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ABSTRACT

Scintillation based gamma-ray detectors are widely used in medical imaging, high-

energy physics, astronomy and national security. Scintillation gamma-ray detectors

are field-tested, relatively inexpensive, and have good detection efficiency. Semi-

conductor detectors are gaining popularity because of their superior capability to

resolve gamma-ray energies. However, they are relatively hard to manufacture and

therefore, at this time, not available in as large formats and much more expensive

than scintillation gamma-ray detectors.

Scintillation gamma-ray detectors consist of: a scintillator, a material that emits

optical (scintillation) photons when it interacts with ionization radiation, and an

optical detector that detects the emitted scintillation photons and converts them

into an electrical signal.

Compared to semiconductor gamma-ray detectors, scintillation gamma-ray de-

tectors have relatively poor capability to resolve gamma-ray energies. This is in

large part attributed to the “statistical limit” on the number of scintillation pho-

tons. The origin of this statistical limit is the assumption that scintillation photons

are either Poisson distributed or super-Poisson distributed. This statistical limit is

often defined by the Fano factor.

The Fano factor of an integer-valued random process is defined as the ratio of

its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The

classical theory of light limits the Fano factor of the number of photons to a value

greater than or equal to one (Poisson case). However, the quantum theory of light

allows for Fano factors to be less than one.

We used two methods to look at the correlations between two detectors looking

at same scintillation pulse to estimate the Fano factor of the scintillation photons.

The relationship between the Fano factor and the correlation between the integral of
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the two signals detected was analytically derived, and the Fano factor was estimated

using the measurements for SrI2:Eu, YAP:Ce and CsI:Na.

We also found an empirical relationship between the Fano factor and the covari-

ance as a function of time between two detectors looking at the same scintillation

pulse. This empirical model was used to estimate the Fano factor of LaBr3:Ce and

YAP:Ce using the experimentally measured timing-covariance. The estimates of the

Fano factor from the time-covariance results were consistent with the estimates of

the correlation between the integral signals.

We found scintillation light from some scintillators to be sub-Poisson. For the

same mean number of total scintillation photons, sub-Poisson light has lower noise.

We then conducted a simulation study to investigate whether this low-noise sub-

Poisson light can be used to improve spatial resolution. We calculated the Cramér-

Rao bound for different detector geometries, position of interactions and Fano fac-

tors. The Cramér-Rao calculations were verified by generating simulated data and

estimating the variance of the maximum likelihood estimator. We found that the

Fano factor has no impact on the spatial resolution in gamma-ray imaging systems.
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CHAPTER 1

Introduction

Gamma-ray detectors are used in a number of different applications such as astron-

omy, medical imaging, high-energy physics and national security. Unlike optical

imaging systems which detect the integral of signals from a large number of pho-

tons, gamma-ray imaging systems detect and count individual gamma-ray photons.

Counting individual gamma-ray photons is possible because most applications have

a small rate at which gamma-ray photons are incident on a gamma-ray detector

(less than 100,000 gamma-ray interactions per second), and the high energy of the

gamma-ray photons enables us to get a good signal-to-noise ratio.

In this chapter, we describe the various components of a Single Photon Emission

Computed Tomography (SPECT) gamma-ray imaging system. We then describe

one of components of the SPECT systems – the gamma-ray detector in more detail

in Sec. 1.2. In Sec. 1.3, we introduce and define the Fano factor, and in Sec. 1.4

we describe the motivation for our study. We then discuss the types of gamma-ray

interactions in matter and types of gamma-ray detectors. These topics provide us

the background to understand the next sections. We conclude the introduction by

showing a typical energy spectrum from a gamma-ray interaction, define energy

resolution and explain why energy resolution is important for an imaging detector.

1.1 Single Photon Emission Computed Tomography

A ligand is a small molecule that attaches itself with a biomolecule to serve a bio-

logical function. A radioactive isotope which emits gamma rays is added to a ligand

to make a radioligand. The SPECT technique involves injecting a radioligand into

a patient and imaging it to make a 3D map of the concentration of the radioligand.

A SPECT imaging system has three main components - an image forming element,
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an imaging detector and a reconstruction algorithm (Kupinski and Barrett, 2005).

At gamma-ray wavelengths, most materials have a refractive index close to one.

Therefore, gamma-ray imaging systems do not have lenses or mirrors as image form-

ing elements. The two most commonly used image forming elements are the parallel-

hole collimator and the pinhole collimator.

The parallel hole collimator (see in Fig. 1.1) allows only a small range of angles

of gamma-rays to interact with the gamma-ray imaging detector. The pinhole colli-

mator in Fig. 1.2 attenuates most gamma-rays, allowing only gamma-rays passing

through it to interact with the detector. More advanced image forming elements

like coded apertures, multi-pinhole apertures (Barrett and Myers, 2004) and syn-

thetic collimators (Clarkson et al., 1999) increase the sensitivity of the detector while

minimizing the impact on resolution.

Object 

Detector Parallel hole 
Collimator 

Gamma rays 

Figure 1.1: A parallel-hole collimator limits the angles of gamma-rays that interact
with the collimator.

The gamma-ray imaging detector estimates the position of interaction and the

energy deposited (x, y, z, E) in the gamma-ray interaction. The estimated position

of interaction and the position of the pinhole or the angle of the collimator give us

information about the line along which the gamma-ray was emitted. A reconstruc-

tion algorithm uses this information from multiple projections of the object (for

example, by moving the image forming element and detector around the object)

to make a 3D map of the gamma-ray emission from the object. The reason for
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estimating the energy will be explained in Sec. 1.7.1.

Object 

Pinhole  
Detector 

Figure 1.2: The object emits gamma-rays in all directions, but only a few gamma-
rays pass through the pinhole to be detected by the gamma-ray detector. The
detector estimates the position of interaction in x, y, z to enable us to draw a line
though the pinhole to the source.

The spatial resolution of the gamma-ray imaging detector is defined in terms of

the ability to resolve the position of interaction of the gamma-rays in the imaging

detector, while the spatial resolution of a SPECT imaging system is defined in

terms of the ability to resolve the position of the radioisotope in the object. In the

parallel-hole and the pinhole collimator, errors in the estimation of the position of

interaction of the gamma-ray in the gamma-ray imaging detector are propagated

through the reconstruction algorithm into an error in the reconstructed object. In

this dissertation, we use the term spatial resolution with respect to the imaging

detector.

1.2 Gamma-ray spectrometers and gamma-ray imaging detectors

Gamma-ray detectors can be broadly classified into gamma-ray spectrometers and

gamma-ray imaging detectors. A gamma-ray spectrometer is an instrument that is

used to measure the distribution of the intensity of gamma-ray energies. It is widely

used to detect and identify radiation sources. A gamma-ray imaging detector is a

device that is used to image gamma-ray emitting isotopes. It measures the position
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of interaction and the energy of incident gamma-rays. To estimate the position of

interaction, the gamma-ray imaging detector usually has multiple detector elements,

or some other mechanism for creating position sensitive detector outputs.

Scintillation refers to emission of light in a material when it interacts with ion-

izing radiation. A scintillator is a material that exhibits scintillation. A gamma-ray

scintillation detector consists of two main parts – a scintillator and an optical detec-

tor. The scintillator interacts with a gamma-ray photon and emits multiple optical

photons. The optical photons emitted by the scintillator are detected by the optical

detector, which generates an electrical signal.

A gamma-ray spectrometer is used to detect and identify radiation sources (see

Fig. 1.3 for a scintillation gamma-ray spectrometer). The gamma-ray spectrometer

estimates the energy deposited by every gamma-ray interaction, but has very little

information on the position of interaction - limited to the fact that a gamma-ray

interaction took place in its sensitive volume.

 Photomultiplier 
tube 

Scintillator 
crystal High voltage 

Gamma-ray 
photon 

Optical Photons Signal 

Figure 1.3: Schematic diagram of a gamma-ray spectrometer scintillation detector.
Some photons emitted by the scintillator are detected by an optical detector and
amplified to generate a signal.

A gamma-ray imaging detector is a device that is used to image gamma-ray

emitting isotopes. It measures the position of interaction and energy of the incident

gamma-rays. To estimate the position of interaction, a gamma-ray scintillation

imaging detector usually has multiple optical detectors. If the scintillation light
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only produced a signal in the optical detector directly underneath it, we can only

estimate that the gamma-ray interaction took place near that detector. However,

if we spread the light to multiple optical detectors, we can compare the outputs

from multiple detectors to improve the estimates of the position of interaction. This

spreading of light to multiple detectors is achieved by using a light guide between

the scintillator and the optical detectors. The Fig. 1.4 shows the schematic diagram

of a gamma-ray imaging scintillation detector.

(a)   (b)   

Electronics 

Light  
guide    

Array of 
photon 
detectors 

Scintillator  
crystal 

Front view Side view 

Gamma-ray 
photon 

Optical photon 

Optical photons 

Point of 
Gamma-ray
interaction 

Figure 1.4: The gamma-ray scintillation detector consists of a scintillator crystal, a
light guide and an array of optical detectors. When a gamma-ray photon interacts
in the scintillator crystal, the scintillator crystal emits optical photons. The light
guide ensures that the scintillation light is spread to multiple detectors. The optical
detectors detect the scintillation photons and generate an electrical signal. This
signal is used to estimate the position of interaction and energy of the gamma-ray.
The sub-figure (b) shows the side view of the gamma-ray imaging detector. The
array of optical detectors are more clearly visible in this view.

1.3 Statistics in gamma-ray imaging

The emission and detection of gamma-rays are probabilistic. There is randomness

in the position of interaction in the detector, randomness in the type of interaction

(Compton or photoelectric), randomness in the processes associated with generation

of signals in the detector, including randomness from K x-ray or Auger electron and

randomness in the de-excitation of the high energy electron.
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Therefore, when a gamma-ray is detected, the signals generated by the detectors

are also not deterministic, but have some associated variance. The variance in

the number of information carriers (scintillation photons in scintillators, or charge

carriers in semiconductor and gas detectors) is characterized by a factor known as

the Fano factor.

1.3.1 Fano factor

The Fano factor (FN) has been defined to quantify the departure of the observed

fluctuations in an integer-valued random variable N from Poisson statistics (Fano,

1947):

FN =
σ2
N

σ2
Poisson

. (1.1)

Here, σ2
N is the variance of N , and σ2

Poisson is the variance of the Poisson-distributed

random variable with mean N . For a Poisson random variable, as σ2
Poisson = N , we

rewrite Eq. 1.1 as

FN =
σ2
N

N
. (1.2)

For a semiconductor or gaseous radiation detector, the Fano factor is defined

using the number of charge carriers produced, while for a scintillation detector, the

Fano factor is defined using the number of scintillation photons emitted.

Based on its Fano factor, the random variable N can be divided into three

categories: sub-Poisson (FN < 1), Poisson (FN = 1) and super-Poisson (FN > 1).

1.4 Motivation for measuring Fano factor

1.4.0.1 Improving the spatial resolution of gamma-ray imaging detectors

In a gamma-ray imaging detector, the various parameters that describe the interac-

tion of the gamma-ray photon with the detector, such as the position of interaction

and energy deposited by a detected gamma-ray photon, are estimated using the
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detector outputs. Since a reduction in the Fano factor results in a smaller variance

in the number of emitted optical photons and consequently a smaller variance in

the detector outputs, we would expect that this should also lead to reduction in

variance of the parameters estimated from the low-variance detector outputs. Thus,

a variation in Fano factor could potentially affect the energy and spatial resolution

of a gamma-ray imaging system.

Reconstruction techniques like maximum likelihood estimation use a statistical

model for estimating the position of interaction and energy deposited in a detector.

An accurate estimate of the Fano factor will help us build a better statistical model

and could improve the spatial resolution.

1.4.0.2 Challenging widely accepted assumptions

It was widely accepted that the Fano factors of all scintillators have values equal to or

greater than one. The plot in Fig. 1.5, a compilation of data from many publications

illustrates this belief (Moses, 2002). The energy resolution measurements shown in

the plot are affected by a number of factors such as randomness in the position of

interaction, gain variance of detectors, K escape and other loss mechanisms which

increase the variance of the signals.

Efforts to quantify the factors contributing to the energy resolutions in scintillators

have often assumed the Fano factor of scintillators to be one (Payne et al., 2011;

Fiorini et al., 2005; Alekhin et al., 2013; Seifert et al., 2012).

1.4.0.3 Non-classical light

Classical wave theory restricts the Fano factor of light to values greater than one

(Saleh, 1977). Quantum theory of light does not preclude values of Fano factor less

than one. Therefore light with Fano factors less than one is also referred to as non-

classical light. Generation and measurement of non-classical light is an active area

of research and measurement of Fano factors less than one in scintillation crystals

is of significant interest to the quantum optics community.
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Figure 1.5: The plot shows the published energy resolutions as a function of the total
number of photoelectrons detected for a number of scintillators. The solid line is the
energy resolution of a Poisson process for a given number of photoelectrons. The
energy resolution of all the scintillators shown in the figure are larger than the Poison
limit. Reprinted from Nuclear Instruments and Methods in Physics Research A ,
Vol 487, W. Moses, Current trends in scintillator detectors and materials, 123-128,
Copyright (2002), with permission from Elsevier.

1.5 Gamma-ray interactions in matter

The attenuation of a pencil beam of monochromatic gamma rays along its path is

given by Beer’s law

I(x) = Ioe
−μx. (1.3)

Here, x is the depth inside the material with units of meters, μ is the linear coefficient

of absorption with units of inverse meters, Io is the average number of gamma rays

per unit area at x = 0, I(x) is the average number of gamma rays traveling along

the incident beam x meters inside the material. We can calculate μ as
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μ = neσe. (1.4)

Here, ne is the electron density in m−3, and σe is the collision cross-section in m2.

The three types of interactions of gamma-rays in matter that are important for

radiation measurements are photoelectric absorption, Compton scattering and pair

production. Rayleigh scattering is the dominant elastic scattering of electromagnetic

waves when the wavelength is much bigger than the particle sizes. It is not significant

at gamma-ray wavelengths, hence, we neglect the Rayleigh scattering cross section

in this discussion. The total cross-section σe can be divided into the photoelectric

cross-section (σpe), the Compton cross-section (σC) and the pair-production cross-

section (σpp).

σe = σpe + σC + σpp. (1.5)

1.5.1 Photoelectric interaction

A photoelectric interaction is an interaction between a photon and an electron in

which all the energy of the photon is transferred to the electron (see Fig. 1.6).

Each atom has a number of energy shells which may be occupied by electrons. The

electrons occupying the different shells are bound to the nucleus by different amounts

of binding energies. Therefore, in a photoelectric interaction between a gamma-ray

photon of energy Eγ and an electron bound by a binding energy EB, the kinetic

energy Ee of the electron after the interaction is equal to the difference between the

gamma-ray photon energy and the binding energy of the electron.

Ee = Eγ − EB. (1.6)

The momentum of the photoelectric interaction is conserved by transferring the

gamma-ray photon momentum to the ejected electron and the nucleus of the atom.

When the electron is ejected from an atom, it leaves behind a vacancy in its

shell. This vacancy in the shell has the binding energy (Eb), which is either lost to
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Figure 1.6: In a photoelectric interaction, all of the gamma-ray energy is trans-
ferred to an electron, creating a free electron with energy Ee and a vacancy in the
corresponding shell with energy equal to the binding energy of the electron. The mo-
mentum of the gamma-ray is transferred to the interaction electron and the nucleus
of the atom.

an X-ray photon or to an Auger electron (see Fig. 1.7). This X-ray photon can be

absorbed in the material or escape, while the energy of the Auger electron is usually

dissipated in the material.

If the gamma-ray energy of the photon is greater than the binding energy of the

electron, the empirically estimated photoelectric cross-section is given by

σpe ≈ k
Zm

(Eγ)n
ρ

A
. (1.7)

Here, k is a constant that depends on the shell involved, Z is the atomic number,

A is the atomic mass, and ρ is the density of the material. The constants m varies

between 4 and 5, while n varies between 3.5 to 1, for different values of Z and Eγ.

The discontinuities in the photoelectric cross-section correspond to the shell energies.

As Eγ increases beyond a shell energy gap, an additional transition contributes to

the photoelectric cross-section resulting in a sharp jump in σpe.
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Figure 1.7: The photoelectric effect creates a vacancy in an electron shell. This
vacancy in an inner shell is filled by an electron from an outer shell and energy
differnt between the two shells is released either (a) through an x-ray photon emission
or (b) through an Auger electron.

1.5.2 Compton interaction

In a Compton interaction, the gamma-ray photon interacts with an electron and

transfers a part of its energy to the electron. The scattered gamma-ray photon has

energy E ′
γ, while the electron has energy Eγ − E ′

γ (see Fig. 1.8). If θ is the angle

between the original gamma-ray photon and the scattered gamma-ray photon, the

following equation can be derived from the laws of conservation of momentum and

conservation of energy

E ′
γ =

Eγ

1 + Eγ

mec2
(1− cos θC)

. (1.8)

Here, me is the mass of an electron, and c is the speed of light.

The angular distribution of the scattered gamma rays is predicted by the Klein-

Nishina formula (Barrett and Swindell, 1981),

dσc

dΩ
= Zr20

(
1

1 + κ(1− cos θ)

)2(
1 + cos2 θ

2

)(
1 +

κ2(1− cos θ)2

(1 + cos2 θ)(1 + κ(1− cos θ))

)
.

(1.9)
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Figure 1.8: In a Compton scattering event, the gamma-ray scatters and loses some
of its energy to an electron.

Here, Ω is the solid angle, dσ
dΩ

is the differential scattering cross section, κ =
E′

γ

meC2 ,

and r0 is the classical electron radius.

1.5.3 Pair production

Pair production is the creation of an elementary particle and its antiparticle, usually

from the interaction of a photon with the nucleus. In the electric field of a nucleus or

an electron, the high-energy gamma ray can produce an electron and a positron. Pair

production is The energy required to produce an electron and positron is given by

2×Ee = 2×mec
2 = 1022 keV. The excess gamma-ray photon energy is converted into

kinetic energy shared by the electron and the positron produced in the interaction.

The pair production cross section increases with the incident gamma-ray energy;

thus, it is the predominant interaction mechanism at high energies.

σpp ∝ Z2ln(2Eγ), ∀Eγ > 1.02MeV. (1.10)

The photoelectric, Compton, pair production and total cross-sections of tungsten

as a function of energy were generated from the NIST website and plotted in Fig.
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Figure 1.9: Pair production occurs in the electric field of the nucleus or an electron.
The gamma-ray interaction produces an electron and a positron. The gamma-ray
energy left after producing the electron and positron (Eγ − 1022 KeV), is imparted
as kinetic energy to the electron and the position.

1.10 (Berger et al., 2014).

Figure 1.10: Photoelectric, Compton and Pair production cross sections in tungsten
as a function of incident gamma-ray energy. As the gamma-ray energy increases,
the photoelectric and Compton cross-sections decrease. Pair production is dominant
in the higher gamma-ray energies for Eγ > 1.022 MeV. The data in this graph is
reproduced from (Berger et al., 2014).
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1.6 Types of gamma-ray detectors

Gamma rays interact strongly with matter to produce ionization. As shown above,

the interaction usually produces a high-energy electron which interacts with other

electrons to free them. This charge is either directly collected (in semiconductor

detectors or gas detectors), or converted to light (in scintillation detectors) to detect

the presence of gamma-rays or estimate the energy of the gamma-ray. Here we briefly

discuss the different types of gamma-ray detectors.

1.6.1 Gas detectors

Gas detectors consist of a gas between two electrodes. A gamma-ray interaction

ionizes the gas and produces free electrons and ions. As shown in Fig. 1.11, a high

voltage is applied between the two electrodes to separate the electrons and ions,

resulting in a current signal. There are three main types of gas detectors – the

ionization chamber, the proportional counter, and the Gieger-Mueller counter.

An ionization chamber has a relatively low voltage between its two electrodes.

Therefore, the electric field separates, and collects the charge produced by the direct

ionization, but does not amplify it.

Proportional counters operate at a higher voltage than an ionization chamber.

Like an ionization chamber, the proportional counter uses its electric field to separate

the charge produced by the gamma-ray interaction. The most common proportional

counter uses a thin wire (∼ 50 micron diameter) as the anode to collect the electrons.

Due to the geometry the electric field varies inversely with the distance from the

anode. Thus, when an electron is within a fraction of a cm of the anode, it can

be sufficiently accelerated to ionize another atom and liberate an electron. The

liberated electron is also accelerated, and the ensuing cascade typically yields a gain

of 104 to 105. The output current of a proportional counter has a linear relationship

with the energy deposited in a gamma-ray interaction.

A Geiger-Mueller (GM) counter is a gas detector which has an even higher voltage

between the electrodes than the proportional counter. Just as in the proportional
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counter, the electrons near the anode are sufficiently accelerated to produce an

avalanche. Because of the higher accelerations, the avalanche of electrons also emit

ultraviolet (UV) photons. These UV photons can ionize other gas atoms, create

multiple avalanches spread along the anode wire and ionize the adjacent volume.

The avalanche is stopped by an external quenching circuit which detects the output

signal and then reduces the voltage across the electrodes. Thus a single ion pair

will result in the same output as a larger number of ion pairs. Therefore, the GM

counter is very sensitive to the presence of gamma rays, but has no information

about the energy of the gamma rays.

Figure 1.11: A gas detector consists of sensitive volume (gas) between two electrodes.
In this figure, the metal container serves as one of electrodes, and a thin wire in the
center of the tube is the other electrode.

1.6.2 Semiconductor detectors

Most semiconductor detectors are PN, PIN or Schottky junctions operated in reverse

bias. A gamma-ray interaction in the depletion region creates electrons and holes

which are then separated by the electric field in the depletion region. This movement

of free charges results in a current flow in the material which is then detected at

the electrodes. There are also photo-conductive semiconductor detectors as shown
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in Fig. 1.12.

Silicon, high-purity germanium, cadmium telluride and cadmium zinc telluride

are examples of materials used to make semiconductor gamma-ray detectors.

Figure 1.12: Schematic diagram of a photo-conductive semiconductor detector. The
electric field applied across the detector separates the electrons and hole generated
by the ionizing radiation and generates a current.

1.6.3 Scintillation detectors

Scintillation detectors emit optical photons when excited by ionizing radiation (see

Fig. 1.3). When a gamma-ray photon interacts in a scintillation material, it pro-

duces a high-energy electron and a vacancy in an inner shell. The high-energy

electron undergoes a complicated cascade process and loses its energy by ionizing

the surrounding region to produce many free electrons and holes. Unlike a semicon-

ductor or a gas detector where an electric field is used to separated and collect the

electrons and holes, in a scintillation detector, a fraction of the electrons and holes

form excitons. A fraction of these excitons decay radiatively.

The optical photons generated by the gamma-ray interaction are then detected
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by an optical detector with a large gain to generate an electrical signal. The physical

processes in scintillation crystals will be discusses in more detail in the next chapter.

1.7 Energy resolution

The energy spectrum produced by 662 KeV gamma ray interactions in a LaBr3:Ce

scintillation gamma-ray detector is shown in Fig. 1.13. As the energy of the gamma-

ray was below the energy to create an electron-hole pair, only photoelectric and

Compton interactions take place in the crystal. The gamma-ray events which result

in the deposition of all the energy into the detector are labeled as photopeak events.

After a photoelectric interaction, energy in the form of x-rays can leave the detector.

The most prominent of these x-ray losses are due to the K x-rays. The gamma-ray

events corresponding to a photoelectric interaction followed by an escape of a K x-ray

from the crystal are labeled as “K-escape” in Fig. 1.13. The Compton interaction

deposits a fraction of the initial gamma-ray energy in the detector, losing the rest

of the energy to a secondary gamma-ray. This results in the continuous Compton

region in the energy spectrum. The amount of energy deposited in the detector is a

function of the angle between the incident gamma ray and the scattered gamma ray.

The maximum gamma-ray energy is deposited in the detector when the scattered

gamma-ray, scatters at an angle of 180◦ from the incident gamma-ray. This energy,

known as the Compton edge, marks the high energy bound of the Compton region in

the energy spectrum, separating it from the photopeak region. A secondary gamma-

ray from a Compton interaction can undergo a photoelectric interaction and deposit

its energy into the scintillation crystal. This interaction will also have energy in the

photopeak region of the energy spectrum.

The energy resolution of a detector is defined as the ratio of the Full Width at

Half Maximum (FWHM) of the photopeak and the mean value of the photopeak.

ER =
FWHM

mean photopeak
. (1.11)

The energy resolution is an important property of a gamma-ray detector. A smaller
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Figure 1.13: The energy spectrum of a gamma-ray detector is shown above. The
scintillation crystal used in this measurement was LaBr3:Ce. The photopeak, K-
escape and the Compton region are labeled in the graph.

energy resolution would imply a narrower photopeak which will enable a gamma-ray

detector to distinguish between closer gamma-ray energies (Knoll, 2010).

1.7.1 Why we need to estimate energy in a gamma-ray imaging detector

In the preceding sections, we have discussed Compton interaction and how a scat-

tered gamma-ray photon travels in a direction that is different from the original

gamma-ray photon. A gamma-ray photon can undergo Compton scattering in the

detector, or in the object. The scattered gamma-ray has lost most of the informa-

tion about the position where it was emitted. Tracing the line from the position

of interaction of a Compton scattered gamma-ray photon in the detector through

the pinhole does not lead to the position at which the gamma-ray was emitted (see

Fig. 1.14). As most gamma-ray imaging detectors cannot distinguish between a

Compton-scattering event in the object followed by a photoelectric event in the de-

tector, and a Compton-scattering event in the detector, to preserve the quality of

the measurement, all Compton scattered events are usually discarded. We use the

fact that the Compton scattered photons have an energy lower than the unscattered

photons to threshold the gamma-ray interactions above the Compton edge. This
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Figure 1.14: Gamma-rays that have undergone Compton interactions in the object
lose most of the information about the object.

energy thresholding also results in discarding good data from gamma-ray photons

which had a Compton interaction in the gamma-ray detector followed by the escape

of the scattered gamma-ray photon.

Windowing the energy spectrum does not eliminate all the Compton-scattered

gamma-ray photons in the object. A low-angle Compton scattered gamma-ray pho-

ton which undergoes photoelectric interaction in the detector will appear to be in

the photopeak region, and will reduce our system’s spatial resolution. Therefore, a

good energy resolution is important for an imaging detector. The low-angle Comp-

ton interaction along with loss mechanisms in the scintillator crystal results in the

non-zero heights in Fig. 1.13 between the Compton edge and the photopeak.
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CHAPTER 2

Inorganic Scintillation Detectors

Inorganic scintillation detectors are widely used for gamma-ray imaging as well as

gamma-ray spectroscopy because they are relatively inexpensive, have high density

and are a mature technology.

Based on the physical processes that result in luminescence, scintillation de-

tectors can be classified as either activated scintillators (NaI:Tl, CsI:Na, SrI2:Eu,

etc.) self-activated scintillators (CsI, NaI, CdWO4, etc.), or core-valence scintillators

(BaF2, CsF, RdCaF3, etc.) (Derenzo and Weber, 1999). The activated scintillators

have high light output and, therefore, are the most widely used. Hence, in this

chapter, we focus on activated scintillators.

2.1 Physics of scintillation crystals

When a gamma ray interacts with a scintillator crystal, it undergoes a complicated

cascade process to produce a scintillation photons (Rodnyi, 1997; Payne et al., 2009;

Williams et al., 2011; Moses et al., 2012). The scintillation process can be divided

into a general sequence of five stages (Rodnyi, 1997)

1. Gamma-ray interaction in matter: The gamma-ray interaction in the scintil-

lator produces the primary high-energy electron and an inner shell vacancy.

2. Ionization: The high-energy electrons lose their energy by creating a number

of secondary electrons, holes, phonons and photons.

3. Carrier thermalisation: The electrons and holes lose their energy primarily to

phonons to form excitons.

4. Capture at dopant site: Energy transfer from the electron-hole pairs to the

dopant sites.
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5. Radiative emission: Emission of optical photons at the dopant sites.

Scintillation emissions do not necessarily follow all of the above steps. For exam-

ple, the electrons and the holes can travel independently to the dopant site and form

an exciton at the dopant site. Another possibility is the production of a geminate

exciton – instead of producing free electrons and holes during the ionization process,

an electron-hole pair is directly produced. Each step will now be discussed in more

detail.

2.1.1 Gamma-ray interaction in matter

A gamma ray undergoing a photoelectric or Compton interaction in a scintillator

produces a vacancy and a free electron. In a photoelectric interaction, the momen-

tum from the gamma ray is transferred to the electron and the nucleus. Therefore,

an inner-shell electron, which is more tightly coupled with the nucleus has a higher

probability of a photoelectric interaction than an electron in the outer shell. The

Compton interaction is more likely to occur with the outer-shell electrons than with

the inner-shell electrons,.

The vacancy in the electron shell created in the interaction either relaxes non-

radiatively by transferring energy to an Auger electron or radiatively by emitting

an x-ray photon. The production of an x-ray photon or the Auger relaxation, can

be a single transition from the inner shell to the outermost shell or a series of

transitions involving intermediate shells, producing more x-rays or Auger electrons

before finally reaching the ground state. The x-ray photon can be reabsorbed in

the scintillator, resulting in another photoelectric or Compton interaction, or it can

escape the scintillator.

2.1.2 Ionization

The free electron created from the primary gamma-ray interaction loses its energy

to other electrons to create secondary free electrons. These secondary free electrons

relax by ionizing the material and creating more secondary free electrons. The
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cascade process continues until all the electrons involved are unable to create more

ionization. During the ionization process, significant energy is also lost to phonons.

The ionization step is fast and is usually completed in 1-100 femtoseconds (Rodnyi,

1997).

2.1.3 Carrier thermalisation

When the electrons cannot lose any more energy to other bound electrons, they can

only lose their excess energy to phonons. This electron-phonon interaction results

in the electrons and the holes assuming a Fermi-Dirac distribution. The resulting

electron-hole pairs have energy close to the band gap. The carrier thermalisation

time is much longer than the ionization time and is of the order of 1-10 picoseconds

(Rodnyi, 1997).

2.1.4 Capture at dopant site

A dopant introduced in a scintillation crystal has energy levels within the band gap

of the crystal. Therefore, the free electrons in the conduction band, or the holes

in the valence band, or excitons can lose energy and get trapped in a dopant site.

The electrons and the holes can come to the dopant sites independently to make an

exciton there, or they may come together as an exciton. The dopant concentration

in the scintillator is an important parameter. A small dopant concentration might

result in the charge carriers de-exciting before finding a dopant site. While a large

dopant concentration will increase the probability that the electrons and holes are

trapped in different dopant sites and de-excite non-radiatively (Derenzo and Weber,

1999).

2.1.5 Radiative emission

When an exciton is trapped in a dopant site, it has a high probability of recombining

with the emission of a scintillation photon. Because the scintillation photon has

energy less than the band gap (see Fig. 2.1), it has a low probability of absorption
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Figure 2.1: Band structure of an activated scintillator.

in the scintillator.

2.2 Properties of scintillation gamma-ray detectors

In this section, we discuss the different properties of scintillator crystals and how

they affect measurement of gamma rays. Because no scintillator has all of the desir-

able properties, a scintillator is usually chosen based on trade-offs and constraints.

2.2.1 Light yield

The light yield (LR) is defined as the number of optical photons emitted by unit

gamma-ray energy.

LR =
Nph

Eγ

. (2.1)

Here, Nph is the average number of optical photons emitted when Eγ energy is

deposited in the crystal by a gamma-ray interaction. Let us use the knowledge of

the different stages of the scintillation process discussed in the previous section to

relate the light yield to the scintillator material.

Consider a scintillator material with a band gap Eg and average energy required

to create an electron-hole pair Eeh. We can relate the Eeh and Eg by a material-

dependent constant B.

Eeh = B · Eg. (2.2)
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The value of B typically ranges from 1.5-2.0 for ionic crystals. Assuming that every

electron-hole pair produces on average A optical photons
(
A =

Nph

Neh
≤ 1

)
, we can

rewrite Eq. 2.1 as

LR =
A ·N eh

Eγ

=
A

Eeh

=
A

B · Eg

. (2.3)

If all the electron-hole pairs were converted to scintillation photons, then we

would have A = 1. The value of B = Eeh

Eg
has to be greater than or equal to one.

LMax ≈ 1

B · Eg

× 106photons/MeV (2.4)

For example, the band gap of SrI2 is 5.5 eV (Li et al., 2013), if we assume

B = 1.5, then LMax ≈ 120, 000photons/MeV. The experimentally measured value

of light yield of SrI2:Eu is 100,000 photons /MeV.

2.2.2 Duration of scintillation pulse

A short scintillation pulse reduces the probability of overlap of two gamma-ray

pulses and, therefore, increases the maximum number of individual gamma rays a

scintillation detector can detect in unit time. A scintillation pulse can be modeled

as a pulse with a rise time (τr), a fast decay time (τ1), and a slow decay time (τ2).

J(t) = J1
(− e−t/τr + e−t/τ1

)
+ J2

(− e−t/τr + e−t/τ2
)
, t > 0. (2.5)

Here, J1 and J2 are the contributions to the final light output from the fast and slow

decay, respectively and have units of photons per second. Most scintillators have a

fast rise time, which is much smaller than the decay time (τr � τ1), and therefore,

studies often assume the rise time to be zero.

2.2.3 Density

A good scintillator has high density. High density materials usually have atoms

with higher atomic number (Z). A larger atomic number significantly increases the

probability of photoelectric interactions. A higher density could also be a result of
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packing atoms closer together. This would mean that, for a given volume, a gamma-

ray has to pass through more atoms in a material with higher density as compared

to a material with which has the same type of atoms at a lower density. Therefore,

a high density material has a greater probability of interacting and detecting an

incident gamma-ray.

2.2.4 Optical properties

The two important optical properties for a scintillation crystal are the refractive

index and absorption at the scintillation wavelengths. It is desirable for the scintil-

lation crystal to transmit 100% of the scintillation light. The scintillation photons

can be absorbed either by the dopant or by the crystal itself (self-absorption). To

maximize transmission of scintillation light, it is also desirable to match the refrac-

tive indexes of the scintillator and the detector. Index-matching fluids or optical

gels minimize light loss due to reflections.

2.2.5 Emission spectra

The scintillation light from different materials have different wavelength spectrum’s

(see Figs.2.2-2.4). Optical detectors usually are most sensitive to a certain band of

wavelengths. To maximize the signal, it is desirable to maximize the overlap of the

emission spectrum of the scintillator and the detector’s optical sensitivity.

2.2.6 Other important properties

There are numerous other important properties such as the cost of the scintillator,

the mechanical properties, radiation hardness and chemical properties like hygro-

scopicity.

2.3 Non-proportionality and the Fano factor

For gamma-ray interactions involving different gamma-ray energies, a proportional

(or linear) scintillator emits the same mean number of photons per unit gamma-
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Figure 2.2: Scintillation light from CdWO4. The scintillator was excited by a Co-57
source. This image was captured using a DSLR camera with a two-minute exposure.
Photo courtesy of Joseph Ortiz.

Figure 2.3: Scintillation light from CsI:Na. The scintillator was excited by a Co-57
source. This image was captured using a DSLR camera with a two-minute exposure.
Photo courtesy of Joseph Ortiz.
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Figure 2.4: Scintillation light from CsI:Tl. The scintillator was excited by a Co-57
source. This image was captured using a DSLR camera with a two-minute exposure.
Photo courtesy of Joseph Ortiz.

ray energy deposited. Therefore, in a proportional scintillator, the mean number

of photons per unit gamma-ray energy varies linearly with deposited gamma-ray

energy. The non-proportionality curves are a graph of the number of scintillation

photons emitted per unit gamma-ray energy deposited vs the gamma-ray energy

deposited in the crystal.

As the high-energy electron produced from the gamma-ray interaction loses its

energy, it moves along the non-proportionality curve of the scintillator from right

to left towards lower energies. Hence, the complete non-proportionality curve below

the gamma-ray energy plays a significant role in the light output.

As the electron loses its energy in discrete steps, it effectively samples the non-

proportionality curve. The process of de-excitation of the high-energy electron is

a complicated cascade process. A delta ray is a high-energy electron created by

secondary ionization. The high-energy electron can lose its energy to relatively low-

energy electrons, to a high-energy delta ray, or a combination of both. Depending

on the manner of the de-excitation of the high-energy electron, some regions of the
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Figure 2.5: A proportional scintillator will have a value of 1 for all energies. The
non-proportionality curves are normalized at 500 keV. The graph is reproduced from
(Payne et al., 2011) c©2011, IEEE

non-proportionality curves are skipped while other regions of the non-proportionality

curves are sampled multiple times.

If the non-proportionality curve is flat, then for a given gamma-ray energy de-

posited, the number of scintillation photons will be independent of the cascade path

taken by the high-energy electron to lose energy. Thus, there would be no cascade-

path dependent variance in the number of scintillation photons emitted, resulting

in a lower scintillator Fano factor as compared to a scintillator with a non-flat non-

proportionality curve.

The process of scintillation light production is a complicated cascade process.

The gamma-ray interaction in a material ionizes the material and creates thousands

of electron-hole pairs. In a semiconductor detector, these electron-hole pairs are

directly detected and measured. Because the ionization mechanisms in the scintil-

lation and semiconductor detectors are similar, it is a reasonable conclusion that

the Fano factor of the electron-hole pairs produced in both these types of detectors
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should be in a similar range of 0.1-0.2. Therefore, the origin of the relatively higher

Fano factor of the scintillation detectors is a result of processes after ionization.

After ionization, the scintillation process involves a few more steps, including

carrier thermalisation, sequential capture by dopant sites and radiative relaxation.

These steps depend on other factors, such as carrier diffusion length, the ratio of

electron and hole diffusion lengths, carrier concentration and lifetimes (Williams

et al., 2011). If the electrons have a much higher diffusion length than the holes, then

the electrons are more likely to travel further from their ionization site and de-excite

without coming in contact with the less mobile holes. Thus, similar electron and

hole diffusion lengths result in better proportionality (Li et al., 2011). If the charge

carrier density is very high, then the carriers have more competition for the same

dopant sites. The probability of interactions such as exciton-exciton annihilation

also increases.
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CHAPTER 3

Estimation of Fano Factor in Inorganic Scintillators

This chapter is adapted from (Bora et al., 2011) and it extends the work of (Bous-

selham et al., 2010).

3.1 Introduction

The Fano factor of an integer-valued random variable is defined as the ratio of its

variance to its mean (Fano, 1947). A Poisson random variable has a Fano factor of

one, a sub-Poisson random variable has a Fano factor less than one and a super-

Poisson random variable has a Fano factor greater than one. For a given energy

deposited in a scintillator crystal by a gamma-ray photon, the Fano factor (FN) for

the number of scintillation photons is defined as

FN =
σ2
N

N
. (3.1)

When a gamma-ray photon of energy E undergoes photoelectric interaction with

an electron having binding energy B in a semiconductor or a scintillation detector,

it produces a high-energy photoelectron with energy equal to the difference between

the energy of the gamma-ray photon and the binding energy (E −B). The binding

energy of the electron is released either as an x-ray photon (which can escape or be

reabsorbed in the scintillator) or as an Auger electron. The high-energy photoelec-

tron loses its energy in a complicated random cascade process, producing thousands

of secondary electrons and holes (Knoll, 2010; Kupinski and Barrett, 2005).

In semiconductor detectors like Si and Ge, the free electrons and holes produced

by the gamma-ray interactions are separated using an applied electric field. Elec-

tron Fano factors in the range of 0.05-0.10 have been reported for semiconductors

(Devanathan et al., 2006).
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In a scintillator, the process of producing optical photons is more complicated; a

free electron or a free hole can be captured at a dopant site followed by its oppositely

charged particle to form an exciton at the dopant site. Another way to create

an exciton at a dopant site is for an electron and a hole to form an exciton and

then travel together to the dopant site. An exciton at the dopant site has a high

probability of de-exciting radiatively. There are also many competing non-radiative

decay modes.

Consider a photopeak event in which a gamma-ray photon of energy E under-

goes a photoelectric interaction in the scintillation crystal and there is no escape

of fluorescent x-rays or other excitations from the crystal. Then the gamma-ray

photon deposits its entire energy E in the crystal and produces a random number

N of optical photons.

Most scintillators have a nonlinear relationship between the deposited energy

and the mean number optical photons emitted (Moses et al., 2012) given by the

non-proportionality curves which are graphs of average light yield per unit energy

vs. deposited energy. As the initial high-energy electron created from the gamma-

ray interaction loses energy, it cascades down this non-proportionality curve. Thus

the complete non-proportionality curve below the deposited energy affects the total

number of emitted scintillation photons.

The Fano factor of scintillation photons is strongly affected by three competing

effects – the statistics of the free electrons and holes created by the cascade of the

high-energy electron, the efficiency of converting these free electrons and holes into

optical photons, and scintillator non-proportionality.

The cascade of the high-energy electron which yields many free electrons and

holes is essentially the same in semiconductors and scintillators. Therefore, as with

a semiconductor, the Fano factor of the total number of secondary electrons and

holes produced by the high-energy electron cascade in a scintillator should also be

sub-Poisson (Moses et al., 2012).

If the efficiency of converting these free electrons and holes into optical pho-

tons is very low, then by the law of rare events, the optical photons are emitted
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independently of each other yielding a Poisson distribution (Falk et al., 2010).

If the non-proportionality curve is flat, then the different cascade paths the high-

energy electron takes along the non-proportionality curve will yield the same mean

number of scintillation photons. However if the non-proportionality curve varies as

a function of electron energy, different cascade paths along the non-proportionality

curve yield different mean numbers of scintillation photons. This increases the

variance in the number of scintillation photons, increasing the Fano factor.

If the statistics of the electrons and holes produced from the gamma-ray interac-

tion dominate the scintillation photon statistics, the Fano factor of the scintillation

photons will be less than one (sub-Poisson).

If the efficiency of conversion from electron and holes to scintillation photons is

very low, it will dominate the statistics of the scintillation photons and the Fano

factor of the scintillation photons will approach one (Poisson).

If non-proportionality of the scintillator dominates the statistics of the scin-

tillation photons then the Fano factor of the scintillator will be greater than one

(super-Poisson).

If the same scintillation pulse is viewed with multiple optical detectors, the

Poisson-distributed photons will result in uncorrelated detector outputs, while sub-

Poisson distributed photons will result in negatively correlated and super-Poisson

distributed photons in positively correlated detector outputs (Barrett and Swindell,

1981; Barrett and Myers, 2004). Using the correlation between two photomulti-

plier tubes (PMT) Bousselham et. al. (Bousselham et al., 2010) have shown that

LaBr3:Ce has a Fano factor less than one. We used the same technique to measure

the Fano factors of SrI2:Eu, CsI:Na and YAP:Ce.

3.2 Theory

3.2.1 Fano factor of optical photons and photoelectrons

Measurement of the Fano factor of scintillation photons is non-trivial because optical

photons cannot be directly detected. An optical detector, on average, converts a
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fraction (η) of the optical photons to photoelectrons. If a random number of optical

photons (N) are are produced, then a fraction of optical photons will produce a

random number of photoelectrons in an optical detector (n). If we assume that

the photoelectrons are produced independently, then the photon-to-photoelectron

conversion process can be modeled as a binomial distribution with a probability of

success η.

We can define two Fano factors in scintillation detectors – Fano factor of the

optical photons FN and Fano factor of photoelectrons Fn. The relationship between

the photon Fano factor and the photoelectron Fano factor is derived below. The

mean number of photoelectrons is given by

n =
∞∑

N=0

N∑
n=0

nPr(n|N)Pr(N |N). (3.2)

For a binomial distribution the inner sum is ηN , so

n =
∞∑

N=0

ηNPr(N |N) ≡ ηN. (3.3)

The variance of the number of photoelectrons is given by

σ2
n =

∞∑
N=0

N∑
n=0

n2Pr(n|N)Pr(N |N)− n2. (3.4)

The inner sum is the second moment of the binomial distribution, and using Eq.

3.3, we get

σ2
n =

∞∑
N=0

(ηN − η2N + η2N2)Pr(N |N)− η2N
2
. (3.5)

We use 〈N2〉 = FNN +N
2
, to get

σ2
n = ηN − η2N + η2FNN + η2N

2 − η2N
2
. (3.6)

σ2
n = N

(
η + η2(FN − 1)

)
. (3.7)
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Dividing both sides by n = ηN , we get the Fano factor of the photoelectrons as

Fn = 1 + η(FN − 1). (3.8)

From Eq. 3.8, we see that as η → 0, regardless of the value of FN , Fn → 1.

Therefore, if we have low quantum or geometrical efficiency then the photoelectrons

Fano factor will tend to 1.

3.2.2 Modeling a two-detector experiment

We use the experimental setup in Fig. 3.1 to estimate the correlation between

the signals from two PMTs viewing the same scintillation event. The correlation

between the two PMTs is used to estimate the Fano factor of the photoelectrons

and the scintillation photons (Bousselham et al., 2010; Barrett and Swindell, 1981;

Bora et al., 2011)..

Figure 3.1: Experimental setup to measure the Fano factor from the correlation of
signals from two PMTs.
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The experiment can be modeled as a trinomial distribution with η1 the proba-

bility of producing a photoelectron in detector 1, η2 the probability of producing a

photoelectron in detector 2, and (1−η1−η2) the probability that the optical photon

does not produce a photoelectron in either of the two detectors .

The variance in the number of photoelectrons at the two detectors is given by

Eq. 3.7. The covariance in the number of photoelectrons at the two detectors is

given by

K
(n)
12 =

∞∑
N=0

N∑
n1=0

N∑
n2=0

(n1 − n1)(n2 − n2)Pr(n1, n2|N)Pr(N |N). (3.9)

Here n1, n2 are the mean number of photoelectrons in detector 1 and detector

2 respectively averaged over both the trinomial probability Pr(n1, n2|N) and the

probability of N , Pr(N |N). The mean and variance of the ith outcome of a trinomial

distribution are ηiN and ηi(1−ηi)N respectively. The covariance between the ith and

jth outcomes of a trimonial distribution is −ηiηjN . Using these results to simplify

Eq. 3.9 we get

K
(n)
12 =

∞∑
N=0

(η1η2N
2 − η1η2N)Pr(N |N)− η1η2N

2
. (3.10)

Simplifying further gives us

K
(n)
12 = η1η2N(FN − 1). (3.11)

The complete covariance matrix of the number of photoelectrons at the two detectors

is given by

K(n) = N

⎡⎣η1 + η21(FN − 1) η1η2(FN − 1)

η1η2(FN − 1) η2 + η22(FN − 1)

⎤⎦ . (3.12)

To visualize the relationship between Fano factor and the correlation between

the two detectors, consider the experimental setup in Fig. 3.1. The detectors are

assumed to be identical and noiseless. The output of the experiment is represented

as a scatter plot; each point on the plot corresponds to one scintillation event. For
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each point on the scatter plot, the x coordinate is the proportional to the number

of photoelectrons detected by detector 1 and the y coordinate is proportional to the

number of photoelectrons detected by detector 2 for the same scintillation event.

If the optical Fano factor is one (FN = 1), then from Eq. 3.11, the two detector

outputs have will have zero covariance. As shown in Fig. 3.3, the scatter plot of the

photopeak in the Poisson case will be uncorrelated.

Figure 3.2: Simulated scatter plots of photopeak events for Poisson light (FN = 1).
The outputs of the two detectors are uncorrelated.

If the optical Fano factor is less than one (FN < 1), then from Eq. 3.11, the

two detector outputs have will have negative covariance. As shown in Fig. 3.2, the

scatter plot of the photopeak in the sub-Poisson case will be negatively correlated.

If the optical Fano factor is more than one (FN > 1), then from Eq. 3.11, the

two detector outputs have will have positive covariance. As shown in Fig. 3.4, the

scatter plot of the photopeak in the Poisson case will be positively correlated.
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Figure 3.3: Simulated scatter plots of photopeak events for sub-Poisson light (FN <
1). The outputs of the two detectors are negatively correlated.

Figure 3.4: Simulated scatter plots of photopeak events for super-Poisson light
(FN > 1). The outputs of the two detectors are positively correlated.
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3.2.3 Signal processing and PMT gain variance

A photoelectron produced in the photocathode of a PMT is amplified through a

number of dynodes before being collected at the anode. Due to this random gain

process, a photoelectron at the photocathode produces a random number of electrons

at the anode. A scintillation event produces many optical photons, some of which

interact at the photocathode of a PMT to produce photoelectrons. The PMT output

signal from a scintillation event is the sum of the individual single photoelectron

responses.

In our experiment, the PMT output is directly read into a digital oscilloscope

which has an input impedance R (usually 50 ohms). The electrons from the anode

of the PMT flow through the input impedance of the oscilloscope which records

the voltage waveform across it. The total charge on the anode of the PMT can

be estimated by dividing this voltage waveform by the input impedance to get the

current through the resistor, and then integrating the current. An estimate of the

number of photoelectrons, denoted by n̂j, produced on the jth detector is given by

dividing the total charge at the anode by the charge of an electron (e) and the mean

gain (G):

n̂j =
1

GeR

∫ T

0

vj(t)dt. (3.13)

Here vj is the voltage from the jth PMT, and T is time duration for which we record

a scintillation pulse. As the tail of the exponential decay of the scintillation pulse

go to zero at infinity, ideally T should be equal to infinity. In practice, we set T to

a value greater than or equal to 4 times the decay time constant of the scintillation

pulse (τ) to capture more than 98% of the pulse.

As G,R, e are constant during an experiment,

n̂j ∝
∫ T

0

vj(t)dt. (3.14)

We define the signal from the jth PMT as

sj =

∫ T

0

vj(t)dt. (3.15)
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The gain Gj was converted into the same units of the signals – volts-seconds by

multiplying by the charge of an electron and the resistance of the oscilloscope Mj =

GjeT .. Therefore, the mean signal is given by sj = njM j, here (M j = GjeR) and

the variance of the signal is given by the Burgess variance theorem (Burgess, 1959)

V ar(sj) = njV ar(Mj) +M
2

jV ar(nj). (3.16)

We define the gain variance coefficient as β =
V ar(Mj)

M
2
j

, and use Eq. 3.8, to get

V ar(sj) =
s2j

ηjN

(
1 + βj + ηj(FN − 1)

)
. (3.17)

Since the amplification processes for the two detectors are independent, from Eq.

3.11, the covariance between the two detectors is given by

Cov(s1, s2) =
s1s2

N
(FN − 1). (3.18)

The covariance matrix of the signals from the two detectors is given by

K(s) =
1

N

⎡⎣ s21
η1

(
1 + β1 + η1(FN − 1)

)
s1s2(FN − 1)

s1s2(FN − 1)
s22
η2

(
1 + β2 + η2(FN − 1)

)
⎤⎦ . (3.19)

K(s) =

⎡⎣G2

1Nη1
(
1 + β1 + η1(FN − 1)

)
G1G2Nη1η2(FN − 1)

G1G2Nη1η2(FN − 1) G
2

2Nη2
(
1 + β2 + η2(FN − 1)

)
⎤⎦ . (3.20)

If β1 = β2, and η1 = η2 the correlation coefficient is given by

r12 =
k12√
k11k22

=
η(FN − 1)

1 + β + η(FN − 1)
. (3.21)

3.3 Experimental setup

A thin crystal about 10 mm × 10 mm × 1 mm was sandwiched between two Hama-

matsu R3998-100-02 PMTs as shown in Fig. 3.1.
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The scintillator crystal was coupled to the PMTs by optical grease and mineral

oil, or just mineral oil. Hygroscopic crystals were polished with 1500 grit emery

paper and, to prevent moisture damage, completely immersed in mineral oil for the

duration of the experiment. The assembly was wrapped tightly with black electrical

tape to keep out ambient light and placed in a rigid sleeve to prevent the PMTs and

the scintillator from shifting during the measurement.

Scintillator crystal and PMT non-uniformities as well as variation in geometri-

cal efficiency for different interaction points make the measurement sensitive to the

position of interaction. The uncertainty in the position of interaction increases vari-

ance, and results in higher estimates of Fano factors. As shown in Fig. 3.1, by using

a collimated Cs-137 (662 KeV) source of 1.3 mm diameter incident at the center

of the scintillator we localized the position of interaction in the x-y plane (plane

parallel to the detector faces). A thin scintillation crystal was used to minimize

variation along the z-axis.

Detecting a high fraction of optical photons is important for the experiment.

Equation 3.8 tells us that as η decreases, the photoelectron Fano factor tends to

a value of one and becomes less dependent on the photon Fano factor. We define

η as the product of geometrical efficiency and quantum efficiency. For a gamma-

ray interaction at a given location in the scintillator, the geometrical efficiency of a

detector is defined as the fraction of emitted optical photons that are incident on the

detector. The quantum efficiency of a detector is the fraction of incident photons

that create a photoelectron.

The geometrical efficiency is maximized by using a thin crystal centered and

sandwiched between PMT windows bigger than the crystal faces. The centered

and collimated source localizes the point of interaction in the scintillation crystal

to a small area at the center of the crystal in the x-y plane. At these points of

interactions, the two PMTs subtend a solid angle of nearly 2π steradians each. If

we assume that the scintillation photons are emitted isotropically, the geometrical

efficiencies of the PMTs are very close to 50%. We chose high quantum efficiency

super bialkali PMTs which have a maximum quantum efficiency of 35%.
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Figure 3.5: Optical photons at higher angles have a larger effective photocathode
thickness, and any optical photons reflected at one detector can be absorbed at the
second detector.

The quantum-efficiency measurements by the manufacturer are usually made

with the incident light normal to the PMT. As shown in Fig. 3.5, optical photons at

higher angles of incidence have a larger effective photocathode thickness, increasing

their detection probability (Barrett and Swindell, 1981; Tickner and Roach, 2007).

However, optical photons at higher angles of incidence also suffer higher reflection

losses. These two opposing effects dictate changes in quantum efficiency at different

angles of incidence. In our geometry, a photon reflected off one PMT has a high

probability of absorption in the other PMT. Hence, in our experiment, η – the light

collection efficiency of the PMTs is expected to be higher than the product of the

published quantum efficiency and the geometrical efficiency. We assume the value

of η to be 0.28. The impact of an error in the estimate of η is discussed later in Sec.

3.5.4.

The gain variance was accounted for in Eq. 3.20 by the gain variance coefficient

(β). This parameter was measured by using a pulsed light-emitting diode operating

at a low voltage so that the PMT had a high probability of detecting only one

photoelectron during each pulse. Signal processing techniques were used to identify

the pulses with only one photoelectron, and a histogram of the area under these

pulses was plotted to give us the single-photoelectron response. The gain variance
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coefficient for the PMT was estimated using the width and the mean value of the

single-photoelectron response. To simplify calculations, the two PMTs were assumed

to be identical with the same quantum efficiency and gain variance coefficient.

3.4 Data analysis and estimation of Fano factor

3.4.1 Data analysis

Twenty to fifty thousand scintillation pulses were recorded and processed as per

Sec. 3.2.3 to get signals s1 and s2 for each scintillation event. A scatter plot with

coordinates (s1, s2) was plotted. As shown in Eq. 3.14 and 3.15, s1 and s2 are

proportional to the estimate for the number of photoelectrons n1 and n2 detected

on the PMTs respectively. The photopeak events were separated from the Compton

events by thresholding just above the Compton edge. The photopeak scatter plot

was windowed – along and perpendicular to the s1 = s2 axis. We used a least-squares

approach to fit a similarly windowed 2D Gaussian to the scatter plot (See Fig. 3.6).

The Gaussian fit was used to estimate the covariance matrix of the signals.

The experimental measurement is very sensitive to the contact between the scin-

tillator and the detectors and to imperfections in the crystal. To reject experimental

artifacts and avoid bias, only measurements with a narrow and symmetric scatter

plot of the Compton region (see Fig. 3.8, 3.10 and 3.12) and an energy resolution

within a percentage point of the published values were used.

3.4.2 Estimation of Fano factor

We used Eq. 3.8 and 3.21 to get the expression for the estimate of the Fano factor

of the photoelectrons as

F̂n =

(
1 + β r̂12
1− r̂12

)
. (3.22)

Equation 3.21 can be rewritten to get an expression for the estimate of the Fano

factor of the scintillation photons (F̂N) in terms of the estimate of the correlation

coefficient (r̂12)
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Figure 3.6: The windowed photopeak data from a dataset is on the top left. The
windowed Gaussian fit to the data is on the top right. The bottom graphs are sums
of sections perpendicular (major axis) and parallel (minor axis) to the s1 = s2 line.

F̂N = 1 +

(
r̂12

1− r̂12

)(
1 + β

η

)
. (3.23)

3.5 Results

3.5.1 SrI2:Eu

SrI2:Eu has high light output (≈100,000 photons / MeV) and excellent published

energy resolution of 3% (van Loef et al., June 2009) at 662 KeV. The energy reso-

lutions in our measurements varied from 3.3%-3.5%. See Fig. 3.7.

In Fig. 3.7, the smooth falloff at low energies in the Compton region of the

energy spectrum is because the events were triggered on the pulse amplitude, but

the histogram is of the integral of the pulse.

We made twelve measurements on two samples of SrI2:Eu that met the accep-
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Figure 3.7: Energy spectrum of SrI2:Eu. The plot is made by summing the outputs
of both the PMTs. The narrow photopeak indicates good energy resolution.

tance criteria described in Sec. 3.4.1 and were used for estimating Fano factors. We

found the integral of the detector outputs to be negatively correlated, and therefore,

concluded that SrI2:Eu has sub-Poisson scintillation light at 662 KeV gamma-ray

interactions.

3.5.2 YAP:Ce

The chemical formula for YAP is YAlO3. YAP:Ce has a low light output (18,000

photons/MeV), but has good published energy resolution of 4.4% (Kapusta et al.,

1999) at 662 KeV. Our measured energy resolutions (see Fig. 3.9) varied from 3.47%

to 4.42%.

We had only one sample of YAP:Ce, and we made eight measurements that met

the acceptance criteria described in Sec. 3.4.1 for estimating Fano factor. We found
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Figure 3.8: Scatter plot for SrI2:Eu. The negative correlation between the two PMTs
can be seen in the photopeak region.

the integral of the detector outputs to be slightly positively correlated, and therefore,

concluded that YAP:Ce’s scintillation light at 662 KeV gamma-ray interactions is

either super-Poisson or close to Poisson.

3.5.3 CsI:Na

CsI:Na has good light output (43,000 photons/MeV) but relatively poor published

energy resolution of 7.07% at 662 KeV (Sakai, 1987). Another study has reported

an energy resolution of 5.8% with longer than usual shaping time of 12 μs (Syntfeld-

Kazuch et al., 2009). We had two samples of CsI:Na and we made ten measurements

that met the acceptance criteria described in Sec. 3.4.1 for estimating Fano factor.

Eight of our measurements captured pulses for 4 μs while two measurements in-

tegrated for 10 μs. The energy resolutions in our measurements varied between

4.6%-6.7%.

We found positive correlation between the integrals of the signals from the two

PMTs and found the scintillation light from CsI:Na at 662 KeV gamma-ray energy

to be super-Poisson. The high positive correlation in CsI:Na is a result of varying

energy distribution between the primary radiatively decay processes and the mil-
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Figure 3.9: Energy spectrum of YAP:Ce. The plot is made by summing the outputs
of both the PMTs. The energy resolution of the YAP:Ce is not as good as the
energy resolution of SrI2:Eu.

lisecond afterglow process. Integrating the CsI:Na signals for longer durations to

capture all the afterglow could result in smaller estimates of Fano factor.

3.5.4 Fano factor estimates

Using the experiment and the estimation process described above, we estimated the

correlation coefficient between the two detector outputs. We then used estimates of

the correlation coefficient, and equations 3.22 and 3.23 to estimate the Fano factor

of the photoelectrons and the scintillation photons.

Table 3.1 shows the estimates of the photoelectron and scintillation photons

Fano factor for β = 0.07 and η = 0.28. The uncertainty in estimation of correlation

coefficient was propagated to estimate the uncertainty in the estimates of Fn and
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Figure 3.10: Scatter plot for YAP:Ce. The photopeak of the scatter plot has little
or no correlation.

Figure 3.11: Energy spectrum of CsI:Na.The plot is made by summing the outputs
of both the PMTs. The energy resolution of the photopeak is broader than YAP:Ce
or SrI2:Eu

FN . Both η and β are parameters of the PMT that do not change in a measure-

ment. Hence they do not add to uncertainty, but introduce bias in the Fano factor

estimates. The estimates of correlation coefficient of LaBr3:Ce are reproduced here
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Figure 3.12: Scatter plot for CsI:Na, the photopeak is positively correlated.

from (Bousselham et al., 2010).

Table 3.1: Photoelectron and Photon Fano factor Estimates β = 0.07 and η = 0.28.
The results for LaBr3:Ce are reproduced from (Bousselham et al., 2010).

Correlation Co-
efficient (r12)

Photoelectron
Fano factor (Fn)

Photon Fano
factor (FN)

SrI2:Eu -0.3134 ±0.039 0.7526 ±0.024 0.1165 ±0.11
YAP:Ce 0.1036 ±0.024 1.13 ±0.033 1.464 ±0.13
CsI:Na 0.4192 ±0.066 1.949 ±0.18 4.391 ±0.68
LaBr3:Ce −0.32± 0.17 0.7333± 0.11 0.01235± 0.40

To test the impact of an error in our estimate of β on the Fano factor estimates,

we calculated the mean and standard deviation of the estimates of photoelectron

and photon Fano factor for different values of β at η = 0.28. From Table 3.2, we

conclude that the gain variance coefficient (β) does not have a large impact on the

estimates of the photoelectron or the photon Fano factor.

The value of the photoelectron Fano factor is independent of the estimate of η

(See Eq. 3.22). To test the impact of an error in our estimate of η on the photon

Fano factor estimates, the photon Fano factor for different values of η at β = 0.07

are shown in Table 3.3. An error in the estimate of η has a significant impact

on the estimates of the photon Fano factors. A small value of η biases the Fano



66

factor estimates away from one – the estimates of the Fano factor of sub-Poisson

scintillators become more sub-Poisson and the estimates of the Fano factor of super-

Poisson scintillators become more super-Poisson. A smaller value of η also increases

the uncertainty in the measurement for all the scintillators. The values of η below

0.24 result in unphysical negative estimates of photon Fano factor for SrI2:Eu.



67

Table 3.2: Photoelectron and photon Fano factor estimates for different values of β
with η = 0.28

Photoelectron Fano factor (Fn) Photon Fano factor (FN)
Gain Noise
Factor (β)

SrI2:Eu YAP CsI:Na SrI2:Eu YAP CsI:Na

0.05 0.7572
±0.024

1.128
±0.033

1.932
±0.18

0.133
±0.11

1.456
±0.12

4.327
±0.67

0.06 0.7549
±0.024

1.129
±0.033

1.941
±0.18

0.1248
±0.11

1.46
±0.12

4.359
±0.68

0.07 0.7526
±0.024

1.13
±0.033

1.949
±0.18

0.1165
±0.11

1.464
±0.13

4.391
±0.68

0.08 0.7503
±0.025

1.131
±0.034

1.958
±0.18

0.1083
±0.11

1.469
±0.13

4.422
±0.69

0.09 0.748
±0.025

1.132
±0.034

1.967
±0.18

0.1
±0.11

1.473
±0.13

4.454
±0.7

Table 3.3: Photon Fano factor estimates for different values of η with β = 0.07

Photon Fano factor (FN)
(η) SrI2:Eu YAP CsI:Na

0.2 -0.2369 ±0.18 1.65 ±0.18 5.747 ±1
0.22 -0.1244 ±0.16 1.591 ±0.16 5.316 ±0.9
0.24 -0.03073 ±0.14 1.542 ±0.15 4.956 ±0.81
0.26 0.04855 ±0.12 1.5 ±0.14 4.652 ±0.74
0.28 0.1165 ±0.11 1.464 ±0.13 4.391 ±0.68
0.3 0.1754 ±0.1 1.433 ±0.12 4.165 ±0.63
0.32 0.227 ±0.093 1.406 ±0.11 3.967 ±0.59
0.34 0.2724 ±0.086 1.382 ±0.1 3.792 ±0.55
0.36 0.3128 ±0.08 1.361 ±0.096 3.637 ±0.52
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3.6 Conclusion

The Fano factors of scintillation photons and photoelectrons were estimated using

the correlation of signals from two optical detectors viewing the same scintillation

event. We found the detector outputs from CsI:Na to be positively correlated, while

the detector outputs of SrI2:Eu to be negatively correlated. The detector outputs

from YAP:Ce were very close to uncorrelated.

We modeled the process of generation, detection and amplification of scintillation

photons and derived an expression for the Fano factor as a function of the correlation

coefficient of the two detector outputs. We found that CsI:Na is super-Poisson,

SrI2:Eu is sub-Poisson and YAP:Ce is close to Poisson.
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CHAPTER 4

Time Statistics in Scintillation Crystals

4.1 Introduction

Counting statistics and the Fano factor are defined on the total number of photons

emitted or detected. In the previous chapter, we used two detectors simultaneously

looking at the same scintillation pulse. We estimated the total number of detected

photons (or photoelectrons) by integrating the detector signal for the duration of

the scintillation pulse, and then using the correlation coefficient of the integrated

signal to estimate the Fano factor of the photoelectrons and the photons. In this

chapter, we investigate if we can use a similar geometry as before and estimate the

Fano factor of scintillation photons from time correlations between the two detector

outputs.

Previous literature to estimate the Fano factor from time correlations primarily

focused on stationary processes. Our attempts to derive similar analytical results

for non-stationary process were not successful, so we made a statistical model of the

emission and detection of scintillation light as a function of Fano factor.

The emission of scintillation photons is a point process, and the inter-event time

of the scintillation point process was modeled as a gamma distribution. We found

an analytical relationship between the gamma distribution parameters and the Fano

factor for a renewal process (see Sec. 4.2.6). A renewal process, by definition is

stationary. As the mean rate of the scintillation process changes with time, a scin-

tillation process is not stationary. However, results from Monte-Carlo simulations

in Sec. 4.2.7 indicated that the results from renewal theory relating the parame-

ters of the gamma-distribution and the Fano factor are valid for the non-stationary

scintillation process too.

The detection, random amplification, and time-response characteristics of PMTs
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were also modeled to generate simulated detector outputs for different values of

gamma-distribution parameters, and find a relationship between the detector out-

puts and the gamma-distribution parameters.

Therefore, there are two parts in the statistical model to estimate the Fano

factor – 1) A model for the relationship between the detector outputs and the

gamma-distribution parameters, and 2) a model for the relationship between the

gamma-distribution parameters and the Fano factor.

4.2 Theory

The classical or wave theory of light treats light as a complex signal V (
r, t), whose

squared absolute value I(
r, t) = |V (
r, t)|2 is the irradiance (Born and Wolf, 1999).

The classical theory restricts the Fano factor to values greater than one. The quan-

tum theory of light recognizes the wave-particle duality of light and allows for Fano

factors less than one. Therefore, light with Fano factor less than one is often referred

to as ”non-classical” light.

In the next sub-sections we will define point processes, renewal processes, gamma

distributions, and make a statistical model using all these concepts. We will also

relate the covariance, correlation and coherence to these models.

4.2.1 Point process

A point process is defined as a random process for which a realization consists of

a set of isolated points in some space. Thus, a realization of a point process can

be described as a set of delta functions in the dimensions of that space. A point

process in time has one-dimensional delta functions and is called a temporal point

process. A point process in space and time has delta functions in four dimensions

(x, y, z, t) and is called a spatiotemporal point process (Barrett and Myers, 2004).

The scintillation process is a stochastic point process in time, producing a random

number (N) of scintillation photons at random times t1, t2 . . . tN . In this chapter,

we study, model and measure the time correlations in the scintillation light from
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different scintillator materials.

4.2.2 Renewal process

A renewal process is a continuous-time Markov process on positive integers in which

the inter-event times are independent and identically distributed. Therefore, a re-

newal process is by definition, a stationary process (Parzen, 1962).

4.2.3 Classification of point processes

Based on the time spacing between successive points, a temporal point process can

be classified as bunched, Poisson, or anti-bunched (Teich et al., 1988).

In a Poisson Point Process (PPP), the occurrence of an event does not increase

or decrease the probability of the occurrence of next event. All the events are

independent of each other and completely random. In a bunched point process, the

events are less uniformly spaced as compared to the PPP, while in an anti-bunched

point process, the events are more uniformly spaced than a PPP (See Fig. 4.1).

4.2.4 Inter-event time for a Poisson point process

The Poisson distribution is used to describe the probability of counting N events in

between times 0 and t. If the underlying Poisson point process has a mean arrival

rate of λ counts per unit time then the mean number of events will be N = λt and

the probability of N events occurring between times 0 and t is given by

Pr(N |λt) = (λt)N
e−λt

N !
. (4.1)

The probability distribution function (PDF) of the time between two successive

events (pr(Δt|λ)) for a PPP with a mean rate of λ events per second is derived below.

The cumulative distribution function (CDF) of the inter-event time, F (Δt|λ), can
be written in terms of the probability of detecting zero events from 0 to Δt

FΔt(t|λ) = pr(Δt ≤ t|λ) = 1− pr(Δt > t|λ) = 1− Pr(N = 0|λt). (4.2)
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Figure 4.1: The realization of a Poisson point process in (b) has randomly spaced
points. The realization of an anti-bunched point process in (a) is more evenly
spaced as compared to the Poisson point process. The realization of the bunched
point process (c) is less evenly spaced as compared to the Poisson point process.

Here, Pr(N = 0|λt) is the probability of no events occurring between 0 and t.

Writing the expression for the Poisson distribution with N = 0 gives us

FΔt(t|λ) = 1− (λt)0
e−λt

0!
= 1− e−λt. (4.3)

We take the derivative of the CDF FΔt(t|λ) to get the PDF pr(Δt|λ) as shown below

pr(Δt|λ) = λe−λΔt. (4.4)

The inter-event time of a Poisson point process is exponentially distributed (Teich

et al., 1988). The complete PDF of an exponentially distributed inter-event time

with mean λ is given as

pr(Δt|λ) =

⎧⎪⎨⎪⎩λe−λΔt, Δt ≥ 0

0, Δt < 0.
(4.5)
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4.2.5 Modeling the inter-event time as a gamma distribution

The inter-event time of a generic point process is often modeled as a gamma dis-

tribution (Parzen, 1962). The gamma distribution is a two-parameter continuous

distribution and can be used to model bunched, Poisson and anti-bunched events.

The exponential distribution used to model the inter-event time in the PPP is a

special case of the gamma distribution. The gamma distribution given by

pr(Δt|k, θ) =

⎧⎪⎨⎪⎩
1

Γ(k)θk
(Δt)k−1e(−Δt/θ), Δt ≥ 0

0, Δt < 0.
(4.6)

Here, k is the shape factor, θ is the scale factor, Γ(k) is the gamma function evaluated

at k. The mean and variance of the gamma distribution are given by Δt = kθ and

σ2
Δt = kθ2 respectively. The coefficient of variation c, a quantity analogous the Fano

factor, is defined as the ratio of the standard deviation of the inter-event time to

the mean inter-event time.

c =
σΔt

Δt
=

1√
k
. (4.7)

For a Poisson point process with exponentially distributed inter-event times, the

standard deviation of the inter-event times is equal to the mean inter-event time

(σΔt = Δt), giving us k = c = 1. When c > 1, then k < 1 and the standard

deviation of the inter-event times is greater than the standard deviation of a PPP

with the same mean. This implies that the events are more ”bunched” than in the

PPP. For c < 1, k > 1, the standard deviation of the inter-event time is less than

the standard deviation of a PPP with the same mean. This implies that the events

are more uniformly spaced than the PPP. Such events are also called anti-bunched

events (Teich et al., 1988; Saleh, 1977).

The PDF of gamma distributions for the same mean but different values of shape

factor are given in Fig. 4.2 . Figure 4.3 shows the zoomed-in tail section of Fig. 4.2

to show that the PDF of the bunched and anti-bunched events again cross the PDF

of the exponential curve for large values of inter-event time.
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The anti-bunched inter-event PDF rises from zero, and crosses the exponential

PDF for the PPP, and then in the tail region drops again to a value below the

exponential PDF for the PPP. This indicates that compared to Poisson events, anti-

bunched events are more likely to occur in the middle range of the inter-event times

and less likely to occur at the smaller and the larger inter-event times. Therefore,

anti-bunched events are more uniformly spaced than Poisson events. The bunched

events have the opposite behavior, they have a higher probability than the PPP

events at small inter-event times and at large inter-event times, but have a lower

probability of occurring in the middle ranges of the inter-event times. Therefore,

bunched events are less uniformly spaced than the Poisson events.

Figure 4.2: The PDF for bunched events is greater than the Poisson distribution
PDF for small and large inter-event times. So the events are more likely to bunch
together. Anti-bunched events follow the opposite trend to bunched events and are
more regularly spaced than Poisson events.

4.2.6 Relationship between shape factor and Fano factor for a stationary point

process

The shape factor of the gamma distribution is defined on the statistics of the inter-

event time, while the Fano factor is defined on the statistics of the number of events



75

Figure 4.3: The tail portion of the PDF for bunched, Poisson and anti-bunched
events shown in Fig. 4.2 is shown above. The PDF of the bunched, and anti-
bunched events cross the Poisson PDF in this region from opposite sides.

in a given time. The properties of the renewal process were used to derive the

relationship between the shape factor and the Fano factor (Parzen, 1962; Taylor

and Karlin, 1998)

F =
1

k
. (4.8)

We modeled the inter-event times (Δt1,Δt2, · · ·ΔtN) between successive points

of our point process as a gamma distribution. Thus, our point process is a renewal

process with gamma-distributed inter-event times. As the mean emission rate of

photons is not constant in a scintillation pulse, the scintillation process is by defini-

tion, non-stationary. In Sec. 4.2.7, we investigate whether the relationship between

the Fano factor and the shape factor for a renewal process (by definition a stationary

process) given by Eq. 4.8 is also valid for scintillation light.
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4.2.7 Relationship between shape factor and Fano factor for a non-stationary point

process

The inter-event arrival time in a scintillation process was modeled as a gamma

distribution with a constant shape factor k, and a scale factor θ that varies as

the pulse decays. We performed a Monte-Carlo simulation to find the relationship

between the Fano factor and the shape factor for a non-stationary process.

We simulated 5000 scintillation pulses with gamma-distributed inter-event times

with a constant shape factor and varying scale factor. The total number of events

(Nsim) recorded during the acquisition time were used to estimate the Fano factor

of the events generated with a given shape factor.

F̂sim =
var(Nsim)

Nsim

. (4.9)

The estimates of the Fano factor from the simulation of scintillation light and

the Fano factor calculated from the shape factor using the renewal theory equation

in Eq. 4.8 were found to be consistent with each other (see Fig. 4.5). Therefore,

the shape factor can be used to estimate the Fano factor of the scintillation light.

4.2.8 Correlation, covariance and coherence

The correlation function of the optical fields for two space-time points (
r1, t1) and

(
r2, t2) is given as

G(1)(
r1, t1, 
r2, t2) =

〈
V ∗(
r1, t1)V (
r2.t2)

〉
. (4.10)

Here, V (
r1, t1) is the complex field at position 
r1 and time t1. The angle brackets

indicate an ensemble average. Detectors cannot directly measure the field V , but

respond to the irradiance which is the square modulus of the field, often referred to

as intensity (I = |V |2). The second-order correlation function, also known as the

intensity correlation is given by

G(2)(
r1, t1, 
r2, t2) =

〈
I(
r1, t1)I(
r2.t2)

〉
. (4.11)
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Figure 4.4: Five thousand gamma-ray interactions were simulated using Monte-
Carlo simulations of a point process with gamma-distributed inter-event times, a
constant shape factor, and changing scale factor. The histograms of the number
of scintillation photons for the simulated pulses for shape factors of 0.4 and 2 are
shown above.

Temporal covariance compares the detector signals to their means. The inten-

sity cross-covariance cov
(

r1, t1, 
r2.t2)

)
is calculated by subtracting by the average

intensity and then averaging over the ensemble as given below

cov
(

r1, t1, 
r2, t2

)
=

〈[
I(
r1, t1)− I(
r1, t1)

][
I(
r2.t2)− I(
r2.t2)

]〉
. (4.12)

The relationship between bunching or anti-bunching of events and their cross-

covariance can be visualized with the following example. We measure the intensity

of the field using two detectors at positions, 
r1 and 
r2 at time, t1 = t2 = t. At a

given time t, if both the two detector signals are more likely to be either above or

below their mean values, then their cross-covariance curve is positive. Similarly, if

the two detector signals are more likely to be on opposite sides of their mean values,

then the cross-correlation will be negative. If the two signals are independent of

each other, then the cross-covariance curve will be zero.
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Figure 4.5: Estimate of the Fano factor from Monte-Carlo simulations of a point
process with gamma-distributed inter-event times with a constant shape factor, and
changing scale factor. The Fano factor estimated using renewal theory (see Eq. 4.8)
and the Fano factor estimated from the Monte-Carlo simulation are in agreement
with each other.

The uncertainty or randomness in the emission and detection of scintillation

photons is averaged out in the mean signal. Therefore, the mean signal is a smooth

function in time and independent of the coefficient of variation defined in Eq. 4.7.

Consider a bunched point process; when a bunch of events is emitted, both detectors

record signals that are likely to be larger than their mean. Similarly, in the time

between two bunches, when a few or no events arrive, both the detectors record a

signal that is likely to be smaller than their means. Therefore, a bunched process will

yield a positive cross-covariance curve. Conversely, an anti-bunched point process

will yield a negative cross-covariance curve and a Poisson point process will yield

zero cross-covariance curve. Therefore, the cross-covariance curve is expected to be

negative for Fano factors less than one, positive for Fano factors greater than one

and zero for a Fano factor of one.

The normalized correlation function, also known as second order coherence, is

given by normalizing the correlation function with the mean intensities as given
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below

g(2)(
r1, t1, 
r2, t2) =
G(2)(
r1, t1, 
r2, t2)〈
I(
r1, t1)

〉〈
I(
r2.t2)

〉 =

〈
I(
r1, t1)I(
r2.t2)

〉
〈
I(
r1, t1)

〉〈
I(
r2.t2)

〉 . (4.13)

The normalized cross-covariance function, is given by

σ(
r1, t1, 
r2, t2) =
cov

(

r1, t1, 
r2, t2

)〈
I(
r1, t1)

〉〈
I(
r2.t2)

〉 =

〈[
I(
r1, t1)− I(
r1, t1)

][
I(
r2.t2)− I(
r2.t2)

]〉
〈
I(
r1, t1)

〉〈
I(
r2.t2)

〉 .

(4.14)

Straightforward mathematics gives us the relationship between normalized cross-

covariance σ
(

r1, t1, 
r2, t2

)
and second-order coherence g(2)(
r1, t1, 
r2, t2) as

σ(
r1, t1, 
r2, t2) = g(2)(
r1, t1, 
r2, t2)− 1. (4.15)

The second-order coherence function defined in Eq. 4.13 was historically used with

light with stationary statistics. As scintillation light is not stationary (the mean

intensity varies as a function of time), we cannot directly use the second-order

coherence function for scintillation light. In addition, as the scintillation pulse de-

cays with time, the mean signals become very small making the denominator of

the normalized cross-covariance function close to zero. To avoid dividing by small

numbers, we integrate the numerator and the denominators of Eq. 4.14 for the dura-

tion of pulse and calculate the Normalized Area Under the Cross-Covariance Curve

(AUCCC). In the equation below, we have substituted t1 = t, t2 = t + τ . Unless

explicitly specified, in the next sections we have used the normalized AUCCC with

τ = 0.

Norm AUCCC ==

T∫
t=0

〈[
I(
r1, t)− I(
r1, t)

][
I(
r2, t+ τ)− I(
r2, t+ τ)

]〉
dt

T∫
t=0

〈
I(
r1, t)

〉〈
I(
r2, t+ τ)

〉
dt

. (4.16)
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4.3 Implementation

4.3.1 Simulation

We performed Monte-Carlo simulations with the model described below to find an

empirical relationship between the Fano factor of the scintillation photons and the

normalized AUCCC of the PMT signals. .

4.3.1.1 Model

We modeled the emission and detection of scintillation photons and the process of

generation of the detector signals.

The mean emission rate of the scintillation photons is calculated from the mean

number of emitted photons, the time constant of the scintillation pulse and the

sampling time. The shape factor is assumed to be constant for the duration of the

scintillation pulse, depending only on the scintillator material and the deposited

gamma-ray energy. The scale factor θ(t) is calculated from the emission rate of the

scintillation photons and the shape factor.

The emitted photon can have three possible outcomes – it can be detected by

detector 1, or by detector 2 or not be detected. The collection efficiency of a detector

is the fraction of total emitted light collected. It is a product of the quantum

efficiency and the geometrical efficiency. In the Monte-Carlo simulation, we assume

that the collection efficiencies of the detectors are independent of the position and

angle of incidence of the scintillation photons. We use a uniform random variable

to simulate the probability of detection of a scintillation photon.

The time it takes the scintillation photon to travel from the point of emission

to the detector is much smaller (in the low picosecond range) than the detector

response time (in the nanosecond range). Therefore, we neglect the propagation

time of the scintillation photons from the point of emission to the detector. A

scintillation photon emitted at time ti is assumed to be instantaneously detected at

the detectors (Choong, 2009; Kerisit et al., 2014).

The Normalized Detector Response Function (NDRF) is the normalized detector
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response in volts as a function of time. The normalization ensures that the area

under the NDRF is equal to the product of the charge of an electron (q) and the

input resistance of the oscilloscope (R).

∞∫
0

NDRF(t)dt = q ×R (4.17)

The response of the detector in volts to a scintillation photon is given by multi-

plying the NDRF with the gain. We assume that the gain variances are normally

distributed with mean gains of G1, G2, and variances of σ2
G1

= β1G
2

1, σ
2
G2

= β2G
2

2

respectively. Here, β1 and β2 are the gain-noise factors for detector 1 and detector

2, respectively, defined as the ratio of the variance of their gain and the square of

their mean gain. The NDRF was modeled as a Gaussian function of time with an

experimentally observed Full-Width at Half Maximum (FWHM) of 1 ns.

The flowchart in Fig. 4.6 indicates the steps involved in creating the simulated

detector outputs (ss1, ss2) from a scintillation pulse with known shape factor. The

inputs to the algorithm are the scintillation photon properties like the shape factor

(k), the mean number of scintillation photons emitted (N) and the decay constant of

the scintillator (τ); the characteristics of the two detectors such as their collection

efficiencies (η1, η2), mean gains (G1, G2), and gain variance factors are defined as

(β1 =
σ2
G1

G
2
1

, β2 =
σ2
G2

G
2
2

) respectively.

We used the algorithm in Fig. 4.6 to generate the simulated scintillation pulse

shown in Fig. 4.7. Uncorrelated noise was added to the simulated pulse. The

simulated signal outputs closely resemble the experimentally detected scintillation

pulses in Fig. 4.19.

4.3.1.2 Assumptions made in the simulations

We have made the following assumptions in this simulation:

• The shape factor (k) of the scintillation pulse does not change for the duration

of the pulse. This assumption might not be true for scintillators with after-
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Figure 4.6: Flowchart to simulate detector pulses produced from scintillation light
with known shape factor.

glow or multiple decay-time constants indicating the dominance of different

underlying physical processes at different times of the scintillation pulse.

• The mean number of photons emitted by the scintillator per photoelectric
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Figure 4.7: Simulated PMT signal with uncorrelated normally distributed noise from
a 662 keV photopeak scintillation interaction in a LaBr3:Ce scintillator. Performance
parameters of the R9880U-210 PMT were used for this simulation.

gamma-ray interaction is known.

• The detector is operating in its linear region, and each photoelectron is am-

plified independently.

• Different PMT gains change the amplitude and the area under the NDRF

waveform, but not the shape of the NDRF.

• The quantum efficiency of the detectors is assumed to be independent of the

position of interaction.

The results for the simulations with these assumptions are highly dependent on

one more crucial factor – the ratio of the decay time of the scintillator to the width

of the single photoelectron response. If the detector response is orders of magnitude

faster than the time constant of the scintillator, then the events captured are likely

to be a set of separated photoelectrons. Because of the rarity condition of the

Poisson postulates, the measured statistics of this point process will be close to

Poisson (Barrett and Myers, 2004). Therefore, we have limited this study to fast

scintillators YAP:Ce with a decay time of 30 ns and LaBr3:Ce with a decay time of
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15.4 ns.

4.3.1.3 Free Input parameters on the estimation of Fano factor

The free parameters in the simulation are the collection efficiencies (η1, η2), the mean

gains and gain variances of the PMTs (G1, G2, β1, β2), and the mean number of

photons emitted (N). Equation 4.18 is used to introduce a constraint and reduce

the number of free parameters that we need to choose.

T∫
0

sj(t)dt = ηjGjN, j = 1, 2. (4.18)

If we assume values of N and ηj, (j = 1, 2), then the values of Gj are constrained.

Therefore, we only treat N, η1, η2, β1, β2 as free parameters. We performed five

sets of Monte-Carlo simulations to test impact of each of these parameters. The

simulations were performed for shape factors of 0.1 and 10 and therefore, Fano

factors of 10 and 0.1, respectively.

In the first simulation, we varied the value ofN from 20,000 to 60,000 scintillation

photons with η1 = η2 = 0.28, β1 = β2 = 0.25. To satisfy Eq. 4.18, for different

values of N , we varied the mean gains G1 and G2 to keep the mean signal constant.

We see in Fig. 4.8, that the normalized AUCCC asymptotically tends towards zero

with higher values of N for Fano factor = 0.1 and Fano factor = 10. Therefore, an

uncertainty in the estimate of N will be result in uncertainty in the estimate of the

Fano factor.

In the second simulation, we varied the value of η1 from 0.1 to 0.5 with N =

43692, η2 = 0.28, β1 = β2 = 0.25. To satisfy Eq. 4.18 for different values of η1, we

varied the mean gain G1 to keep the mean signal constant. We see in Fig. 4.9 that

the normalized AUCCC is independent of the value of η1 for Fano factor = 0.1 and

Fano factor = 10.

In the third simulation, we simultaneously varied the values of collection ef-

ficiencies of both PMTs, η1 = η2 from 0.1 to 0.5 with N = 43692, η2 = 0.28,

β1 = β2 = 0.25. To satisfy Eq. 4.18 for different values of η1 and η2, we varied the
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Figure 4.8: The normalized AUCCCs for different values of N . As the values of
normalized AUCCC increased, the value of mean gains had to be lowered to ensure
that the equation of the mean signals is satisfied. Simulated datasets with Fano
factors of 0.1 and 10 are plotted above; the normalized AUCCC tends towards zero
with increasing value of N . The solid line drawn at zero normalized AUCCC serves
as a visual reference.

Figure 4.9: The normalized AUCCCs for different values of η1, for Fano factor values
of 0.1 and 10. The normalized AUCCC appears to be independent of the collection
efficiency of the detectors.

mean gain G1 and G1 to keep the mean signal constant. We see in Fig. 4.10 that

the normalized AUCCC is independent of the value of η1 for Fano factor = 0.1 and

Fano factor = 10.
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Figure 4.10: The normalized AUCCCs for different values of η1, for Fano factor
values of 0.1 and 10. The normalized AUCCC appears to be independent of the
collection efficiency of the detectors.

In the fourth simulation, we varied the value of the gain variance parameter β1

from 0.1 to 0.8, with N = 43692, η1 = η2 = 0.28, β2 = 0.25. We see in Fig. 4.11

that the normalized AUCCC is independent of the value of β1 for Fano factor = 0.1

and Fano factor = 10.

Figure 4.11: The normalized AUCCCs for different values of β1, for Fano factor
values of 0.1 and 10. The normalized AUCCC appears to be independent of the
gain-variance factors of the detectors.

In the fifth simulation, we simultaneously varied the value of the gain variance



87

parameters of both PMTs (β1 = β2) from 0.1 to 0.8, withN = 43692, η1 = η2 = 0.28.

We see in Fig. 4.12 that the normalized AUCCC is independent of the value of β1

for Fano factor = 0.1 and Fano factor = 10.

Figure 4.12: The normalized AUCCCs for different values of β1, for Fano factor
values of 0.1 and 10. The normalized AUCCC appears to be independent of the
gain-variance factors of the detectors.

4.3.1.4 Invariance of the area under the covariance curve for thin energy windows

of data

Our model assumes that the gamma-ray energy deposited in the scintillator is a

constant. This is achieved in an experiment by windowing the photopeak region

(which corresponds to photoelectric gamma-ray interactions) of the energy spectrum

to separate it from the Compton region. In this section we investigate the impact

of the size and location of the photopeak window on the normalized AUCCC.

To test the impact of the location and size of the energy window on the cross-

covariance curves, we conducted a simulation study and generated a simulated data

set with the following parameters : N = 43692, η1 = η2 = 0.28, β1 = β2 =

0.25, G1 = 6133, G2 = 5771. We calculated the cross-covariance curves using Eq.

4.19 and used four different energy windows to generate the results shown in Fig.

4.13.
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cov(s1(t), s2(t) = (s1(t)− s1(t))(s2(t)− s2(t)). (4.19)

The sub-figure (a) is the histogram of all 2000 photopeak events. The cross-

covariance curve of the complete photopeak is plotted in (b). Only the left half (c),

the right half (e) and the central region (g) of the energy spectrum were used to

calculate the cross-covariance curve shown in (d), (f) and (h) respectively. Although

the mean signals of the partial datasets in (a), (c), (e) and (g) are different, the cross-

covariance curves, and therefore the normalized AUCCC of the two detector signals

are similar and independent of the energy window selected.

Figure 4.13: The cross-covariance curve for different energy windows of the same
simulated dataset. The simulated dataset was generated with a shape factor of 10,
and therefore, a Fano factor of 0.1. The plots in the left half of the figure show the
parts of the photopeak histogram that were used to calculate the cross-covariance
in the right half of the figure. The normalized AUCCC for the simulated data does
not appear to be sensitive to the energy window of the histogram used to calculate
it.

We also investigated if dividing the photopeak into a different number of energy

windows will have an impact on the average normalized AUCCCs. Figure 4.14 shows

that the average normalized AUCCC does not depend on the size or the number of

the energy windows.
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Figure 4.14: Average normalized AUCCC for simulated dataset as a function of
number of energy windows the photopeak was divided into.

We have now numerically studied the impact of different parameters on our

model. By fixing our mean detector outputs (
T∫
0

sj(t)dt, (j = 1, 2)) to the experi-

mentally measured value, the normalized AUCCC is independent of the collection

efficiency, gain variance and size of the energy window used for analysis. The es-

timate of the mean number of scintillation photons per photoelectric gamma-ray

interaction N does impact the normalized AUCCC and an error in the value of N

will be propagated to the final estimates of the Fano factor. We now have the tools

and the model to compare against experimental data.

4.3.2 Experiment

A thin crystal of thickness 0.5 mm was sandwiched between two modified Hama-

matsu R9880U-210 PMTs (see Fig. 4.15). The scintillator crystal was coupled to

the PMTs with mineral oil. Hygroscopic crystals were polished on a 1500 grit emery

paper before each measurement. The scintillator crystals were immersed in mineral

oil for the duration of the experiment to prevent moisture damage and ensure good

optical coupling between the scintillator and the PMTs. This was done with the

help of a 3D printed custom part assembly shown in Fig. 4.16 . An O-ring sealed
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in place with a silicone sealant was used to keep the mineral oil from leaking out.

The tube also provided mechanical support to the whole assembly and prevented

movement of the PMTs and the crystal during the experiment. The assembly was

wrapped tightly with black electrical tape to keep out ambient light.

Figure 4.15: Experimental setup to measure the Fano factor of scintillation light
using the correlation between the signals from two PMTs.

The R9880U-210 PMTs have a cover which prevented us from directly coupling

two PMTs to a thin scintillator (see Fig. 4.17). On our request, custom R9880U-

210 PMTs were manufactured without the outer covers as shown in Fig. 4.18. This

modification does not affect the PMT’s optical or electrical properties.

Scintillator crystal and PMT non-uniformities as well as variation in the geomet-

rical efficiency for different points of interaction make the measurement sensitive to

the position of interaction. These factors increase the variance and could impact

the measurement of Fano factor. As shown in Fig. 4.15, we used a collimated Cs-

137 (662 KeV) source of 1 mm diameter incident at the center of the scintillator to

localize the position of interaction in the x-y plane (plane parallel to the detector

faces), and a thin scintillation crystal to minimize variation along the z-axis.

To record data, we used a Tektronix DPO72004B oscilloscope at 20 GHz band-

width at a sampling period of 20 ps for our measurements. A negative-edge AND

trigger was used to trigger the oscilloscope. The recorded pulses corresponding to
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Figure 4.16: A rendering of the cross section of the 3D printed assembly used to
seal the PMTs and scintillator in mineral oil. An O ring is secured with a sealant
in groove in the lower half of the part to create an oil-tight seal.

Figure 4.17: Unmodified
R9880U-210 PMT.

Figure 4.18: Modified R9880U-210 PMT.
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the photopeak were selected and corrected for uncertainty in triggering. The os-

cilloscope also adds quantization and electronic noise to the detector signals. The

noise in the two oscilloscope outputs was characterized by studying them without

any signal. For a scintillation event, the noise between the two oscilloscope outputs

was found to be uncorrelated; therefore, it does not affect the area under the cross-

covariance curves. The drifts in the baseline signals were measured by averaging the

oscilloscope outputs from the initial part of the scintillation pulses before the start

of the scintillation event. The drifts in the oscilloscope outputs were subtracted

from the respective detector signals to remove the offsets.

Figure 4.19: PMT Signal from a R9880U-210 PMT detecting a photopeak event in
a LaBr3:Ce scintillation crystal.

The experimental setup described in Sec. 4.3.2 was used to make covariance

measurements on different scintillators. Pulses from two PMTs collecting light from

the same event were detected with a fast PMT and a fast oscilloscope. The output

of the detector was recorded using a DPO72004B at 20 GHz bandwidth and a

sampling period of 20 ps per sample. The scintillation pulses were integrated in

time and added together to make an energy spectrum. The photopeak events were

selected by windowing this energy spectrum. The selected photopeak region was

further divided into smaller energy windows for analysis.
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Figure 4.20: The energy spectrum of LaBr3:Ce with R9880U-100-02 PMTS is shown
above. The photopeak, K-escape and the Compton region are shown in the graph.
Only the photopeak region of the energy spectrum was used for analysis.

Loss mechanisms like x-ray escape or low-angle Compton scattering can result

in energy depositions which are lower than for the original gamma-ray interaction.

These lossy gamma-ray events can be hard to distinguish from events in which all

the original gamma-ray energy was deposited into the crystal. Inconsistent opti-

cal contact between scintillator and the crystal, can also result in broadening of

the photopeak. Thus, the normalized AUCCC from the experimentally measured

photopeak events will be biased towards positive cross-covariance.

If we choose a large energy window consisting of multiple gamma-ray energies

deposited, then the mean pulses will correspond to the average of all the gamma-ray

energy deposited. Events with higher-than-average gamma-ray energy deposited are

more likely to produce pulses with amplitudes larger than the mean pulse, and events

with lower than average gamma-ray energy deposited are more likely to produce

pulses with amplitudes smaller than the mean pulse. Therefore, a large window

corresponding to multiple gamma-ray energies will always result in a positive cross

correlation curve.

The simulations in Sec. 4.3.1.4 indicate that if we choose a small energy window,



94

which has only part of the spectrum of a single gamma-ray energy, then we should

get more accurate and less biased values for normalized AUCCC.

4.4 Results

4.4.1 Simulation results

4.4.1.1 Relationship between Fano factor, shape factor and normalized AUCCC

We used the method described in Sec. 4.3.1.1 to simulate 2000 scintillation events

with photoelectric interaction for the parameters of LaBr3:Ce and YAP:Ce for differ-

ent values of Fano factor. The normalized AUCCC between the two sets simulated

pulses s1 and s2 was calculated using equation Eq. 4.16. We used the proportional

model below to model the relationship between the normalized AUCCC and the

Fano factor.

F̂N = c+
A

m
. (4.20)

Here F̂N is the estimated Fano factor of the scintillation photons, A is the measured

normalized AUCCC, c is the x-intercept, and m is the slope of the model. As

expected, if the Fano factor of the scintillation photons is one, then the two signals

are expected to be uncorrelated and the normalized AUCCC is zero. As the Fano

factor increases beyond one, the photons are bunched and the normalized AUCCC

is positive. For Fano factors less than one, the photons are anti-bunched and the

normalized AUCCC is negative. If the Fano factor is one, the normalized AUCCC

must be zero (A= 0), and c = 1. Therefore, we need only to estimate the inverse of

the slope for our model, and our model reduces to

F̂N = 1 +
A

m
. (4.21)
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4.4.1.2 Model for LaBr3:Ce

The simulation was setup to match the experiment. The LaBr3:Ce scintillator was

assumed to produce 0.662 MeV × 66, 000 (photons per MeV) = 43692 scintillation

photons. The collection efficiencies of both PMT’s were assumed to be 0.28, and

experimentally observed mean values of photopeaks of the two PMTs were set as〈
T∫
0

s1(t)dt

〉
PP

= 3.22 × 10−10 volt-seconds, and

〈
T∫
0

s2(t)dt

〉
PP

= 3.03 × 10−10

volt-seconds. The rise time of the scintillation pulse was assumed to be zero, and

the decay time was estimated from the measurements as 15.4 ns. The mean gains

were calculated from Eq. 4.18, and the mean gain variance factors were set to

β1 = β2 = 0.25.

Figure 4.21: Model for the relationship between the normalized AUCCC and the
Fano factor for LaBr3:Ce. The normalized AUCCC has a proportional relationship
with the Fano factor.

The model for the relationship between the normalized AUCCC (Normalized

AUCCCLaBr3:Ce) and the Fano factor for LaBR3:Ce is

FNLaBr3:Ce
= 1 + 473.9847× (Normalized AUCCC)LaBr3:Ce. (4.22)
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4.4.1.3 Model for YAP:Ce

The YAP:Ce scintillator was assumed to produce 0.662 MeV ×15, 000 photons per

MeV = 9930 scintillation photons. The collection efficiencies of each of the PMT’s

was assumed to be 0.28, and the experimentally observed mean values of the pho-

topeaks of the two PMTs were set as

〈
T∫
0

s1(t)dt

〉
PP

= 4.52 × 10−9 volt-seconds,〈
T∫
0

s2(t)dt

〉
PP

= 4.68 × 10−9 volt-seconds were used as the detector means. The

rise time of the scintillation pulse was assumed to be zero, and the decay time was

estimated from the measurements as 30 ns. The mean gains were calculated from

Eq. 4.18 and the mean gain variance factors were set to β1 = β2 = 0.25.

Figure 4.22: Model for the relationship between the normalized AUCCC and the
Fano factor for YAP:Ce. The normalized AUCCC has a proportional relationship
with the Fano factor.

The model for the relationship between the normalized AUCCC (Normalized

AUCCCYAP:Ce) and the Fano factor for YAP:Ce is

The model of our experiment for YAP:Ce is

FNYAP:Ce
= 1 + 55.1314× (Normalized AUCCC)YAP:Ce. (4.23)
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4.4.2 Experimental results

The experimental setup described in Sec. 4.3.2 was used to make measurements on

YAP:Ce and LaBr3:Ce scintillators. Pulses from two PMTs collecting light from

the same event were recorded with a fast detector and a fast oscilloscope and their

cross-covariance curve computed. The normalized AUCCC was then computed and

stored. The measurements for LaBr3:Ce were conducted with PMT voltages of 500

V, while the measurements for YAP:Ce were conducted with PMT voltages of 700 V.

Lower LaBr3:Ce PMT voltages were used to ensure that the higher rate of photon

emission in LaBr3:Ce does not saturate the PMTs. The cross-covariance for the

complete photopeak from a LaBr3:Ce scintillation crystal is shown in Fig. 4.23.

Figure 4.23: The temporal for different energy windows of the photopeak of an
experimental measurement on LaBr3:Ce. The plots in the left half of the figure
show the parts of the photopeak histogram that were used to calculate the cross-
covariance in the right half of the figure. The cross-covariance curve of the measured
data does not appear to be sensitive to the energy window of the photopeak used
to calculate it.

We have to threshold the experimental data to isolate photopeak events from

Compton events. Unlike the simulated data, the experimental data cannot be as-

sumed to originate from one gamma-ray energy. In Fig. 4.23 we see that the

cross-covariance curves do not change substantially for different energy windows of
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the photopeak histogram.

We can also see from Fig. 4.24 and Fig. 4.25 that the average normalized

AUCCC became more negative when we divided the photopeak into five or more

equal energy windows as compared to using the complete photopeak (One large en-

ergy window). Dividing the photopeak into five, ten or fifteen energy windows does

not significantly change the normalized AUCCC. This behavior could be because a

smaller energy window contains interactions from fewer gamma-ray energies. The

measurements with the worst energy resolutions (measurement 3 and 6 in Fig. 4.23)

also recorded the biggest drops between the normalized AUCCCs for one photopeak

energy window and the five photopeak energy windows.

Figure 4.24: The average normalized AUCCC for different number of energy win-
dows of the photopeak of an experimental measurement on LaBr3:Ce. The normal-
ized AUCCCs for the measured data does not appear to be sensitive to the size of
the energy window of the photopeak used to calculate it.

As we have shown in Sec. 4.3.1.4, if we only have data from only one gamma-ray

energy, the normalized AUCCC is independent of the size of the energy window,

we must choose a smaller energy window to minimize the presence of other gamma-

ray energies. Although, we expect the photopeak region to yield better results,

windowing the energy into small windows also gives us an option to use the Compton

region of the energy spectrum.
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Figure 4.25: The average normalized AUCCC for different number of energy win-
dows of the photopeak of an experimental measurement on YAP:Ce. The normalized
AUCCCs for the measured data does not appear to be sensitive to the width energy
windows of the energy spectrum used to calculate it.

4.4.3 Cross-covariance for different values of relative time shift

We also used Eq. 4.24 to calculate the cross-covariance for different values of the

relative time shift τ .

σ(t, τ) =

〈[
s1(t)−

〈
s1(t)

〉][
s2(t+ τ)− 〈

s2(t+ τ)
〉]〉

. (4.24)

The resulting matrix is shown in Fig. 4.26 with time t varying along the x-axis and

the time shift τ along the y axis. The region above the diagonal (t = τ line) is zero

because there is no overlap between the non-zero regions of the two pulses. A small

time region before the start of the scintillation signal was also recorded, this causes

an offset in the most negative region of the image, and results in the shift of that

region from the diagonal.

While most of the Fig. 4.26 is either zero or negative, there is a small region

at τ = 0, t ≈ 7.5 ns that is positive. This is an experimental artifact caused by

the uncertainty in the triggering mechanism of our system. The mean detector

signals are calculated from an ensemble from all the photopeak detector signals,
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they start rising from zero at t ≈ 7 ns. If a scintillation pulse arrives a little before

the time when mean detector signals start to rise, for a small amount of time after

the scintillation pulse arrives, the detector signals are positive, but the mean signals

are still zero. Therefore, both differences between the amplitudes of the signals and

their respective mean signals will be positive, giving us a positive cross-covariance.

Similarly, if the detector pulses arrive a little earlier, the cross-covariance will again

be positive.

As the scintillation pulse decays, due to the rarity, the statistics tend towards

Poisson statistics. Therefore, for larger values of t the cross-covariance tends toward

zero. As τ increases beyond 30 ns, the cross-correlations decrease and tend towards

zero Barrett and Myers (2004).

4.4.4 Estimate of the Fano factor

The normalized AUCCC for YAP:Ce and LaBr3:Ce was estimated by using the

experimental data with 10 energy windows. The Fano factors for YAP:Ce and

LaBr3:Ce were estimated using Eq. 4.23 and Eq. 4.22, respectively.

Table 4.1: Fano factor estimates from Normalized AUCCC

Normalized AUCCC Photon Fano factor (FN)

YAP:Ce −1.1×10−3±5.2×10−5 0.9385± 0.0107
LaBr3:Ce −2.0×10−3±9.3×10−5 0.0292± 0.1565

4.5 Comparison of Fano factor estimates from temporal and integral correlations

The estimates of Fano factor from the time correlations for both the scintillators

are smaller than the estimates from the integral correlations in the previous chap-

ter. This could be a result of a bias towards lower Fano factor values in the time-

correlation estimates, or a bias towards higher Fano factor values in the integral-

correlation estimates or both.

The different loss mechanisms like x-ray escape and low angle Compton scat-

tering will bias the Fano factor estimates from integral correlations biased towards
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Figure 4.26: Cross-covariance as a function of the detector signal as a funtion of
time t and shift τ .

higher Fano factors. The photon Fano factor estimates of LaBr3:Ce from both the

methods are within each others error bars. We are not aware of a bias in our

measurements from the temporal correlations.

The estimate of the correlation coefficient of YAP:Ce is close to zero (r̂12Y AP :Ce
=

0.10), as a result the estimate of the photoelectron Fano factor was close to one

(F̂nY AP :Ce
= 1.13). The estimates of the photon Fano factor are sensitive to the value

of η. The value of η amplifies the deviation of the correlation coefficient from zero.

As a result the small deviation from zero in the estimate of the correlation coefficient

is amplified and the estimate of the photon Fano factor for YAP is FNY AP :Ce
= 1.46.
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For example, a value of r̂12 = −0.1 will yield a photon Fano factor of (FN = 0.6526).

The value of the correlation coefficient of r̂12 = −0.0165 will yields the Fano factor

estimate from the temporal correlation.
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CHAPTER 5

Impact of Fano Factor on Position and Energy Estimation in Scintillation Cameras

Large parts of this chapter have been published in (Bora et al., 2015).

5.1 Introduction

A gamma-ray scintillation camera has two main components – a scintillation crystal

and an array of optical detectors. When a scintillation crystal is excited by gamma-

rays, it emits optical photons. These optical photons are then detected by an array

of optical detectors whose outputs are used to estimate the position of interaction

(x, y, z) and the energy deposited (E).

The difference between gamma-ray spectroscopy and gamma-ray imaging camera

is that gamma-ray spectroscopy detectors estimate only the energy of gamma-rays.

Therefore, they are designed to make the scintillation light collection independent of

the position of interaction. However, in a gamma-ray scintillation camera, both the

energy and position of interaction of the gamma-rays are estimated. In a gamma-ray

scintillation camera, the estimates of position and energy influence each other and

the position of interaction (x, y, z) is used to compensate for any position dependence

of the light collection.

In a gamma-ray scintillation camera, the various parameters that describe the

interaction of the gamma-ray photon with the detector, such as the position of inter-

action and energy deposited by a detected gamma-ray photon, are estimated using

the detector outputs. Since a reduction in the Fano factor results in a smaller vari-

ance in the number of emitted optical photons and consequently a smaller variance

in the detector outputs, we would expect that this should also lead to reduction in

variance of the parameters estimated from the low-variance detector outputs. Thus,

a variation in Fano factor could potentially affect the energy and spatial resolution
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of a gamma-ray imaging system.

We used two approaches to study the impact of Fano factor on the spatial and

energy resolution – calculating the Cramér-Rao Bound (CRB) and estimating the

variance of a maximum likelihood (ML) estimator (Cramer, 1946; Rao, 1945). CRB

is the theoretical lower bound on the variance of an unbiased estimator.

An unbiased estimator is efficient if it achieves the CRB (Barrett and Myers,

2004). If an efficient estimator exists, the ML estimator will be efficient. We do not

directly prove the existence of an efficient estimator for our problem. However, if

the estimates of the variance of the ML estimator are unbiased and approach the

CRB – then the results are consistent with the hypothesis that an efficient estimator

exists and our ML estimator is efficient. We can then quantitatively validate both

of our approaches.

The use of ML estimation methods for position estimation in scintillation

gamma-ray detectors was first proposed by Gray and Macovski (Gray and Macov-

ski, 1974), and then demonstrated on modular gamma-cameras (Milster et al., 1984,

1985; Clinthorne et al., 1987; Milster et al., 1990; Aarsvold et al., 1995). The use

of ML position estimation in SPECT imaging systems was demonstrated by Rowe

et al. (Rowe et al., 1993). Availability of faster computing, advances in calibration

and faster algorithms have made ML position estimation very fast and inexpen-

sive to implement (Chen et al., 2005; Hesterman et al., 2010). The ML estimators

have significant advantages over the traditional Anger arithmetic – no bias, lower

mean-squared error and the ability to achieve the CRB (Barrett et al., 2010).

The ability of the ML position estimators to approach the CRB in scintillation

gamma-ray detectors has made the CRB a very useful tool. The CRB has been

widely used for evaluating the performance of gamma-ray detectors (Li et al., 2012;

Moore, 2011). The CRB has also been used to optimize gamma-camera design (Ko-

revaar et al., 2013; van der Laan et al., 2006), evaluate different readout strategies

(Salcin et al., 2011) and calculate the theoretical bound on timing resolution (Seifert

et al., 2012).

This chapter is organized in the following sections: In Sec. 5.2.1, we briefly in-
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troduce the likelihood function, Fisher information matrix and Cramér-Rao bound.

In Sec. 5.3 we discuss our model of production and transport of scintillation light.

We discuss the various implementation details including assumptions and simulation

parameters. We introduce two geometries in Sec. 5.4 – with 3× 1 and 3× 3 optical

detector elements. For the 3 × 1 geometry, we analytically calculate the CRB for

two special values of Fano factor (FN = 0 and FN = 1), and we use a more general

model to numerically calculate the CRB for Fano factors other than zero. We use

Monte-Carlo simulations to estimate the variance of the ML estimator for the 3× 1

and the 3 × 3 geometries. The results of the analytical and the numerical calcula-

tions of the CRB, and the variance of the ML estimator for the 3× 1 geometry and

the 3× 3 geometries are discussed in Sec. 5.5.

5.2 Theory

5.2.1 Likelihood function

If we intend to estimate a parameter vector (
θ) from acquired data (
g), we can define

the likelihood function as

l(
θ|
g) = Pr(
g|
θ). (5.1)

Here Pr(
g|
θ) is the probability of the parameters (
θ) resulting in data outputs (
g).

In a gamma-ray scintillation camera, 
g is a vector of detector outputs for a gamma-

ray interaction, and as we are estimating the position of interaction and gamma-ray

energy, 
θ = (x, y, z, E). The likelihood function l(
θ|
g) gives us the likelihood of

measuring 
g given a gamma-ray photon that deposits energy E at location (x, y, z)

in the scintillation crystal (Barrett and Myers, 2004).

5.2.2 Score, Fisher information matrix and Cramér-Rao bound

The sensitivity of the likelihood function to changes in the parameter vector 
θ is

given by the score (
s). The score is defined as the gradient of the logarithm of the

likelihood function (log-likelihood) of the acquired data:
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si(
g|θ) =
∂
∂θi

Pr(
g|
θ)
Pr(
g|
θ) =

∂

∂θi
log(Pr(
g|
θ). (5.2)

The Fisher information matrix (I) is the covariance matrix of the score. The

mean value of the score is given by

〈s〉	g|θ =

∫ ∞

−∞
dMg pr(
g|θ)

∂

∂	θ
pr(
g|
θ)
pr(
g|
θ) =

∂

∂
θ

∫ ∞

−∞
pr(
g|
θ) =

∂

∂θ
(1) = 0. (5.3)

As the mean value of score is zero (Barrett and Myers, 2004), the (i, k)th element of

the Fisher information matrix are given by

Iik = 〈sisk〉	g|	θ . (5.4)

The angle brackets here indicate the expectation value, which involves multiplying

sisk by the probability Pr(
g|
θ) and integrating over all the detector outputs 
g for

a given value of 
θ = (x, y, z, E). The diagonal elements of the inverse of the Fisher

information matrix give us the CRB,

CRBi = (I−1)ii. (5.5)

Here the CRBi denotes the Cramér-Rao bound for the ith parameter. If we use an

unbiased estimator to estimate a parameter θ̂i, then the variance of θ̂i (V ar(θ̂iUB
))

cannot be lower than the CRB of the ith parameter

V ar(θ̂iUB
) ≥ CRBi. (5.6)

In a typical gamma-ray scintillation camera, four parameters (x, y, z, E) are es-

timated. Therefore, the complete Fisher information matrix is a 4 × 4 matrix.

However, when we know the value of some of these parameters, then the Fisher

information dimensionality reduces. For example, if we place a thin lead slit per-

pendicular to the y-axis above the scintillator crystal. The slit localizes the y in-

teractions position and we can treat y as a known parameter and only estimate
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(x, z, E), reducing the Fisher information to a 3 × 3 matrix. In this scenario, as

we assume that the exact value of y is known, the uncertainty in the ŷ estimates

does not add uncertainty to the x̂, ẑ, Ê estimates. In fact, it can be mathematically

shown that for any estimation model, the CRB on the ith parameter calculated from

a Fisher information matrix of dimensions a× a denoted by CRB(a)i will always be

greater than or equal to the CRB calculated from a smaller square sub-matrix of

the a× a Fisher information matrix (See A).

CRB(a)i ≥ CRB(a−1)i . (5.7)

5.2.3 Variance of maximum likelihood estimator

The variance of an unbiased estimator is a good metric for the resolution of a

system. For an unbiased estimator, a smaller variance enables a system to resolve

closer values of the parameters, giving the system better resolution.

The ML estimator maximizes the likelihood function to yield the most likely

parameter vector 
θ that would result in output data 
g. In our study, detector

outputs (
g) were generated for a position of interaction (x, y, z) and gamma-ray

energy deposited (E). The ML estimator was applied on these set of detector

outputs to estimate x̂, ŷ, ẑ and Ê. The operator argmax	θ returns the values of the

arguments of the likelihood function at its maximum value


̂
θ = argmax

θ̃
(l(
θ|
g)). (5.8)

The variance of the ML estimator is estimated by computing the variance of the

estimates.

5.3 Model

5.3.1 Modeling the scintillation process

When excited by gamma-rays, a scintillator crystal deexcites through a complicated

cascade process and emits optical photons (Knoll, 2010; Rodnyi, 1997). In this study
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all the scintillation light is assumed to be emitted from the point of interaction. This

is an approximation as the energy deposited by the gamma-ray photon produces a

high-energy electron, which travels at a high velocity depositing energy and creating

electrons=hole pairs along its path. Some of these electron-hole pairs recombine

radiatively to emit optical scintillation photons not just at the point of interaction,

but along the path of the high-energy electron.

The excitons that de-excite to emit the optical photons have no memory of

the direction of the incident gamma-ray or the high-energy electron. Hence, it is

reasonable to assume that the scintillation photons are emitted isotropically from

the point of interaction.

Consider a gamma-ray interaction that deposits energy E in the scintillator. The

scintillator de-excites by producing a random number of optical scintillation photons

(N). The mean number of optical photons emitted is given by

N = Q · E. (5.9)

Here, Q is the average number of optical photons emitted per-unit-energy deposited.

Scintillator non-proportionality can result in a non-linear relationship between E and

N which makes Q a function of deposited energy (Moses et al., 2012). If the Fano

factor of the scintillator is denoted by FN , the variance in the number of optical

photons is given by

σ2
N = FN ·N. (5.10)

The probability of producing N optical scintillation photons given energy E

deposited is modeled as a discrete normal distribution with meanN and variance FN ·
N . In the simulations, as the mean and variance of this discrete normal distribution

are relatively large, the probability of N is approximated by a sampled continuous

normal distribution (Szablowski, 2001) given by

Pr(N |FN , E) =
1√

(2πFNQE)
exp

(
−(N −QE)2

2FNQE

)
. (5.11)
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Even if Q is a function of the deposited gamma-ray energy, the relationship be-

tween the deposited gamma-ray energy and average number of scintillation photons

emitted is a monotonically increasing function – as we increase the energy of the

gamma-ray photons, on average, a larger number of scintillation photons are emit-

ted. Therefore, instead of estimating the position of interaction and the deposited

gamma-ray photon energy (x, y, z, E), we can estimate the position of interaction

and the mean number of scintillation photons emitted (x, y, z,N). The statistical

model given in (5.11) can be alternatively written as

Pr(N |FN , N) =
1√

2πFNN
exp

(
−(N −N)2

2FNN

)
. (5.12)

5.3.2 Modeling the optical photon transport

If N optical scintillation photons are produced from a gamma-ray interaction at

(x, y, z), the number of detected optical photons on a J-element optical detector

follows a multinomial distribution with J+1 outcomes. J of the outcomes are due

to the optical photons detected at detector-elements j = 1, 2 · · · J , with probability

of detection at the jth element, αj. In our model αj is given by

αj(x, y, z) = η
Ωj(x, y, z)

4π
. (5.13)

Here η, the quantum efficiency of the optical detector-elements, is assumed to be

independent of the angle of incidence, and Ωj is the effective solid angle subtended

by the jth detector-element from the point of interaction (x, y, z). Specular or Lam-

bertian reflectors can be used to increase the effective solid angle. We have also

ignored all scattering processes – only optical photons directly impinging on the

detector are considered. Thus, αj is equal to the product of quantum efficiency and

geometrical efficiency of the jth detector element. The (J+1)th outcome contains all

the optical photons not detected by any of the J detector elements. The probability

of an optical photon not being detected is (1−
J∑

j=1

αj) (Barrett and Myers, 2004).
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The detector array is assumed to be photon counting and noiseless. These two

assumptions ensure that the data outputs are integer-valued and reduce the Fisher

information matrix calculation from an integral to a summation. For each gamma-

ray event, the detector-array outputs 
g is a J-dimensional integer vector whose jth

element is the number of optical photons detected on the jth detector-element. The

probability of measuring 
g for a gamma-ray interaction which produces N optical

photons at (x, y, z) is given by the multinomial distribution.

Pr(
g|x, y, z,N) = N !

(
J∏

j=1

α
gj
j

gj!

) (
1−

J∑
j=1

αj

)⎛
⎜⎜⎝N−

J∑
j=1

gj

⎞
⎟⎟⎠

(
N −

J∑
j=1

gj

)
!

. (5.14)

The complete probability of 
g for an interaction at position (x, y, z), Fano factor

FN and deposited energy E producing on average N optical scintillation photons is

given by marginalizing (5.14) over N

Pr(
g|x, y, z, FN , N) =
∞∑

N=1

Pr(
g|x, y, z,N)× Pr(N |FN , N). (5.15)

We substitute (5.15) in (5.1) to get an expression for the likelihood function

l(x, y, z,N |
g) of a gamma-ray interaction at x, y, z with mean number of photons

emitted N , resulting in detector output vector 
g.

l(x, y, z,N |FN , 
g) = Pr(
g|x, y, z, FN , N) =
∞∑

N=1

Pr(
g|x, y, z,N)× Pr(N |FN , N).

(5.16)

5.4 Implementation

5.4.1 Assumptions for maximizing the impact of Fano factor

All practical detectors convert a fraction of the incident optical photons to photoelec-

trons, which then are amplified and recorded. The Fano factor of the photoelectrons
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on the jth detector-element (Fnj) is given by (Bousselham et al., 2010)

Fnj = 1 + αj(FN − 1). (5.17)

Here, αj is the fraction of emitted optical photons detected at the jth detector-

element. In the optical photon transport model described in Sec. 5.3.2, αj is the

product of the quantum and geometrical efficiencies of the jth detector-element. If

each detector element captures a very small fraction of scintillation light (small αj),

then irrespective of the Fano factor of the scintillator, all the detectors elements

will have Poisson statistics and a Fano factor of one(See (5.17)). Our initial studies

conducted with practical geometries and quantum efficiency of 40% found no impact

of Fano factor on the spatial resolution. To ensure that our simulation results are

not an artifact due to low optical photon collection efficiency, we maximized the

impact of the Fano factor on the detector outputs by maximize the geometrical and

quantum efficiencies of the detector-elements.

The geometrical efficiency was maximized by using a large-area optical detector

divided into a small number of detector-elements. Using a 100% reflecting retrore-

flector, the scintillation light emitted in a direction away from the detector is re-

flected back onto the detector. The retroreflector effectively doubles the geometrical

efficiency of the detector. The quantum efficiency of the detector is set to one, thus

all optical photons incident on the detector-array are detected and counted. Sources

of noise which will add variance are assumed to be zero – the photodetector is as-

sumed to be noiseless and the scintillator crystal is assumed not to scatter or absorb

the scintillation light.

5.4.2 Computation limitations for calculating the Cramér-Rao bound

To calculate the CRB, we first need to compute the score and its covariance matrix.

The computation required to calculate the score can be clearly seen by using (5.15)

to expand the angle brackets in (5.4)

Iik =
∞∑

N=1

∑
	g

(sisk)Pr(
g|x, y, z,N)Pr(N |FN , N). (5.18)
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For an optical detector with J detector elements, calculating one matrix element of

the Fisher information matrix for one set of 
θ = (x, y, z,N) requires J+2 dimensional

summations. Equation (5.18) requires J+1 dimensional summations; J-dimensional

summations over all the detector outputs and a summation over N . In addition,

the expression for Pr(
g|x, y, z,N) from (5.15) has a summation over N . Due to

the large computation time required to calculate the Fisher Information matrix, we

computed the Fisher information matrix only for a geometry with a 3 × 1 array of

detector elements.

5.4.3 Geometry of 3 × 1 detector

In one of our studies, the scintillator crystal is a single crystal with dimensions of 20

cm × 20 cm × 2 cm. The scintillator crystal is sandwiched between a 20 cm × 20 cm

× 1 cm light guide of the same refractive index as the scintillator and a retroreflector

on the opposite face (see Fig. 5.1). Light from the scintillator crystal goes through

the light guide onto the optical detector. Reflectivities at the interfaces between the

crystal, light guide and optical detector are assumed to be zero, and the interface

between the crystal and the retroreflector is assumed to be 100% reflecting. The

four other faces of the crystal are blackened and assumed to be 100% absorptive.

The 3× 1 detector geometry has three 5 cm × 15 cm optical detector-elements.

In this 3 × 1 geometry, we lose nearly all information about y, thus, we only

estimate x, z and N . To minimize computation, y is treated as a known parameter.

We used the symmetry of the system and computed the Fisher information matrix

for only one side of the detector as shown in Fig. 5.1.

The mean detector response function (MDRF) is the average detector response

for a given position of interaction and gamma-ray energy (x, y, z, E). The quantum

efficiency is assumed to be one (η = 1), and the 100 % reflecting retroreflector

doubles the effective solid angle subtended by each detector-element. The expression

of the normalized MDRF of jth detector-elements is

MDRFj(x, y, z) = 2× Ωj(x, y, z)

4π
. (5.19)



113

Figure 5.1: Geometry used in the 3×1 detector simulations. The 3× 1 detector array
has 3 detector-elements of 5 cm × 15 cm each to ensure high collection efficiency
of optical photons. The red dots indicate the points of interaction in the crystal at
which the CRB and variance of maximum likelihood estimator were estimated. The
top view is shown without the retroreflector.

The MDRF calculated from (5.19) is plotted as a function of x in Fig. 5.2 and as

a function of z in Fig. 5.3. The value of the MDRF and its derivative are very

important for the calculation of the Fisher information matrix as well as for ML

estimations. At (x = 0 cm, y = 0 cm, z = 2 cm), on average 76% of the total

emitted scintillation light is collected. As the point of interaction moves towards

the edge of the detector at (x = 5 cm, y = 0 cm, z = 2 cm), the total average light

collection drops marginally to 67%. At the edge of the photodetector (x = 7.5 cm,

y = 0 cm, z = 2 cm), the total light collection drops to 40%.

5.4.4 Geometry of 3 × 3 detector

To ensure that the results from our analysis do not suffer from artifacts due to

the one-dimensional geometry of our 3 × 1 detector or from treating y as a known

parameter, the effect of the Fano factor in a 3× 3 detector is investigated. As seen
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Figure 5.2: Mean detector response function (MDRF) of the 3×1 detector geometry
is plotted as a function of x at y = 0 cm and z = 2 cm.

Figure 5.3: Mean detector response function (MDRF) of the 3×1 detector geometry
is plotted as a function of z at x = 1 cm and y = 0 cm.

in Fig. 5.4, the geometry of the scintillator crystal and the retroreflector is identical

to the geometry described in Sec. 5.4.3. The photodetector is divided into nine 5

cm × 5 cm detector-elements in a 3 × 3 configuration for a total area of 15 cm ×
15 cm.

Computational limitations described in Sec. 5.4.2 prevent us from computing

the CRB for a detector with more than three detector elements. We instead perform
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a Monte-Carlo simulation to estimate the variance of the ML estimator.

Figure 5.4: Detector geometry used in the 9 detector-element simulations. The 3
× 3 detector array has 9 detector-elements of dimensions 5 cm × 5 cm each. The
total area of the optical detector is 15 cm × 15 cm. The red dots indicate the points
of interaction in the crystal at which the variance of ML estimator was estimated.
The top view is shown without the retroreflector.

5.4.5 Analytical solution

The expression for the score for x for the model described in Sec. 5.3 involves taking

the logarithm of a sum of an expression which contains a number of factorials (see

(5.20)). To calculate the elements of the Fisher information matrix, covariance of

the score has to be averaged over all the values of 
g for the given value of (x, y, z,N).

As a result, a general analytical solution to (5.20) with an expression for the Fisher

information as a function of Fano factor is extremely challenging if not impossible.

sx(
g|x, y, z, FN , N) =
∂

∂x
log

( ∞∑
N=1

Pr(
g|x, y, z,N)× Pr(N |FN , N)

)
. (5.20)

However, we can analytically calculate the elements of the Fisher information

matrix for two special cases: FN = 0, and FN = 1. Both calculations were done for
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the 3× 1 geometry in Fig. 5.1. As we cannot estimate four independent parameters

from three detector outputs, we treat y as a known parameter and calculate a 3× 3

Fisher information matrix.

5.4.5.1 Multinomial case (FN = 0)

When FN = 0, there is no uncertainty in the value of N and N = N̄ (N̄ can only take

integer values). Therefore, Pr(
g|x, y, z,N) reduces to the multinomial distribution

Pr(
g|x, y, z,N) in (5.14). As Pr(
g|x, y, z,N) varies with N in a discrete manner, its

derivative with respect to N is either zero or undefined. Therefore, the score for N

is either zero or not defined. This limits us to calculating a 2×2 Fisher information

matrix with x and z as unknown parameters and y and N as known parameters.

Using the mean, variance and covariance of the multinomial distribution, the

definition of αj from (5.13) and some arithmetic, we derived the expressions for the

elements of the Fisher information matrix for the FN = 0, I
(mn)
(xx) , I

(mn)
xz and I

(mn)
zz

case as

I(mn)
xx =

N

(1− α1 − α2 − α3)
×
{(

∂α1

∂x

)2(
1− α2 − α3

α1

)
+

(
∂α2

∂x

)2(
1− α1 − α3

α2

)

+

(
∂α3

∂x

)2(
1− α1 − α2

α3

)
+ 2

∂α1

∂x

∂α2

∂x
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(5.22)
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(5.23)

We use (5.21, 5.23, 5.22) to construct the Fisher information matrix for the 3 × 1

geometry in Sec. 5.4.3 and calculate the Cramée-Rao bound for the multinomial

case (FN = 0).

5.4.5.2 Poisson Case (FN = 1)

Let us consider the Poisson case (FN = 1) applicable for any geometry with three

detector elements. Here, Pr(N |N) is a Poisson distribution with mean N

Pr(N |N) =
N

N
e−N

N !
. (5.24)

For the Poisson-distributed scintillation photons detected with three detectors

elements, we treated x, z,N as unknown parameters and calculated a 3 × 3 Fisher

information matrix. To compare the analytical results from the FN = 0 and FN =

1 cases, we also calculated a reduced CRB from the 2 × 2 section of the Fisher

information matrix which yields the CRB for the x and z estimates.

Multinomial sampling with three outcomes of the Poisson-distributed scintilla-

tion light, results in the three Poisson-distributed detector outputs, with means

α1N,α2N and α3N (Barrett and Myers, 2004).

Pr(
g|x, y, z,N) =
3∏

i=1

(αiN)gie(αiN)

gi!
. (5.25)

Using the expressions for the mean, variance, covariance of the Poisson distribu-

tion, the definition of αj in (5.13) and a little arithmetic, we derived the expression
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for the I
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xx , I

(poiss)
zz , I

(poiss)

N N
I
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and I
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elements of the Fisher infor-

mation matrix for FN = 1 case as
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I
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N N
=

α1 + α2 + α3

N
, (5.28)
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(5.29)
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I
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zN
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1
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(
∂α2
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+

1

α3

(
∂α3
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. (5.31)

We use (5.26, 5.27, 5.28, 5.29, 5.30, 5.31) to construct the Fisher information matrix

for the 3 × 1 geometry in Sec. 5.4.3 and calculate the Cramée-Rao bound for the

Poisson case (FN = 1).

5.4.6 Calculation of the Fisher information matrix and the Cramér-Rao bound

All Cramér-Rao calculations were performed for the 3×1 geometry in Fig. 5.1. The

analytically calculated CRB values are denoted by CRBbA, while the numerically

computed CRB values are denoted by CRBbC . Here, b indicates that a b× b Fisher

information matrix was used to compute the CRB.
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5.4.6.1 Analytical Solution for FN = 0 and FN = 1

The expressions for the elements of Fisher information matrix in Sec. 5.4.5 for the

multinomial (FN = 0) and Poisson (FN = 1) cases along with the derivatives of the

MDRF curves in Fig. 5.2 and 5.3 are used to calculate the elements of the Fisher

information matrix for various points of interaction (x, y, z) and mean number of

optical photons emitted (N).

For the multinomial (FN = 0) case, we are limited to calculating a 2× 2 Fisher

information matrix, while for the Poisson (FN = 1) case we calculated a 3×3 Fisher

information matrix. The Fisher information matrices were numerically inverted to

get the CRBs.

5.4.6.2 Numerical computation of Cramér-Rao bound

The numerical computation of the Fisher information matrix for Fano factors other

than zero, at a given position of interaction (x, y, z) and mean number of scintillation

photons emitted (N), requires us to calculate the score for the different parameters

which are being estimated. The score for x was calculated numerically using the

following expression

sx(
g) =
∂

∂x
log(Pr(
g|x, y, z, FN , N))

≈ log(Pr(
g|x+Δx, y, z, FN , N))− log(Pr(
g|x, y, z, FN , N))

Δx
. (5.32)

The convergence of the numerical derivative was verified by using different values of

Δx. Scores for z andN , denoted by sz, and sN respectively, have similar expressions.

For the 3 × 1 geometry described in Sec. 5.4.3, y is treated as a known parameter.

Thus, we estimated only three parameters, x, z, and N , and the Fisher information

matrix is a 3 × 3 matrix.

The elements of Fisher information matrix for each set of (x, y, z,N) were cal-

culated by a 5-dimensional summation, summing ± 5σ about the respective mean

values in each of the 5 dimensions. The Fisher information matrix was inverted and
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the diagonal elements of the inverse of the Fisher information matrix were the CRB

of the respective estimators.

5.4.7 Estimating the variance of the maximum likelihood estimator

5.4.7.1 Generating data

To estimate the variance of the ML estimator, we used the forward model described

in Sec. 5.3 to generate the detector output data for a given position of interaction

and energy deposited. For a given value of the Fano factor of scintillation photons

(FN) and mean number of optical photons emitted (N), the probability distribution

in (5.12) was sampled to get the number of optical photons generated (N) from

the scintillation process. Using the geometries of the scintillator and the detector

array, the probabilities (αj) of an optical photon emitted at the point of interaction

(x, y, z) creating a photoelectron at the jth detector-element were computed. The

numbers of optical photons detected at each detector element were generated using

the multinomial statistics in (5.14) with the total number of photons, N , and the

probability of detection at jth detector-element, αj. Thus detector output vectors

were generated for a gamma-ray with energy E which interacts with a scintilla-

tor having Fano factor FN , producing on an average N photons at the point of

interaction (x, y, z).

5.4.7.2 Maximizing the log-likelihood

As the logarithm is a monotonically increasing function, the logarithm of the like-

lihood function achieves its maximum value at the same points as the likelihood

function itself. Instead of maximizing the likelihood function, it is often more con-

venient to maximize the log-likelihood.

In this study, for a given data vector 
g, the negative of log-likelihood function

given in (5.16) was minimized using the Nelder-Mead method to estimate the posi-

tion of interaction (x̂, ŷ, ẑ) and the energy deposited (N̂) (Nelder and Mead, 1965).

This is equivalent to maximizing the log-likelihood of the observed data to get the
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ML estimates

(x̂, ŷ, ẑ, N̂)ML = arg max
(x,y,z,N)

(
log(l(x, y, z,N |
g))) . (5.33)

5.5 Results

All the CRB calculations and ML estimations for both the 3 × 1 geometry in Fig.

5.1 and the 3 × 3 geometry in Fig. 5.4 were computed for different values of the x

coordinate of the point of interaction at y = 0 cm and z = 2 cm. The gamma-ray

energy was arbitrarily assumed to be 70 KeV. We assumed a scintillator yield of

50,000 optical photons per MeV to get on average 3500 optical photons per gamma-

ray interaction.

The CRB calculations were only performed for the 3×1 detector geometry in Fig.

5.1. The analytically calculated CRB from the 2 × 2 and 3 × 3 Fisher information

matrices are denoted by CRB2A and CRB3A respectively. The numerically computed

CRB from the 3× 3 Fisher information matrix is denoted by CRB3C .

5.5.1 Resolution and variance of the estimator

The spatial resolution is often defined as the full width at half maximum (FWHM)

of the distribution of a position estimator. If the position estimates are assumed to

be normally distributed, then the relationship between the variance of the position

estimator and FWHM is given by FWHM = 2.35σ. Therefore, the spatial resolution

of the x ML estimates denoted by δMlx is given by

δMLx = 2.35σ̂MLx . (5.34)

As the CRB is a lower bound on the variance of the unbiased estimator, SRCRB is

the lower bound on the spatial resolution of an unbiased estimator

δCRBx = 2.35
√
(CRB)x. (5.35)
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A gamma-ray interaction in which all the energy from the gamma-ray is de-

posited in the crystal is a photopeak event. Thousands of these photopeak events

are collected to make a histogram. Energy resolution is defined as the ratio of the

FWHM and the mean of the photopeak. It is usually expressed as a percentage.

δE =
FWHM of Photopeak

mean of Photopeak
100 (5.36)

If we assume that the energy estimates are normally distributed, then the FWHM

of the photopeak is given by FWHM = 2.35σE. Using the relationship between E

and N , E = QN , we get σE = QσN . Thus, the energy resolution computed using

the ML estimates, denoted by δML, is given by

δMLE
=

2.35Qσ
N̂

QN
100 =

2.35σ
N̂

N
100. (5.37)

Similarly, the lower bound on the energy resolution from an unbiased estimator

denoted by δCRBE
is given by

δCRBE
=

2.35
√
CRBE

N
100 (5.38)

5.5.2 Results for the 3 × 1 detector geometry

5.5.2.1 Analytical solution for Cramér-Rao bound for 3 × 1 geometry for FN = 0

and FN = 1

As we could analytically calculate only a 2×2 Fisher information matrix for FN = 0,

we compared the bounds on x and z resolution with the resolution bound from the

corresponding reduced Fisher information matrix for the FN = 1 case. The CRB

computed with the reduced 2 × 2 Fisher information matrix gives us the bounds

for the x and z resolution. The resolution bounds are applicable for the x and

z estimators when the true values of y and N are known. We also analytically

calculated CRB3A for the FN = 1 case by using the 3×3 Fisher information matrices.

In Fig. 5.5, we plot the x resolution bounds calculated from 2× 2 and 3× 3 Fisher

information matrices. We observe that for FN = 1, CRB3A values are higher than
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CRB2A values because in addition to x and z, N is also an unknown parameter.

The uncertainty in the estimate of N̂ and the interaction between the estimators

results in increased CRB3A and resolution bounds of the x and z estimators.

Figure 5.5: The x resolution bounds calculated from CRB2A for the multinomial
case (CRB2A x̂, FN = 0), from CRB2A for the Poisson case (CRB2A x̂, FN = 1)
and from CRB3A for the Poisson case (CRB3A x̂, FN = 1) are plotted as a function
of x at y = 0 cm, z = 2 cm and N = 3500. The CRB2A bound was analytically
calculated for the 3 × 1 detector geometry from a 2 × 2 Fisher information matrix
which treated x and z as parameters to be estimated with y and N known. The
CRB3A bound was analytically calculated for the same 3×1 detector geometry from
a 3 × 3 Fisher information matrix which treated x and z and N as parameters to
be estimated and y as a known parameter.

The x resolution bounds calculated from the 2× 2 Fisher information matrix in

Fig. 5.5 indicates that if we only estimate x and z, and know the true values of y

and N , a scintillator with Fano factor of zero outperforms a scintillator with a Fano

factor of one. The dip in all the x resolution bounds at x ≈ ±25mm corresponds

to the boundary between two-detector elements. The resolution bounds for CRB2A

for FN = 0, CRB2A for FN = 1 and CRB3A for FN = 1 are very close to each

other at x = 0 and x ≈ ±25mm. The x resolution bounds diverge substantially at

higher values of x. Knowledge of the true value of N and lower total detector output

(which could only have originated from an interaction near the edge of the detector),

result in another dip in the x resolution bounds calculated using the 2 × 2 Fisher
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information matrix near the edge of the detector. The x resolution bound calculated

from the 3× 3 Fisher information matrix does not improve near the detector edge.

Figure 5.6: The z resolution bounds calculated from CRB2A for the multinomial
case (CRB2A x̂, FN = 0), from CRB2A for the Poisson case (CRB2A x̂, FN = 1)
and from CRB3A for the Poisson case (CRB3A x̂, FN = 1) are plotted as a function
of x at y = 0 cm, z = 2 cm and N = 3500. The CRB2A bound was analytically
calculated for the 3 × 1 detector geometry from a 2 × 2 Fisher information matrix
which treated x and z as parameters to be estimated with y and N known. The
CRB3A bound was analytically calculated for the same 3×1 detector geometry from
a 3 × 3 Fisher information matrix which treated x and z and N as parameters to
be estimated and y as a known parameter.

The energy estimates and the z estimates are tightly coupled. This is because the

number of detected optical photons varies strongly with the energy of the gamma-

ray photon as well as with the depth of interaction. In comparison, the variation

in the number of detected optical photons with the x or y position of interaction is

not as significant. Hence in Fig. 5.6, CRB2A, ẑ bound for the low-noise multinomial

model (FN = 0) is substantially smaller than CRB2A, ẑ bound for the Poisson model

(FN = 1). When the interactions with the energy estimator are included to calculate

the CRB3A for the Poisson model, the CRB3A increases significantly.

As the position of interaction moves closer to the edge, the z resolution bounds

for FN = 0 and FN = 1 calculated from a 2× 2 Fisher information matrix converge.

This is because, near the edges, the lower light collection reduces the impact of Fano
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factor on the detector outputs (Eq. 5.17).

5.5.2.2 Numerical results of CRB for 3 × 1 geometry

The Fisher information matrix was numerically computed for the 3 × 1 detector-

geometry described in Sec. 5.4.3 for Fano factors from 0.2 to 1.8 at 51 equally spaced

values of x from 0 cm to 7.5 cm, at y = 0 cm, and z = 2 cm.

The bounds on the x, z and energy resolutions were numerically computed using

a 3 × 3 Fisher information matrix for different Fano factors and plotted in Fig.

5.7. For comparison, the analytically calculated bounds on the x, z and energy

resolutions using the 3 × 3 Fisher information matrix for the Poisson case (from

equations 5.26 - 5.31) are also plotted in Fig. 5.7. The numerically computed and

the analytically calculated resolution bounds for FN = 1 case on x and z estimators

are in agreement with each other. Despite the assumptions made in Sec. 5.4.1 to

maximize the impact of Fano factor on detector outputs, CRB3A and CRB3C for the

x as well as z estimators are observed to be independent of the Fano factor.

The estimators interact with each other through the off-diagonal elements of the

Fisher information matrix. If we have zero, or very small off-diagonal elements,

it implies that the estimators are independent of each other. A high value of the

off-diagonal elements imply that the estimators interact strongly with each other.

When the point of interaction is over the center of the detector (x = 0 cm, y =

0 cm, z = 2 cm), we observed that the x-z and x-N off-diagonal elements of the

Fisher information matrix are very small. As the point of interaction is moved away

from x = 0 cm, we observed that the off-diagonal elements increase by 4-5 orders

of magnitude. This indicates that at the center, the x estimate is independent of

z and N estimates but the same is not true when the point of interaction occurs

off-center.

At the boundary between two detector elements, the relatively large MDRF

slopes along x make the detector outputs relatively more sensitive to changes in

x (see (5.26)). Therefore, the bound on the x resolution is the smallest over the

boundary between two detector elements. As the point of interaction is moved
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Figure 5.7: The numerically computed lower bounds on the x resolution (CRB3C x̂)
and the z resolution (CRB3C ẑ), computed from a 3×3 Fisher information matrix for
different Fano factors and the analytically calculated lower bound on the x resolution
(CRB3A x̂, FN = 1) and the z resolution (CRB3A ẑ, FN = 1) calculated from a 3× 3
Fisher information matrix are plotted as a function of x at y = 0 cm, z = 2 cm and
N = 3500. The CRB3A and CRB3C bounds were calculated for the 3 × 1 detector
geometry and are applicable when x, z, and N are simultaneously estimated and y
is a known parameter. For every value of x, the lower bounds of x and z resolutions
for different Fano factors are almost equal, and therefore on top of each other.

further away from the center of the detector, a smaller fraction of the emitted optical

photons are collected and the CRB3C increases for both the x and z estimators.

The numerically computed energy resolution bounds for different Fano factors

and the analytically calculated energy resolution bound for FN = 1 are plotted as

a function of x in Fig. 5.8. The large values of energy resolution near the edge of

the detector in Fig. 5.8 make it difficult to distinguish between the different energy

resolution bound curves close to the center. In Fig. 5.9, the energy resolution

bounds are plotted for values of x from -50 cm to 50 cm. As the point of interaction

moves away from the center of the detector, the geometrical efficiency of the optical

detector reduces and as per (5.17), the effect of the Fano factor diminishes. Thus, as

the point of interaction shifts away from the center, the spacing between the CRB3C

curves of the energy estimator for different Fano factors reduces. The numerically

computed energy resolution bound for the FN = 1 case is in agreement with the
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Figure 5.8: The numerically computed energy resolution bounds (CRB3CN̂) for
different Fano factors and the analytically calculated energy resolution bound

(CRB3AN̂ , FN = 1) for the Poisson case are plotted as a function of x at y = 0
cm, z = 2 cm and N = 3500. The CRB3A and CRB3C bounds were calculated for
the 3×1 detector geometry and are applicable when x, z, and N are simultaneously
estimated and y is a known parameter. The energy resolution bound gets larger as
the Fano factor increases. All the above energy bounds were calculated from a 3×3
Fisher information matrix.

Figure 5.9: To show the details of the CRB curves for the position of interactions
near the center of the detector, this figure truncates the Fig. 5.8 at x = ±50mm.
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analytically calculated Poisson case.

5.5.2.3 Maximum likelihood estimator for the 3 × 1 detector geometry

Using the procedure described in Sec. 5.4.7.1 and the geometry in Fig. 5.1, five

hundred gamma-ray photopeak events were simulated and detector outputs were

generated for each point of interaction, energy deposited and scintillation Fano fac-

tor. To compare the variance of the ML estimator with the CRB3C , we chose the

same points of interaction, energy deposited, and Fano factors for which the CRB3C

was calculated in Sec. 5.5.2.2. The position of interaction (x, y = 0 cm, z) and

energy deposited N were simultaneously estimated using an ML estimator. The

mean and variance of the ML estimators were estimated for each value of x from

the 500 simulated photopeak events.

The bias of the position estimate results in distortion of the image (see Barrett

et al. (2010)). The mean of the ML estimates was used to estimate the bias of the

ML estimators (see Fig. 5.10 and Fig. 5.11). The bias of the energy estimator was

calculated in KeV using (5.9) from the bias in the estimate of the mean number of

scintillation photons. The bias of the ML estimator increases significantly beyond

x = ±50cm. We restrict the analysis of the ML estimator to (−50cm ≤ x ≤ 50

cm), the estimates of the biases of the x, z and E estimators are less than 2% of

their true values. Using a larger number of gamma-ray interactions will yield better

estimates of the resolution as well as the bias.

The estimates of the x and z resolutions of the ML x and z estimators are plotted

in Fig. 5.12, and the estimate of the energy resolution is plotted in Fig. 5.13.

5.5.2.4 Comparison of Cramér-Rao bound and the variance of the maximum like-

lihood estimator

In this section, the CRB3C and the variance of the ML estimator are compared.

If the spatial and energy resolution bounds calculated from the CRB3C and the

estimates of spatial and energy resolutions from an unbiased ML estimator are very
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Figure 5.10: Estimates of the bias of the x estimator (ML x̂) and the z estimator
(ML ẑ) from the maximum likelihood estimator for Fano factors from 0.2 to 1.8 are
plotted as a function of x at y = 0 cm, z = 2 cm and N = 3500. The estimates of
the bias of the x and z estimators for the 3 × 1 geometry were obtained by using
the known value of y = 0 and simultaneously estimating x, z and N .

Figure 5.11: Estimates of the bias of the energy estimator (ML N̂) from the maxi-
mum likelihood estimator for Fano factors from 0.2 to 1.8 are plotted as a function
of x at y = 0 cm, z = 2 cm and N = 3500. The estimates of the bias of the energy
estimators for the 3× 1 geometry were obtained by using the known value of y = 0
and simultaneously estimating x, z and N .

close, then it is consistent with the hypothesis that an efficient estimator exists and

our ML estimator is efficient.

The spatial and energy resolution bounds calculated from the CRB3C (Sec.

5.5.2.2) and the spatial and energy resolution estimates from the ML estimator

(Sec. 5.5.2.3) were compared with each other. All the resolution bound curves for
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Figure 5.12: Estimates of the x resolution (ML x̂) and z resolution (ML ẑ) from
the maximum likelihood estimator for Fano factors from 0.2 to 1.8 are plotted as a
function of x at y = 0 cm, z = 2 cm and N = 3500. The estimates of the x and z
resolutions for the 3× 1 geometry were obtained by using the known value of y = 0
and simultaneously estimating x, z and N .

CRB3C and resolution estimates from the ML estimators for all Fano factors con-

sidered were found to be in agreement with each other. However for clarity, only

plots for the Fano factor of 0.2 are plotted in Fig. 5.14 and 5.15.

The estimate of the variances of the ML estimators becomes more accurate as

more gamma-ray events are used for estimation task. The variance of the ML

estimator was estimated from 5000 gamma-ray interactions and compared to the

CRB. Computation time limited us to estimating the variance of the ML estimator

at one point on the detector. The CRB3C and the variance of the ML estimator

were compared at (x = 0 cm, y = 0 cm, z = 2 cm, N = 3500).

We observe in Fig. 5.14 - 5.17 that the CRB3C calculations and the estimates

of the variance of the ML estimators are in agreement with each other. These

observations strongly support our hypothesis that an efficient estimator exists and

our implementation of the ML estimator is efficient.
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Figure 5.13: Estimates of the energy resolution from ML estimator (ML N̂) for
Fano factors from 0.2 to 1.8 are plotted as a function of x at y = 0 cm, z = 2 cm
and N = 3500. The estimates of the energy resolution for the 3× 1 geometry were
obtained by using the known value of y = 0 and simultaneously estimating x, z and
N .

5.5.3 Results for the 3 × 3 detector geometry

Using the method described in Sec. 5.4.7.1 and the geometry in Fig. 5.4, five

hundred gamma-ray photopeak events were simulated and detector outputs were

generated for equally spaced values of x, y = 0 cm, z = 2 cm, N = 3500, and different

values of Fano factors. The position of interaction (x, y, z) and energy deposited

N were simultaneously estimated using an ML estimator. The spatial and energy

resolutions of the ML estimator were estimated from each of these 500 interactions.

The estimates of the x resolution, and the z resolution of the ML estimator as a

function of x are plotted in Fig. 5.18. The estimate of the y resolution as a function

of x is plotted in Fig. 5.19 and the energy resolution of the ML estimator as a

function of x is plotted in Fig. 5.20.

The ML estimates of the x, y and z resolutions are independent of the Fano

factor (See Fig. 5.18 , 5.19). The estimates of the energy resolution for the 3 × 3

detector elements are plotted in Fig. 5.20.
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Figure 5.14: The numerically calculated x and z resolution bounds from a 3 × 3
Fisher information matrix (CRB3C x̂, CRB3C ẑ respectively) and the estimates of
the x and z resolutions from the ML estimator (ML x̂, ML ẑ respectively) for the
Fano factor of 0.2 are plotted as a function of x at y = 0 cm, z = 2 cm, and N
= 3500. Both the CRB3C calculations and the ML estimation were performed for
the 3 × 1 detector geometry and are applicable for the problem of estimating x, z
and N with a known value of y. The x and z resolution bounds from the CRB3C

calculations and the x and z resolution estimates from the ML estimators are in
agreement with each other.

Another interesting observation from our simulation is that the variances of the

ML estimators at the center of the detector x = 0 cm, y = 0 cm, z = 2 cm in

the 3 × 3 geometry are marginally smaller than the variances of the ML estimator

(and CRB) in the 3 × 1 geometry. However as we move away from the center of

the detector, the variances of the ML estimator for the 3 × 3 detector geometry are

much smaller than the variance of the ML estimator for the 3 × 1 detector. Thus the

extra information from the 3 × 3 detector-elements not only enables us to estimate

the y coordinate of the position of interaction, but also improves the estimates of

x, z and N . In the 3× 1 geometry, we used a three-element data vector to estimate

three unknown parameters. In the 3×3 case, we used a nine-element data vector to

estimate four unknown parameters. The improved resolution in the 3× 3 geometry

is probably due to a better ratio of data elements to unknown parameters.
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Figure 5.15: The energy resolution bound calculated from the CRB (CRB3C N̂)

and the estimate of the energy resolution from the ML estimator (ML N̂) for Fano
factor = 0.2 are plotted as a function of x at y = 0 cm, z = 2 cm, and N = 3500.
Both the CRB3C calculations and the ML estimation were performed for the 3× 1
detector geometry and are applicable for the problem of estimating x, z and N with
a known value of y. The bound on the energy estimator from the CRB calculations
and the energy resolution estimate from the ML estimator are in agreement with
each other.
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Figure 5.16: The bounds on the x and z resolutions (CRB3C x̂, CRB3C ẑ respec-
tively) and the estimates of the x and z resolutions from the ML estimator (ML x̂,
ML ẑ respectively ) are plotted as a function of Fano factor at x = 0 cm, y = 0
cm, z = 2 cm, and N = 3500. Both the CRB3C calculations and the ML estimation
were performed for the 3× 1 detector geometry and are applicable for the problem
of estimating x, z and N with a known value of y. The x and z resolution bounds
from the CRB3C calculations and the estimates of the x and z resolutions from
ML estimator are in good agreement with each other and independent of the Fano
factor.
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Figure 5.17: The bound on energy resolution (CRB3C N̂) and the estimate of energy

resolution of the ML estimator (ML N̂) are plotted as a function of Fano factor at x
= 0 cm, y = 0 cm, z = 2 cm, and N = 3500. Both the CRB3C calculations and the
ML estimation were performed for the 3 × 1 detector geometry and are applicable
for the problem of estimating x, z and N with a known value of y. The bound
of the energy resolution from the CRB calculations and the estimate of the energy
resolution of the ML energy estimator are in good agreement with each other.

Figure 5.18: The estimates of the x and z resolutions (ML x̂, ML ẑ respectively)
for the 3× 3 geometry for different Fano factors are plotted as a function of x at y
= 0 cm, z = 2 cm, and N = 3500. The ML estimator simultaneously estimated x,
y, z and N . The estimates of the x, z resolutions of the ML estimator appear to be
independent of the Fano factor.
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Figure 5.19: The estimates of the y resolution of the ML estimator for the 3 × 3
geometry for different Fano factors are plotted as a function of x at y = 0 cm, z =
2 cm, and N = 3500. The ML estimator simultaneously estimated x, y, z and N .
The estimate of the y resolution of the ML estimator appears to be independent of
the Fano factor as well as x.

Figure 5.20: The energy resolutions of the ML estimator for the 3 × 3 geometry
for different Fano factors are plotted as a function of x at y = 0 cm, z = 2 cm,
and N = 3500. The ML estimation were performed is applicable for the problem of
estimating x, y, z and N .
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5.6 Analysis of results and conclusion

5.6.1 Spatial resolution and Fano factor

Analytical analysis of a reduced 2 × 2 Fisher information matrix for the 3 × 1

geometry, indicates that if the correct value of y and N is known, then the spatial

resolution is better with FN = 0 than with FN = 1.

However, when x, z and N were estimated for the same geometry, the variance of

the ML estimator was found to be in agreement with the CRB and independent of

the Fano factor. The ML estimates of the spatial resolution from the 3 × 3 detector

geometry (when we are simultaneously estimating the 3-D position of interaction and

N) also indicates that Fano factor does not have any impact on position estimation.

Thus, we conclude that when estimating position and energy simultaneously, the

Fano factor does not have any impact on the spatial resolution for the idealized

detector configuration that we have considered.

The assumptions made in Sec. 5.4.1 namely, ideal detectors with 100% quantum

efficiency of detectors, 100 % reflecting retro-reflectors, no gain or electronic noise in

detectors, and large detector elements were made to maximize the impact of Fano

factor on the detector outputs. Since the Fano factor has no impact on spatial

resolution even in this idealized case, we can infer that for a practical detector with

lower quantum and geometrical efficiency, the Fano factor will not impact the spatial

resolution.

5.6.2 Energy resolution and Fano factor

Our results indicate that a smaller Fano factor results in a better energy resolution.

Let us consider a practical detector with light detection efficiency η, gain G and

gain noise β =
σ2
G

G
2 . If we assume that the photopeak is normally distributed, then

the relationship between the Fano factor and energy resolution is given by

ER = 2.35

√
1 + β + η(FN − 1)

ηN
. (5.39)
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A better energy resolution results in a narrower photopeak making it easier

to distinguish between different gamma-ray energies. The width of the photopeak

can be calculated if we know the Fano factor and a few geometrical and detector

parameters such as quantum efficiency and gain variance. The knowledge of the

width of the photopeak can be used as a prior to constrain an estimation algorithm

to further improve the energy resolution. However, exploiting the better energy

resolution does not require prior knowledge of the underlying scintillator Fano factor.

The photopeak width can be experimentally measured and used as a prior in the

same way described above.
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

We have estimated the Fano factor of scintillation crystals using integral correla-

tions and timing correlations. Within experimental error, the estimates of the Fano

factor from both these methods were consistent with each other. Both the methods

estimated the Fano factor of LaBr3:Ce to a value close to 0.1 and the Fano factor

of YAP:Ce was estimated to a value close to 1. The integral correlations concluded

that SrI2:Eu is sub-Poisson, while CsI:Na is super-Poisson.

The impact of Fano factor on spatial and energy resolution was also studied.

A smaller Fano factor does give us better energy resolution, but does not improve

spatial resolution.

6.2 Future Work

Scintillation crystals with Fano factors less than one have raised many questions

and possibilities. We have investigated the impact of the Fano factor on spatial

resolution in imaging detectors, but there are other interesting repercussions which

are yet to be investigated

6.2.1 Effect of Fano factor on estimating the time of gamma-ray interaction

When a positron is emitted, it has a short lifetime, after which it annihilates with

a high probability of emitting two gamma rays. If we neglect the position mo-

mentum, to conserve momentum the gamma-rays travel in the opposite directions.

Positron Emission Tomography imaging technique uses two detectors to detect the

two gamma rays and estimate the line along which they were emitted. If we esti-
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mate the difference in the time at which the gamma-rays interact at each detectors,

we can localize the emission of the positron to a smaller segment of the estimated

line. It has been shown that the signal-to-noise ratio in Positron Emission Tomog-

raphy can be improved using the Time of Flight (ToF) measurements (Conti, 2006;

Tomitani, 1981).

All simulation studies of ToF estimation with scintillators have modeled the scin-

tillation light as Poisson (Derenzo et al., 2014; Choong, 2009; Seifert et al., 2012).

We have shown that scintillation light can have Fano factors other than one. Scin-

tillation light with a Fano factor less than one have anti-bunched photons. I expect

scintillators with Fano factors less than one to perform better than scintillators

with Fano factor greater than, or equal to one in the task of estimating the time of

gamma-ray interaction.

6.2.2 Resolve the discrepancy between the correlation measurement of Fano factor

and the energy resolution

Every energy-resolution measurement of all scintillators has always been above the

energy resolution for a pure Poisson case. We measured the gain, gain variance,

estimated the collection efficiencies and found the experimentally measured variance

to be a lot larger than the variance predicted by our model.

We tried and rejected the following hypothesis to explain the discrepancy be-

tween bad energy resolutions and good Fano factors.

• Position of interaction: We used three different collimators. We found no no-

ticeable difference in the variances and covariances of the two detector outputs

looking at the same scintillation event when the of gamma-ray interaction was

localized by a 1.3 mm diameter pinhole, or by a 0.25 mm diameter pinhole.

• The surface finish: We wanted to check if while polishing the crystals we cre-

ated microscopic groves or features on its surface. Surface groves can increase

variances by varying the optical properties at different parts of the crystal. To
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check this hypothesis, we used 1500, 5000 and 7000 grit emery papers to pol-

ish the hygroscopic crystals, but found no noticeable difference in the detector

outputs.

• Sample size: We also measured samples of different thickness, but found the

difference in the outputs to be much smaller than the difference in the model

and experiment.

• Non-linear response: LaBr3:Ce is a very fast crystal and it produces a very

large signal for a very short amount of time. It can easily saturate the PMTs

when they operate at the typical PMT voltage. Saturated detectors can yield

smaller variances, so we also checked for linearity of our detector and scintilla-

tor by measuring the response to 662 KeV and 122 KeV gamma-ray energies

and found the system to be linear at our operating voltage.

• Light loss: We made measurements with, and without Teflon reflectors on

the sides. Although light collection and energy resolution improved with the

Teflon reflectors, the small change in variance does not account for the excess

variance in the experimental measurements.

However, we have not tried to test the following hypothesis

• Non-uniformity in the detector response at different parts of the detector can

also cause a position dependent variance.

6.2.3 Measure Fano factor for other materials

We have only measured the Fano factor for a few materials. It will be very useful if

Fano factor estimates were available for more materials.

6.2.4 Fano factor from individual pulses

If we use a low-energy gamma-ray source with a slow scintillator, we can resolve indi-

vidual scintillation photons. The Fano factor can be estimated using the coefficient

of variation
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c =
σΔt

Δt
=

1√
k
. (6.1)

However, as we cannot distinguish between two gamma-rays who arrive within

the resolution limit of our system, the measurement will be biased towards anti-

bunching. However, the theory and results for a paralyzable detectors can be used to

compensate for the detector resolution limit (Parzen, 1962). The anti-bunching, or

bunching of photons can be estimated using the compensated coefficient of variation.
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APPENDIX A

CRB from a Sub-matrix VS CRB from Complete Matrix

In this appendix, we prove that the diagonal elements of the inverse of a sub-matrix

of the Fisher information matrix are less than or equal to the corresponding diagonal

elements of the inverse of the complete Fisher information matrix.

Let us consider a Fisher information matrix M . By definition, M is square,

symmetric and positive definite matrix. We write M as a block matrix consisting

of four sub-matrices of dimensions given by their indices

Mp×p =

⎡⎣Am×m Bm×n

Cn×m Dn×n

⎤⎦ . (A.1)

The inverse of the block matrix M is given by

M−1 = ⎡⎣ (A− BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A− BD−1C) (D − CA−1B)−1

⎤⎦ . (A.2)

As M is a symmetric matrix, sub-matrix C is a transpose of the sub-matrix B

(C = B†). Thus we need to prove that for an arbitrary vector 
V


V †(A− BD−1B†)−1
V ≥ 
V †A−1
V (A.3)

By definition, matrices A and D are also positive definite. As the inverse of a

positive definite is also positive definite, D−1 is also positive definite. Therefore the

inequality below is satisfied


V †(A− BD−1B†)
V = 
V †A
V . (A.4)
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For arbitrary, invertible matricesM1,M2, of the same dimensions if the inequality


V †(M1)
V ≤ 
V †M2

V is true then it can be shown that 
V †(M1)

−1
V ≥ 
V †M−1
2


V Horn

and Johnson (1990). Applying this result to (A.4) gives us the inequality


V †(A− BD−1B†)−1
V ≥ 
V †A−1
V (A.5)

proving that the CRB calculated from a sub-matrix of the Fisher information matrix

is less than or equal to the CRB calculated from the complete Fisher information

matrix.
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APPENDIX B

Fano Factor and Anger Logic

Anger arithmetic is a widely used technique for estimating the position of inter-

action in gamma-ray detectors Anger (1958). Anger arithmetic is fast and easily

implemented in hardware. But in cases with non-linear MDRF, the Anger arith-

metic is biased, therefore Anger arithmetic is not an optimal method for position

estimation. Any impact, or the absence of impact of the Fano factor on position

estimation in Anger arithmetic will not be conclusive. This is because the results

could be attributed to the nature of the estimator. However due to widespread use

of Anger arithmetic, in this section we have studied the impact of Fano factor on

Anger position estimation.

B.1 Geometry and model

Let us again consider the two detector-element Anger camera described in 5.6.1.

For our analysis, we chose a geometry given in Fig. B.1. As the center of the

two detector elements are at ± 3.75 cm from the center of the detector, the Anger

estimate in mm is given by

X̂ =
37.5× gR + (−37.5)× gL

gR + gL
. (B.1)

The photon production and transport models described in Sec. 5.3 were used

for the study. The x resolution of the Anger estimator was studied for Fano factors

from 0.2 to 1.8 at 101 equally spaced values of x from -7.5 cm to 7.5 cm, at y = 0

cm, and z = 2 cm with N = 3500.
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Figure B.1: Detector geometry used in 2 detector-element simulations. The 2 × 1
detector array, with each detector-element of dimensions 7.5 cm × 15 cm ensures
high collection efficiency of optical photons. The red dots indicate the points of
interaction in the crystal at which the Anger estimator was studied. The top view
is shown without the retro reflector.

B.2 Analytical treatment of Anger arithmetic

Let us assume that Pr(gL|x, y, z, FN , N) and Pr(gR|x, y, z, FN , N) are normal dis-

tributions. This assumption is valid as long as the mean detector outputs are rea-

sonable large. The means, the variances and covariance of the detector outputs gL

and gR are given by Bora et al. (2011)

gL = αLN, (B.2a)

gR = αRN, (B.2b)

σ2
L = N(αL + α2

L(FN − 1)), (B.2c)

σ2
R = N(αR + α2

R(FN − 1)), (B.2d)

ρ(LR) = N

(
αRαL(FN − 1)

σLσR

)
. (B.2e)
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Here, αL and αR are the probability of a optical photon emitted at (x, y, z) being

detected at the left and right detector respectively.

Let us define two new random variables, P = 37.5(gR−gL) and Q = gR+gL. As

P and Q are differences and sums of normally distributed random variables, they

are also normally distributed with means, variances and covariance given by

P = 37.5× (gR − gL) = 37.5× (gR − gL), (B.3a)

Q = gR + gL = gR + gL, (B.3b)

σP = 37.5× σgR−gL = 37.5×
√

σ2
R + σ2

L − 2ρ(LR)σRσL, (B.3c)

σQ = σgR+gL =
√
σ2
R + σ2

L + 2ρ(LR)σRσL, (B.3d)

ρ(PQ) = 37.5× ρ(gR−gL,gR+gL) = 37.5× (σ2
R − σ2

L). (B.3e)

The Anger position estimate is a ratio of two normally distributed random vari-

ables. The probability density function of the ratio of two dependent, normally-

distributed random variables with non-zero means is Cedilnik et al. (2004)

pr(X̂) =
σPσQ

√
1− ρ2(PQ)

π(σ2
QX̂

2 − 2ρ(PQ)σPσQX̂ + σ2
P )

×
[
exp(−1

2
. supR2) +

√
2πR.Φ(R) exp

(− 1

2
(supR2 −R2)

)]
. (B.4)

Here, Φ is the error function and the expressions for supR and R are

R(X̂) =
1√

(1− ρ2PQ)
√
X̂2 − 2ρ(PQ)

σP

σQ
X̂ +

(
σP

σQ

)2
×
(

P

σP

− ρ(PQ)
Q

σQ

)
X̂ −

(
ρ(PQ)

P

σP

− Q

σQ

)
σP

σQ

, (B.5)

supR2 =

(
P
σP

)2

− 2ρ(PQ)
PQ

σP σQ
+

(
Q
σQ

)2

1− ρ2(PQ)

. (B.6)
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The variance of pr(X̂) cannot be directly computed from (B.4). We numerically

calculated the expected value of the mean and variance of the X̂ estimator using

the probability density function

X̂ =

inf∫
X̂=− inf

X̂pr(X̂) dX̂, (B.7a)

σ2
X̂
=

inf∫
X̂=− inf

X̂2pr(X̂) dX̂ − X̂
2

. (B.7b)

The bias of an estimator is given by

bias(x, X̂) = X̂ − x. (B.8)

As the Anger estimator is biased, the variance of the estimator is not a good figure

of merit for a biased estimator. For example, an estimator which has a very high

error, but is very consistent will have low variance. The root-mean-squared error

(RMSE) is a better metric of estimator performance. The expression for the RMSE

is

RMSEX̂ =

√√√√ 1

n

n∑
i=1

(X̂i − x)2. (B.9)

Simplifying a little gives us an expression for RMSE as the sum of variance and bias

of the estimator

RMSEX̂ =

√
σ2
X̂
+ (x− X̂)2 =

√
σ2
X̂
+ bias(x, X̂)2.. (B.10)

B.3 Monte Carlo simulations of Anger arithmetic

The photon production and transport models described in Sec. 5.3 were used to

generate ten thousand detector outputs (gR, gL) for Fano factors from 0.2 to 1.8 at

101 equally spaced values of x from -7.5 cm to 7.5 cm, at y = 0 cm and z = 2 cm
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with N = 3500. For every point of interaction, the mean, variance, bias and mean

square error of the x Anger estimator for different Fano factors were computed to

evaluate the impact of Fano factor on our Anger camera.

B.4 Results

The expectation values of the x resolution of the Anger x estimator for the position

of interactions, x between -7.5 cm and 7.5 cm, y = 0, z = 2 cm and mean number

of optical photons, N = 3500 for Fano factors from 0.2 to 1.8 are plotted in Fig.

B.2. The bias of the Anger estimator as function of x is plotted in Fig. B.3. The

bias of the Anger estimator does not appear to depend on the Fano factor of optical

photons. The bias of the Anger estimator is many orders of magnitude larger than

its variance. Hence, the RMSE is dominated by the bias of the Anger estimator.

The bias goes to zero in the vicinity of x = ±26 mm and results in a dip in the

RMSE curve.

To validate the analytical results, for each Fano factor, 10,000 detector outputs

were generated and Anger x estimates were calculated for the same position of

interactions and energy deposited as above. The sample mean and variance of

these 10,000 estimates were used to calculate the x resolution, bias and RMSE. The

results of the analytical calculations and the Monte Carlo simulations of the Anger

arithmetic for the 2× 1 geometry are in agreement with each other.
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Figure B.2: The x resolutions of the Anger x̂ estimators for various Fano factors
calculated analytically (Anger Anal. x̂)and estimated from the Monte Carlo simu-
lations (Anger MC x̂ ) are plotted as a function of x at y = 0 cm, z = 2 cm and N
= 3500. For all the values of x, the Anger x resolutions for the different values of
Fano factor appear to be very close to each other.

Figure B.3: The biases of the x Anger estimator from the analytical calculation
(Anger Anal. x̂)and estimated from the Monte Carlo simulations (Anger MC x̂) for
various Fano factors are plotted as a function of x at y = 0 cm, z = 2 cm and N =
3500. For all the values of x, the bias of the Anger estimates for the different values
of Fano factor appear to be very close to each other.
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Figure B.4: The RMSE of the x Anger estimator from the analytical calculation
(Anger Anal. x̂)and estimated from the Monte Carlo simulations (Anger MC x̂) for
various Fano factors are plotted as a function of x at y = 0 cm, z = 2 cm and N
= 3500. For all the values of x, the RMSE of the Anger estimates for the different
values of Fano factor appear to be very close to each other.
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