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ABSTRACT

Over two decades ago, the first planet around a star other than the Sun was dis-

covered. With each passing year, more and more such exoplanets are discovered as

new technologies and methods of discovery are developed and enhanced. As these

techniques continue to mature, humanity gets closer to finally being able to an-

swer the question: are we alone in the universe? Improvements to Adaptive Optics

(AO) have enabled ground-based observation to expand to including high-contrast

imaging instruments called coronagraphs that are meant to make the direct imaging

of exoplanet light possible. Direct imaging is a method of observation that gives

astronomers the ability to determine if a planet exhibits signatures of life via spec-

troscopic analysis for biomarkers. This is a difficult task for three major reasons:

the planet orbits very close to its host star if it is located in the so-called hab-

itable zone, the planet light is up to 10−10 times fainter than the host star light,

and static and quasi-static aberration being present during the observation degrades

both coronagraph performance and post-processing technique efficacy.

In this dissertation, I explore two methods for estimating non-common path aber-

ration (NCPA) in the science instrument of AO enabled, ground-based telescopes.

The first is a method called the Differential Optical Transfer Function (dOTF),

which is a simple, non-iterative, non-interferometric technique to estimate the com-

plex amplitude field in the exit pupil of an optical system exploiting the properties of

the functional derivative of the Optical Transfer Function. dOTF is demonstrated in

both simulation and lab based experiments, showing several possible applications,

including AO system self calibration, segment cophasing, and estimating system-

atic NCPA using an off-axis light source. The second method is known as Frazin’s

algorithm, which is a statistical regression framework that uses wavefront sensor

(WFS) and science camera (SC) telemetry with advanced computational models of
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optical systems to estimate any NCPA and any present exoplanet signals. I develop

the history of the method starting from its inception in 2013 and its extension to

potential real-time use in 2018, followed by the conception of an improved version

that is fully realizable. Three separate estimators are presented within the frame-

work, and then are demonstrated via comprehensive end-to-end simulation of an AO

system running at 1kHz frame rate with a Lyot Coronagraph in the science arm.

Finally, preliminary future extensions of the work done on Frazin’s algorithm are

presented to guide future steps to evolve the method to improve the current limits

of ground-based direct imaging of exoplanets.
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CHAPTER 1

Introduction: Exoplanets and high-contrast imaging

One of the prevailing challenges facing the fields of astronomy and applied optical

engineering today is how to answer the question: is there other life in the universe?

This question has provoked much thought from the philosophers and scientists alike

all throughout history, and continued to inspire the human spirit of exploration,

both physically and intellectually. In order to work towards the answer, many

new technologies and algorithms have been developed and improved over the last

three decades, including but not limited to: high precision wavefront measurement

and control (Adaptive Optics (AO) and Coronagraphy) techniques, exquisite new

detectors, and state of the art computational abilities that have opened the door

for calculations once thought to be impossible to undertake. As the generation of

ground based observatories known as Extremely Large Telescopes (ELT), or the class

of 25+ m diameter telescopes, arrives, alongside new space based observatories, our

capability to resolve and characterize distant worlds is becoming a reality. With

these instruments soon being available for use, the drive to push the limits of tech-

nology and algorithms to find the light from distant planets hiding underneath their

host stars’ bright shine has become a priority. This chapter will take a brief look

into the history of exoplanet detection including various techniques that have been

used. Further detail will then be provided for the direct imaging case, through the

lens of high-contrast imaging as the example.

1.1 History of exoplanet discovery

The exploration and detection of exoplanets is a field that has rapidly developed

over the last three decades. As of 12 October, 2021, 4528 such planets around stars

other than the Sun (hence the name exoplanet meaning planet outside of our so-
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lar system) have been confirmed through various methods, some of which will be

described with more detail later. Fig. 1.1 shows the percentage of confirmed exo-

planets by method, as well as the year in which the the planets were confirmed. It

is obvious from these plots that the transit method has been the most successful

with respect to the total number of confirmed planets, followed by radial velocity

(RV). The transit method has claimed the most confirmed exoplanets largely due to

the Kepler and K2 missions, using the Kepler space telescope [4]. The Kepler space

telescope has an observational field of view (FOV) of 115 square degrees, meaning

it continuously can monitor the brightness of 150, 000 main-sequence stars. The

number of exoplanets that Kepler has found (that have been further confirmed by

other methods such as RV) looking at only a very small percentage of the estimated

total number of stars in the universe tells us that planets are likely more common

than was thought even as recently as the 1990s. As more planets have been found,

the scientific community has pushed the limits of new and proven techniques to con-

tinue to refine the capabilities to search for Earth-like planets. Missions such as the

Transiting Exoplanet Survey Satellite (TESS) [71] and the James Webb Space Tele-

scope (JWST) [64] will continue the effort from space, while pioneering work is being

done with the Spectro-Polarimetric High-Contrast Exoplanet Research instrument

(SPHERE) [2], the Gemini Planet Imager (GPI) [45], the Subaru Coronagraphic

Extreme Adaptive Optics (SCExAO) instrument [43], and the Magellan Extreme

Adaptive Optics (MagAO-X) instrument [46] from the ground. All of these instru-

ments are not only designed to help us discover more exoplanets, but also to learn

more about their interesting characteristics. Understanding the mass, size, orbital

radius, and even atmospheric composition of discovered exoplanets is vital to being

able to characterize them, and also to make strides in answering one of humanity’s

most prevailing questions: are we alone in the universe?
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(a) (b)

Figure 1.1: (a) The percentage of confirmed exoplanets discovered by different techniques.
(b) The year of each confirmed exoplanet discovery and method by which it was detected.
This data is made publicly available through the NASA Exoplanet Archive.

1.2 Observation of exoplanets

There are two main forms for observing exoplanets: direct and indirect detection.

Indirect detection is observing phenomenon that occur to a host star for which a

present exoplanet is a plausible/likely explanation, even though the exoplanet itself

is not observed. Direct observation is, as is easy to surmise, the opposite, in which

light from the exoplanet itself is measured. Each form of observation has several

prevailing methods, of which a few are described below.

1.2.1 Indirect methods

The first means of indirect detection is the aforementioned transit method, which

is the method used by the widely successful Kepler and K2 missions, among others

such as TESS, and the citizen science project, PANOPTES [42]. In the transit

method, the light photometry (or brightness) curve of a star is measured over a long

period of time (from days to years). If the star being watched has an exoplanet

in a face-on orbit with respect to the Earth (or more specifically the instrument

observing the star’s light), the planet will eventually cross between the star and the

observer (a telescope on or near Earth). When this happens, the planet blocks some

of the starlight, causing the light curve to drop corresponding to the reduction in
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brightness. When the planet then continues on its orbital path, and is no longer in

front of the star, the light curve goes back up to its ’nominal’ state. If this happens

in a periodic, predictable way, it is considered a likely exoplanet in orbit around the

star. The larger the planet is in diameter, the deeper the dip, and the longer the

dip lasts, the further out the planet’s orbit is from its star.

A second indirect method for discovering exoplanets is the Radial Velocity (RV)

method. Planets have a gravitational affect on their host stars, which will cause them

to wobble. As the planet orbits, if the star is pulled slightly away from Earth, the

starlight will be redshifted, whereas if the star is pulled towards Earth, the starlight

will be blueshifted. The more massive the planet, the larger the gravitational affect

on the star, and thus the larger the shift in the frequency of the starlight. Precisely

observing the spectrum of a star with an exoplanet along the line-of-sight over time

with a spectograph will reveal a periodic variation in the wavelength of characteristic

spectral lines corresponding to the Doppler shifts (increasing and decreasing). These

measurements tell us the radial velocity of the star over that period of time, allowing

us to plot them to see a characteristic sinusoidal shape that is indicative of a planet

in orbit. Given the mass of the star being observed, and the period of this sinusoid of

the star’s radial velocity, the orbital radius of the planet can be determined, as well

as the radial velocity of the planet. Thus we can also determine the minimum mass of

the planet orbiting the star, as the inclination angle of the planet’s orbit with respect

to the perpendicular of the line-of-sight is often unknown, meaning the measured

motion of the star may appear to be less than it actually is (as the measured velocity

of the star is the true velocity scaled by the sine of the inclination angle). RV was

the most successful detection method up until the rise of the transit method, and is

also used as a means of providing confirmation of exoplanet candidates discovered

by other methods because of its longer history of valid detections.

Although there are still other indirect methods, the last one that will be covered

here, due to its interesting nature, is Gravitational Mircolensing. Light from a

distant star is bent and focused by gravity as a planet passes between the star and

Earth. Objects with mass warp space, causing light that travels through that region
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of space to appear to change direction. To an observer on Earth, this appears as a

distant star that gets gradually brighter over time, and then fades away. If the star

had a planet, a brief window may also be present where the light from the planet

is focused by gravity and will appear during this process. Although this method is

not as prolific as the other two brought up, due to the higher luck needed for an

observer on Earth to be in-line with both the star bending light and the possible

planet whose light is being bent behind it, Fig. 1.1(b) shows that such luck does

happen a few times a year.

1.2.2 Direct imaging

While indirect methods are great for inferring or even confirming the presence of

an exoplanet, and tell us some about its size, mass, and orbital period, they leave

a lot of the more valuable information about an exoplanet off the table. In order

to truly examine if a planet shows characteristic signatures of life, the light from

the planet itself must be isolated and examined. Direct imaging techniques, as the

name suggests, allows for just that, the observation of the planet light, which then

allows for spectroscopic analysis. Such an analysis would look for the presence of

biomarkers such as O2, CH4, and N2O, alongside H2O and CO2 [40], that could

inform us with great confidence of the presence of carbon-based, Earth-like life on

the planet. As will be discussed, there are tough challenges to be overcome to

allow for this type of observation, but the payoff is the best way forward for finding

habitable worlds in the galaxy around us.

Coronagraphs

Direct imaging, which henceforth will be referred to as high-contrast imaging, gen-

erally employs the use of an optical system known as a coronagraph. A coronagraph

is an optical system that is designed to suppress the on-axis light from a host star,

but allow off-axis planet light to reach the detector largely “unharmed”. This is

achieved by altering the diffraction pattern of the telescope either by manipulating



25

  

Entrance 
Pupil

FPM

Lyot Stop
Focal Plane

Figure 1.2: Cartoon of a Lyot Coronagraph with simulated images at various planes.
Pictured are the entrance pupil shape for the Magellan Clay telescope, the intermediate
focal plane with and without the FPM inserted, the Lyot Stop, the intermediate pupil
plane with and without the Lyot Stop inserted, and the final focal plane.

the phase, the amplitude, or both as light travels through the system. The “canon-

ical” coronagraph, called the Lyot coronagraph, which was developed in the 1930s

by Bernard Lyot, consists of a small mask that is placed on-axis in an intermediate

focal plane to block the core of the stellar PSF. This so-called focal plane mask (or

FPM) has a maximum radius that is determined by not wanting to block all the off-

axis light. One could imagine a coronagraph that blocks all the star light by simply

placing a very large FPM in the intermediate focal plane. This however is very

ineffective because the planet light throughput would then also be suppressed. The

inner working angle (IWA) of a coronagraph is thus defined as the point for which

the source throughput is half of the maximum throughput, and represents how close

to the star (typically in angular units of λ/D, where λ is the observation wavelength

and D is the diameter of the telescope being used) an exoplanet can be imaged. The

example in Fig. 1.2 employs an FPM with a radius of ≈ 2λ/D, corresponding to

an IWA of approximately 2.5λ/D. Propagating further in the Lyot coronagraph,
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Figure 1.3: Focal plane images with and without a coronagraph. The color scale is chosen
to maximize the scale of the coronagraphic image, meaning the coronagraph free image
appears somewhat saturated. Both images have a 10−4 contrast planet injected at the
center of the circled region. The exoplanet does not show well in the coronagraph free
image, but does show in the coronagraphic image.

we arrive in an intermediate pupil plane following the FPM focal plane, in which

another mask, or field stop, known as the Lyot stop (LS), is placed. The LS, as a

field stop, serves the purpose of limiting the field of view of the coronagraph, thus

setting the so-called outer working angle (OWA): the off-axis angle corresponding

to where the exoplanet throughput is at least half of its maximum transmission. To-

gether, then, the FPM and the LS work to block a majority of the stellar light from

reaching the final, science focal plane, while defining the range of off-axis angles for

which exoplanet light will reach the final focal plane with at least 50% transmission,

making the exoplanet imageable. An example of the starlight suppression of a Lyot

Coronagraph is shown in Fig. 1.3, while a simple ray diagram of it including an

off-axis source can be seen in Fig. 1.4 .

The Lyot coronagraph is described here as its use will be employed in the simula-

tions presented in Chapter 5. There are, however, many more types of coronagraphs

that have been developed to improve on different parameters from the Lyot. These

include Phase Induced Amplitude Apodization Complex Mask Coronagraphs (PI-
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Figure 1.4: Schematic diagram of a Lyot coronagraph including an off-axis source. The
inner and outer working angles are easier to understand by examining the size of the FPM
and Lyot Stop in this figure.

AACMC) [32] and vector vortex coronagraphs [58]. In addition, other non-Lyot

based coronagraphs, such as Apodizing Phase Plate (APP) coronagraphs [61; 65],

have been developed. These types of coronagraphs improve on the starlight sup-

pression and/or throughput of the planet light in different ways, but we will leave

that to the reader to examine if they are so inclined.

1.3 Obstacles to direct imaging of an exoplanet

Among the many challenges of high-contrast imaging, three stand out as the largest

obstacles to successfully observing exoplanet light directly. The first of these is the

fact that the planet light is so much dimmer than the host starlight. If we define the

metric contrast as the ratio of the maximum intensity of the light from the exoplanet

divided by the maximum intensity of its host star, or
max(Iplanet)

max(Istar)
, we can start to get

a feeling for this problem. Although the required starlight suppression to achieve a

contrast level to be able to observe a signal from the planet is heavily dependent on

the host star type, as well as the observation wavelength, we can examine a couple
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of usual scenarios. A typical Earth-like planet around a Sun-like star, observing in

visible wavelengths, will be approximately 1 to 10 billion times fainter than the star,

or a contrast of 10−10. If we swap to observing the thermal emission of the planet,

the required contrast falls to roughly 10−6 [29]. This means that, for the purpose

of discussion here, ignoring the capabilities of modern post-processing techniques

that can improve upon the raw contrast achieved by the corongraph itself, the

coronagraph has to suppress the starlight in a region of interest in the science focal

plane by at least 6 orders of magnitude, up to 10, for the signal from the exoplanet to

be observable. Although many coronagraph designs routinely can achieve contrast

levels this deep in simulation and the lab in combination with several algorithms

that will be discussed in Chapter 2, doing so on sky has proven to be quite difficult.

This also brings us to the second main obstacle that stands in the way of directly

imaging light from an exoplanet: the angular separation of the planet from the star

on sky. Stars are very far away from us here on Earth. The closest star to us, Alpha

Centauri C (perhaps better known as Proxima Centauri), is 4.25 light years from

Earth. Doing some simple trigonometry, we can get an idea of the angle separating

an Earth-like exoplanet in an “Earth-like” orbit around it. This is to say, if we were

to assume an exoplanet is in orbit around Proxima Cen such that it is in the so

called habitable zone, or the range of semi-major orbital axes for which liquid water

could exist on the surface of said planet (in fact, such a planet is confirmed to exist,

named Proxima b [55]), we can compare the angular separation seen from Earth

compared to the angular resolution of a typical modern telescope. Because Proxima

Cen is an M-type red dwarf, its habitable zone is considerably closer to the star

than the habitable zone of the Sun (a G-type main sequence star). This is because

of the temperature and size of the stars are quite different. So while the habitable

zone for the Sun is approximately 1 Astronomical Unit (AU, or the average distance

between the Sun and the Earth of approximately 1.496 × 108 km), to consider an

“Earth-like” orbit around Proxima Cen would be roughly 0.05 AU. This gives an

angular separation for Proxima b, the exoplanet around Proxima Cen, as seen from

Earth, of about 0.038 arcsecond. We can compare this value to the typical angular
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resolution of an 8m diameter telescope observing at 0.6µm:

λ

D
∗ 206265 =

0.6 ∗ 10−6

8
∗ 206265 ≈ 0.0154 arcsecond. (1.1)

The consequence of this calculation reveals the difficulty of searching for exoplanets

that are in their stars’ habitable zone, as the separation on sky of such a planet in

orbit around the nearest star to us is only separated from the star by about 2.5×
the angular resolution of the telescope. While this example may seem to provide

some hope that our telescopes can resolve many habitable zone exoplanets, it does

not, as this is examining the closest possible planet to us. Performing a simple

calculation tells us that for a habitable zone that is roughly the same as that of

Proxima Cen, the angular separation is only larger than the current state of the

art angular resolution for stars less than 10.58 light years away. In fact, only 12

stars are within this distance from Earth, most of which are M-type stars (with

the exceptions being Alpha Centauri AB, Sirius A, and Epsilon Eridani), so our

assumption of the habitable zone radius likely is not a bad one for this comparison.

Given this layout of our galaxy, current telescopes simply will struggle to directly

image light from exoplanets that would be the most interesting to us in terms of

habitability, even if the host starlight can be suppressed. For completeness, to show

why the exoplanet community is so excited for the coming class of ELTs with much

larger diameters, we can repeat this calculation for the Giant Magellan Telescope,

with a maximum diameter of 25.448 m, and arrive at an angular resolution of 0.005

arcsecond, or approximately 7.6× better than the current state of the art, and

extends the corresponding distance from Earth to 33 light years.

And that brings us to the third obstacle, which will largely be the focus of the

work in this dissertation, although the contrast and angular separation will still

be discussed in Chapters 5 and 6 as a means to report on the results of Frazin’s

algorithm in useful observing scenarios. The above discussion assumes that the

optical system being used around the coronagraph is diffraction limited, meaning

the wavefront propagating through it is flat. But, as we all know, that is rarely the

case, and aberration of various types creep in and degrade the performance of all
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optical systems. The most important factors limiting the optical systems for this

work are atmospheric turbulence and non-common path aberration (NCPA), and

will be discussed in Chapter 2.
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CHAPTER 2

Technical background

To begin our discussion, we introduce two of the major contributing factors to the

departure from diffraction limited imaging in ground–based astronomical observa-

tion: the atmosphere and non-common path aberration (NCPA). Although the work

of this dissertation is primarily focused on the estimation of NCPA (in its static and

quasi-static forms), understanding the concepts that arise when dealing with the

effects of the atmosphere on light, how they are treated via Adaptive Optics (AO),

and what the resulting optical system architecture and types of output telemetry

are obtained, is paramount to the underlying mechanics of the method described in

Chapter 4 and on. We start with a brief review of some important optics principles

and definitions, and then move on to examining a simple AO system and how that

can give rise to the possibility of uncompensated NCPA. Then, the problems NCPA

cause for high-contrast imaging will be introduced, providing the motivation for the

work that follows in this dissertation on methods for estimating the phase/Optical

Path Length (OPL) underlying them so they can be eliminated. Finally, a brief in-

troduction to some current techniques comparable to the work being presented here

will be given to allow the reader to better understand the place of these methods.

2.1 A brief introduction to Fourier Optics: propagation of light

First, one must understand how light from a star (or its associated planet com-

panion) is observed here on Earth. For illustrative purposes, we will return to the

example of Proxima Centauri. Proxima Cen is the closest star to our own solar

system, at a distance of approximately 4.25 light years (or to put that into a more

easily graspable unit, 5, 107, 965, 175 round trips from Los Angeles to New York City

by air). This means that light has to travel that distance (which as the unit of light
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year tells us, takes 4.25 years time) to arrive here on Earth to be observed by our

telescopes. We will describe this light in terms of its electric field component, called

ψ, which will represent the complex amplitude field.

If we take a moment and consider just how far away Proxima Cen (again the

closest star system to Earth) is, a simple thought experiment can be conducted.

From Earth’s perspective, Proxima Cen will appear to be a point source, emitting

spherical waves. As these spherical waves travel the great distance to reach Earth,

they expand into ever increasingly larger radii. By the time the wave reaches the

Earth, its radius of curvature is so large that where the wave intersects with the

Earth can effectively be considered to now be planar (i.e. as a plane wave rather

than a spherical wave). Ignoring the effects of the atmosphere for now (which will

be treated in Chapter 2), we can use the entrance pupil of the telescope, typically

the primary mirror, to impose a set of boundary conditions on the region of the

wave we need to care about. Defining a simple pupil transmission function, A(r),

where r = (x, y) is the vector representation of Cartesian coordinates, allows us to

enforce its geometry on the field we wish to examine:

ψ(r) = A(r) exp(jφ(r)) , (2.1)

where j is
√
−1, and φ(r) is the phase of the field. Although we will typically only

refer to the phase, φ, going forward, it is still important to understand what this

means. The phase is represented as:

φ(r) = k OPL(r) =
2π

λ
OPL(r) , (2.2)

where k is the wave number, λ is the wavelength, and OPL(r) is a function describing

the Optical Path Length. OPL(r) represents the real world distance that light has

to travel in the region represented by the boundary condition enforced by the pupil

geometry being examined, with units of length, and can be the shape/surface of an

optical element, or any spatial representation the path light takes. If we instead

consider the Optical Path Difference (OPD), we can distinguish the path the light

takes due to aberrations (errors with respect to the intended paths that would arise
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from the optical elements in the optical system). In this sense, we can propagate

a field, ψ(r) = A(r) exp(−j 2π
λ

OPD(r)) by describing the aberration in the field

through the OPD. Going forward, we define surfaces of constant φ as wavefronts,

and this terminology will largely be used interchangeably with field. A perfectly flat

wavefront corresponds to having OPD(r) = 0 for all r.

We now consider the propagation of the wavefront incident in on the telescope:

u(x, y, z = 0) = u(r) = A(r) exp(jφ(r)) . (2.3)

Assuming an OPD(r) = 0, our field collapses to the much more simple to deal

with pupil transmission function, u(r) = A(r). For a complete derivation of scalar

diffraction theory, I highly recommend the reader consult Chapters 3 and 4 in Good-

man’s Introduction to Fourier Optics [26]. To simplify the discussion here though,

we will pick up the derivation at the Fraunhofer Approximation, equivalently known

as far-field diffraction, given by the equation:

U(ξ, η | z) =
exp(jkz) exp(j k

2z
(ξ2 + η2))

jλz

∫∫ ∞
−∞

u(x, y, 0) exp[−j 2π

λz
(ξx+ ηy)]dxdy .

(2.4)

This integral is applicable under the rather stringent assumption that the propaga-

tion distance, z, is sufficiently long, following the relation:

z � k(x2 + y2)max
2

. (2.5)

where (x2 + y2)max can be viewed, in the case of a circular pupil, as the square of

the radius of the pupil. We can thus rework this relation as:

z � 2π

λ
× r2

2
=
πr2

λ
. (2.6)

For a typical modern telescope (diameter of 8m), observing at visible wavelengths

(for this purpose we will call out 0.6µm for the calculation), we see that z � 167, 550

km, or to provide comparison to our above example, approximately 21.25 round trips

from Los Angeles to New York City by air. And certainly, 5, 107, 965, 175d� 21d,

where d is the distance from LA to NYC and back, is true, validating the use of the

Fraunhofer Approximation for all star light.
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Returning to Eq. (2.4), the trained reader will see that, ignoring the pre-

multiplication factors, this integral is simply a Fourier transform of the input field,

u(r), evaluated at the spatial frequencies: kx = ξ
λz

and ky = η
λz

. This allows us to

rewrite Eq. (2.4) as:

U(ξ, η | z) =
exp(jkz) exp(j k

2z
(ξ2 + η2))

jλz
F
{
u(x, y)

}
|kx= ξ

λz
,ky=

η
λz
, (2.7)

where F is notation for the Fourier transform. This is an important equation for

us going forward. It is important to also note that this equation is valid in another

situation, which will be what helps to make it so useful to us. This situation is one

in which a positive powered lens (or mirror) is properly placed between the planes

being examined (the plane u(x, y) is in, and the plane the resulting field will be

observed). Examining the math (not shown), we can see that applying the Fresnel

integral to propagate light focused by a lens a distance of the focal length, cancels

out the spherical wave term, leaving us again at Eq. (2.4) [26]. The reason these two

situations above are interesting to us in astronomical imaging is that we can, at least

in a first-order modeling/simulation sense, ignore a lot of the details of a specific

optical system, and instead treat the system as a series of conjugated intermediate

pupil and focal planes. Following the above description of the propagation, the light

can then be propagated between such planes with Fourier transforms, giving rise to

the name Fourier Optics.

This leads to another important definition: the system point spread function

(PSF). We can propagate the aberration-free field in the entrance pupil defined

above, A(r), to its conjugated focal plane via Eq. (2.7). By doing this, we are

assuming no further optical elements have to impart any further “disturbances”

(planned or otherwise) to the field, so in essence the entrance pupil is equal to the

exit pupil. However, at least at the time of writing, the phase of visible and near-IR

wavelength light can not be measured; only intensity can be. The intensity of light,

which can be measured (in this case assuming a noise-free detector) is the same

mathematically as the PSF, and is given by:

i(ξ, η) = U(ξ, η)× U∗(ξ, η) =
∣∣U(ξ, η)

∣∣2 ≡ PSF(ξ, η) = h(ξ, η) , (2.8)
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Figure 2.1: An example of conjugated pupil and focal planes for an aberration free optical
field incident on the MagAO-X pupil geometry.

where * is the complex conjugate, and U(ξ, η) is given in Eq. (2.7). Because this

is formed from an aberration-free field, this is said to be diffraction limited. This

means, in effect, the diffraction limited image of a star in the final focal plane is

the PSF of the telescope used to focus the light on the detector. An example of the

entrance pupil shape for the Magellan Extreme Adaptive Optics system (MagAO-

X), and the associated PSF for an aberration-free field passing through it, is given

in Fig. 2.1.

Looking at the PSF in the right frame of Fig. 2.1, several useful features can be

pointed out. The core of the PSF is defined as the bright region at the center of PSF

out to the first null, appearing as a disk. For a circular pupil, the first null occurs at

an angular distance on the detector of 1.22 λ/D, given by the first zero of the jinc

function defined as the Fourier transform pair of the circ function. This means the

diameter of the core is double that amount. For modified circular pupil geometry,

like for MagAO-X shown in Fig. 2.1, the central obscuration typical of the majority

of telescopes, will reduce this diameter. The angular measurement λ/D will be

used throughout this work as it is an easy way to relate sky angles to the physical

attributes of the telescope / optical system and observing wavelength being used.
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Although angular separations are usually given by measurements of arcseconds,

being able to convert to units of λ/D allows the reader to quickly understand this

angle in terms of the spatial resolution of the telescope (for example: resolving two

point sources spatially is often defined by the Rayleigh criterion as the two sources

being separated by 1.22 λ/D [35]). The conversion factor from units of radian to

arcsecond is simple, via a multiplicative factor of ≈ 206265
[
arcsecond
radian

]
. This gives

us λ/D in units of arcseconds, which can then be applied to compare to sky angles

in measured data, as we saw in Sec. 1.3. Going out from the core, we see that the

light is diffracted into many rings, and the spiders in the pupil, which are shadows

of the struts used to hold the secondary mirror over the primary, cause diffraction

spikes at associated angles. In Chapter 2, various sources of degradation to the PSF

will be expanded upon that cause a departure from this diffraction limited case, but

for now we will leave this discussion, and proceed further towards another useful

quantity that arises from the linearity of the optical systems being used, the Optical

Transfer Function (OTF).

The OTF first and foremost is allowed because the optical system is linear,

shift-invariant (LSI) in intensity. This gives us the possibility to analyze the spatial

frequency spectrum of the PSF, which can be quite useful. The unnormalized OTF

is defined as:

OTF(kx, ky) ≡H (kx, ky) = F
{
h(ξ, η)

}
= F

{
|U(ξ, η)|2

}
. (2.9)

The OTF is often considered as a normalized quantity, which is achieved by dividing

by the maximum complex value of Eq. (2.9), and an example of it presented this

way can be seen in Fig. 2.2. In the normalized state, several useful properties and

interpretations of the OTF can be noted:

• H (0, 0) = 1

• H (kx, ky) ≤ 1 for all (kx, ky) 6= 0 due to the Cauchy-Schwarz inequality

• The OTF has Hermitian symmetry (as a consequence of being the Fourier

transform of a strictly real quantity)



37

• The values of the OTF are the complex weights the optical system being

analyzed applies to the spatial frequencies passing through it

By understanding the weighting the optical system applies to the spatial frequencies

included in the wavefront that has been processed to the PSF, we can easily un-

derstand how the optical system works as a low pass filter. By examining Fig. 2.2,

we see a very clear cutoff, where the optical system destroys any information out-

side a certain spatial frequency as the light goes from the entrance pupil to the

conjugate focal plane. This is a key factor in many applications of optics, as these

spatial frequencies are lost, and cannot (at least easily) be reconstructed. In the case

of a typical circular aperture that is seen in astronomical applications, this cutoff

frequency is given as:

± 1

λf/#
, (2.10)

where f/# is the f-number (related to the focal length and diameter of the entrance

pupil).

Furthermore, we can define the Modulation Transfer Function (MTF), as the

modulus of the OTF. This is the quantity that Fig. 2.2 is actually showing, rather

than the OTF itself, as for a diffraction limited case, the phase of the OTF is not

that interesting. Chapter 3 will provide details on how to make use of the idea of the

OTF to construct a simple wavefront sensor to measure both phase and amplitude

errors in a static system. and provide a few experiments showing different use-cases.

Now armed with the basics of light propagation, and some of the interesting results

that fall out of linear systems theory that provide tools for analyzing light, we can

move on to understanding the motivation for the work in this dissertation.

2.2 A brief introduction to Adaptive Optics

2.2.1 Atmospheric turbulence

As described in Chapter 1, we assume light from a distant star to be from a point

source at infinity, meaning it arrives at the Earth’s atmosphere as a plane wave.
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Figure 2.2: The corresponding Modulation Transfer Function (
∣∣OTF

∣∣) for a diffraction
limited MagAO-X optical system.

Now, the light must travel through the layers of air in the atmosphere to reach the

primary mirror of the telescope observing light from the star. Conceptually, small

temperature fluctuations in the air cause random variations in wind speeds and

directions, leading to the formation of turbulence as eddies. Optically, the result of

this randomly occurring displacement of air (via changing temperature and pressure)

is that:

1. the refractive index varies randomly, leading to random refraction of the light

as it travels; the reader can consider this as if the small / large scale eddies

act as a long series of lenses the light must propagate through.

2. the wavelength dependence of the refractive index will cause differential refrac-

tion that is dependent on wavelength, that will disperse light as it propagates.

3. Molecules (air, dust, pollution, pollen, water vapor, etc.) can have size on the

order of the wavelength of light, leading to scattering effects.

4. as the light propagates, all of these aberrations propagate as well, and can be

coupled into amplitude effects called scintillation.
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Though we do not wish to bog the reader down in all the theory of propagation

through random media and turbulence, we can summarize the important terms and

ideas that will influence the construction and understanding of the simulations that

follow. There are many references that can be consulted for more information on

these topics, namely Goodman (2015) and Hardy (1998), from which this section

draws from.

The first terms to be familiar with are the outer and inner scales. The outer

scale, referred to as L0, is the size of the initial, largest eddy where energy is injected

in the atmosphere. The inner scale, or l0, is then the smallest scale where energy

is dissipated into heat. The process of turbulence can then be described as the

cascading of energy from the eddies at the shearing layers (of scale L0) down to

scales of l0 as the energy is dissipated over some time scale. The power spectral

density (PSD) that we will use to model this process is the von Kármán spectrum,

that derives from additions to the seminal work on turbulence of Kolmogorov by

Tatarski and von Kármán. We start by defining the outer scale as L0 = 2π
k0

, where

k0 is the critical wave number where the shape of the PSD is determined by the

laws governing the breakup of large eddies into smaller ones. Typical values of L0

range from 1 to 100m depending on the atmospheric condition. For k > k0, or what

is called the inertial subrange, Kolmogorov’s work gives the PSD of the turbulence

flow as:

Φn(k) = 0.033 C2
n k
−11/3 , (2.11)

where C2
n is the turbulence strength or structure constant of the index of refraction

fluctuations. Both Goodman (2015) and Hardy (1998) go in to great detail on the

derivation of C2
n and the other structure functions that are useful for describing

turbulence, but that is not of particular import to this discussion. Understanding

that C2
n is related to the strength of the turbulence, or in other words, how much

the turbulence will distort the plane wave as it propagates through the atmosphere,

is all that is required. Now, the inner scale is included by defining km as the critical

wave number for which l0 = 2π
km

, and understand that for k > km, the turbulent

eddies are small enough to dissipate energy as a result of viscous forces. Tatarski



40

corrected the Kolmogorov PSD to better approximate what happens for k > km by

introducing a Gaussian tail:

Φn(k) = 0.033 C2
n k
−11/3 exp

(
− k

2

k2m

)
. (2.12)

Finally, needing to account for the non-integrable pole at k = 0, as the finite amount

of air in Earth’s atmosphere enforces that Φn(k) cannot be infinitely large as k → 0,

von Kármán introduced the outer scale into the spectrum as:

Φn(k) = 0.033 C2
n

[
k2 + k20

]−11/6
exp

(
− k

2

k2m

)
. (2.13)

With this PSD, we can fully define the spectrum of an atmospheric model in the

region near k0 < k < km with just four parameters: the observing wavelength, the

turbulence strength, the inner scale, and the outer scale.

The next important piece to understand is the Fried parameter, sometimes called

the seeing parameter, r0 [18]. r0 derives from the effects of turbulence on optical

phase, and is defined as:

r0 =

[
0.423k2(sec(ζ))

∫
C2
n(h)dh

]−3/5
, (2.14)

where h is the altitude path through the atmosphere and ζ is the zenith angle.

This gives us a clue into C2
n, as here the profile of C2

n is shown to have dependence

on altitude, and can be integrated and scaled to arrive at a new parameter that

will allow for an easier interpretation of what “turbulence strength” means. If we

evaluate the mean square wavefront phase error over a circular telescope with a

diameter of D at observation wavelength λ0, we get:

σ2
w = 1.075

(
D

r0

)5/3

rad2. (2.15)

This equation provides a physical interpretation of r0, as the diameter of a telescope

for which the atmospheric wavefront has an mean square error of approximately 1

radian. This also allows for some additional analysis, giving a rule of thumb that

a telescope with a diameter D that is much smaller than r0 will still appear to be
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close to diffraction–limited, but if D is much larger than r0, it is said to be “seeing–

limited”, or dominated by the wavefront error induced by the atmosphere. A typical

value for r0 at an observing wavelength of 0.5µm is 20cm for a good site, and down

to 5cm for a poor site. Considering modern telescopes are upwards of 6 − 8m in

diameter, with future telescopes pushing beyond 30m, Eq. (2.15), these typical

r0 values demonstrate why atmospheric turbulence is such a hindrance to ground–

based astronomical observation, including high–contrast imaging. Evaluating Eq.

(2.15) for D = 6m and r0 = 0.2m, we see the resulting mean square phase error is

around 300 rad2, an enormous error. As r0 depends on the integral of C2
n, and is

somewhat easier to interpret, it is often specified over C2
n when a summary of the

turbulence strength is all that is necessary. It is also interesting to determine the

peak wavefront excursion in terms of r0. Removing any error caused by the angle

of arrival (which accounts for tilt errors), for a 99.4% probability (±2.5σ), the peak

wavefront excursion is:

Wpk = ±0.149λ0

(
D

r0

)5/6

meters, (2.16)

where r0 is specified at λ0 [33]. For the example of a 6m diameter telescope observing

in turbulence represented by an r0 value of 0.2m, this corresponds to a peak excursion

of ±1.25µm, or about 2.5 waves, for what is considered a good observing site.

Finally, we discuss the general way of modeling the von Kármán turbulence,

that includes the assumption of “frozen” flow. In order to model an evolving at-

mospheric aberration, multiple layers are used, corresponding to different altitudes

(and thus individual r0 as well), which are realizations from Eq. (2.13) we call phase

screens. Each layer is then assigned a wind vector with a given speed and direction.

Considering each layer as “frozen”, they are then translated with respect to each

other temporally, with the final result that is used being the sum of the layers at

each time step. This does not fully capture the behavior of the atmosphere because

it does not accurately represent the temporal moments, but in many cases it is an

adequate description. If the effects of scintillation are to be included in the model,

rather than summing the layers, a wave is propagated from layer to layer. A random
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Figure 2.3: An example of the OPD induced into a wavefront from turbulence with an
r0 of 0.2m at λ = 0.5µm. The color bar is in unit of microns.

realization of the OPD induced by such a model, with r0 = 0.2m can be seen in

Figure 2.3. In this figure, we see variations across the spectrum of low and high

spatial frequencies, which will be seen to distribute light throughout the focal plane.

A more thorough explanation of the modeling of the atmosphere for the simulations

is given in Chapter 5.

2.2.2 Degradation of the PSF

Exactly how the PSF is affected depends on several factors, but all fall from the

four points enumerated above. The work in this dissertation will largely ignore

the second and fourth points, dispersion and scintillation, but their inclusion in

the methods described is straightforward, and thus their lack of appearance should

not be considered as a shortcoming. With that in mind, we will continue to ease

the burden on the reader and focus on the distribution of phase errors that lead
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to light being scattered about the focal plane when a wavefront that is distorted

by the atmosphere propagates through an optical system and is brought to focus.

If imaging is done through the atmosphere in a seeing–limited case, we no longer

expect the nice, clean PSF that shows up in Chapter 1. Instead, the distortion

in the wavefront will scatter light out of expected diffraction–based structure and

place it into a swarm of atmospheric speckles of size proportional to λ/D. Because

the temporal variations of the atmosphere happen on small ( millisecond) time

scales, these speckles are also changing very rapidly. This will prove to be extremely

important in Chapter 4, and provide justification for the use of millisecond imaging

techniques to freeze swarms of these speckles to be exploited. An example of such

an image can be seen in the upper left frame of Figure 2.4. In this figure, we return

to the Lyot coronagraph optical system, and examine what the “instantaneous”

PSF looks like when imaging through the atmosphere. If we compare this to the

right hand frame of Figure 1.3, we see a major difference. Instead of light being

concentrated into a clearly defined set of bright rings surrounding an Airy disk core,

it is distributed throughout the focal plane as speckles, with very little discernible

structure. In addition, any planetary signal, located in the red circle, is completely

indiscernible. We will ignore the upper right and lower frames of this figure

for the time being, and continue to look at the effects of atmospheric turbulence

by now considering a long-exposure image. Because the atmospheric speckles are

rapidly changing with the dynamic nature of the atmosphere, and are distributed

throughout the focal plane due to the continuum of spatial frequency content in the

induced aberration, over a long-exposure, they will average into a spatially smooth

halo of size approximately λ/r0. An example of such a halo can be seen in Figure 2.5,

as well as its cross-section to demonstrate the fact that the diffraction limited Airy

Disk pattern is lost. In the case of this example, not enough time was integrated over

in the observation for the halo to become spatially smooth, so some speckle features

remain. However, it is easy to see that the effect of imaging through this atmosphere

smears light out, greatly increasing the effective size of the PSF, meaning that any

object imaged will be greatly blurred, and suffer an extreme reduction in resolution,
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(a) (b)

(c)

Figure 2.4: (a) The PSF when using the Lyot Coronagraph model to image through
atmospheric turbulence. (b) The same PSF imaging through atmospheric turbulence
using a Lyot Coronagraph, but also with an AO system running in closed-loop. Note that
although light is returned to the diffraction rings at the center of the image, the outer
region still displays the atmospheric speckles. This is because of the spatial frequency
limited correction of the AO system, determined by the layout of the actuators of the
DM. The AO correction reveals a low-order NCPA that is present, degrading the PSF
quality. (c) The same simulation as (b) but without the NCPA. In all three cases, the red
circle represents the location of a planetary signal that has been injected.
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Figure 2.5: An example of a seeing–limited, long exposure PSF. In this case, D/r0 = 30.

as predicted by the interpretation of r0 above.

We can use a similar example to see the dependence on r0. If r0 is twice as a

large, with respect to the same telescope diameter, the effect of the turbulence will

be reduced, as given by Eq. (2.15). The long-exposure image and its cross-section

for such a case is given in Figure 2.6. Here we clearly see that the light is

not scattered as much, remaining more concentrated toward the center of the focal

plane rather than in the halo. In fact, one can interpret this behavior as a means of

thinking about the PSF averaged over turbulence. As the strength of the turbulence

increases from nothing to very strong (r0 � D to r0 � D), the diffraction limited

PSF is present, but light from the core is progressively scattered into the halo until

the halo becomes the dominant feature.

This drives us to define a useful figure of merit for the quality of a PSF: the

Strehl ratio. The Strehl ratio is a measurement of the amount of light in the core of

the PSF divided by the amount of light that would be in the core of the PSF if it

were diffraction limited. In this figure of merit then, a value of 1 would mean that

the PSF is diffraction limited and aberration free, as no light has been scattered out

of the core, and any value in the range of 0−1 will describe the severity of the effect
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Figure 2.6: Another example of a seeing–limited, long exposure PSF, with D/r0 = 15.

of the aberration on the PSF. The Maréchal Approximation to the Strehl is defined

to directly relate the above quantity to the variance of the wavefront error, making

it an easy way to quantify any methods trying to compensate wavefront error. The

Maréchal Strehl is:

S = exp
(
−σ2

w

)
, (2.17)

where σ2 is the variance of the wavefront phase error.

Another way to examine the degradation of the PSF is to look at the correspond-

ing OTF. As described in Section 2.1, the OTF is the spatial frequency spectrum of

the PSF, which can tell us about how the optical system forming the PSF is func-

tioning. Figure 2.7 shows the MTF for frame (a) of Figure 2.4 and the MTF for the

same Lyot coronagraph if it were diffraction limited (no atmospheric turbulence).

There is a stark difference between the two MTFs. The diffraction limited case

shows structure that we are now familiar with, acting as a low–pass filter. The Lyot

coronagraph does modify this from what was seen previous because it is designed to

suppress starlight, so you would expect to see the dark rings rather than the smooth

decrease from the center. However, with turbulence effecting the optical system,

we see this structure is lost, and over the pictured range of spatial frequencies, the
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(a) (b)

Figure 2.7: (a) The Modulation Transfer Function (or absolute value of the Optical
Transfer Function) of a Lyot coronagraph in the presence of atmospheric turbulence (b)
The Modulation Transfer Function of a diffraction limited Lyot coronagraph.

complex weighting factors applied are close to the same. This is another way of

saying that the effect of the turbulence will cause the Lyot coronagraph, or any

coronagraph for that matter, to no longer be able to suppress starlight as intended,

disrupting hope of achieving the required contrast to directly image exoplanets.

2.2.3 Adaptive Optics

Now that we understand the effect of atmospheric turbulence on optical imaging

through degradation of the PSF, we can talk about how to fight it: Adaptive Optics

(AO). Simply put, an AO system is an optical system that’s main purpose is to mea-

sure the wavefront passing through it to estimate any aberration that is present, and

then compensate for it by way of a control system and some sort of active optical

element. This means that a device called a wavefront sensor (WFS) is employed

with an optical element that can change its shape in a predictable / controllable

way such as a deformable mirror (DM) or spatial light modulator (SLM). The sim-

ulations of AO presented in this dissertation will stick to a WFS called the Pyramid
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WFS [69], and largely to the use of a continuous face DM, so the discussion will be

confined to these devices. The DM will be assumed to be like a Boston Microma-

chines (BMC) Kilo DM, or a DM with 1020 actuators placed in a 32× 32 geometry.

There are several key pieces to understand about the layout of the actuators: the

interactuator spacing in combination with the number of actuators across the DM,

and the actuator influence functions. The interactuator spacing is important be-

cause it defines the control radius of the AO system. This can be interpreted as

such because adjacent actuators being pushed up and down respectively creates the

maximum frequency sinusoid that can be represented by the DM surface, and thus is

the highest correctable spatial frequency. Because the DM is conjugated to the pupil

plane, the number of actuators can then be used to determine the control radius of

the DM in the focal plane. For example, a DM that is 32 × 32 actuators results

in a control radius of 16λ/D in both the x and y directions, resulting in a square

region of the focal plane that can be compensated. The actuator influence function

can be thought of as the shape that the actuator exerts on the membrane surface

of the DM. In the case of the simulations presented, we represent the DM as a set

of Bspline modes, with knots defining the actuators. In a real BMC-like DM, the

influence functions can usually be well approximated by a Gaussian function. The

extent to which the actuators couple with each other in fitting a surface is related

to the overlap of the individual actuator influence functions. The effects of this will

largely be assumed to be negligible. In Chapter 3, the simulations will deviate to the

use of a segmented DM, in which the reflective surface is made up of 37 individual

hexagons that are held by three points of contact, allowing them to piston, tip, and

tilt individually from each other. This choice was made to demonstrate a specific

use case of the method being examined, which does not include traditional AO for

compensation of atmospheric wavefront errors. All simulations that do model AO

in this manner assume the use of a BMC-like DM. The choice made to confine the

AO simulations to a BMC-like DM and a Pyramid WFS is simply to narrow the

focus of this dissertation, and in no way is stating that the work discussed is limited

to this case.
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Figure 2.8: Schematic diagram of an astronomical telescope with a closed-loop AO system.

A ground–based AO enabled optical system essentially creates an instrument

with two arms, or optical trains: the Wavefront Sensing and Control arm, and the

Science arm, separated by a beam splitter or dichroic mirror. So, the light from

the star travels through the atmosphere and becomes distorted, enters the telescope

and propagates through the beam reducing optics, and then encounters the DM in a

pupil plane conjugated to the telescope primary mirror. The light is then relayed to

a beam splitting optic that separates the light in to the two arms, with some of the

light going to the science instrument, and the rest going to the WFS. This layout

can be seen in Figure 2.8. The AO control system is set up around the measurements

(or estimates) of the wavefront made by the WFS. In many cases, this is done by

calibrating a reconstructor matrix, in which known shapes are set on the surface

of the DM (called modes), and their corresponding responses are measured by the

WFS. A matrix is constructed as the known DM actuator commands for the modes

against the WFS measurements (called the response matrix), and then is inverted so

that it can be applied to a WFS measurement of an unknown wavefront to return an

estimate of the DM commands that fit the modes to it. In this way, after calibration
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Figure 2.9: An example of imaging with the same optical system, but with AO turned
on. In this case, the control radius is wider than the detector region, so no uncorrected
halo can be seen.

of the reconstructor on known modes that the DM can control, a closed–loop can be

set up on-sky to compensate the atmospheric turbulence by feeding the reconstructor

WFS telemetry every 1ms (or faster), and using the estimated DM commands with

a gain factor (called the AO gain) to continually reshape the DM surface to be the

opposite of the measured aberration. The loop is considered closed because the

WFS measures the wavefront downstream of the DM, meaning that it is sensing the

wavefront after the compensation, and updating it to minimize the wavefront error

in what is called the AO residual wavefront, which will be defined more carefully

later in Chapter 4. Returning to the example used in this chapter, we turn on our

simulated AO system with a Pyramid WFS and a 20× 20 actuator DM, running in

closed loop via a leaky integrator control system. In this case, we directly fit the DM

to the estimated wavefront OPD from the Pyramid WFS rather than simulating a

reconstructor matrix because of numerical expediency. The resulting PSF and its

cross-section can be seen in Figure 2.9. Because the control radius of this simulated

DM is larger than the detector region being shown, no residual uncorrected halo is

visible, and instead it appears as a diffraction limited PSF.
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Returning to Figure 2.4, we can see the improvement AO gives when used in

combination with a Lyot coronagraph. This case will be the simulated telescope

system for the work in Chapters 4 – 6; an AO system correcting for atmospheric

turbulence using a Pyramid WFS and a 20 × 20 DM, with a Lyot coronagraph in

the science arm. Because the frames in this figure represent an instantaneous PSF

rather than averaging over turbulence, there is no spatially smooth halo, but we

can still examine the resulting structures and behavior. With the 20× 20 actuator

DM, the control radius is 10λ/D. This is visible in the lower frame of Figure 2.4,

as we can see the light is pulled back into the central region and distributed as we

expect for a nearly diffraction–limited Lyot coronagraph (seen in the right frame

of Figure 1.3). In fact, we can even see the expected planetary signal in the red

circle, so within the control radius, the achieved contrast of the Lyot coronagraph is

restored. However, outside of 10λ/D, we see the swarm of atmospheric speckles that

will change rapidly with time, not following the expected structure from the Lyot

coronagraph architecture. A simulated focal plane image using a similar (though

not identical) optical system that is averaged over turbulence can be seen in the

right hand frame of Figure 5.6. In this image, the control radius of the AO system

is clearly visible as a square region in which the atmospheric speckles are largely

compensated for, with a spatially smooth halo outside of it.

From all the figures presented showing the resulting focal plane following a work-

ing AO system, we can continue to understand the Strehl ratio metric defined in Eq.

(2.17). As the AO system compensates for the atmospheric turbulence by fitting

the DM surface to the measured / estimated wavefront by the WFS, more light is

returned to the core, increasing the Strehl ratio closer to unity. Any aberration that

is not corrected is considered to be the AO residual wavefront. The content of the

AO residual is due to many possible factors (see Chapter 9 of Hardy (1998) for a

thorough description), but the most common, and thus treated in the simulations

that follow, are: content of spatial frequency greater than the DM can represent,

error in the DM fit caused by the fact that the current wavefront at the DM is

different than the one being represented by the DM surface because of the required
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time to measure the wavefront and update the DM commands, and error in the DM

fit caused by the fact the WFS can only estimate the phase rather than perfectly

measure it, meaning that what the DM is fitting to is subject to factors such as de-

tector noise and measurement bandwidth limitations. All of these factors contribute

to a residual, non-zero variance across the AO residual, which, from Eq. (2.17), tells

us that we will likely never be able to achieve a Strehl of unity. In reality, for the

observation wavelengths chosen for this work, reaching a Strehl between 0.7 and 0.9

will be considered realistic to excellent AO performance.

2.3 Non-common path aberrations

As we have discussed, and shown in Figure 2.8, the ground–based telescope instru-

ment being used with an AO system has a common path up to a beam splitting

optic, where two separate optical arms, the WFS and Control arm and the Science

arm, are formed. The result of this setup is the so-called quasi-static non-common

path aberration (NCPA) in the optical system hardware. The name non-common

path derives from the fact that these aberrations occur in optical components that

are beyond the beam splitting optic in the Science arm, meaning that the WFS is

blind to them. The AO system itself is thus in charge of compensating the wavefront

errors due to atmospheric turbulence. If designed well, the AO system will be able

to flatten the wavefront across many spatial frequencies (largely up to the control

radius of the DM), leaving behind only small errors in the AO residual (high spatial

frequency content, DM fitting error caused by the fact that WFS measurements

are estimates at best, etc). Because the WFS is estimating the wavefront phase in

the WFS and Control arm of the instrument, any systematic aberrations (e.g. due

to alignment, thermal flexure, gravity sag) within the common path and WFS will

also be compensated for when the loop is closed, further optimizing the wavefront

that is measured. However, the fact that the systematic aberrations of the WFS

arm are compensated by the DM in the common path, their opposite influence will

be shifted in to the science path. In addition to these systematic errors, NCPA
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from the optical elements in the science instrument will also build up. The tempo-

ral variability of the NCPA from any source results from thermal fluctuations and

other variable conditions, such as the changes in gravitational stress as the telescope

pointing varies. As a result of the ever-changing conditions, the NCPA on ground-

based AO platforms change on a wide variety of time scales, ranging from minutes

to months [30].

This is of particular interest to high-contrast imaging applications for several rea-

sons. As we have discussed, on the ground, imaging exoplanets currently requires

the combination of AO with a stellar coronagraph [31]. The combination of AO with

a coronagraph compensates the swarms of rapidly changing atmospheric speckles in

the coronagraph’s science camera, and returns the performance back to the design

capability of the coronagraph, allowing the suppression of starlight because it will

no longer be scattered throughout the focal plane over the region within the control

radius. The NCPA, though, will manifest themselves as quasi-static speckles in the

science camera, and several authors have shown them to be a major limitation in

high-contrast imaging [3; 54]. Simple, low-order NCPA redistribute the light, es-

pecially near a few λ/D. This reduces the ability of the coronagraph to reach the

required contrast to directly image an exoplanet in regions around stars that are the

most interesting for detecting habitable worlds (Figure 2.4 (b)). However, NCPA is

not confined to low-order spatial frequencies. 1
fα

type spectral error resulting from

such things as beam walk can be much more complicated in how it distorts the

wavefront. Furthermore, quasi-static speckles are particularly problematic because,

unlike the speckles created by the atmospheric turbulence, they do not average to

a spatially smooth halo that can be subtracted in post-processing in a relatively

straightforward manner. The challenge of mitigating the quasi-static speckles is

made further complicated by the fact that they are modulated at kHz rates by the

residual atmospheric aberrations that the AO system is unable to correct. Some

current methods with dealing with these problems will be presented in Section 2.4,

with some discussion of their shortcomings that would be useful to overcome. Chap-

ter 3 will summarize a technique developed in 2012 by Johanan Codona [8]called the
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differential Optical Transfer Function wavefront sensor, and how it can be employed

to remove any systematic level, static (or seemingly static with lifetimes longer than

observation times) NCPA. Finally, Chapters 4–6 will discuss a novel method now

known as Frazin’s algorithm, originally devised by Richard Frazin in 2013 [15], and

evolved to become a technique that holds immense power in not only estimating

quasi-static NCPA with lifetimes on the order of minutes, but also estimating the

signal from exoplanets themselves, in real-time while an observation is taking place.

2.4 Summary of current techniques for NCPA estimation and exoplanet

detection †

2.4.1 Differential Imaging

Currently quasi-static speckles are removed via background subtraction techniques

that employ various types of differential imaging, the most common forms of which

are Angular differential imaging (ADI) and spectral differential imaging (SDI). SDI

takes advantage of the fact that the point-spread function (PSF) stretches with

wavelength (λ), while the location of a planet does not [77]. As this PSF stretching

is proportional to the distance from the star, a weakness of this method is detecting

targets at separations approaching the angular distance of λ/D, as well as targets

that are extended in the radial direction, due to self-subtraction artifacts. Further-

more, SDI is also limited by chromatic optical path difference [49; 68; 70]. ADI

takes advantage of the field rotation that occurs over the course of the night when

the instrument rotator is turned off (Cassegrain focus) or adjusted to maintain fixed

pupil orientation in a Nasmyth focus instrument, so that the planet appears to ro-

tate relative to the PSF [50]. Thus, to the extent that aberrations do not evolve

as the image rotates around the pointing center, correction can be achieved. Some

known and characterized weaknesses of ADI are similar to SDI, in that star-planet

separations close to λ/D are difficult to detect because the planet must travel an

arc length of several resolution elements within the observing period [57]. Other

†This section has been published previously in Rodack et al. (2021)
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effects caused by the time dependence of the planetary rotation rate around the

star due to field rotation, as well as artifacts from self-subtraction, induce a host of

biases that affect astrometry and photometry calculations [51; 21; 70]. ADI also will

remove circularly symmetric components of the image, making the quality of the

results dependent on the spatial arrangement of the planets and dust surrounding

the target star. Furthermore, one of the largest issues with ADI is the fact that

the quasi-static speckles change with time, which can greatly affect the subtraction

accuracy.

2.4.2 Focal Plane Wavefront Sensing and NCPA Compensation

One way to eliminate the quasi-static speckles arising from the NCPA is to perform

some type of focal-plane wavefront sensing with data obtained from the science cam-

era, and then use a deformable mirror (DM) or other type of spatial-light modulator

to apply a compensation to the wavefront [52; 53; 56; 39]. One way to do this is to

apply two or more DM commands, called probes, and measure the intensity for each

probe, thereby setting up a simple regression in which the complex-valued electric

field at the locations of interest is estimated. Once this field has been estimated, the

next step is to calculate a new DM command according to some merit function that

creates a dark region. One such method is called electric field conjugation (EFC),

but there is now substantial literature on closely related methods [28; 52; 53; 56; 39;

67]. These methods are expected to be vastly more effective on space-based plat-

forms than they have proven to be on ground-based platforms due to the Earth’s

atmospheric turbulence. Indeed, typical attempts to create an extended dark region

on ground-based platforms only result in reducing the background starlight by a

factor of about two. In addition, ground-based applications of such methods are

quite slow, sometimes combating a few speckles at a time, and each DM probe must

be remain in place long enough to obtain a turbulent average of the intensity [79;

53; 56]. The fundamental problem with ground-based probing methods and EFC

(and other related methods) is that the focal plane electric field (which probing

seeks to estimate and EFC seeks to cancel) is modulated by the atmosphere on the



56

time-scale of a millisecond.

A new approach to estimating the NCPA is to replace the occulter (in the first

focal plane of the coronagraph) with a phase mask, thereby turning the corona-

graph into a Zernike wavefront sensor [82]. The Zernike wavefront sensor, combined

with knowledge of the wavefront statistics and a coronagraph model, then provide

sufficient information to estimate the NCPA.

Of the various approaches to determining the NCPA, the COFFEE algorithm of

Refs. [62; 36], which is also referred to as “phase diversity,” is most similar to the

method in Ch. 4 – 6. In COFFEE, a series of DM commands (called “pokes”) is

applied and a long-exposure (of sufficient duration to average over the turbulence)

image is acquired. Then, the NCPA coefficients are estimated via regression. The

most important differences between method in this paper and COFFEE are:

• Our method method uses millisecond science camera telemetry, while COF-

FEE uses long (i.e., averaged over the turbulence) exposures.

• Our method uses the AO residuals (available from the millisecond WFS teleme-

try) as probes, not DM pokes to provide the information needed to determine

the NCPA.

• Our method jointly estimates the NCPA and the exoplanet image, thereby

treating their joint error statistics, while the COFFEE algorithm does not

estimate the exoplanet image.

Note that both methods rely on coronagraph models and require knowledge of the

2nd order spatial statistics of the AO residual wavefronts.

2.4.3 Millisecond Exposures

Millisecond exposure times with the science camera are a new frontier in high-

contrast imaging, and they are becoming observationally attractive due to a new

generation of noiseless and nearly noiseless IR and near-IR detector arrays capable

of millisecond read-out times [13; 59]. Millisecond exposures freeze the swarms of
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Figure 2.10: Simulation of turbulent modulation of intensities at a single pixel of the
science camera from a stellar coronagraph. The black solid line shows the time-series of
the temporal variation of the planetary intensity. The dotted red line shows the stellar
intensity at the planet’s location. Both the planetary and stellar intensity are normalized
to have a mean of unity in this figure. From [15], used with permission.

speckles that arise due to atmospheric turbulence, whereas longer exposures average

these speckles into a smooth halo. A planet and the stellar speckle exhibit radically

different behavior at millisecond time-scales, as shown in Fig. 2.10 [15]. This is

because at the center of a planet’s speckle pattern, the AO system maintains the

planet’s intensity at a nearly constant level (given by the Strehl ratio), while the

starlight at the planet’s location exhibits much more volatility [14; 23]. Several

methods have been proposed to exploit this difference in temporal behavior based

on millisecond science camera time-series data alone [78; 83].

Simple physical optics arguments show that the speckles caused by the NCPA

are modulated by the AO residual at the kHz time scale,Sauvage et al. (2010) and
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Frazin showed that knowing the values of the AO residuals allows joint estimation of

the NCPA and the exoplanet image from the millisecond science camera images [15].

Fig. 4.2 shows simulations of noise-free science camera images with the same NCPA

being probed with different AO residual wavefronts demonstrating this phenomenon.

In 2013, independent publications by Frazin and Codona & Kenworthy proposed to

exploit the WFS telemetry in addition to the millisecond science camera images for

focal-plane wavefront sensing [Codona and Kenworthy (2013); Frazin (2013)]. The

fundamental shortcoming of the methods of Frazin and Codona & Kenworthy is

that they were unable to account for wavefront measurement error (WME). This is

to say, the WFS measurements only allow an imperfect estimate of the phase of the

wavefront impinging on the WFS entrance pupil, not the actual phase. Specifically,

any WFS exhibits spatial and temporal bandwidth limitations (the latter are less

important due to the kHz frame-rate), nonlinearity in the phase of the wavefront,

and noise. Outside of the high-contrast imaging problem, several authors have per-

formed multi-frame deconvolution with millisecond focal plane and WFS telemetry

to remove atmospheric image distortion. These works use the WFS-based estimates

of the point-spread function (PSF) as an initial guess: Fusco et al. (1999); Chu et al.

(2013). (For approaches that do not make use of WFS telemetry see, e.g., Refs. [76;

12]). The work of Frazin in 2013 will be expanded upon in Chapter 4, and serve

as the launching point for the method described in this dissertation named after

Frazin.
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CHAPTER 3

The differential Optical Transfer Function wavefront sensor

3.1 Mathematical development, interpretation, and implementation

Now that we have obtained a basic understanding of the typical ground-based, adap-

tive optics (AO) system, and the idea of non-common path aberrations (NCPA), we

can continue on the journey of this dissertation, and start to unwrap some methods

that provide the ability to measure a wavefront disturbance, and thus inform us

how to compensate for it via a deformable mirror (DM) to remove its influence on

our ability to study exoplanets. The first such method that will be considered in

this work is the so called differential Optical Transfer Function wavefront sensor, or

dOTF for short, which is among the family of techniques known as phase retrieval

[24]. There is a 10 year or so history now of dOTF, an idea first conceptualized and

described by Johanan Codona [8] in 2012 , with further detail and potential appli-

cation of the method expanded upon in works such as: Hart and Codona (2012),

Codona (2013), Codona and Doble (2015), Rodack et al. (2015), Knight et al. (2015),

Brooks et al. (2016), and Jiang et al. (2019). Rather than bog the reader down with

all these details, we begin by summarizing the seminal work of Codona [8]. dOTF is

a non-interferometric, non-iterative method to estimate the complex amplitude field

(both amplitude and phase) in the pupil of an optical imaging system, without re-

quiring any specialized hardware or sophisticated post-processing techniques. What

makes it of particular use to us is its robustness to many types of aberrations that

arise from misalignment and vignetting, while remaining in the same pixel scale as

the optical system being tested. This allows for the method to be used via a camera

in the science arm, downstream from the AO system WFS, to detect and estimate

any static NCPA caused by these effects.

Returning to the description for the Optical Transfer Function (OTF) given in
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Chapter 2.1, specifically to Eq. (2.9), we are reminded that the OTF is defined as

the Fourier Transform of the PSF, with the PSF defined as the modulus squared of

the field from a point source, U(ξ, η), impinging upon a detector in a focal plane

conjugated to the entrance pupil. Recalling that the PSF is real by definition, the

resulting Fourier Transform into the OTF space will be complex, and have Hermitian

symmetry. The importance of this point will come up in a moment. Furthermore,

in this analysis, unless otherwise noted, the field U(ξ, η) will also be taken to be

monochromatic. If we examine the process of taking the Fourier Transform of the

PSF, we can notice an alternative way to write the problem:

PSF = |U(ξ, η)|2 = U(ξ, η)U∗(ξ, η) . (3.1)

In this format, as the product of the field in the focal plane with its own conjugate,

we can understand that the OTF can then also be defined, through application of

the Convolution Theorem, as the convolution of Fourier Transforms of the field and

its conjugate:

OTF = F {U(ξ, η)U∗(ξ, η)} = F {U(ξ, η)}~ F {U∗(ξ, η)} = u(x, y) ~ u∗(x, y) .

(3.2)

Now, with the OTF in these terms, we can see that it is in fact the autoconvolution

of the field in the exit pupil of the optical system, or in other words, a quadratic

representation of it. Given this, we can start to think about how we could retrieve

information about the complex field itself. The simple solution here is to remove the

quadratic nature of this quantity by constructing its functional derivative, leaving

us able to estimate the complex field.

In order to construct the functional derivative of the OTF, a small change is

introduced in a pupil plane conjugated to the exit pupil. Although there are several

options for this change in practice, we will describe the underlying mathematics

prior to discussing best practices. By introducing the modification in the pupil

field, du:

u(x, y)→ u(x, y) + du(x, y) , (3.3)
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a corresponding change in the OTF happens, which can be written as:

dH (kx, ky) = H0+d0(kk, ky)−H0(kx, ky)

= (u(x, y) + du(x, y)) ~ (u(x, y) + du(x, y))∗ − u(x, y) ~ u∗(x, y)

= u~ du∗ + du~ u∗ + du~ du∗ , (3.4)

where the coordinate labels are dropped in the final line for clarity. Before we

continue, it is important to notice here that each term in the dOTF contains a

convolution with the pupil modification du that was chosen. Now, from the fact

that the OTF has Hermitian symmetry, we can simplify this to:

dH (kx, ky) = dH+(kx, ky) + dH ∗
+ (−kx,−ky) + dHδδ(kx, ky) , (3.5)

which defines the dOTF as the sum of dH+(kx, ky), the image of the pupil field we

would like to be able to measure convolved with the pupil modification, its reflected

conjugate, and a quadratic term dHδδ(kx, ky).

Eq. (3.5) quite clearly has three separate terms, each of which represent one of

the three main regions within a dOTF signal:

1. The field in the pupil region (what we set out to be able to measure).

2. The conjugate of the field in the pupil region reflected about the modification

made in the pupil (that includes a region of overlap between the two pupil

regions that depends on the placement of the modification).

3. The localized contribution of the quadratic term related to the autoconvolution

of the modification.

A cartoon example of the form of the dOTF is given for a pupil modification localized

to the edge of the pupil in Fig. 3.1.

Now that we understand the definition of the dOTF and how it gives us access

to measure the complex field in the exit pupil, we can describe how one would

implement this technique in reality as a wavefront sensor, and why in an AO system

specifically, it could be used to calibrate out certain NCPA prior to conducting
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Figure 3.1: Courtesy of Johanan Codona. (a) Image of the field in the pupil conjugated
to the exit pupil in which a modification is introduced. (b) Schematic of the dOTF,
with three distinct regions: The pupil field image, the conjugate of the pupil field image
reflected about the pupil modification leading to an overlap region between the them, and
the location of the quadratic term related to the autoconvolution of the modification.

observations. It should be noted here that this technique is not a viable wavefront

sensor for closing the AO loop on-sky largely due to the fact that it requires a large

number of photons to obtain a useful signal. This, and other potential shortcomings

of the method will be discussed in Section 3.4. Fig. 3.2 shows a schematic outline

of how to measure the dOTF in practice. A monochromatic point source, typically

a laser, is observed with the optical systems under test. The first step is simple;

allowing the light to propagate through the optical system to the final focal plane,

where the intensity is measured with a camera. This intensity, representing the

“nominal” state of the optical system, will be labeled PSF0. It is important to take

in to consideration the measurement of this nominal PSF. In order to obtain a high

quality dOTF measurement, as would be expected, the number of photons in each

PSF exposure must be sufficient for the dOTF signal to dominate the sources of

noise. This will mean, as this will often be used in a lab setting, that photons will

not be scarce, and allow for multiple short exposures to measured. Care must be

taken in this regard though, for several reasons. First, one must ensure the stability

of the system is high, as large changes over the total exposure time measuring the

nominal state PSF will corrupt the signal, as there will be a temporal component to

the state. This limits the total exposure time that can be chosen to some maximum

value before the PSF is unstable, and varies from system to system, and environment

to environment. Factors that limit the stability can range from environmental factors
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Figure 3.2: Courtesy of Johanan Codona. A schematic outline of implementing dOTF.

such as air currents, to vibrations in the optical bench. Second, while the system

is stable, detector saturation must be strictly avoided. If the number of photons

exceeds the well depth of the detector pixels, not only will the dynamic range of

the measurement be corrupted, but electron bleeding to other pixels can occur,

both of which will invalidate the required Fourier Transform of the measured PSF.

Practically, this can be solved through the use of photon flux filters and shorter

exposure times over the same total observation time. Additionally, one can add a

small amount of defocus by physically shifting the detector at the end of the optical

system out of the true focal plane. Although this will require a quadratic phase

profile in the dOTF to be estimated and removed prior to analyzing the estimated

complex amplitude field, it is an extremely effective solution because it reduces the

Strehl ratio, meaning that it redistributes the photons out of the bright PSF core

to other parts of the detector, allowing more light to be collected across the sensor

prior to saturation. All of these factors are discussed more thoroughly in Codona

(2013).

Next, a localized modification is made to the field in a pupil plane near the be-

ginning of the optical system. Note the entrance pupil is the best choice for probing

aberration content in the entire optical train, but a conjugate pupil slightly down-
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stream of the entrance pupil is a fine choice. There are several trade-off parameters

for this pupil modification including: its shape/size, location in the pupil, or whether

it is done in amplitude or phase. This allows for tremendous freedom in the pupil

modification implementation, but there are some general guidelines to follow:

1. As Eq. (3.4) tells us, the complex field quantity we would like to estimate is

convolved with the pupil modification introduced. This means that the best

course of action is to choose a modification that is both small and compact.

This minimizes the blur it introduces when convolved with the pupil field,

making for a more accurate estimate. If the application is going to require

high spatial frequency estimates of the NCPA, understanding the form of

the modification to a high degree will help with performing deconvolution

techniques.

2. As we see in Fig. 3.1 and in Eq. (3.5), the complex amplitude field dOTF

estimates, and the conjugate of it that is reflected about the pupil modifica-

tion, overlap. This overlap region corrupts the estimate, making it unusable

there. But its dependence on the pupil modification makes for a simple choice:

placing the modification near the edge of the pupil. This serves to minimize

the overlap region, and preserve the majority of the estimate of the pupil field.

In addition, the entire pupil field can be estimated by using two separate mod-

ifications to measure the dOTF twice, and stitching together the results of the

two estimates.

3. When choosing between an amplitude or phase modification, it’s largely a con-

sideration of what is most reliable to implement. An amplitude modification

consists of an opaque material that can be slid in and out of the pupil to block

light. If the mechanical requirement of this can be fit in to the optical system,

and is repeatable and stable, it is a fine choice. A phase modification likely

requires there to be an active optical element in a pupil plane conjugated to

the exit pupil, such as a DM or Spatial Light Modulator (SLM). In the use

case presented here, as a means of estimating NCPA in the science arm of an
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AO system, this is the most practical implementation via bumping an actuator

on a DM. This however has some consequences related to the first item in this

list. Rather than being a simple, mathematically real modification, bump-

ing an actuator induces a complex one, leading to much more complicated

behavior with the convolution. If the maximum phase shift of the actuator

poke exceeds π, the shape of the modification, and thus convolution kernel,

will inherit an oscillatory behavior one would expect from an aberration with

increasing OPD (as this is exactly what a strong actuator poke in the pupil

is doing). This will not only harm the estimates at the edge of the pupil, but

will also effect the mean value of the kernel, reducing the dOTF magnitude

and lowering sensitivity. A trade study conducted by Codona [9] found that

an actuator poke of λ/4 or less, with λ being the wavelength, is optimal.

Figure 3.3: An example of a high quality dOTF signal measured in the lab

Once the form of the modification is chosen, it is applied to the pupil plane, and

the intensity impinging on the detector in the final focal plane is again recorded,

and labeled as the “modified PSF”, or PSF1. If there is a departure in stability,

including that of a rapidly changing DM performing AO corrections, that leads to

a broadly distributed modification over the pupil, the Fourier Transforms of PSF0

and PSF1 will not subtract properly leaving a residual that dominates the dOTF
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signal and renders it unusable. However, we assume that the system meets the

stability requirements, and both the nominal and modified PSFs are measured with

an adequate number of photons without saturation, getting to the dOTF signal is

simple:

1. The Fourier Transform, likely through the Fast Fourier Transform (FFT), of

the measured PSFs, PSF0 and PSF1, are performed, to obtain the nominal

and modified OTFs, OTF0 and OTF1 respectively.

2. OTF1 is subtracted from OTF0

The result of this calculation is the dOTF signal. An example of a high quality

dOTF signal is provided in Fig. 3.3. This procedure can then be applied to a

number of potential useful applications, a few of which will be outlined below.

3.2 dOTF self – calibration

The first application for utilizing dOTF is to use it as a wavefront sensor for a

“self–calibration” control loop. This is to say that once an optical system is aligned,

the clock starts for unwanted aberration to creep in. In the case of an AO system,

closing the loop on the AO WFS will flatten the wavefront upstream of the beam

splitter, but likely push some aberration into the science arm. In addition, slight

misalignment of optics and/or the relentless tug of gravity can lead to effects in

the science arm will lead to low–order aberrations like astigmatism, trefoil, coma,

defocus, and others being introduced. Because they are downstream of the AO

WFS, we can consider them to be NCPA, and seek to correct them. We will also

assume that they NCPA that remain static over the period of time we want to do

an experiment. One such way to accomplish this is to use dOTF. The advantage

to this approach is that it costs no extra time in setting up hardware; it is simply

identifying an actuator located at the edge of the pupil, and taking PSFs following

the above prescription to compute the dOTF. Post–processing is minimal, with only

requiring a calibration step to register DM actuator locations in dOTF space. This
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registration is also easy to do, placing a known test pattern on the DM such as the

one pictured in Fig. 3.3, and backing out the actuator locations in a dOTF estimate.

Because the actuators in the test pattern are known, their spacing in dOTF space can

be determined, and that can then be used to extrapolate all the actuator locations

in the pupil. With the registration complete, one need only compute the dOTF

with measured PSFs on the science camera using a DM in a pupil plane in the

science arm to add the modification, and then read OPL values directly from the

dOTF estimate into DM commands, because what is estimated is the wavefront

piston across the pupil. A similar method is possible with a segmented DM, placing

a test pattern of segment pistons, and extrapolating the location of each segment.

However, in this case, further steps must be taken to compute the segment tip and

tilt values in addition to the piston values. Both of these cases are examined below

in simulation, with a lab demonstration using a continuous face sheet DM.

3.2.1 Segmented mirror correction in simulation

An intriguing use of dOTF self–calibration is to cophase a segmented aperture. In

this section, we will demonstrate cophasing segments of an IrisAO–like DM to cali-

brate the effects of a typical Kolmogorov–like wavefront aberration via simulation.

It is important for the reader to note that although a Kolmogorov phase screen is be-

ing used to demonstrate the ability to calibrate out an aberration with a wide range

of spatial frequency content, this method is strictly for analyzing static aberration,

and not doing AO correction.

The first problem to tackle to accomplish this task is to devise a method to

estimate the slopes of the wavefront local to each segment in the DM. Ideally this

would be done as a numerical process on the dOTF itself, directly constructing

the wavefront slopes with only knowledge of the segment pixels. To do this, we

make two copies of the complex amplitude field estimated by dOTF, and shift them

apart either left-to-right (to measure the x–slopes) or down-to-up (to measure the

y–slopes). The copy of the signal that is shifted in the negative direction (left or

down) is also complex conjugated. The number of pixels in the shifts is a free–
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Figure 3.4: The method for constructing the wavefront slopes directly from a dOTF
estimate. (a) An example dOTF estimate of a wavefront with a low–order aberration on
a segmented pupil. (b) A copy of (a), shifted to the left by one pixel and conjugated. (c)
A copy of (a) shifted to the right by one pixel. (d) The constructed wavefront gradient,
scaled by the inverse of the wave number, the number of pixels in the shift, and the
plate scale. (e) The argument of the complex amplitude gradients averaged over a region
representing each segment.
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parameter that can be optimized to get a better slope signal, as the length of the

shift determines the constructed gradient in the wavefront, but the noise remains

as the value of one pixel. However, the shift size should be limited to less than the

pixel–width of the individual segments in dOTF space because the area of interest

over which the slopes can be compensated for is limited to the size of an individual

segment. It is also possible that, should the slopes be sufficiently steep, they may

phase wrap. This can be mitigated somewhat by using a smaller pixel shift. Now,

to construct the gradients themselves, the two shifted copies (left/down, conjugated

and right/up) are multiplied together, and properly scaled. This scaling is done by

dividing by the wave number, the total number of pixels in the shift, and the physical

distance the pixel-to-pixel spacing represents (the real–world distance the pixel–

based actuator spacing in dOTF space represents). With the wavefront gradients

now constructed, the registration map discussed above is used to partition the dOTF

estimate into the individual controllable regions (each segment), and read out values

for the wavefront tip and tilt. This process is illustrated for the x–slopes in Fig. 3.4.

The original dOTF estimate is then used with the registration map to read out

segment pistons, and the typical piston–tip–tilt control of the segmented DM is

fully specified.

With the estimate of the piston, tip, and tilt of the wavefront at each segment

location, a simple integrator control loop can be set up to compensate the error.

In doing this, the estimate is negated, and multiplied by a gain factor to ensure

stable convergence. This gain value can be found experimentally by examining

the convergence of the NCPA compensation, but simulations show that 0.3 is a

conservative value that performs quite well. Fig. 3.5 shows frames from a simulation

of this experiment. On the top left, the diffraction limited PSF is provided for

comparison with the bottom left frame, which is the PSF after the conclusion of the

self–calibration control loop. The image in the top row, second from the left, shows

what the PSF would look like if no compensation of the NCPA injected (seen in the

bottom right) is attained. The remaining two frames in the top row show the phase

imparted to the field by the segmented DM, and the complex field after the DM,
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which shows clearly that field is flattened (the amplitude of the field is constant,

shown via the brightness, and the phase is nearly constant aside from very high

spatial frequencies that are not correctable, shown via the solid red color). The fact

that there are no segments that are floating in piston demonstrate that the segments

were in fact cophased using dOTF. Finally, in the bottom row are frames showing

the current dOTF estimate, also demonstrating that the field has been flattened,

and a plot of the Maréchal Strehl vs. Loop index, showing the self–calibration loop

was stable, and recovered the Strehl from about 0.4 to 0.95.

Figure 3.5: Simulated results using dOTF to flatten a static aberration with a segmented
DM.

3.2.2 Continuous mirror correction in simulation

Next, we want take the same self–calibration control loop idea, and attempt to

demonstrate it in the lab, where the optical system to use has a continuous face sheet,

1020 actuator DM rather than a segmented one. In order to proceed, we will first

attempt to conduct this test in simulation, this time including noise in the detector

to better understand the role it will play (note the prescription given in Section 3.1

to maximize the dOTF signal was born from these simulations and the lab work that
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followed). This is seemingly an easier problem than the segmented pupil because

we do not need to worry about the wavefront slopes, and can instead solely rely

on the piston estimates dOTF gives directly. There is a slight complication that

arises in the registration of the actuators to dOTF space simply because there are

1000 of them (although practically it is fewer as some are not illuminated), but the

method described above still performs adequately. In the same setup as used in the

previous subsection, the segmented DM is replaced with a model of the continuous

face sheet DM, and the simulation is rerun, except the measured PSFs are subject

to photon and readout noise. To facilitate a meaningful photon noise component,

the following statements are adopted for the simulated HeNe point source:

1. A detector quantum efficiency, η, of 50% is assumed

2. A bandpass of 0.01 microns is assumed

3. An exposure time, ∆T , of 0.200 seconds is chosen

4. A band flux of 9.97 × 1010 ph × µm−1 × m−2 × s−1, corresponding to the

V–band wavelength of 632nm, is adopted

5. A visual magnitude, mv, of 6 is assumed for the source brightness

6. A telescope diameter of 6.5 m is chosen

These are then used to compute the total number of photons per exposure via the

equation:

N0 = η × Bandpass×∆T × Band Flux× (2.512−mv)× ((πD2
Telescope)/4) . (3.6)

Although a bandpass is given in this equation, it is strictly to give meaning to a

number of photons being present. The calculations of the dOTF estimates that

follow for this simulation are assumed to be monochromatic for reasons that will be

discussed in Section 3.4. The noise in the intensity will assumed to follow a Normal

distribution as usual.
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As before, a Kolmogorov phase screen is injected into the entrance pupil of the

modeled optical system to test flattening a complicated wavefront containing various

spatial frequencies. An integrator control loop with a gain value of 0.3 is set up using

the dOTF piston estimates as the updating DM commands. Figure 3.6 shows the

results from the end of the simulation. Similarly to the segmented simulation, the

Figure 3.6: Simulated results using dOTF to flatten a static aberration with a continuous
face DM.

top row contains the noisy PSF after compensation in log scale, the current dOTF

estimate of the field, and the residual field in the exit pupil downstream of the

DM. We see here that the self–calibration loop has again flattened the wavefront,

achieving a nearly constant phase and amplitude across the pupil, with the departure

being due to spatial frequencies higher than the interactuator spacing of the DM. The

bottom row of Figure 3.6 contains an image of the current shape of the DM surface

on the right, and a plot of the Maréchal Strehl vs. Control loop index on the left.

From this plot, we see that the control loop for this calibration was also stable, and

drove the Strehl from 0.11 to 0.96, even in the presence of photon and readout noise

in the detector. Although not pictured, more simulations were conducted varying

the parameters controlling the number of photons. From this work, the pictured
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dOTF estimates, which demonstrate roughly a dOTF signal of approximately three

times higher than the noise floor, is a good rule of thumb to keep the control loop

stable. This of course depends on the measurement of the intensity, which then

couples into the dOTF signal through the calculation of the Fourier Transform and

the difference between the OTFs. Given the guidelines above for how to increase the

signal in the PSF measurements, and the fact that this method is largely confined

to experiments in highly stable environments (also discussed above), getting enough

photons in the PSFs that are Fourier Transformed should rarely be a limiting case.

3.2.3 Flattening a wavefront in lab

With all of this in mind, we now set out to demonstrate this on hardware, using

the original optical system in the UA Wavefront Control Lab [60]. A HeNe laser

source is used with a spatial filter / beam expander to achieve the point source, and

an optical system containing eight lenses, three flat mirrors, three off-axis parabolic

(OAP) mirrors, four glass plates, and a Boston Micromachines Kilo DM (32×32

actuator geometry). The optical system is aligned carefully to avoid any blatant

transmission aberrations, but it is found that the major aberration that is imparted

to the wavefront propagating through the field is from the uncalibrated (at the time),

unpowered surface of the Kilo DM. Other contributions to the overall aberration

content of the beam appear as astigmatism and coma from slight misalignment of

the OAPs. In addition, a slight defocus is induced by shifting the imaging camera

out of the focal plane using a micrometer.

The pattern in Figure 3.3 is the one applied to the Kilo DM to register the

illuminated actuators to the dOTF estimate space. This is done by knowing the

actuators on the DM that correspond to the asymmetric cross pattern. The number

of pixels in each cross line is divided by the number of actuators the line represents

to determine the pixel to actuator spacing. By utilizing both lines in the cross, and

several dOTF estimates of the test pattern, the average pixel spacing is determined,

and used to extrapolate to the locations of the illuminated actuators in the 32×32

DM geometry.
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With the actuators registered, the next step was to experimentally determine how

to get a high quality dOTF signal. This was done by setting a constant exposure

time of 1/30 second, and averaging together a number of PSF frames ranging from

10 − 300 for each of the nominal and modified. For each PSF pair, the dOTF was

computed, and inspected by eye for quality of signal. After this process, it was

determined that using averages of 90 frames of the PSF was sufficient to get enough

photons that the dOTF would provide a high enough quality estimate for a control

loop with a conservative gain to be stable. This number of frames, for the optical

system under test, could have been further optimized to increase the servo speed,

but as this test was simply to demonstrate a self–calibration loop, better signal

was chosen to be more important than speed for calibrating a static aberration.

The PSF at the start of the control loop can be seen in the left hand frame of

Figure 3.7, displaying the nasty aberration from the unpowered DM, astigmatism,

coma, and defocus mentioned above. The control loop using dOTF to read out

estimates to send as DM commands is allowed to run for 9 steps, at roughly 30

seconds per step (6 seconds taking images and 24 seconds performing the numerical

processing and sending the update to the DM). This numerical processing includes

performing a shift and add scheme to the 90 PSFs measured per modality (nominal

and modified) to get a high quality average PSF, cropping the detector region to a

square centered on the PSF core, doing the FFT, and finally the difference between

the numerical OTFs. The final result after the calibration loop is shown in the right

hand frame of Figure 3.7. It is clear that the majority of the defocus is successfully

removed, and the by eye quality of PSF is greatly improved (seen especially in the

fact that the noise floor of the image is much darker because more of the light is

concentrated in the core, suggesting a significant improvement in Strehl). There are

two remaining spikes left, which come from effects that could largely be removed

with more care. This includes a slight misregistration of the actuators to their

pupil locations in the dOTF estimate, and the fact that we simply ignored the

data from the overlap region without taking any steps to recover information from

there (via a second dOTF estimate to stitch together). It so happened that the
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Kilo DM had a large aberration in its surface corresponding to the location of the

overlap region, so ignoring it left a fair amount of uncorrected OPD. However, with

that the residual error that was not corrected being explainable, we consider this a

successful demonstration of using dOTF to compensate for static aberration in an

optical system.

Figure 3.7: Before and after log10 scaled detector images of the final focal plane of a
laboratory optical system.

3.3 Measuring on-axis NCPA using an off-axis source

The next application of using dOTF is an experiment to determine if an on-axis

NCPA at one wavelength (perhaps an observation of a HeNe laser) can be success-

fully recovered using dOTF estimates made using an off-axis beam at a separate

wavelength (a green laser). To answer this question, the Comprehensive Adaptive

Optics and Coronagraph Test Instrument (CACTI) at the University of Arizona is

used, configured with a Kilo DM and a dichroic bypass mirror. In this configuration,

a camera can be placed in a focal plane to detect two separate sources, an on-axis

HeNe laser, and an off-axis green laser dubbed the Laser Guide Star (LGS) source.

To facilitate the experiments, the beam footprint of each source on the Kilo DM

is estimated to locate actuators near the edge of the illuminated pupil. This was

done in a brute force manner of simply computing dOTF estimates by inducing the

modification with targeted guessing of actuators until one at the edge of the illumi-
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nated pupil was located. Although this method works, it is far from efficient or the

best means to locate such an actuator. Next, the exposure times were calibrated for

each source so that the measured PSFs would not be saturated on the camera. For

the HeNe source, 1ms exposure times was determined to be sufficient, and 3ms for

the LGS source. Although these choices did not saturate the camera, the signal was

still much too small to get a useful dOTF estimate. In order to gather more pho-

tons without saturating, 10 epochs of 250 exposures of the PSF were taken for each

dOTF modality (nominal and modified), for each source, for each test case. This

means that the PSF that is numerically processed is the average of 2500 individual

frames. An example of such an average PSF can be seen in Figure 3.8(a). Four

test cases are performed via introducing a known aberration on to the surface of the

Kilo DM and trying to recover it via dOTF estimation:

1. 0.05 micron RMS Defocus

2. 0.05 micron RMS Trefoil

3. 0.063 micron RMS Astigmatism

4. 0.063 micron RMS Astigmatism with both sources on the camera concurrently

Finally, a Python pipeline was built to numerically process the PSF data collected

from the focal plane camera, which can be seen in Appendix C. This process consists

of the following steps:

1. Assign a central pixel

2. Crop the average PSF image to a good FFT size (256× 256), centered about

the chosen pixel

3. FFT the cropped image to get the OTF

4. Repeat 2–3 for the modified pupil modality

5. Take the difference of the OTFs



77

(a)

−20 0 20
 λ/D

−20

−10

0

10

20

 λ
/D

HeNe PSF

−3

−2

−1

0

(b)

75 100 125 150 175
80

100

120

140

160

180
|dOTF|

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4×102

(c)

100 120 140 160
100

120

140

angle(dOTF)

−2

0

2

(d)

−5 0 5
mm

−5

0

5

m
m
HeNe OPL Meausrement

−2

−1

0

1

×10−7

Figure 3.8: (a) A time averaged PSF with 0.05 micron RMS defocus added to the pupil
via the Kilo DM. This is the average of 10 epochs of 250 images. The telltale noise pattern
for the detector used in these experiments is visible in the background. (b) The absolute
value of the dOTF measured for the defocus test case. No dark subtraction is done to
lower the effect of the background noise. The zero frequency is zeroed out as a part of
the numerical processing to remove the effects of the banded noise structure. Because it
passes through the overlap region of the dOTF, this choice does not effect the estimate
of the OPL. Instead, dark subtraction could be used to counter the effects of the noise
pattern, and also serve to improve the signal to noise ratio. (c) The argument of the dOTF
measured for the defocus test case. (d) The estimated OPL from the dOTF measurement,
following the numerical processing.
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6. If no dark subtraction was utilized on the PSFs, zero out the pixels corre-

sponding to the zero frequency, as they will be effected the most by the noise.

Removing their values does not effect the dOTF estimate because they pass

only through the overlap region of the estimate, which is not used. This is the

step taken in the experiments below, and can be seen in Fig. 3.8 (c) and (d).

7. Phase unwrap arg(dOTF) using methods of Ghiglia and Pritt (1998)

8. Mask off the conjugated pupil and overlap region, scale by the wave number

corresponding to the source being used for the data to convert to units of OPL,

and subtract the measured reference OPL.

The results of this process can be seen in the rest of Figure 3.8. To determine the

quality of the OPL estimate dOTF gives using the off-axis beam, dOTF will also be

performed on the on-axis beam to provide a means of comparison. Also, an initial

dOTF will be computed for both sources without any injected, known aberration on

the Kilo DM to establish reference measurements for each source to be subtracted.

Finally, unless otherwise specified, the data is taken with only one source present on

the detector at a time (the reasoning for this, and if it is necessary, will be discussed

below). The results of the experiments can be found in Table 3.1. We note here that

although all the values in this table are positive (and match the injected aberration’s

sign), as seen in the previous three sections using dOTF as a wavefront sensor in a

self-calibration control loop, dOTF is capable of estimating the correct sign.

Injected Aberration
RMS (µm)

RMS Estimate
HeNe (µm)

RMS Estimate
LGS (µm)

0.063 Astig 0.06298 0.06465
0.05 Trefoil 0.05937 0.04929
0.05 Defocus 0.07248 0.06814

Table 3.1: Estimated RMS aberration using the dOTF method using on and off axis
sources.

Taking a closer look at these results, we see excellent agreement in the RMS

error detected for both the on– and off–axis sources for astigmatism compared to
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the true injected aberration on the DM, close agreement for trefoil, and although

the estimates were close to each other for defocus, they were not particularly close

to the input. There are several plausible explanations for this observed behavior.

Looking at frames (a) and (b) in Figure 3.9, we see the estimated OPL for the

astigmatism case. For both the HeNe and LGS sources, the form of astigmatism is

clearly visible, and a very similar peak-to-valley error is seen. It should be noted

that because of the fact that the dOTF was performed using different actuators

for the modification on both sources, as their respective beam footprints on the

DM are different, the estimates for each source are reflected with respect to each

other. The estimated RMS of the injected trefoil is not as accurate for the HeNe

source as it is for the LGS source. Frames (c) and (d) in Figure 3.9 show the

estimated OPL for the trefoil case. We again see the form of the injected aberration

clearly for both source estimates, accounting for the reflection explained previously.

However, we note that the RMS of the HeNe estimate does not match as precisely

to the true injected aberration as the LGS estimate. This can be seen in the OPL

in frame (c) where the path length at the center of the pupil is not as well defined

as would be expected for trefoil, and is seen in the LGS estimate. The reason for

this likely lies in the signal of the dOTF for the HeNe not quite being as good as for

the LGS source, leading to some more artifacts in the phase unwrapping algorithm

employed. Although not pictured, estimating an injected defocus NCPA is not as

accurate as would be anticipated. This is due to the fact that adding defocus on

the DM effectively shifts the point the light comes to focus so that it is beyond

where the detector is placed. This spreads out the photons as described above,

in accordance with allowing a longer exposure being possible without saturating

the detector pixels. However, to keep the parameters of each test the same, the

exposure time was not increased to compensate the fact that the photons were more

distributed, lowering the overall signal to noise ratio of this particular case compared

to the cases estimating astigmatism and trefoil. Furthermore, this experiment took

place about an hour after the references being subtracted so that we could only

be estimating the injected aberration were measured, meaning that the system had
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Figure 3.9: (a) The estimated OPL using the on-axis HeNe source for 0.063 micron RMS
astigmatism injected by the DM. (b) The estimated OPL using the off-axis LGS source
for 0.063 micron RMS astigmatism injected by the DM. (c) The estimated OPL using the
on-axis HeNe source for 0.05 micron RMS trefoil injected by the DM. (d) The estimated
OPL using the off-axis LGS source for 0.05 micron RMS trefoil injected by the DM.
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likely drifted some, making the reference subtraction less accurate. This would be

experienced as an increase in overall RMS error estimated, which is what is seen.

Finally, the test to probe how to deal with both sources being present on the

detector at the same time is performed, keeping the same astigmatism as used

previously. Figure 3.10(a) shows the detector image of the PSF after the centering

operation in the code pipeline has been done. The HeNe is the source of the central

intensity, with the LGS source being the dimmer image to the far right near pixel

250. What will happen when the sources are observed on the detector simultaneously

is easy to predict. Because the detector sees both as it records the intensity, as far

as the FFT operation is concerned, both PSFs will be taken to be “coherent”.

This means in the FFT operation, they will interfere with each other, with the

off–axis source having a very large phase tilt that will couple into a fringe–looking

phenomenon across the pupil. Figure 3.10(b) shows that this is in fact what happens,

meaning the estimate is corrupted. One potential way to allow for measuring dOTF

estimates with multiple sources on the detector then becomes clear: masking. The

second source can simply be masked away and replaced by a suitable estimate of

the detector noise for those pixels prior to the FFT being done. It is also clear that

this will only be possible so long as the PSFs are separated by enough that there is

effectively no overlap between them (the diffraction rings are well below the noise

floor at the location of the other PSF), as masking will not be able to disentangle

the light should it overlap. An example of attempting to mask off the LGS source

and compute the OPL estimate using dOTF for the HeNe source is shown in Figure

3.10(c). The phase tilt has been removed, as would be expected, and the estimate

of astigmatism seen in Figure 3.9(a) is recovered.

3.4 Conclusions

In this chapter, the differential Optical Transfer Function wavefront sensor (dOTF)

was introduced, and several useful applications for estimating static NCPA were

presented. dOTF can be applied very easily, without the need for expensive new
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Figure 3.10: (a) Cropped average detector image with both the HeNe and LGS source
PSFs present on the detector simultaneously. Note the vertical lines are again typical in
the noise structure of the detector. (b) The estimated OPL if both PSFs are left present
when the FFT to compute the OTF is taken. As expected, the off-axis source creates
the appearances of a large phase tilt across the pupil. (c) The estimated OPL if the LGS
source is masked off, and replaced by pixel values corresponding to a similar detector
region, prior to the FFT. Because the PSFs do not overlap due to the noise floor, the
effects of the LGS source being on the detector are largely mitigated.
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hardware to be added to the optical system, and provide a means to use a DM in the

system to compensate for any aberration, or cophase a segmented primary mirror,

to improve the Strehl ratio. Furthermore, it can even be applied using an off-axis

source, which could be important in some future missions. However, as alluded

to, there are some drawbacks to using dOTF that do limit the scenarios in which

it can be applied. Because the only major changes that can occur in the system

over the time of measurement can be the intended modification via a phase change

or amplitude blocker, the method can not be used for sensing anything other than

aberrations that are static, at least over the observation interval. This limitation

likely restricts use of the method to lab settings, or space-based observatories. In

order to probe this restriction, a set of experiments or simulations could be run

to compare the required number of photons in the signal of the two PSF measure-

ments (or equivalently integration times at various source magnitudes) vs. a metric

of precision of the resulting dOTF estimate (RMS error in OPD of the estimate

compared to the true OPD). An examination of such a set of data would allow for

the extraction of the required exposure times for a given source to achieve a high

quality estimate, providing a window into the specific temporal variations in the

optical system that could be successfully handled by dOTF. The author’s intuition

thinks that in a situation similar to the lab experiments reported, which required

roughly 5 total seconds of PSF measurements to achieve the estimates, would be

able to estimate aberrations with lifetimes much greater than 5 seconds. But with-

out a future examination of this relationship, just how much greater the speckle

lifetime for a given source brightness would need to be remains an open question.

Similarly, because the method requires a large number of photons to compute qual-

ity estimates, its use in photon starved environments is not recommended. Another

limiting factor for the use of dOTF are the effects of optical bandwidth. It may seem

advantageous to use a broadband optical source to increase the number of photons,

and thus increase the dOTF signal. The effects of bandwidth can be approximated

by incoherently adding many narrow band PSFs, which results in a radially blurred

total PSF (as the size of a PSF is directly proportional to the wavelength; longer
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wavelengths appear to stretch more). Because dOTF performs the Fourier Trans-

form of this blurred PSF, this means the OTF sees the reverse effect, and with

the difference operation, we can describe what will happen. The radial blurring in

the dOTF will be centered on the pupil modification location (in the center of the

overlap region), and progress outward with increasing strength. This effect is de-

scribed more fully in Codona (2013), where Codona suggests possible mitigation by

using multiple pupil modifications around the edge of the pupil, and stitching them

together retaining only information in each measurement within the pupil radius

from the modification. In addition to the blurring caused by bandwidth, there is

the blurring due to the pupil modification itself. Knight et. al. [41] and Jiang et.

al. [38] suggest methods for using knowledge of the form of the pupil modification

to apply deconvolution techniques, and recover high spatial frequency information

in the dOTF estimates. This would be especially useful for segmented aperture

observatories because the segment boundaries in the pupil will be recovered. In

spite of these limitations, the ease of implementation, and accuracy of the resulting

estimates of the complex amplitude field in the exit pupil make dOTF an extremely

powerful method worth consideration for optical system calibration.
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CHAPTER 4

Frazin’s algorithm †

Having just examined the dOTF method for calibrating static NCPA out of the

science arm of an AO system, and the limitations of its application, it is clear that

more work needs to be done in order to counteract the damaging effects of quasi-

static speckles in real-time while observing. The next three chapters will cover the

development, demonstration, and future of a novel statistical regression algorithm,

called Frazin’s algorithm, that will serve to fill this gap in NCPA control, and also

provide a means of improving direct detection of exoplanet signals in high-contrast

imaging settings.

4.1 The history of Frazin’s algorithm

The journey of the regression methods, collectively known as Frazin’s algorithm,

presented here begins with Frazin (2013). To start, the observational setup in which

the algorithm can be run must first be understood. A flow chart of the algorithm

is provided in Fig. 4.1. An adaptive optics (AO) enabled ground-based telescope

with a deformable mirror (DM) followed by a beam splitter or dichroic that separates

the light in to two separate paths: the wavefront sensor (WFS) path and the science

path which is home to a science instrument such as a coronagraph, which brings

the light to focus on the science camera. As described in Ch. 2, an AO system

in this configuration can be run in closed-loop, meaning that the DM provides

compensation for the measured turbulent wavefront, and then the WFS measures

the residual wavefront leftover (called the AO residual). Then, the control system

converts the measurement of the wavefront in to a command to adjust the shape of

†Parts of this chapter have been published previously as Frazin and Rodack (2021). c©JOSAA

[2021] Optica Publishing Group.
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Figure 4.1: The observation model used with Frazin’s algorithm. The starlight enters
a ground-based telescope with a kHz AO system running in closed-loop. Synchronized
telemetry from the WFS and science camera are fed into the algorithm at each millisecond.
After T milliseconds, the algorithm gives an estimate of the NCPA and exoplanet image.
The estimate of the NCPA can then be fed back into the control system to compensate
for it.

the DM surface to the current state of the AO residual. To remind the reader, the

two separate paths for wavefront sensing and science gives rise to the possibility of

non-common path aberrations (NCPA) to be present in the science path that are

downstream of the beam splitter and thus cannot be measured by the WFS. Because

the NCPA change with time, as mechanical stresses (such as gravity’s pull relative

to the optic changes as the telescope tracks, thermal gradients change the optical

surfaces, the starlight hits different parts of the telescope primary or secondary, etc.)

on the telescope optics change, the lifetime of such aberrations can range widely from

the span of minutes to longer. When using a telescope for high contrast imaging,

these quasi-static NCPA create speckles in the science camera that can be quite

difficult to distinguish from exoplanet signals. The primary goal of Frazin (2013)

was to present an algorithm that would leverage measurements of the AO residual

from the WFS simultaneously obtained with focal plane measurements from the

science camera to estimate the underlying NCPA and exoplanet image in the data.

It demonstrated via simulation a post-processing technique, henceforth referred to

as F13, to exploit the fact that the AO residual phase provides a new phase in the

pupil plane at each exposure, and provides a statistically independent phase screen

which modulates a planetary or quasi-static speckle in a new way every atmospheric
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clearing time [44]. This allows for the rapidly changing AO residual speckles in

millisecond or faster exposures to be used as probes to estimate both the exoplanet

image and NCPA, because with each passing millisecond, more diversity in the

observations is achieved. Fig. 4.2 shows simulations of noise-free science camera

images with the same NCPA being probed with different AO residual wavefronts

demonstrating this phenomenon. Though we will not dive too deeply in to the

−5 0 5
 λ/D

−5

0

5

 λ
/D

t = 0

−5 0 5
 λ/D

−5

0

5

 λ
/D

t = 150

−5 0 5
 λ/D

−5

0

5

 λ
/D

t = 300

−5 0 5
 λ/D

−5

0

5

 λ
/D

t = 450

−1.0

−0.5

0.0

−1.0

−0.5

0.0

−1.0

−0.5

0.0

−1.0

−0.5

0.0

Figure 4.2: Log10 scale, noise-free focal plane images for different realizations of the
instantaneous AO residual phases, showing the modulation of the signal. The range of the
color scales are limited to a factor of 10 to make the modulation easy to see.

mechanics of F13, as the nitty gritty details will be saved for the following section

and the derivations there, there is something to be gained from a brief introduction.

The original notation of Frazin will be largely maintained, with some minor changes

to attempt to alleviate some frustration comparing to the following sections. The

(noise-free) intensity impinging on the science camera can be written as:

I(ρ, t) = u2•ip(ρ, t) +A(ρ, t) + a†b(ρ, t) + b†(ρ, t)a+ a†C(ρ, t)a , (4.1)

where ρ is a vector of pixel locations, † is the complex conjugate transpose, u• is the

planet amplitude, u2•ip is the exoplanet point spread function (PSF), a is a vector

of aberration coefficients, A is the intensity only depending on the AO residual (w),

C depends on the NCPA (φu) as modulated by w, and b depends on the mixing of

the AO residual and NCPA. If φu is decomposed into a “search” basis:

φu(r) =
K∑
k=1

akθk(r) , (4.2)

where ak are the elements of a, and θk are the functions in the search basis to which

the method will fit the NCPA to. Considering N pixel locations ρ = ρ0; . . . ; ρN−1 in
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a single exposure, and given T total millisecond exposures synchronized with WFS

measurements of w, the following linear system model is constructed by Frazin:

I(ρ, t)−A(ρ, t) = u2•ip(ρ, t) + a†b(ρ, t) + b†(ρ, t)a+ a†C(ρ, t)a . (4.3)

This is then rewritten to the form:

y = Hx ,where (4.4)

y = [y0; . . . ;yT−1],yi = I(ρn, ti)−A(ρn, ti) + ν ,

H = [H0; . . . ;HT−1],Hi = [ip(ρn, ti) bT (ρn, ti) b†(ρn, ti) c†(ρn, ti)] ,

x = [u2•;a;a∗,aka
∗
l ] , and

ν = [ν0; . . . ;νT−1] ,

where A(ρn, ti), b(ρn, ti), and C(ρn, ti) are computed using equations given in

Frazin (2013) which are not terribly important to this discussion, ν is the noise

from the detector, and x is solved for to produce an estimate of the exoplanet

brightness coefficients and the basis function coefficients for the NCPA fit.

The author then replicated and verified Frazin’s work on F13, and expanded on

the original premise by conducting simulations demonstrating the use of F13 as a

real-time method for NCPA control instead of a post-processing method to simply

estimate it. Rodack et al. (2018) presents a summary of the simulations conducted

verifying the F13 method and probing its parameter space for the interested reader.

We will instead focus on the simulations for real-time control of static NCPAs done in

this proceedings article to set ourselves up for why further development was required

to make Frazin’s algorithm a powerful tool for astronomers. The simulator for the

closed-loop NCPA control used Fourier Optics principles to perform plane-to-plane

propagations between elements of a kHz AO system that includes an ideal WFS and

ideal coronagraph (see [15] for the mathematical definition), and a noiseless science

camera. Realistic turbulence modeling was done using AtmosphericTurbulenceS-

imul (https://github.com/oguyon/AtmosphericTurbulenceSimul), in order to

produce phase only AO residuals (w) that will be used in the model. In this case,

the NCPA (φu) that was injected is static, and takes the form of a sinusoid modified

https://github.com/oguyon/AtmosphericTurbulenceSimul
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by some high order Zernike polynomials (Z43-Z48), that produces a speckle pair in

focal plane, with one of the speckles being coincident with an injected exoplanet

PSF. The reader may recall from Eq. (4.1) the dependence on both w and φu, as

well as the chosen search basis functions θk. Because we are controlling the simula-

tions and choosing the static aberration, θ is chosen to be the same functions used

to construct the NCPA. The AO system model was tuned to provide a Strehl of

0.95 in order to provide a high fidelity result from the ideal coronagraph, exposing

to a viewer the 10−3 contrast exoplanet PSF should the NCPA be controlled by the

real-time application of F13. A simple integrator control system is set up, taking

estimates returned from the F13 regression on the NCPA coefficients every 150 mil-

liseconds as a solution for a DM correction update. A modest gain is applied for

loop stability. The results of this simulation, which can be seen in Fig. 4.3, showed

that the method can be used in real-time to estimate and provide compensation for

a static NCPA, as the injected speckle pair is removed and suppressed, revealing the

exoplanet speckle beneath it. The section from Rodack et al. (2018) that deals

with the so called “Real-time Frazin Algorithm” details some slight manipulations

to the math to improve computational efficiency if the user only means to estimate

NCPA rather than both the NCPA and exoplanet brightness coefficients. Although

an interesting adjustment at the time, it turns out to be rendered unnecessary by

the following sections, so it will not be discussed here.

The most important takeaways from this brief look at the history of Frazin’s

algorithm, from its humble beginnings as F13 and its evolution through Rodack

et al. (2018), however, are the discussions by Frazin and Rodack of the major short-

comings of the method that would prevent its deployment in the lab or on-sky. The

lesser of the shortcomings uncovered is that as constructed, the calculation and con-

catenation of information at each exposure in an observation in to a large matrix is

not computationally efficient enough to hope to run on-sky without improvement,

or spending ridiculous sums of money on high performance computers with hun-

dreds of gigabytes of RAM. The fact that the computational requirement involves

heavy calculations of many Fast Fourier Transforms (FFTs) that must be done at
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Figure 4.3: Frames from various points in the real-time simulation of the method showing
the removal of the speckles created by a static NCPA. Top left: The science camera image
of a simulated ideal coronagraph dominated by speckles caused by atmospheric turbulence.
Top middle: The science camera after the AO loop is closed. Top right: The science
camera after the first correction provided by the Frazin algorithm. Note that the top
speckle in the pair is largely faded from view, as it was caused by an NCPA. Bottom:
Science camera frames after the Frazin’s algorithm loop is closed. The sinusoidal NCPA
has been suppressed, leaving behind only the swarm of atmospheric speckles, and the
exoplanet speckle.
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each millisecond means the computer performing the calculations will struggle to

keep up with the loop. In addition, the size of y and H scale by the number of

millisecond exposures in the observation. This makes it easy to see how a memory

problem quickly arises. Using a ρ that is comprised of even 100 pixel locations, and

only 30 basis functions in the set θ, Ht is of size 100× 961. Then H is constructed

by concatenating all the Ht for 0 ≤ t ≤ T − 1, and y is then 100T elements. For

a 1 minute observation, or 60, 000 milliseconds, H will be size 6000000 × 961, and

y will be 6000000 × 1, which reaches approximately 46 GB of RAM assuming the

data type is double. If we increase to 100 basis functions in θ instead, 489 GB of

storage is now required.

However, the fundamental shortcoming is that the algorithm employed in these

studies ignores the effects of wavefront measurement error (WME) in the regression

equations. This is to say, the WFS measurements only allow an imperfect estimate

of the phase of the wavefront being measured, not the actual phase. Specifically,

any WFS exhibits spatial and temporal bandwidth limitations, nonlinearity in the

phase of the wavefront, and noise. All these factors are swept under the rug in

these examinations, which instead turn to the ideal wavefront sensor, and perfect

knowledge of the wavefront to be used in the equations. Without accounting for the

effects of the WME, an errors in variables type statistical problem arises, which will

inform the choice of nomenclature below. The uncertainty in the measurement of

w bleeds into the equations as H has deep dependency on w, meaning that there

are now errors in the independent variables, and, for a sufficient (and easy to fall in

to due to the factors above) WME, the estimate of x will become hopelessly biased

and unusable. Armed with the knowledge of these shortcomings, Frazin and Rodack

set out to construct and demonstrate an improved method born out of this work.
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4.2 Development of the improved Frazin’s algorithm 1

The following section delves in to Frazin’s derivation of an improved method to

accomplish the task of mitigating the shortcomings of the original methods described

in the previous section, namely computational efficiency and WME.

4.2.1 Wavefronts and AO

We will start the discussion of the improved Frazin’s algorithm statistical regression

method by walking through the path of the light to and into the optical system. The

light is taken to be quasi-monochromatic, centered at wavelength, λ, and a beam

splitter will serve to divide the incoming photon flux between the WFS and the

science instrument. This is not typical of the usual AO system, which often does the

wavefront sensing in a wavelength band separate from the science band. However,

we choose to use the same wavelength for ease of application/development of the

methods below (which is not to say the methods are incompatible with separate

wavelength bands). We also will adhere to the assumption that the star being

observed is far enough away to be considered a planewave at its arrival at the

atmosphere (which is most certainly the case).

The light from the star first arrives at the atmosphere, converting the planewave

in to what we will call the atmospheric wavefront. The atmospheric wavefront

represents the phase (and, if necessary, the amplitude perturbations caused by scin-

tillation resulting from multi-layer turbulence) of the electric field that has arrived

at the telescope optical system. The amplitude effects, though not excluded from

being included in the method, will again be ignored for the simplification of the

derivation. As our optical model does not include the telescopes beam reducing op-

tics, and the AO system is being run in closed-loop, the first surface the atmospheric

wavefront encounters is that of the DM. The pupil plane in which this DM sits is

both the entrance pupil of the WFS and of the science instrument, with the possible

1The work in this and all following sections is based on work that has been published previously

as Frazin and Rodack (2021). c©JOSAA [2021] Optica Publishing Group.
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exception of the inclusion of NCPA in the latter. To continue, we will just refer to

this plane as the entrance pupil, as it is the center of our initial discussion.

Finally, it is important to remember that the method requires both the science

camera and the WFS to be operating at a 1kHz or faster, and be taking synchro-

nized exposures, just as was the case in F13. The exposures from the cameras will

thus have the same time indices, {t}. The total observation time is made up of T

millisecond exposures, so the index t is an integer that runs between 0 and T − 1.

AO residual wavefronts

We represent the entrance pupil as comprised of P pixels, with the phase at the pth

pixel at time t represented as φp(wt). The function φp and the parameter vector

wt together specify the wavefront. There are many ways to do this. For example,

φp(wt) could represent a sum over Zernike modes (evaluated at the location of pixel

p), in which case the vector wt would be a set of coefficients of the Zernike modes at

time t. Here we make a simpler choice: the pth component of wt is the phase at pixel

p and the φp function just returns the value of the pth component of the input vector.

This was called the PhasePixel representation in Frazin (2018), where some of its

computational advantages are explained. With this representation, the complex-

valued electric field in the post-DM pupil plane (ie just after the DM correction has

been applied) is:

up(wt) = exp[jφp(wt)] , (4.5)

where t is the time index in the range 0 to T − 1, and the phase, φp(wt) will be

complex valued if treating the amplitude effects is deemed necessary; if not, it is

real-valued. Since the functions {φp} are fixed, the wavefront here is fully specified

by the parameter vector wt. wt will be called the wavefront or the AO residual

wavefront, just as it was labeled in Sec. ??.

The vector containing the complex electric field values at all P pixels in the

entrance pupil is

u′(wt) = (u′0(wt), . . . , u
′
P−1(wt))

T. (4.6)
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The prime is used to indicate that the field is specified at the location of the WFS

entrance pupil, whereas u(wt) is the field entering the coronagraph.

Monte Carlo wavefront generation

The so-called bias-corrected estimator, which will prove to achieve treating the

WME shortcoming of F13 in a realizable way and will be described below, requires

the ability to generate Monte Carlo wavefronts with the same spatial statistical

properties as the real wavefronts for the purpose of the required Monte Carlo calcu-

lations. The set of Monte Carlo wavefronts will be denoted as {w̆l}, 0 ≤ l ≤ L− 1,

where there are L samples in the set.

The true wavefronts, w0, . . . , wT−1, form a time series with a characteristic

correlation time. Unlike the true wavefronts, the L Monte Carlo wavefronts, {w̆l},
form an unordered set. Under conditions of quasi-stationarity, the ability to perform

Monte Carlo sampling allows approximation of the time average of any function

(linear or otherwise) f(wt) with the Monte Carlo mean of f(w̆l). In other words,

〈f(w̆l)〉mc ≈ 〈f(w̆l)〉E = 〈f(wt)〉τ , (4.7)

which says that, given enough realizations in {w̆l}, the Monte Carlo mean of f(w̆l)

will closely approximate the ensemble mean 〈f(w̆l〉E, which is equal to the temporal

mean over the time interval of length T of the stochastic process 〈f(wl〉τ . The Monte

Carlo mean based on the L samples, {w̆l}, is:

〈f(w̆l)〉mc ≡
1

L

L−1∑
l=0

f(w̆l) , (4.8)

and its importance will be further clarified in the discussion of the bias-corrected

estimator in Sec. 4.2.3: Bias-Corrected Estimation.

Wavefront measurements

The WFS telemetry makes it possible to get an estimate (or measurement) of wt,

which will be denoted as ŵt, with the “hat” designating that it is an estimate of
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the vector of quantities that specify the true phases wt. A key assumption will be

that an accurate computational model of the WFS can be constructed, making this

an added prerequisite to on-sky implementation of this algorithm. The wavefront

measurement (determined by analysis of the WFS signal) can be modeled by the

equation

ŵt =W(wt) + nt , (4.9)

where W is a nonlinear measurement operator, and nt is the noise vector. W is

necessarily nonlinear due to the fact that the intensity measured by the detector

in the WFS is nonlinear in the phase values. Thus, this nonlinearity is inevitable,

even if ŵ is based on an estimator that is linear in the WFS intensity values. W is

the numerical model that simulates the effect the WFS has on an input wavefront

(i.e. the propagation of the wavefront through the WFS optics and its following

measurement in intensity on the WFS detector), and any further processing that

takes place to produce an estimate of that wavefront from the detected intensity.

Frazin (2018) provides linear and nonlinear estimation algorithms for the case of a

pyramid WFS, but the formalism here is completely agnostic with respect to the

wavefront sensing hardware, so any such numerical model is permissible.

For the purposes of the bias-corrected estimator, having W and a Monte Carlo

sample w̆l, it is straightforward to draw a sample from the distribution of the wave-

front estimates:

ˆ̆wl =W(w̆l) + nl , (4.10)

where nl is a sample from the same stochastic processing governing the WFS de-

tector noise, nt, in Eq. (4.9). With these wavefront terms defined, we can now step

in to the science instrument path.

4.2.2 Coronagraph and NCPA model

In order to develop the regression equations that define Frazin’s algorithm, we must

now be able to describe the light in the science instrument. The regression algorithm

simulated below makes no assumptions about the type of coronagraph architecture
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that is in the science instrument, and thus provides for the freedom of many choices,

including Lyot, PIAACMC [32], APP [61; 65], and vector vortex [58] coronagraphs,

to suppress host starlight. Furthermore, a coronagraph is not a mathematical ne-

cessity for running the algorithm, as will be demonstrated in Sec. 6.1. However, to

proceed and make the verbiage concise, we will refer to the science instrument as

the coronagraph.

Stellar intensity

For describing the NCPA in the coronagraph, the assumption that we can represent

the entire effect of the NCPA via pupil plane manifestations is all that is treated.

The estimation methods to follow are not limited to this assumption, and adding

additional quantities, such as coronagraph alignment errors or NCPA that are not

accurately described by pupil plane manifestations, is possible by augmenting the

regression model appropriately. The electric field in the coronagraph entrance pupil,

as mentioned above, is the same as electric field in the WFS entrance pupil, as given

in Eq. (4.5), except that is it modified by the pupil plane NCPA. It is given by:

up(wt,a) = u′p(wt) exp[jθp(a)] = exp j[φp(wt) + θp(a)] , (4.11)

where u′p(wt) was given in Eq. (4.5), and a is a vector of length Na containing real-

valued parameters that specify the NCPA, just as it was in F13. The function θp(a)

expresses the phase (and, if needed, the amplitude as well) of the NCPA at the pth

pixel in the pupil as a function of the vector a. The simplest way to do this to have

al, which is the lth component of a, be the phase of the NCPA at the pth pupil pixel

so that θp(a) = al, but other representations, such as modal expansions along the

lines of Zernikes, Fourier modes, or BSpline modes, may be useful and require fewer

components in the a vector. Two such modal expansions will be demonstrated in

Sec. 5.1 (Zernike polynomials) and Sec. 6.1 (BSplines). The vector containing the

field values at all P pupil pixels is u?(wt,a) =
(
u0(wt,a), . . . , uP−1(wt,a)

)T
.

Since the coronagraph is a linear optical system, the field at the nth detector

pixel in the science camera is a linear combination of the field values at the pupil
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pixels. The vector containing the detector field values at time t is then given by the

matrix-vector multiplication:

v?(wt,a) = Du?(wt,a) (4.12)

where v?(wt,a) has L components, one for each of the L science camera pixels, and

D is a complex-valued matrix that performs the optical propagation. The D matrix

of size L × P is the result of pre-computed optical propagations (see Appendix B

). Pre-computing the matrix D allows computationally expensive modeling to be

employed at no cost to the execution time of Frazin’s algorithm, an important step

towards realizing adequate computational efficiency. An analogous procedure for

pre-computing the propagation matrix for a pyramid WFS is given in Frazin (2018).

Finally, the stellar component of the intensity in the science camera at time t is

i?(wt,a) = v?(wt,a) ◦ v∗?(wt,a) , (4.13)

where the ◦ notation denotes element-wise multiplication.

Planetary intensity

To round out the discussion on the intensity in the science camera, an expression for

the instantaneous planetary intensity impinging on the detector at time t is provided.

This intensity will vary in time because the planetary light experiences the same

atmospheric wavefront perturbations, wt, that the starlight does. Implicit in this

assumption is that the effects of anisoplanatism are negligible, which will be the case

since the separation between the target exoplanet and its host star is much less than

an arcsecond [19]. In order to simplify the discussion, it will also be assumed that

the effects of NCPA are negligible for the planetary light. This is probably a valid

approximation, but including the NCPA in the regression formulation if not is simple

(via a linearization in the NCPA coefficients exactly as described for the starlight

in Sec. 4.2.2: Linearization). Under the usual assumption that astronomical sources

are spatially incoherent, the planetary intensity impinging on the science camera is

linear in the fluxes coming from the elementary patches of solid-angle on the sky.
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This linearity makes the modeling task easier, as the resulting regression model is

already linear in the parameter vector, called p, that represents the planetary image.

Sometimes the vector p will be referred to as the exoplanet image, even though it

is really the set of parameters chosen to specify the image, not the image itself.

Let the sky-angle relative to the telescope pointing be represented by the two-

component vector, α = (αx, αy), where αx and αy correspond to local Cartesian

coordinates on the sky, with units of radians, which will have values that range from

about 0.5 to perhaps 10λ/D. The image we wish to estimate is represented by the

function S(α), which has units of energy flux per solid angle. Let {αn} correspond

to a numerical grid of angles, with Np points on the sky that will be used to represent

the planetary image S(α), so that

S(α) = γ

Np−1∑
n=0

pnδ(α−αn) (4.14)

where γ contains the necessary scaling factors accounting for the units of energy flux

per solid angle, Np is the number of points in the grid, δ is the Dirac delta function,

and {pn}, the brightness coefficients, are unitless. The expansion in Eq. (4.14) should

be adequate if the grid spacing of the angles {αn} is roughly λ/D or less. Next, it is

useful to define the vector p = (p0, . . . pNp−1)
T, which has Np components, one for

each sky-angle on the grid. Mathematically, the essential property of the expansion

in Eq. (4.14) is that it is linear in the coefficients {pn}.
In the telescope beam above the atmosphere, at the transverse location r, the

electric field from the part of the planetary image at the angle αn is given by:

upn(r) =
√
pn exp

[
j

2παn · r
λ

]
, (4.15)

where λ is the wavelength and αn · r is a scalar (dot) product. The field arising

from the sky-angle αn at time t and location rl in the coronagraph entrance pupil

is then given by:

upt,n,l =
√
pn exp

[
jφl(wt) +

2παn · rl
λ

]
, (4.16)

where the AO residual, φl(wt), has been included and the angle αn has been rescaled

to account for the magnification of the telescope’s beam reducing optics if needed.
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The fields defined by Eq. (4.16) at all P pixels in the pupil can be collected in to a

single vector (still coming from the one sky-angle αn):

u•t,n =
(upt,n,0 , . . . , upt,n,P−1)

T

√
pn

, (4.17)

where the amplitude,
√
pn, has been normalized out. Similarly to Eq. (4.12), the D

matrix can be used to propagate the planetary field to the detector plane as:

v•t,n =
√
pnDu•t,n , (4.18)

where v•,t,n is a vector of length L (one component for each detector pixel) containing

the field in the detector plane arising from the part of the planetary image at the

sky-angle αn. Next, this is converted to the intensity impinging on the L science

camera pixels, and is thus the image of a planet at the sky angle αn as:

i•t,n = v•t,n ◦ v∗•t,n = pn
[
(Du•t,n) ◦ (D∗u∗•t,n)

]
. (4.19)

Because the planetary intensity can be considered to be the sum of incoherently

radiating sources from the directions {αk}, to get the entire planetary image at

time t, we only need to sum i•t,n over the n sky-angles:

i•(wt,p) =

Np−1∑
n=0

i•t,n =

Np−1∑
n=0

pn(Du•t,n) ◦ (D∗u∗•t,n)

≡ Ap(wt)p , (4.20)

where p is the vector of planetary image brightness coefficients and Ap(wt)p is a

matrix-vector multiplication. Eq. (4.20) defines the real-valued, L × Np planetary

system matrix as Ap(wt) ≡ (Du•t,n)◦(D∗u∗•t,n). The dependence of Ap(wt) on the

L detector pixels and the Np sky-angles can be seen in Eq. (4.16). As can been seen

in the dependence on wt, the planetary system matrix is not a constant matrix, but

rather a matrix of nonlinear functions of the wavefront parameters wt that provides

for the modulation of the planetary image by the AO residual.
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Linearization

The simulations to follow indicate there is no reason to believe that nonlinearity in

the NCPA coefficients limits the accuracy of the method for any reasonable ampli-

tude of the NCPA.

The regression method presented below relies on linearity in the parameters to

be estimated, which include the NCPA coefficient vector a. We will proceed on

the assumption that linearizing the problem in the coefficients a is an acceptable

procedure. The simulations to follow indicate that the accuracy of the method is

not harmed by the nonlinearity in the NCPA coefficients for a reasonable ampli-

tude of NCPA, given a procedure of successive relinearizations similar to gradient

descent is employed. Importantly, the estimators presented here never linearize in

the wavefront wt, the measured wavefront ŵt, or even the wavefront measurement

error δwt ≡ wt − ŵt.

To get the total intensity impinging on the detector, the sum of the stellar

intensity from Eq. (4.13) and the planetary intensity from Eq. (4.20) is taken:

i(wt,a,p) ≡ i?(wt,a) + i•(wt,p)

= i?(wt,a) +Ap(wt)p (4.21)

A Taylor expansion of i(wt,a,p) in Eq. (4.21) in the vectors a and p about the

point (a0,p0) can be written as:

i(wt,a,p) ≈ c(wt) +Aa(wt)(a− a0) +Ap(wt)(p− p0) , (4.22)

where Aa(w) is the real-valued L × Na NCPA system matrix. It is a matrix of

functions of wt defined as the Jacobian:

Aa(wt) ≡
∂ i?(wt,a)

∂a

∣∣∣∣
a0

, (4.23)

which can be calculated from Eq. (4.13). The zero point vector is defined as:

c(wt) ≡ i(wt,a0,p0) . (4.24)
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In order to avoid carrying excess notation, but without a loss of generality, the

vectors a0 and p0 will be taken to be 0. In addition, since the iterative relinearization

procedure has proved so successful in simulation, the approximation in Eq. (4.22)

will be taken to be an equality, which will also help to make the following discussion

less complicated. Finally, the expression for the total intensity impinging on the

science camera is at time, t is:

i(wt,a,p) = c(wt) +Aa(wt)a+Ap(wt)p , (4.25)

which models all of the speckles seen on the science camera at time t. Note that

i(wt,a,p) does not refer to the quantities measured by the science camera, since

it does not include noise. Rather, even within the paradigm of this model (i.e.,

pretending the above model is exactly correct), it is a quantity that can never be

known exactly since wt, a and p can only be estimated. A similar equation was

given by Sauvage et al. (2010) early in the phase diversity literature, although they

were not concerned with millisecond imaging.

Setting up the regression

The first step in setting up the regression is defining the vector x with N = Na +Np

components, and the L × N matrix A(wt). The x vector is thus defined as the

concatenation of a and p, while similarly, A(wt) is the concatenation of Aa and

Ap, as follows:

x ≡

 a

p

 and (4.26)

A(wt) ≡
(
Aa(wt) Ap(wt)

)
. (4.27)

With these definitions, Eq. (4.25) can be rewritten as:

i(wt,x) = c(wt) +A(wt)x . (4.28)
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The vector yt, which will have the length L, represents the fixed intensities measured

by the L science camera pixels at time t. yt is given by the equation:

yt = i(wt,x) + νt

= c(wt) +A(wt)x+ νt , (4.29)

where the vector νt (also of length L) represents the noise in the measurements

performed by the science camera, which are taken to be samples of a zero-mean

stochastic process with a covariance matrix, Ct, that is size L×L. This can include

any effect that models a physical detector, including but not limited to shot noise,

readout noise, and thermal background. From Eq. 4.29, the goal of the regression

is becoming clear, which is to estimate x.

If the science camera and WFS are running at 1 kHz, the number of exposures,

T , reaches 106 in under 17 minutes, and an astronomical observation of a single

target could be hours long. This makes it necessary for the regression framework to

allow for large numbers of exposures to be included practically. In order to proceed

in this direction, the vectors w and ŵ, as well as length LT vectors y and ν, are

defined as concatenations of their individual exposure namesakes:

w ≡


w0

...

wT−1

 , ŵ ≡


ŵ0

...

ŵT−1

 , y ≡


y0
...

yT−1

 , ν ≡


ν0
...

νT−1

 , (4.30)

This concatenation of the noise vectors forces the assumptions that the total covari-

ance matrix of ν, which will be similarly named C, is made up of diagonal blocks

of all the Ct. Next, the concatenations for the set c(wt) and A(wt) are defined as:

d(w) ≡


c(w0)
...

c(wT−1)

 , Z(w) ≡


A(w0)
...

A(wT−1)

 , (4.31)

where the LT×N matrix of functions Z(w) will be named the grand system matrix.

With the definitions in Eqs. (4.30) and (4.31), the concatenation of Eq. (4.29)

over the T exposures can finally be written as:

y = Z(w)x+ d(w) + ν . (4.32)
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Eq. (4.32) specifies the measured intensities y in terms of the true wavefronts w,

and the vector containing the parameters that represent the NCPA and exoplanet

image x. It is here that we have arrived at an equation that should remind the

reader of Eq. (4.4) of the F13 method, as the derivations up to this point are nearly

mathematically identical.

4.2.3 Regression

Given Eq. 4.32, three different scenarios can be determined for finding an estimator

of x depending on what knowledge we have of the wavefronts w and their spatial

statistical properties:

• Ideal estimation: the true wavefronts w are known exactly.

• Näıve estimation: only the measured wavefronts ŵ are known, but no statis-

tical knowledge of the properties of w is given.

• bias-corrected estimation: the measured wavefronts ŵ and the statistical the

properties of w are known.

The details of each estimators are given more thoroughly below.

Ideal estimation

In ideal estimation (a term from the errors in variables literature), the true AO

residuals (wt) are used in the regression equations, resulting in an unbiased estimator

(this is essentially the method used in Frazin (2013) and Rodack et al. (2018),

though with large computational efficiency improvements that will be highlighted).

Practically speaking, ideal estimation is not possible because only a measurement of

the wavefront, (ŵ), at least at the time of writing, can be known for optical and near-

IR wavelengths, and it would instead require perfect knowledge of the independent

variable, in this case w. Ideal estimation is still important to understand because

it will appear in the derivation of the bias-corrected estimate (which is realizable),

and it will serve as a useful benchmark to evaluate the success or failure of the
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bias-corrected estimate in our simulations. The choice of regularized least-squares

is a standard way to solve the linear regression problem, and is optimal in Gaussian

noise if the measurement weights are chosen to be C−1. In terms of the vector being

estimated, x, the regularized least-squares cost function corresponding to Eq. (4.32)

is:

Φ(x) =
1

2

[
Z(w)x+ d(w)− y]TS

[
Z(w)x+ d(w)− y]

+
β

2
(x− x0)

TΞ(x− x0) (4.33)

where x0 allows non-centered regularization, β > 0 is a regularization parameter, Ξ

is an N×N symmetric (positive semi-definite) reglarization matrix, S is a LT ×LT
matrix of measurement weights with the L×L matrices {St} on the diagonal blocks,

i.e.:

S =


. . . 0 0

0 St 0

0 0
. . .

 . (4.34)

Note that x0 in Eq. (4.33) is unrelated to the linearization point a0 in Eq. (4.24).

Common choices for the regularization matrix can be the identity matrix or finite-

difference formulations that penalize gradients in the solution. Standard methods for

choosing the regularization parameter include simulation and cross-validation. The

quadratic form of the regularization term corresponds to a Gaussian prior density

(centered on x0) in Bayesian inference. To maintain generality, the regularization

terms are included in the derivation, but the simulation work below will assume

β = 0.

The value of x that minimizes Φ(x) is called the ideal estimate, x̂i, and it can

be shown (see Appendix A) that:

x̂i ≡
[
ZT(w)SZ(w) + βΞ

]−1
×
{
ZT(w)S[y − d(w)] + Ξx0

}
. (4.35)

From this point forward, the assumption that x0 = 0 will be taken for convenience,

but its inclusion is straightforward.
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We also define the following quantities, which will prove useful in further cleaning

up the notation:

Q(w) ≡ ZT(w)SZ(w) and (4.36)

P (w) ≡
[
Q(w) + βΞ

]−1
. (4.37)

Both Q(w) and P (w) are N ×N matrices, and P (w) is the regularized inverse of

Q(w).

Using Eqs. (4.36) and (4.37), the ideal estimate x̂i in Eq. (4.35) can be rewritten

as:

x̂i = P (w)ZT(w)S[y − d(w)] . (4.38)

It is important to remember that the presence of y in this equation means that x̂i

will inherit the noise, ν from the science camera measurement. This noise is the only

stochastic process in the ideal estimator, allowing us to average over the statistics

of ν:

〈y〉ν = Z(w)x+ d(w) , (4.39)

because ν is drawn from a zero-mean stochastic process. From Eq. (4.38), the mean

of x̂i is thus:

〈x̂i〉ν = P (w)Q(w)x (4.40)

β=0
= x , (4.41)

indicating the usual result that the ideal estimator is unbiased without regularization

(i.e., β = 0). Similarly, the covariance of the ideal estimator is:

< x̂ix̂
T
i >ν− < x̂i >ν< x̂

T
i >ν

= P (w)ZT(w)SCSZ(w)P (w) (4.42)

= P (w)H(w)P (w) (4.43)

β=0, S=C−1

= P (w) (4.44)

where Eq. (4.44) shows the simplification attained when the measurement weights

S are chosen to be the inverse of the noise covariance (i.e., S = C−1) and again
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without regularization. In Eq. (4.43), the N×N matrix H(w) is defined for reasons

that become clear later as:

H(w) ≡ ZT(w)SCSZ(w) . (4.45)

If regularization is applied (i.e. β 6= 0), and/or the measurement weights S are

chosen to be something other than C−1, the assumption is that they are chosen

so the final result for x̂i is “acceptably biased”, which will not detract from the

observation that ideal estimation is “unbiased”.

Lastly, turning an eye towards an improvement in computational efficiency, the

following observation, which follows from Eqs. (4.31) and (4.36) and writing out

the matrix multiplication, proves quite useful:

Q(w) =
T−1∑
t=0

AT(wt)StA(wt)

= T
〈
AT(wt)StA(wt)

〉
τ

≡ Qτ (4.46)

which states the matrix Q(w) is a scaled time average over the interval defined by

the T exposures that are measured, of a nonlinear function of the wavefronts {wt}.
When T is much greater than the correlation time-scale of wt, Qτ depends largely

only on the statistical properties of the wavefronts, and not their individual values.

From Eqs. (4.37) and (4.46), we can easily then define:

Pτ ≡ [βΞ +Qτ ]
−1 . (4.47)

Next, using the definitions of Qτ and Pτ , Eq. (4.40), can be rewritten as:

〈xi〉ν = PτQτx
β=0
= x . (4.48)

This observation removes the need to store each individual millisecond in computer

memory, as we now need only the sum of the computed quantities at each millisec-

ond. The method can now be seen as computationally lightweight, solving one of

the previous setbacks that was noted in Section ??.
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Näıve estimation

In näıve estimation (also a term from errors in variables literature, introduced at

the end of Sec. ??), the measurements of the AO residuals are plugged in to the

equations wherever they call for w, making it a technique that is realizable. The

fact that measurements of the AO residuals differ from the true AO residuals is

ignored, resulting in a biased estimate of x. It is important to note that even if

the wavefront measurements themselves are unbiased, the näıve estimator is still

biased because of the uncertainty in the measurements. This is the result of using

the methods of Frazin (2013) and Rodack et al. (2018) without the use of the ideal

WFS, which spawned the discussions there of the major shortcoming of using the

method. The näıve estimate, x̂n, is given by:

x̂n ≡ P (ŵ)ZT(ŵ)S[y − d(ŵ)] , (4.49)

which of course is the same as Eq. (4.38), but with the wavefront measurements

replacing the true wavefronts. The simulations shown below will use näıve estimation

to good effect in estimating an NCPA with ∼ 0.5 radian RMS based on only 1 minute

of simulated sky time. However, when more precision is required, as when jointly

estimating the exoplanet image with an NCPA of ∼ 0.05 radian with 4 minutes of

simulated sky time, the näıve estimate was too biased to be useful.

Biased estimation

The next step in the process is to define the biased estimator (even though the näıve

estimator is biased, too). The only purpose of the biased estimator is to serve as a

building block of the bias-corrected estimator. This biased estimate, x̂b, is defined

as:

x̂b ≡ PτZT(ŵ)S[y − d(ŵ)] . (4.50)

The biased estimate is nearly the same as the näıve estimate, except that Pτ replaces

P (ŵ), which removes some of the dependence on the measured wavefronts ŵ. Now,

the bias in the biased estimate is calculated so that we can later account for it with
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the Monte Carlo methods that follow. The wavefront measurement error is defined

as:

δw ≡ ŵ −w , (4.51)

where the sign is chosen for convenience. Following the same sign convention, other

errors that arise can be defined:

δZ(ŵ,w) ≡ Z(ŵ)−Z(w) (4.52)

δA(ŵt,wt) ≡ A(ŵt)−A(wt) (4.53)

δd(ŵ,w) ≡ d(ŵ)− d(w) (4.54)

δc(ŵt,wt) ≡ c(ŵt)− c(wt) (4.55)

Using Eqs. (4.52) through (4.54), Eq. (4.50) can be rewritten as:

x̂b = Pτ
[
ZT(w) + δZT(ŵ,w)

]
S[y − d(w)− δd(ŵ,w)]

= x̂i + PτδZ
T(ŵ,w)S[y − d(w)]

− Pτ
[
ZT(w)Sδd(ŵ,w) + δZT(ŵ,w)Sδd(ŵ,w)

]
, (4.56)

which makes use of Eq. (4.38), but replacing P (w) with Pτ . The next step is

take the expectation of both sides of Eq. (4.56) with respect to the statistics of ν,

following the same procedure that gave Eq. (4.40). The result is:

〈x̂b〉ν = 〈x̂i〉ν + PτδZ
T(ŵ,w)SZ(w)x

− Pτ
[
ZT(w)Sδd(ŵ,w) + δZT(ŵ,w)Sδd(ŵ,w)

]
, (4.57)

= 〈x̂i〉ν +G(ŵ,w)x+ g1(ŵ,w) + g2(ŵ,w) , (4.58)

which shows that x̂b is biased relative to the ideal estimate x̂i. This bias has a term

G(ŵ,w)x that is linear in x as well as two additive terms, g1(ŵ,w) and g2(ŵ,w).

The N ×N matrix G(ŵ,w) is given by:

G(ŵ,w) ≡ PτδZT(ŵ,w)SZ(w) , (4.59)
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which can be treated similarly to Eq. (4.46) to show Gτ is a time average:

G(ŵ,w) = Pτ

T−1∑
t=0

δAT(ŵt,wt)StA(wt)

= TPτ
〈
δAT(ŵt,wt)StA(wt)

〉
τ

≡ Gτ , (4.60)

However, unlike Qτ , which can be approximated with knowledge of only the true

wavefront statistics, Gτ depends on both the statistics of the true wavefronts and

their measurements. This joint dependence is also exhibited by the N × 1 vectors

g1(ŵ,w) and g2(ŵ,w), which also can be shown to be time averages:

g1(ŵ,w) ≡ −Pτ ZT(w)Sδd(ŵ,w)

= −Pτ
T−1∑
t=0

AT(wt)Stδc(ŵt,wt)

= −TPτ
〈
AT(wt)Stδc(ŵt,wt)

〉
τ

≡ g1τ , (4.61)

and

g2(ŵ,w) ≡ −Pτ δZT(w)Sδd(ŵ,w)

= −Pτ
T−1∑
t=0

δAT(wt)Stδc(ŵt,wt)

= −TPτ
〈
δAT(wt)Stδc(ŵt,wt)

〉
τ

≡ g2τ . (4.62)

Then, using Eqs. (4.60) through (4.62), the equation for the mean of the biased

estimate in Eq. (4.58) is:

〈x̂b〉ν = 〈x̂i〉ν +Gτx+ g1τ + g2τ , (4.63)

which is given in terms of the bias of the ideal estimator given in Eq. (4.48).
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Using Eq. (4.50) and the definition of the noise covariance C, we can arrive at

the expression for the covariance of the biased estimator:

< x̂bx̂
T
b >ν − < x̂b >ν< x̂

T
b >ν= PτH(ŵ)Pτ (4.64)

which is similar in appearance to covariance of the ideal estimator in Eq. (4.43), and

where the N ×N matrix H(ŵ) is defined as [see also Eq. (4.45)]:

H(ŵ) ≡ ZT(ŵ)SCSZ(ŵ)

=
T∑
t=0

AT(ŵt)StCtStA(ŵt) . (4.65)

This is an important result because H(ŵ) can be calculated with only the measured

wavefronts. In this calculation, one can approximate Ct with an estimate Ĉt, to

approximate the unknown true intensity (in photon units) with a measured number

of photon counts when calculating the variance of the shot noise contribution to the

science camera measurement noise covariance. Following from Goodman (2015),

this is acceptable because the measured photon count rate is an unbiased estimator

of the real photon count rate. That being said, H(ŵ) will only appear in the

calculation of the error covariance matrix of the estimates, so any minor inaccuracy

in this matter is not as critical, as it will not harm the estimates themselves.

Bias-corrected estimation

Lastly, the culmination of this work, bias-corrected estimation does treat the WME

under the assumption that the spatial statistics of the true AO residual wavefronts

are known. This statistical knowledge is used to create a set of Monte Carlo wave-

fronts (See Sec. 4.2.1) that form the basis of this technique. To the extent that

the Monte Carlo wavefronts are representative of the random process that generates

the true AO residual wavefronts, bias-corrected estimation converges to an unbiased

estimate given a large enough number of samples. In other words, when the knowl-

edge of the statistics is exact, the bias-corrected estimator is unbiased (and nearly

as good as the ideal estimate). If the knowledge of the statistics is “good” but not
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exact, the bias-corrected estimator, as is the case for the simulations shown below,

retains a small bias. Jumping in, the bias-corrected estimator, x̂c, is defined as:

x̂c ≡ PτQτ

(
Gτ + PτQτ

)−1(
x̂b − g1τ − g2τ

)
, (4.66)

which is expressed in terms of the biased estimator from Eq. (4.50). With the use

of Eq. (4.48) and Eq. (4.63), we can verify that the bias-corrected estimate returns

the same bias as the ideal estimate, namely that it is unbiased:

〈x̂c〉ν = PτQτx = 〈x̂i〉ν . (4.67)

Using Eqs. (4.64) and (4.66) , the covariance matrix of the bias-corrected estimator

is:

< x̂cx̂
T
c >ν− < x̂c >ν< x̂

T
c >ν = PτQτ

(
Gτ + PτQτ

)−1
× PτH(ŵ)Pτ

(
Gτ + PτQτ

)−T
QτPτ , (4.68)

β=0
=
(
Gτ + 1

)−1
PτH(ŵ)Pτ

(
Gτ + 1

)−T
(4.69)

where −T indicates the transpose of the inverse of a matrix (unlike Qτ , Gτ is not

symmetric), and 1 is the identity matrix (in this case, N × N). Finally, we note

that if there is no WME present, Gτ = 0, and the covariance of the bias-corrected

estimator is exactly the same as the covariance of the ideal estimator shown in

Eq. (4.43), as would be expected.

Monte Carlo approximations

In order to calculate the bias-corrected estimate and its error covariance matrix, the

quantities: Qτ , Pτ , Gτ , g1τ and g2τ must be obtained. This might seem impossible

given the dependence on both the true and measured wavefronts, but alas, we can

rely on the Monte Carlo sampling capabilities discussed in Sec. 4.2.1 to help.

Let us assume that the Monte Carlo simulator provides L samples of the AO
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residuals in the set {w̆l}. If L and T are large enough we have:

Qmc ≡
T

L

L−1∑
l=0

AT(w̆l)StA(w̆l) (4.70)

≈ T
〈
AT(w̆l)StA(w̆l)

〉
E

(4.71)

≈ T
〈
AT(wt)StA(wt)

〉
τ

= Qτ , (4.72)

where the weight matrix St is taken to be a constant that does not depend on t.

Choosing the same matrix, Ct for all values of t prevents minimum mean-squared

error estimation in the presence of noise that depends on t, which requires St = C−1t .

Recalling Eq. (4.47), we define:

Pmc ≡ (βΞ +Qmc)
−1 . (4.73)

It is interesting to see that the regularization term, βΞ, that was included in

Eq. (4.33) to improve the invertibility in the ideal estimator, could also be use-

ful for the Monte Carlo approximations by mitigating Monte Carlo sampling errors.

The Monte Carlo approximations of the matrix Gτ and the vectors g1τ and g2τ

rely on both the ability to generate Monte Carlo wavefronts and their equivalent

WFS measurements. Starting with Eq. (4.60), the matrix Gτ can be approximated

by the following Monte Carlo calculation:

Gτ ≡ TPτ
〈
δAT(ŵt,wt)StA(wt)

〉
τ

≈ TPτ

〈
δAT( ˆ̆wl, w̆l)StA(w̆l)

〉
E

≈ T

L
Pmc

L−1∑
l=0

δAT( ˆ̆wl, w̆l)StA(w̆l)

≡ Gmc (4.74)

where ˆ̆wl is a simulated measurement of a Monte Carlo wavefront w̆l. Similarly, the

vectors g1τ and g2τ in Eqs. (4.61) and (4.62) have the Monte Carlo approximations:

g1mc ≡ −
T

L
Pmc

L−1∑
l=0

AT(w̆l)Stδc( ˆ̆wl, w̆l) , and (4.75)

g2mc ≡ −
T

L
Pmc

L−1∑
l=0

δAT(w̆l)Stδc( ˆ̆wl, w̆l) . (4.76)
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One thing to note about approximating the various τ quantities with Monte Carlo

methods is that all of the nonlinear dependencies on the wavefront are treated

without approximation.

4.2.4 Numerical implementation of Frazin’s algorithm

With the Monte Carlo approximations of the τ quantities in hand, they can now

be substituted in to Eq. (4.66) to arrive at the fully realizable, Monte Carlo bias-

corrected estimate, which is given by [where xb from Eq. (4.50) is also substituted]:

x̂cmc ≡ PmcQmc

(
Gmc + PmcQmc

)−1 ×{
PmcZ

T(ŵ)S[y − d(ŵ)]− g1mc − g2mc

}
, (4.77)

with the covariance also computed by replacing the τ quantities with their Monte

Carlo approximations in Eq. (4.68).

At the end of this journey that has taken us through the three possible situations

that can arise, we are left with a realizable, unbiased estimate even in the presence

of WME, that is computationally light-weight, given that the assumptions on the

knowledge of the wavefront statistical properties are met. As a reward to the reader

for slogging through the math, the following summary of calculations required to

fully implement the improved Frazin’s algorithm (henceforth just referred to by the

estimator names being applied) is provided:

1. Use the given equations for Monte Carlo sampling to calculate:

Qmc, Pmc, Gmc, g1mc and g2mc .

2. As the observation takes place, gather the millisecond science camera inten-

sities {yt} and wavefront measurements {ŵt} (for a 1 kHz AO system), and

accumulate the sums that depend on them:

• ZT(ŵ)S[y − d(ŵ)] =
∑T−1

t=0 A
T(ŵt)St[yt − c(ŵt)]

This quantity can be found in Eq. (4.77). This piece of the equation is

accumulated during observation because it is the only piece that depends

on the input data from the telescope.
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• H(ŵ) =
∑T

t=0A
T(ŵt)StĈtStA(ŵt) [Eq. (4.65)]

3. Calculate the Monte Carlo bias-corrected estimate from Eq. (4.77) (repro-

duced here for convenience) by plugging in the corresponding Monte Carlo

approximations from 1 and the sum from the first bullet of 2.

x̂cmc ≡ PmcQmc

(
Gmc + PmcQmc

)−1 ×{
PmcZ

T(ŵ)S[y − d(ŵ)]− g1mc − g2mc

}
4. Calculate the Monte Carlo approximation to the error covariance matrix of x̂c

[see Eq. (4.68)] by plugging in the corresponding Monte Carlo approximations

from 1 and the sum from the second bullet of 2:

Ccmc ≡ < x̂cmcx̂
T
cmc >ν = PmcQmc

(
Gmc + PmcQmc

)−1 ×
PmcH(ŵ)Pmc

(
Gmc + PmcQmc

)−T
QmcPmc (4.78)

5. If the nonlinearity in the NCPA coefficients needs to be treated, re-linearize

about the estimate, as per Eq. (4.22), and start over at 1.

Chapter 5 will follow this prescription in simulation to provide a demonstration and

evaluation of the method.
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CHAPTER 5

Frazin’s algorithm: validation via simulation †

5.1 The simulator

In order to proceed with the verification of the regression model described in

Sec. 4.2.3, a suite of simulation tools was developed in order to run numerical ex-

periments using a millisecond imaging, adaptive optics coronagraph. An end-to-end

simulator was constructed in order to create turbulent wavefronts, as well as models

for the coronagraph and the AO system optical trains. The AO system includes

a deformable mirror (DM) followed by a 4-sided pyramid WFS (PyWFS), and the

coronagraph is a standard Lyot model, followed by a science camera. These simu-

lations only require pupil planes and focal planes, and the propagation between the

two planes is computed via fast Fourier transforms (see Goodman (2017)).

5.1.1 Simulated wavefronts and AO

The temporal evolution of the on-sky turbulent wavefronts must be specified in

order to model the functionality of the AO system. We have taken the spatial

statistics of the turbulence to be given by the von Kármán spectrum, with an outer

scale parameter L0, inner scale parameter l0, and Fried parameter r0 (see Goodman

(2015)). To keep the model simple, and maintain realism in the temporal evolution,

we implement the infinite phase screen method introduced by Assémat et al. (2006)

via the hcipy package [66].

We simulate the DM surface with 2D cubic splines, with the knots placed in a

20 × 20 grid. In this way, the knots play the role of the actuators and the height

†This chapter has been published previously as Rodack et al. (2021). c©JOSAA [2021] Optica

Publishing Group.
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of any point on the surface is given by the spline interpolator function. With the

circular pupil inscribed on the DM surface, the resulting control radius is 10λ/D.

Following the DM, a beam splitter separates the coronagraph and wavefront

sensor optical trains. In our simulations, the beam splitter’s only effect is to divide

the available photon flux between the optical trains.

In the simulation experiments below, the PyWFS is chosen in large part because

it is being used for many modern AO systems including MagAO-X [46] and SCExAO

[43].

The input to the PyWFS regression model is the AO residual wavefront at time-

step t, represented aswt, while the output is the estimate of the same, represented as

ŵt, as summarized in Eq. (4.9). The PyWFS model includes circular modulation of

the beam, simulated as a discrete set of tips and tilts. This formulation allows for the

effects of noise, spatial bandwidth, and aliasing to be included in the measurement

of the wavefront. An example of an AO residual phase, φ(wt), its measurement

error, φ(wt)− φ(ŵt), and the corresponding PyWFS intensity at t, are provided in

Fig. 5.1.

Progressing to the coronagraph from the beam splitter, the wavefront that arrives

at the entrance pupil of the coronagraph is the same as the wavefront at the WFS,

but with the addition of the NCPA phase. For simplicity, the cumulative sum of any

NCPA is treated as a single phase error in the coronagraph entrance pupil. This can

be thought of as the total phase error induced by the individual optical elements in

the coronagraph, aberrations upstream of the beam splitter that are not corrected

by the AO system (e.g., island modes), as well as aberrations in the WFS optical

train that are flattened by the AO system (for which the inverse of would appear in

the coronagraph optical train). The electric field in the coronagraph entrance pupil

is given by Eq. 4.11.

5.1.2 Numerical coronagraph model

For these simulations we choose a Lyot coronagraph (See Fig. 1.4) with a binary

focal plane mask (FPM) occulter that is circular in shape with a radius of 1.5λ/D,
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Figure 5.1: Example of wavefront measurement with the simulated PyWFS. top left:
True AO residual (radian). top right: Error in measured AO residual (radian). bottom:
Intensity at PyWFS detector, in normalized units.
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and a Lyot Stop with a diameter 90% of the pupil diameter. To remind the reader,

the complex-valued electric field at the lth science camera detector pixel, vl, can be

represented in terms of the complex-valued electric field in the coronagraph entrance

pupil, up(wt,a), via the linear coronagraph operator, an L×P matrix,D = {Dlp} (L

is the number of science camera pixels, P is the number of pixels in the discretization

of the entrance pupil):

vl(wt,a) =
P−1∑
p=0

Dlpup(wt,a) , (5.1)

where up(wt,a) is given by (4.11). Note that (5.1) is the form of a matrix-vector

multiplication and is ideally suited to being carried out on a graphics processing unit

(GPU). D comes from a computational model of the coronagraph optical train. For

a Lyot coronagraph, such a model is provided by the operator:

D = {F{L × F [M × F
( )

]}} , (5.2)

where F is the 2D discrete Fourier Transform operator, L is a mask representing the

Lyot Stop, and M is a focal plane mask. The actual construction of D for several

systems is given in Appendix B. Finally, the noise-free (i.e. true) representation of

the intensity impinging on the science camera is given by Eq. 4.28 above.

This intensity is normalized such that a point source propagated to the final

focal plane without a coronagraph has a maximum value of unity, centered at the

origin of the science camera. This converts the effective units of the science camera

measurements to be in “contrast” as defined as the ratio of coronagraphic intensity

from our simulated source divided by the non-coronagraphic intensity of an on-axis

point source. Scaling in this fashion allows for direct calculation of contrast values.

Finally, we simulate the science camera’s measurement of the intensity by adding

photon counting (shot) noise and detector readout noise. An example of such a

measurement can be found in Fig. 5.2. The number of photons incident on the

detector is determined by choice of target star magnitude, science wavelength, and

spectral bandwidth, the optical system beam splitter ratio, and chosen values for

system throughput, all of which are specified in Table (5.1). To simulate the noisy
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measurement, the intensity, i(wt,a,p), in units of contrast, is converted to units of

photons. σRN is then chosen to represent the readout noise in photon counts per

pixel, per read out (every 1 millisecond). The standard deviation of the intensity,

in photon units, in the science camera measurement, is thus given as

σl,ph =
√
il,ph + σ2

RN , (5.3)

allowing for the calculation of the noise term in the lth pixel via sampling from

a zero-mean, σlph Normal distribution. This noise term, nl , separate from the

noise term in the WFS measurement in Eq. (4.9) because they come from different

detectors, is then converted back to units of contrast and added to the result of Eq.

(4.28), arriving at the simulated result of Eq. (4.29).

5.1.3 Simulation parameters

In the numerical experiments described below, the sensing and science wavelengths

are both chosen to be Y band, centered around 1.036µm. The Y band was es-

sentially an arbitrary choice corresponding to a possible MagAO-X instrument ob-

serving case; the methods discussed would work at shorter or longer wavelengths.

Although modern AO systems typically use separate wavelength bands for the WFS

and coronagraph optical trains, we chose to use the same band to match the cur-

rent expectation for a first on-sky implementation of this method. This mitigates

chromatic effects that may arise when these functions are performed at different

wavelengths. A 6.5 meter, circularly symmetric aperture with no central obscura-

tion nor spiders is chosen to define the telescope pupil. The light is taken to be

quasi-monochromatic. The photon fluxes, which are needed for noise statistics, cal-

culated from apparent magnitude 6 or 8 sources with a 10% spectral bandwidth

and a 50% overall throughput. The spectral bandwidth is only considered in the

calculation of the number of photons/ms incident on the telescope, not for analysis

on polychromatic simulation. This results in a total of 28,700 photons/ms for the

magnitude 8 source and 182,200 photons/ms for the magnitude 6 source. 70% of
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the photon flux was apportioned to the WFS, while 30% was apportioned to the

coronagraph. This non-standard way of splitting the photons was chosen so that

changing from a magnitude 6 to magnitude 8 target in the simulations would not

incur a penalty in the resulting Strehl ratio from the AO system. We did not run

experiments with other ratios.

The AO system uses a leaky integrator control system with a loop gain of 0.35,

with a two frame correction delay, and provides a closed-loop Strehl ratio of∼ 0.73 in

Y band. The turbulence parameters are specified in Table 5.1. The control radius of

the AO system (defined by the maximum correctable spatial frequency by the DM)

is 10λ/D in both the x and y directions, leading to a square corrected region, and

a residual bright halo outside. A 1 kHz frequency is chosen for both the wavefront

and the science camera measurements, and they are assumed to collect simultaneous

telemetry, meaning that yt, the vector of science camera intensities at all L pixels

measured at time-step t, results from the wavefrontwt, with measurement ŵt. These

choices are representative of modern ground-based AO systems equipped with high

frame rate science cameras. This AO performance, and the resulting raw contrast

provided by the Lyot Coronagraph without any NCPA present, is consistent with

the current theoretical performance of such a simple integrator control system given

by Males and Guyon Males and Guyon (2018).

The turbulent wavefront phase, φ(w−t ), is generated following Section 5.1.1 and

corresponds to a 50× 50 pixel grid inscribed with a circular aperture with a radius

of 25 pixels. The total number of pixels in this inscribed circle is P = 1976. The

turbulence model used in the simulation is a phase only atmosphere, with L0 =

25 m and r0 = 0.3 m. The phase φ(wt) is constructed as the sum of 6 layers (as

scintillation effects are ignored to simplify the discussion in this work), each with

their own wind direction vector, corresponding to a 10 m/s speed. The choice of 6

layers collapsed together in the entrance pupil helps ensure that each phase screen

is unique.

The science camera (in the final focal plane of the coronagraph) consists of a

67 × 67 pixel square array, with 0.39 pixels per λ/D sampling. A value of 0.3
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ph/pix/read of readout noise is assumed. This number of pixels in the detector

frame, as well as the readout noise value, running at a 1kHz frame rate, is within

specifications for modern, commercially available EMCCD cameras running at an

acceptable gain setting. Table (5.1) summarizes the general parameters that are

used in the numerical experiments.

The NCPA for the simulated experiments is chosen to be the linear combination

of 6 radial orders of Zernike polynomials (Noll indices 4-36, so, Na = 32), follow-

ing Eq. (4.11). When needed for the joint estimate, a 13 × 8 object source grid

corresponding to the Np = 104 sky-angles for which the scene (exoplanet bright-

ness coefficients) are to be estimated, is used. This source grid is a collection of

point sources created such that their images propagated through the coronagraph

are spaced by 1λ/D, and have an inner edge at 3λ/D at the closest, and an outer

edge at 10λ/D. The choice of this scene is to demonstrate how the techniques pre-

sented can recover both point sources (exoplanets) and extended sources (such as

circumstellar disks), located at a few times the classical optics resolution limit of

λ/D. The brightest point is (1×10−4) in the contrast units, while the faintest point

is (1.8× 10−6), with an average brightness of 3.9× 10−5.

5.2 Phase A numerical experiment

The objective of the first experiment performed is to estimate and compensate for

the NCPA. Compensating for the NCPA using only one minute of observation time

provides a good starting position for the more demanding combined estimation of

the residual NCPA and the exoplanet image in ”Phase B,” described in Section 5.3.

5.2.1 Estimating the NCPA

Phase A simulates a 1 minute observation, consisting of 60, 000 synchronized mil-

lisecond exposures in the science camera and WFS, the purpose of which is to

provide a coarse estimate of large NCPA, which have an RMS phase of 0.52 radian.

The Phase A estimate uses the näıve regression model, which has unwanted bias
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Simulation Parameter Symbol Value or Type
Pixels in Entrance Pupil P 1976
True AO Residual wt vector of length P
WFS Measurement ŵt vector of length P
Pupil Diameter D 6.5 m
Coronagraph Operator D Lyot
Fourier Transform Operator F
FPM M binary;

radius: 1.5λ/D
Lyot Stop S binary;

diameter: 0.9D
WFS Model W Modulated PyWFS
PyWFS Modulation Radius 3λ/D
Science Camera SC EMCCD
Pixels in SC L 4489
SC/WFS Cadence 1kHz, synchronized
SC Pixel Array Shape 67× 67 pixels
SC Pixels per λ/D 0.39
SC Readout Noise σIph 0.3 photon counts/px
Wavelength λ Y band (1µm)
Beam Splitter Ratio 70/30
Source Apparent Magnitude 8 (and 6)

Source Spectral Bandwidth 10%̇
Photons per ms in SC 8, 718 (55, 008)
Photons per ms in WFS 20, 342 (128, 351)
Fried Parameter r0 0.3 m
Inner Scale l0 0.01 m
Outer Scale L0 25 m
Turbulence Model von Kármán; 6 layers;

no scintillation;
frozen flow

Strehl at λ = 1µm 0.73
AO Correction Delay 2 Frames
NCPA Zernike Modes 4−36 (6 radial orders)
NCPA RMS 0.52 radian
True Object Grid 13× 8 points
Grid Locations x: [3λ/D, 10λ/D]

y: [−6λ/D,+6λ/D]
Spacing of 1λ/D

Relinearization Point xa,n iteration n lineariza-
tion point

Table 5.1: Summary of the defining simulation parameters for the performed numerical
experiments.
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Figure 5.3: The estimated aberration Coefficients from the simulated experiments, fol-
lowing five relinearization iterations. Included are the true, starting NCPA coefficients,
and their näıve estimates using both a magnitude 6 (RMS error of 2.14 × 10−2 radian)
and magnitude 8 source (RMS error of 5.95× 10−2 radian).

that increases increases as the wavefront measurement error gets larger. The initial

linearization point was taken to the zero vector, ie., a0 = 0. The Phase A experi-

ment was repeated for both a magnitude 6 and magnitude 8 target source. The AO

system being simulated is not photon starved at magnitude 8, so although fewer

photons are being observed compared to the magnitude 6 source, the Strehl ratio

only decreases from 0.76 to 0.73 when going from the magnitude 6 source to the

magnitude 8 source. The magnitude 8 source has a larger wavefront measurement

error, which leads to larger bias in the näıve estimate.

Fig. 5.3 shows the results of the näıve estimate of the aberration coefficients

composing the NCPA, following a 5 iteration treatment of the nonlinearity (see

Section 5.2.5.2.2), for both the magnitude 6 and 8 sources. The root mean squared

(RMS) error of the magnitude 6 source estimates of the aberration coefficients is

0.0214 radian, whereas for the magnitude 8 source the RMS error is 0.0595 radian,

approximately a factor of 3 worse.
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Figure 5.4: Successive relinearization points, xa,n, for the Phase A experiment, starting
from all zeros, and then using the previous iteration’s estimate.

5.2.2 Treating the nonlinearity

In order to effectively treat the nonlinearity in the NCPA, the regression algorithm

is run iteratively, successively relinearizing about the updated estimate values. Note

that each iteration can be computed using the same set of observed data. The num-

ber of iterations that are needed can be determined by monitoring when the change

in the updated linearization point from one iteration to the next becomes insignif-

icant. This process is illustrated in Fig. 5.4, starting about the zero vector, and

continuing using the previous iteration’s estimate as the new linearization point.

The only cost of adding relinearization steps is computation time since new obser-

vations are not needed. In these simulations, three iterations effectively estimated

the aberration coefficients, but we applied five for good measure.

5.2.3 Compensating for the NCPA

Once we have estimated the NCPA, we can use a non-common path DM (such as

the one in MagAO-X [7]) to compensate for them. A DM command that performs

the compensation can be calculated by a least-squares fit of the NCPA optical path

difference (OPD) map to the DM command modes. The resulting phase maps in the
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Figure 5.5: left: Starting NCPA phase (in radian), with RMS 0.52 radian, in the coro-
nagraph entrance pupil. middle: The phase in the coronagraph entrance pupil with the
magnitude 6 source näıve estimate used for compensation. The residual phase has RMS
0.0495 radian. right: The phase in the coronagraph entrance pupil with the magnitude 8
source näıve estimate used for compensation. The residual phase has RMS 0.11 radian.

coronagraph entrance pupil after DM compensation for our simulations are shown

in Fig. 5.5 in the top right (magnitude 6 source) and bottom (magnitude 8 source)

panels. As we expect from the the RMS error of the estimated aberration coefficients,

compensating the NCPA via the magnitude 6 source estimate does a better job,

achieving a reduction in RMS phase due to the NCPA from 0.52 radian to 0.0495

radian, a 10.5× improvement. Using the magnitude 8 source estimate achieves a

reduction in RMS phase from 0.52 radian to 0.11 radian, a 4.74× improvement. In

order to proceed in Phase B, we will adopt the better compensated NCPA while

the magnitude 8 source in order to demonstrate being able to estimate a small

NCPA jointly with the exoplanet image. This choice could represent an observation

sequence where the NCPA is calibrated on a bright star, and then the telescope

would slew to a fainter science target. If this is done, any change to the NCPA due

to the slewing would likely remain small, especially if the calibration star is close

to the target on sky. If additional NCPA is incurred through this slewing, it can

be estimated while observing the target star, as will be discussed in the following

section. The resulting time averaged images in the science camera in contrast units

for the cases of pre- and post compensation, can be seen in Fig. 5.6.
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Figure 5.6: Log scale Time averaged images in the science camera for the Phase A
and Phase B experiments in contrast. left: the manifestation of the 0.52 radian RMS
(≈ λ/13) NCPA is present, and shows a significant degradation to the coronagraphic
image. right: the estimated NCPA has been applied to a DM to compensate, leaving
behind the manifestation of a 0.0495 radian RMS residual NCPA.

Magnitude
of Source

RMS
Error
(radian)

Compenasted
RMS Phase
(radian)

6 0.0214 0.0495
8 0.0595 0.11

Table 5.2: Summary of the resulting root mean square (RMS) error using the näıve
estimate based on 1 minute of observations to solve for the NCPA, and the residual RMS
phase left after using the estimates to compensate the NCPA. Note the starting RMS
phase was 0.52 radian.
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5.3 Phase B: joint estimation

The second experiment performed is to jointly monitor the residual NCPA left over

after Phase A, while also estimating any present exoplanetary image. Recalling the

results from Section 5.2, the NCPA present in the coronagraph optical train has an

RMS phase error of 0.0495 radian, and the time average image in the science camera

can be seen in the right frame of Fig. 5.6. Phase B is a 4 minute observation of a

magnitude 8 star taking place directly after the 1 minute Phase A observation de-

scribed in Section 5.2. Phase B gathers 240, 000 millisecond synchronized exposures

in both the WFS and science camera telemetry streams. The same process of treat-

ing the nonlinearity described above is performed here, starting by linearizing the

regression equations with the Na NCPA coefficients and Np exoplanet coefficients

set to zero (see Eq. (4.32)), and successively updating with the previous iteration

bias-corrected estimate, for a total of five iterations. Note that after compensating

for the NCPA with the DM, the average level of stellar light in the science camera

where the exoplanet image is being estimated is ≈ 3× 10−4 in contrast units.

5.3.1 The näıve estimate

As we have seen in the Phase A experiment, the näıve estimate can perform quite

well. A combination of factors including but not limited to WFS measurements of

reasonable quality and the large NCPA, provided conditions under which the näıve

estimate recovers a useful estimate of the NCPA. However, we found that when

using the näıve estimate to solve for the exoplanet image coefficients and smaller

NCPA coefficients, the bias from the WME renders the estimate unacceptable, as

can be seen in Fig.5.7 from the Phase B experiment. In this figure, the estimated

imaging coefficients have been reshaped and plotted as a 13× 8 image to allow for

easy comparison to the object source grid. It is clear this is not a useful estimate

of the exoplanet image, as it results in an RMS error in brightness (contrast units)

of 1.63× 10−4, not to mention the fact that the morphology of the image is almost

entirely lost.
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Figure 5.7: The estimated exoplanet imaging coefficients from the simulated Phase B
experiment, following five relinearization iterations. left: the true object source grid.
right: Näıve estimate of object source grid. All units are in contrast.

5.3.2 The bias-corrected estimate

Choosing Monte Carlo wavefronts

As described in Sec. 4.2.3, the bias-corrected estimator uses a set of Monte Carlo

wavefronts created using the knowledge of the spatial statistics of the AO residual

wavefronts. To generate the Monte Carlo wavefronts, we calculate the mean and

covariance matrix of all of the T AO residual wavefront vectors, the set of which is

represented as {wt}. While it is not possible to know the exact mean and covariance

matrix of the AO residuals on a real system (since only the measurements {ŵt} are

available), we ignore that complication for the purposes of this study. We then draw

the Monte Carlo wavefronts from a P -dimensional multivariate normal with sample

mean and covariance of the AO residual wavefronts. The Monte Carlo wavefronts

are thus not temporally correlated like the true AO residual wavefronts, but there

is no need for them to be, so long as their distribution has the same moments as

the time-averaged moments of the stochastic process governing the true AO residual

wavefronts.

Although our Monte Carlo wavefronts have the same 2nd order statistics as the



130

T = 240, 000 AO residual wavefronts in the 4 minute on-sky data set, (apart from

the error due to the finite number of Monte Carlo samples, which is mitigated by

using 480, 000 separate Monte Carlo samples), the accuracy of the bias-corrected

estimate is limited by the fact that the true AO residual wavefronts did not obey

multivariate normal statistics. We know this because the univariate (i.e., single

pixel) AO residual values failed the Anderson-Darling test for univariate normality.

(Univariate normality of all of the individual variables is a necessary, but not suffi-

cient, condition for multivariate normality.) These statistical details are discussed

in Sec. 4.2.1.

Estimating the exoplanet image
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Figure 5.8: The estimated exoplanet imaging coefficients from the simulated Phase B
experiment, following five relinearization iterations, reshaped in to the 13 × 8 grid. Left:
the true object source grid. Middle: Bias-corrected estimate of object source grid. Right:
The absolute value of the error in the estimate. All units are in contrast.

Performing the bias-corrected estimate shows a marked improvement over the

näıve estimate, recovering much of the detail in the true signal, as can be seen in

Fig. 5.8. The true image is in the left frame, the bias-corrected estimate is in the

middle, and the error in the estimate is in the right frame. The RMS error for the

bias-corrected estimate of the exoplanet brightness coefficients, averaged over all of
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the points is 9.5 × 10−6, a 17.25× improvement over the näıve estimate. Looking

more closely at the error in the estimated coefficients, there are three grid points at a

distance near 3λ/D, where the PSF is bright, with an RMS error of about 3.5×10−5.

The 13 grid points with a distance near 10λ/D, where the PSF is not a bright, have

an RMS error of about 4.2 × 10−6. Note these the RMS errors in the estimates

are indicative of the 1 σ contrast achieved, since the estimate error has very little

dependence on the exoplanet brightness (assuming that it is much less bright than

the star). The ideal estimates of the exoplanet coefficients are better by roughly a

factor of 20. Note that we did not attempt to reduce the PSF brightness with dark

hole techniques (in principle, dark hole techniques should be able to leverage the

NCPA estimates).

The vector of exoplanet image coefficients is plotted in Fig. 5.9. The top frame

shows the coefficients for each of the estimates as well as the truth values, and the

bias of the näıve estimate is rather evident. In order to see the much smaller residual

bias in the bias-corrected estimate, the middle frame in this figure does not contain

the näıve estimate values. The bottom frame in this figure shows the estimated

values subtracted from the true values. As explained above, this residual bias in the

bias-corrected estimate is largely due to the fact that the true AO residuals do not

obey multivariate normal statistics, while the Monte Carlo wavefronts do.

In principle (i.e., assuming that the Monte Carlo wavefronts have the same statis-

tics as the true AO residual wavefronts), the bias-corrected estimate should be nearly

as accurate as the ideal estimate, but here we see that the ideal estimate (which

is unbiased) is very close to the true values, with an RMS error in contrast units

of 8.83 × 10−7. The plots in Fig. 5.8 and corresponding RMS error numbers show

that the simple assumption that the statistics of w are governed by a multivari-

ate normal, with mean and covariance matrix calculated from the 4 minute set of

millisecond wavefronts, is a useful assumption (at least when compared to näıve

estimation), but that it is not adequate to remove all of the bias.



132

0 20 40 60 80 100
Grid Location

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 V
al
ue

1e−3 Imaging Estimates
xtrue
Ideal
Nai e
Bias-Corrected

0 20 40 60 80 100
Grid Location

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Es
tim

at
ed

 V
al

ue

1e−4 Imaging Estimates
xtrue
Ideal
Bias-Corrected

0 20 40 60 80 100
Grid Location

−5

−4

−3

−2

−1

0

1

E 
tim

at
ed

 V
al
ue

1e−5 Difference of Truth and Imaging E timate 

Ideal
Bia -Corrected

Figure 5.9: top: The exoplanet brightness coefficients for each of the three estimators
for the Phase B experiment, following five relinearization iterations. middle: The same
as the top, except the näıve estimates are not displayed. The error bars provided by the
ECM are too small to be seen. The partial χ2 value for the ideal estimate is 0.76, and for
the bias-corrected estimate it is 225. bottom: The difference of the estimated coefficients
and the true values for both the ideal and bias-corrected estimators
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Figure 5.10: Focal plane image in contrast units after subtracting a perfect PSF from
the science image. The perfect PSF is created by using the same sequence of wavefronts
as the science image.
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Comparing to perfect PSF subtraction

In this section, we compare the bias-corrected estimate with a more common

method, PSF subtraction. To proceed with this discussion, we first define some

terms that will be used. PSF stands for ”point-spread function,” which for our

purposes amounts to the time-average image in the science camera that would be

observed without any planets. It carries the effects of diffraction, NCPA and the AO

residual wavefronts. The science image is the time-average of the science camera

telemetry, and it is shown in the right-hand frame of Fig. 5.6. We further define the

perfect PSF :

• it is created using the same sequence of wavefronts as the science image

• it has the exact same NCPA as the science image

• it has the same noise realizations as the science image

• it excludes all light coming from the circumstellar material (“the exoplanet

scene).

Thus, the perfect PSF is the ultimate image to subtract from the science image, as

it perfectly removes starlight and noise. In particular, subtracting the perfect PSF

does not suffer from self-subtraction artifacts associated with differential imaging

(see Section 2.4.1), and which arise from having to measure a PSF to subtract on-

sky. Of course, the perfect PSF cannot be known outside of simulation studies, but

it is a useful benchmark. Fig. 5.10 shows the resulting difference image of subtract-

ing the perfect PSF from the science image following the convention described in

Section 5.1.2.

Despite the perfect PSF subtraction, the image in Fig. 5.10 is missing much of the

detail present in true image seen in left frame of Fig. 5.8. This is due to the fact that

the image is blurred by the off-axis PSF. While one could attempt deconvolution

to mitigate the blurring, instead, we used our knowledge from the simulation that

the exoplanet image consists of point sources located on a grid. This allowed us
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Figure 5.11: Extracting the exoplanet image signal from the PSF subtracted focal plane.
Left: The true object source grid. Middle: Extracted signal from doing perfect PSF
subtraction. Right: The absolute value of the error in the extracted signal. All units are
in contrast.

to sidestep deconvolution simply by extracting the values of the image in Fig. 5.10

at the grid locations. The result of that extraction is seen in the middle frame of

Fig. 5.11, with the true source grid pictured for convenience in the left frame, and the

corresponding error in the right frame. The subsequent measurement of the RMS

error for this extraction is 7.63 × 10−6. Referring to Table (5.3), this result can be

directly compared to the RMS error for the various estimate techniques presented,

showing that the perfect PSF subtraction result quite is comparable to that of the

bias-corrected estimate, with the RMS error of the bias corrected estimate being

about 25% larger. The RMS error of the ideal estimate turned out to be 8.6×
better than the perfect PSF subtraction.

While we were able to use knowledge of point-source locations to sidestep the

deconvolution issue after performing the PSF subtraction, this would not be possible

on-sky, and it is important to understand the our estimation methods automatically

include the blurring effects that off-axis PSF has on the planetary image.
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Estimate
Type

NCPA
Estimate
RMS error
(radian)

Exoplanet
Image Esti-
mate RMS
error (bright-
ness)

Näıve 1.13× 10−2 1.63× 10−4

Bias-
Corrected

4.39× 10−3 9.45× 10−6

Ideal 1.82× 10−4 8.83× 10−7

Perfect PSF
subtraction

N/A 7.63× 10−6

Table 5.3: Error metrics for a simulated 4 minute observation. Summary of the result-
ing root mean square (RMS) error using the näıve, bias-corrected, and ideal estimates
to jointly solve for the NCPA and exoplanet image. The results for using ideal PSF
subtraction for estimating the exoplanet image are also included
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Figure 5.12: The joint estimates of the NCPA coefficients found while estimating the
image in the 4 minute Phase B experiment. The error bars provided by the ECM are too
small to see. The partial χ2 value for the ideal estimate is 1.25, and for the bias-corrected
estimate it is 203.
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5.3.3 Jointly monitoring the NCPA

The regression equations for the Phase B experiment were set up to jointly estimate

the exoplanet image and the NCPA. The NCPA had an RMS of 0.0495 radian,

which is the uncorrected portion from Phase A. The estimated coefficients from

each estimator are plotted in Fig. 5.12. Starting our analysis on the näıve estimate,

the bias due to the WME is just as noticeable as it was in the exoplanet brightness

coefficients, leading to an RMS error in the aberration coefficients of 0.011 radian,

which places the error on the same order of magnitude as the NCPA itself. With the

bias-corrected estimate, we see that where some small residual bias is left even after

the correction. This is also largely due to the fact that the Monte Carlo wavefronts

did not reflect the non-normal character of the AO residual wavefronts. In fact, we

see that the bias-corrected estimates are actually worse than the näıve estimates for

several of the coefficients, although the bias-corrected estimates generally are better,

as evidenced by an RMS error that is smaller by a factor of about 2.5. Looking now

to the ideal estimate, which tells us the level of performance that can be reached

in an unbiased estimate, the RMS error is smaller than the näıve one by a factor of

about 62.

5.3.4 The joint error covariance matrix

We now turn our attention to the interaction between the exoplanet image esti-

mation and the NCPA estimation. This can be examined by looking at the error

covariance matrix (ECM), Cx̂, calculated as part of the regression technique. The

ideal estimator is simply classical linear regression and its ECM takes a particularly

simple form when the weighting matrix of the measurements, is equal to C−1y , which

is the inverse of error covariance matrix of the noise in the measurements. Under

this assumption (without this assumption the more complicated formula given in

Eq. (4.42) is needed), the ECM, is given by:

Cx̂ =
(
ATC−1y A

)−1
, (5.4)
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Figure 5.13: The square root of the unsigned correlation coefficient matrix of the ideal
regression method for the Phase B experiment. The aberration coefficient coupling reaches
a maximum of 0.96. The coupling for neighboring points on the exoplanet grid is a
maximum of about 0.3. The coupling between the aberration and exoplanet coefficients
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where T indicates matrix transposition and A is the matrix obtained when one

vertically stacks all T instances of the matrices {A(wt)} in (4.32). The ECM in

(5.4) has two obvious asymptotic (i.e., T → ∞) behaviors: 1) it is proportional

to 1/T and 2) it is proportional to Cy, which is the covariance of the noise in the

science camera measurements. For small values of T , as T increases Cx decreases

more quickly than the asymptotic rate because the condition of A improves as more

rows of A(wt) are added. Indeed, when T is small enough, A is likely to be singular,

but the random nature of each wavefront, wt, is rather helpful in this respect. For

the bias-corrected estimate, the ECM takes a form that is similar to the classical

one, but inflation matrices (calculated with the Monte Carlo wavefronts) must be

applied, as shown in Eq. (4.69).

One may wonder what happens if the NCPA contains a component that is poorly

observed or unobserved by the coronagraph. Firstly, the random modulation of the

NCPA by AO residual tends to make it difficult to find modes that are completely

unobserved. If a mode can be represented by the parameterization of the NCPA

in the regression model (i.e., θp(a) in (4.11)), then the error in its estimate can

be found from the ECM. On the other hand, if the NCPA parameterization cannot

fully account for a given mode, one would expect aliasing in the sense that the mode

leaks into the parameterized mode, creating an unwanted bias in the estimates of

those modes.

The unsigned correlation coefficient matrix, shown in Fig. 5.13, is defined as

C ′x̂ ≡ ||BCx̂B||, where || • ||| indicates the absolute value of all matrix elements

and B is a diagonal matrix chosen so that every element on the diagonal of C ′x̂

is unity. Without the absolute value operation, C ′x̂ would be matrix of correlation

coefficients. As would be expected for a joint estimate of two types of quantities,

we see a four block matrix, with the upper left being the NCPA-NCPA block, the

lower right being the exoplanet-exoplanet block, and the other two being NCPA-

Exoplanet blocks which are related by a transpose operator since the matrix is real

and symmetric.

Starting with the NCPA-NCPA block (upper left) of the correlation coefficient
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matrix of the ideal estimate shown in Fig. 5.13, the off diagonal behavior shows

of coupling in the estimates of different modes, which is to be expected from the

Zernike polynomials used to represent the NCPA in this study. There are twenty off-

diagonal elements in the upper triangle of this block with values greater than about

0.8, meaning some the NCPA coefficient estimate errors show strong coupling. The

exoplanet-exoplanet block (lower right) shows significant power on the diagonal, with

the power generally decreasing with distance (the tiling is due to the two-dimensional

grid being flattened to a one-dimensional vector). The maximum off-diagonal value

occurs here for neighboring points on the exoplanet grid, and is about 0.3. The

off-diagonal power is largely due to the blurring by the off-axis PSF, which would

be worse if the sky-angles in the grid were separated by less than λ/D, as they are

in these simulations. It is of course possible to have a more densely sampled grid

for the purposes of maximizing the spatial resolution, but we have not yet explored

this option in detail.

Next, we come to the NCPA-exoplanet blocks. These blocks describe the cou-

pling of the estimate errors in the NCPA and exoplanet coefficients, and show that

there is significant coupling. The maximum value of the NCPA-exoplanet correla-

tion coefficients is about 0.1, and we can see that many of the exoplanet coefficient

errors have correlations to one or more NCPA coefficients of roughly similar value.

This tells us that using the joint regression is critical to achieving high contrast in

the estimates.

For an unbiased estimator, the validity of the ECM can then be examined by

evaluating the χ2 test, given by

χ2 =
1

Na +Np

(x̂− x)TC−1x̂ (x̂− x) , (5.5)

where x is the true value of the coefficient vector (so, this metric is only possible to

evaluate in simulations), Na + Np is the length of x, x̂ is a regression estimate of

x, and Cx̂ is the ECM from the regression model. With χ2 so defined, we expect

its value to be close to unity if the ECM does indeed correctly characterize the

estimate errors. The partial and total χ2 values for the bias-corrected and ideal
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models can be found in Table (5.4). The partial χ2 values come from evaluating the

components of x̂ (aberration coefficients or exoplanet brightness coefficients) with

the corresponding diagonal block of the ECM. The total χ2 is evaluated using the

full x̂ vector, meaning it also includes the entire ECM (including the off-diagonal

blocks). As we expect, the total χ2 value for the ideal estimate is very close to 1.

The χ2 value of about 200 obtained for the bias-corrected estimate tells us that its

ECM is too small. We believe that much of this discrepancy is the result of the

non-normality of the AO residual wavefronts that was not captured in the Monte

Carlo wavefronts used by the bias-corrected estimator.

The square root of the main diagonal of the ECM can be treated as the error

bars (which are too small to be seen in Figs. 5.9 and 5.12). While the error bars

of the ideal estimate are reasonable, as the χ2 test tells us, the error bars of the

bias-corrected estimate are barely any larger and do not come close to describing the

errors. Again, we attribute this unfortunate circumstance to the fact that our Monte

Carlo wavefronts did not account for the non-normality of the true wavefronts. It is

not unfair to say when the Monte Carlo wavefronts are missing some key elements of

realism that the resulting ECM does not describe the errors in the estimates, even

when the estimates themselves may be quite accurate and useful. Nevertheless, the

ECM still tells how the errors in the estimates of various quantities are likely to be

coupled.

Estimate
Type

χ2

NCPA
χ2 Imag-
ing

Total
χ2

Bias-
Corrected

203 225 232

Ideal 1.25 0.76 0.97

Table 5.4: χ2 test values for the Phase B experiment (see (5.5)). he partial χ2 for the
NCPA and Imaging are computed by only examining the corresponding components of
the x̂ vector and block from the ECM. The total χ2 is computed using the entire x̂ vector
and ECM.
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5.4 Frazin’s algorithm conclusions

This chapter presents realistic simulations of regressions based on simultaneous mil-

lisecond telemetry from a WFS and science camera behind a stellar coronagraph.

The simulations include self-consistent treatment of an AO system with a pyramid

wavefront sensor, a Lyot coronagraph, and photon counting and readout noise in

the detectors. The objective of the regressions is simultaneous estimation of the

non-common path aberrations (NCPA) and the exoplanet image. We presented

two realizable regression models as well as a non-realizable one, which we used as

a benchmark. The two realizable regression models are called the näıve estima-

tor and the bias-corrected estimator, and the non-realizable one is called the ideal

estimator. The fact that just a few minutes of simulated sky time allowed us to

make estimates of the NCPA with RMS errors that were much smaller than the

NCPA themselves suggests that our methods could be implemented inside a control

loop that compensates for the NCPA in real time. This is under investigation, and

preliminary results are reported in Chapter 6. Furthermore, analysis of the error

covariance matrix of the estimators demonstrate that the errors in estimating the

NCPA and the exoplanet intensity are correlated, suggesting that exoplanet imag-

ing and determination of the NCPA must be done self-consistently to achieve high

contrast.

We illustrated the utility of the näıve estimator by estimating NCPA of 0.52 ra-

dian (∼ λ/12) RMS with an accuracy of 0.06 radian (∼ λ/100) RMS error using only

1 minute of simulated observation time of an 8th magnitude star. Then, in a fol-

lowup observation sequence consisting of 4 minutes of simulated observation time,

we assumed an NCPA of 0.05 radian RMS. We found that the error of the bias-

corrected estimate of the NCPA was 0.004 radian (∼ λ/1600) RMS, while jointly

estimating planetary image on a 13×8 object grid (focal plane distances from center

ranging from 3-10 λ/D). The bias-corrected estimate of the exoplanet scene was

nearly identical to the image that would be obtained by PSF subtraction if the PSF

were exactly known. The bias-corrected estimate obtained a 5σ contrast at 3λ/D
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of ∼ 1.7 × 10−4, while at 10λ/D it was ∼ 2.1 × 10−5. The contrast achieved by

the bias-corrected estimator was limited by our inability to draw Monte Carlo sam-

ples from non-normal probability density governing the statistics of the AO residual

wavefronts. Additional simulation results for experiments in which the AO residuals

were drawn directly from a multivariate normal distribution instead of a simulated

AO system were also obtained. This simplification allowed us to ensure the Monte

Carlo samples were drawn from the same distribution as the AO residuals exactly.

In these experiments, the 5σ contrast achieved by the bias-corrected estimator from

∼ 17 m of simulated sky time (T = 106) at 3λ/D was 5.5× 10−6 and at 10λ/D it

was 2.9× 10−6; these values were almost the same as those from the ideal estimate.

The contrasts reported here should not be interpreted as a fundamental limits to

what can be obtained by the regression methods employed, rather they should be

seen as illustrative exampled within the context of our simulations.

For comparison, recent efforts using SCExAO with the VAMPIRES module in a

bandpass containing the Hα line achieved a 5 σ contrast of ∼ 10−3 at a distance of

∼ 17λ/D (the Strehl ratio was about 0.45) [80]. Achieving this contrast required

both angular differential imaging (ADI) and spectral differential imaging (SDI) to

be applied in post-processing. As far as we know, the highest contrast ever achieved

on-sky was reported in 2015 by Vigan et al. on the SPHERE AO system [81]. In this

case, SPHERE was looking for a second companion to Sirius A (magnitude -1.46),

which allowed the AO system to operate at a Strehl in excess of 0.9 (at λ = 1.6µm).

The 59 minutes of observations were collected over a 2.5 hour period with the coro-

nagraph feeding an integral field spectrograph (IFS) covering the range λ = 0.95 to

2.3µm. The field rotation over the 2.5 hour period combined with imaging spec-

trograph data allowed the authors to apply both ADI and SDI in a post-processing

step. The 5σ contrast finally achieved was ∼ 5 × 10−5 at a distance of 0.2 arcsec,

which corresponds to 3.5 and 8.5λ/D at λ = 2.3 and 0.95µm, respectively. At a

distance of 0.4 arcsec, they reported a contrast of ∼ 3.5 × 10−6. Thus, SPHERE’s

reported contrasts for this observation are quite comparable to contrasts achieved

in our simulation. While simulations cannot carry the same weight as results from
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physical experiments, it is instructive to point out that our simulations in some

sense address an imaging problem that is much more difficult than this particular

SPHERE experiment:

• The SPHERE experiment collected spectral data over more than factor of

2 in wavelength, which allowed SDI, while our data were monochromatic.

(We note that extending our method to multi-wavelength data is relatively

straightforward.)

• The field rotation during the SPHERE observation allowed ADI, while we

had no field rotation. (Including field rotation into our regression equations is

easy.)

• SPHERE’s Strehl ratio was over 0.9, while ours was about 0.75.

• Sirius A is brighter than our magnitude 8 source by a factor of over 7000, and

SPHERE collected photons for about an hour, whereas we simulated only 4

minutes of sky time.

The fact that we obtained such good results without the benefit of multi-wavelength

data or field rotation with only a few minutes of simulated sky time speaks to the

richness of the millisecond data sets we seek to exploit. Perhaps it even suggests

that our development of the regression models is on a useful track.

Both the näıve and bias-corrected estimators require models of the WFS and

coronagraph optical trains, but the bias-corrected estimator also needs knowledge

of the spatial statistics of the AO residual wavefronts. Model errors and inaccurate

characterization of the AO residual statistics will cause unwanted biases in the

estimates. A closed-form expression for the size of the bias resulting from violating

a given assumption is generally not easy to obtain. Finding the biases is most easily

done for specific cases via simulation studies. In these simulations, we have seen

an example of one of the assumptions not holding true: the AO residual wavefronts

did not obey multivariate normal statistics, but bias-corrected estimator employed

the assumption of a multivariate normal when creating the Monte Carlo wavefronts
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that it utilizes as part of its machinery (explained in Chapter 4). It should be

remembered any ground-based exoplanet imaging method must contend with NCPA

and the statistical properties of the AO residual wavefronts, so these issues are not

unique to this approach.

In order to implement this type of regression method on sky, there are number

of technical challenges that must be overcome:

• The regression equations require accurate numerical models of the WFS and

coronagraph optical trains. These models may contain free parameters rep-

resenting such things as alignment drifts that are determined from the data,

much as the NCPA coefficients are in this study. Removing high spatial fre-

quencies from the beam via applying a stop in a focal plane at one or more

locations in the apparatus may prove critical for limiting the degrees of free-

dom that must be taken into account in the regression models.

• While an initial application may work with a bandpass narrow enough to

ignore chromatic effects in the AO residual, moving to larger bandpasses may

require taking chromatic considerations into account.

• This study ignored amplitude effects (scintillation). Ideally, the wavefront

sensing scheme would measure amplitudes as well as phase.

• The Monte Carlo calculations needed by the bias-corrected estimator require

the statistics of the AO residual wavefronts.

Chapter 6 will examine some first steps taken to demonstrate the näıve estimator

in the lab, using the MagAO-X science instrument and a basic numerical model of

it.
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CHAPTER 6

Future work on Frazin’s algorithm

6.1 Estimating and compensating QSA in real-time: realizing the goal

from 2018

In order to come full circle to 2018, and to prepare for setting up a laboratory

demonstration of the näıve estimator, we made some adjustments to the framework

of the simulation to allow for the use of estimates made through Frazin’s algorithm

as real-time commands to a non-common path correcting (NCPC) DM. This pro-

cess was envisioned to take all the lessons learned from the simulations done and

reported in Chapter 5, where only a static aberration had been estimated, and test

if the the estimators could provide quality predictions of what an NCPA is over the

integration time to be able to compensate for it, in a slow 0.1Hz integrator control

loop. Because this is to also be used as a stepping stone towards demonstrating

the method in the lab, several new steps needed to be taken, including attempting

to make a high quality computational model of MagAO-X (and some steps toward

both understanding what that means, and how to make it easier), choosing a realis-

tic NCPA to model, and adjusting simulation parameters to better fit in lab values

rather than on-sky ones.

6.1.1 Modeling MagAO-X for simulations

To begin, we choose to make a numerical model of MagAO-X to use both in the

regression equations and the propagation simulations. Although not realistic for

real-world application of Frazin’s Algorithm, it allows us to test the ability of the

estimators to provide for DM commands to control the NCPA as it evolves in time

with one fewer variable to worry about. The consequences of approaching this

more realistically will be touched on in Section 6.2. To facilitate the best effort
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without requiring extensive background work rehashing the simulation code, the

extensive modeling work of Jennifer Lumbres [37] (in prep) building an end-to-end

Fresnel model including realistic surface error profiles using Poppy [63] was adopted.

This work, alongside the work of Kyle Van Gorkom characterizing the MagAO-X

hardware itself [27] and flattening the system, combine to validate the accuracy

of the Poppy model, with both the model and hardware achieving a 0.94 Strehl

ratio at Hα, with consistent values for WFE between the two. Although we will

not delve into the specifics of Lumbres’ work and code, Appendix C includes the

script used to interface with it, computing a propagation matrix that can easily

be slotted in to the simulation framework built for the work done in Chapter 5.

As a result of having to interface with the POPPY code, the number of pixels in

the entrance pupil is amended to 1986, slightly more than the previous simulations.

An example of the PSF averaged over 4 minutes of AO residual wavefronts for the

constructed model can be seen in Figure 6.1. This image represents a 67 × 67

pixel science camera region, and displays the expected diffractive behavior for the

MagAO-X pupil, which has a central obscuration and four spider arms at multiples

of 45 degrees. It should also be noted that because we are assuming this simulation

to be more held to lab standards than on-sky ones, the visual magnitude of the

source for the purpose of evaluating photon noise calculations is chosen to be 0,

which is much brighter than the source used in previous simulations. This has

the added effect of helping the AO system to perform better, as the WFS signal

is more precise, so the Strehl ratio observed in the science camera is higher than

previous simulations. We also choose for the following simulations to drop the

joint estimate on the planetary image. From the standpoint of these simulations,

the purpose is to try to demonstrate controlling quasi-static NCPA in real time, so

extending the regression equations to include the planetary image estimation is not

necessary, especially when we are simulating a lab setting where we know there is no

exoplanet image to self-consistently estimate. This will make the calculations faster

numerically (fewer elements to estimate), and eliminate any concern of error cross-

talk from the planetary image estimator that was discussed in Section 5.3.4. Finally,
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Figure 6.1: A simulated time average PSF using the MagAO-X model over 4 minutes in
closed loop.

the only other change made to the simulation setup and parameter list specified in

Chapter 5 is that instead of estimating coefficients fitting the NCPA to low-order

Zernike polynomials, coefficients for a set of Bspline functions that represent the

actuators that control the surface of an NCPC DM are chosen. Although this vastly

increases the number of estimated parameters for the NCPA (from 32 modes to

711), the output will already be in the form of a DM command (as the spline knots

estimated match the DM model actuators exactly), and better be able to fit to the

higher spatial frequency content of the NCPA being modeled.

In order to have a convincing argument that Frazin’s Algorithm can control

quasi-static aberration (QSA) via closing the loop on its estimates, including a

realistic QSA is a key component of these simulations. We decide to model a beam

walk aberration with a 5 minute lifetime. Beam walk is the change in phase in the

wavefront over time as the light hits different parts of the surface of the optics in

the telescope and AO system over time, especially on the secondary mirror. As the

telescope tracks a star, the beam of light “walks” along the surface of the secondary

mirror, changing the content of optical surface quality as it does. The kind of

NCPA this induces thus contains a range of spatial frequencies corresponding to a
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1
fα

type power spectral density. By selecting the value for the spatial α as 2, and

the temporal α as 4, we can tune a realistic beam walk-like aberration that behaves

as a frozen-flow process. The simulations use a total of 300, 000 millisecond frames

of an NCPA tuned to have roughly 5 minutes of stability, placed in the entrance

pupil of the science instrument. An example frame from this set is shown in Figure

6.2.
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Figure 6.2: An example frame of a beam walk like NCPA injected into the entrance pupil
of the MagAO-X model. It is produced using a spatial α of 2 and a temporal α of 4 in
the 1

fα PSD.

6.1.2 Results of the simulation

The paradigm of the experiment to control a realistic beam walk-like QSA using

the bias-corrected estimator is to simply demonstrate that it is possible. With that

in mind, very little effort was placed in to optimizing the integrator loop gain, nor

how often updates from Frazin’s Algorithm could be demanded and still work. This

analysis is left for future work. For the simulations performed, the update rate

of the NCPC DM using estimated Bspline coefficients was once every 10 seconds,

corresponding to 10, 000 ms time steps. This means that the regression equations

are updated once a millisecond for ten seconds, and then solved for the estimates of
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the NCPA over that time span. The QSA correction loop gain is set as 0.125, cho-

sen experimentally repeating the simulation at various gain values until the largest

one that remained stable over the 5 minute simulated time span was found. To

determine if the QSA is adequately being controlled by Frazin’s Algorithm in real

time, the residual RMS of the NCPA pupil plane just after the NCPC DM will

be measured each time step of the simulation. Although this is not possible to do

in a real experiment, where the correction would have to be judged via quality of

the science camera image, it provides a simple and clear means of judgment on the

validity of the method. In order to provide more clarity on this judgment, the RMS

of the NCPA at the given time step should there be no attempt to compensate it is

also computed and reported, alongside the RMS of the residual NCPA that exceeds

the maximum spatial frequency of the NCPC DM should it have a perfect shape.

Figure 6.3 plots the tracking of these three different RMS phase values. The
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Figure 6.3: Computing the RMS of the NCPA at each time step of a simulation run-
ning Frazin’s algorithm in real time to compensate beam walk every 10s. The blue line
represents the RMS of the beam walk induced aberration if no compensation were done.
The yellow line represents the RMS error that is left after a perfect DM compensation (in
other words, the residual aberration at spatial frequencies untouchable by the DM). The
green line is the RMS of the NCPA after the DM is updated to compensate it using the
näıve estimator. The dashed red line is the RMS of the NCPA after the DM is updated
to compensate it using the bias–corrected estimator.

blue line, representing the uncorrected NCPA RMS, combined with the yellow line,
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representing the residual NCPA RMS left that the DM could never correct, provide

the control to compare the green and red lines, representing the RMS of the NCPA

post correction by DM commands estimated by the näıve and bias corrected esti-

mators respectively. If Frazin’s Algorithm is successfully controlling the QSA, the

green and red lines will start coincident with the blue line for 10 seconds, and the

drop lower than it, converging towards the yellow line (but likely never reaching it).

We can see this is exactly what happens. In the 10s that the regression equations

are being evaluated in order to be able to compute an estimate, the RMS phase

increases because the shape of the NCPC DM is becoming outdated. Once the 10

second interval is complete, an estimate is made via the bias corrected estimator.

This estimate is then multiplied by the loop gain, and sent as an update to the

shape of the NCPC DM, and shows in the plot as a drop in the NCPA RMS. Once

the control loop has closed, at around 1 minute, the QSA is held at roughly 1.5×
lower than if nothing was done to compensate it. It is notable that the control loop

using the näıve estimator achieves close to the same performance in compensating

the QSA as the control loop using the bias–corrected estimator does. The conse-

quence of this result is that we know, at least for the size of aberration and the

WME under test here, that both estimators appear to be monotonic, meaning that

it is estimating the sign of the residual QSA at each step correctly. This allows the

control system to move in the correct direction at each step, driving the residual

NCPA RMS down and stabilized. It is possible that for smaller wavefront errors

being estimated that the estimator will not get the sign correct every step, mean-

ing that although it would be correcting large errors, the controller would oscillate

about the small ones.

Examining the limits of Frazin’s algorithm being implemented as a controller

is an exercise for future study. This preliminary study does demonstrates that the

initial hope from 2018, the real-time control of QSA using Frazin’s Algorithm, is

now realizable. But further examination of several factors is needed to fully flush

out this use of Frazin’s Algorithm:

1. A parameter sweep to better understand the limits and capabilities of the
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closed-loop implementation. Parameters that are especially pertinent to ex-

amine are:

• The minimum number of exposures per estimate (the rate at which the

control loop is run) for which reasonable correction can be obtained.

• The optimal gain for the control loop.

• The best pixel sampling of the pupil (to allow for potentially more modes

to be estimated to fit to the surface of a more actuator dense DM than

the one simulated above, pushing the cutoff spatial frequency that can be

compensated closer to that of the aberration content due to beam walk)

that still allows for the algorithm math to keep up with real-time data.

• The optimal number of pixels kept in the science camera images to cap-

ture enough behavior at higher spatial frequencies potentially now repre-

sented in the pupil sampling that still allows for the algorithm math to

keep up with real-time data.

2. Vary the WFS performance in the simulator to vary the WME. This will push

the näıve estimator to determine at what point, if any, that its use in closed-

loop breaks down, and the more complicated bias-corrected estimator would

become necessary to implement.

3. With the parameter sweep to determine a potentially minimum number of

time steps included in the algorithm, test against QSA of different lifetimes to

understand the temporal limits of the real-time controller.

4. Determine at what point, if any (which surely there is), an off-axis source such

as an exoplanet will corrupt the estimates too much to avoid implementing

the joint estimator discussed in Chapters 4 and 5 to treat it self-consistently.
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6.2 Examining error in the science instrument numerical model

One question that is begged to be asked when discussing Frazin’s Algorithm is: how

good do the computational models of the instrument need to be? This is a complex

question that will require much more study going forward in the future. To provide

some insight however, we have done some simple controlled numerical experiments

to start to probe this space of algorithm performance. As mentioned, the simulations

above all assumed a perfect computational model for the regression equations, as

in the simulations the same matrix was used in the regression as was used in the

calculation of the propagation of the field impinging on the science camera. The

likelihood of achieving such a match in real life at the moment may be quite small.

However, given the state of optical design software like Zemax and LightTrans, as

well as modern interferometers capable of making extremely precise measurements

of optical surface qualities, this is a problem that may improve as time marches

forward. Along these lines, we decide to construct two new propagation matrices

for MagAO-X, each differing from the model used in the previous section closing

the loop on the QSA, in a known way.

6.2.1 The flawed models

For the first newly made MagAO-X propagation matrix that will be used in the

regression equations, but not in the science camera intensity calculations, we return

to Jennifer Lumbres’ code, and turn off the surface quality errors on each optical

surface in the model. This is an interesting model to look at because it essentially

represents the as designed performance of the system, and could be a model that

is achievable in real life through the use of software like Zemax and LightTrans.

Although it seems odd to consider this a “flawed” model given what it represents,

the flaws are in that it does not match the model matrix that will be used to

compute the science camera intensity. The true PSFs (no turbulence averaging) in

log10 scale for both the model including surface error (which was used in the previous

sub-section’s simulations for all the calculations) and this new model without surface
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errors, along with the difference between them, can be seen in Figure 6.4. We see

that the difference is small, largely contained to the core region and about 1 − 2

decades in magnitude.

The second flawed model that will be tested is another one chosen to be some-

thing that one may think could be realizable in real life without the use of a lot of

sophisticated interferometric surface measurements being required. This is to know

the summary statistics of the surface errors for the optical elements used to build the

system, and use Monte Carlo methods to generate statistically similar (in terms of

spatial correlation and distribution) surfaces to what the true ones are. In a sense, it

already seems that this model should perform poorly just from understanding that

it includes optical surface errors that have the same statistics, but entirely different

realizations than the true system, but it is interesting to look at nevertheless.

It is also important to note that although we will be able to draw conclusions

about how well the computational model needs to be when implementing Frazin’s

algorithm, there is a flaw in discussing the experiment on only these terms. Because

Frazin’s algorithm is essentially fitting the difference in the measured science camera

intensity to the modeled intensity given a measurement of the wavefront, what will

appear as bias when comparing the final estimates to a known true value for the

NCPA will actually be a change in the estimated coefficients trying to account for

the missing/wrong surface errors in the model. In other words, the estimate of the

known, injected NCPA is “corrupted” by the surface errors unknown to the model,

as the estimator treats the WFE induced by the surface errors as another source of

NCPA. This discussion will be picked up in the next sub-section, as it will inform

the conclusions that we can reach.

6.2.2 Implementation and analysis

To simplify this implementation of Frazin’s algorithm, we return to the NCPA setup

of the simulations performed in Chapter 5, estimating 32 Zernike coefficients fitting

to the same low order aberration shown in the left frame of Figure 5.5. The same

simulations parameters that are used in the Phase A experiment in that chapter are
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(a) (b)

(c)

Figure 6.4: (a) The PSF going through a true model of MagAO-X, including surface
errors on the optics. (b) The PSF going through an ideal model of MagAO-X, which is
constructed of perfect optical elements. (c) The log10 scale of the absolute value of the
difference between the two PSFs.



156

repeated for these tests, other than the changing models in the regression equation

calculations. Three tests will be performed in which all the estimators (ideal, näıve,

and bias corrected) are evaluated, again only estimating the NCPA (no joint estimate

of the planetary image):

1. The propagation matrix used in both the regression equations and the calcu-

lations of the science camera intensity is the “true” model, corresponding to

the one used in the closed-loop experiments of Section 6.1. This is referred to

as the Matching Model case.

2. The propagation matrix used in the regression equations is swapped to be the

model that was made without including surface errors. The matrix used to

compute the science camera intensities is the “true” model. This is referred

to as the Mismatch Model case.

3. The propagation matrix used in the regression equations is swapped to be

the model made with new realizations of the surface errors. The matrix used

to compute the science camera intensities is again the “true” model. This is

referred to as the Mismatching surface WFE Model case.

Figures 6.5 – 6.7 show the estimated Zernike coefficients for each of these cases

respectively, for each estimator type, as well as the true values of the coefficients.

As expected, the Matching Model case performs very well, as it has no error in

the regression equation model matrix, and is essentially a repeat of Phase A in the

previous chapter. Applying the bias corrected estimate as a compensating factor

to the static NCPA with an RMS of 0.5 radian results in a residual RMS of 0.0042

radian. For the Mismatch Model case, seen in Figure 6.6, now all the results for all

the estimators display a noticeable bias, and are no longer near the true coefficients.

This is because of the error in the model used in the regression equations showing up

as a new kind of error in the independent variables. This can be thought of in quite

an easy way. Because the regression equations are using a propagation matrix that

differs from the matrix governing the measured science camera intensity, it will try
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Figure 6.5: A plot of estimated coefficients for the same Zernike coefficients as estimated
in Chapter 5, with the regression equation and science camera intensity calculations using
the “true” propagation matrix model. This is essentially repeating the same simulations
as in that Chapter, to be used as a means of comparison to the other two test cases.

to fit the additional differences that it finds in its calculation of the intensity from

the WFS measurement compared to the measured intensity from the science camera

it is given into the NCPA coefficients, causing them to be biased. But remembering

the discussion above, this bias is actually different than the bias that is directly

due to the WME that led to the derivation of the bias-corrected estimator. The

error in the estimates we see here is largely due to the fact that the estimator is

fitting the coefficients to the surface errors the model is missing in addition to the

injected NCPA because of the fact that the surface errors manifest as speckles in the

measured science camera intensity that are not explained by the WFS measurement

nor the computational model. This can be seen in the effectiveness of the estimates

at still compensating the injected NCPA. If the bias corrected estimate is used to

compensate the initial NCPA that has a static RMS of 0.5 radian, the residual RMS

is reduced to 0.078 radian. So although the error in the estimated coefficients is

increased, reducing the compensation by a factor of ≈ 18×, the overall performance

for assuming an “as-designed” model for the regression equations is still quite good.

Finally, for the Mismatching surface WFE Model case, the estimated coefficients

degrade even further because the difference in the regression equation model to the
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Figure 6.6: A plot of estimated coefficients for the same Zernike coefficients as estimated
in Chapter 5, with the regression equation calculations using the surface error free model
matrix, and science camera intensity calculations using the “true” model.

true optical system is even greater. This can be seen in Figure 6.7. If the bias

corrected estimate is used to compensate the initial NCPA that has a static RMS of

0.5 radian, the residual RMS is only reduced to 0.143 radian. This is twice as bad as

the Mismatch Model case, and aligns with what we thought would be the result of

doing this, as the estimator will see a large discrepancy in the manifestation of the

modeled surface error speckles and the true surface error speckles in the intensity.

From this initial peak into model error, which is summarized in Table 6.1, we

get a few interesting insights. First, it is easy to see that the model error is the

dominant error term in these experiments. This is evident because in the Matching

Model case, the difference in the achieved NCPA compensation using the estimates

varies widely between the estimator types. This is expected in this case because,

as described in the previous chapter, the ideal estimate is completely unbiased, the

näıve is biased by wavefront measurement error, and the bias-corrected has a small

residual bias due to mismatched spatial statistics in the Monte Carlo wavefronts.

All three of these levels of bias is quite different. In the cases of the Mismatch

Model and the Mismatching surface WFE Model, all three estimates compensate

the starting NCPA by nearly the same amount, degraded by the model error when
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Figure 6.7: A plot of estimated coefficients for the same Zernike coefficients as estimated in
Chapter 5, with the regression equation calculations using the model matrix with incorrect
realizations of the surface errors, and science camera intensity calculations using the “true”
model.

comparing only to the injected NCPA coefficients. With that being said though,

the fact that the ideal and bias-corrected remain nearly identical, and slightly better

than the näıve, means that the degradation in overall estimate accuracy is directly

related to the error in the regression equation matrix model.

Next, it might be better to assume no surface errors on the optical elements in

the computational model than to insert guesses of the wrong ones. This cannot be

definitively stated from the experiments conducted, as the Strehl of the “true” model

used to compute the measured intensities for the regression is about 0.89, meaning

that the departure from the as designed performance isn’t particularly significant

(as can be seen in Figure 6.4. This means that if true system performance is greatly

degraded by surface quality and cannot be compensated via a DM to return to a high

Strehl ratio, this statement may not be true. However, the large drop in estimate

quality across the board for using surface errors that are statistically similar to

the truth, but different realizations, combined with the fact that some means of

calibrating the static error caused by alignment or surface quality (such as dOTF)

to return the system performance to a high (0.9+) Strehl ratio can be used, the

perfect, as-design model should be what is started with.
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If it proves to not be a good enough model to get good estimates of a known

aberration in a real application of Frazin’s Algorithm, then several possible actions

can be taken. The first, although expensive and time consuming, is that an inter-

ferometer can be used to measure all the surfaces in the optical system to include

them in the computational model in addition to a thorough examination of where

the beam actually hits the surface of each optic. This is not a particularly prac-

tical solution because it is likely that the beam will move on the surfaces of each

optic due to dynamic processes like vibrations and gravity, not to mention this cal-

ibration needing to be repeated after every realignment or change to the optical

system hardware. The second option, which is vastly more practical, is to exploit

the fact that what is driving these estimates away from the known coefficient values

is the fact that the surface errors the model does not know about are themselves

an NCPA. This means that instead of injected a known NCPA to test, Frazin’s

algorithm could be run on the “flattened” optical system to obtain an estimate.

If the optical system performance is well calibrated to a high Strehl, like MagAO-

X [27], the resulting estimates will be turn out to be dominated by the combined

OPD effects of the model’s missing surface errors. This estimate could then be used

to update the computational model used in the regression equations, reducing the

bias-like affects on estimating a known (or unknown) aberration in the next imple-

mentation of Frazin’s algorithm. Although this process will need future study to

implement, an attempt was made to demonstrate the fact that the combined effect

of the surface errors can be estimated simply by applying Frazin’s algorithm using

a computational model with assumed perfect surfaces. To do this in simulation, we

return to the Mismatch Model case, and apply the estimators without injecting the

low-order NCPA. The results of this effort can be seen in Fig. 6.8. The left frame

shows the phase (in radians) of the Exit Pupil for the “true” model that includes the

surface errors, which is used in the simulations to propagate the light and compute

the measured science camera intensity. The right frame shows the bias–corrected

estimate achieved applying Frazin’s algorithm, which can easily be seen to be a

reasonable estimate of the Exit Pupil phase, as we expected. Although this was
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(a) (b)

Figure 6.8: (a) The phase (in radians) in the Exit Pupil of the simulated MagAO-X optical
system. This is due to the optical surface errors only. (b) The bias–corrected estimate for
the Mismatch Model case without any injected NCPA. This is an estimate of the error in
the as designed model because it describes the difference in the science camera intensity
predicted by the model with perfectly flat surfaces to the slightly aberrated intensity of
the “true” model.

not then fed into the model to test if it improves the results obtained just above

(removing the error of the unknown surfaces from the estimate), in principle that

should be possible, and as mentioned, requires further study.

Keeping in line with the conclusion that the Mismatching surface WFE Model

is the wrong way to go, we again return to the Mismatching Model case, and go one

step further to try to determine if model error of this type might be manageable,

even without trying to improve the computational model in the suggested ways. To

test this, we perform the Mismatching Model simulation again, but in the framework

of the real-time QSA correction of Section 6.1.2. In doing this, we hope to be able

to show that if the bias-corrected estimator is used in an integrator control loop,

even with error in the regression equation model, that we can converge to similar

performance as if the computational model is perfect. We run the same simulation

as the previous section, of estimating the beam walk-like QSA every 10 seconds
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Case Ideal Comp
RMS (rad)

Näıve
Comp RMS
(rad)

Bias-
Corrected
Comp RMS
(rad)

Matching
Model

5.04× 10−6 0.016 0.0042

Mismatching
Model

0.078 0.066 0.078

Mismatching
surface
WFE Model

0.144 0.123 0.143

Table 6.1: Summary of the residual RMS error when using the labeled estimator type
to compensate a static NCPA for each of the three model error cases. Note the starting
RMS phase was 0.5 radian.

before computing an estimate and applying it to the NCPC DM, but with the

propagation matrix in the regression equations replaced by the surface error free

model matrix. Again, the figure of merit analyzed in this simulation is the RMS of

the pupil plane just after the DM compensation is applied. Figure 6.9 plots the RMS

phase for the uncompensated QSA (blue line), the residual RMS outside the range

of correction of the NCPC DM (orange line), the RMS of the compensated QSA

using the estimates of the Mismatching Model case (green solid line), and finally the

RMS of the compensated QSA using the Matching Model case, for comparison (red

dashed line). The results of this simulations are quite encouraging, because the error

in the estimates due to the model error is largely swept under the rug by the control

system, achieving nearly the same results as if the regression equation computational

model was perfect. This result should provide some comfort as it demonstrates the

fact that the effort of modeling the science instrument likely need not involve high

precision measurements from interferometers and calibrated knowledge of exactly

where the beam hits each surface, as running in a closed-loop integrator control

system can still obtain the desired real-time compensation of the QSA, even without

trying to push the model to be more precise.

This, of course, is only one source of potential modeling error however. Further
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Figure 6.9: A plot returning the real-time simulation compensating the beam walk QSA,
but comparing to if the surface error free model is used in the regression equations instead
of the “true” model. We see that closing the loop using Frazin’s Algorithm largely over-
comes the differences in the models to return to the performance of the ideal case where
you have perfectly modeled the real optical system.

examination of errors in the numerical model of the WFS used in the bias-corrected

estimator, as well as in the measurement and implementation of the AO residual

statistics used in modeling the Monte Carlo wavefronts, is required to reveal the full

story of the biases introduced due to computational modeling. This is beyond the

scope of this dissertation, but is an excellent space for further developing the method

by increasing the understanding of an error budget allowed in the computational

modeling effort.

6.3 Doing the näıve estimate in the lab

The next big step in the advancement of Frazin’s algorithm is to demonstrate its

viability in a lab setting. The most tangible starting place for this effort, without

having gone through the process of conducting studies on the modeling error budget,

is to simply attempt to use the näıve estimator described in Section 4.2.3 to estimate

a “known” NCPA, as this requires only the ability to acquire measurements in both

a WFS and the science camera, and a good numerical model of the instrument

being used (essentially keeping us in the space of errors that are examined in the
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previous section). As we have constructed a numerical model of the MagAO-X

science instrument following the empirical work of Jennifer Lumbres[37] (in prep), in

which the model is verified when compared to the hardware testing and calibration

done by Van Gorkom [Gorkom et al. (2021)], first discussed in Section 6.1.1, it

makes the most sense to attempt to tackle this demonstration using the MagAO-

X instrument itself. The experimental setups tested, results, and discussion is the

subject of the rest of this section. Although the intricacies of using MagAO-X are

important for the completion of the following experiments, the details will be left

to the reader to better follow if they are going to attempt to replicate or improve

upon what is presented here. For a brief reference, the online MagAO-X handbook

includes a beginner’s guide to using the instrument can be referenced.

6.3.1 Experimental attempt 1

Assuming that MagAO-X is properly aligned, with streams open to the two im-

portant cameras for our purposes: the Pyramid WFS intensity measurements on

camwfs, and the science camera, camsci1, the first experiment can be attempted. In

this test of the näıve estimator, a closed-loop control loop will be run on the WFS,

with turbulence injected via the woofer (11 × 11 actuators) DM, corrected by the

tweeter (64× 64 actuators) DM. The Pyramid WFS measures light at 850nm with

a 40nm bandpass filter, and is run at 2kHz, for an exposure time of 0.0005 seconds.

This is the rate at which the loop is closed, updating the tweeter DM surface through

use of a calibrated reconstructor matrix to go from camwfs intensity measurements

directly to DM actuator offsets representing estimated wavefront piston values at

the actuator locations. We will make use of this same reconstructor matrix to assist

us in getting OPD measurements of the wavefront to use in the regression equations.

The science wavelength impinging on camsci1 is at Hα: 668nm, with an exposure

time of 0.0250 seconds. The consequences of the difference in exposure times be-

tween the two cameras will be discussed, but in the case of this first attempt at

demonstrating Frazin’s algorithm in the lab, the science camera is not capable of

running at the high frame rate that the WFS is running at.

https://magao-x.org/docs/handbook/operating/abeginnersguidetomagaox.html
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The observing sequence conducted in this experiment is:

1. take dark images on camwfs and camsci1

2. take images on both cameras with the loop closed on the WFS, without in-

jecting turbulence yet. These images will serve the purpose of allowing us

to adjust our model as needed to better replicate the aberration free, flatten

wavefront performance of MagAO-X.

3. inject 0.025 micron RMS Astig-V on dmncpc, the DM in a pupil plane in

the science instrument downstream of the WFS. This serves the purpose of

being our known aberration to estimate, as its presence will only be in the

science camera measurements. Furthermore, because of the angled beam path

incident on dmncpc, the astigmatism we introduce will actually be a slight

projection of Astig-V.

4. take images on both cameras, again with no injected turbulence.

5. configure the turbulence with 0.1 micron amplitude, a wind speed of 20 m/s,

and an interval of 1000 microseconds.

6. Inject turbulence on the woofer DM. We note here that that MagAO-X Pyra-

mid WFS is not spatial frequency limited by the tweeter DM, but we choose

the woofer to inject the turbulence to keep it much lower order. The merits

of this choice will be discussed.

7. take images on both cameras.

With this sequence complete, we move on to the potentially complicated chore of

organizing the captured data so that it can be used. Sparing the reader the details

of this process, we will simply describe the end goal of the data organization: using

the time stamps in the fits file headers for acquisition and write times, all the WFS

exposures are grouped to their corresponding science camera exposure times. In

other words, for each time interval exposure of the science camera intensity, there
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are approximately 50 WFS camera intensities that were taken, and the time stamps

are used to identify and group them. However, because the AO system was running

the WFS at 2kHz, and the science camera at 40Hz, the DM shape also changes 50

times within each science camera exposure. This removes the ability to simply sum

the WFS camera intensities together because at each 0.5ms interval, the wavefront

reaching the science camera changes (albeit slightly in this experiment because the

turbulence is weak and of low spatial frequency content, meaning it is extremely well

corrected by the AO system). Instead, we must be able to account for this in our

regression equations by taking advantage of the assumption that a “long” exposure

image can be approximated by the sum of “short” exposures over the same time

span. This essentially introduces a second time index to the equations, with the

first, t, tracking the science camera intensities, and the second, t′, tracking the WFS

measurements. Adding T ′ as the total number of WFS measurements that fit within

a single science camera exposure to the nomenclature, we can adjust Eq. (4.25) to:

i(wt,a) =
T ′∑
t′=0

[c(wt′) +Aa(wt′)a] , (6.1)

where we understand that i(wt,a) on the left-hand side of the equation is measured

directly by the science camera, wt′ on the right-hand side is measured by the WFS,

and summing from t′ = 0 → T ′ gives a response that approximates the intensity

due to wt. We must also adjust Eq. (4.23):

Aa(wt′) ≡
∂ i?(wt′ ,a)

∂a

∣∣∣∣
a0

. (6.2)

We can change the index here only because the derivative being taken is with respect

to the aberration parameter vector, a, not the wavefront itself. Although we can

fix this in the equations and presumably be in the clear for using the data we have,

there is a potential red flag with approaching the experimental setup in this manner:

each science camera measurement is the average of intensity due to 50 different

AO residual wavefronts. As we will see, this will greatly reduce the amount of

information that we can gather in the regression, as this average over AO residuals
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will not change all that much throughout the experiment, especially with the fact

that our AO system is doing such a complete effort in compensating the injected

turbulence. Attempting to reduce this effect will be the main motivation in the

second lab experiment described below.

The next task is to set up converting the camwfs intensity measurements into

measurements of the wavefront phase. Luckily, because we closed the loop on

MagAO-X, we have access to several pieces of information that can allow us to

do this very simply. As part of the process to set up MagAO-X for use, a response

matrix is generated, along with a WFS pupil mask, a WFS reference image, and a

WFS dark image (measured with the WFS camera shutter closed). Because of how

the software is written, there is a simple recipe for going from the WFS intensity

directly to an OPD measurement that is well calibrated, and can be converted into

phase through knowledge of the operating wavelength of the WFS. Code for how to

apply this recipe can be found in Appendix C.3.

Now, a proper S matrix must be computed. This is done very simply, exactly

how it was done in the simulations of Chapter 5. The average science camera

intensity for the length of the full observation is found by averaging together all

the measured camsci1 frames. If all these values were placed on the diagonal of an

L× L matrix, they would form an estimate of the noise covariance matrix, Cy. So

to get the proper scaling matrix, each value in the average science camera intensity

is inverted, and then placed along the diagonal of an L × L matrix, providing us

the proper weighting for our estimated scaling matrix to function as described in

Chapter 4.

Finally, we return to the model matrix, D. We have specifically chosen the

dimensions of D to be L× P , where L is again the number of pixels in our science

camera measurements, in this case 4096, and P is the number of pixels in our WFS

measurements after applications of our recipe to go from intensity to phase estimate,

in this case 2040. This matching of the model dimension to the physical outputs

of our hardware is required to do the calculations in the regression. Following the

results of Section 6.2, we also opt for using the computational model that does not
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include any surface errors, as we know with the AO loop closed, and the previous

calibration of the MagAO-X system [27], the penalty on the Strehl ratio due to

the surface errors is largely compensated already. However, there is one further

step that must be taken: scaling and interpolating the model matrix so that the

intensity that is obtained using it to propagate a field is appropriately matched to

the camsci1 measurements. This is why our experimental scheme included taking

data that was free of aberration. This scenario is the most closely matching to

the numerical MagAO-X model that we have used to construct D, allowing for a

comparison in features and scaling. Because the loop was closed when taking this

aberration free data, the PSF in each measurement does not change substantially

aside from the photon and readout noise. This means that we can average together

this data set to get a better signal in the hardware measured, aberration free, high

Strehl science camera image. With this averaged science camera image in hand,

we can choose how to normalize D such that the model outputs a similarly scaled

intensity. In this work, we choose to normalize D by the square root of the ratio of

the maximum value of the averaged hardware image to the maximum value of the

intensity predicted by the model without any scaling. The square root is necessary

because D propagates the field, not the intensity. Lastly, in a departure from the

simulations presented in Chapter 5, in this case, the WFS and science camera are

operating at different wavelengths. We account for this by adjusting D through the

use of mild interpolation to resize the plate scale of the modeled intensity to match

what we measured in the average image mentioned just above. Although this is

an inexact method that is hard to get right, it is the easiest way to try ensure the

scaling of the wavefront by wavelength between the measured WFS phase and the

science camera is not ignored without a more significant modeling effort. The results

of this effort can be found in Fig. 6.10 in the form of comparing intensity measured

using MagAO-X with a “flat” wavefront to the intensity the model predicts for a

flat wavefront.

After performing all of the above, we arrive at evaluating the regression equations

using the MagAO-X matrix model, D, and the data taken in lab on camwfs and
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Figure 6.10: Top Left: A single exposure intensity measured by camsci1 without any
injected aberration using MagAO-X shown in log10 scale. Axes are in units of λ/D. Top
Right: The science camera intensity our model predicts for a flat wavefront shown in log10
scale. Bottom: The percent error of the model predicted intensity image.
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Figure 6.11: Näıve estimate of the NCPA in the first lab experiment, using 622 Bsplines
as the estimation basis set, represented in radian units.

camsci1. We first attempt to run the näıve estimator using 2500 science camera

measurements and their corresponding WFS measurements to estimate 622 Bspline

functions in the pupil. The resulting estimate of the aberration, which to remind

the reader, is intended to be the projected version of 0.025 micron rms Astig-V, can

be seen in Figure 6.11. As is easy to see, this is a particularly “noisy” estimate

of the aberration. There are several likely candidates for the cause of this, but the

main one is the problem discussed above, that each science camera image was the

average of 50 different AO residuals. We can examine if this is the case by looking

at the eigenvalues of the Q matrix that is built up in the evaluation of the regression

equations (see Figure 6.12). In this figure, we see that the eigenvalues of Q drop

by two orders of magnitude after only about 10 modes of the 622, meaning that for

the vast majority of the modes, the estimates are amplified by noise, leading to the

very random looking phase values we see, including a few very large displacements

in absolute value. This means that we did not get nearly enough information in

the data that we took to try to estimate this many modes, with the likely culprit

being the averaging problem that occurred in every science camera exposure. This

emphasizes the importance of synchronizing the measurements in both telemetry
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streams, so that the amount of information obtained in several thousand exposures

is powerful enough to do the kinds of regressions seen in Chapter 5, where our

simulations guaranteed this to occur. Other contributing factors to the lack of

precise result include:

1. the slight mismatch between the numerical model of the science instrument

and the true hardware,

2. mistakes in the data pipeline, both taking the requested number of frames,

and then in organizing the data by time stamp,

3. a lack of knowledge of what the form of the true injected NCPA by the DM

is.

As this was a quick first attempt at lab results, future work would be wise to focus on

making further improvements to the plate scale of the model (although it is close, it

is still affecting the estimation results) by better calibrating the WFS measurements

to the focal plane to ensure the model is precise, improving the data stream pipeline

to function without errors in the organization and collecting of WFS measurements

to their corresponding science camera measurements to ensure that the regression

model is comparing the right measurements at the right time step, and verifying

the form of the aberration that is injected so that it is truly a “known” quantity to

compare estimates to (perhaps through use of a known phase plate in the science

instrument entrance pupil or using an interferometer to measure the exact phase off

of the DM being used to inject it). Because we don’t have a good, calibrated sense

of the actual form of the aberration phase, the only way to evaluate the quality of

this estimate is to look at the intensity the science instrument model predicts with

the estimate as the NCPA compared to the intensity measured by camsci1. Even

though the model has the aforementioned minor errors in it, Fig. 6.10 tells us that

it should be close enough to draw conclusions on the results of our näıve estimated

NCPA. This comparison can be made by looking at Fig. 6.13. In spite of the fact that

the estimate was very noisy due to lack of information contained in the measured
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Figure 6.12: Eigenvalues of the Q matrix that is accumulated in the evaluation of the
näıve regression equations using the MagAO-X data from experiment 1, using 622 Bsplines
as the estimation basis set.

data, we see this is not quite as poor an estimate as it may have first appeared.

The noisy, high spatial frequency content of the estimate is evident in the predicted

intensity, as there are is significantly higher amplitude content away from the PSF

core and first ring. That being said, the peak number of counts in the core, and the

general structure of the first diffraction ring are similar enough to make us believe

that given a better experimental setup, the näıve estimate could be demonstrated

well.

Armed with the knowledge that we only have enough information to estimate a

handful of modes using the näıve estimator, we can easily swap the estimation basis

to include a small number of Zernike modes instead of 622 Bsplines, and rerun the

experiment. This accounts for only a few lines of changed code. The chosen Zernike

modes for the estimation basis are Tip, Tilt, Astig-O, Astig-V, Coma-H, Coma-V,

Trefoil-O, and Trefoil-V. Defocus and spherical modes are eliminated from the basis

set because they are the most likely to be impacted by the slight mismatch in plate

scale in the numerical model compared to the hardware; the slight change in PSF

core width between the model and the hardware will automatically show up as an

increase of defocus to explain it. Figure 6.14 shows the resulting näıve estimate
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(a) (b)

Figure 6.13: (a) The measured intensity at one exposure on camsci1 with the injected
astigmatism. (b) The model predicted intensity for the estimated aberration using 622
Bspline functions in Frazin’s algorithm.

of the phase in this case, which returns an RMS error of 0.153 microns. We

see that astigmatism is the dominant aberration found, but that it is more oblique

than vertical,differing from the expected form our choice of input aberration on the

DM would suggest. However, we have not verified that we truly understand what

the form of the aberration actually injected into the hardware via the DM is what

we expect it to be, so we cannot draw many conclusions from just looking at this

result. Looking at Figure 6.15, we can instead compare the measured intensity on

camsci1 and the intensity the model predicts with this estimated NCPA to judge the

outcome. Although the peak intensity remains close to the measured value, the

form of the estimated intensity shows in the first diffraction ring confirms that the

estimate is not fully representative of the true aberration. Four speckles can be seen

with symmetry on either side of the core as making up the first ring, whereas the

measured intensity shows three main speckles, with the majority of the light skewed

toward the lower right corner. The core of the estimated intensity is also stretched

along the lower left to upper right diagonal, whereas the measured intensity shows
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Figure 6.14: Näıve estimate of the NCPA in the first lab experiment, using 8 Zernike
modes as the estimation basis set, presented in OPD. The resulting rms is 0.153 micron,
6.1× larger than the injected amount of astigmatism.

(a) (b)

Figure 6.15: (a) The measured intensity at one exposure on camsci1 with the injected
astigmatism. (b) The model predicted intensity for the estimated aberration using 8 low
order Zernikes in Frazin’s algorithm.
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a more circularly symmetric core.

6.3.2 Experimental attempt 2

In an attempt to get better results from a preliminary lab demonstration, a second

experiment is designed with hopes of mitigating some of the issues we learned in the

first attempt. As we are simply trying to achieve a lab based result that validates

the simulations, rather than implementing the full regression method in real time,

the measurements on the science camera and wavefront sensor can be slowed down

some. In this vein, we decide not to close the loop on the WFS using injected

turbulence on the woofer at all. Instead, we will be more deliberate, and after

calibrating a response matrix to allow us to convert our measured WFS intensities

to wavefront OPD, an AO residual will be approximated by setting the woofer

surface using draws from a Gaussian random variable for each actuator. This is

to say each actuator piston will be drawn from a Gaussian distribution at each

time step, attempting to ensure that each overall DM shape will be statistically

independent from the rest. Furthermore, the woofer shape is changed at a much

slower pace, allowing the problem that plagued the first experiment of our science

camera exposing over multiple DM shapes to be eliminated. For the stability of

the software running MagAO-X, the WFS is run at 1kHz this time, and the science

camera is run at 32Hz (for no particular reason other than 0.03125 second exposure

time is easily within the possible readout capability for camsci1). With the fact

that this new experiment is not changing any DM shape while the science camera

will be exposing, multiple WFS measurements can be taken and averaged together

in intensity to improve the signal. We choose the number of WFS measurements

to take to equalize to the exposure time of the science camera, essentially giving us

“synchronized” performance. However, to do this experiment, the Python interface

to MagAO-X must be used, rather than the default MagAO-X software. This also

means that each camera must be exposed sequentially rather than in parallel. We

choose first to take the WFS exposures, and then the science camera exposure.

The assumption being made here is that the wavefront going through MagAO-X
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remains stable throughout this longer total time interval for each step (consisting of

changing the woofer shape to a simulated AO residual and allowing it to settle, then

measuring the WFS intensity, then measuring the science camera intensity, and then

writing both to disk) of the experiment. As long as the wavefront does not change

due to drift much in this time interval and the assumption holds, constructing

the experiment in this manner solves two of the encountered issues in the first

experiment: averaging over multiple AO residuals in each science camera exposure

and the data organization pipeline having inconsistencies in it. The last step before

taking data is then to flatten the wavefront by setting the calibrated flats on all

three DMs, and then apply a 0.030 micron RMS Astig-V on dmncpc to serve as the

NCPA to be estimated.

To begin this experiment, more care was taken to try to understand if dmncpc

was setting the form of aberration we anticipated. To accomplish this, the first step

was to take an exposure on camsci1 with the aberration in place, and compare it

to what the computational model of MagAO-X we are using predicts the NCPA

should be for a 0.030 micron RMS Astig-V mode placed in the entrance pupil. The

results of this comparison can be seen in Figure 6.16. It is clear from this figure

that the aberration being supplied by dmncpc is not as simple as a regular Zernike

mode for Astig-V. This is somewhat expected due to the fact that the input beam

to the DM has an angle of incidence of 30 degrees. However, it is much clearer

that the actual NCPA appears to be much closer to an oblique astigmatism with

a small degree of defocus, as we note that light is shifted more to the lower right

hand side of the first diffraction ring than in the expected PSF (similarly to the

measured PSF from the previous experiment). Furthermore, the core of the PSF

in the measured by the hardware is 8 pixels across and appears slightly elongated

from top left to bottom right, whereas the model predicted is only 7 pixels across

and displays circular symmetry. Given that the model being used has been verified

as shown and discussed above to be free of large errors that could manifest in this

way, we are confident that this difference is best explained by the lack of knowing

exactly what NCPA we have put in place via the DM compared to the form of the
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(a) (b)

Figure 6.16: (a) The measured intensity at one exposure on camsci1 with the injected
astigmatism for the second experimental attempt. Note the longer exposure time used has
increased the number of counts compared to the previous experiment. This is expected.
(b) The intensity the model predicts for injecting a 0.030 micron RMS Astig-V Zernike
mode as the aberration.

modes being used in the regression.

The described scheme is implemented on MagAO-X using the code in Appendix

C.4, giving us 250 measurements of WFS and science camera telemetry that are

much better paired. These are processed through the näıve regression equations,

estimating the coefficients for the same 8 Zernike modes as used in the previous

experiment. The resulting estimate of the NCPA is given in Figure 6.17, in units

of microns. The RMS of the estimated OPD is 0.0972 micron, 3.89× larger than

the injected amount of aberration. However, as discussed comparing the measured

intensity to the expected intensity given by the model, it does not make much sense

to compare our result to what we thought the input aberration on the hardware

is. Instead, we will again turn to comparing the intensity the model predicts

given our estimate to the measured intensity, as this will be a more apples-to-

apples comparison. This comparison can be seen in Figure 6.18. We see that this

estimated phase is in fact a poor representation of the NCPA in the system, as we
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Figure 6.17: Näıve estimate of the NCPA in the second lab experiment, using 8 Zernike
modes as the estimation basis set, presented in OPD. The resulting RMS is 0.0972 micron,
3.89× larger than the injected amount of astigmatism.

would have expected from the analysis above that the true NCPA does not take the

form of Astig-V even though that is what the DM was commanded to be (because

of uncertainty in the shape of the DM, the 30 degree angle of incidence projecting

the shape, and any unaccounted for other sources of WFE in the hardware). The

estimated intensity displays a much more blatant, stronger astigmatism than the

measured, so much so that 6000 counts are spread from the peak pixel out into the

canonical astigmatism intensity cross. This tells us that our improved experimental

design still has flaws, that appear to be even more damaging than the mistakes

made in the first experiment.

Given these results, we present suggestions to further improve the setup in a

future attempt. Although not shown, estimates on the 622 Bspline functions were

repeated, and suffered the same fate of not having enough information to reliably

trust estimating more than 10 modes. This is due to the fact that an abundance

of caution was taken commanding the woofer shape to avoid the Gaussian random

draws from forcing neighboring actuators from being set with a large surface gradient

between them. This essentially means the mean of the Gaussian was chosen to be
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(a) (b)

Figure 6.18: (a) The measured intensity at one exposure on camsci1 with the injected
astigmatism for the second experimental attempt. (b) The model predicted intensity for
the estimated aberration using 8 low order Zernikes in Frazin’s algorithm.

very small, making the Strehl ratio remain exceedingly high, and the change in the

“atmospheric” speckles hardly noticeable from exposure to exposure. Furthermore,

using the 11× 11 actuator woofer DM to inject our Gaussian phase screens severely

limits the spatial frequency content in the screens, meaning we aren’t throwing

speckles throughout the full detector region. These affects combine to produce

nearly the same problem that experiment one had; the information we were able to

gather in 250 measurements on the hardware was not adequate for precise estimation

of the NCPA because there was simply not adequate modulation of the NCPA for

the regression to work. So we suggest that future work on a lab demonstration can

make several improvements to this second framework, and the näıve estimate can

be fully verified. These improvements include:

1. Switch to using the 64 × 64 actuator tweeter DM for injecting the Gaussian

random phase screen in to the system. This will give access to high spatial

frequencies, allowing the speckles in subsequent exposures to change more

freely and better modulate the NCPA.
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2. Increase the amplitude of the Gaussian phase screen serving as the AO residual

to lower the Strehl to ≈ 0.7. This also ensures more light is scattered in to

speckles throughout the focal plane, allowing more modulation of the NCPA

and thus more information to be gathered.

3. Run the science camera a bit faster. This is a hardware limitation of the

EMCCD currently in use as camsci1. However, any increase in readout speed

reduces the dependence on the assumption that the system is free of any

unaccounted for drift over the experimental steps.

4. Adjust the sleep times in the Python code between each link in the chain

occurring. As performed in the second experiment, the WFS likely took some

of its 32 frame sample while the DM shape was still changing, corrupting

the wavefront measurement when compared to the measured science camera

intensity.

5. Take several thousand exposures, rather than only 250, if system stability

allows.

6. Spend more time carefully developing a numerical model of the MagAO-X

science instrument, using LightTrans software.

7. Construct an accurate computational model of the MagAO-X Pyramid WFS.

This will reduce dependence on the calibration of a reconstructor matrix, for

which the calibration starts to degrade immediately as the system drifts with

time.

8. Calibrate the form of the aberration being injected into the hardware by dm-

ncpc. This can also include changing the NCPA modes included in the regres-

sion to better be able to fit the aberration, which could be checked numerically

prior to conducting the experiment, ensuring a good estimate is even possible

with the chosen modes.
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9. Generate the Gaussian phase screens to be used in the experiment before-

hand, and conduct simulations along the lines of those presented in Chapter 5

with them as the AO residuals using the näıve estimator, the computational

MagAO-X model (for both the propagation and regression; as in the Matching

Model case from above), the calibrated NCPA form, and the new set of modes

demonstrated to fit the NCPA well. These simulations will inform how the

lab experiment should be expected to perform in terms of quality of estimate,

and how many time steps are required to be measured. Any deviation from

these results in the lab experiment would be easier to pin down the cause of

because more parameters would already be verified as functional.

The most difficult and time consuming of these suggestions are the final four, as they

require more effort towards empirically modeling as built hardware and implement-

ing that work into simulation to verify the expectations of the lab demonstration.

The potential investment is worth this effort though, because this will further allow

for the validation of the bias-corrected estimator without much further change to the

experiment. Because the AO residual itself is being created via a known multivari-

ate Gaussian distribution, the statistics of the AO residual are very well known (to

within uncertainties actually moving the DM surface, which could be calibrated and

included in the wavefront modeling). Thus, a set of Monte Carlo wavefronts would

be quite easy to construct and utilize with the computation model of the WFS,

allowing all the Monte Carlo proxies to be found. Taking these steps will provide

the most concrete demonstration that validates the equations and simulation work

presented in this dissertation, and bringing Frazin’s algorithm closer to the point of

on-sky deployment.

6.4 Future work

Throughout this chapter, many suggestions for the continued development of

Frazin’s algorithm are given in the context of work that is presented. This includes:

• Exploring the limits of implementing Frazin’s algorithm as an “NCPA WFS”
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in a closed-loop control system (see Sec. 6.1).

• Exploring the effects of science instrument computational model errors on

the implementation of the method, and ways of trying to mitigate them (see

Sec. 6.2.

• Exploring the effects of errors in the computational model of the WFS, as

well in the measurement of the spatial statistics of the AO residual and the

generation of the Monte Carlo wavefronts

• Ways of improving the presented experimental setups to achieve a much more

accuate and precise estimate using the näıve and/or bias-corrected estimators

to validate the equations and simulations of this dissertation.

In addition to these topics, there are several other intriguing places to develop the

method that were not within the scope of this dissertation, and would make an

excellent place for future work to take place. These include:

• Utilizing a spatial filter in the optical system. The optimal way of doing this

would appear to be downstream of a simple, low-order AO system, and prior

to a high-order Extreme AO system (for example, after AO188 but before

SCExAO at the Subaru telescope). In this way, the light would be partially

compensated by the lower-order AO system, making for a cleaner implementa-

tion of a spatial filter prior to the high-order AO system that will be responsible

for providing the telemetry streams to Frazin’s algorithm from its WFS and

associated science instrument. The reason a spatial filter would be useful is

that it would provide a known spatial frequency cutoff to the light entering

the system we want to use. This not only assists with the modeling effort,

but also reduces the spatial frequencies in the turbulent wavefront, helping to

minimize the WME due to bandwidth.

• Generalize the regression to take in to account field rotation and spectral

information. The work presented ignored field rotation, and was performed
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in quasi-monochromatic light. Integrating field rotation and multiple wave-

lengths into the optical system model will greatly increase the diversity of the

information that can be fed in to the regression at each time step, and increase

the power of estimators. This also reduces some of the headache of requiring

quasi-monochromatic light to be used in observation, as well as any processing

of telemetry to remove field rotation effects.

• Examine the effects of both pupil sampling in the WFS and PSF sampling

in the science camera on the number and spatial frequency content of modes

that can be included in the regression equations. The work presented in this

dissertation used approximately the same sampling for both planes in all the

simulations. This leaves the relationship between this sampling and the NCPA

estimation unknown, and may reveal an optimal choice that achieves estimates

containing the necessary spatial frequencies without slowing down the calcu-

lations.

• Conduct a study on the required frame rate of the WFS and science camera.

Although 1ms has been discussed in this work, and shown to be sufficient for

use alongside an AO system in closed-loop in the simulations presented (where

1ms was shown to even be too long to see statistically independent informa-

tion in each exposure) and through examination of speckle lifetimes against

various parameters for a simple integrator control system (among many other

parameters) by Males et al. [47], this may not be the case if the algorithm

is instead applied in open-loop. Because the RMS phase error due to turbu-

lence would be ≈ 1 rad in open-loop, with a coherence time on the order of

5 − 10ms, the WFE would likely be changing fast enough that ms exposures

would not effectively freeze the swarm of speckles, and instead would be av-

eraging over changing speckles. This would greatly damage the effectiveness

of the algorithm, similarly to what happened in the first lab experiment that

was discussed. Understanding the relationship of frame rate vs. temporal

atmospheric effects with regard to implementing Frazin’s algorithm is an un-
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explored area that could better extend the ability to use the algorithm beyond

closed-loop AO systems.
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CHAPTER 7

Conclusions

In the work presented in this dissertation, we have derived and explored two wave-

front control techniques that can be implemented to estimate non-common path

aberrations: dOTF and Frazin’s algorithm. To remind the reader, dOTF is a sim-

ple, non-interferometric, non-iterative method used to estimate any static wavefront

error due to misalignment, flexure, or lack of segment cophasing, prior to the system

being used in a dynamic environment like astronomical observation. Furthermore,

we demonstrated its use as the WFS in a closed-loop, self-calibration control sys-

tem within an AO enabled optical system as a means of compensating this static

systematic error without incurring any additional costs for new hardware. This is

important to use in high-contrast imaging applications because a cleaner, more flat

wavefront propagating through the coronagraph improves the starlight suppression

performance, meaning a better achieved raw contrast, and a better chance to di-

rectly observe light from an exoplanet. With the static, systematic WFE corrected

prior to going on sky, the starting point for a second algorithm to be implemented

while observation is being taken place is significantly improved.

Frazin’s algorithm is a statistical regression framework that takes ms teleme-

try from the WFS and science camera, combined with computational models of

the WFS and science instrument and knowledge of the spatial statistics of the AO

residual wavefront, to output estimates of quasi-static NCPA and the exoplanet im-

age. The mathematical steps of the framework were rigorously derived, and then

demonstrated via a quasi-realistic end-to-end simulation of a closed-loop extreme

AO system with a Lyot coronagraph in the science instrument. In these simula-

tions, it was shown that implementing Frazin’s algorithm in a real-time control loop

was able to reduce the RMS phase of a realistic quasi-static NCPA with a life-

time of approximately 5 minutes by a factor of ≈ 1.5×, and maintain that level of
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compensation over the duration of the lifetime. This reduces the number of stel-

lar photon that fall into quasi-static and pinned speckles, effectively removing them

from the science camera measurements of the intensity. Because of this, and the fact

that the exoplanet image can be jointly estimated with the NCPA, post-processing

differential imaging techniques become less necessary to be able to directly image

exoplanets. Along those lines, the simulations presented demonstrated the ability

to jointly estimate the exoplanet image alongside the NCPA when implemented in

a high-contrast imaging system, and nn just 4 minutes of simulated observation, a

detectable contrast of between 10−5 and 10−6 at the IWA was achieved. This is com-

parable to the best contrast ever achieve on the SPHERE AO system, of ≈ 5×10−5

at 3λ/D [81]. But the SPHERE data took 2.5 hours of observation with an IFS,

and utilized both ADI and SDI to achieve, with a much higher Strehl ratio than our

simulations assumed.

Finally, we presented preliminary studies conducted on directions the future

development of Frazin’s algorithm can be expanded, and provided a road map for

intriguing ideas that in principle are all possible to add to the method to make it

even more powerful. Achieving the implementation of these suggestions, as well as

increasing the observation length and quality of the coronagraph (from a basic Lyot

to something more modern like a vAPP or PIAACMC), combined with the fact that

Frazin’s algorithm can self-consistently estimate the NCPA and control it over that

increased observation time to keep the coronagraph performing closer to optimally,

means we can push this detectable contrast toward being able to directly image an

Earth-like exoplanet in a habitable zone around another star, and finally start to

answer the question of if we are alone in the universe.
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APPENDIX A

The least squares regression solution

Here we step through some of the math left out of Chapter 4. As is traditional in

regression theory, we define our starting equation as:

y = Ax+ ν , (A.1)

where y is an M × 1 vector representing the dependent variable, A is an M × N
matrix of independent variables that are exactly known, x is an N × 1 vector we

eventually want to estimate, and ν is an N ×1 vector representing an unknown, ad-

ditive noise that is assumed to be drawn from a zero-mean Normal distribution with

a known M ×M covariance matrix, C. In an optical problem, the general interpre-

tation of this equation is that y is the image measured by an optical system modeled

by A of an object x, with measurement noise ν. This or similar interpretation is

applied to the work in this dissertation, often both in terms of performing the AO

corrections via wavefront reconstruction, and in the regression method described.

With this in mind, we will proceed in this appendix only treating the mathematics

themselves, without any thought to what the variables themselves represent.

With Eq. (A.1) setting up our system, we turn our attention to how we can

recover what x is given measurements of y and the model A. In order to do this,

we will employ the use of statistical inference. First, we define the likelihood function

as:

P (y|x) =
1√

(2π)N |C|
exp

[
−1

2
(y −Ax)TC−1(y −Ax)

]
= N (y;Ax,C) . (A.2)

Now, we wish to maximize the log-likelihood to get what is called the ML estimate
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of x. In other words:

x̂ML = argmaxx ln (P (y|x))

= argmaxx

(
− ln

(√
(2π)N |C|

)[
−1

2
(y −Ax)TC−1(y −Ax)

])
= argmaxx

(
1

2
(y −Ax)TC−1(y −Ax)

)
= (ATC−1A)−1ATC−1y . (A.3)

The keen reader will recognize this as the least-squares, minimum norm solu-

tion, which will produce an unbiased, minimum variance estimate x̂ML. However,

ATC−1A is often nearly singular, which will make x̂ML unacceptable. In order to

proceed, a Prior, P (x) is introduced to bring us into the realm of Bayesian Regu-

larization. With the Prior defined as:

P (x) = N (x;x0; (βΞ)−1) ∝ exp

[
−β

2
(x− x0)

TΞ(x− x0)

]
, (A.4)

where β is the regularization parameter and is greater than or equal to 0, and Ξ is

the N ×N regularization matrix.

Now, we continue by finding the joint probability density on y and x:

P (y,x) = P (y|x)P (x) ∝ exp

[
−1

2
(y −Ax)TC−1(y −Ax)− β

2
(x− x0)

TΞ(x− x0)

]
.

(A.5)

But what we would like to have is knowledge of x given a measurement of y, so we

apply Bayes Rule:

P (x,y) = P (y|x)P (x) = P (x|y)P (y) , (A.6)

to find the posterior distribution:

P (x|y) =
P (y|x)P (x)

P (y)
. (A.7)
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Finally, we define the maximum a posteriori estimate of x:

x̂MAP =argmaxx [P (x|y)]

= argmaxx [P (y|x)P (x)]

= argmaxx [P (y,x)]

=
(
ATC−1A+ βΞ)−1

[
ATC−1y + βΞx0

])
. (A.8)

With some deft renaming of variables, it is easy to see this is the process that gives

us Eq. (4.35).

Now, to show that this is an unbiased estimate, we simply recall that 〈y〉ν = Ax,

and compute the expectation value of Eq. (A.8).

〈x̂MAP 〉 =
(
ATC−1A+ βΞ)−1

[
ATC−1Ax+ βΞx0

])
.

When β = 0, this simplifies to:

〈x̂MAP 〉 =
(
ATC−1A)−1

[
ATC−1Ax

])
=
(
ATC−1A)−1

[
ATC−1A

]
x
)

= 1x = x , (A.9)

meaning that when unregularized, the estimate is unbiased. If β is chosen to be

nonzero, the result is taken to be acceptably biased, as is described above, which is

a standard trade-off in regularization theory.
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APPENDIX B

Creating a matrix representation of an optical system

With the need for a model matrix of an optical system to perform Frazin’s Algorithm,

we take a moment to describe a simple and easy way to construct it. This is to take

advantage of the linearity of the optical system. This requires that the optical system

being modeled to be adequately discretized such that the field in the entrance pupil,

u0(r), is represented by P points, or pixels, and the field in the science detector,

u1(r
′), is represented by L pixels. Given a numerical operator that describes the

propagation of the light through the optical system, O, that is taken to have a

discrete representation, which is a typical numerical implementation using Fresnel

or Fraunhofer integrals transferring the field from the entrance pupil to the science

camera, requiring models of optical elements as necessary. Defining a basis set on

the points in the pupil made of vectors {bp}, 0 ≤ p < P , such that bp’s only nonzero

element is the pth one. Exploiting the linearity of the optical system being modeled,

we can write the final field in the science camera as:

u1(r
′) =

P∑
p=0

u0(rp)O(bp; r
′) . (B.1)

This equation shows that O(bp; r
′) can thus be stored as values in a L× P matrix,

D, that collects the field response of the optical system in the science camera for

each individual input pixel in each row. The benefit of taking such an approach to

model the optical system as D is two-fold. First, this matrix can be inserted into

the equations given in Chapter 4 directly, allowing easy application of the method.

Second, application of the matrix on an input field vector via one complex-valued

matrix-vector multiplication (MVM) returns a vector representing the field propa-

gated to the science camera. This means, at the cost of a potentially large upfront

cost in computational time, depending on the complexity of the mathcalO operator,
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to compute D, all future numerical propagations can be done with this one MVM,

avoiding any need for real-time Fourier transforms in the numerical processing. This

process is clearly defined for a Pyramid WFS in Frazin (2018). Listing C.2 provides

code using Jennifer Lumbres’ Fresnel propagation work to model MagAO-X in this

manner. Listing C.7 includes code for creating D for several optical systems, in-

cluding vAPP and Lyot coronagraphs, and a system without a coronagraph.
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APPENDIX C

Selected code implementations †

C.1 Code for running dOTF experiments on CACTI . . . . . . . . . . . . 192
C.2 Code for running Jennifer Lumbres’ Fresnel model of MagAO–X to

make a propagation matrix . . . . . . . . . . . . . . . . . . . . . . . . 196
C.3 Python code for doing reconstructions of MagAO-X WFS intensity

into OPD measurements . . . . . . . . . . . . . . . . . . . . . . . . . 202
C.4 Python code for taking data on MagAO-X for the improved experi-

mental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
C.5 Code for running Frazin’s Algorithm using WFS and science camera

data from MagAO-X . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
C.6 Code for computing A(wt) and c(wt) . . . . . . . . . . . . . . . . . . 221
C.7 Code for computing the computationl propagation model of an optical

system D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Listing C.1: Code for running dOTF experiments on CACTI

1 %reload_ext autoreload

2 %autoreload 2

3 %matplotlib inline

4 import datetime

5

6 #load modules

7 import numpy as np

8 import matplotlib.pyplot as plt

9 from astropy import units as u

10 from astropy.io import fits

11

12 # accessing the cameras

13 from magpyx.utils import ImageStream

14

15 import os

16 import struct

17 import pickle

18

†All code used can be found on GitHub upon request.
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19

20

21 def colorbar(mappable):

22 from mpl_toolkits.axes_grid1 import make_axes_locatable

23 import matplotlib.pyplot as plt

24 last_axes = plt.gca()

25 ax = mappable.axes

26 fig = ax.figure

27 divider = make_axes_locatable(ax)

28 cax = divider.append_axes("right", size="5%", pad =0.05)

29 cbar = fig.colorbar(mappable , cax=cax)

30 plt.sca(last_axes)

31 return cbar

32

33

34 # initialize the camera

35 cam_lgsfp = ImageStream(’camlgsfp ’)

36 # settings: 1.45 ms framerate , HeNe ND at 2.0, no extra ND

37

38

39 # initialize the DM channel 2 (not where the flat is loaded)

40 dm = ImageStream(’dm00disp02 ’) # channel 2

41 with fits.open(’/opt/MagAOX/calib/dm/bmc_1k/bmc_2k_actuator_mask.fits’) as f:

42 dm_mask = f[0]. data

43 with fits.open(’/opt/MagAOX/calib/dm/bmc_1k/bmc_2k_actuator_mapping.fits’) as f:

44 dm_map = f[0]. data

45

46 dm_mask_filled = np.ones ((32 ,32), dtype=bool)

47

48

49 # set the camera semaphore

50 if cam_lgsfp.semindex is None:

51 cam_lgsfp.semindex = cam_lgsfp.getsemwaitindex (1)

52

53

54

55 # take measurements with poked DM

56 # HeNe = 0.001 s exposure

57 # LGSsrc = 0.003 s exposure with OD in

58 val = 0.075

59 dm.write(np.zeros ((32 ,32)).astype(dm.buffer.dtype))

60 flat = np.zeros ((32 ,32)).astype(dm.buffer.dtype)

61 # HeNe

62 act2poke = np.array ([15 ,27])

63 # LGSsrc
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64 #act2poke = np.array ([15 ,6])

65

66 poke = flat.copy()

67 poke[act2poke [0], act2poke [1]] = val

68 cam_lgsfp.semflush(cam_lgsfp.semindex)

69

70

71

72 # Flatten the DM

73 dm.write(np.zeros ((32 ,32)).astype(dm.buffer.dtype))

74 # take measurements with the flat DM

75 nimages = 250

76 nrepeats = 10

77 #dm.write(np.zeros ((32 ,32)).astype(dm.buffer.dtype))

78 flat = np.zeros ((32 ,32)).astype(dm.buffer.dtype)

79 images = []

80 poke_images = []

81 cam_lgsfp.semflush(cam_lgsfp.semindex)

82

83 for n in range(nrepeats):

84 print(n)

85 # positive values

86 cam_lgsfp.semflush(cam_lgsfp.semindex)

87 dm.write(flat.astype(dm.buffer.dtype))

88 #sleep (0.05)

89 cam_lgsfp.semwait(cam_lgsfp.semindex)

90 #images.append(np.mean(cam_lgsfp.grab_many(nimages), axis =0))

91 images.append(cam_lgsfp.grab_many(nimages))

92 #dm.write(np.zeros ((32 ,32)).astype(dm.buffer.dtype))

93

94 cam_lgsfp.semflush(cam_lgsfp.semindex)

95 dm.write(poke.astype(dm.buffer.dtype))

96 cam_lgsfp.semwait(cam_lgsfp.semindex)

97 #poke_images.append(np.mean(cam_lgsfp.grab_many(nimages), axis =0))

98 poke_images.append(cam_lgsfp.grab_many(nimages))

99

100 images = np.asarray(images)

101 poke_images = np.asarray(poke_images)

102

103

104

105

106 images_ = images.sum (0)

107 poke_images_ = poke_images.sum (0)

108
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109 centerpoint_flat = [337 ,195] # HeNe

110 #centerpoint_flat = [338 ,319] # LGS

111 images_ = images_.sum(0) / images_.shape [0]

112 images_ = images_ [( centerpoint_flat [0] -128):( centerpoint_flat [0]+127) , (centerpoint_flat [1] -128):(

centerpoint_flat [1]+127)]

113

114 centerpoint_poke = [337 ,195] # HeNe

115 #centerpoint_poke = [338 ,319] # LGS

116 poked_images_ = poke_images_.sum(0) / poke_images_.shape [0]

117 poked_images_ = poked_images_ [( centerpoint_poke [0] -128):( centerpoint_poke [0]+127) , (centerpoint_flat

[1] -128):( centerpoint_flat [1]+127)]

118

119 OTF_images = np.fft.fftshift(np.fft.fft2(np.fft.fftshift(images_)))

120 OTF_poked_images = np.fft.fftshift(np.fft.fft2(np.fft.fftshift(poked_images_)))

121 OTF_images [127 ,127] = 0

122 OTF_poked_images [127 ,127]=0

123 dOTF_HeNe = (OTF_images - OTF_poked_images)

124 dOTF_HeNe = -1j*dOTF_HeNe.conj()

125

126 mag_HeNe = np.abs(dOTF_HeNe)

127 pha_HeNe = np.angle(dOTF_HeNe)

128

129 #uw_pha_HeNe = uwrap_v1(pha_HeNe ,’unwt ’)

130 uw_pha_HeNe = pha_HeNe.copy()

131 k_HeNe = -(2*np.pi) / (632.8e-9)

132 k_LGSsrc = -(2*np.pi) / (531e-9)

133 OPL_HeNe_ref = uw_pha_HeNe / k_HeNe

134

135

136 plt.figure (1);plt.clf()

137 cbax = plt.imshow(mag_HeNe ,origin=’lower’,cmap=’plasma ’)

138 cb = colorbar(cbax); cb.formatter.set_powerlimits ((0,0)); cb.formatter.set_useMathText(True);

139 plt.title(’HeNe’)

140

141 plt.figure (2);plt.clf()

142 cbax = plt.imshow(OPL_HeNe_ref ,origin=’lower ’,cmap=’plasma ’)

143 cb = colorbar(cbax); cb.formatter.set_powerlimits ((0,0)); cb.formatter.set_useMathText(True);

144 plt.title(’HeNe’)

145

146

147

148 # Write the data to FITS

149 now = datetime.datetime.now().isoformat ()

150 images.shape

151 hdr = fits.Header ()
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152 hdr.set(’laser’, ’hene’, "source type (hene or lgs)")

153 #hdr.set(’laser ’, ’lgssrc ’, "source type (hene or lgs)")

154 hdr.set(’actPoke ’, False , "bool if this is poked data")

155 #hdr.set(’poked_actuator ’, act2poke , "Actuator array location ")

156 hdr.set(’exptime ’, 0.0015 , "camera exposure time in sec")

157 hdr.set(’nd’, 1.5, "ND at the laser")

158 hdr.set(’cam_nd ’, True , "bool if ND at the detector")

159 hdr.set(’dichroic ’, ’none’, "dichroic trans/refl/none")

160 hdr.set(’eyedr’, True , "bool if eye doctor performed")

161 fits_filename = ’Data/HeNe_Data_9_12_2021/Images_HeNe_flat_noDMflat_ ’+now [0:19]+ ’.fits’

162 #fits_filename = ’Data/LGS_Data_9_12_2021/Images_LGS_flat_0_05Tilt ’+now [0:19]+ ’. fits’

163 fits.writeto(fits_filename , images , overwrite=True)

164

165

166 # Write the data to FITS

167 poke_images.shape

168 tmp = act2poke [0]*32 + act2poke [1]

169

170 hdr = fits.Header ()

171 hdr.set(’laser’, ’hene’, "source type (hene or lgs)")

172 #hdr.set(’laser ’, ’lgssrc ’, "source type (hene or lgs)")

173 hdr.set(’actPoke ’, True , "bool if this is poked data")

174 hdr.set(’pokedAct ’, tmp , "Actuator array location")

175 hdr.set(’exptime ’, 0.0015 , "camera exposure time in sec")

176 hdr.set(’nd’, 1.5, "ND at the laser")

177 hdr.set(’cam_nd ’, True , "bool if ND at the detector")

178 hdr.set(’dichroic ’, ’none’, "dichroic trans/refl/none")

179 hdr.set(’eyedr’, True , "bool if eye doctor performed")

180 fits_filename = ’Data/HeNe_Data_9_12_2021/Images_HeNe_poked_noDMflat_ ’+now [0:19]+ ’.fits’

181 #fits_filename = ’Data/LGS_Data_9_12_2021/Images_LGS_poked_0_05Tilt ’+now [0:19]+ ’. fits’

182 fits.writeto(fits_filename , poke_images , hdr , overwrite=True)

Listing C.2: Code for running Jennifer Lumbres’ Fresnel model of MagAO–X to

make a propagation matrix

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Thu Jul 1 20:42:53 2021

5

6 @author: Jennifer Lumbres and Alexander Rodack

7 """

8

9 import sys

10 sys.path.insert(0,’/home/archdaemon/Research/Github/poppy/’)
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11 sys.path.insert(0,’/home/archdaemon/Research/Github/magaox_poppy ’)

12 sys.path.insert(0,’/home/archdaemon/Research/Github/model_kit ’)

13

14 import numpy as np

15 from astropy import units as u

16 from astropy.io import fits

17 import copy

18 import time

19

20 import matplotlib.pyplot as plt

21 from matplotlib.colors import LogNorm , Normalize

22 import matplotlib

23

24 # need to look up which version

25 import pickle

26

27 # the only thing you need from my code

28 from model_kit import magaoxFunctions as mf

29

30 import poppy

31 poppy.__version__

32

33

34

35 mag_pupil = mf.mag_pupil_mask(samp =538, entrance_radius =3.25*u.m, wavelength =656e-9*u.m, bump=False)

36

37

38 # set up file locations

39 home_dir = ’/home/archdaemon/Research/GitHub/magaox_poppy/’ # change for your MagAO -X Fresnel directory

40 data_dir = home_dir + ’data/’

41 rx_dir = data_dir + ’rxCSV/’

42

43 # Set up some stuff

44 FP_crop = 64

45 poppy_pupil_space = np.load(home_dir + ’poppy_pupil.npy’)

46 pup_norm_val = poppy_pupil_space.max()

47 pupil_mask = poppy_pupil_space.copy() / pup_norm_val

48 pupil_mask[pupil_mask >0.] = 1.0

49 numPoints = int(pupil_mask.sum())

50

51

52

53

54 binWidth = 11

55
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56

57 # Load in 550 x550 preconstructed mask

58 with fits.open(’/home/archdaemon/Research/GitHub/magaox_poppy/demo/LabDemo_mask.fits’) as hdul:

59 tmp_mask = np.float32(hdul [0]. data)

60

61 pupil_size_binningy = tmp_mask.shape [0]

62 pupil_size_binningx = tmp_mask.shape [1]

63

64

65

66 # declare MagAO -X variables

67 fr_parm = {’wavelength ’: 656e-9 * u.m,

68 ’npix’: 538, # sample size

69 ’beam_ratio ’: 0.25, # oversample

70 ’leak_mult ’: 0.01, # vAPP leakage multiplier

71 ’bump’: True , # T/F to use the MagAO -X pupil with tweeter bump masked

72 ’wfe_data ’: ’common ’} # other options: common

73

74 # set up prescription details , this is important for labeling later.

75 wavelen_str = str(np.round(fr_parm[’wavelength ’].to(u.nm).value).astype(int))

76 br = int(1/ fr_parm[’beam_ratio ’])

77 parm_name = ’{0:3}_{1:1}x_{2}nm’.format(fr_parm[’npix’], br, wavelen_str)

78

79

80 # load the CSV prescription values

81 #rx_loc = rx_dir+’rx_magaox_NCPDM_sci_ {0} _noap_ {1} _openfits.csv ’.format(parm_name , fr_parm[’wfe_data ’])

82

83 # Change to this one if no wfe on surfaces!

84 rx_loc = rx_dir+’rx_magaox_NCPDM_sci_538_4x_656nm_noap_nowfe.csv’

85 rx_sys = mf.makeRxCSV(rx_loc , print_names=False)

86

87

88 # Commented out to remove surface qualities (Lines 93 -109), also need to set rx_loc to the nowfe csv (see

above)

89 # We need to rename all the folder location for the PSD WFE surfaces

90 # In theory , you can skip this if your rxCSV file has this fixed. (it’s not in this file)

91 # This left here for being able to switch with different PSD WFE sets.

92

93 # Setting the folder name

94 #n_set = 0

95 #s_set = 0

96 #psd_wfe_dir = ’data/PSD_WFE/n{0}/s{1}/’. format(n_set , s_set) # Change this for what you want , and make the

folder too.

97 #

98 ## Quick renaming of the folders
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99 #for t_optic , test_opt in enumerate(rx_sys):

100 # if test_opt[’surf_PSD_filename ’][0:7] == ’wfe_psd ’:

101 # test_opt[’surf_PSD_folder ’] = psd_wfe_dir

102 #

103 #

104 ## Tweeter index number in the rxCSV (particularly the Optical_Element_Number value)

105 #j_tweeter = 16

106 #

107 ## Rename the folder and filename for the pre -solved Tweeter surface

108 #rx_sys[j_tweeter][’ surf_PSD_folder ’] = ’data/wfemap/tweeter_opd_map/allopd/n{0}/’. format(n_set)

109 #rx_sys[j_tweeter][’ surf_PSD_filename ’] = ’dm_opd_s {0} _i4 ’.format(s_set)

110

111

112 # Run a test case stepping through the binning process to double check there are

113 # no pixel gaps over overlaps. This also precalculates the number of rows

114 # Dmat will have

115 ts = time.time()

116 summer = np.zeros_like(tmp_mask)

117 minipupil = np.zeros ((50 ,50),dtype=np.float32)

118 bincounter = 0

119 for px in range(int(pupil_size_binningy / binWidth)):

120 for py in range(int(pupil_size_binningx / binWidth)):

121 if np.mod(bincounter ,10) == 0:

122 print(’Current bin number is: ’,bincounter)

123

124 # load in the pupil mask Poppy looks for (2152 x2152)

125 tmp_pupil_Alex = np.zeros_like(pupil_mask)

126

127 # To bin , we have to get more creative:

128 # pull out 540 x540 region in the center of the pupil region

129 tmp_pupil = np.zeros_like(tmp_mask)

130 # set the bin pixels equal to the normalized pupil value

131 tmp_pupil[px*binWidth :(px+1)*binWidth ,py*binWidth :(py+1)*binWidth] = 1.0

132 # Make sure pixels are within active area

133 tmp_pupil *= tmp_mask.copy()

134 minipupil[px,py] = np.sum(tmp_pupil)

135 if np.sum(tmp_pupil) >= 1.0:

136 summer += tmp_pupil.copy()

137 bincounter +=1

138

139 minipupil /= minipupil.max()

140 Dmat = np.zeros (( bincounter ,int(FP_crop*FP_crop)),dtype=np.complex64)

141

142

143 # Build the MagAO -X System and double check things ... This will propagate



– Continued

200

144 # through the Fresnel model to verify the surfaces. Can be skipped if you trust

145 # your setup of Poppy and Jhen’s code

146

147 # build the FresnelOpticalSystem

148 #magaox = mf.csvFresnel(rx_csv=rx_sys ,

149 # samp=fr_parm[’npix ’],

150 # oversamp=fr_parm[’beam_ratio ’],

151 # home_folder=home_dir ,

152 # break_plane=’F69Sci ’,

153 # bump=fr_parm[’bump ’])

154 #

155 #sci_psf , sci_wf = magaox.calc_psf(wavelength=fr_parm[’wavelength ’].value , return_final = True)

156 #

157 #psf_crop = poppy.utils.pad_or_crop_to_shape(sci_psf [0].data , (67 ,67))

158 #plt.figure(dpi =100)

159 #plt.imshow(np.log10(psf_crop), origin=’lower ’)

160 #plt.colorbar ()

161

162 # Test the binning process and it’s interactions with Poppy. Can skip

163

164 #for p in range(numPoints):

165 ## load in the pupil mask Poppy looks for (2152 x2152)

166 # # If we want to scan 1 pixel at a time , just jump through listx ,listy

167 # tmp_pupil_Alex = np.zeros_like(pupil_mask)

168 # tmp_pupil_Alex[listx[p],listy[p]] = pup_norm_val

169 # # Write the pupil mask to a fits file for Poppy to use

170 # fhdr = fits.Header ()

171 # fhdr.set(’puplscal ’, 0.012081784386617101 ,

172 # ’pupil scale m/pix ’)

173 # fits.writeto(home_dir+’singlepixpup.fits ’, tmp_pupil_Alex , fhdr , overwrite=True)

174 #

175 #

176 # # DO THIS TO EDIT PUPIL TO A SINGLE PIXEL

177 # # For each process , make a copy of the csv file , and change this fileneame

178 # # in the loop , rewrite this fits file for each pixel

179 # rx_sys [0][’ surf_PSD_folder ’] = ’’

180 # rx_sys [0][’ surf_PSD_filename ’] = ’singlepixpup ’

181 #

182 #

183 # # build the FresnelOpticalSystem

184 # magaox = mf.csvFresnel(rx_csv=rx_sys ,

185 # samp=fr_parm[’npix ’],

186 # oversamp=fr_parm[’beam_ratio ’],

187 # home_folder=home_dir ,

188 # break_plane=’F69Sci ’,
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189 # bump=fr_parm[’bump ’])

190 #

191 # sci_psf , sci_wf = magaox.calc_psf(wavelength=fr_parm[’wavelength ’].value , return_final = True)

192 # wf_crop = poppy.utils.pad_or_crop_to_shape(sci_wf [0]. wavefront , (FP_crop , FP_crop))

193 # Dmat[p,:] = wf_crop.flatten ()

194 #print(’Time to run code is: ’, time.time()-ts , ’ seconds ’)

195

196

197 bincounter = 0

198 summer = np.zeros_like(tmp_mask)

199 for px in range(int(pupil_size_binningy / binWidth)):

200 for py in range(int(pupil_size_binningx / binWidth)):

201 if np.mod(bincounter ,10) == 0:

202 print(’Current bin number is: ’,bincounter)

203

204 # load in the pupil mask Poppy looks for (2152 x2152)

205 tmp_pupil_Alex = np.zeros_like(pupil_mask)

206

207 # To bin , we have to get more creative:

208 # pull out 540 x540 region in the center of the pupil region

209 tmp_pupil = np.zeros_like(tmp_mask)

210 # set the bin pixels equal to the normalized pupil value

211 tmp_pupil[px*binWidth :(px+1)*binWidth ,py*binWidth :(py+1)*binWidth] = 1.0

212 # Make sure pixels are within active area

213 tmp_pupil *= tmp_mask.copy()

214

215 if np.sum(tmp_pupil) >= 1.0:

216 summer += tmp_pupil.copy()

217

218 # place this back in to the full size pupil

219 # tmp_pupil_Alex [(1076 -270) :(1076+270) ,(1076 -270) :(1076+270)] = tmp_pupil

220 tmp_pupil_Alex [(1076 -275) :(1076+275) ,(1076 -275) :(1076+275)] = tmp_pupil

221 # tmp_pupil_Alex [(1076 -270) :(1076+270) ,(1076 -275) :(1076+275)] = tmp_pupil

222

223 # Write the pupil mask to a fits file for Poppy to use

224 fhdr = fits.Header ()

225 fhdr.set(’puplscal ’, 0.012081784386617101 ,

226 ’pupil scale m/pix’)

227 fits.writeto(home_dir+’singlepixpup.fits’, tmp_pupil_Alex , fhdr , overwrite=True)

228

229

230 # DO THIS TO EDIT PUPIL TO A SINGLE PIXEL

231 # For each process , make a copy of the csv file , and change this fileneame

232 # in the loop , rewrite this fits file for each pixel

233 rx_sys [0][’surf_PSD_folder ’] = ’’
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234 rx_sys [0][’surf_PSD_filename ’] = ’singlepixpup ’

235

236

237 # build the FresnelOpticalSystem

238 magaox = mf.csvFresnel(rx_csv=rx_sys ,

239 samp=fr_parm[’npix’],

240 oversamp=fr_parm[’beam_ratio ’],

241 home_folder=home_dir ,

242 break_plane=’F69Sci ’,

243 bump=fr_parm[’bump’])

244

245 # Calculate the PSF for the given input bin

246 sci_psf , sci_wf = magaox.calc_psf(wavelength=fr_parm[’wavelength ’].value , return_final = True)

247

248 # Crop this to the size detector we want (no change in resolution , only cropping)

249 wf_crop = poppy.utils.pad_or_crop_to_shape(sci_wf [0]. wavefront , (FP_crop , FP_crop))

250

251 # Store in the Propagation Matrix

252 Dmat[bincounter ,:] = wf_crop.flatten ()

253 bincounter +=1

254

255 print(’Time to run code is: ’, time.time()-ts, ’ seconds ’)

256 #Dmat *= (1 / pup_norm_val)

257

258 # Transpose so it is in the right shape

259 Dmat = Dmat.T

260

261 # Save the Matrix

262 np.save(’MagAOX_labdemo_4096x2040_11x11binreduction_Dmat.npy’,Dmat)

Listing C.3: Python code for doing reconstructions of MagAO-X WFS intensity into

OPD measurements

1

2 #!/usr/bin/env python3

3 # -*- coding: utf -8 -*-

4

5 recon_dir = ’path/to/reconstruction/files/’

6

7 # Load files into memory

8 zrespM = np.float32(PPU.simple_fitsread(recon_dir + ’zrespM.fits’))

9 wfsref0 = np.float32(PPU.simple_fitsread(recon_dir + ’wfsref0.fits’))

10 wfsdark = np.float32(PPU.simple_fitsread(recon_dir + ’wfsdark_2022 -02 -04_02 :32:57. fits’))

11

12 # Initialize an empty array for making the response matrix
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13 M = np.zeros (( zrespM.shape [0], zrespM.shape [1]* zrespM.shape [2]),np.float32)

14

15 # Take the data of the measured responses and organize into a matrix

16 for n in range(zrespM.shape [0]):

17 M[n,:] = zrespM[n,: ,:]. flatten ()

18

19 # Transpose the constructed matrix to have the correct shape

20 M = M.T

21

22 # Compute the SVD efficiently

23 M_tmp = M.T.dot(M)

24 u,s,vh = np.linalg.svd(M_tmp)

25

26 # Truncate at the number of illuminated actuators

27 cutoff = 1600

28 s_inv = np.zeros_like(s)

29 for n in range(len(s)):

30 if n < cutoff:

31 s_inv[n] = 1/(s[n])

32 else:

33 s_inv[n] = 0

34 S = np.diag(s_inv)

35

36 # Construct the Truncated Inverse to get the reconstructor matrix

37 M_inv = (vh.T.dot(S).dot(u.T)).dot(M.T)

38

39

40 # For a loaded measurement of WFS intensity called wfs_image:

41

42 # Get the frame of WFS Intensity

43 wfs_image = xp.array(MagAOX.WFSInt.copy()) # A loaded camwfs intensity file

44

45 # Prepare the Intensity for reconstruction from CACAO

46 wfs_image -= MagAOX.wfsdark

47 wfs_image /= wfs_image.sum()

48 ref_sub = wfs_image - MagAOX.wfsref0

49

50 # Reconstruct the OPD using the Reconstructor

51 reconst_out = MagAOX.WFS_Reconstructor.dot(ref_sub.flatten ().reshape (14400 ,1)).reshape (50 ,50)

52

53 # Convert to phase

54 phase_map = ((2*np.pi) / (WFS_wvl)) * reconst_out * 1e-6

55

56 # Pull out pixel values within the pupil

57 phase_vec = phase_map[pup_pixy ,pup_pixx ]. reshape(MagAOX.D.shape [1],1) * MagAOX.PupilMask
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Listing C.4: Python code for taking data on MagAO-X for the improved experimen-

tal setup

1 %reload_ext autoreload

2 %autoreload 2

3 %matplotlib inline

4 import datetime

5

6 #load modules

7 import numpy as np

8 import matplotlib.pyplot as plt

9 from astropy import units as u

10 from astropy.io import fits

11

12 # accessing the cameras

13 from magpyx.utils import ImageStream

14

15 import os

16 import struct

17 import pickle

18

19

20

21 def colorbar(mappable):

22 from mpl_toolkits.axes_grid1 import make_axes_locatable

23 import matplotlib.pyplot as plt

24 last_axes = plt.gca()

25 ax = mappable.axes

26 fig = ax.figure

27 divider = make_axes_locatable(ax)

28 cax = divider.append_axes("right", size="5%", pad =0.05)

29 cbar = fig.colorbar(mappable , cax=cax)

30 plt.sca(last_axes)

31 return cbar

32

33

34

35

36 # initialize the cameras

37 cam_wfs = ImageStream(’camwfs ’)

38 cam_sci1 = ImageStream(’camsci1 ’)

39

40

41

42 # set the camera semaphore
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43 if cam_wfs.semindex is None:

44 cam_wfs.semindex = cam_wfs.getsemwaitindex (1)

45

46

47

48 # set the camera semaphore

49 if cam_sci1.semindex is None:

50 cam_sci1.semindex = cam_sci1.getsemwaitindex (1)

51

52

53

54

55 # camera info (Update with real exposure times)

56 camsci1_Exptime = np.float64 (0.03125)

57 camwfs_Exptime = np.float64 (0.001000)

58

59

60

61

62

63

64 # initialize the woofer DM in channel 2 (not where the flat is loaded)

65 dm = ImageStream(’dm00disp02 ’) # channel 2

66 cmd = np.zeros_like(dm.buffer)

67 n,m = cmd.shape

68

69

70

71 # Flatten the DM

72 dm.write(np.zeros ((n,m)).astype(dm.buffer.dtype))

73 sleep (0.5)

74

75 # Loop parameters

76 nimages_wfs = 32

77 nimages_camsci = 1

78 nrepeats = 5

79 nexposures = 250

80

81 flat = np.zeros ((n,m)).astype(dm.buffer.dtype)

82 cam_wfs.semflush(cam_wfs.semindex)

83 cam_sci1.semflush(cam_sci1.semindex)

84

85 for exposure in range(nexposures):

86 #initialize lists for data

87 wfs_images = []
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88 camsci_images = []

89 print(exposure)

90 # Loop over number of repeats

91 for im in range(nrepeats):

92 #print(im)

93 # command DM to a gaussian random shape with 0.7 variance , 0 mean

94 dm_shape = (np.sqrt (0.7)*np.random.randn(n,m))*0.1

95 dm_shape -= dm_shape.mean()

96 dm_shape = dm_shape.astype(dm.buffer.dtype)

97

98 # Take WFS intensity images

99 cam_wfs.semflush(cam_wfs.semindex)

100 dm.write(flat.astype(dm.buffer.dtype))

101 sleep (0.05)

102 cam_wfs.semwait(cam_wfs.semindex)

103 wfs_images.append(cam_wfs.grab_many(nimages_wfs))

104

105 # Take science camera intensity

106 cam_sci1.semflush(cam_sci1.semindex)

107 cam_sci1.semwait(cam_sci1.semindex)

108 camsci_images.append(cam_sci1.grab_many(nimages_camsci))

109

110 # Return DM to flat

111 sleep (0.05)

112

113 dm.write(np.zeros ((n,m)).astype(dm.buffer.dtype))

114

115 # Process taken data into numpy arrays and sum over nrepeats dim

116 wfs_images = np.asarray(wfs_images)

117 wfs_images_ = wfs_images.sum(0)

118 camsci_images = np.asarray(camsci_images)

119 camsci_images_ = camsci_images.sum(0)

120

121 # Convert images into a single intensity frame

122 camwfs_output = wfs_images_.sum(0) / wfs_images_.shape [0]

123 camsci_output = camsci_images_.sum(0) / camsci_images_.shape [0]

124

125

126 # Write the data to FITS

127 now = datetime.datetime.now().isoformat ()

128

129 hdr = fits.Header ()

130 hdr.set(’camera ’, ’wfs’, "camera taking data")

131 hdr.set(’nframe ’, exposure , "frame number")

132 hdr.set(’exptime ’, camwfs_Exptime , "camera exposure time in sec")
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133 fits_filename = ’AlexData/no_ab/Camwfs/Camwfs_ ’+now [0:19]+ ’.fits’

134 fits.writeto(fits_filename , camwfs_output , overwrite=True)

135

136

137 hdr = fits.Header ()

138 hdr.set(’camera ’, ’camsci ’, "camera taking data")

139 hdr.set(’nframe ’, exposure , "frame number")

140 hdr.set(’exptime ’, camsci1_Exptime , "camera exposure time in sec")

141 fits_filename = ’AlexData/no_ab/Camsci/Camsci_ ’+now [0:19]+ ’.fits’

142 fits.writeto(fits_filename , camsci_output , overwrite=True)

143

144 sleep (0.1)

145

146 # Clean up a bit

147 #del(camwfs_output)

148 #del(camsci_output)

149 del(wfs_images_)

150 del(wfs_images)

151 del(camsci_images_)

152 del(camsci_images)

153

154

155 # Close cameras and DM

156 cam_wfs.close ()

157 cam_sci1.close()

158 dm.close ()

Listing C.5: Code for running Frazin’s Algorithm using WFS and science camera

data from MagAO-X

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Tue Feb 15 15:13:36 2022

5

6 @author: archdaemon

7 """

8

9

10

11 # Set up the path for running script on remote computer (update as needed)

12 import sys

13 sys.path.insert(0,’/home/atrodack/Research/Frazin -algo -Py/lib’)

14 sys.path.insert(0,’/home/atrodack/Research/Optics ’)

15 sys.path.insert(0,’/home/atr0dack/Research/Github/Frazin -algo -Py/lib’)
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16 sys.path.insert(0,’/home/atr0dack/Research/Github/Frazin -algo -Py/Examples ’)

17 sys.path.insert(0,’/home/atr0dack/Research/Github/Optics ’)

18

19 # Imports

20 import numpy as np

21 import cupy as cp

22 import pickle

23

24 from tqdm import tqdm

25 import time

26 import datetime

27 import matplotlib.pyplot as plt

28 from astropy.io import fits

29 from scipy.interpolate import LSQBivariateSpline as SPL

30 from matplotlib.ticker import (MultipleLocator , FormatStrFormatter , AutoMinorLocator)

31

32 # Code Base Imports

33 import AlgorithmSim_dissertation as ALGOSIM

34 from PyPropUtils import PyPropUtils as PPU

35

36 # Define new colorbar code

37 def colorbar(mappable):

38 from mpl_toolkits.axes_grid1 import make_axes_locatable

39 import matplotlib.pyplot as plt

40 last_axes = plt.gca()

41 ax = mappable.axes

42 fig = ax.figure

43 divider = make_axes_locatable(ax)

44 cax = divider.append_axes("right", size="5%", pad =0.05)

45 cbar = fig.colorbar(mappable , cax=cax)

46 plt.sca(last_axes)

47 return cbar

48

49

50 # Plot marker size and font size

51 markerSz = 28

52 plt.rcParams.update ({’font.size’: 28})

53

54

55 # Open Text File for logging

56 file1 = open("Benchmark_Results_labdata.txt","a+")

57 file1.write("**************************************************************\n")

58 now = datetime.datetime.now().isoformat ()

59 file1.write("Benchmark Date/Time: " + now + "\n" )

60
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61 ## Print number of GPUs

62 #nGPUs = cp.cuda.runtime.getDeviceCount ()

63 #print(’The number of Detected GPUs is: ’, nGPUs)

64 #

65 ## Choose GPU (MagAOX needs to be removed from memory to change GPUs)

66 #if nGPUs == 1:

67 # GPU0 = cp.cuda.Device (0)

68 #elif nGPUs > 1:

69 # GPU0 = cp.cuda.Device (0)

70 # PPU.DumpInfo(GPU0)

71 # print(’\n\n ’)

72 # GPU1 = cp.cuda.Device (1)

73 # PPU.DumpInfo(GPU1)

74 #

75 #GPU2Use = 0

76 #if GPU2Use == 0:

77 # GPU0 = cp.cuda.Device (0)

78 # GPU0.use()

79 #elif GPU2Use == 1:

80 # GPU1 = cp.cuda.Device (1)

81 # GPU1.use()

82 #elif GPU2Use == 2:

83 # GPU2 = cp.cuda.Device (2)

84 # GPU2.use()

85 #elif GPU2Use == 3:

86 # GPU3 = cp.cuda.Device (3)

87 # GPU3.use()

88 #print(’\nGPU ’, str(GPU2Use), ’ is selected ’)

89 #

90

91

92

93 RON = 1

94

95 # MagAO -X Model

96 Dfile = ’/home/archdaemon/Research/GitHub/Frazin -algo -Py/lib/

MagAOX_labdemo_4096x2040_11x11binreduction_Dmat.npy’

97 pupilmask = np.float32(PPU.simple_fitsread(’/home/archdaemon/Research/GitHub/Frazin -algo -Py/Examples/

MagAOX_pupil_labdata.fits’))

98 mask_allpix = np.float64(PPU.simple_fitsread(’/home/archdaemon/Research/GitHub/Frazin -algo -Py/Examples/

MagAO -X_pupil_labdata_allpix.fits’))

99 pup_pixy ,pup_pixx = np.where(mask_allpix ==1)

100

101 WFS_wvl = np.float64 (850 * 1e-9) # 40nm bandpass

102 WFS_Exptime = np.float64 (0.0005) # seconds
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103

104 camsci1_wvl = np.float64 (668 * 1e-9) # Ha-cont

105 camsci1_Exptime = np.float64 (0.025000) #seconds

106

107 # Initialize Simulation class object

108 MagAOX = ALGOSIM.WorkingCoronagraphModels(DmatFilename=Dfile , RON=RON)

109

110 # Get array module for CPU/GPU calculations

111 xp = cp.get_array_module(MagAOX.gpu_ary)

112

113 MagAOX_pup = pupilmask[pup_pixy ,pup_pixx ]. reshape(MagAOX.D.shape [1],1)

114 MagAOX_pup[MagAOX_pup !=1] = 0

115 PupilMask = MagAOX_pup.copy()

116 # PupilMask = 1

117

118

119 MagAOX.PupilMask = xp.array(PupilMask)

120 PupilMask = xp.array(PupilMask)

121

122

123

124 # Set some important simulation parameters outside of object

125 blurb = ’BSpline_NaiveLabDemo_ ’

126

127

128

129 # Set Flags for Experiment Regression Methods

130 Ideal = False # Flag for running Ideal and Ideal -noise estimates

131 Naive = True # Flag for running Naive estimate

132 CSN = False # Flag for allowing Monte Carlo loop , and running SN and CSN estimates

133 UseWeightingMat = True

134 scaleElements = False

135

136

137 # Set switches in code to False

138 MagAOX.compute_xb_flag = False

139 MagAOX.filterWFs = False

140 MagAOX.FilterFileLoaded = False

141

142

143

144 textlines = ["\nIdeal Flag: " + str(Ideal), "\nNaive Flag: " + str(Naive), "\nCSN Flag: " + str(CSN)]

145 file1.writelines(textlines)

146

147
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148 # Set flags for estimate inclusion

149 NCPA=True # Flag for including NCPA in the joint estimator

150 exoplanet=False # Flag for including exoplanet image in the joint estimator

151 noNCPA = False # Flag for also returning Intensity computed without the NCPA [Probably not needed anymore]

152

153 textlines = ["\nNCPA Flag: " + str(NCPA), "\nexoplanet Flag: " + str(exoplanet), "\nnoNCPA Flag: " + str(

noNCPA)]

154 file1.writelines(textlines)

155

156 # Choose Atmospheric Time Series

157 # MagAOX.params[’WFGtype ’] = ’useWhiteNoiseAtmo ’

158 MagAOX.params[’WFGtype ’] = ’RealData ’

159 MagAOX.params[’camsci_dir ’] = ’/usr/local/Lab_Experiments/Camsci1_lc_astigv_turb_organized/’

160 MagAOX.params[’camwfs_dir ’] = ’/usr/local/Lab_Experiments/Camwfs_lc_astigv_turb_organized/’

161 MagAOX.params[’recon_dir ’] = ’/home/archdaemon/Research/Lab_Experiments/Friday_Feb_4_2022/

Reconstruction_Files/’

162 textlines = ["\nWFGtype: "+( MagAOX.params[’WFGtype ’]), "\ncamsci_dir: "+MagAOX.params[’camsci_dir ’], "\

ncamwfs_dir: "+MagAOX.params[’camwfs_dir ’], "\nrecon_dir: "+MagAOX.params[’recon_dir ’]+"\n\n"]

163 file1.writelines(textlines)

164

165 # Set up NCPA Regression

166 #MagAOX.params[’BasisType ’] = ’BSpline ’

167 #MagAOX.params[’BasisModes ’] = 622

168 #MagAOX.params[’TList ’] = np.arange(2,MagAOX.params[’BasisModes ’]).astype(np.int32)

169

170 MagAOX.params[’BasisType ’] = ’Zernike ’

171 MagAOX.params[’ZList’] = np.array ([2,3,5,6,7,8,9,10,12,13,14,15,16])

172 MagAOX.params[’TList’] = np.array ([2,3,5,6,7,8,9,10,12,13,14,15,16])

173 MagAOX.params[’BasisModes ’] = 13

174

175

176 # List for Regression Basis functions

177 MagAOX.params[’abco’] = np.zeros(( MagAOX.params[’BasisModes ’],1),dtype=MagAOX.params[’dataType ’])

178

179

180

181 print(’Initializing Simulation ’)

182 amp = xp.array(np.array (1.).astype(MagAOX.params[’dataType ’]))

183 Offpoint = xp.zeros(shape=( MagAOX.K,1),dtype=MagAOX.params[’dataType ’])

184

185 x_a0 = xp.zeros (( MagAOX.params[’BasisModes ’],1),MagAOX.params[’dataType ’])

186

187 #MagAOX.init_sim(alphas_true=alphas_true , alphas=alphas , contrast=contrast , x_a0 = x_a0)

188 #MagAOX.init_sim_v2(NCPA , exoplanet , alphas_true=alphas_true , alphas=alphas , contrast=contrast , x_a0=x_a0)

189 MagAOX.init_real_data(NCPA , exoplanet , x_a0 , wfsdark_filename=’wfsdark_2022 -02 -04_02 :32:57. fits’)
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190

191 Nexposures = len(MagAOX.camwfs_files)

192 Nexposures = 250

193 nexposures = (np.array ([ Nexposures ,Nexposures ,Nexposures ])).astype(’int’)

194 nLoop = len(nexposures) - 1

195

196

197 #print(’Initializing the Exoplanet Phasors ’)

198 #MagAOX.init_exoImage_phasors ()

199 #MagAOX.init_exoImageAlgoPhasors ()

200

201

202 print(’Starting Simulation at ’ + datetime.datetime.now().strftime("%b %d, %Y at %H:%M:%S") +’!\n\n’)

203

204

205 # Set up time extension

206 ms_per_file = 250 # ms time steps in each Atmo file

207 files_per_timestep = np.int(nexposures [0] / ms_per_file) # how many files are in each timestep

208 AtmoTstep_total = 0

209 with fits.open(MagAOX.params[’camsci_dir ’]+ MagAOX.camsci_files[MagAOX.camscifilenumber ]) as hdul_sc:

210 sc_frames = (hdul_sc [0]. data).astype(xp.float32)

211 # Update the counters

212 MagAOX.camscifilenumber += 1

213 MagAOX.camsciframenumber = 0

214 num_sci_frames = sc_frames.shape [0]

215

216

217 # Relinearization Loop

218 for n in range(len(nexposures)):

219 print("\n**************************************\n")

220 print("Starting Relinearization Step "+str(n+1)+" of "+str(len(nexposures))+"\n\n")

221 # print(tmp_filenumber)

222

223 # Initialize the On-Sky Loop

224 MagAOX.init_OnSky(NCPA=NCPA , exoplanet=exoplanet , Ideal=Ideal , Naive=Naive , CSN=CSN , scaleElements=

scaleElements)

225 MagAOX.atmoFlag=None # Makes Object reseed / reload phasescreens

226 MagAOX.atmoTstep = 0 # Reset steps through phasescreen for tracking t > T_AO_start

227 T = nexposures[n].copy() # Set On -Sky loop for loop range

228

229 file1.write("\nStarting On-Sky Sim for " + str(T) + " Exopsures !\n")

230 ts = time.time()

231 print(’\nStarting On-Sky Loop’)

232

233 # On Sky Data Loop
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234 for t in tqdm(range(T)):

235 # if np.mod(t,25) == 0:

236 # print(’Exposure number: ’, t)

237

238

239

240 # Do the regression step

241 # Load the WFS camera data fits file for the current science camera frame

242 MagAOX.WFG() # This puts the current PyWFS intensity frames into MagAOX.WFSInt

243

244 # Loop over each frame computing c and A_a

245 num_WFS_exposures = MagAOX.WFSInt.shape [0]

246 A_a_t = xp.zeros(( MagAOX.L, MagAOX.N),xp.float32)

247 c_t = xp.zeros (( MagAOX.L,1),xp.float32)

248 for wfs_exp in range(num_WFS_exposures):

249 # Get the frame of WFS Intensity

250 wfs_image = xp.array(MagAOX.WFSInt[wfs_exp ,: ,:]. copy())

251 # Prepare the Intensity for reconstruction from CACAO

252 wfs_image -= MagAOX.wfsdark

253 #wfs_image *= wfsmask # this may not be needed

254 wfs_image /= wfs_image.sum()

255 ref_sub = wfs_image - MagAOX.wfsref0

256 # Reconstruct the OPD using the Reconstructor

257 reconst_out = MagAOX.WFS_Reconstructor.dot(ref_sub.flatten ().reshape (14400 ,1)).reshape (50 ,50)

258 # Convert to phase

259 phase_map = ((2*np.pi) / (WFS_wvl)) * reconst_out * 1e-6

260 # Pull out pixel values within the pupil

261 phase_vec = phase_map[pup_pixy ,pup_pixx ]. reshape(MagAOX.D.shape [1] ,1) * MagAOX.PupilMask

262

263 # Make the phasor for the algorithm

264 MagAOX.naive_phasor = MagAOX.PupilMask * xp.exp(xp.multiply (1j,phase_vec + MagAOX.phi_u_estim))

.astype(xp.complex64)

265 # Init variables for the calculation of A_a and c

266 u_s_m_ideal = None

267 u_s_m_naive = (xp.multiply(amp ,MagAOX.naive_phasor.copy()))

268

269 # compute A_a and c for the naive estimate

270 A_t , u_t , A_tprime_naive , u_tprime_naive = MagAOX.compute_A_and_ut_v3(g1=u_s_m_ideal , g2=

u_s_m_naive , NCPA=NCPA , exoplanet=exoplanet , Ideal=Ideal , Naive=Naive , CSN=CSN , scaleElements=

scaleElements)

271

272 # Add them to the sum to approximate the longer exposure in the science camera

273 A_a_t += A_tprime_naive

274 c_t += u_tprime_naive

275
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276 A_a_t /= num_WFS_exposures

277 c_t /= num_WFS_exposures

278 # Get the corresponding Science Camera Frame MagAOX.camscifilenumber is the file , MagAOX.

camsciframenumber is the frame

279 # Load a new fits file if we need to

280 if xp.mod(t,num_sci_frames) == 0 and t !=0:

281 # print(’Opening new SC file\n’)

282 with fits.open(MagAOX.params[’camsci_dir ’]+ MagAOX.camsci_files[MagAOX.camscifilenumber ]) as

hdul_sc:

283 sc_frames = (hdul_sc [0]. data.astype(xp.float32))

284 # Update the counters

285 MagAOX.camscifilenumber += 1

286 MagAOX.camsciframenumber = 0

287 num_sci_frames = sc_frames.shape [0]

288

289

290 # Store the science camera measurement for this time step

291 y = xp.array(sc_frames[MagAOX.camsciframenumber ,:,:]. reshape(MagAOX.L,1).copy())

292 # Advance the frame number counter

293 MagAOX.camsciframenumber += 1

294 # Estimate the noise covariance matrix

295 C_y_est = xp.diag(y.reshape(MagAOX.L,)).astype(xp.float32)

296

297

298 # Update the Algorithm Quantities

299 # tt = time.time()

300 if UseWeightingMat is False:

301 MagAOX.update_OnSky_Naive(A_a_t , c_t , y, C_y_est , NCPA=NCPA , exoplanet=exoplanet)

302 else:

303 MagAOX.update_OnSky_Naive_S(A_a_t , c_t , y, C_y_est , NCPA=NCPA , exoplanet=exoplanet)

304

305

306 # Advance the counter to load the next file next step through the for loop

307 MagAOX.WFSfilenumber += 1

308

309 # count the total exposures done

310 if n==nLoop:

311 AtmoTstep_total +=1

312 # End of On-Sky for loop

313

314 tf = time.time()

315 print(’On -Sky Loop Time: %.20fs’ % (tf - ts)) # This includes the time for loading in screens printed

to the workspace

316

317 exposurespersecond = (T / (tf -ts))
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318 file1.write("On -Sky Loop Time: "+str(tf-ts)+"\n")

319 file1.write("On -Sky Loop Exposures per second: " + str(exposurespersecond) + "\n\n")

320

321 # Compute Ideal / Naive Estimates

322 MagAOX.computeEstimates_OnSky(NCPA=NCPA , exoplanet=exoplanet , Ideal=Ideal , Naive=Naive , CSN=CSN ,

scaleElements=scaleElements)

323 # Do relinearization if required

324 if n<nLoop:

325 if (Ideal is True and CSN is False):

326 print(’Relinearizing using Ideal\n’)

327 x_a0 = cp.asnumpy(x_a0)

328 x_a0 += MagAOX.x_ideal_noise_NCPA [0: MagAOX.N].copy()

329 for linenum in range(len(x_a0)):

330 if linenum == 0:

331 file1.write("x_a0 = xp.array(["+str(x_a0[linenum ])+",\n")

332 elif linenum == len(x_a0) -1:

333 file1.write("\t"+str(x_a0[linenum ])+"]).astype(MagAOX.params[’dataType ’])")

334 else:

335 file1.write("\t"+str(x_a0[linenum ])+" ,\n")

336 MagAOX.computeLinearizationPoint ((xp.array(x_a0 [0: MagAOX.N_a])))

337

338 if( (Naive is True) and (Ideal is False) and (CSN is False)):

339 print(’Relinearizing using Naive\n’)

340 x_a0 = cp.asnumpy(x_a0)

341 x_a0 += MagAOX.x_naive_NCPA [0: MagAOX.N].copy()

342 for linenum in range(len(x_a0)):

343 if linenum == 0:

344 file1.write("x_a0 = xp.array(["+str(x_a0[linenum ])+" ,\n")

345 elif linenum == len(x_a0) -1:

346 file1.write("\t"+str(x_a0[linenum ])+"]).astype(MagAOX.params[’dataType ’])")

347 else:

348 file1.write("\t"+str(x_a0[linenum ])+" ,\n")

349 MagAOX.computeLinearizationPoint ((xp.array(x_a0 [0: MagAOX.N_a])))

350 MagAOX.WFSfilenumber = 0

351 MagAOX.camscifilenumber = 0

352 with fits.open(MagAOX.params[’camsci_dir ’]+ MagAOX.camsci_files[MagAOX.camscifilenumber ]) as

hdul_sc:

353 sc_frames = (hdul_sc [0]. data).astype(xp.float32)

354 # Update the counters

355 MagAOX.camscifilenumber += 1

356 MagAOX.camsciframenumber = 0

357 num_sci_frames = sc_frames.shape [0]

358 if (CSN is True):

359 print(’Relinearizing using CSN\n’)

360 x_a0 = cp.asnumpy(x_a0)
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361 x_a0 += MagAOX.x_csn_mc [0: MagAOX.N].copy()

362 for linenum in range(len(x_a0)):

363 if linenum == 0:

364 file1.write("x_a0 = xp.array(["+str(x_a0[linenum ])+" ,\n")

365 elif linenum == len(x_a0) -1:

366 file1.write("\t"+str(x_a0[linenum ])+"]).astype(MagAOX.params[’dataType ’])")

367 else:

368 file1.write("\t"+str(x_a0[linenum ])+" ,\n")

369 MagAOX.computeLinearizationPoint ((xp.array(x_a0 [0: MagAOX.N_a])))

370 # meandifftotrue = np.mean(np.abs(x_a0.copy() - MagAOX.params[’abco ’]))

371 # file1.write ("\n"+" Mean absolute difference from true linearization point: "+str(

meandifftotrue))

372

373 if xp.__name__ == ’cupy’:

374 MagAOX.x_a0 = cp.array(x_a0)

375 MagAOX.GPUify_OnSky(Ideal=Ideal , Naive=Naive , CSN=CSN , scaleElements=scaleElements , NCPAonly=

NCPA)

376 MagAOX.GPUify_MC(scaleElements=scaleElements)

377

378 # Reset Atmo to use same files

379 # MagAOX.Atmofilenumber = tmp_filenumber

380 MagAOX.atmoFlag = None

381 elif n== nLoop:

382 print(’Final Step ... Need to add x_a0 to estimates !\n’)

383

384

385 # Store some stuff in the Object for saving later

386 # MagAOX.x_a0 = x_a0.copy()

387

388

389

390

391 x_a0 = cp.asnumpy(x_a0)

392

393 if Ideal is True:

394 MagAOX.x_ideal = MagAOX.x_ideal_NCPA.copy()

395 MagAOX.x_ideal_noise = MagAOX.x_ideal_noise_NCPA.copy()

396 MagAOX.C_ideal_noise = MagAOX.C_ideal_noise_NCPA.copy()

397 MagAOX.P_true = MagAOX.P_true_NCPA

398 MagAOX.Q_true = MagAOX.Q_true_NCPA

399 MagAOX.V_true = MagAOX.V_true_NCPA

400 MagAOX.V_ideal = MagAOX.V_ideal_NCPA

401 MagAOX.H_ideal = MagAOX.H_ideal_NCPA

402 MagAOX.x_true = MagAOX.x_true [0: MagAOX.N_a]

403
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404 if Naive is True:

405 MagAOX.x_naive = MagAOX.x_naive_NCPA.copy()

406 MagAOX.H_naive = MagAOX.H_naive_NCPA.copy()

407 MagAOX.V_naive = MagAOX.V_naive_NCPA.copy()

408 MagAOX.C_naive = MagAOX.C_naive_NCPA.copy()

409 MagAOX.Q_naive = MagAOX.Q_naive_NCPA.copy()

410 MagAOX.P_naive = MagAOX.P_naive_NCPA.copy()

411 # MagAOX.x_naive = MagAOX.x_naive_planet.copy()

412 # MagAOX.C_naive = MagAOX.C_naive_planet.copy()

413 # MagAOX.H_naive = MagAOX.H_naive_planet.copy()

414 # MagAOX.P_naive = MagAOX.P_naive_planet.copy()

415 # MagAOX.Q_naive = MagAOX.Q_naive_planet.copy()

416 # MagAOX.H_naive = MagAOX.H_naive_planet.copy()

417 # MagAOX.V_naive = MagAOX.V_naive_planet.copy()

418

419 if CSN is True and Naive is False:

420 MagAOX.H_naive = MagAOX.H_naive_NCPA.copy()

421 MagAOX.V_naive = MagAOX.V_naive_NCPA.copy()

422 # MagAOX.H_naive = MagAOX.H_naive_planet.copy()

423 # MagAOX.V_naive = MagAOX.V_naive_planet.copy()

424

425 # MagAOX.x_true = MagAOX.x_true [0: MagAOX.N_a]

426

427

428 if nLoop == n:

429 # Add the linearization point to the estimates from the last step

430 if Ideal is True:

431 MagAOX.x_ideal += x_a0

432 MagAOX.x_ideal_noise += x_a0

433

434 if Naive is True:

435 MagAOX.x_naive += x_a0

436

437 if CSN is True:

438 MagAOX.x_csn_mc += x_a0

439 MagAOX.x_sn += x_a0

440

441 if MagAOX.compute_xb_flag is True:

442 MagAOX.x_b += x_a0

443 MagAOX.x_c += x_a0

444

445

446

447 # Compute the error bar values for each estimate and store

448 if Ideal is True:
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449 var_ideal_noise = np.diag(MagAOX.C_ideal_noise)

450 MagAOX.sigma_in = 1.*np.sqrt(var_ideal_noise)

451

452 if Naive is True:

453 var_naive = np.diag(MagAOX.C_naive)

454 MagAOX.sigma_naive =1. * np.sqrt(var_naive)

455

456 if CSN is True:

457 var_csn = np.diag(MagAOX.C_csn)

458 MagAOX.sigma_csn = 1.*np.sqrt(np.abs(var_csn))

459

460

461 # Close file

462 file1.write("\n\n\n")

463 file1.close ()

464

465

466 estimate = cp.asnumpy(MagAOX.T).dot(MagAOX.x_naive) * cp.asnumpy(MagAOX.PupilMask)

467 estimated_intensity = cp.asnumpy(A_a_t).dot(MagAOX.x_naive) + cp.asnumpy(c_t)

468 MagAOX.plotPP(xp.array(estimate) * MagAOX.PupilMask * WFS_wvl / 2 / np.pi * 1e6, colormap=’plasma ’); plt.

title(’Estimated NCPA’)

469 plt.figure ();cbax = plt.imshow (( estimated_intensity).reshape (64 ,64), cmap=’plasma ’); colorbar(cbax); plt.

title(’Estimated Intensity ’)

470 plt.figure (); cbax = plt.imshow(cp.asnumpy(y).reshape (64 ,64), cmap=’plasma ’); colorbar(cbax); plt.title(’

Measured Intensity ’)

471

472 """

473 Save the class object

474 """

475

476 MagAOX.x_a0 = cp.asnumpy(x_a0)

477 MagAOX.phi_r_true = cp.asnumpy(phase_vec)

478 MagAOX.phi_r_measured = cp.asnumpy(phase_vec)

479 MagAOX.I_sim_LE = 0

480 MagAOX.I_SNR = 0

481 Nexposures = nexposures

482 Lsamples = np.array ([0])

483 now_ = datetime.datetime.now()

484 now = now_.strftime("%Y-%b-%d_%H-%M-%S")

485 if Ideal is True:

486 Idealstr = ’IT’

487 else:

488 Idealstr = ’IF’

489

490 if Naive is True:
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491 Naivestr = ’NT’

492 else:

493 Naivestr = ’NF’

494

495 if CSN is True:

496 CSNstr = ’CSNT’

497 else:

498 CSNstr = ’CSNF’

499 filename = ’LabDemo/Dict_T ’+str(Nexposures [-1])+’_L’+str(Lsamples [-1])+’-’+str(len(Nexposures) - 1)+’x’+str

(int(Nexposures [0]/1000))+’kRL_’+Idealstr+’_’+Naivestr+’_’+CSNstr+’-’+blurb+now

500

501 if Ideal is True:

502 var_ideal_noise = np.diag(cp.asnumpy(MagAOX.C_ideal_noise))

503 sigma_in = 1.*np.sqrt(var_ideal_noise)

504

505 if Naive is True:

506 var_naive = np.diag(cp.asnumpy(MagAOX.C_naive))

507 sigma_naive =1. * np.sqrt(var_naive)

508

509 if CSN is True:

510 var_csn = np.diag(cp.asnumpy(MagAOX.C_csn))

511 sigma_csn = 1.*np.sqrt(np.abs(var_csn))

512

513 numpysavefile = dict()

514 MagAOX.params[’Integrated_Off_Axis_PSF ’] = cp.asnumpy(MagAOX.params[’Integrated_Off_Axis_PSF ’])

515 MagAOX.params[’Integrated_Off_Axis_PSF_WFS ’] = cp.asnumpy(MagAOX.params[’Integrated_Off_Axis_PSF_WFS ’])

516 numpysavefile[’params ’] = MagAOX.params

517

518

519 numpysavefile[’x_true ’] = cp.asnumpy(MagAOX.x_true)

520 numpysavefile[’x_a0’] = cp.asnumpy(MagAOX.x_a0)

521

522 if Ideal is True:

523 numpysavefile[’x_ideal ’] = cp.asnumpy(MagAOX.x_ideal)

524 numpysavefile[’x_ideal_noise ’] = cp.asnumpy(MagAOX.x_ideal_noise)

525 numpysavefile[’C_ideal_noise ’] = cp.asnumpy(MagAOX.C_ideal_noise)

526 numpysavefile[’sigma_in ’] = cp.asnumpy(sigma_in)

527 numpysavefile[’P_true ’] = cp.asnumpy(MagAOX.P_true)

528 numpysavefile[’Q_ideal ’] = cp.asnumpy(MagAOX.Q_true)

529 numpysavefile[’V_true ’] = cp.asnumpy(MagAOX.V_true)

530 numpysavefile[’V_ideal ’] = cp.asnumpy(MagAOX.V_ideal)

531 numpysavefile[’H_ideal ’] = cp.asnumpy(MagAOX.H_ideal)

532

533

534
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535 if Naive is True:

536 numpysavefile[’x_naive ’] = cp.asnumpy(MagAOX.x_naive)

537 numpysavefile[’C_naive ’] = cp.asnumpy(MagAOX.C_naive)

538 numpysavefile[’sigma_naive ’] = cp.asnumpy(sigma_naive)

539 numpysavefile[’P_naive ’] = cp.asnumpy(MagAOX.P_naive)

540 numpysavefile[’Q_naive ’] = cp.asnumpy(MagAOX.Q_naive)

541 numpysavefile[’V_naive ’] = cp.asnumpy(MagAOX.V_naive)

542 numpysavefile[’H_naive ’] = cp.asnumpy(MagAOX.H_naive)

543

544

545

546 if CSN is True:

547 numpysavefile[’x_sn’] = cp.asnumpy(MagAOX.x_sn)

548 numpysavefile[’x_csn_mc ’] = cp.asnumpy(MagAOX.x_csn_mc)

549 numpysavefile[’C_csn’] = cp.asnumpy(MagAOX.C_csn)

550 numpysavefile[’sigma_csn ’] = cp.asnumpy(sigma_csn)

551 numpysavefile[’P_mc’] = cp.asnumpy(MagAOX.P_mc)

552 numpysavefile[’g1_mc’] = cp.asnumpy(MagAOX.g1_mc)

553 numpysavefile[’g2_mc’] = cp.asnumpy(MagAOX.g2_mc)

554 numpysavefile[’G_mc’] = cp.asnumpy(MagAOX.G_mc)

555 # numpysavefile[’B_mc ’] = cp.asnumpy(self.B_mc)

556 # numpysavefile[’b_mc ’] = cp.asnumpy(self.b_mc)

557 numpysavefile[’Q_mc’] = cp.asnumpy(MagAOX.Q_mc)

558 numpysavefile[’V_naive ’] = cp.asnumpy(MagAOX.V_naive)

559 numpysavefile[’H_naive ’] = cp.asnumpy(MagAOX.H_naive)

560

561 if MagAOX.compute_xb_flag is True:

562 numpysavefile[’x_b’] = cp.asnumpy(MagAOX.x_b)

563 numpysavefile[’x_c’] = cp.asnumpy(MagAOX.x_c)

564 numpysavefile[’G’] = cp.asnumpy(MagAOX.G)

565 numpysavefile[’g1’] = cp.asnumpy(MagAOX.g1)

566 numpysavefile[’g2’] = cp.asnumpy(MagAOX.g2)

567

568

569 numpysavefile[’BasisArray ’] = cp.asnumpy(MagAOX.T)

570 numpysavefile[’N_a’] = cp.asnumpy(MagAOX.N_a)

571 numpysavefile[’N’] = cp.asnumpy(MagAOX.N)

572 numpysavefile[’pltx_NCPA ’] = np.arange(0,MagAOX.N_a)

573 numpysavefile[’pltx_exoplanet ’] = np.arange(0, MagAOX.N - MagAOX.N_a)

574

575

576 numpysavefile[’phi_r_true ’] = cp.asnumpy(MagAOX.phi_r_true)

577 numpysavefile[’phi_r_measured ’] = cp.asnumpy(MagAOX.phi_r_measured)

578 numpysavefile[’phi_u_true ’] = cp.asnumpy(MagAOX.phi_u_true)

579 numpysavefile[’I_sim_LE ’] = cp.asnumpy(MagAOX.I_sim_LE)
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580 numpysavefile[’I_SNR’] = cp.asnumpy(MagAOX.I_SNR)

581

582 numpysavefile[’OnSky_exposures ’] = cp.asnumpy(Nexposures)

583 numpysavefile[’MC_samples ’] = cp.asnumpy(Lsamples)

584

585

586

587 with open(filename ,’wb’) as prev_SLC_file:

588 pickle.dump(numpysavefile , prev_SLC_file , protocol =4)

589

590

591 print(’Save Complete !\n’)

Listing C.6: Code for computing A(wt) and c(wt)

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Mon Feb 28 13:18:46 2022

5

6 @author: archdaemon

7 """

8

9 import numpy as np

10 import cupy as cp

11

12 # Set xp as np or cp depending on desire for GPU or CPU use

13 xp = cp

14

15

16 # D is the computational model of the science instrument , used to propogate the field from entrance pupil

to science camera

17 # T is a matrix containing the modes of the estimation basis set , shaped to match the dimension of D

18 # g1 is a vector respresenting the ideal estimate representation of the field:

19 # g1 = PupilMask * xp.exp(xp.multiply (1j,phi_r_true + phi_u_estim)).astype(xp.complex64)

20 # g2 is a vector representing the naive estimate representation of the field:

21 # g2 = PupilMask * xp.exp(xp.multiply (1j,phi_r_measured + phi_u_estim)).astype(xp.complex64)

22 # NCPA and exoplanet are boolean flags that determine if their namesake is included in the regression

framework

23 # Ideal , Naive , and CSN are boolean flags that determine if their namesake estimator is computed

24

25 # phi_u_estim is a vector representing the current estimate of the NCPA

26 # phi_u_estim = T.dot(x_a0)

27 # phi_r_true is a vector of the true AO residual , in shape [P,1]

28 # phi_r_measured is a vector of the measured AO residual from the WFS , in shape [P,1]

29 # PupilMask is a vector of the pupil geometry , in shape [P,1]
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30 # atmophasor_true = PupilMask * xp.exp(xp.multiply (1j,phi_r_true)).astype(xp.complex64)

31 # atmophasor_measured = PupilMask * xp.exp(xp.multiply (1j,phi_r_measured)).astype(xp.complex64)

32 # exophasors is an array of phasors corresponding to sky angles being estimated

33 # ideal_exophasor = xp.multiply(atmophasor_true , exophasors).astype(xp.complex64)

34 # naive_exophasor = xp.multiply(atmophasor_measured , exophasors).astype(xp.complex64)

35 # x_a0 is the linearization point

36 # N_a is the number of NCPA coefficients being estimated

37 # N_p is the number of Sky angle coeffiecients being estimated

38 # N is the total number of terms being estimated

39 # L is the number of science camera pixels

40 def compute_A_and_ct(D,T,g1 ,g2, NCPA=True , exoplanet=True , Ideal=False , Naive=False , CSN=True):

41

42 if Ideal is True:

43 # Compute u_t(w_t)

44 # tt = time.time()

45 c_t_Ideal = D.dot(g1)

46 c_t_Ideal_conj = c_t_Ideal.conj()

47 c_tIdeal = xp.real(xp.multiply(c_t_Ideal , c_t_Ideal_conj))

48 if xp.__name__ == ’cupy’:

49 cp.cuda.Stream.null.synchronize ()

50

51 # print("Time to propagate g: % 5.8f seconds" %(time.time() - tt))

52 else:

53 c_tIdeal = None

54

55

56 if(Naive is True or CSN is True):

57 # tt = time.time()

58 c_t_Naive = D.dot(g2)

59 c_t_Naive_conj = c_t_Naive.conj()

60 c_tNaive = xp.real(xp.multiply(c_t_Naive , c_t_Naive_conj))

61 if xp.__name__ == ’cupy’:

62 cp.cuda.Stream.null.synchronize ()

63

64 # print("Time to propagate g: % 5.8f seconds" %(time.time() - tt))

65 else:

66 c_tNaive = None

67

68

69 # Compute Star component of A

70 if NCPA == True:

71 if Ideal is True:

72 # tt = time.time()

73 V1 = g1*T

74 # print("Time to make V: % 5.8f seconds" %(time.time() -tt))
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75 # tt = time.time()

76 tmp1 = D.dot(V1)

77 tmp0 = xp.multiply (1j*tmp1 , c_t_Ideal_conj)

78 A_a_t_Ideal = xp.real(tmp0 + tmp0.conj())

79

80 if xp.__name__ == ’cupy’:

81 cp.cuda.Stream.null.synchronize ()

82

83 # print("Time to compute A_a: % 5.8f seconds" %(time.time() - tt))

84

85 if(Naive is True or CSN is True):

86 # tt = time.time()

87 V2 = g2*T

88 # print("Time to make V: % 5.8f seconds" %(time.time() -tt))

89 # tt = time.time()

90 tmp3 = D.dot(V2)

91 tmp2 = xp.multiply (1j*tmp3 , c_t_Naive_conj)

92 A_a_t_Naive = xp.real(tmp2 + tmp2.conj())

93

94 if xp.__name__ == ’cupy’:

95 cp.cuda.Stream.null.synchronize ()

96

97 # print("Time to compute A_a: % 5.8f seconds" %(time.time() - tt))

98 # print(’A_a_t dtype: ’,A_a_t.dtype)

99

100

101 # Compute planet component of A

102 if exoplanet == True:

103 # tt = time.time()

104 if Ideal is True:

105 detField_planet1 = D.dot(ideal_exophasor)

106 A_p_t_Ideal = xp.real(xp.multiply(detField_planet1 , detField_planet1.conj())).astype(xp.

float32)

107

108 k0_tIdeal = xp.multiply(A_p_t_Ideal.copy(),x_a0[N_a:N]. reshape(N_p ,)).sum(1)

109 c_tIdeal += k0_tIdeal.reshape(L,1)

110

111 if(Naive is True or CSN is True):

112 detField_planet2 = D.dot(naive_exophasor)

113 A_p_t_Naive = xp.real(xp.multiply(detField_planet2 , detField_planet2.conj())).astype(xp.

float32)

114

115 k0_tNaive = xp.multiply(A_p_t_Naive.copy(), x_a0[N_a:N]. reshape(N_p ,)).sum(1)

116 c_tNaive += k0_tNaive.reshape(L,1)

117 # print("Time to compute A_p: % 5.8f seconds" %(time.time() - tt))
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118 if xp.__name__ == ’cupy’:

119 cp.cuda.Stream.null.synchronize ()

120

121 # tt = time.time()

122 if(NCPA==True and exoplanet ==True):

123 if Ideal is True:

124 A_t_Ideal = xp.hstack (( A_a_t_Ideal , A_p_t_Ideal))

125 else:

126 A_t_Ideal = None

127

128 if(Naive is True or CSN is True):

129 A_t_Naive = xp.hstack (( A_a_t_Naive , A_p_t_Naive))

130 else:

131 A_t_Naive = None

132 elif(NCPA==True and exoplanet == False):

133 if Ideal is True:

134 A_t_Ideal = A_a_t_Ideal

135 else:

136 A_t_Ideal = None

137

138 if(Naive is True or CSN is True):

139 A_t_Naive = A_a_t_Naive

140 else:

141 A_t_Naive = None

142

143 elif(NCPA==False and exoplanet ==True):

144 if Ideal is True:

145 A_t_Ideal = A_p_t_Ideal

146 else:

147 A_t_Ideal = None

148 if(Naive is True or CSN is True):

149 A_t_Naive = A_p_t_Naive

150 else:

151 A_t_Naive = None

152 # print("Time to hstack: % 5.8f seconds" %(time.time() - tt))

153

154

155 return A_t_Ideal , c_tIdeal , A_t_Naive , c_tNaive

156 # End of compute__A_and_ut

Listing C.7: Code for computing the computationl propagation model of an optical

system D

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-



– Continued

225

3 """

4 Created on Mon Feb 28 14:43:08 2022

5

6 @author: archdaemon

7 """

8 import numy as np

9 import cupy as cp

10 from PyPropUtils import PyPropUtils as PPU

11

12

13 # PUPIL_zp is an array containing a zero padded version of the entrance pupil geometry

14 # params is a list containing system parameters. See code on GitHub for more details

15 # Detx and Dety are vectors of integers containing pixel indices in the detector plane (likely 1-64)

16 # FPM is an array containing the geometry of a binary or gray scale amplitude focal plane mask

17 # Lyot is an array containing the geometry of a Lyot Stop

18

19 def construct_System_Operator_lyot_efficient(DataType=np.complex64):

20 # Operator needs to be correctly normalized to produce a PSF with intensity max of 1

21 sz_k = int(PUPIL_zp.shape [0])

22 row , col = np.where(PUPIL_zp ==1.)

23 # norm = 1./( sz_k*np.sqrt (2.))

24 # cnorm = np.complex(norm ,norm)

25

26 D = np.zeros(shape=(row.size , params[’Detx’].size * params[’Dety’].size),dtype=DataType)

27 for k in range(row.size):

28 e_k = np.zeros(shape=(sz_k ,sz_k), dtype=DataType)

29 e_k[row[k],col[k]] = 1.

30

31 IFP = PPU.FraunhoferPropWF_GPU(e_k , 1., 1, 1.)

32 IFP *= FPM

33 LP = PPU.FraunhoferPropWF_GPU(IFP ,(1.) , -1, 1.)

34 LP *= Lyot

35 tmp = PPU.FraunhoferPropWF_GPU(LP ,1.,1,1.)

36

37 det_crop = tmp[params[’Detx’].min():( params[’Detx’].max()+1), params[’Dety’].min():( params[’Dety’].

max()+1)]

38

39 D[k,:] = np.hstack(det_crop.flatten ())

40 # if pscale is 1, the field max is 1.

41 # if pscale in Fraunhofer props is cnorm , the field max is scaled by np.abs(cnorm) * Photon_Density

* row.size

42

43 return D.transpose ()

44 # End of construct_System_Operator_lyot_efficient

45
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46 def construct_System_Operator_APP_efficient(self ,APPfilename ,DataType=np.complex64):

47 # Operator needs to be correctly normalized to produce a PSF with intensity max of 1

48 sz_k = int(PUPIL_zp.shape [0])

49 row , col = np.where(PUPIL_zp ==1.)

50 # norm = 1./( sz_k*np.sqrt (2.))

51 # cnorm = np.complex(norm ,norm)

52 app = PPU.simple_fitsread(APPfilename)

53 D = np.zeros(shape=(row.size , params[’Detx’].size * params[’Dety’].size),dtype=DataType)

54 for k in range(row.size):

55 e_k = np.zeros(shape=(sz_k ,sz_k), dtype=DataType)

56 e_k[row[k],col[k]] = 1.

57

58 pup_k = e_k * np.exp(1j*app[k])

59 tmp = PPU.FraunhoferPropWF_GPU(pup_k , 1., 1, 1.)

60

61

62 det_crop = tmp[params[’Detx’].min():( params[’Detx’].max()+1), params[’Dety’].min():( params[’Dety’].

max()+1)]

63

64 D[k,:] = np.hstack(det_crop.flatten ())

65 # if pscale is 1, the field max is 1.

66 # if pscale in Fraunhofer props is cnorm , the field max is scaled by np.abs(cnorm) * Photon_Density

* row.size

67

68 return D.transpose ()

69 # End of construct_System_Operator_lyot_efficient

70

71 def construct_System_Operator_NoC_efficient(self ,DataType=np.complex64):

72 # Operator needs to be correctly normalized to produce a PSF with intensity max of 1

73 sz_k = int(PUPIL_zp.shape [0])

74 row , col = np.where(PUPIL_zp ==1.)

75 # norm = 1./( sz_k*np.sqrt (2.))

76 # cnorm = np.complex(norm ,norm)

77

78 D = np.zeros(shape=(row.size , params[’Detx’].size * params[’Dety’].size),dtype=DataType)

79 for k in range(row.size):

80 e_k = np.zeros(shape=(sz_k ,sz_k), dtype=DataType)

81 e_k[row[k],col[k]] = 1.

82

83 IFP = PPU.FraunhoferPropWF_GPU(e_k , 1., 1, 1.)

84 LP = PPU.FraunhoferPropWF_GPU(IFP ,1., -1, 1.)

85 tmp = PPU.FraunhoferPropWF_GPU(LP ,1.,1,1.)

86

87 det_crop = tmp[params[’Detx’].min():( params[’Detx’].max()+1), params[’Dety’].min():( params[’Dety’].

max()+1)]
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88

89 D[k,:] = np.hstack(det_crop.flatten ())

90

91 return D.transpose ()

92 # End of construct_System_Operator_none_efficient
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