realized using

the fundamental transverse-magnetic (TM) field around 1550 nm wavelength and

a high-order (such as TM2) field around 775 nm wavelength (Fig. 4.5c). Based on

mode profiles and material nonlinearity, g2/2⇡ = 81 kHz, and g3/2⇡ = 0.5 Hz are

calculated from Eq. (4.10) and (4.11).
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Figure 4.6: Resonances for stimulated FWM measurement. a, transmission
and SHG spectrum showing Pockels phase matching near 1518 nm. b. zoomed-in
transmission spectrum for each resonance.

To compare the FWM e�ciency with the enhanced single-photon nonlinearity

and the intrinsic single-photon nonlinearity, we choose two sets of modes with and
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without phase-matching Pockels processes. The pump mode linewidth and the pho-

ton extraction ratios of the pump, signal, and idler modes can all a↵ect the overall

FWM e�ciency

⌘ / (
c,+
2+

)(
c,�
2�

)(
c
2

)2. (4.33)

From the device linear transmission spectrum, we can get the linewidth and extrac-

tion ratio of all resonances (Fig. 4.6 and Table 4.1). Therefore, the di↵erence in

FWM e�ciency introduced by cavity conditions is less than 0.5 dB, which is much

smaller than the 15 dB di↵erence observed in the experiment. This confirms that the

improved FWM e�ciency is the result of the enhanced single-photon nonlinearity.
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wavelengths. a-c, Fundamental mode resonances. d-f, Normalized SHG spec-
trum. g-i Second-harmonic mode resonances

We observed three pairs of phase-matching wavelengths (⇠1518 nm to 759 nm,

⇠1548 nm to 774 nm, ⇠1560 nm to 780 nm) for Pockels processes with our de-

vice (Fig. 4.7 d-f). While the fundamental fields are all TM0 modes, the second-

harmonic fields can be di↵erent [104]. Therefore, the nonlinear strengths of the
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Pockels processes are di↵erent. The measured second-harmonic generation e�cien-

cies for the three phase-matching wavelengths are ⌘ = 1800%/W, 30%/W, and

600%/W, respectively. Using the cavity linewidths obtained from the linear trans-

mission measurement (Fig. 4.7 a-c and g-i), we get the relative strengths between

di↵erent Pockels processes and the intrinsic Kerr process as ⇠ = 2.75, 0.14, and 0.92

respectively.

The control of the frequency detuning between the fundamental and second-

harmonic modes is realized by changing the device temperature. Both fundamen-

tal and second-harmonic modes experience red frequency shift with increased tem-

perature but with a di↵erent thermo-optic coe�cient (Fig. 4.8). The relative fre-

quency shifts between the fundamental and second-harmonic modes for ⇠ = 0.14 and

⇠ = 0.92 are measured around 0.22 GHz and 0.19 GHz per Celsius degree, respec-

tively. The device temperature is controlled with an actively stabilized oven with a

temperature precision of 0.1 Celsius degree. Therefore, the frequency detuning can

be controlled with precision around 20 MHz.
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4.3.3 Single-Photon Measurement

Single photons generated by parametric down-conversion (PDC) processes and ef-

fective spontaneous FWM are measured with the setup shown in Fig. 4.9 a and d

respectively. PDC processes are for calibrating the properties of cavity modes at

visible wavelengths independently, such as the spontaneous PDC photon-pair gen-

eration e�ciency. A visible pump in resonance with the second-harmonic mode is

launched into the cavity. A long-pass filter with a cut-o↵ wavelength of around

1500 nm is placed at the output to remove the residue pump. The signal and idler

photons are separated by a wavelength-selective switch (WS), and only detected

by superconducting nanowire single-photon detectors (SNSPD). Fig. 4.9 b and c

shows count rates of the signal channel depending on the relative temperature of

the device.

The main results of our experiments are obtained from the setup for measur-

ing the photon-pair generation rate by e↵ective spontaneous FWM. As shown in

Fig. 4.9d, an IR pump in resonance with the fundamental pump mode is launched

into the device. Fiber Bragg gratings and WS are used to remove the pump with

a 140 dB suppression ratio. Signal and idler photons are also separated by WS,

and detected by SNSPDs. The setting of WS is the same as measuring PDC, where

only count rates of the signal channel are shown in Fig. 4.9 e and f. Besides, the

coincidence between the single and idler photons is recorded by a time tagger with

100 ps bin size.

The coincidence-accident ratio (CAR) is obtained by two approaches. In the

first approach, CAR is directly measured by the peak volume of the signal-idler

coincidence near zero time delay [105].

CAR =

R ⌧/2

�⌧/2 g
(2)(t)dt

R
1+⌧/2

1�⌧/2 g(2)(t)dt
(4.34)

We use integration window ⌧ = 2 ns, which is larger than the photon coherence time.

CAR can also be calculated using the calibrated signal and noise count rates [106,
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53].

CAR =
T 2R

(TR +Np +Nd)2
+ 1, (4.35)

with R, Np, and Nd the intra-cavity photon-pair generation rate, noise count due

to the residue pump, and the detector dark count respectively. T is the total power

transmission of the measurement setup. Experimentally, dark count Nd is measured

directly by SNSPD when the pump input is turned o↵. Power transmission T (from

the cavity to SNSPDs) is calculated from the ratio between the measured signal-idler

coincidence rate CC and photon rates in signal/idler channel Rs and Ri (including

noise) at the highest input pump power.

T =
CCp
RsRi

= 3.2⇥ 10�4. (4.36)

We assume that the dark count Nd is independent of pump power, residue pump

noise is proportional to the pump power Np / P , and the photon-pair rate is

proportional to the square of the pump power R / P 2. By measuring the total
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photon count (R +Np +Nd) with di↵erent pump power, we can get the

Nd = 480 Hz (4.37)

Np = 436.8 Hz/mW⇥ P (4.38)

with P the on-chip input pump power. With the relative Pockels strength ⇠ = 0.92

and frequency detune � = �2⇡ ⇥ 0.7 GHz, we get R = 4.1 MHz/mW2 ⇥ P 2

(maximum enhancement, red point in main text Fig. 4.4c). Therefore, we can plot

the calculated CAR with di↵erent pump power (red line in the main text Fig. 4.4g).

Similarly, we getR = 0.136 MHz/mW2⇥P 2 with frequency detune � = 2⇡⇥1.5 GHz

(maximum suppression, blue point in main text Fig. 4.4c), and plot the calculated

CAR under maximum nonlinearity suppression (blue line in the main text Fig. 4.4g)
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CHAPTER 5

Reconfigurable Kerr Nonlinearity: Controlling the Spontaneous Symmetry

Breaking of Photonic Chirality†

5.1 Abstract

Spontaneous symmetry breaking in nonlinear bosonic systems provides a unified pic-

ture to understand vastly di↵erent phenomena ranging from Higgs mechanism [107]

to superconductivity [108]. With intrinsic Kerr nonlinearity, photonic systems are

well positioned for the technological development and basic study of spontaneous

symmetry breaking [109]. However, the critical capability to control the occurrence

condition and the property of spontaneous symmetry breaking remains inaccessi-

ble, as the form and magnitude of nonlinear interactions cannot be modified. Here,

we report the development of reconfigurable Kerr optical nonlinearity to control

spontaneous symmetry breaking. This is achieved through the interference between

the intrinsic Kerr and cascaded second-order nonlinear processes. Anomalous Kerr

e↵ects, including negative self-phase modulation and strength tuning between com-

peting nonlinear processes, have been demonstrated. With the reconfigurable Kerr

nonlinearity, we realize the in-situ prohibition and facilitation of spontaneous sym-

metry breaking of photonic chirality. This work could empower the experimental

study of spontaneous symmetry breaking in unexplored regimes and inspire the

development of novel photonic functions.

†
This chapter has been posted on arXiv as [3]
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5.2 Main Article

5.2.1 Introduction

Photonic chirality, the asymmetric behavior of optical fields along opposite di-

rections in photonic ring resonators, can provide complementary photonic func-

tions from conventional spatial [110, 111], polarization [112, 113], and spectral-

temporal [47, 81, 114, 115] operations. Photonic chirality is typically introduced by

explicit asymmetries, including deformed photonic structures [116, 117], gain-loss

modulation in non-Hermitian systems [118, 119, 120], and interaction with mag-

netic materials [121, 122]. Such explicit symmetry breaking of photonic chirality

has been used to build optical isolators [123, 124, 125], realize topological photonic

states [67, 126, 127], and develop unidirectional micro-lasers [128, 129] in the classi-

cal regime, as well as improve single-photon sources [1, 130, 131] and develop logic

operations in the quantum regime [132, 133, 134].

Besides explicit approaches, the symmetry breaking of photonic chirality can

also happen spontaneously with Kerr nonlinearity [135, 136, 137, 138, 139]. This is

introduced by the imbalance between self- and cross-phase modulation, two funda-

mental Kerr nonlinear e↵ects. In this case, photons can show propagation-direction-

dependent properties even though the system configuration is completely symmet-

ric, providing unique advantages to applications including optical isolators [140]

and sensors [141, 142]. Unlike explicit approaches where symmetry breaking can be

engineered conveniently by photonic structures, the capability to control the condi-

tion of spontaneous symmetry breaking remains elusive. The key challenge is the

direct modification of Kerr nonlinearity, which typically has both fixed form and

magnitude determined by material properties and photonic structures [18].

Here, we report the approach to break the intrinsic restriction of Kerr nonlin-

earity and demonstrate the controlled spontaneous symmetry breaking of photonic

chirality. This is realized through the cascaded second-order nonlinearity, which is

equivalent to reconfigurable artificial Kerr nonlinearity. In particular, we can selec-

tively control the self-phase modulation coe�cient without a↵ecting the cross-phase
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modulation. The capability to tune the relative strength between self- and cross-

phase modulation enables the modification of the spontaneous symmetry-breaking

condition for photonic chirality.
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Figure 5.1: Schematics for reconfigurable Kerr nonlinearity. a, Interference
between the intrinsic Kerr and the cascaded second-order nonlinear processes in the
photonic ring cavity. The intrinsic Kerr nonlinearity introduces resonance shift to-
wards lower frequency (red-shift). This can be modeled as four-wave mixing with
two pump photons (green) annihilated to re-generate two photons at the same fre-
quency. The cascaded second-order nonlinearity introduces resonance shift towards
higher frequency (blue-shift) with positive cavity detune. This can be modeled as
artificial four-wave mixing, where two pump photons (green) are first combined to
generate one second-harmonic photon (orange), which drives the parametric down-
conversion to re-generate two photons at the pump frequency. The overall frequency
shift is the coherent combination of the two parallel processes. b, Tuning range of
the frequency shift induced by self-phase modulation with anomalous Kerr nonlin-
earity. c, The vector representation of the e↵ective Kerr nonlinear coe�cient ge↵ .
By tuning the cavity detune �, the e↵ective Kerr nonlinearity can change along the
circle to give the frequency shift towards lower (red) and higher (blue) frequency.
Black dashed arrow: intrinsic Kerr nonlinearity; orange dashed arrow: cascaded
second-order nonlinearity; green solid arrow: e↵ective Kerr nonlinearity.

Cascaded second-order nonlinearity has been used in bulk optics to enhance Kerr

nonlinearity [143, 144, 145, 146]. The recent development of novel nanophotonic

materials makes it possible to demonstrate cascaded second-order nonlinearity with

integrated photonic devices. With the capability to precisely engineer dispersion in

nanophotonic structures, we can realize cascaded second-order nonlinearity with res-
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onance enhancement for both fundamental and second-harmonic fields, in contrast

to previous demonstrations with no resonance or only the fundamental resonance.

This allows the observation of the interference between the cascaded second-order

and intrinsic Kerr nonlinearity [2]. The approach further enables the e�cient recon-

figuration of the e↵ective Kerr nonlinearity using the frequency detuning between

the fundamental and second-harmonic resonances, di↵erent from bulk optics that

depends on the change of the phase matching condition. Previous studies typically

consider Kerr enhancement for a single pump field with cascaded second-order non-

linearity as the only dominating process [91, 144]. This work further expands the

capability by demonstrating the complex interaction between multiple pump fields

with the cascaded second-order nonlinearity co-existing with di↵erent nonlinear pro-

cesses.

5.2.2 Reconfigurable Kerr Nonlinearity

Our scheme for reconfigurable Kerr nonlinearity is implemented in an integrated

photonic micro-ring cavity with second-order nonlinearity [2]. We consider the cavity

response to a continuous-wave pump field. The pump field is subject to two parallel

nonlinear processes. The first one is the conventional self-phase modulation due to

the intrinsic Kerr nonlinearity (top path in Fig. 5.1a). The cavity instantaneous

resonance is shifted by �! / �g3 ·Np, with g3 the Kerr nonlinear coe�cient and Np

the intra-cavity pump photon number. As integrated photonic materials typically

have positive Kerr nonlinear coe�cients [18], the resonance shifts towards a lower

frequency.

In parallel with the intrinsic Kerr nonlinearity, the pump field also undergoes the

cascaded second-order nonlinear process consisting of second-harmonic generation

and degenerate parametric down-conversion (bottom path in Fig. 5.1a). The pump

field is first doubled to generate the second-harmonic field. The second-harmonic

resonance will impose an extra phase to the intra-cavity second-harmonic field de-

pending on the frequency detuning. At the same time, the second-harmonic field

drives the degenerate parametric down-conversion to re-generate the pump field.
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as the pump frequency is scanned across the resonance. The transmission mini-
mum shifts to higher (blue) and lower (red) frequencies with negative and positive
Kerr nonlinear coe�cients, respectively. The transmission spectrum remains sym-
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(e). c, Measured FWHM dependence on the cavity detune. d, Measured extinction
ratio dependence on the cavity detune. e, Measured transmission spectrum with
maximum blue shift (blue), maximum redshift (red), and zero shift (grey). f, Mea-
sured transmission spectrum with di↵erent cavity detune values. White dashed line:
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lines in b-e are calculated results. Horizontal and vertical error bars in (b)-(d) are
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Then, the extra phase is transferred back to the pump field. Therefore, the cas-

caded second-order nonlinearity for the pump field is equivalent to an e↵ective Kerr

nonlinearity with a non-trivial phase [2]. In this cascaded process, the second-

order nonlinear strength g2, the second-harmonic resonance linewidth �, and the

frequency detune � between the pump and second-harmonic resonances collectively

determine the e↵ective Kerr nonlinear coe�cient. The instantaneous resonance shift

is �! / �Re
h

i|g2|2

�i�+�/2

i
·Np (Section 5.3.1). With a positive detune � > 0, the cas-

caded second-order nonlinearity can lead to the resonance shift towards a higher

frequency. This is equivalent to self-phase modulation with negative Kerr nonlin-

ear coe�cients. The overall resonance shift, after the coherent combination of the

intrinsic Kerr and cascaded second-order nonlinear processes, can be written as

�! / �Re


g3 +

i|g2|2
�i� + �/2

�
·Np

def
= �Re [ge↵ ] ·Np (5.1)

with ge↵ the e↵ective Kerr nonlinear coe�cient (Fig. 5.1c). With strong second-order

nonlinearity ⇠ = |g2|2/(g3�) > 1, the overall resonance shift can be reconfigured to-

wards either lower or higher frequency depending on the cavity detune � (Fig. 5.1b).

A completely passive cavity without nonlinear resonance shift can also be obtained

at cavity detune �/� = 1

2
(⇠±

p
⇠2 � 1). Besides the reconfigurable resonance shift,

the cascaded second-order nonlinearity also introduces extra loss for the pump field

as power is converted into the second-harmonic field. This is manifested as the

imaginary part of the e↵ective Kerr nonlinearity ge↵ .

Due to self-phase modulation, the transmission spectrum of the high-power pump

field deviates from the symmetric Lorentzian shape and can be used to quantify the

Kerr nonlinear coe�cient (Fig. 5.2a). The speed to scan the pump frequency is su�-

ciently fast to avoid the frequency shift induced by the thermal e↵ect (Section 5.3.3).

The pump power is maintained below the four-wave-mixing threshold to avoid the

generation of optical sidebands. With this power, the frequency di↵erence between

the minimum transmission point and the Lorentzian middle point is proportional

to the real part of the e↵ective Kerr nonlinear coe�cient. The imaginary part can

also be obtained through the change in the resonance’s full width at half maximum
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(FWHM).

The reconfigurable Kerr nonlinearity is demonstrated with an aluminum nitride

ring cavity [97]. Phase-matching condition for second-order nonlinearity is first

approximately satisfied by changing the ring width [147]. After determining the

ring width, we realize the fine-tuning of the resonance detune � by changing the

device temperature, as the pump and second-harmonic resonances have di↵erent

thermal-optic coe�cients (Section 5.3.4). We can clearly observe the change in the

pump transmission spectrum with di↵erent cavity detune values (Fig. 5.2f). The

resonance shift follows a Fano shape with respect to the cavity detune (Fig. 5.2b).

This agrees with the interpretation that the intrinsic Kerr and cascaded second-

order nonlinear processes are coherently combined to give rise to the e↵ective Kerr

nonlinearity. The pump resonance shows a maximum shift towards higher frequency

with the cavity detune � ⇡ 0.5�, proving the negative self-phase modulation (blue

in Fig. 5.2e). By changing the device temperature, we can further reconfigure the

pump resonance to shift towards a lower frequency and even exhibit no frequency

shift (red and grey in Fig. 5.2e). In addition, we also notice that the FWHM of

the pump resonance follows the Lorentzian shape with respect to the cavity detune

(Fig. 5.2c). The largest FWHM is obtained with zero detune � = 0, in which case

maximum power is converted from the pump field to the second-harmonic field. The

power conversion can be treated as an extra intrinsic loss for the pump resonance.

As the cavity is weakly coupled to the bus waveguide with fixed coupling strength,

the increase of the intrinsic loss leads to a drop in the resonance extinction ratio

(Fig. 5.2d).

The key to realizing reconfigurable Kerr nonlinearity is the cascaded second-

order nonlinear process, which requires the phase-matching condition. It provides

the unique capability that we can selectively modify the target Kerr nonlinear pro-

cess without a↵ecting the others. This is achieved by designing the phase-matching

condition only for the optical fields involved in the target Kerr nonlinear process.

For example, we consider the same photonic ring cavity with second-order nonlin-

earity but pumped in both clockwise and counter-clockwise directions (Fig. 5.3a).



103

1.0 0.00.5

SPM/XPM = 0.5

Enhanced Kerr Anomalous Kerr

c

SPM/XPM = 1.0

Δ < 0

SPM/XPM

Δ > 0Δ = 0

SPM/XPM = 0.0

a b

d e f

0#$ 0#$

1.0
0.5

0.0
-1.0

0#$/0%
0.0 0.5 1.0

Pow
erim

balance

1.5 2.0

Figure 5.3: In-situ control of spontaneous symmetry breaking of pho-
tonic chirality. a, Photonic ring cavity with a bi-directional pump. b, Calcu-
lated spontaneous symmetry breaking condition with di↵erent relative strengths
between self-phase modulation (SPM) and cross-phase modulation (XPM). c, Cav-
ity detuning configuration of the cascaded second-order nonlinearity to realize dif-
ferent SPM/XPM relative strengths. d, Cavity status under the strong pump with
SPM/XPM=1. The symmetric state with equal powers is always stable, as the
resonance shifts are identical in two directions. e, Cavity status under the strong
pump with SPM/XPM=1/2. The optical field in one direction dominates, as cross-
phase modulation introduces twice the resonance shift than self-phase modulation.
f, Cavity status under the strong pump with SPM/XPM=0. The power di↵erence
between di↵erent directions becomes larger as the mismatch between self- and cross-
phase modulation increases.



104

Cavity detune (Δ/+)

-2 0 1 2 3-1 4 5
0 #$
/ 0

%

1.0

0.6

1.2

Cavity detune (Δ/+)
-2 0 1 2 3-1 4 5

Po
w

er
im

ba
la

nc
e

1

0

-1

0#$/0%
0.6 0.8 1.0 1.2

Pump frequency (GHz)

-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5-1.0 -0.5 0.0 0.5

a
f

0.8

0.4

1

0

Po
w

er
(a

.u
.)

0.4

b

c d e

Figure 5.4: Control of spontaneous symmetry breaking condition. a, Rela-
tive power imbalance with fixed cavity detune � ⇡ 4� and varying pump power Pin.
The threshold power for intrinsic Kerr nonlinearity is marked as the dashed black
line. b, Relative power imbalance with varying cavity detune � and fixed pump
power Pin ⇡ 1.07P0. P0 ⇡ 51 mW is the threshold power for spontaneous symmetry
breaking with intrinsic Kerr nonlinearity. c-e, Measured output second-harmonic
power in clockwise (blue) and counterclockwise (red) directions with cavity detune
� ⇡ 4� and pump power Pin ⇡ 0.7P0, Pin ⇡ 1.07P0, Pin ⇡ 1.07P0, corresponding
to the purple, blue, and red circle points in (a) respectively. f, Cavity status with
di↵erent cavity detune � and pump power Pin. Blue solid line: calculated threshold
condition for spontaneous symmetry breaking. Shaded blue area: calculated regime
with asymmetric power in two directions. Black dashed line: threshold power for
intrinsic Kerr nonlinearity. Purple points: measured cavity output with equal power
in two directions. Blue/red points: measured cavity output with the optical field in
one direction dominant. Orange arrow: the same condition change as (a). Green
arrow: the same condition change as (b). Power and cavity detune error bars are
estimated based on device temperature stability and transmission variance, respec-
tively. Additional data for (f) are shown in section 5.3.5.



105

As the phase matching condition is only valid for optical fields along one direction,

only the self-phase modulation coe�cient is modified by the cascaded second-order

nonlinearity. To modify the cross-phase modulation, we need sum-frequency gen-

eration between counter-propagating fields. This requires a zero wave vector for

the second-harmonic field, which cannot be realized. Therefore, the cross-phase

modulation coe�cient remains unchanged.

5.2.3 Spontaneous Chiral Symmetry Breaking

The bi-directional configuration is of critical importance for numerous photonic

applications, including optical gyroscope [148], single-particle detection [149], and

soliton referencing [150]. It is recently realized that spontaneous symmetry breaking

of photonic chirality can also be introduced in this bi-directional configuration due

to the imbalance between self- and cross-phase modulation [136, 135, 137, 138, 141].

For intrinsic Kerr nonlinearity, the ratio between self- and cross-phase modulation

(SPM/XPM) typically has a fixed value of 1/2 in solid-state materials without

ellipticity and the polarization degeneracy [12, 10]. The optical field along one

direction causes twice resonance shifts for the opposite direction. Therefore, the

optical field with smaller power will experience a larger resonance shift, which further

suppresses its amplitude due to the larger mismatch between the input frequency

and cavity resonance. With this positive feedback mechanism, the symmetric state

with equal power in both directions becomes unstable even though the input pumps

have the same power (Supplementary Information II). Then the optical field in one

direction becomes stronger, showing spontaneous chiral behavior (Fig. 5.3e).

Theoretically, the pump power required for spontaneous symmetry breaking

depends on the frequency detuning between the pump field and cavity reso-

nance [151, 152, 153]. However, due to the thermal e↵ect, the frequency detuning

between the pump field and cavity resonance is highly correlated with the pump

power and cannot be controlled independently at high power. Therefore, pump

frequency is scanned across the resonance rapidly to avoid the thermal e↵ect in

experiments [136, 135, 141]. In this case, the threshold pump power to observe
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spontaneous symmetry breaking has a fixed value in photonic devices only with

intrinsic Kerr e↵ect (SPM/XPM=1/2) (Supplementary Information II).

With the capability to selectively control self-phase modulation without a↵ecting

cross-phase modulation, we can engineer a single cavity to exhibit di↵erent behav-

iors for spontaneous symmetry breaking (Fig. 5.3b-f). If we enhance the self-phase

modulation to the same strength as cross-phase modulation (SPM/XPM=1), spon-

taneous symmetry breaking can be prohibited as optical fields in both directions will

experience the same resonance shift regardless of the power distribution (Fig. 5.3d).

If we suppress the self-phase modulation (SPM/XPM=0), spontaneous symmetry

breaking can be realized more easily as the resonance shift di↵erence is larger with

lower pump power (Fig. 5.3f). Besides the resonance shift, the cascaded second-

order nonlinearity can also show reconfigurable power absorption (imaginary part

of ge↵), which can also change the condition for spontaneous symmetry breaking.

To observe the spontaneous symmetry breaking, optical fields with identical fre-

quency and power are coupled into the cavity in both directions (Supplementary

Information III). When the optical frequency is scanned across the pump resonance,

we monitor the output second-harmonic power, which is proportional to the square

of the intra-cavity pump photon number (Supplementary Information III). The pho-

tonic chirality C is defined as the relative intra-cavity power imbalance

C =
(NCCW

p
�NCW

p
)

(NCCW
p

+NCW
p

)
(5.2)

with NCCW

p
and NCW

p
the intra-cavity pump photon number along clockwise and

counter-clockwise directions, respectively. A larger power imbalance indicates

stronger spontaneous symmetry breaking of photonic chirality.

We first vary the pump power while fixing the device at which the self-phase

modulation is suppressed (Fig. 5.4a). With low pump power, the optical fields have

the same amplitude in both directions (Fig. 5.4c). By increasing the pump power, we

observe the spontaneous symmetry breaking with the optical field in one direction

significantly stronger than the other (Fig. 5.4d&e). Due to the suppression of the

self-phase modulation, the threshold power for spontaneous symmetry breaking is
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significantly lower compared to the intrinsic Kerr nonlinearity case (Fig. 5.4a). Next,

we fix the pump power and vary the cavity detune � for the cascaded second-order

nonlinearity (Fig. 5.4b). With negative cavity detune, the self-phase modulation

is enhanced. Therefore, the optical fields along both directions remain the same.

By increasing the cavity detune, the imbalance between self- and cross-phase mod-

ulation becomes larger, leading to spontaneous symmetry breaking. As shown in

Fig. 5.4f, the spontaneous symmetry breaking condition is collectively determined

by the pump power and cavity detuning. The threshold pump power can be con-

tinuously tuned by the cavity detune. Therefore, we can either prevent or facilitate

the occurrence of spontaneous symmetry breaking by increasing or decreasing the

threshold pump power.

5.2.4 Conclusion

In summary, we have demonstrated the capability to control the spontaneous sym-

metry breaking of photonic chirality. This is achieved by directly modifying Kerr

nonlinear interactions with the cascaded second-order nonlinearity. Beyond the fixed

intrinsic Kerr nonlinearity, we can realize reconfigurable anomalous Kerr e↵ects,

including negative self-phase modulation and strength tuning between competing

Kerr nonlinear processes. This flexible mechanism can find broad applications in

photonic technologies based on Kerr nonlinearity, such as frequency comb genera-

tion, quantum state generation, and frequency conversion. Moreover, the control

of spontaneous symmetry-breaking conditions can provide novel insights into the

study of nonlinear dynamics in broad fields ranging from condensed-matter physics

to nanomechanics.

5.3 Supplementary Materials

5.3.1 Theoretical Model for Reconfigurable Kerr Nonlinearity

The Hamiltonian describing both the second-order (H2) and Kerr (H3) nonlinear

interactions between the second-harmonic (â) and fundamental (b̂) resonances in
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the ring cavity can be written as

Hsys = H0 +H2 +H3, (5.3)

H0 = ~!SHGâ
†â+ ~!0b̂

†b̂, (5.4)

H2 =
~
2
(g2â

†b̂2 + g⇤
2
âb̂†2), (5.5)

H3 = �~
4
g3b̂

†2b̂2, (5.6)

with !0 and !SHG the resonant frequencies for fundamental and second-harmonic

resonances respectively. The second-order (g2) and Kerr (g3) single-photon nonlin-

earity can be expressed with device parameters

g2 =

s
~!SHG!2

0

2✏0VaV 2

b

Z

V

dr3u⇤

a(~r) · �(2) : ub(~r)
2 (5.7)

g3 =
3

2

~!2

0

✏0V 2

b

Z

V

dr3u⇤2

b (~r) : �(3) : ub(~r)
2 (5.8)

with mode volumes Va and Vb, mode profiles ua and ub for the second-harmonic and

fundamental resonances, respectively. Then, the equations of motion can be derived

from the Heisenberg–Langevin equation.

˙̂a = (�i!SHG � �

2
)â� i

1

2
g2b̂

2 +
p
�câin +

p
�iâ

(i) (5.9)

˙̂b = (�i!0 �


2
)b̂+

i

~ [H2 +H3, b̂] +
p
cb̂in +

p
ib̂

(i), (5.10)

where �c, �i, and � = �c+�i (c, i, and  = c+i) represent the coupling, intrinsic,

and total loss rate of the second-harmonic (pump) mode. The input operators of

the second-harmonic and fundamental resonances due to coupling loss (intrinsic

loss) are labeled as âin and b̂in, (â(i) and b̂(i)) respectively. The relation between the

second-harmonic and fundamental fields at steady states with the driving frequency

!p can be obtained from Eq. (5.9).

â(2!p) =
� i

2
g2b̂2 +

p
�câin +

p
�iâ(i)

�i� + �
2

, � = 2!p � !SHG. (5.11)

Then, the mean fields, ↵(2!p) = hâ(2!p)i and �(!p) = hb̂(!p)i follow the relation

↵(2!p) =
� i

2
g2�(!p)2

�i� + �
2

. (5.12)
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Here we ignore the self-phase modulation of the second-harmonic field and the cross-

phase modulation influence from the second-harmonic field on the fundamental field

by assuming � �  ⇡ g3|�|2 � g3|↵|2.
Then we can have the dynamics of the pump mean field in the frequency domain

�i(!p � !0)�(!p) = �
2
�(!p) +

ige↵(�)

2
|�(!p)|2�(!p) +

p
c�in(!p). (5.13)

The e↵ective Kerr nonlinearity is expressed as

ge↵(�) = g3 +
i|g2|2

�i� + �
2

= g3(1 +
i⇠

�i�/� + 1/2
) (5.14)

Here ⇠ = |g2|2/g2/� is defined as the relative strength between the cascaded second-

order nonlinearity and intrinsic Kerr nonlinearity. Due to the interference between

the cascaded second-order and intrinsic Kerr processes, the amplitude of ge↵ shows

an asymmetric shape with respect to cavity detune � (Fig. 5.5a). The real part of

ge↵(�) shows the power-dependent frequency shift, which exhibits a Fano lineshape

with respect to cavity detune � (Fig. 5.5b). The imaginary part of ge↵(�) shows the

power-dependent loss, which exhibits a Lorentzian lineshape with respect to cavity

detune � (Fig. 5.5c). The power-dependent loss is due to the second-harmonic

generation. With a stronger fundamental field, more power will transfer to the

second-harmonic field. The change in the loss can be observed with the change in

the full width of the half maximum (FWHM) and extinction ratio of the transmission

spectrum.
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Figure 5.5: Simulation of complex e↵ective Kerr nonlinearity. Calculated
amplitude (a), real part (b), and imaginary part (c) of e↵ective Kerr nonlinearity
ge↵ with respect to di↵erent cavity detune � and di↵erent relative strength between
cascaded second-order and intrinsic Kerr nonlinearity ⇠.

5.3.2 Theoretical Model for Spontaneous Chiral Symmetry Breaking

Spontaneous Chiral Symmetry Breaking with Intrinsic Kerr Nonlinearity

When an optical ring cavity is pumped in both clockwise (CW) and counter-

clockwise (CCW) directions with equal amplitudes, a standing wave will be formed

if nonlinear e↵ects are not included. There will be no di↵erence between the CW

and CCW directions, thus no chirality. However, intrinsic Kerr nonlinearity exists

in all photonic materials. In particular, cross-phase modulation (XPM) is twice

strong as self-phase modulation (SPM). The imbalance between XPM and SPM

can cause spontaneous symmetry breaking between the CW and CCW directions,

which shows chiral behavior. The equation of motion for the ring cavity with a

bi-directional pump can be written as

˙̂br = (�i!0 �


2
)b̂r +

ig3
2
(b̂†rb̂r + 2b̂†l b̂l)b̂r +

p
cb̂r,in +

p
ib̂

(i)
r (5.15)

˙̂bl = (�i!0 �


2
)b̂l +

ig3
2
(2b̂†rb̂r + b̂†l b̂l)b̂l +

p
cb̂l,in +

p
ib̂

(i)
l (5.16)

The subscripts r and l represent CCW and CW directions, respectively. The mean

field dynamics (�r(!) = hb̂r(!)i, �l(!) = hb̂l(!)i) is

�̇r = (�i!0 �


2
)�r +

ig3
2
(|�r|2 + 2|�l|2)�r +

p
c�r,in (5.17)

�̇l = (�i!0 �


2
)�l +

ig3
2
(2|�r|2 + |�l|2)�l +

p
c�l,in (5.18)
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Assuming the pump power in CCW and CW direction has the same value �r,in =

�l,in =
q

Pin

~!p
e�i!pt, with Pin the pump power and !p the pump frequency, we can

obtain the steady-state equations

0 = (i�p �


2
)�r +

ig3
2
(|�r|2 + 2|�l|2)�r +

s
cPin

~!p
(5.19)

0 = (i�p �


2
)�l +

ig3
2
(2|�r|2 + |�l|2)�l +

s
cPin

~!p
. (5.20)

with �p = !p�!0 the frequency di↵erence between the pump field and fundamental

resonance. We can further define the intra-cavity photon number for optical fields

in CCW and CW directions Nr = |�r|2 and Nl = |�l|2, which are real numbers.

Then we can solve the cavity status in the real number domain.

2

4
Nr +


�p +

g3(Nr + 2Nl)

2

�2
Nr =

cPin

~!p
(5.21)

2

4
Nl +


�p +

g3(2Nr +Nl)

2

�2
Nl =

cPin

~!p
(5.22)

We are interested in the imbalance between the two directions. Therefore, we further

define the photon number di↵erence N� = Nr � Nl and the total photon number

N+ = Nr +Nl. Then, the steady-state equations become

N�

⇥
g2
3
N2

�
+ 42 + (3g3N+ + 4�p)(g3N+ + 4�p)

⇤
= 0 (5.23)

N+

⇥
42 + (3g3N+ + 4�p)

2
⇤
= 32

cPin

~!p
+ (5g3N+ + 8�p)g3N

2

�
(5.24)

The behavior of the cavity can be qualitatively obtained by analyzing Eq. (5.23).

At low pump power, both N+ and N� are small. The term in the square brackets in

Eq. (5.23) is dominated by 2 or �2

p, which always has positive values. Therefore,

the only possible real solution for Eq. (5.23) is N� = 0. The optical fields in CCW

and CW directions have the same power, and thus do not show chirality.

With a large pump power, N+ increases. The term in the square brackets in

Eq. (5.23) is dominated by (3g3N+ + 4�p)(g3N+ + 4�p), which can show negative

value with negative frequency detune �p 2 (�3g3N+/4,�g3N+/4). If the cavity
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loss  is small, we can have three real solutions to Eq. (5.23)

N� = 0, ±
q

�42 � (3g3N+ + 4�p)(g3N+ + 4�p) (5.25)

In this case, the N� = 0 is not stable, while the other non-zero solutions are stable.

Therefore, the optical fields in CCW and CW directions will have power di↵erences,

showing chiral behavior (Fig. 5.6a). The transition condition between the single-

solution and triple-solution regime can be obtained by setting the term in the square

brackets in Eq. (5.23) to be zero under the condition N� = 0, which gives

42 + (3g3N+ + 4�p)(g3N+ + 4�p) = 0 (5.26)

The corresponding input pump power can also be obtained from Eq. (5.24)

Pin =
~!p

32c
·N+

⇥
42 + (3g3N+ + 4�p)

2
⇤

(5.27)

In our experiment, the input pump frequency is scanned across the resonance.

Therefore, the occurrence of spontaneous symmetry breaking is determined by the

smallest pump power for all possible frequency detune values. At frequency detune

�p = �5
p
3

6
, we have the smallest pump power for Eq. (5.27)

P0 = min Pin =
2~!p3

3
p
3cg3

(5.28)

which is defined as the threshold power. Obviously, the threshold power is com-

pletely determined by the intrinsic properties of the nonlinear systems.

Spontaneous Chiral Symmetry Breaking with Reconfigurable Kerr Non-

linearity

With reconfigurable Kerr nonlinearity, the equation of motion for CCW and CW

optical fields should be rewritten as

�̇r =

⇢
�i!0 �

� ige↵ |�r|2
2

+ ig3|�l|2
�
�r +

p
c�r,in (5.29)

�̇l =

⇢
�i!0 �

� ige↵ |�l|2
2

+ ig3|�r|2
�
�l +

p
c�l,in, (5.30)
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Figure 5.6: Spontaneous symmetry breaking of photonic chirality. a, Calcu-
lated intra-cavity power in CCW and CW directions with intrinsic Kerr nonlinearity,
SPM/XPM = 1/2. b, Calculated intra-cavity power in CCW and CW directions
with reconfigurable Kerr nonlinearity, SPM/XPM = 0. c, Calculated intra-cavity
power in CCW and CW directions with reconfigurable Kerr nonlinearity, SPM/XPM
= 1. For comparing threshold power for all figures, pump power is increased from
0.55P0 to 1.55P0 from bottom to up curves with 0.25P0 steps. Symmetric power is
shown in purple. The two branches of asymmetric power are shown in blue and red,
respectively.

Following the same procedure, we can obtain the steady-state equation for intra-

cavity photon numbers Nr = |�r|2 and Nl = |�l|2
(

+ gim
e↵
Nr

2

�2
+


�p +

2g3Nl + gre
e↵
Nr

2

�2)
Nr =

cPin

~!p
(5.31)

(
+ gim

e↵
Nl

2

�2
+


�p +

2g3Nr + gre
e↵
Nl

2

�2)
Nl =

cPin

~!p
(5.32)

with gre
e↵

= Re[ge↵ ] and gim
e↵

= Im[ge↵ ] the real and imaginary parts of the e↵ective

Kerr nonlinearity, respectively. If we control the cavity detuning such that ge↵ = 0,

the imbalance between SPM and XPM becomes larger. Therefore, spontaneous

symmetry breaking can happen with lower power (Fig. 5.6b). If we control the

cavity detuning to ge↵ = 2g3, the imbalance between SPM and XPM vanishes.

Therefore, spontaneous symmetry breaking is prohibited regardless of the pump

power (Fig. 5.6c).

5.3.3 Experimental Setups

The transmission spectrum of the pump field is recorded to measure the self-

phase modulation e↵ect. The measurement setup is shown in Fig. 5.7a. We use
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a single-sideband modulation method to scan the frequency of the pump field with

high speed [154, 155]. The single-sideband modulation module consists of a high-

bandwidth optical IQ modulator. The two arms of the IQ modulator are driven

with the same microwave frequency and power, but a 90o phase shift. The DC bias

is tuned such that both the carrier and low-frequency sideband are suppressed, and

only the high-frequency sideband is maintained. The microwave signal is derived

from the voltage-controlled oscillator (VCO). By linearly changing the input volt-

age of VCO from 0 to 10 V, the output microwave frequency, thus the frequency

o↵set of the optical sideband, is changed from 6 to 12 GHz. The frequency scan is

repeated with a 3 MHz rate. The single optical sideband is further amplified with

an erbium-doped fiber amplifier (EDFA) to serve as the pump field.

A small portion of the pump field is tapped to monitor the power stability.

After the wavelength-division multiplexer (WDM), the pump field is coupled into

the cavity. The output pump field is collected by an infrared (IR) photodetector

and an optical spectrum analyzer. The second-harmonic field is separated from the

pump field with WDM and detected by a visible photodetector. Output signals from

IR and visible photodetectors are sent into an oscilloscope, which is triggered by the

linear voltage signal. Optical attenuators (OA) are added before photodetectors to

prevent power saturation. The IR and visible photodetectors have bandwidths of

1 GHz and 125 MHz, respectively, which are su�cient to capture fast frequency

modulation.

To observe the spontaneous symmetry breaking, we use a symmetric setup to

measure the pump and second-harmonic fields in both directions at the same time

(Fig. 5.7b). The pump field is split equally into two paths after EDFA. Tunable

optical attenuators are used to control the pump power di↵erence below 1% between

the two directions. Optical circulators are used on both sides to separate the input

and output pump fields. Second-harmonic fields are separated from pump fields

by WDMs. Output signals from IR and visible photodetectors are recorded by an

oscilloscope for post-processing.
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Figure 5.7: Experimental setups. a, The experimental setup for transmission
measurement with fast frequency scan. b, The experimental setup for the measure-
ment of spontaneous symmetry breaking. PM: phase modulator; EDFA: erbium-
doped fiber amplifier; OA: optical attenuator; OSA: optical spectrum analyzer;
VCO: voltage-controlled oscillator. WDM: wavelength-division multiplexer. Circ.:
Optical circulator.
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5.3.4 Basic Device Parameters
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Figure 5.8: Linear and nonlinear properties of the target cavities. a, Funda-
mental resonance transmission spectrum. b, Second-harmonic resonance transmis-
sion spectrum. c, Normalized second-harmonic power with di↵erent cavity detuning
and device temperature.

The aluminum nitride ring cavity has a radius of 60 µm, a thickness of 1 µm, and

a width of 1.1 µm. The quality factor of the fundamental resonance is 5.82 ⇥ 105,

corresponding to the resonance total loss rate  ⇡ 2⇡⇥ 330 MHz. Assuming under-

coupled resonance, the coupling rate of c ⇡ 0.33 is obtained from the extinction

ratio ⇡ 0.15. The quality factor of the second-harmonic resonance is 1.83⇥105, cor-

responding to the resonance total loss rate � ⇡ 2⇡⇥2.0 GHz. With aluminum nitride

Pockels nonlinear coe�cient �(2) ⇡ 1 pm/V, we can calculate the second-order non-

linear strength g2 = 2⇡⇥ 122 kHz from Eq. 2.184 [97]. With aluminum nitride Kerr

nonlinear coe�cient n2 ⇡ 2.8 ⇥ 10�19 m2/W, we can calculate the Kerr nonlinear

strength g3 = 2⇡ ⇥ 2 Hz. Therefore, we can get the relative strength between cas-

caded and intrinsic Kerr nonlinearity ⇠ = |g2|2/(g3�) ⇡ 3.7. The threshold power for

spontaneous symmetry breaking with intrinsic Kerr nonlinearity P0 =
2~!p3

3
p
3cg3

⇡ 51

mW.

During the experiment, the cavity detuning between fundamental and second-

harmonic resonances is controlled by changing the device temperature. The actively

stabilized heater can maintain the temperature with the precision of 0.1 Celsius

degree. The tuning sensitivity is 0.2 GHz per degree (Fig. 5.8a). Therefore, the

cavity detune resolution is 20 MHz, which is much smaller than the fundamental
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resonance linewidth  ⇡ 2⇡ ⇥ 330 MHz and second-harmonic resonance linewidth

� ⇡ 2⇡ ⇥ 2.0 GHz.

5.3.5 Additional Data for Spontaneous Chiral Symmetry Breaking

Here we present the additional data of the selected output second harmonic power

spectrum under the bi-directional pump used in Fig. 5.4f of the main text.
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Figure 5.9: Additional data. a1-o Additional data for Fig. 5.4f in the main text.
Measured output second-harmonic power in clockwise and counterclockwise direc-
tions are shown in blue and red, respectively. The corresponding cavity detuning
and power conditions are labeled in p, a copy of Fig. 5.4 in the main text. The Blue
shaded area corresponds to the condition for spontaneous symmetry breaking.
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CHAPTER 6

High-Purity Pulsed Squeezing Generation in Integrated Photonics†

6.1 Abstract

Squeezed light has evolved into a powerful tool for quantum technology, ranging

from quantum-enhanced sensing and quantum state engineering based on partial

post-selection techniques. The pulsed generation of squeezed light is of particular

interest, as it can provide accurate time stamps and a physically defined temporal

mode, which are highly preferred in complex communication networks and large-

scale information processing. However, the multi-mode feature of pulsed squeezing

limits the purity of the output state, negatively impacting its application in quantum

technology. Previous demonstrations and analysis of pulsed squeezing focus on

single-pass configuration and synchronously pumped free-space cavities. In this

Letter, we propose a new approach to generate pulsed squeezing with high temporal

purity. Parametric down-conversion in integrated photonic cavities is pumped by

single-pass pulses. We show that the e↵ective mode number of the output pulsed

squeezing approaches unity. Such a high-purity squeezed light can be realized with

broad parameters and low pump power, providing a robust approach to generating

large-scale quantum resources.

6.2 Main Article

6.2.1 Introduction

Non-Gaussian states are indispensable resources required by quantum informa-

tion processing to demonstrate quantum advantage [156]. Partial detection of

†
This chapter has been published previously as [6]
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squeezed light is one of the most important optical approaches to generate non-

Gaussian states [157, 158, 159, 160, 161]. Optical cat and kitten states have been

generated based on photon-number subtraction from a single-mode squeezed vac-

uum [162, 163, 164, 165]. In principle, arbitrary non-Gaussian states, including

the Gottesman-Kitaev-Preskill (GKP) state for cluster-modal quantum computing

[166, 167, 168, 169, 170, 171, 6], can be generated based on the Gaussian-Boson-

Sampling (GBS) configuration and the photon-number-resolving (PNR) detection

[172, 173]. One critical requirement to implement partial detection of squeezed light

is that all photons must be in the same spectral-temporal mode. Otherwise, uncon-

ditioned Gaussian modes will be mixed with the target non-Gaussian mode, thus

decreasing the purity of the output state. Common techniques utilized for single

photons, such as spectral filtering and post-selection within a small time window,

cannot be applied for the squeezed light due to the excess loss. Improved pulsed

squeezing also finds applications beyond the engineering of non-Gaussian states of

light. For example, imaging of delicate biological samples can benefit from pulsed

squeezing by improving the sensitivity beyond standard quantum limit [174].

The standard configuration to implement pulsed squeezing is single-pass para-

metric down-conversion [175, 176, 177, 178, 179]. This process intrinsically involves

multiple modes in both space and time, which all have significant squeezing and

energy [180]. Synchronously-pumped parametric down-conversion in free-space cav-

ities has also been proposed for pulsed squeezing [181, 182]. However, the generated

squeezing still contains significant multi-mode contributions. It also requires that

the pump repetition rate matches the cavity free-spectra-range (FSR), which is chal-

lenging for integrated cavities with a large FSR. While the complex shaping of local

oscillators can be utilized to improve the measured squeezing level [183], it does

not work well on non-Gaussian state generation through partial detection, which

requires the separation of di↵erent modes. Therefore, a new approach to generating

pulsed squeezing with high purity is highly desired to further improve the capability

of photonic quantum information processing.

In this Letter, we analyze pulsed squeezing with an unexplored configuration,
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cavity-enhanced parametric down-conversion with single-pass pulse pumps. Such

configuration is well-positioned for pulsed squeezing generation with integrated pho-

tonic cavities, with FSR much larger than the pulse pump bandwidth. The Bloch-

Messiah approach is used to decompose the input-output relation into independent

squeezing modes [184, 185]. We demonstrate that the e↵ective mode number at the

output can approach unity, showing there is only one dominant spectral-temporal

mode. Unlike the single-pass pulsed squeezing [180], this approach does not require

the delicate shaping of the pump, making its experimental implementation robust.

6.2.2 Theoretical Model

The proposed configuration is shown in Fig. 6.1 and consists of a photonic ring cavity

evanescently coupled to a bus waveguide. Phase-matching condition is satisfied

for degenerate parametric down-conversion between the pump mode centering at

frequency 2!0 and the signal mode centering at frequency !0. The input pump pulse

with a center frequency 2!0 is launched into the cavity through the bus waveguide.

Pulsed 
pump

�𝑎𝑎

𝛾𝛾𝑖𝑖

𝛾𝛾𝑐𝑐�𝑎𝑎𝑖𝑖𝑖𝑖 �𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜

�𝑎𝑎 𝑖𝑖�𝑎𝑎 𝑒𝑒

Figure 6.1: Proposed configuration for high-purity pulsed squeezing gen-
eration: parametric down-conversion in a photonic ring cavity with a
pulsed pump. The solid line represents the bus waveguide with signal coupling
rate �c, input mode âin, and output mode âout; the dotted line represents the virtual
waveguide for the intrinsic loss channel with loss rate �i, input mode â(i), and output
mode â(e).

The dynamics of the intra-cavity signal mode â can be described by the equation

of motion [11, 186],

dâ

dt
=

i

~ [Ĥ, â]� �

2
â+

p
�iâ

(i) +
p
�câin (6.1)
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with intrinsic loss rate �i, bus waveguide coupling rate �c, total cavity decay � =

�i + �c, and noise operators due to intrinsic loss â(i) and bus waveguide âin. The

Hamiltonian Ĥ can be written as

Ĥ =~!0

Z
d!â†(!)â(!)

+
i~
2

ZZ
d!d!0â†(!)â†(!0)"(! + !0) + h.c.

(6.2)

with  the single photon coupling rate for parametric down-conversion. The intra-

cavity pump field "(!) is written as

"(!) = Ep(!)

p
�pc

�i(! � 2!0) + �p/2
(6.3)

with the bus waveguide coupling rate �pc and total decay rate �p for the pump

mode, and Ep(!) the spectrum amplitude of the input pulse. Utilizing Fourier

transformation, Eq. (6.1) can be further expressed in the frequency domain

0 =

Z
d!0[i(! � !0)�

�

2
]�(! � !0)â(!0)

+

Z
d!0"(! + !0)â†(!0) +

p
�iâ

(i)(!) +
p
�câin(!).

(6.4)

By including the complex-conjugation, we can rewrite Eq. (6.4) into the following

equivalent matrix form

0 =

0

@D E

E† D†

1

A

0

@ â(!)

â†(!)

1

A+
p
�i

0

@ â(i)(!)

â(i)†(!)

1

A+
p
�c

0

@âin(!)

â†
in
(!)

1

A (6.5)

where the diagonal matrix D(!,!0) = [i(!�!0)��/2] ·�(!�!0) shows the e↵ect of

frequency detuning and energy decay, and the matrix E(!,!0) = "(! + !0) shows

the nonlinear interaction enhanced by the pump. The output field can then be

derived based on the input-output theory

0

@âout(!)

â†out(!)

1

A =

2

4

0

@I

I

1

A+ �c

0

@D E

E† D†

1

A
�13

5

0

@âin(!)

â†
in
(!)

1

A

+
p
�c�i

0

@D E

E† D†

1

A
�10

@ â(i)(!)

â(i)†(!)

1

A .

(6.6)
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Here we assume that the intrinsic loss of the photonic cavity is Markovian, and

can be modeled as a virtual waveguide with the input mode â(i) and output mode

â(e) (dashed line in Fig. 6.1) [9, 186]. Then Eq. (6.6) is converted to the symplectic

form
0

BBBBBBBBBBBBB@

âout(!)

â†
out(!)

â(e)
(!)

â(e)†
(!)

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

2

66664
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D E

E† D†
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3

77775
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The Bloch-Messiah decomposition means that an arbitrary Gaussian transforma-

tion can be represented by two passive linear-optical interferometers (P and Q in our

case) intermitted by parallel squeezing transformations. This allows us to rewrite

the core matrix

⇣
I

I

⌘
+ �

⇣
D E

E† D†

⌘�1
�
into a combination of a set of single-mode

squeezers (Bogoliubov transformations) placed between two multi-port interferom-

eters [184, 185].
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Therefore, the overall input-output relation is modeled as a multi-mode optical

parametric amplifier sandwiched by two beamsplitters with reflection R = �c/�
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(Fig. 6.2). The spectral-temporal shape of the characteristic input modes of each

single-mode squeezer (bin,k) is determined by the unitary transformation Q.

b̂in = Q†

✓r
�c
�
âin(!) +

r
�i
�
â(i)(!)

◆
. (6.9)

Each characteristic mode undergoes independent squeezing

b̂out,k = cosh ⇠kb̂in,k + ei✓k sinh ⇠kb̂
†

in,k (6.10)

where ⇠k and ✓k are the squeezing amplitude and phase of the kth mode. After

mixing with the vacuum at the second beamsplitter, the variance of the squeezed

quadrature of the kth mode is

h(�Xk(
✓k � ⇡

2
))2i = 1

2
(
�i
�
+
�c
�
e�2⇠k). (6.11)

This result is identical to the CW-squeezing process [11], where the maximum

squeezing is limited by the intrinsic loss of the cavity. Over-coupled cavity (�c >> �i)

is required to realize high squeezing. The e↵ective mode number K can be directly

calculated from the squeezing amplitude ⇠k.

K =
(
P

k sinh
2 ⇠k)2P

k sinh
4 ⇠k

(6.12)

Higher mode number K infers a lower purity [45]. Since the squeezed light includes

multi-photon components, the definition of purity is more general than the one for

the single-photon case, where only the first-order term is considered.

Our derivation assumes that the pump is below the threshold so that all the

output modes are still squeezed vacuum. The pump threshold can be determined

when the gain for any intra-cavity mode is equal to the amplitude loss rate �/2. By

rewriting Eq. (6.1) into the rotation frame â ! â · ei!0t and taking the average on

the initial vacuum state, we can express the classical dynamics of the intra-cavity

field as

h ˙̂ai = ��
2
hâi+ Ehâi⇤. (6.13)

The solution to Eq. (6.13) has the form h ˙̂aik = Sk · e�kt, where �k and Sk are

the kth eigenvalue and eigenstate of matrix E [181]. We label the eigenvalue with
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Figure 6.2: Equivalent photonic circuit of parametric down-conversion in
a photonic cavity with pulsed pump.

the largest modulus as �0. As �0 can always be made a real number by adjusting

the global phase, the criteria for the threshold pump becomes �0 = �/2. It is

noteworthy that the eigenstates of the intra-cavity modes (decomposition of matrix

E) are di↵erent from the characteristic modes obtained at the output with the

Bloch-Messiah decomposition of the core matrix in Eq. (6.7).

6.2.3 Numerical Simulation

As can be seen from the last section, all critical properties of the output state depend

on the distribution of squeezing amplitude ⇠k. In order to get further insight, the

generation of pulsed squeezing in photonic ring cavities is investigated numerically.

Without loss of generality, we assume the input pump has a Gaussian spectrum

shape Ep(!) / e�(4 ln 2)(!�!0)
2/�2 with full-width-half-maximum (FWHM) �. The

threshold condition needs to be determined first. Using the condition �0 = �/2,

we obtain the relation between the intra-cavity threshold power Pth and the pump

bandwidth � (Fig. 6.3). Here we assume that the pump and signal modes have the

same quality factor, thus �p = 2�. Monotonic decay of the intra-cavity threshold

power Pth with respect to the pump bandwidth � can be observed, due to the con-

tribution from multiple pump frequency components. Compared with a CW pump,

the intra-cavity threshold power can be decreased by three orders of magnitude,

making this scheme highly power e�cient.
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Through the Bloch-Messiah decomposition of Eq. (6.7), we can obtain the spec-

tral shape (Fig. 6.4) and squeezing amplitude (Fig. 6.5) of each characteristic mode.

Then the squeezing level can be estimated with Eq. (6.11). The squeezing level of

the first characteristic mode is plotted in Fig. 6.5(a). As expected, the squeezing

level increases with pump power below the threshold, and lower intrinsic loss leads

to higher squeezing. We further plot the squeezing level for high-order modes. Due

to smaller optical gain, the squeezing level for high-order modes decreases rapidly

(Fig. 6.5(b)). Based on Eq. (6.12), this indicates the output field will have a small

e↵ective mode number and high purity without any filtering and post-selection.

When pump power is small, the e↵ective mode number stays constant where en-

tangled photon pairs are generated. With the pump power approaching the thresh-

old, the e↵ective mode number drops to a value limited by the pump bandwidth

(Fig. 6.6(a)).

We further observe that the e↵ective mode number decreases monotonically

with both the input pump bandwidth � and the pump cavity linewidth �p

(Fig. 6.6(b)&(c)). The signal cavity with a small linewidth � will function as a

spectral-temporal filter to enhance the first characteristic mode and suppress high-
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Figure 6.4: The spectral amplitude (solid) and phase (dash) of the first
three characteristic modes near the pump threshold. This figure assumes
�p = 2� and � = 2�p.

order characteristic modes. With a larger input pump bandwidth � and pump cavity

linewidth �p, the filtering e↵ect is more significant, thus leading to a smaller e↵ective

mode number. This filtering e↵ect is di↵erent from adding narrow filters after the

squeezing generation, as the parametric down-conversion and the filtering happen

simultaneously in the same cavity. Therefore, no extra loss will be introduced. This

filtering e↵ect can be clearly observed in Fig. 6.6(d), where the FWHM of the first

characteristic mode increases rapidly with small pump bandwidths but saturate at

large pump bandwidths.

In order to access the maximum squeezing, the spectral-temporal shape of the

local oscillator must match the first characteristic mode. Based on the fact that

the first characteristic mode shape is critically dependent on the filter e↵ect of the

signal cavity (Fig. 6.6(d)), we further design an easy and e�cient method for the

local oscillator shaping.

As shown in Fig. 6.7, the generation of the pulsed squeezing follows the standard

configuration, where a strong optical pulse at the signal frequency is used to generate

the pump pulse for parametric down-conversion. A small portion of the optical pulse

is tapped to serve as the local oscillator. In order to match the spectral-temporal

shape of the first characteristic mode, the optical pulse can simply go through an
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This figure assumes �p = 2� and � = 2�p.

optical cavity with Lorentzian lineshape. The cavity linewidth �f is optimized to

obtain the maximum mode overlap and squeezing level (Fig. 6.8). With a small

pump bandwidth, the system is in the quasi-CW regime, and a local oscillator

without any mode shaping can achieve near-perfect mode matching. With a large

pump bandwidth, the filter e↵ect of the signal cavity is significant. A proper filter

cavity for the local oscillator is required, and near-perfect matching can be achieved.

As a small e↵ective mode number is obtained only with a large pump bandwidth,

this approach for the local oscillator shaping should be su�cient.
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6.2.4 Discussion

While the current analysis is based on degenerate parametric down-conversion, the

generalization to non-degenerate cases is straightforward. The dynamics of intra-

cavity modes for signal â1 and idler â2 can be written as

0 =

Z
d!0[i(! � !k)�

�

2
]�(! � !0)âk(!

0)

+

Z
d!0"(! + !0)â†l (!

0) +
p
�iâ

(i)
k (!) +

p
�câk,in(!)

(6.14)

with the index (k, l) = (1, 2) or (2, 1). The Bloch-Messiah decomposition needs to be

applied to the signal and idler modes simultaneously. All conclusions for degenerate

cases remain valid for non-degenerate cases. The pulsed squeezing generation with

non-degenerate configuration can be realized with both parametric down-conversion
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Figure 6.7: Proposed setup for local oscillator shaping.

[187] and four-wave-mixing [52]. For parametric down-conversion, it is easier to

achieve a pump cavity linewidth much larger than a signal cavity linewidth (�p >>

�), due to the vastly di↵erent wavelengths. This is beneficial to achieve a small

e↵ective mode number. The recent development of aluminum nitride [97, 47, 187,

188], gallium arsenide [189], and lithium niobate [190, 191, 192] photonics has made

it possible to demonstrate pulse squeezing with the proposed method1. On the other

hand, four-wave-mixing has a wider collection of materials as it does not require non-

centro-symmetric crystal structures. For four-wave-mixing, pump field in Eq. (6.3)

needs to be modified as

"(!) =

Z
d!0

p
�pcEp(! � !0)

�i(! � !0 � !0) +
�p
2

p
�pcEp(!0)

�i(!0 � !0) +
�p
2

. (6.15)

Based on Hydex silica glass, single photons have been generated from degenerate

four-wave-mixing with pulsed pumps. This corresponds to pump power being far

below the threshold (Fig. 6.6a). Therefore, the experimental result matches our

theoretical calculation well2. Recently, the CW-squeezed light has also been achieved

1
Degenerate parametric down-conversion has been realized based on AlN ring cavities [193].

The linewidths for the signal and pump resonances are 192 MHz and 960 MHz, respectively. If

pumped by Gaussian pulses with bandwidth � = 1GHz, our model predicts that the output mode

could have an e↵ective mode number K = 1.038.
2
In Ref. [194], Hydex silica cavity with �p = � = 0.803 GHz is pumped with a pulse (duration

0.6 ns and bandwidth 1.67 GHz). The e↵ective mode number is measured to be 1.086. Based
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with photonic ring cavities [195, 196], which brightens the way towards integrated

pulsed squeezing generation.

6.2.5 Conclusion

In conclusion, we have proposed a novel approach to generate pulsed squeezing with

high temporal purity. Parametric down-conversion in photonic cavities with a single

on our theoretical mode, the e↵ective mode number of K = 1.092 is calculated in the low power

regime, which matches the experiment.
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pulsed pump is analyzed based on the Bloch-Messiah decomposition. We show that

a near-unity e↵ective mode number can be obtained. A large pump cavity linewidth

and a pump bandwidth are preferred to decrease the e↵ective mode number. As

the dependence of the e↵ective mode number on pump cavity linewidth and pump

bandwidth is monotonic, no delicate balance between the pump power and linewidth

is required, making the approach robust. An additional benefit is the low pump

threshold due to the contribution from multiple frequency components, leading to

the high power e�ciency of this approach. We further designed an easy method

to realize optimum matching between the local oscillator and output characteristic

mode for maximum squeezing measurement. The robustness, high e�ciency, and

easy match make this approach promising for large-scale quantum networks and

complex quantum state generation.
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CHAPTER 7

Customized Poling for High-Purity Indistinguishable Photon-Pair Generation †

7.1 Abstract

Indistinguishable single photons are key ingredients for a plethora of quantum infor-

mation processing applications ranging from quantum communications to photonic

quantum computing. A mainstream platform to produce indistinguishable single

photons over a wide spectral range is based on bi-photon generation through spon-

taneous parametric down-conversion (SPDC) in nonlinear crystals. The purity of

the SPDC bi-photons, however, is limited by their spectral correlations. Here, we

present a design recipe, based on a machine-learning framework, for the engineering

of bi-photon joint spectrum amplitudes over a wide spectral range. By customizing

the poling profile of the KTiOPO4 (KTP) crystal, we show, numerically, that spec-

tral purities of 99.22%, 99.99%, and 99.82% can be achieved, respectively, in the

1310-nm, 1550-nm, and 1600-nm bands after applying a moderate 8-nm filter. The

machine-learning framework thus enables the generation of near-indistinguishable

single photons over the entire telecommunication band without resorting to KTP

crystal’s group-velocity-matching wavelength window near 1582 nm.

7.2 Main Article

7.2.1 Introduction

Quantum information science is an emerging area of study that creates new op-

portunities for next-generation communication, computing, and sensing applica-

tions. Photons are unique quantum-information carriers as they can be transmitted

over long distances for entanglement distribution [197, 198], secure communication

†
This chapter has been published previously as [5]
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[199, 200], and sensing [201, 202, 203]. In addition, single photons would be crit-

ical resources in near-term quantum-computing devices for, e.g., Boson Sampling

[204, 205, 206, 207, 208], to demonstrate a performance advantage over any classical

computing platforms, a.k.a., the quantum supremacy.

Specifically, the quantum internet [209, 210] will be empowered by single pho-

tons that herald the creation of entanglement between network nodes at a distance

[211]. Such a capability underpins distributed quantum computing [212, 213, 214]

and distributed quantum sensing [215, 216, 217, 218]. The quality of the heralded

entanglement, produced by interfering two single photons on a beamsplitter to erase

the which-way information, is critically dependent on the indistinguishability and

the purity of the two photons. To ensure high performance for quantum-information

applications, the interfering photons need to share the same spectral, temporal, spa-

tial, and polarization states [219, 220]. In addition, it is desirable that the single pho-

tons situate in the telecommunication band to leverage the abundant modulation,

transmission, and detection devices for long-distance quantum communications.

Nonlinear crystals are widely employed to produce entangled and heralded sin-

gle photons [221, 222, 223, 224]. Compared to solid-state single-photon emitters

such as quantum dots and nitrogen-vacancy centers, nonlinear crystals enjoy room-

temperature operations, the capability of generating photons in the telecommuni-

cation band, and the absence of spectral di↵usion that degrades the purity of the

produced photons. KTiOPO4 (KTP), in this regard, is a widely used nonlinear

crystal material by virtue of its high nonlinearity and broad transparency window.

In particular, KTP possesses a group-velocity-matching (GVM) wavelength around

1582 nm [222] vouchsafed by its material dispersion in type-II SPDC processes. Such

a unique property has been harnessed to generate spectrally-uncorrelated bi-photons

near the telecommunication c-band at 1550 nm. To achieve phase matching, two

crystal poling strategies have been pursued. In the conventional periodic poling

strategy, shown in Fig. 7.1 (top), the positive and negative polarities each consti-

tutes half of the duty cycle in each poling period, resulting in a sinc phase-matching

profile whose side lobes limit the spectral purity. As a result, a narrowband filter
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is typically employed to cut o↵ the side lobes, at the cost of reducing the flux and

the heralding e�ciency. To mitigate the limitation of periodic poling, Brańczyk

et al. gave a solution by adding another type of poling [224]. Then Dixon et

al. introduced a customized aperiodic poling profile, illustrated in Fig. 7.1 (bot-

tom), to achieve a Gaussian phase-matching profile at the GVM wavelength more

practically [225]. In conjunction with a Gaussian spectrum pump, a 99.5% spec-

tral purity was measured after applying an 8.5-nm full width at half maximum

Gaussian spectral filter. The spectral purity of the bi-photons produced in Dixon

et al.’s scheme, however, degrades to 97.12% after applying a 40-nm filter in the

1550-nm band due to the higher-order terms, e.g. group-velocity-dispersion[226].

In follow-up works [227, 228, 229, 230, 231, 49], several poling-design optimiza-

tion approaches were introduced to improve upon Ref. [225]’s spectral purity. Like

Dixon et al.’s scheme, these approaches require operating under the validity of first-

order approximation. Since the KTP crystal has a smooth group-velocity-mismatch

around the GVM wavelength, the former designs can still be valid for spectrally-

uncorrelated bi-photon generation over the entire telecommunication window from

⇠1300 nm to 1600 nm [226]. However, the purity is confined as a result of first-

order approximation, which is no longer e�cient. In addition, these approaches

rely on binary optimization that limits the achievable purity, due to a lack of ac-

cess to the full parameter space. To generate high-purity bi-photons at wavelengths

away from 1582 nm, period-poled KTP’s output spectral purity is limited to merely

⇠81% [232], which is insu�cient for many applications. Apart from KTP, references

[233, 234, 235] compiled a list of other nonlinear materials, each operating at a spe-

cific wavelength dictated by its GVM property. However, a scheme for generating

high spectrally-uncorrelated bi-photons at any target wavelength remains elusive.

Here, we present a general machine-learning framework that seeks the optimum

poling design for the generation of spectrally-uncorrelated bi-photons. Unlike prior

works, our approach exploits an optimization fully empowered by machine learning

to obviate the need for either the first-order approximation or the GVM property of

nonlinear crystals. This yields a purity in excess of 99.8% with an 8-nm filter over
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1310 nm to 1600 nm. In particular, a 99% spectral purity in the 1550-nm band is

achieved after applying a 40-nm wideband filter that nicely maintains the flux and

the heralding e�ciency. Our result demonstrates the power of machine learning in

tackling hard quantum information problems.

In this paper, we focus on optimizing KTP’s type-II phase matching to generate

spectrally-pure bi-photons, but our method can be applied to other phase-matching

types.

7.2.2 Bi-Photon JSA and Phase Matching

In spontaneous parametric down-conversion (SPDC), the generated bi-photons can

be represented in the frequency domain as a superposition of di↵erent frequency

modes:

| iSI =
ZZ

d!sd!if(!s,!i)â
†

!s
b̂†!i

|0is|0ii. (7.1)

Here, â†!s
is the creation operator for the signal photon, b̂†!i

is the creation oper-

ator for the idler photon, and f(!s,!i) is the bi-photon joint spectrum amplitude

(JSA) that entails complete information about the spectral-temporal properties of

the photon pair. The bi-photon JSA is determined by the pump spectrum and the

properties of the nonlinear crystal by f(!s,!i) / ↵(!p)G(�k), where !p = !s + !i

relates the pump, signal, and idler frequencies by energy conservation, ↵(!p) de-

scribes the pump spectral profile, and G(�k) encompasses information about the

phase-matching properties of the nonlinear crystal [222]. Specifically, the phase-

matching function

G(�k) =
1

L

Z L

0

dz g(z) exp(�i�kz), (7.2)

where g(z) = {1,�1} describes the poling profile along the propagation z axis. The

phase mismatch

�k(!s,!i) = kp(!p)� ks(!s)� ki(!i)

= 2⇡n(!p)/�p � 2⇡n(!s)/�s � 2⇡n(!i)/�i,
(7.3)

where n(!) is the frequency-dependent refractive index that determines the material

dispersion, and �p, �s, and �i are the pump, signal, and idler wavelengths [222, 225,
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231]. To quantitatively describe the spectral correlation between the signal and idler

photons, their JSA is decomposed [225, 49] as f(!s,!i) =
P

n ⇠n�S,n(!s)�I,n(!i),

where {�S,n(!s)} and {�I,n(!i)} are two sets of orthogonal functions, viz.
Z

d!�⇤

j,n(!)�j,m(!) = �n,m, (7.4)

where j 2 {S, I}. The purity is then defined as

P =
X

n

|⇠n|4/(
X

n

|⇠n|2)2. (7.5)

Equivalently, P = Tr(Tri(| ih |SI)2), which quantifies how pure the signal-photon

state is after tracing out the idler photon. If f(!s,!i) = �s(!s)�i(!i), i.e., P =

1, the JSA then describes a product state of spectrally-uncorrelated two photons

particularly useful for Boson sampling, entanglement distribution, and photonic

quantum information processing [207, 236, 223].

Another quantitative property of a bi-photon JSA is the spectral indistinguisha-

bility defined as

I = Re

ZZ
d!sd!if

⇤(!s,!i)f(!i,!s)

�
(7.6)

I quantifies the di↵erence in the spectra of two photons [237, 238, 239, 240, 241, 242]

and equals the visibility of Hong-Ou-Mandel interference. I is a useful metric for

single-photon sources such as quantum dots for which spectral di↵usion is a practical

limitation. This paper considers broadband heralded single photons from indepen-

dent SPDC sources, so purity is a more appropriate performance metric (see Sec-

tion 7.3.1 for more information). We will, however, calculate the indistinguishability

for the signal and idler photons.

To engineer a desired bi-photon JSA f(!s,!i), one has two tunable knobs: the

pump spectral profile ↵(!p) and the crystal poling profile g(z). In this paper, we

introduce a general recipe that harnesses a machine-learning framework to automate

the design for ↵(!p) and g(z). Let us first formulate the JSA engineering problem

and provide some insights into its connection with machine learning.

The poling profile embedded in g(z) involves the poling period ⇤ and an array

A = {Ai} that specifies the duty cycle in each of the N periods. ⇤ is given by the
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Figure 7.1: Poling profiles for a L-mm-long nonlinear crystal with N poling
periods. Top: periodic poling with a period of ⇤. Bottom: customized poling with
a profile embedded in the array A.

phase-matching condition at the pump’s central frequency !P0
when signal and idler

photons are wavelength degenerate at !P0
/2: ⇤ = 2⇡/�k0, where �k0 = �k(!s =

!i = !P0
/2). g(z) thus relates to ⇤ and A by

g(z,A) = �1 + 2
N�1X

j=0

[⇥(z � j⇤)� ⇥(z � (j + Aj)⇤)] (7.7)

where ⇥ is the unit step function (see Fig. 7.1). Plugging g(z), given by Eq. (7.7),

into the phase-matching function yields

G(�k,A) =
1

iL�k

N�1X

j=0

[e�i⇤j�k + e�i⇤(j+1)�k � 2e�i⇤(j+Aj)�k] (7.8)

In practice, the design of g(z) is limited by the minimum poling length ⇤min.

To accommodate the practical limitation, we modify the duty cycles as Ai 2
[⇤min/⇤, 1 � ⇤min/⇤] (the ratio of the positive polarity portion within each poling

period) in tuning the JSA.
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Figure 7.2: KTP’s Type-II SPDC phase mismatch �k(!s,!i) with fixed
idler (solid) or signal (dashed) wavelengths in the 1200-nm to 1800-nm
range. The intersection points between the solid and the dashed lines of the same
color are where a first-order approximation for the phase mismatch is performed.
The black dotted line is formed by all intersections at di↵erent wavelengths, giving
the phase mismatch, �k0, at the degenerate wavelengths.

7.2.3 The GVM Condition and Gaussian Phase-Matching Profile

To generate spectrally-uncorrelated bi-photons, we desire f(!s,!i) = ↵(!s +

!i)G(�k(!s,!i)) = �s(!s)�i(!i). A conventional approach to engineer such a

product-state wave function is picking the signal and idler wavelengths, !s0 and

!i0 , that satisfy @�k/@!s|!s0
= �@�k/@!i|!i0

= �GVM, known as the GVM condi-

tion. Around !s0 and !i0 , the phase mismatch is fully determined by the frequency

di↵erence between the signal and idler photons, i.e., �k ⇡ �k0 + �GVM(!s � !i).

This leads to a phase-matching function G(�k) that is solely a function of !s � !i,

viz. G(!s � !i). Under the GVM condition, it is possible to engineer a Gaussian

phase-matching function[226]

G(!s � !i) ⇡ G0 exp


�(!s � !i)2

�2

C

�
, (7.9)
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where �C is determined by the poling profile g(z|AGVM). In conjunction with a

Gaussian pump spectral profile

↵(!p) = a0 exp


�(!s + !i � !P0

)2

�2
p

�
(7.10)

and by choosing �p = �C , one obtains

f(!s,!i) = ↵(!s + !i)G(!s � !i)

/ exp


�2(!s � !s0)

2

�2
p

�
exp


�2(!i � !i0)

2

�2
p

�
,

(7.11)

i.e., a spectrally-uncorrelated product state of bi-photons.

The JSA engineering approach based on GVM and Gaussian phase matching,

albeit ingenuous, is limited by the dispersion properties of the nonlinear materials,

resulting in only a handful of GVM wavelengths, each associated with a specific

nonlinear optical material. For example, the GVM wavelengths are ⇠1582 nm for

KTP, ⇠830 nm for KDP (KH2PO4), and ⇠922 nm for ADA (NH4H2AsO4) [235].

Such a restriction impedes the generation of spectrally-uncorrelated bi-photons that

covers the entire telecommunication band from ⇠1300 nm to ⇠1600 nm and pre-

cludes interfacing SPDC photons with solid-state quantum emitters in the visible

to near-infrared wavelength range, as a means to entangle qubits at a distance. To

engineer spectrally-uncorrelated bi-photon JSAs over a wide spectral range, let us

further understand the limitations of the GVM approach.

7.2.4 General Phase Matching without the GVM Condition

Let us now consider working at non-GVM wavelengths. Let the phase mismatch

at the degenerate wavelength be �k0. The phase mismatch at any wavelengths in

the vicinity of the degenerate wavelength can be expressed, in a first-order approx-

imation, as �k � �k0 ⇡ �s!s � �i!i, where �s 6= �i for a non-GVM case. Without

loss of generality, both �s and �i are chosen to be positive. The validity of the first-

order approximation is verified in Fig. 7.2, which shows the linearity of �k around

the degenerate wavelengths at the intersections between the solid and dashed lines.
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Applying the poling profile AGVM which is developed at the GVM wavelengths, we

have

G(�k,AGVM) ⇡ G0

0
exp


�(�k � �k0)2

�2
GVM

�2

C

�
⇥

1 +

�k � �k0
�k0

+O((�k � �k0))
2

�

⇡ G0

0
exp


�(�s!s � �i!i)2

�2
GVM

�2

C

�
⇥

1 +

�s!s � �i!i

�k0
+O((�s!s � �i!i)

2)

�
,

(7.12)

where the second term includes high-order contributions. Since (�s!s � �i!i)/�k0

is small but not negligible, it causes a reduced spectral purity. The spec-

tral purity will, nonetheless, still be high after applying narrowband filters as

the higher-order term primarily contribute to areas of large detuning from the

central wavelength. It appears that by choosing the pump bandwidth �p =

�GVM�C/
p
�s�i, one obtains, in a non-GVM regime, a product-state JSA f(!s,!i) /

exp
h
� (!s�!s0 )

2

�2
s

i
exp

h
� (!i�!i0 )

2

�2

i

i
, where

�s =
�C�GVMp
�s(�s + �i)

, �i =
�C�GVMp
�i(�s + �i)

. (7.13)

However, a number of caveats about this result need to be noted. First, a practi-

cal phase-matching function G(�k,AGVM) is only approximately Gaussian due to

the finite number of periods and the minimum duty cycle ⇤min that induces dis-

cretization errors; and second, the higher-order Hermit-Gaussian terms in Eq. 7.12

generate side lobes, which should be accounted for in an e↵ective design. As a result,

a 99.5% filtered spectral purity [225] at the GVM wavelength with Gaussian phase

matching reduces to 97.13% in the 1550-nm band after switching to a 40-nm filter.

7.2.5 The Machine-Learning Framework

We introduce a machine-learning framework to cope with the limitations associ-

ated with the GVM and Gaussian-phase-matching approach. The machine-learning

framework enables the suppression of higher-order terms and compensations for dis-

cretization errors, leading to high-spectral-purity bi-photons over a wide range of

wavelengths. In addition, the machine-learning framework is capable of designing a

poling profile that corrects deviations from a perfect Gaussian-spectrum pump.
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Figure 7.3: A general machine-learning model. I: input data; O: output
data; P : updatable parameters; P0: initial parameters; F (I,P ) nonlinear function;
OTGT: target output data; C(O,OTGT): cost function that determines the distance
between the present output data and the target output data; the learning process
is an algorithm that updates the parameters based on the cost.

A general machine-learning framework is comprised of multiple building blocks,

as illustrated in Fig. 7.3. A nonlinear function F is characterized by a set of updat-

able parameters P . F takes input data I and produces output data O = F (I,P ).

The objective of learning is to seek the optimum P so that O converges to the

target output data OTGT for di↵erent I. To this end, we define a cost function,

C(O,OTGT), that quantifies the distance between O and OTGT. P is initialized

by a preset of parameters P0 and updated by a learning process supplied with the

calculated cost in each iteration.

The most common class of learning processes is based on gradient descent, in

which P is updated based on a linear scaling of the negativity of the gradient of

the cost function [243, 244]. Linear scaling is defined as the learning rate. Adam is

an upgraded version of the gradient-descent learning process. Adam introduces the

adaptive momentum method that adjusts the learning rate based on the learning

history [245, 246]. Such a feature di↵erentiates Adam from a conventional gradient-

descent learning process with a fixed learning rate.

To date, several optimization approaches based on forwardpropagation have been
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employed to design the poling profile for JSA engineering [227, 228, 229]. These

approaches rest upon equal poling periods and static strategies to optimize the

poling profile. In contrast, gradient descent and Adam fall into backpropagation

learning processes because the gradient of the cost function is calculated as a partial

derivative over elements in P . Critically, the backpropagation approach in our

machine-learning framework automates the optimization procedure. Moreover, the

search time in the parameter space is significantly reduced by virtue of Adam’s

adaptive parameter update strategy.
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Figure 7.4: The evolution of the cost during poling optimization for the
generation of spectrally-uncorrelated bi-photons in the 1550-nm band.
The cost approaches 0 after 100 iterations, indicating near-spectrally-uncorrelated
bi-photons can be produced with the optimized crystal poling.

To utilize the machine-learning framework to engineer the JSAs for spectrally-

uncorrelated bi-photons, we assume that a pump with an ideal Gaussian spectrum

and bandwidth is available at the desired wavelength, with the understanding that

deviations from the ideal conditions can be accommodated by the machine-learning

framework. Consider the function H(!s,A) ⌘ |G(�k(!s,!P0
� !i),A)|, i.e., a

slice of the phase-matching function |G(�k(!s,!i),A)| along the !s + !i = !P0

axis, where !P0
is the central frequency for the pump. If H(!s,A) is Gaussian,

|G(�k(!s,!i),A)| will have the form as the first term in Eq. 7.12. Therefore,

Our objective is to seek the optimum poling profile A such that H(!s,A) !
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H0 exp
h
� (!s�!t0 )

2

2�2

t

i
, where !t0 and �t is the central frequency and the standard

deviation for this Gaussian target. The purity of the bi-photons ties to the distance

between H(!s,A) and an ideal Gaussian form. In the machine-learning frame-

work, the input data I consist of an array of sampled signal frequencies: !s =

{!s1 ,!s2 , ...,!sk}. The updatable parameters P include the duty cycle array A, the

target central frequency !t0 , and the target bandwidth �t. With the updatable pa-

rameters, the nonlinear function returns the output data O = F (I,P ) = H(!s,A),

which aims to approach the target output data

OTGT = H0 exp


�(!s � !t0)

2

2�2

t

�
(7.14)

The cost is then defined as the distance between the output data and an ideal

Gaussian function as

C(O,OTGT) =
kX

l=1

⇢
H(!sl ,A)�H0 exp


�(!sl � !t0)

2

2�2

t

��2

(7.15)
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Figure 7.5: Poling profiles for the generation of spectrally-uncorrelated
bi-photons in the 1550-nm band. Red curve: the initial poling profile prior to
applying machine learning, obtained from the GVM condition and Gaussian phase
matching [225]; Blue dots: the optimized poling profile obtained by the machine-
learning framework.
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          Wavelength / µm 1.31 1.40 1.50 1.55 1.60
          OPKTP 4nm filter 99.9952% 99.9988% 99.9968% 99.9998% 99.9950%
          OPKTP 8nm filter 99.9218% 99.9770% 99.9341% 99.9933% 99.8161%
          OPKTP 40nm filter 98.7385% 99.4621% 98.7314% 99.2212% 98.1998%

          PPKTP 4nm filter 99.7420% 99.8279% 99.7450% 99.8784% 99.8787%
          PPKTP 8nm filter 94.9478% 92.4118% 94.4211% 95.7955% 97.1583%
          PPKTP 40nm filter 86.1561% 83.4430% 82.6080% 82.4762% 82.5538%
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Figure 7.6: Simulated purities at di↵erent wavelengths after applying fil-
ters of di↵erent bandwidths. Circles: purities with our machine-learning-based
poling design; Crosses: purities with periodic poling. Inset: a table that summa-
rizes the purities for both optimized-poling KTP (OPKTP) and periodically-poled
KTP (PPKTP). For PPKTP, a longer wavelength yields larger bandwidth for the
bi-photons. An 8-nm filter then eliminates the first side lobe to increase the purity.
The dashed line corresponds to a 98% purity. The purities obtained by our poling-
design recipe in conjunction with the 40-nm filter all sit above the dashed line. The
relation between the purity and the filter bandwidth is discussed in detail in the
main text.
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Figure 7.7: Bi-photon joint-power spectrum after each design step. Step
1 takes a prior poling design, which, without any optimization, su↵ers from side
lobes that degrade the purity. After Steps 2 & 3, the side lobes are suppressed by
the machine-learning framework while leaving the bi-photons non-degenerate. After
Step 4, the bi-photons become degenerate at 1550 nm. The logarithm scale amplifies
the visibility of the side lobes.
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7.2.6 Poling-Design Recipe

We customize the poling for an L = 10-mm KTP crystal comprised of ⇠200 poling

periods. Such a size of the parameter space would be a challenge for any analytic

attempt to devise the optimum poling profile. The machine-learning framework,

by contrast, optimizes the duty cycle array A by gradually minimizing the cost

function over each iteration. In doing so, the optimization does not rely on any

approximation, nor does it place any requirement on the pump profile. It can thus

cope with any target output data under any pump profile. In what follows, we

describe the four main steps of our poling-design recipe.

Step 1: Initialization Set the target wavelength and the bandwidth of

interest. Set the poling period ⇤ = 2⇡/�k0 at the target wavelength. Set the

minimum poling length Amin allowed by the fabrication processes. As a reference,

Amin = 0 is an upper bound for the performance. Initialize A = AGVM and choose

the maximum number of machine-learning iterations.

Step 2: Cost function calculation Obtain and normalize O = H(!s,A).

Calculate the cost function C(O,OTGT).

Step 3a: Pump optimization Use Adam with learning rate ra to update !t0

and �t and reduce the cost function.

Step 3b: Poling optimization Use Adam with learning rate rb to update A

and reduce the cost function. Repeat from Step 2 until the maximum number of

iterations is reached, or the cost function converges to the minimum.

Step 4: Poling period adjustment Fine tune ⇤ without modifying A to

eliminate the non-degeneracy between the signal and idler photons.



146

7.2.7 Simulation Results

The machine-learning framework for the poling design is realized in Python with

the TensorFlow library. The material dispersion profile of KTP is derived by the

Sellmeier equation reported in Ref. [247]. The employed learning rates are ra = 0.005

and rb = 0.015.

Working in the 1550-nm band, the cost converges after 100 machine-learning

iterations, shown in Fig. 7.4. Fig. 7.5 displays the initial poling profile and the

optimized poling profile obtained by the machine-learning framework. The simula-

tion derives a minimum poling length of ⇠0.9 µm (2.04% of a poling period), even

though we set Amin = 0 to obtain the optimum poling profile. The periodic peaks

in the machine-learned poling profile may be responsible for the compensation of

discretization errors.

Since our main focus is on broadband heralded single photons from independent

SPDC sources, the visibility of the Hong-Ou-Mandel (HOM) interference is primarily

determined by the purity [237, 240, 241, 242, 220] (see also Sec. 7.3.1). As such, we

use purity as a main performance metric to compare our design with others 1.

After applying ideal rectangular filters with various bandwidths, the spectral

purity of the produced bi-photons is calculated by the coe�cients of Schmidt de-

composition [225, 49] and Eq. (7.5). We apply our recipe to generating spectrally-

uncorrelated bi-photons in the 1310-nm, 1400-nm, 1500-nm, and 1600-nm bands.

The spectral purities with filters of various bandwidths are derived for both

optimized-poling KTP (OPKTP) and periodically-poled KTP (PPKTP), as de-

picted in Fig. 7.6 and summarized in the inset. Even with a 40-nm filter, our

machine-learning-based poling design achieves purities in excess of 98%, marked as

the dashed line in Fig. 7.6) [206]2.

1
We calculated the indistinguishability defined in Ref. [240] in the 1550-nm band. After applying

a 4-nm filter, the indistinguishability between signal and idler is 99.4%, decreasing to 98.7% (98.1%)

with an 8-nm (40-nm) filter. The decrease in the indistinguishability is caused by the asymmetry

between the signal and the idler’s spectra at non-GVM wavelengths.

2
In addition, Fig. 4 of Ref. [206] shows that with assumptions, the minimum indistinguishability
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The filters cut the JSA at finite wavelengths and thus simplify the numerical

estimation for purity. The filter bandwidths are critical parameters: Fig. 7.6 shows

that a narrower filter bandwidth leads to a higher purity. A narrowband filter,

however, decreases the photon flux and the heralding e�ciency due to its increased

insertion loss compared to that of a wideband filter. In our simulation at 1550 nm,

the output signal’s full width at half maximum (FWHM) is about 4.5 nm, so we

choose 4 nm, 8 nm, and 40 nm to keep ⇠68%, ⇠95%, and ⇠100% of the photon

flux. Filters of the same linewidths are used at other wavelengths. To achieve high

heralding e�ciency, our customized poling crystals need to be pumped by loosely

focused beams [248, 249] in conjunction with high-e�ciency detectors [250, 251].

Since the signal photon and the idler photon are nearly spectrally separable, the

heralding e�ciency is close to the system e�ciency of either arm. Assuming a 5%

insertion loss for the optical filter and a 90% quantum e�ciency for the detector,

the heralding e�ciency will then be close to 85%.

To further illustrate the poling optimization procedure, Fig. 7.7 shows the joint

spectral intensity, defined as |f(!s,!i)|2, in the 1550-nm band after each step. One

observes that side lobes are suppressed after Steps 2 & 3, and Step 4 eliminates the

non-degeneracy between the bi-photons.

Table 7.1 collects key metrics reported in this and prior works of poling design

for spectrally-uncorrelated photon generation. Since di↵erent works employ filters of

di↵erent bandwidths and set di↵erent resolutions for JSAs in calculating the purity,

the highest purity numbers do not accurately reflect the performance for di↵erent

schemes. Notably, our machine-learning framework is able to compensate higher-

order terms by direct calculating the cost function from the sampled bi-photon

JSA, whereas prior works are all based on first-order approximations, as discussed

in Sec. 7.2.4. Because our machine-learning framework relies on neither a first-order

required for quantum advantages in Boson Sampling is asymptotically approaching around 98%

in its black-dotted line. The indistinguishability of photons from independent heralded SPDC

sources is dominated by the purity of each photon. As such, we set 98% as a baseline to compare

the performance of our design recipe with others.
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approximation nor the GVM condition, high spectral purity can be achieved over

the entire telecommunication band from 1300 nm to 1600 nm. We should note that

the bi-photon JSA centered at non-GVM wavelengths, e.g., a central wavelength

at 1310 nm, is elliptical since �s 6= �i. The unequal bandwidth of the signal and

idler photons, however, does not prevent signal or idler photons from independent

sources from interfering, as a building block for entanglement swapping and quantum

teleportation.

Reference Poling strategy Optimization method
Central

wavelength
Number of
domains

Crystal
length

Filter type
& bandwidth

Achieved
highest purity

A. M. Brańczyk et al. [224] Customized
poling order

Analytic design 1576 nm ⇠900 24.2 mm N/A 99.0%

P. B. Dixon et al. [225] Customized
duty cycle

Analytic design 1582 nm ⇠520 12 mm
Gaussian
8.5 nm

99.5%

J. Tambasco et al. [228] Customized
orientation

Binary coordinate descent 1550 nm ⇠532 12 mm
Rectangular
⇠16 nm 3

99.6%

A. Dosseva et al. [227] Customized
orientation

Binary simulated annealing 1582 nm 1300 ⇠14.1 mm
Rectangular
⇠10 nm 4

99.9%

F. Gra�tti et al. [229] Customized orientation
+ tuning periods

Binary coordinate descent
& simulated annealing

1582 nm ⇠870 (60) 2 mm
Rectangular

107 nm
99.0%

F. Gra�tti et al. [229] Sub-coherence
engineering

Binary coordinate descent 1582 nm ⇠870 (502) 2 mm
Rectangular

107 nm
99.4%

This work
Customized duty cycle

+ tuning periods
Adam

1300nm
-1600 nm

⇠400
-⇠500

10 mm
Rectangular

8 nm
>99.8%

Table 7.1: Comparison of the performance metrics between prior works
and the present work. Numbers with the ‘⇠’ symbol are inferred based on the
context of the references. The number of domains equals the total number of free
variables being optimized. The numbers in the parenthesis denote the final num-
bers of domains after combining domains with the same polarity after optimization.
The phase-matching bandwidth is determined by the crystal length. As such, the
comparison of the filter bandwidths should be made among crystals with similar
lengths.

7.2.8 Discussion

The machine-learning framework represents a general optimization strategy particu-

larly suitable for complex problems that have clear objectives but cannot be tackled
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by approximation methods due to the sensitivity to small variations in their solu-

tions. This kind of problem typically involves a large parameter space that is hard

to solve by conventional optimization methods. Intriguingly, the solutions sought by

the machine-learning framework may, in turn, o↵er new insights into the complex

problems at hand.

The machine-learning framework utilizes Adam as the learning process. Since

Adam converges at a zero-gradient minimum point, the poling profile is robust

against small fabrication errors. Adam has shown great performance in many non-

convex optimization problems. To fully unleash the potential of Adam, it sometimes

requires careful choice of the learning rate. Since one cannot ensure the convergence

of the machine-learning algorithm to the global optimum, it is recommended to set

initial parameters based on a good existing design and subsequently leverage ma-

chine learning to achieve substantial improvement. In this work, we set a known

Gaussian poling profile obtained at the GVM wavelength as the initial parameters

for the machine-learning framework. In the learning process, a finer sampling reso-

lution will slightly improve the performance at the cost of requiring more computa-

tional resources. Apart from the KTP, our machine-learning-based design recipe is

applicable to nonlinear crystals, as long as the first-order approximation dominates

higher-order terms in the phase-mismatch function at the working wavelength.

The machine-learning framework can also be used for seeking poling profiles for

other forms of bi-photon JSAs by simply modifying the target JSA in the cost func-

tion. For example, non-degenerate bi-photon states and non-Gaussian states can

be engineered by our approach, as a means for entangling solid-state qubits at a

distance [252, 253, 254]. To engineer an arbitrary bi-photon JSA, a learning pro-

cess solely based on sampling the signal frequencies becomes insu�cient. In such

a general situation, one should sample both the signal’s and the idler’s frequencies,

in !s and !i, and feed to the nonlinear function to obtain H(!s,!i|A) as the out-

put. The cost function should also be modified accordingly. There is, however, no

fundamental constraint that prevents the machine-learning framework from engi-

neering an arbitrary bi-photon JSA but given a finite number of poling periods, the
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machine-learning framework may only approach a target bi-photon JSA down to a

certain precision [255].

7.2.9 Conclusions

We have developed a machine-learning framework to solve the problem of the gener-

ation of indistinguishable bi-photons in the telecommunication band over 1300 nm to

1600 nm. Our approach leads to a spectral purity in excess of 99.99% for bi-photons

in the 1550-nm band after applying an 8-nm filter and in excess of 98% over the

entire telecommunication band while maintaining a high photon flux and heralding

e�ciency by using a wide 40-nm filter. This work demonstrates machine learning’s

potential to advance quantum information science. We hope that this work will spur

the pursuits of other machine-learning-enhanced quantum communication, sensing,

and information processing applications.

7.3 Supplementary Materials

7.3.1 Definition of the Purity of a Bi-Photon State

In general, a bi-photon state can be described by a density matrix ⇢12. A common

definition for the bi-photon spectral purity is the purity of one photon after tracing

out the other:

P ⌘ Tr
⇥
(Tr2(⇢12))

2
⇤

(7.16)

In our cases, a bi-photon pure state with a JSA f(!s,!i) is described as

| iSI ⌘
ZZ

d!sd!if(!s,!i)â
†

!s
b̂†!i

|0is|0ii. (7.17)

Since f(!s,!i) can be Schmidt decomposed to f(!s,!i) =
P

n ⇠n�s,n(!s)�i,n(!i),

where {�s,n} and {�i,n} are two sets of orthogonal functions:
Z

d!�⇤

j,n(!)�j,m(!) = �n,m, (7.18)

where j 2 {S, I}. We can then rewrite the bi-photon pure state as

| iSI =
P

n ⇠nâ
†

s,nb̂
†

i,n|0is|0iipP
n |⇠n|2

, (7.19)
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in which the operators obey

â†n =

Z
d!s�s,n(!s)â

†

!s
, [âm, â

†

n] = �m,n,

b̂†n =

Z
d!i�i,n(!i)b̂

†

!i
, [b̂m, b̂

†

n] = �m,n.
(7.20)

Finally, the purity of this bi-photon pure state turns out to be

P ⌘ Tr
⇥
(Tri(| ih |SI))2

⇤

= Tr

2

4
 P

n |⇠n|2â†s,n|0ih0|âs,nP
n |⇠n|2

!2
3

5 =
X

n

|⇠n|4/
 
X

n

|⇠n|2
!2

,
(7.21)

which agrees with the definition in Eq. (7.5).

7.3.2 Definition of the Indistinguishability of a Bi-Photon State

Indistinguishability, on the other hand, is usually defined as the visibility of Hong-

Ou-Mandel (HOM) interference: I ⌘ (Rmax � Rmin)/Rmax. Here, Rmax (Rmin)

is the maximum (minimum) coincidence rate at di↵erent time delays between the

signal and idler photons [237, 238, 239, 240, 241, 242, 220]. Rmax occurs when the

two photons arrive at the beamsplitter at completely di↵erent times while Rmin

arises when they arrive at the same time. Therefore, given photon-pair flux Rin,

Rmax = Rin/2 because no quantum interference takes place, and the two photons

randomly take the two output ports of the beamsplitter. Assuming ideal detectors

and constant bi-photon flux, the coincidence rate at zero time delay depends only on

the JSA of the bi-photon. The two detection events can be written as two projection

measurements:

hM1| = h0| 1p
2

Z
d! (a! + b!)

hM2| = h0| 1p
2

Z
d! (a! � b!) .

(7.22)

The minimal coincidence rate is then derived as

Rmin ⌘ RinTr(|M1ihM1|⌦ |M2ihM2| ⇢12). (7.23)
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We have estimated indistinguishability for the two states. The first one is the

post-selected bi-photon pure state, i.e., Eq. 7.19 from the SPDC process. The

indistinguishability, in this case, equals the visibility of HOM interference between

the signal and the idler photons from the same source. The minimum coincidence

rate is derived as

Rmin ⌘ RinTr(|M1ihM1|⌦ |M2ihM2| | ih |SI)

=
1

4
Rin

ZZ
d!d!0|f(!,!0)� f(!0,!)|2

=
1

2
Rin

⇢
1� Re

ZZ
d!d!0f ⇤(!,!0)f(!0,!)

��
.

(7.24)

The indistinguishability between such a pair of signal and idler photons is, in turn

I ⌘ (Rmax �Rmin)/Rmax = Re

ZZ
d!sd!if

⇤(!s,!i)f(!i,!s)

�
(7.25)

A more helpful scenario, e.g., in a quantum network, is the interference between

two photons from two independent sources, e.g., two heralded single-photon sources

or two quantum dots. In this case, the bi-photon state is in the form of a product

state, i.e., ⇢12 = ⇢1 ⌦ ⇢2 in which ⇢1 (⇢2) is the density matrix of the first (second)

photon. The minimum coincidence rate in the HOM interference is

Rmin ⌘ RinTr(|M1ihM1|⌦ |M2ihM2| ⇢1 ⌦ ⇢2)

=
1

2
Rin[1� Tr(⇢1⇢2)] =

1

4
Rin

⇥
2 + ||⇢1 � ⇢2||2 � Tr(⇢2

1
)� Tr(⇢2

2
)
⇤
,

(7.26)

where ||⇢||2 ⌘ Tr(⇢†⇢) [223, 241]. The indistinguishability turns out to be

I ⌘ (Rmax �Rmin)/Rmax =
1

2

⇥
Tr(⇢2

1
) + Tr(⇢2

2
)� ||⇢1 � ⇢2||2

⇤
. (7.27)

Because of the broad spectrum of single photons generated from heralded SPDC

sources, ||⇢1 � ⇢2||2 is much smaller than each photon’s purity Tr(⇢2
1
) and Tr(⇢2

2
).

So the HOM visibility of heralded single photons from SPDC sources is primarily

limited by the purity of each photon. As such, we take purity as the principal per-

formance metric to compare our customized poling source with others. In contrast,

the indistinguishability of single photons generated from quantum dots is primarily

constrained by ||⇢1 � ⇢2||2 due to spectral wandering and spectral di↵usion.
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J Bloch, and A Amo. Lasing in topological edge states of a one-dimensional
lattice. Nature Photonics, 11(10):651–656, 2017.

[38] Babak Bahari, Liyi Hsu, Si Hui Pan, Daryl Preece, Abdoulaye Ndao, Ab-
delkrim El Amili, Yeshaiahu Fainman, and Boubacar Kanté. Photonic quan-
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joint spectrum of down-converted photons through optimized custom poling.
Physical Review A, 93(1):013801, 2016.

[228] JL Tambasco, A Boes, LG Helt, MJ Steel, and A Mitchell. Domain engi-
neering algorithm for practical and e↵ective photon sources. Optics Express,
24(17):19616–19626, 2016.

[229] Francesco Gra�tti, Dmytro Kundys, Derryck T Reid, Agata M Brańczyk, and
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