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ABSTRACT

Volume phase holographic (VPH) gratings have been designed for use in many areas of

science and technology such as optical communication, medical imaging, spectroscopy

and astronomy. The goal of this dissertation is to design a volume phase holographic

grating that provides diffraction efficiencies of at least 70% for the entire visible

wavelengths and higher than 90% for red, green, and blue light when the incident light

is unpolarized. First, the complete design, simulation and optimization of the volume

hologram are presented. The optimization is done using a Monte Carlo analysis to

solve for the index modulation needed to provide higher diffraction efficiencies. The

solutions are determined by solving the diffraction efficiency equations determined

by Kogelnik’s two wave coupled-wave theory. The hologram is further optimized

using the rigorous coupled-wave analysis to correct for effects of absorption omitted

by Kogelnik’s method. Second, the fabrication or recording process of the volume

hologram is described in detail. The active region of the volume hologram is created

by interference of two coherent beams within the thin film. Third, the experimental

set up and measurement of some properties including the diffraction efficiencies of the

volume hologram, and the thickness of the active region are conducted. Fourth, the

polarimetric response of the volume hologram is investigated. The polarization study

is developed to provide insight into the effect of the refractive index modulation onto

the polarization state and diffraction efficiency of incident light.
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Chapter 1

Introduction

1.0.1 History of Holography

In 1894 Lippmann (Lippmann, 1897) developed a reflection hologram on a photo-

graphic plate by interfering a reference wave and a reflected wave coming from a

reflector placed behind the photographic plate. Five decades after Lippmann, Gabor

(Gabor, 1949) came up with a new technique that includes the principle of recon-

struction where his main goal was to developed an imaging method by recording and

reconstructing back scattered electrons from a scene. At the time, Gabor recorded

his holograms on silver halide, which are highly absorptive materials and significantly

reduced the efficiency in the back diffracted orders. Gabor’s hologram generated mul-

tiple diffraction orders due to the unavailability of coherent illumination sources. In

1962, Denisyuk (Denisyuk, 1963) came up with an improved version of Lippmann’s

technique by implementing his diffraction process based on Bragg’s condition (Bragg,

1912). In his configuration, the signal and reference beams are illuminated in the

opposite sides of the recording medium; thus he also generated a reflection hologram.

1.0.2 Volume Holograms in Dichromated Gelatin

In most applications where optical detectors or imaging systems are used, the ac-

quired information is intensity data and does not contain phase information; however

propagating waves contain both amplitude and phase information. A volume holo-
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gram is a three dimensional record of the amplitude and phase information of an

electromagnetic wave within a material. The recording of the phase and amplitude of

a wave is done by interfering two coherent waves within the material. The diffraction

in a volume hologram is characterized by several factors (Campbell, 1994):

• high diffraction efficiency

• sensitivity to reconstruction wavelength and angular misalignment

• polarization dependence of the diffraction efficiency

Recalling that volume holograms are 3-D records, they need to be recorded in spe-

cial materials depending on their applications to avoid undesired features into the

diffraction orders.These materials are used to record the spatial intensity modulation

generated by the interference between the two beams. The spatial intensity modula-

tion is then converted into a refractive index modulation. For that reason the material

chosen as recording medium must be controllable in terms of noise and change in ma-

terial properties.

Dichromated gelatin (DCG) is the preferred material for recording volume holo-

graphic grating (Shankoff, 1968; Sheel, 1990). It is homogeneous, flexible, and has

spatial resolutions that range between 100 and 5000 lines per millimeter (Newell,

1987). In addition, DCG provides a large refractive index modulation, negligible

absorption, and low scattering (Schutte and Stojanoff, 1997). However, due to its

flexibility, extra care and control of parameter is needed when making a hologram

using DCG thin film. The exposure time, exposure energy, and the chemical devel-

opment during the fabrication of a volume hologram, may affect the spectral and



15

angular response, as well as the magnitude of the diffraction efficiency of the final

holographic optical element.

1.1 Motivation:

Currently most holographic optical elements are designed based on Bragg’s condition

(Bragg, 1912) for diffraction. Bragg’s condition is the basis of holographic design, and

is used to design volume holograms as well as surface relief gratings. Upon use of the

Bragg angle to illuminate the hologram with the reference wave, one can reconstruct

the signal wave. Furthermore, the diffraction efficiency at different wavelengths can

be optimized by just changing the angle of incidence; however the maximum diffrac-

tion efficiency is obtained at the Bragg angle, and falls off very fast when away from

the Bragg resonance. The quick fall off in the diffraction efficiency away from the

Bragg wavelength leads to the need for different volume holograms for different wave-

lengths, and applications. Thus, the motivation for the topic of this dissertation is

driven by two important factors: the design of a single transmission volume hologram

that is optimized to increase the percentage of the diffraction efficiencies for wave-

lengths away from the Bragg wavelength, and the reduction of cost by having a single

volume hologram for use in multiple projects to do multiple tasks.

The volume hologram studied in this dissertation is optimized to produce diffrac-

tion efficiencies higher than 70% for all wavelengths in the visible spectrum and higher

than 90% for the red, green, and blue wavelengths, in the first order of forward diffrac-

tion, when the incident wave is unpolarized.
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1.2 Outline of the Dissertation:

The work presented in this dissertation is divided into five different chapters. The

background and formulation in Chapter 2 provides the necessary information to fa-

miliarize the reader with the coupled-wave analyses used to predict the diffraction by

volume holograms, and the generalized ellipsometry used to predict the polarization

signature of the hologram. This chapter includes the formulation of Kogelnik’s two

wave coupled-wave analysis (Kogelnik, 1969; Mihaylova, 2013a,b), the formulation of

the rigorous coupled-wave analysis (Moharam and Gaylord, 1981; Moharam et al.,

1995b,a; Gaylord and Moharam, 1982; Moharam et al., 1981; Gaylord and Moharam,

1981) for the case of an un-slanted transmission volume hologram, and the general-

ized ellipsometry (Azzam and Bashara, 1974, 1975; de Smet, 1975).

Chapter 3 addresses the design, optimization, and simulation of the spectral and

angular response of diffraction efficiencies of the volume hologram using planar diffrac-

tion. This chapter goes further into determining the fabrication tolerances needed to

be considered in order to produce a hologram that delivers the required diffraction

efficiencies.

Chapter 4 presents the holographic optical element’s writing process, the exper-

imental data measurement, and a comparison between the measured and simulated

diffraction efficiencies. Chapter 5 investigates the polarization signature of the vol-

ume hologram, incorporating depolarization effects due to spectral band limitation.

The polarization signature of hologram is studied via determination of the coherent

Jones-Mueller matrices at each wavelength; and the incoherent Mueller matrix via

convolution of the individual Jones-Mueller matrices with a kernel representing the

spectral bandwidth of the polarization measurement device.
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In the final section, Chapter 6, an outline and description of future work on the de-

sign of the volume holographic grating will be discussed. The future work includes the

formulation and modeling of the volume hologram based on the interference between

a reference plane wave and a spherical signal wave.
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Chapter 2

Background Theory and Formulations

2.1 Introduction

Electromagnetic theory is one of most powerful tools used for studying properties of

light diffracting through surface relief and volume holographic gratings. It is used

in many fields to study propagation and diffraction in different regions of the elec-

tromagnetic spectrum. There are several electromagnetic theory models; some of

these include the finite element model, the rigorous coupled-wave analysis, and ko-

gelnik’s two-wave coupled-wave analysis. However this dissertation will base all its

studies on two models, Kogelnik’s coupled wave theory (Kogelnik, 1969; Mihaylova,

2013a,b) and the rigorous coupled-wave analysis (RCWA) (Moharam and Gaylord,

1981; Moharam et al., 1995b,a; Gaylord and Moharam, 1982; Moharam et al., 1981;

Gaylord and Moharam, 1981). The reason for the use of these two methods is be-

cause, Kogelnik’s coupled-wave analysis is the simplest and accurate enough, and to

our knowledge the RCWA is the most accurate of all. Both theories are derived from

Maxwell’s equations.

Kogelnik’s coupled wave theory is the most commonly used method to predict

diffraction efficiencies of volume holographic gratings with 99% accuracy. However,

this method does not include the effect of absorption from the cover glasses used to

protect the volume hologram’s active region from physical damages and humidity. The

amplitude of the absorption from the BK7 cover glasses is dependent on wavelength;
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since the refractive index of BK7 changes with wavelength in the visible spectrum.

Figure 2.1 shows the change of the refractive index of BK7 with wavelength of light

in the visible. Another drawback in terms of limitation with this method is the

assumption that only two waves propagate, the reference and signal waves.
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Figure 2.1: The Schott model of refractive index of BK7 glass as a function of wave-
length. These values of the refractive index of the BK7 cover glasses were used
throughout the entire simulations of the performance of volume hologram.
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The most accurate way to predict the electromagnetic properties of light diffract-

ing through a volume hologram is to use the rigorous coupled-wave analysis. The

RCWA was introduced by Moharam et al, and since then has been one of the most

widely used methods for simulating and predicting the diffraction properties of pe-

riodic gratings. This method uses a rigorous formulation which does not make any

assumptions to solve Maxwell’s electromagnetic equations. The stability and conver-

gence of the RCWA computations to the right diffraction efficiency depend on two

factors: the number of harmonic orders in the Fourier series expansion of the field

within the active region of the material and the number of propagating diffraction

orders.

In this chapter, implementations of the coupled-wave analyses will be derived for

the case of planar diffraction. Analyses based on the TE and the TM modes can

be derived following the same procedure. The type of volume holographic grating

studied and designed in this dissertation is the un-slanted and lossless transmission

hologram. This type of holographic grating diffracts light through a spatial modula-

tion of refractive index created via interference of two coherent waves, the reference

and signal waves, within an optical material. Typical optical material used for making

lossless volume holograms is the dichromated gelatin (DCG).

Section 2 will review Maxwell’s equations and the derivation of the wave equa-

tion. In section 3, Kogelnik’s coupled-wave theory for the case of a transmission

un-slanted volume hologram will be reviewed. In section 4, the rigorous coupled

wave analysis will be reviewed, following the method of Moharam et al. In section 5,

review of the generalized ellipsometry following the method of Azzam and Bashara

(AzzamandBashara, 1974, 1975; deSmet, 1975) will be presented. In the final
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section, a conclusion will be derived about the coupled-wave theory.

2.2 Maxwell’s Equations and The Wave Equation

Most physical phenomenons inside optical materials can be explained using electro-

magnetic theory, which begins with Maxwell’s equations. These equations are funda-

mental to all electromagnetic theory and can be used to solve problems in many fields

of science and engineering. The equations below are collectively know as Maxwell’s

equations,

~∇ · ~D = ρ, (2.1a)

~∇× ~H = ~Jfree +
∂ ~D

∂t
, (2.1b)

~∇× ~E = −∂
~B

∂t
, (2.1c)

~∇ · ~B = 0, (2.1d)

where:

~H is the magnetic field [A/m]

~E is the electric field [V/m]

~D = ε0 ~E + ~P = εrε0 ~E is the electric displacement [C/m2]

~B = µ0
~H + ~M is the magnetic induction [W/m2orH.A/m2]

~J = σ ~E is the density of free current [A/m2]

σ is the electric conductivity [Ω−1m−1],
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and ε0 = 8.8542 × 10−12F/m is the permittivity of free space, εr is the relative

permittivity of the material, µ0 = 4π × 10−7H/m is the permeability of free space

and µr is the relative permeability of the material.

In Maxwell’s first equation also known as Gauss’ law for the electric field, Equation

2.1a, the density of free charges is denoted by ρ, and ~P is the polarization density in

the material media. In free space, ~P = 0, therefore ~D = ε0 ~E. In general ε0~∇.~E =

ρtotal inside a material, where ρtotal = ρfree + ρbound. The density of bound charges is

given by ~∇.~P = −ρbound.

The second equation, Equation 2.1b, also called Ampere’s law, states that any

net flow of current into a small volume element is not lost, but results in a change of

the local charge density. This statement can be proved by taking the divergence of

Maxwell’s second equation and rearranging to get the charge continuity.

~∇. ~J +
∂

∂t

[
~∇. ~D

]
= 0. (2.2)

Maxwell’s third equation, Equation 2.1c, also called Faraday’s equation, states

that the curl of the ~E-field at any location in space and time is exactly equal but

opposite in direction to the time derivative of the local ~B-field. In this equation ~M is

the magnetization density of the material medium. The magnetization is almost al-

ways equal to zero, ~M = 0, except in ferromagnetic material; therefore, the magnetic

density reduces to

~B = µo ~H . (2.3)

Maxwell’s fourth equation also known as Gauss’ law for the magnetism, Equation

2.1d, tells us that whatever ~B-field flows into a closed surface, the same amount will
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flow out of that surface, so that there is no net flux of ~B-field into or out of any closed

surface. The lines of the ~B-field, therefore, cannot terminate, nor can they originate,

at any point in space. This means that there are no sources or sinks for the ~B-fields,

in other words, there are no magnetic monopoles.

Substituting the expressions for ~B, ~D, and ~J into Maxwell’s third equation, and

taking the curl of both sides of the equation, one gets

~∇× ~∇× ~E = −µ ∂
∂t
~∇× ~H . (2.4)

Now substituting Maxwell’s second equation into the right hand side of Equation

2.4 gives

~∇× ~∇× ~E = −µσ ∂
∂t
~E − µε∂

2 ~E

∂t2
. (2.5)

Next we assume that the propagating waves are time dependent and separable.

This allows us to write the expression for the first and second time derivatives of the

fields as functions of the angular frequency ω and the fields,

E(r, t) = Ae−j
~k.~rejωt, (2.6)

where A is a complex amplitude, and ~k is the propagation vector of the plane wave.

Replacing the time derivatives of the E-fields with their expressions in Equation 2.5

and re-arranging the right hand side of the expression leads to the wave equation,

~∇× ~∇× ~E −Υ2 ~E = 0 (2.7)
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where

Υ2 = −ω2µε− jωµσ. (2.8)

Throughout this thesis we focus mainly on dichromated gelatin, which can be

assumed to be a lossless optical material. Therefore one can say that it has a negligible

electric conductivity, i.e. σ ∼= 0. Furthermore, in the case TE polarization, the

reference and signal waves are polarized perpendicular to the plane of the grating

vector,

ε~∇.~E = 0. (2.9)

Expanding the ~∇× ~∇× ~E using properties of curl,

~∇× ~∇× ~E = ~∇
2 ~E − ~∇

(
~∇.~E

)
(2.10)

and substituting Equations 2.8, 2.9, and 2.10 into Equation 2.7, we get the Helmholtz

equation,

~∇
2 ~E −Υ2 ~E = 0. (2.11)

Note that in the case of the TM polarization, when the E-field is in the plane of

incidence, the gradient of the divergence of the E-field is not always equal to zero.

Thus one must use Equation 2.7 rather than Equation 2.11, as the general form of

the wave equation.

2.3 Kogelnik’s Coupled-Wave Analysis

The type of volume holographic grating investigated in this dissertation is depicted

in Figure 2.2. A reference wave with wave vector ~kr incident at an angle θr and
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a signal wave with wave vector ~ks incident at an angle θs equal in magnitude and

opposite in sign to θr, interfere inside the dichromated gelatin dielectric material to

generate straight line fringes aligned perpendicular to the direction of the x-axis. As

a consequence of the interference between the two coherent waves, a refractive index

modulation is created and serves as the periodic structure used to diffract light into

different orders. The order at which light is diffracted is related to the wavelength

of the two incident waves, the incidence angle of the incoming beam, the average

refractive index of the dielectric material and the thickness of the material through

the general grating equation. For diffraction to occur light must be incident according

to Bragg’s condition. The Bragg condition is met when the incidence and diffraction

angles are equal but opposite.
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Figure 2.2: Un-slanted Transmission Volume Phase Hologram.
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The spatial modulation of permittivity within the active region of the volume

hologram is assumed to have a cosinusoidal form, which be can written as

ε = εav + εmod cos ( ~K.~r), (2.12)

where ε is the permittivity inside the thin film medium, εav = ε0εrav is the average

permittivity, εmod = ε0εrmod is the modulation permittivity, εrav and εrmod are the mean

and the amplitude of the modulation of the relative permittivities within the active

region of the grating, ε0 is the permittivity of free space, ~K is the grating vector, and

~r is the space vector. The expressions for the grating vector, and the space vector

are defined as,

~K =
2π

Λ
[x̂ cos (φ) + ŷ sin (φ)] , (2.13)

~r = x̂x+ ŷy, (2.14)

where Λ is the the period of the grating modulation, and φ is the slant angle of the

fringe pattern.

Knowing that the fringe patterns within the active region of the grating are aligned

along the y-axis, φ = π
2
, and the fact that the dichromated gelatin has a negligible

conductivity, σ = 0, the expression of Υ of Equation 2.8 becomes,

Υ2 = −ω2µε

Υ2 = −ω2µε0εrav − ω2µε0εrmod cos
(
~K.~r

)
.

(2.15)

From the beginning of this chapter up to here, Maxwell’s equations, the wave equa-

tion, and the profile of the refractive index modulation within the active region of
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the volume hologram have been discussed and explained in detail. In the following

section, the derivation of the fields in the superstrate, substrate, and grating mate-

rial, as well as the calculation of the diffraction efficiency for the first order forward

diffracted efficiency will be presented.

2.3.1 Diffraction Efficiency: TE Mode

The configuration for this mode is shown in Figure 2.3 below; where the ~E-field

component of the incident light is perpendicular to the plane of incidence, and ~H

field is parallel to the plane of incidence.

Now let us define two parameters, the average propagation vector β, and a coupling

constant κ, describing the coupling between the reference and signal waves as,

β = ω
√
µε0εrav (2.16)

κ =
1

4

εrmod
εrav

β. (2.17)

Rearranging the right hand side of equation 2.15, yields the expression of Υ2 as,

Υ2 = −β2 − 4κβ cos
(
~K.~r

)
. (2.18)
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Figure 2.3: Geometry for the volume holographic grating for the case of TE
polarization.
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When κ = 0, there is no coupling between the two beams, hence light won’t diffract

into separate orders. This coupling factor is the main reason for the energy exchange

between the reference and signal wave, and leads to the creation of the periodic

structure within the active region of the volume hologram. The field generated inside

the grating material by this coupling is the superposition of the two waves and is

defined as,

Ez = R(x)e−j
~kr .~r + S(x)e−j

~ks.~r (2.19)

where R(x) and S(x) are the complex amplitudes of the reference and signal waves.

They vary along the x-direction as a result of the exchange of energy between the

reference and signal waves. ~kr and ~ks are the propagation vectors of the reference

and signal waves respectively. When the Bragg condition is met, the propagation

vectors are related to the grating vector by

~K = ~kr −~ks, (2.20)
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~kr

~ks

~K
|~k| = 2π/λ

Figure 2.4: Vector relationship between the propagation vectors and the grating
vector.

Figure 2.4 depicts the vector relationship between the propagation vectors of the

reference and signal waves to the grating vector, at Bragg’s incidence. One can also

notice that |~k| = |~kr| = |~ks| = 2π
λ

when Bragg’s condition is met.

Recally Equations 2.11,

∂2

∂x2
Ez +

∂2

∂y2
Ez −Υ2 ~E = 0, (2.21)

and noting that ~kr = x̂krx + ŷkry + ẑkrz and similarly for ~kr. Using Equations 2.18,

2.19, and 2.20 and further noting that krz = ksz = 0, one can substitute the equation

for the ~E-field into Equations 2.11 and rearranged to determine the set of differential

equations for solving Kogelnik’s two wave coupled wave equations.
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[
∂2

∂x2R− 2jkrx
∂
∂x
R−

(
krx

2 + kry
2
)
R
]
e−j

~kr .~r +
[
∂2

∂x2S − 2jksx
∂
∂x
S −

(
ksx

2 + ksy
2
)
S
]
e−j

~ks.~r+

β2R.e−j
~kr .~r + β2S.e−j

~ks.~r + 4κβ cos
[(
~kr −~ks

)
.~r
]
R.e−j

~kr .~r+

4κβ cos
[(
~kr −~ks

)
.~r
]
S.e−j

~ks.~r = 0

[
∂2

∂x2R− 2jkrx
∂
∂x
R− kr2R

]
e−j

~kr .~r +
[
∂2

∂x2S − 2jksx
∂
∂x
S − ks2S

]
e−j

~ks.~r+

β2R.e−j
~kr .~r + β2S.e−j

~ks.~r + 2κβ
[
e−j(

~kr−~ks).~r + ej(
~kr−~ks).~r

]
R.e−j

~kr .~r+

2κβ
[
e−j(

~kr−~ks).~r + ej(
~kr−~ks).~r

]
S.e−j

~ks.~r = 0

By grouping equal Fourier components, one can reduce the expression above to

e−
~kr .~r

[
d2R
dx2 − 2jkrx

dR
dx

+ 2βκS
]

+ e−j
~ks.~r

[
d2S
dx2 − 2jksx

dS
dx

+ 2βκR
]

+2βκSe−j(2
~ks−~kr).~r + 2βκRe−j(2

~kr−~ks).~r = 0.
(2.22)

Considering the assumption that only two waves, the reference and the signal,

propagate and assuming that dS
dx

and dR
dx

change much faster than d2S
dx2 and d2R

dx2 , we

can neglect terms, and set the second derivatives to zero,

d2

dx2R = 0

d2

dx2S = 0
.

Moreover since only two waves propagate, one can assume that the terms in

e−j(2
~kr− ~ks)·~r and e−j(2

~ks− ~kr)·~r can be set to zero as they contribute negligible ener-

gies.
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By comparison of the terms in e−j
~kr .~r and e−j

~ks.~r, we reduce Equation 2.22 to a

system of two linear coupled differential equations in S and R as,

krx
β

dR
dx

+ jκS = 0

ksx
β

dS
dx

+ jκR = 0.
(2.23)

From Equation 2.23, one can solve for the expression of first derivatives of the

reference and signal waves as functions of the signal and reference waves respectively,

dR
dx

= −jκ S
cos (θr)

β
kr

dS
dx

= −jκ R
cos (θs)

β
ks
.

(2.24)

Taking the derivative of the two differential equations from Equation 2.23, and sub-

stitute the expressions from Equation 2.24 into the second order differential equation

and noting that β = kr = ks at Bragg’s condition, one gets two uncoupled homoge-

neous second order differential equations,

d2R
dx2 + κ2

cos (θr) cos (θs)
R = 0

d2S
dx2 + κ2

cos (θr) cos (θs)
S = 0.

(2.25)

Letting,

R(x) = a1e
ψx + b1e

−ψx (2.26)

The expressions in equation 2.25 can be solve using the fact that if y1(x) and y2(x) are

both solutions to the homogeneous linear equations and a and b are any constants, the

linear combination of the individual solutions is also a solution to the homogeneous

differential equation. Looking at the homogeneous differential equations, we know
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that the exponential function y = e−ψx, where ψ is a constant, has the property that

its derivative is proportional to a constant times itself, and its second derivative is

proportional to the squared of the constant times the itself.

Applying these theorems to the differential equations from Equation 2.25, we get

the characteristic equation for the homogeneous second order differential equation as,

a1r
2 + b1r + c1 = 0

a2r
2 + b2r + c2 = 0.

(2.27)

For this case the solutions of the characteristic equations are complex, and given

as

r = ±j κ√
cos (θr) cos (θs)

. (2.28)

So one can write the general solution for the reference and signal waves as,

R(x) = c1 cos
[
κx
√

1
cos (θr) cos (θs)

]
+ c2 sin

[
κx
√

1
cos (θr) cos (θs)

]
S(x) = d1 cos

[
κx
√

1
cos (θr) cos (θs)

]
+ d2 sin

[
κx
√

1
cos (θr) cos (θs)

] (2.29)

To get the particular solution for the reference and signal waves, we need to

introduce the boundary conditions at the interfaces between the superstrate and

active region of the hologram.
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Figure 2.5: Coupling between the reference and signal waves as they propagate
through the holographic window.
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Figure 2.5 shows that the reference wave starts with maximum amplitude and

the signal with minimum amplitude at the interface between the superstrate and

the grating material. The reference wave decays as it propagates along the positive

direction of the x-axis, and the signal wave gains as it propagates in the same direction

(Kogelnik, 1969).

R(0) = 1

S(0) = 0.
(2.30)

For simplicity we apply the boundary condition on the general solution of the

reference wave to get the particular solution. Then substitute this solution back

into the second differential equation from Equation 2.24, to solve for the particular

solution for the signal wave. Thus we determine a final solutions as,

R = cos

[
κd

√
1

cos (θr) cos (θs)

]
(2.31)

S = −j

√
cos (θr)

cos (θs)
sin

[
κd

√
1

cos (θr) cos (θs)

]
(2.32)

The main purpose of solving the coupled wave equations is to get to understand

the diffraction properties of the un-slanted transmission volume holographic grating.

The diffraction efficiency η is the ratio between the incident and diffracted power and

is defined as,

η =
| cos (θs) |
cos (θr)

[S(d)] [S(d)]∗ , (2.33)

where S and R are the amplitudes of the reference and signal waves.

~kr =
2π

λ
[x̂ cos (θr) + ŷ sin (θr)] (2.34)



38

~ks =
2π

λ

[
x̂

[
cos (θr)−

2π

Λ
cos (φ)

]
+ ŷ

[
sin (θr)−

2π

Λ
sin (φ)

]]
(2.35)

For an un-slanted volume hologram, one can set:

φ =
π

2
|ksx|
krx

= 1

cos (θs) = cos (θr) = cos (θ)

Substituting the values defined for the ratio of the tangential components of the prop-

agation vectors and the azimuth angle into the expression of the diffraction efficiency,

ηTE =

[
−j

√
cos (θr)

cos (θs)
sin

[
κd

√
1

cos (θr) cos (θs)

]]
.

[
−j

√
cos (θr)

cos (θs)
sin

[
κd

√
1

cos (θr) cos (θs)

]]∗
,

(2.36)

and re-arranging and simplifying some terms, leads to the final expression for the

diffraction efficiency as

ηTE = sin2

[
κ

d

cos (θ)

]
. (2.37)

Note this expression and its equivalent for the case of transverse magnetic at inci-

dence are used to determine the approximate refractive index modulation needed for

the design of the RGB volume phase holographic grating. However if an accurate

index modulation is needed, one must calculate the refractive index modulation us-

ing the rigorous coupled wave analysis (RCWA) rather than Kogelnik’s coupled-wave

theory. In that case the calculations might get very complicated as the RCWA’s so-

lutions depend on the number of diffraction orders considered. The more number of

propagating orders considered, the more accurate the solutions.
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2.3.2 Diffraction Efficiency: TM Mode

Figure 2.6: Geometry for the volume holographic grating in the case of TM
polarization.
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Figure 2.6 depicts the configuration for the case when the incident light is polar-

ized in the TM mode. In the case of the transverse magnetic polarization, the electric

field is parallel to the plane of incidence, and the magnetic field is perpendicular to

the plane incidence. Kogelnik showed in the appendix of his work (Kogelnik, 1969),

that using few change of variables one can use the results of the TE polarization to de-

termine the expression of the diffraction efficiency for TM polarization. Most change

of variables are related to the change of geometry and the fact that the magnetic

field is transverse and both the E and H fields are perpendicular to the propagation

vector. Using these assumptions and applying it to the magnetic field version of the

wave equation, it can be shown that the new coupling constant has the form,

κ = −1

4

εmod
εav

β cos (2θr). (2.38)

Combining Equations 2.17, 2.37, and 2.38 and rearranging terms,

ηTM =
[
−j
√

cos (θr)
cos (θs)

sin
[

1
4
εmod
εav

β cos (2θr)x
√

1
cos (θr) cos (θs)

]]
.[

−j
√

cos (θr)
cos (θs)

sin
[

1
4
εmod
εav

β cos (2θr)x
√

1
cos (θr) cos (θs)

]]∗
,

the expression for the diffraction efficiency for the case of TM polarization can be

obtained as

ηTM = sin2

[
βd.

cos (2θr)

cos (θr)

]
. (2.39)

The results for the diffraction efficiencies for the TE and TM modes are used to-

gether to generate an approximate diffraction efficiency for the case when the incident
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light is unpolarized,

ηUnpol =
1

2
[sin2 [

π∆ngd

λ cos(θg)
] + sin2 [

π∆ngd cos(2θg)

λ cos(θg)
]]. (2.40)

This approximation states that if one averages the two expressions for the diffraction

efficiencies from Equations 2.37 and 2.39, the resultant is the diffraction efficiencies

for unpolarized light.

2.4 The Rigorous Coupled-Wave Analysis

The rigorous coupled-wave analysis (RCWA) is one of many methods used to solve the

diffraction of electromagnetic waves propagating through periodic structures. This

method is straightforward and non-iterative and can be used to analyze multilevel

structures as well as volume holographic gratings. The RCWA solves for the electro-

magnetic components of the light diffracted off and through the grating using bound-

ary conditions at the interfaces between the grating material and the superstrate and

the substrate. This method solves the exact electromagnetic properties associated

with the volume holographic grating by finding solutions that satisfy Maxwell’s equa-

tions, Equation 2.1, in each of the three regions, the superstrate, the active region, and

the substrate, and then match the tangential electric and magnetic field components

at the two interfaces. The boundary between the superstrate and the active region

forms one interface, and the boundary between the active region and the substrate

forms the second interface. Figure 2.7 shows the type of volume holographic grating,

an un-slanted transmission hologram, studied in this dissertation. The parameters Λ,

and ~K are the period of the refractive index modulation and the grating vector, d is
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the thickness of the grating element, θ and θ3 are the incidence and diffraction angles

outside of the grating region.



43

Figure 2.7: Geometry of an unslanted Transmission Volume Phase Hologram
including the forward and backward diffracted orders.
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The index modulation within the grating material is still considered to have the

same cosinusoidal form as described by equation 2.43.

For the purpose of this dissertation, only planar diffraction for lossless material

such as the dichromated gelatin is discussed.

2.4.1 RCWA for TE Polarization

This section goes in detail through the implementation of the RCWA model for the

case when the incident light is TE polarized; that is when the electric field component

of the propagating light is polarized normal to the plane of incidence and the magnetic

field lies within the plane of incidence.

For simplicity, the incident light is assuming to be a harmonic plane wave that is

separable in time and space. This incident plane wave can be expressed as,

~Einc = ẑe−jkI [x sin (θI)+y cos (θI)], (2.41)

where kI = 2π
λ0
nI is the magnitude of the propagation vector in the superstrate, and

λ0 is the wavelength of the incident light in air.

Knowing that the DCG is a dielectric and can be considered to be a lossless ma-

terial, and assuming that the incident wave is harmonic and separable as in Equation

2.41, one can use the Helmholtz equation, Equation 2.11, to determine the coupled-

wave differential equation necessary for solving the diffraction problem.

~∇
2 ~E − k2εr ~E = 0 (2.42)

The form of the Helmholtz equation shown in Equation 2.42 is the same as the one
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from Equation 2.11 except Υ2 is reduced to k2εr, where εr is the relative permittivity

of the refractive index modulation having the expression as,

εr = εrav + εrmod cos ( ~K.~r). (2.43)

The transmission un-slanted volume holographic grating is a periodic system and

can be described using the Floquet theorem (Collin and Chang, 1960). The Floquet

theorem says that at steady state, for each propagating order, the fields at a certain

space and time differ from the ones a period away by only a complex constant. The

Floquet condition is described by Equation 2.44

~Γm = ~kg −m ~K, (2.44)

and reduces to the Bragg’s condition when m = 1. In Equation 2.44, the ~Γm is the

wave vector of the mth order inside the medium, ~kg is wave vector of the 0th, and

m is an integer denoting the order number. A proof for the Floquet theorem can be

noticed by the fact that if the volume hologram is periodic and infinitely long, one

cannot distinguish it from itself by just moving it by a distance equal to its period

along the direction of its grating vector (Collin and Chang, 1960).

Due to the periodic nature of the index modulation, the field inside the active

region of the volume hologram can be written as a space harmonic using Fourier

series as

Eg (x, y) =
∞∑

m=−∞

Um (x) e−j
~Γm.~r, (2.45)

where Um is the amplitude of the mth diffracted wave, and Γm is its propagation
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vector. Using the geometry shown in Figure 2.7 and simple geometrical projections,

the expression for the electric field inside the active region can be re-written as,

Eg (x, y) =
∞∑

m=−∞

Um (x) e−jkg [y sin(θg)+x cos(θg)]e−jm
~K·~r (2.46)

where θg is the diffraction angle inside the material and can be calculated using Snell’s

law of refraction,

nI sin(θI) = ng sin(θg). (2.47)

The harmonic space coefficients are still unknown and can be calculated simulta-

neously for all propagating orders, using a second order differential equation deduced

from the material properties of the grating, the field inside the active region, and the

wave equation.

Substituting the expressions from Equations 2.43 and 2.46 into Equation 2.42 and

re-arranging terms, we get

∂2E
∂x2 + ∂2E

∂y2 + ∂2E
∂z2 + k2

[
εrav + εrmod cos

(
~K.~r

)]
~E = 0∑∞

m=−∞{
∂2Um(x)
∂x2 − j2kg cos(θg)

∂Um(x)
∂x
− {[kg sin(θg)−mK]2−

[kg cos(θg)]
2}Um (x)}}.e−j{[kg sin(θg)−mK]y+[kg cos(θg)]x}+

k2{εrav + 1
2
εrmod .e

j[Ky] + 1
2
εrmod .e

−j[Ky]}.
∑∞

m=−∞ Um (x) e−j
~Γm.~r = 0.

(2.48)

The differential equation in 2.48 can be further reduced to Equation 2.49 if one

replaces the magnitude of the propagation vectors and the grating vector with their

expression as k = 2π
λ

, K = 2π
Λ

, and kg = 2π
λ

√
εrav .
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∂2Um(x)
∂x2 − j 4π

λ
cos(θg)

dUm(x)
dx
− {
(

2π
λ

)2
εrav sin2(θg) +

(
m2π

Λ

)2

−8π2

λΛ
m
√
εrav sin(θg) +

(
2π
λ

)2
εrav cos2(θg)}Um (x)

+
(

2π
λ

)2
εravUm (x) + 1

2

(
2π
λ

)2
εrmodUm+1 (x) + 1

2

(
2π
λ

)2
εrmodUm−1 (x) = 0

(2.49)

Dividing the entire expression from Equation 2.49 by 2π2 and re-arranging terms

leads to

1
2π2

d2Um(x)
dx2 − j 2

π

√
εav cos(θg)

λ
dUm(x)
dx

+ 2m(χ−m)
Λ2 Um(x) + εmod

λ2 [Um+1 (x) + Um−1 (x)] = 0,

(2.50)

where

χ =
2Λ
√
εav

λ
sin (θg) . (2.51)

The expression for χ can be used to show that if χ is an integer, it reduces to the

Bragg condition.

2.4.2 Boundary Conditions

The main purpose of the boundary conditions is to set up the conditions required

to help determine the backward and forward diffracted fields for each propagating

order. All backward and forward diffracted fields must be phase matched with the

fields within the active region of volume hologram. This fact is presented in the form
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of equation using Equation 2.52 below.



kI sin(θI) = kg sin(θg)−mK

kII sin(θII) = kg sin(θg)−mK

kI cos(θI) =
√
k2
I − [kg sin(θg)−mK]2

kII cos(θII) =
√
k2
II − [kg sin(θg)−mK]2

(2.52)

Furthermore, the boundary conditions required to solve the diffraction problem, re-

quire that the tangential components of the fields within the active region of the

volume hologram must match those in the substrate and the superstrate as specified

by Equation 2.53, 

EI,z(0) = Eg,z(0)

EII,z(d) = Eg,z(d)

HI,y(0) = Hg,y(0)

HII,y(d) = Hg,y(d).

(2.53)

The normalized field in the superstrate region is the sum of the incident plane wave

and the backward diffracted orders, and it is expressed as,

EI,z = e−jkInI [y sin(θI)+x cos(θI)] +
∞∑

m=−∞

Rme
−j{[kg sin(θg)−mK]y+x

√
k2
I−[kg sin(θg)−mK]2};

(2.54)
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whereas, the normalized field in the substrate is a Fourier series sum of all the forward

diffracted orders, and can be expressed as,

~EII,z =
∞∑

m=−∞

Tme
−j{[kg sin(θg)−mK]y+(x−d)

√
k2
II−[kg sin(θg)−mK]2}. (2.55)

In Equations 2.54 and 2.55, Rm is the amplitude of the mth order backward diffracted

wave, and Tm is the amplitude of the mth order forward diffracted wave.

In this case, since the ~E-field is polarized normal to the incidence plane, it only

has a component along the z-direction, (0, 0, Ez). The ~H-field has two components,

one in the tangential direction and another one along the normal. Using Equation

2.1c, one can determine the expression for the tangential component of the magnetic

field as functions of the ~E-field.∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

0 0 Ez

∣∣∣∣∣∣∣∣∣∣
= x̂dEz

dy
− ŷ dEz

dx
(2.56)

Knowing that the fields are harmonic and separable in time and space, and com-

bining Equations 2.56 and 2.1c, and re-arranging, the expression for components of

the magnetic field are obtained as,


Hx = −j 1

µω
dEz
dy

Hy = j 1
µω

dEz
dx

(2.57)

where Hx and Hy are the components of the magnetic field along the normal and

tangential to the surface of the volume hologram.
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Considering the phase matching and the boundary condition, Equations 2.46,

2.53, 2.54, 2.55, and 2.57 can be combined together to determine a system of four

equations,



δm0 +Rm = Um(0)

j
√
k2
I − [kg sin(θg)−mK]2 [Rm − δm0] = d

dz
Um(0)

Tm = Um(d)e−jkgd cos(θg)

j
√
k2
II − [kg sin(θg)−mK]2Tm =

[
jkg cos(θg)Um(d)− d

dz
Um(d)

]
.e−jkgd cos(θg)

(2.58)

that can be solved to calculate all the amplitudes of the backward and forward

diffracted orders. In Equation 2.58, the symbol δm0 is the Kronecker delta function,

and takes a value of unity when m = 0 and zero otherwise.

So far in the formulation of the rigorous coupled-wave analysis, we set up the

phase matching between the phases, the boundary condition, and we determined the

expressions for the fields in the three regions. In the next section, the diffraction

efficiency for the first order forward diffraction will be calculated.

2.4.3 Diffraction Efficiency

Although the entire derivations in the previous sections of this chapter were done

to determine the fields in all three regions, the most important thing for us in the

field of holographic element design is the diffraction efficiency, which is the ratio of

the intensity of the diffracted order to the intensity of the incident field. Since the

volume hologram studied in this dissertation is a transmission hologram, we are only
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interested in the diffraction efficiency of the forward diffracted orders. Equation 2.59,

ηTTE ,m =


√[

nII
nI

]2
−
[
sin(θI)−mλ0

nIΛ

]2

cos(θI)
RmR

∗
m

−j

√[
nII
nI

]2
−
[
sin(θI)−mλ0

nIΛ

]2

cos(θI)
RmR

∗
m

(2.59)

is the general equation for the diffraction efficiency for the case when the incident

light is TE polarized.

2.4.4 RCWA for TM Polarization

For TM polarized incident wave, the ~H-field is polarized perpendicular to plane of

incidence. The same formulation as the case of TE polarization is used; however in

this diffraction problem, the ~H-field is expressed as a Fourier sum, then the ~E-field

components are determined from Maxwell’s equations. Following the same steps and

noting that the divergence of the electric field is no longer zero, one can successful

derive the expression for the diffraction efficiency in this mode.

2.5 Review of Polarization

2.5.1 Introduction

The last few sections focused more on the determination of the expression for the

electric and magnetic fields inside and outside of the grating material, as well as

the diffraction efficiencies of the forward and backward diffracted lights; however in

order to have a complete optical characterization of the volume hologram, it very

useful to have an understanding of it polarization signature. This is the volume

hologram’s property that changes the orientation of the electric field component of
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incident light as it diffracts through the holographic optical element. The polarization

of light specifies the direction of oscillation of its electric field component; however

the polarization signature of a material is its ability to alter the polarization state of

light. This property of the transmission volume hologram can be described by 2× 2

Jones matrices, which are matrices that relate the polarization states of the incident

and diffracted waves for individual wavelength. The Jones matrix can be used to

describe coherent light. Another polarization metric that can be used to describe

both coherent and incoherent light, is the Mueller matrix.

As defined earlier in sections 3 and 4, the transmission volume hologram’s active

region is made of periodic cosinusoidal modulation of refractive indices. The refractive

index modulation can be viewed as a multiple layers composite of isotropic materials

arranged in a lamellar structure. The periodic structure and the combination of

multiple isotropic materials would constitute a new meta-material that behaves as

an anisotropic material, which exhibits an artificial birefringence property called the

form birefringence (Born and Wolf, 1970; Yeh et al., 1977; Yariv and Yeh, 1977; Rytov,

1956). A form birefringence rise from the anisotropy created by the arrangement of

isotropic materials who’s sizes are smaller than the wavelength of light and larger

than molecules (Born and Wolf, 1970).

In the next two sections, a description of the coherent Mueller matrix characteri-

zation, as well as the depolarization properties of the holograms that can be incorpo-

rated in the coherent Mueller matrix to produce a quasi-incoherent Mueller matrix

will introduced.



53

2.5.2 Coherent Mueller Matrix of the Volume Hologram

In section 2.4 of this chapter, we talked about the rigorous coupled wave analysis and

its commercial model, GSolver, that was used throughout the design and simulations

of the volume hologram. The RCWA determines the complex reflection and trans-

mission coefficients for the forward and backward diffraction orders by solving an

eigenvalue problem dependent on the several parameters including the propagating

orders; however for the purpose of this dissertation, we are only interested in the first

order of forward diffraction. Assuming that the incoming plane wave has a known

polarization state, the phase and amplitude of the transmitted coefficients of the first

order of diffraction can be used to calculated the Jones matrix,

J =

 t1e
jΨ1 tps

tsp t2e
jΨ2 ,

 =

 Tpp Tps

Tsp Tss

 , (2.60)

which relates the incoming Jones vector to the diffracted Jones vector. In Equation

2.60, t1 and t2 are the amplitudes of the transmission coefficients for the TE and

TM polarizations respectively, and Ψ1 and Ψ2 are their respective phases; whereas

tsp and tps are the transmission coefficients that mark the anisotropic property of the

volume hologram. The non-diagonal elements, tsp and tps, of the Jones matrices can

be calculated using general ellipsometry (Azzam and Bashara, 1974, 1975; de Smet,

1975). Equation 2.61 shows how the Jones matrix relates the incident and diffracted

~E-field; where the 2x2 matrix represents the Jones matrix of the Transmission Volume

hologram, the column vector on the left hand side is the Jones vector representing the

diffracted ~E-field, and the column vector on the right hand side is the Jones vector



54

representing the incident ~E-field.

 Etp

Ets

 =

 Tpp Tps

Tsp Tss

 ·
 Eip

Eis

 (2.61)

In order to use generalized ellipsometry to determine these elements, one needs

to consider at least three different states of polarization for the incident waves,with

ellipses of polarization (χi1, χi2, χi3). After diffraction through the volume hologram,

the diffracted waves will have their own states of polarization, with ellipses of po-

larization (χr1, χr2, χr3), as well. One can calculate the polarization ellipses of the

incident and reflected light using Equations 2.62 and 2.63 respectively,

χi =
Eis
Eip

(2.62)

χt =
Ets
Etp

(2.63)

By expanding the expression of Equation 2.61 into a linear system of two equations

and eliminating the ratios Eis
Eip

, and Ets
Etp

, the system can be reduced to a single equation

given by the expression of Equation 2.64,

χt =
Tssχi + Tsp
Tpsχi + Tpp

(2.64)

Considering three sets of incident polarizations and their respective diffracted polar-

izations states into Equation 2.64, the ratios of the elements of the 2x2 matrix in
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Equation 2.60 can be calculated using Equations 2.65 through 2.68

Tpp
Tss

=
χ12 − χi1H
χt2H − χt1

(2.65)

Tps
Tss

=
H − 1

χt2H − χt1
(2.66)

Tsp
Tss

=
χi2χt1 − χt2χi1H
χt2H − χt1

(2.67)

H =
(χt3 − χt1)(χi1 − χi2)

(χt3 − χt2)(χi3 − χi1)
(2.68)

The 2× 2 matrix of Equation 2.60 describes the transformation of the the field vec-

tors; however in order to describe the intensity of the light, which is what detectors

measure, one needs to determine a Mueller matrix that relates the intensities. The

input intensity polarization data is related to the output intensity polarization data

through a 4×4 Mueller matrix that describes how the transmission volume hologram

is changing the polarization state of incoming light, and is calculated using equation

2.69 (Azzam and Bashara, 1977; Azzam, 1986),

MV PH =



M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M23 M33


= A ∗KP{JV PH , J∗V PH} ∗ A−1, (2.69)

where KP represents the Kronecker product of the Jones matrix, and A is a 4x4
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matrix given by

A =



1 0 0 1

1 0 0 −1

0 1 1 0

0 j −j 0


. (2.70)

2.5.3 Depolarization Properties of the Volume Hologram

Depolarization is a process that couples polarized light into unpolarized light and

it is intrinsically related to scattering, diattenuation, and retardance that vary with

time and wavelength. One way to investigate the depolarization property of the vol-

ume holographic gratings is to determine its band averaged Mueller matrix that will

serve as an incoherent Mueller matrix that can be used to check for its depolarization

level. This can be done by first calculating the coherent Mueller matrices for several

wavelengths within the chosen waveband and then summing them to find the inco-

herent Mueller matrix. A necessary and sufficient condition for a physically realizable

Mueller matrix to represent a non-depolarizing optical system was determined by (Gil

and Bernabeu, 1985) and given as,

√
Tr [MTM ] =

3∑
a,b

M2
ab = 4M2

00 (2.71)

where Tr is the trace function, which is defined as the sum of the diagonal elements

of the matrix M.

The depolarization associated with the transmission volume hologram can be cal-

culated using the elements of a newly created, incoherent Mueller matrix. The quan-

tity that determines the depolarization of the first order forward diffracted light is
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called the depolarization index, and is it is expressed as,

PD(M) =

√∑
a,bM

2
ab −M2

11

3M2
11

, (2.72)

where PD(M) takes values ranging from 0 (perfect depolarizer) to 1 (non-

depolarizing). The depolarization effects in the optical response of the volume holo-

graphic gratings can be classified into two groups, the intrinsic and extrinsic de-

polarization properties. The intrinsic depolarization properties come from surface

non-uniformities of the active region of the gratings, and the transparencies of the

BK7 cover glasses. On the other hand, the extrinsic depolarization properties come

from imaging system used to collect data. The most common sources of extrinsic

depolarization are imperfection of optical elements, and the finite numerical aperture

of the focusing lens.

The depolarization effects that are introduced by surface non-uniformities, hence

thickness variations, can be determined as the sum of the product between the non-

depolarizing Mueller matrices M and the corresponding thickness distribution T,

and is given as

Mt =

∫
T(to − t)M(t)dt. (2.73)

On the other hand, one can calculated the incoherent Mueller matrix containing

the depolarization properties induced by finite numerical aperture of the imaging

system as

MNA =
1

πr2

∫ ∫
M(θ, φ)dθdφ, (2.74)

and the incoherent Mueller matrix containing the depolarization properties induced
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by the finite bandwidth of the imaging system as

Mλ =

∫
w(λ0 − λ)M(λ)dλ, (2.75)

where M(θ, φ) is the non-depolarizing Mueller matrix, θ is the angle of incidence,

φ is the azimuthal angle, C is the exit pupil of the imaging system, and w(λ) is

its spectral bandwidth function. This method of incorporating the depolarization

properties into the coherent Mueller matrices results from the fact that polarimetric

imaging systems tend to average over some bandwidths. Those imaging devices do

not know how to separate individual wavelengths, angles, or thicknesses; they always

average over a limited bandwidth.

2.6 Conclusion

In this chapter most of the theory behind the design, simulation, and characteri-

zation of a transmission volume hologram were presented. The formulations of the

diffraction efficiencies using the two-wave coupled wave analysis(Kogelnik, 1969) and

the rigorous coupled wave analysis (Moharam and Gaylord, 1981; Moharam et al.,

1995b,a; Gaylord and Moharam, 1982; Moharam et al., 1981; Gaylord and Moharam,

1981) were presented, as well as the method of generalized ellipsometry (Azzam and

Bashara, 1974, 1975; Azzam, 1986; Azzam and Bashara, 1977). We also talked about

the two main factors of depolarization, the intrinsic and extrinsic factors. Thus chap-

ter introduces all the tools needed to design and characterize a volume holographic

phase grating.



59

Chapter 3

Design, Optimization, and Simulation

3.1 Introduction

In this chapter, a complete description of the design parameters as well as the simu-

lation of the diffractive behavior of the volume hologram are presented. Using results

of the derivations from Chapter 2, a commercial package of the RCWA model (G-

Solver), one can determine the architectural design parameters for the transmission

volume holographic grating, as well as its first order forward diffracted efficiencies.

Most parameters are determined using the results of Kogelnik’s coupled wave analysis

and the Bragg condition; however the final diffraction efficiencies, and the spectral

and angular bandwidths for the 460nm, 532nm, and 532nm design wavelengths are

calculated from the RCWA for accuracy and consistency with experimental results.

All results shown in this section are calculated for the case when the incident light is

unpolarized. In this dissertation, the diffraction efficiency for the case when incident

light is unpolarized, is approximated as the average between the diffraction efficiencies

for transverse electric (TE), and transverse magnetic (TM) polarizations.

In recent years, interest in the use of volume phase holographic gratings have

grown in several fields of optics, photonics, and astronomy (Wakayama et al., 2013;

Barden et al., 1998; Bianco et al., 2012; Arns and Dekker, 2008). Although, volume

holograms can be recorded on several materials, dichromated gelatin (DCG) is the

preferred material due its high-efficiency for both 2-D and 3-D gratings with low noise
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(Shankoff, 1968; Newell et al., 1985; Chang and Leonard, 1979; Baldry et al., 2004;

Blanche et al., 2004). Baldry et al. (2004) derived a tuning parameter from Kogelnik’s

efficiency equations (Kogelnik, 1969) for determining the index modulation needed

for obtaining high efficiency with unpolarized light; however they did not consider

the simultaneous optimization for blue, red, and green wavelengths. This chapter

discusses the design and optimization of a volume phase hologram for simultaneous

use with red, green, and blue wavelength when unpolarized light is incident. The

optimization of this volume hologram is done using Kogelnik’s method (Kogelnik,

1969) and the rigorous-coupled wave analysis (Moharam and Gaylord, 1981; Moharam

et al., 1995b,a).

Section 2 will discuss Bragg diffraction and volume hologram physics, section 3

defines the optimization process, section 4 will present the simulation of the volume

phase hologram, section 5 will talk about the fabrication tolerances, and section 6

will give a closing conclusion about the design.

3.2 Bragg Diffraction and Volume Hologram Physics

Volume phase holograms are diffractive optical elements which diffract light using a

modulation of refractive index within the active region of the grating. The average

refractive index modulation ng, within the active region of the grating is approximated

to have a cosinusoidal structure and it is defined by,

ng = no + ∆ng cos(
2πx

Λ
) (3.1)
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where no is the average index of refraction of DCG, ∆ng is the index modulation,

and Λ is the period of the index modulation. The index modulation is created

by interfering two beams within the active region of the volume hologram. The

orientation of the index modulation is determined by the direction of propagation

of the two interfering beams. The main topic of this chapter is the design of a

transmission volume phase hologram for simultaneous use with red, green, and blue

light. The volume hologram is recorded on a 12µm thick DCG film. The refractive

index modulation created within the DCG has an average refractive index no = 1.5

and an index modulation ∆n = 0.022. The design is then optimized for unpolarized

blue, green, and red light with wavelengths 460nm, 532nm, and 632nm respectively.
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Figure 3.1: Un-slanted Transmission Volume Phase Hologram.
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Figure 3.1 shows the type of volume holographic grating, an un-slanted transmis-

sion volume hologram, that is used throughout this chapter.

Bragg’s condition in conjunction with the classical grating equation enable the

calculation of the incidence angle desired to diffract light into any specific orders.

Light incident at Bragg’s angle gets diffracted, and all other incidence angles get

transmitted through without being diffracted. The design and optimization in this

chapter is done for the first order of diffraction.

The classical grating equation for transmission is given by:

ki sin(θi) + kd sin(βd) =
2πm

Λ
(3.2)

where
−→
ki and

−→
kd are the propagation vectors for the incident and diffracted lights and

where ki = |~ki| and kd = |~kd|, θi is the incidence angle in air, βd is the diffraction

angle in air, and m is the order of diffraction.

The Bragg condition is met when the incidence and diffraction angles are equal but

opposite. Using this condition, Equation 3.2 can be re-written as,

mλ = 2Λ sin θi. (3.3)

In order to ensure the accuracy of the design, two methods, Kogelnik’s couple-wave

analysis (Kogelnik, 1969) and the rigorous-coupled wave analysis (RCWA) (Moharam

and Gaylord, 1981; Moharam et al., 1995b,a), are used in parallel to calculate the

theoretical diffraction efficiencies. Although Kogelnik’s equations are the most often

used equations to calculate the 1st order diffraction efficiencies of volume holograms,
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they fail to include the effects of absorption from the BK7 cover glass. These effects

are included in the RCWA model.

Kogelnik’s coupled-wave analysis give fairly good approximations of the spectral

and angular bandwith ∆λ and ∆θ respectively as

∆λFWHM =
λΛ

d cot(θg)
(3.4)

∆θFWHM =
Λ

d
, (3.5)

where d is the thickness of the active region of the volume hologram as specified in

Figure 3.1.

The diffraction efficiency (DE) as determined by Kogelnik for the case of TE

polarized E-field is

ηTE = sin2 [
π∆ngd

λ cos(θg)
], (3.6)

whereas the diffraction efficiency for TM polarized light ηTM is given by,

ηTM = sin2 [
π∆ngd cos(2θg)

λ cos(θg)
], (3.7)

where θg is the angle inside the grating material, and can be determined using Snell’s

law.

For the case of unpolarized light, the diffraction efficiency is approximated by the

average between the DE for TE and TM polarizations and is expressed as

ηUnpol =
1

2
[sin2 [

π∆ngd

λ cos(θg)
] + sin2 [

π∆ngd cos(2θg)

λ cos(θg)
]]. (3.8)
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3.3 Optimization for the RGB Wavelengths with Unpolarized Light

The grating is optimized to determine the refractive index modulation needed to get

diffraction efficiencies higher than 98% at 532nm, and at least 70% for all wavelengths

between 400-700nm for unpolarized incident light. The reason for these percentage

choice is simplify driven by the desire to have a minimum diffraction efficiency that is

usable for all wavelengths in the visible spectrum. Due to the fact Kogelnik’s method

does not include the effect of absorption from the BK7 cover glasses, which is also a

function of the BK7’s dispersion, the RCWA method is used in order to incorporate

all losses due to wavelength dependent absorption.

The optimal solution is determined using Monte Carlo analysis for wavelength

values between 400 and 700 nm to maximize the diffraction efficiencies of Equations

3.6-3.8 using a random generator containing 50 million index modulation values be-

tween 0 and 0.05. Theoretically, the index modulation can be as high as possible, even

higher than 0.1; however, in order to avoid milking of the DCG, the index modulation

must not be very high.
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Figure 3.2: Index modulation versus wavelength as determined from the Monte Carlo
analysis. The upper plot shows the result of the analysis and its 9th order polynomial
fit. The lower plot shows the residue, which is the difference between the simulated
value of the modulations and the 9th order polynomial fit.
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Figure 3.2, shows the plot of the index modulation versus wavelength, its 9th order

polynomial fit, and the residue, calculated as the difference between the two. This

result can be used as a rule of thumb to determine the approximate index modulation

needed to design a volume phase hologram that gives diffraction efficiencies higher

than 70% for all wavelengths of the visible spectrum. The refractive index modulation

is determined by averaging all indices for diffraction efficiencies values between 75%

and 98%. The result of the analysis yielded an average index modulation of ∆n =

0.022, for highest theoretical diffraction efficiency of 98% at 532 nm. The average

index modulation is calculated in the following steps:

a. Determine the refractive index modulations for each wavelength, red, green,

and blue from the Monte Carlo Analysis.

b. Calculate the average and standard deviation of the index modulation.

c. Using the average and standard deviation one can tune the design to be red or

blue shifted.

The index modulation can be calculated using,

∆n = ∆nav − ασ∆n (3.9)

where α is a value between 0 and 1, ∆nav is the average value between the index

modulation for red, green, and blue wavelengths, and σ∆n is their standard deviation.

Furthermore, this optimization is still preliminary until the design is re-run

using an RCWA model. The result obtained from the RCWA yielded a maximum
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theoretical diffraction efficiency of 94% shown in Figure 3.4.

3.4 Order Requirement for RCWA

The accuracy of the rigorous coupled-wave analysis to yield the right value is de-

pendent on the number of propagating orders considered and the Fourier terms used

to approximate the profile in the active region of grating. Previous work (Moharam

et al., 1995b,a) have studied the numerical stability for a surface relief grating; how-

ever they have not addressed these criteria for the case volume holograms. In this

section of the dissertation, an investigation of the order requirement needed for a

stable solution is addressed.

Based on the results shown on Figure 3.3 it can be seen that the order requirement

for the RCWA to yield a stable result is fairly simple. The results of the calculations

yield a stable result as long as one considers at least three propagating orders. An

investigation into the change of the magnitude of the diffraction efficiencies between

two and three propagating orders showed percent differences of 0.4258%, 0.4479%, and

0.0393% for the cases of blue, green, and red Bragg wavelengths. These differences

show that if it is not for the absorption of the BK7, Kogelnik’s two wave coupled

wave analysis already suffice to yield an acceptable result. However in order to have

enough Fourier terms to construct a fairly good profile of the period structure within

the active region of the grating material, we have used twenty-five propagating orders

in the entire RCWA calculations within this dissertation.

Furthermore, one can conclude from the results of Figure 3.3 that the only factor

that will induce variation in the spectral and angular response of the first order of
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forward diffraction for this volume hologram is the wavelength dependent absorption

from the BK7 cover glasses.

Figure 3.3: Diffraction efficiency versus number of propagating orders. The green,
blue, and red lines represent the response of the hologram at Bragg wavelengths of
532nm, 460nm, and 632nm respectively.
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3.5 Simulation of the RGB Volume Hologram

The RGB Volume Phase Hologram is a special grating designed for providing high

diffraction efficiency for the wavelength regions between 400 to 700 nm. Due to the

high demand for the use of volume holograms, the design of a volume hologram with

superblaze envelope having high efficiency values over the entire visible spectrum is

introduced. The superblaze is the envelope obtained from an ensemble of diffraction

efficiency versus wavelength plots for different incidence angle; however maximum

efficiencies are obtained at the Bragg angles. The design of this hologram can help

scientists and engineers to utilize a single volume hologram for multiple tasks. This

volume hologram provides more than 75% efficiency for the red, blue, and green light.

Figure 3.4 shows the plots of the efficiency versus wavelength for all three Bragg

angles determine using wavelength values of 460nm, 532nm, and 632nm. Efficiency

plots determined ignoring wavelength dependent absorption from the cover glasses

are shown in black, and the ones considering the effect of absorption are shown in

colors representing their peak wavelength values. A comparison between the plots of

the diffraction efficiencies in the presence of absorption to those without absorption,

shows that absorption of the BK7 cover glasses reduce the efficiencies at the Bragg

wavelengths for all three wavelengths; however effect of absorption is mainly seem in

the red region of the visible spectrum. The inclusion of the absorption from the BK7

reduced the spectral bandwidth as well.
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Figure 3.4: Diffraction efficiencies versus wavelength. The black dashed, black dia-
mond, and black solid lines are the efficiency plots simulated at Bragg angles deter-
mined with for blue, green, and red wavelength when absorption due to BK7 cover
glasses were not included. The blue dashed line, green line with diamond, and the
red solid lines are the efficiencies for the cases that include effects of absoption.
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Figure 3.5: 2-D plot of the diffraction efficiencies as functions of wavelength and
incidence angle. Data is acquired for the entire visible spectrum for incidence angles
between 14o and 27o with an increment of 1o.
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Figure 3.6: Blazed curves for the different incidence angles, and the superblaze envelop
that covers the entire visible spectrum.
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Figure 3.5 shows a full map of the simulated diffraction efficiencies for the visible

spectrum versus incidence angles, from 14o to 27o. The results shown in this figure

indicate that the volume hologram will exhibit at least 70% efficiency for all wave-

lengths of the visible spectrum with their corresponding angles as shown in Figure

3.5.

Figure 3.6 depicts the blazed curves for multiple incidence angles. The blazed

curves are the diffraction efficiency plots at different incident grating angles and have

their maximums at their respective wavelengths according to the Bragg condition.

The envelope resulting from the blazed curves is the super blaze curve. The super-

blaze curve is the envelope shown in Figure 3.6 by the solid black line. This envelope

explains the fact that this volume hologram is designed for operation in the red,

green, and blue wavelengths and can also give acceptable diffraction efficiencies for

the entire visible spectrum.

Since the design is optimized to provide highest efficiency at 532 nm, it can be

seen on Figures 3.4-3.6 that maximum efficiency is obtained around the green region

of the spectrum.

3.6 Fabrication Tolerances

Due to many beneficial factors, the dichromated gelatin was the preferred material for

the fabrication of the RGB volume phase hologram. However, during the recording

process many factors can introduce defect and non-uniformity to the volume holo-

gram’s optical performance. For that reason, it is wise to develop a few fabrication

tolerances to help reduce the intrinsic and extrinsic sources of errors that would affect

the performance of the final product. Some of the main factors that needed to be
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controlled with fabrication tolerances are:

a. The grating thickness, which can increase during the swelling phase of the DCG.

b. The index modulation which can be affected by the recording onto the DCG

and processing of the final product.

c. The incidence angles of the two coherent beams used for creating the interference

pattern within the active region of the hologram will need to be aligned properly,

in order to avoid errors and introduction of slant angle.

In theory the thickness of the volume hologram is fixed at 12µm, but in reality the

thickness could change either because of fabrication errors or temperature change.

Figure 3.7 shows the change of the diffraction efficiency as function of thickness vari-

ation.
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Figure 3.7: Diffraction efficiency versus thickness of the active region of the RGB
volume phase holographic grating.
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It is noticeable that as the thickness of the active region deviates away from

the design thickness, the diffraction efficiency changes as well. However, since this

grating is designed and optimized to have higher efficiency at λ = 532nm, diffraction

efficiency change with grating thickness is more stable compared to the changes seen

at design wavelengths of λ = 460nm and λ = 632nm. Figures 3.8, 3.9, 3.10 depict the

effect of DCG thickness change on the overall diffraction efficiency and the spectral

bandwidth for blue, green, and red wavelengths respectively. For all three cases,

the spectral bandwidth is increased as the thickness of the active region is decreased

by 10%, and decreased as the thickness is increased by the 10%. Moreover, the

change in the thickness of the active region changed the magnitude of the diffraction

efficiency for the blue and red wavelengths. However, the diffraction efficiency at

the optimization wavelength, the green λ = 532µm, did not change by a significant

amount.
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Figure 3.8: Diffraction efficiency versus wavelength plots for design wavelengths of
460 nm. The dashed lines are the plots for the case when d is reduced by 10%, the
line with diamond points is when d is equal to the design thickness of 12µm, and the
solid line with circles for when d is increased by 10%.
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Figure 3.9: Diffraction efficiency versus wavelength plots for design wavelengths of
532 nm. The dashed lines are the plots for the case when d is reduced by 10%, the
line with diamond points is when d is equal to the design thickness of 12µm, and the
solid line with circles for when d is increased by 10%.
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Figure 3.10: Diffraction efficiency versus wavelength plots for design wavelengths of
632 nm. The dashed lines are the plots for the case when d is reduced by 10%, the
line with diamond points is when d is equal to the design thickness of 12µm, and the
solid line with circles for when d is increased by 10%.
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Figure 3.11: Diffraction efficiency change between the case of the nominal thickness
and a change by 10% for blue light. The dashed line are the plots for when d is
reduced by 10%, the solid line is when d is increased by 10%.
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Figure 3.12: Diffraction efficiency change between the case of the nominal thickness
and a change by 10% for green light. The dashed line are the plots for when d is
reduced by 10%, the solid line is when d is increased by 10%.
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Figure 3.13: Diffraction efficiency change between the case of the nominal thickness
and a change by 10% for red light. The dashed line are the plots for when d is reduced
by 10%, the solid line is when d is increased by 10%.
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Figure 3.14: Diffraction efficiency versus wavelength plots for design wavelength of
460 nm. The dashed lines are the plots for the case when δn is reduced by 10%, the
line with diamond points is when d is equal to the design index modulation of 0.022,
and the solid line with circles for when δn is increased by 10%.
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Figure 3.15: Diffraction efficiency versus wavelength plots for design wavelength of
532 nm. The dashed lines are the plots for the case when δn is reduced by 10%, the
line with diamond points is when d is equal to the design index modulation of 0.022,
and the solid line with circles for when δn is increased by 10%.
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Figure 3.16: Diffraction efficiency versus wavelength plots for design wavelength of
632 nm. The dashed lines are the plots for the case when δn is reduced by 10%, the
line with diamond points is when d is equal to the design index modulation of 0.022,
and the solid line with circles for when δn is increased by 10%.
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Figure 3.17: Diffraction efficiency versus change in the incident angles. The dashed
line, the solid line, and the dashed line with dots show the efficiency plot for design
wavelengths of 460 nm, 532 nm, and 632 nm respectively.



88

Figures 3.11, 3.12, and 3.13 show that a change in the thickness of the grating

greatly affects the diffraction efficiencies for the design wavelengths of 460nm, and

632nm; however, this change is reduced significantly for 532nm. This reduction in the

magnitude of the diffraction efficiency for 532 nm is a consequence of the optimization.

The same effect can be seen if the plots shown in Figures 3.14, 3.15, and 3.16, where

diffraction efficiency is plotted versus wavelength for all three design wavelengths as

index modulation is changed by 10% from the optimal value of 0.022.

Figure 3.17 depicts the diffraction efficiency as a function incidence angle change

away from the determined Bragg’s angles for design wavelengths of 460 nm, 532 nm,

and 632 nm respectively. The results shown in this figure show that the RGB volume

hologram will yield diffraction efficiency of 70% even in the presence of 1o alignment

error. Furthermore, the plots show that the maximum efficiency is seen at exactly at

Bragg’s angle for 532 nm. This plot also illustrates the fact this volume hologram is

optimized at λ = 532nm.

3.7 Conclusion

Overall, we showed that a volume phase hologram for simultaneous use with red,

green, and blue wavelengths can be fabricated. We also showed in Figures 3.4 and 3.5

that as long as Bragg’s condition is respected, the same volume phase hologram can

be used for all wavelengths in the visible part of the spectrum. This volume hologram

gives a theoretical diffraction efficiency of at least 70% for all wavelengths in the visible

and highest efficiencies are obtained in the green region of the spectrum. Moreover,

since human errors and other factors during fabrication can introduce various errors to

the performance of the final product, we also determined a few tolerances that may
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help in increasing the accuracy of the fabrication process. It was determined that

the thickness of the thin film must be controlled with a tolerance of ±1µm and the

angles during recording of the holographic optical elements must be kept in within

a tolerance of ±0.5◦. As a final point, we believe that the design of a multi-task

volume hologram can be beneficial by reducing the number of optical elements in a

multi-wavelength system.
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Chapter 4

Writing, Measurement, and Validation

4.1 Introduction

The last few chapters focused on the theoretical design and simulation of the diffrac-

tion efficiencies of the transmission volume holographic grating; however in order to

have a complete design and system level characterization of the grating, experimen-

tal data are required to validate the accuracy and completeness of the design. For

these reasons, one needs to develop a physical prototype of the transmission volume

hologram. In this section of the dissertation, experimental set up for writing the

hologram on a dichromated gelatin (DCG) is discussed. This chapter will also talk

about the experimental set up and measurement of the diffraction efficiencies of light

as it propagates and diffracts through the grating.

4.2 Writing of the Holographic Grating

Volume holograms are types of diffractive optical elements that diffract light via a

refractive index modulation within the active region of the grating element. This

index modulation is created by interfering two coherent beams within a dichromted

gelatin thin film. Interference is the consequence of the superposition of two or more

electromagnetic waves. It is the mechanism by which light interacts with light, and

it is also the key factor on the establishment of the wave nature of light. For the

purpose of this dissertation, the interference effect is restricted to two waves, denoted
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by ~E1 and ~E2 respectively. The results of their interference effect simplifies to,

I(x, y, z, t) = 〈|~E1|2〉+ 〈|~E2|2〉+ 〈~E1 · ~E∗
2〉+ 〈 ~E∗

1 · ~E2〉, (4.1)

where in general ~E1 = ~E1(x, y, z) and similarly for ~E2. The first and second terms

on the right hand side of Equation 4.1 represent the individual intensities for the first

and second beams, respectively. These two terms do not contribute to the generation

of the refractive index modulation within the active region of the hologram. The

information about the interference of the two waves are contained in the third and

fourth terms. Moreover, if the two waves are assumed to be monochromatic and

linearly polarized they can be expressed as,

~Ei(x, y, z, t) = ~Ai(x, y, z, t)e
j[ωit−φi(x,y,z,t)], (4.2)

where i is an integer taking values of 1, 2 specifying the first or second waves, Ai and

φi are the complex amplitude and phase of the ith wave. Substituting the expression

in Equation 4.2 into Equation 4.1 and re-arranging the terms gives a new equation

that shows the interference term in the form of a cosine,

I(x, y, z, t) = 〈|~E1|2〉+ 〈|~E2|2〉+ 2
(
~A1 · ~A∗

2

)
cos [(ω1 − ω2) t− (φ1 − φ2)] . (4.3)

From the term with the cosine, one can tell that if the polarization of the two

waves are orthogonal, the dot product ~A1 · ~A∗
2 will be zero, which will result in no

interference and there won’t a refractive index modulation within the active region

of the volume hologram. Another observation is that, if the two waves have different
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frequencies then there will be modulation in the interference pattern. Thus one must

make sure that the two interfering beams must have the same frequency and polarized

in the same direction. This is why the division of amplitude done by element NPBS,

shown in Figure 4.1 must be done using a 50/50 non polarizing beam splitter; the

50/50 is also used in order to maximize the contrast in term of visibility of the

interference pattern.
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Figure 4.1: Set up for writing the first prototype of the RGB transmission volume
hologram
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Figure 4.1 depicts the set up used for writing the holographic optical element inside

the dichromated gelatin (DCG) thin film. Due to the availability of only one light

source, which is a blue laser-diode, the arrangement of all mirrors shown in Figure

4.1 is such that the two beams arrive at interference plane at angles of θ = 16o with

respect to the normal to the surface of the DCG thin film. The theory assumed plane

waves, so the beam will need to be collimated as well. The illumination source is a

Coherent Genesis blue laser-diode system operating at a wavelength of λ = 460nm

and having an output power of 1 Watt. The beam from the laser is incident on the

surface of a mirror, M1, at an angle of 45o with respect to the normal to the surface

of M1. After reflection off the mirror, the beam is expanded using a Thor Labs 15X

beam expander (BE15M) to produce a beam diameter of about half a centimeter. The

iris (Ap) is placed right after the beam expander to stop down the size of the beam.

The re-sized beam is split into two equal beams using a 50/50 non polarizing beam

splitter (NPBS). Half of the light is transmitted through the beam splitter and the

other half is reflected in a direction perpendicular to the transmitted one. The two

beams are re-directed via the use of mirror M2, M3, and M4 and then recombined at

the surface of the dichromated gelatin (DCG) thin film to interfere. The introduction

of the neutral density filters, Thor Labs NE2 series, in the paths of the two beam is

to balance the intensity of the beams before they interfere. The choice of the neutral

density filters is made to compensate for the imperfection in the splitting ratio of the

beam splitter NPBS.

For each of wavelengths of light, red or green, or blue, the incidence angle can

be calculated using Equation 3.2. Table 4.1 shows the design parameters for the

transmission volume hologram.
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Table 4.1: Design parameters of the RGB transmission volume hologram

λ(µm) t(µm) nav ∆n θair(
o)

460 12 1.5 - 16
532 12 1.5 - 18.6
632 12 1.5 - 22.3

RGB 12 1.5 0.022 -

Since the two beams are assumed to be plane waves, it is expected that the

interference pattern generated inside the active region of the hologram will produce

straight line fringes in the refractive index. However, this assumption is not exactly

true any movement or vibration can introduce a divergence in the beam. So it is

expected that the diffraction efficiency produced by the written volume hologram is

going to show a slight difference from the simulated diffraction efficiencies. Figure

4.2 shows pictures of a few prototypes of the volume hologram that were written at

RL Associates in Pennsylvania. We attribute the difference in the appearance of the

holograms to the limited knowledge of the chemical processing of the holograms after

recording and the control of the exposure time of the thin film to the beams.
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Figure 4.2: Picture of our first prototypes of the volume hologram, written at RL
Associates.
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4.3 Effect of the Laser Exposure Energy

The profile of the refractive index within the active region of the volume hologram

is a function of several parameters, which include the exposure energy of the laser

beam. The refractive index modulation is a function of this energy for low exposure

energies; however at higher exposure energies, the index modulation is saturated to

its maximum value. At the higher energies, the effect of the exposure energy mainly

changes the magnitude of the diffraction efficiency at higher diffraction orders, but

not the diffraction efficiency of the first order. However this same effect will affect

the profile of the refractive index when the highest refractive index modulation is

reached. When the modulation is saturated, increase in the energy of the laser beam

will lead to broadening of the top part of the refractive index profile and narrowing

of the bottom part. This behavior can be described using the empirical equation

(Schutte and Stojanoff, 1997), Equation 4.4,

n = nav + 2∆nmax

[
1− e−

√
ζ∗(1+cos ( ~K.~r))

]2

, (4.4)

where nav is the mean refractive index, ∆nmax is maximum or saturation refractive

index modulation, ~K is the grating vector, and ~r is the space vector. ζ∗ is an

experimental constant that relate the exposure energy E to an experimental material

constant EM and is defined using Equation 4.5, (Schutte and Stojanoff, 1997)

ζ∗ =


[
E
EM

]2

· ζM , ifE < EM√
E
EM
· ζM , ifE > EM .

(4.5)
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Figure 4.3: Simulated normalized refractive index profile as a function of ~K.~r for five
different laser energies
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Figure 4.3 shows the change in the profile of the refractive index within the active

region of the volume hologram as a function of ~K.~r for five different laser energies

(Schutte and Stojanoff, 1997). The results of this simulation show that when the en-

ergy is not too high and the index of refraction modulation did not reach its maximum,

the profile of the refractive index within the active region is cosinusoidal. However,

as the energy is increased then the profile tend to deviate away from its cosinusoidal

shape. Furthermore, when the modulation maximum is reached, an increase in the

energy of the laser will deform the shape of refractive index by enlarging the top and

diminishing the bottom as shown in Figure 4.3.

4.4 Development and Curing of the Holographic Optical Element

Dichromated gelatin was determined by many studies (Stojanoff et al., 1994; Sto-

janoff, 1997; Sheel, 1990; Tropartz et al., 1991) to be one of the best light sensitive

materials that could be used for the development of volume holographic grating via

the interference of coherent light. Although the recording of the grating is done via

interference of coherent beams, some chemical processing needs to be done on the

written hologram before one can finalize its fabrication process to meet the design

requirements. While the chemical process is important in the development of the

holographic optical element (HOE), its precise control is most crucial as it affects

the optical, physical properties, and the spectral characteristics of the HOE (Schutte

and Stojanoff, 1997). The chemical phase in the fabrication of the volume hologram

includes several processes: swelling of the DCG to create the refractive index modu-

lation needed to form the periodic structure, hardening and fixing of the gelatin, and

a dehydration after swelling to fix the modulation generated. A hardening process is
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used to make sure that the DCG thin film does not deteriorate during the swelling

process. Deterioration of the DCG will result from the fast expansion, or hot drying

of the film. Table 4.2 shows the list of chemicals used to make the swelling, hardening

and fixing baths used in the development of the first prototypes.

Table 4.2: Fixer and Hardener chemical components and their quantities (Billmers,
2015)

Chemical Supplies Quantity

60% Ammonium Thiosulfate (NH4)S2O3) solution 475ml
Acetic Acid, Glacial (C2H4O2) 15ml

Sodium Sulfate (NaHSO4 21g
Boric Acid (H3BO2) 10.5g

Distilled Water (H2O) as needed
Aluminum Sulfate (Al2(SO4)3) 28g

Sodium Bisulfate (NaHSO4 2.6g

The swelling of the DCG must be controlled in such a way that all parts of the film

are swell at the same rate. Inhomogeneous swelling and shrinking of the DCG will

cause the lamellar structure of refractive modulation to bend and affect the spectral

response of the volume hologram.
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4.4.1 Preparation of the Development Chemical Baths

The process of mixing the chemicals for the fixing and hardening of the holographic

optical element can be done in two parts; preparations of the fixing and preparations of

the hardening baths. This process is not light sensitive and can be performed prior to

exposure of the DCG film. All baths were heated to a temperature of 50−55oC, except

for the last 100% Isoproponal bath at 57oC, prior to being used for the development

of the HOE.

The fixer is prepared by mixing 475 ml of 60% Ammonium Thiosulfate solution

with 21 g of Sodium Sulfate in a brown bottle and stirring the chemical composition

until it is entirely mix and dissolved. Next, add 15 ml of Glacial Acetic Acid and 10.5

g of Boric Acid to the dissolved solution and stir the solution to mix all chemicals.

The last components to be added are acids and may cause skin irritations; so one

must be cautious when adding into and stirring the solutions. Add distilled water to

the final solution to bring the water and chemical mix to a liquid volume of 1000 ml.

Seal the brown bottle containing the prepared solution and store in a safe area.

Having the fixer bath done and set aside, the hardener bath needs to be prepared

as well. The hardener is prepared by first mixing 28 g of Aluminum Sulfate with 60

ml of distilled water. Add 2.6 g of Sodium Bisulfate to the solution and stir well

until all solids are completely dissolved. Again add distilled water to bring the final

solution to a volume of 100 ml.

Although both fixer and hardener baths are prepared separately, the final solution

used to accomplish these tasks, is a mixer of both solutions with water, into one

chemical container. The water added to the solutions, serves as the swelling agent.

The fixer hardener bath is made by mixing 100 ml of the fixer solution with 10 ml of
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the hardener and 200 ml of deionized water.

The dehydration phase of the chemical development is composed of several baths

with different composition of Isoproponal and water. For the development of the

prototypes discussed in this dissertation, four different baths were used to complete

the dehydration of the dichromated gelatin thin film. The baths were used, starting

by the composition with lower percentage of Isopropanol to initiate the dehydration

to a 100% Isopropanol to finish the dehydration. The purpose of the bath with

low Isopropanol is to stop the swelling of the dichromated gelatin and initiate the

dehydration process. The final step is to use a 100% isopropyl bath to completely dry

the DCG. Table 4.3 shows the concentration of alcohol as well as the ratio of alcohol

to water volume for all the dehydration baths that were used in the development

process.

Table 4.3: Fixer and Hardener chemical components and their quantities (Billmers,
2015)

Concentration Volume (ml)
Volume of 70% Iso-
propyl (ml)/Volume
H2O

Volume of 100% Iso-
propyl (ml)

25% 500 167/333 125
50% 500 333/167 250
75% 500 NA 375
100% - NA 500

Start by heating the solutions to their required temperatures as indicated in Table

4.4. Remove the HOE from the writing set up, and identify the film and the BK7

substrate sides. Insert the written hologram into the fixer/hardener bath and let it

sit in the bath for one minute to one minute and a half. The chemical exposure

process will create the refractive index modulation and fix it so that the interference
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pattern stays permanently within the thin film. Next, remove the HOE from the

fixer/hardener bath and place it into the distilled water, and let it sit for two minutes,

to swell the film. The central wavelength can be shifted and adjusted by changing

the exposure times in the hardener/fixer or the distilled water baths. However, if

the time is reduced then, one might not remove all of the dichromated ions from the

written part of the DCG, and will result with an unstable HOE. During the swelling

process, the DCG thin film’s thickness may go up to ten times its original thickness;

so, a shrinking process is needed to bring the thickness back to its original value.

The swollen HOE is then remove and placed in a 25% Isoproponal bath to initiate

the dehydration/shrinking. The dehydration process is done in several steps using

an increasing percentage of Isopropanol baths to dehydrate the DCG thin film slowly

in order to avoid cracking on surface of the hologram. The last dehydration bath

contain 100% Isopropanol to completely dry the HOE.

Now that all the chemical development is done, the dichromated gelatin is removed

from the last Isopropanol bath and dried using a hair dryer. The HOE is supported

at an angle of 45−60o, then blown with the dryer at low temperature until completely

dry.

Table 4.4: Fixer and Hardener chemical components and their quantities (Billmers,
2015)

Bath Name Time Temperature

1st Hardener/Fixer 1-1.5 min 50o − 55oC
2nd Distilled Water 2 min 50o − 55oC
3rd 25% Isopropanol 0 50o − 55oC
4th 50% Isopropanol 1 min 50o − 55oC
5th 75% Isopropanol 1 min 50o − 55oC
6th 100% Isopropanol 1 min 50o − 55oC
7th 100% Isopropanol 1 min 57oC
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Table 4.4 shows the different baths used in the development process, their orders,

exposure times , and temperatures.

4.5 Measurement of the Thickness of the DCG Film

The diffraction efficiency of the hologram is a function of several parameters, which

include the refractive index modulation, the average refractive index, the incidence

angle, and the physical thickness of the dichromated gelatin thin film. A change

in any of these parameters will lead to a change in the efficiency of the diffracted

light. In order to better understand the behavior of the written volume holograms,

one should systematically investigate the deviation of some of the patterns from their

nominal values; however after writing, the only parameter we were able to measure

is the thickness of the film. Due to time and budget constraints we were not able to

write multiple gratings with varying thicknesses. Also, the sample we obtained did

not have strict control on the thickness.

The measurement of the thickness of the film was done using a commercial mea-

surement device, the Filmetric F20 NIR thin film analyzer. This device can be used

to measure thickness, some optical properties, such as refractive index and absorption

constant, and reflectance and transmittance of most dielectric and semiconductors.

Although, the Filmetric F20 NIR has all these capabilities, it was only used for mea-

suring the thickness of the thin film.
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Figure 4.4: Reflection and refraction of the rays as they encounter interfaces between
different materials.

Figure 4.4 depicts the technique used by the F20 NIR for measuring the thickness

of thin films. This measurement technique determines the thickness of the film from

the results of the interference between the lights that is partially reflected from the

interfaces between the thin film, and its superstrate and substrate. The result of this

interference (Tholl et al., 1995), when the reflected light waves are in-phase depend on

the wavelength of light λ, and the thickness of the DCG thin film d, and the average

refractive index nav,

4π

λ
dnav

√
1− nair

nav
sin θ2 = mπ, (4.6)

where θ is the angle of incidence, and nair is the refractive index of air. In Equation

4.6, λ denotes the wavelength of light, nav is the average refractive index of the DCG

thin film, d is its thickness, and m is an integer. The filmetric F20 NIR uses an

internal Halogen lamp, and a spectrometer with wavelength ranging between 950nm
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and 1700nm; and can measure thicknesses between 100nm and 250µm with a precision

of 0.1nm and a stability of 0.12nm.
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Figure 4.5: Measurement of the thickness of a DCG thin film at RL Associates using
the F20NIR.
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Figure 4.8 shows the set up for measuring the physical thickness of the DCG thin

film used for the prototypes. In this figure, the light source used is coming from the

overhead halogen lamp. The thin film is glued over a 3mm thick BK7 substrate and

placed over a flat reference board.

After the writing and chemical development of the first prototypes, we proceeded

to measure the thickness of each using the F20 NIR. Based on experience and common

sense, it was assumed that the thickness of the film is never constant throughout the

entire diameter of the recorded holographic optical element. To ensure high accuracy

on the measurement of the thickness of the DCG thin film, ten different measurements

were taken around the three holograms. Figure 4.9 shows the ten different locations

on the thin film that were used to measure the thicknesses.
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Figure 4.6: Layout of the locations used to determine the average thickness of each
hologram.

For each written hologram, the average thickness of the dichromated gelatin is

calculated as the average value of the four measurement data around it as,

dav =

∑4
x=1 dx
4

, (4.7)

where dx are the individual thickness values, and x is an integer number between 1

and 4.

Although, it is obvious that only four values can’t be assumed to provide an accu-

rate thickness measurement, it is definitely more acurate than just taking a measure-

ment of the central region on the hologram. For each of the ten measurements taken,

the F20 NIR provided an average value, and a standard deviation of the thickness

variations around each point. Tables 4.5 and 4.7 provide the average thickness values

for all the ten locations; whereas Tables 4.6 and 4.8 give their standard deviations.
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Table 4.5: Measured Thickness for 004 prototype.

C1 C2 C3 C4 C5 C6 C7

R3 - 11.678µm - 20.622µm - 25.610µm -
R2 9.54µm - 18.724µm - 26.143µm - 27.503µm
R1 - 14.619µm - 25.557µm - 27.816µm -

Table 4.6: Standard Deviation for 004 prototype.

C1 C2 C3 C4 C5 C6 C7

R3 - 0.001µm - 0.002µm - 0.008µm -
R2 0.003µm - 0.001µm - 0.003µm - 0.003µm
R1 - 0.003µm - 0.001µm - 0.003µm -

Table 4.7: Measured Thickness for 005 prototype.

C1 C2 C3 C4 C5 C6 C7

R3 - 24.293µm - 26.629µm - 28.132µm -
R2 22.975µm - 25.646µm - 27.193µm - -
R1 - 17.739µm - 21.212µm - 16.247µm -

Table 4.8: Standard Deviation for 005 prototype.

C1 C2 C3 C4 C5 C6 C7

R3 - 0.002µm - 0.009µm - 0.007µm -
R2 0.01µm - 0.001µm - 0.005µm - -
R1 - 0.001µm - 0.005µm - 0.003µm -
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Based on the results shown on the last four tables, it is easily noticeable that

the average thickness of the dichromated gelatin thin film used for the writing of the

volume hologram are not constant across the entire film and suggest that the DCG

thin has the form of an optical wedge. From an optical point of view, it is expected

that some type of phase shift would be introduced to fields of light that pass through

the DCG.

4.6 Measurement of the Diffraction Efficiency

4.6.1 Experimental Set-Up and Measurement

In this section, the measurement of the diffraction efficiencies in the forward first

order diffraction will be done and discussed. Although two prototypes were written,

measurement of the diffraction efficiency was done on only one of them. The set up

used in this section, as shown in Figure 4.7 can be used to measure the change in

the diffraction efficiency versus wavelength, as well as the change in the diffraction

efficiency versus incidence angle.
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Figure 4.7: Set up for the measurement of the diffraction efficiency versus wavelength

In this case the illuminating source is a white light halogen lamp diverging out

of an optical fiber. A collimating lens is placed approximately a focal length away

from the source to focus the light infinitely far away. The iris placed in front of

the collimating lens is used to stop down the beam, such that the light reaching the

volume hologram fills the diameter of the written part of the film and no more. The

holographic optical element is sandwiched between two 3mm BK7 cover glasses and

placed on a rotation stage to allow rotation around the vertical axis. The reason for

protecting the DCG thin film using the slabs of BK7 glasses is to protect it from dust

as well as humidity. The rotation stage is used to change the angle of incidence of

light, as the red, green, and blue lights are optimized at different angles of incidence.

The assembly of the volume hologram and the rotation stage is then mounted on a

translation stage to allow displacement in the direction perpendicular to the optical

axis to make sure the beam of light is incident on the surface of the written hologram.
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Figure 4.8: Measured diffraction efficiency versus wavelength for the first prototype.
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Figure 4.9: Simulated diffraction efficiency versus wavelength using the measured and
calculated parameters based on the first prototypes
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Figures 4.8 and 4.9 depict the measured and simulated diffraction efficiencies for

first order diffraction of the first prototype. The simulated result is calculated using

the physical thickness of the prototype as measured using the F20 NIR. The param-

eters used to simulated the diffraction efficiency plot in Figure 4.9 are a thickness

of 22 µm, an average refractive index of 1.5, an index modulation of 0.017, and the

incidence angle is 22o. A comparison between the simulated and measured diffraction

efficiencies is done on the next sub-section.

4.6.2 Comparison between the Simulated and Experimental Data

Although, experimental diffraction efficienies were measured for the written proto-

type, this dissertation will talk in detail about the differences and similarities between

the simulated data and the measured ones. Measurements of the average thickness

of the dichromated gelatin thin film yielded a value almost twice the nominal value

of 12µm. Based on this result and Equation 3.4, it is expected that the bandwidth

of the diffraction efficiency as a function of wavelength to be half of the nominal

value. Since the thickness of the film is different for the theoretically design hologram

from the thickness of the physically written hologram, it is wise to re-simulate the

diffraction efficiencies using the known parameters. In this case, the wavelength of

light, the incidence angle, and the thickness of the prototype are known; however

the refractive index modulation is unknown but can be calculated from the known

parameters. Figure 4.10 shows three different plots of diffraction efficiencies versus

wavelength on one axis. The plots shown on this figure depict the measured and simu-

lated diffraction efficiencies as a function of wavelength, when the design wavelength

is 632nm. The plot specified by the black line with diamonds is the theoretically
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simulated diffraction efficiency versus wavelength, when the thickness of the thin film

used is d = 12µm. The blue line with circular annotation is the simulated diffraction

efficiency using the measured thickness, d = 22µm, of the prototype, and the red line

with asterisk is the measured diffraction efficiency of the prototype.

Comparison of these plots shows that the spectral bandwidth of the measured data

(blue line) is near half of the bandwidth of the simulated data (black line) based on

the original design parameters; however the bandwidths of the measured data (blue

line), and the simulated data using the measured parameters are almost equal, but not

quite. The mismatches between the latter two plots could be resulting from several

factors that could range from misalignment of writing set up to improper chemical

development of the hologram. Another factor that may have lead to the difference in

the diffraction efficiencies between the experimental and simulated results could be

the fact the laser beam was not spatial filtered and collimated before reflection off of

the first mirror M1, Figure 4.1.
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Figure 4.10: Plot of the diffraction efficiency versus wavelength for the simulated
RGB optimized design diffraction as well as the simulated and diffraction measured
for the first prototype.The Black line with diamond is the simulated RGB diffraction
efficiency, and the blue with the asterisk, and the red with circles are the simulated
and measured diffraction efficiencies for the prototype, respectively.
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4.6.3 Conclusion

In this chapter the writing, chemical development, and experimental measurement of

the diffraction efficiency for the designed hologram were discussed. The results of the

comparison between the simulated and measured data showed that a great knowledge

of the chemical development process is very important for making a good hologram.

The experimentally measured data for the first prototype did not perfectly match

simulated data; however, it is obvious that we need proper control of the development

to produce better holograms.
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Chapter 5

Polarimetric Characterization of the Volume Hologram

5.1 Introduction

Volume phase holographic gratings have been used in many applications for their

diffractive nature. Although they diffract light via use of refractive index modulation

within their active region, they also could introduce a phase shift to the waves that

diffract through them. (Rytov, 1956; Born and Wolf, 1970; Yariv and Yeh, 1977; Kim

et al., 1995) showed that infinetely stratified media, with sub-wavelength periods can

behave like uni-axial crystals due their lamellar structure. Based on these facts, the

volume hologram’s refractive index modulation could be seen to be a lamellar struc-

ture of refractive index changes with sub-wavelength periods. When the period of the

refractive index modulation is about an order of magnitude less than the wavelength

of light, the periodic structure would introduce a phase shift between the TE and TM

modes. This phase shift mostly affects the ~E-field waves, hence the polarization state

of the incident light. Furthermore, there are other complicated factors that could add

phase factors to the fields, such as surface non-uniformities at the interface between

the BK7 cover glass and the DCG thin film. The phase retardances mark the bire-

fringence property of the volume holographic gratings. The rise of birefringence in

crystals is a consequence of the molecular structure of its composite materials, which

would affect the propagation of light with different polarization properties. However

birefringence can also arise from periodic arrangement of isotropic materials. This
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alternating composition of isotropic materials could be viewed as one anisotropic

medium.

The purpose of this chapter, is to investigate the polarimetric behavior of the

transmission volume holographic grating. Moreover, the design of this volume holo-

gram focused more on the demonstration of high efficiency when unpolarized light

is incident; it did not constraint the hologram for 100% diffraction efficiency at this

polarization state. Thus it is expected that the hologram will behave as a polarizer

or retarder for wavelengths away from the design wavelengths, which are the Bragg

wavelengths at specific angles of incidence.

5.2 Phase Difference and Birefringence

The volume hologram’s refractive index modulation within the active region, is said

to induce a phase retardance between the TE and TM modes of incident waves. The

retardation is the difference between the phases of the polarization components of the

field along the fast and slow axis of the hologram. This phase shift can be calculated

using Equation 5.1 given by (Kim et al., 1995)

∆Φ(TE−TM)m = ΦTEm − ΦTMm , (5.1)

where ∆Φ is the phase shift, ΦTE and ΦTM are the field phases for the cases of TE and

TM incident waves, respectively, and m is the order of diffraction. The phase of the

TE and TM modes were determined using the results of the rigorous coupled-wave

analysis. Figure 5.1 depicts the phase retardance induced by the volume hologram

,between the TE and TM modes, as functions of wavelength.
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The results of Figure 5.1 indicate that the first order forward diffracted orders

through the volume hologram exhibit some phase shift at some wavelengths. This

phase shift is mainly at wavelengths different than the design wavelengths. The reason

for the low phase shift around the design wavelengths is because the volume holo-

gram’s refractive index modulation was optimized for unpolarized light as shown in

Chapter 3, Section 3.3. Based on these results one can say that the volume hologram

behaves like a crystal, which has an ordinary refractive index no for the case of the

TE polarization, and an extraordinary refractive index ne for the case of TM polar-

ization. The difference between the ordinary and extraordinary refractive indices is

the birefringence exhibited by the volume hologram.
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Figure 5.1: Phase retardation between the TE and TM modes as a function of wave-
length.
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5.3 Non-depolarizing Coherent Mueller Matrix

In the previous section, Figure 5.1 showed that the volume hologram can introduce a

phase shift between TE and TM components of a propagating wave. In order to have

a complete understanding of how the volume hologram’s architectural form affects

the optical properties of incident light, it is wise to investigate its Mueller matrix

polarization signature, which is a 4 × 4 matrix. The Mueller matrix of the volume

hologram can be calculated via the method of generalized ellipsometry, using the

results obtained from the rigorous coupled-wave analysis. Generalized ellipsometry

requires six polarization states: three incident states and their three corresponding

diffracted polarization states. For the calculation of the phase retardation properties

of the volume hologram, the complex waves used were determined for the case of

TE and TM polarized incident waves. However, in order to prove the consistency

between the results from Figure 5.1, and the calculated the Mueller matrix of the

volume hologram, three new incident polarization states were considered, a wave

polarized at 8.75o, a wave polarized at 31.25o, and a wave polarized at 62.5o, rather

than the TE and TM polarizations. For each of these polarization states, the rigorous

coupled-wave analysis yielded another polarization state at the first order forward

diffraction.

Substituting the incident and diffracted fields determined by the RCWA into the

expressions of Equations 2.61-64 yielded the ratios of the elements of the coherent

Jones matrix J, which can be used to calculate the coherent Mueller matrix via the

method of (Azzam and Bashara, 1977). This coherent Mueller matrix is a nondepo-

larizing Mueller matrix which transforms a fully polarized incident beam of light into

a fully polarized exiting beam of light (Azzam and Bashara, 1977; Chipman, 2005).
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For a polarization element to be nondepolarizing, it must be an ideal polarization

element.

In the general, a complete Mueller matrix has 16 elements, and is put in a 4× 4

matrix form as,

MM =



M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M23 M33


, (5.2)

where the elements of the Mueller matrix are related to the following properties:

• M00 is the average intensity transmittance over all polarizations.

• M11 is the intensity transmittance when incident light is polarized horizontal or

vertical.

• M22 is the average intensity transmittance when incident light is polarized 45o

or 135o.

• M33 is the average intensity transmittance when incident light is polarized right

or left circular.

• M01 and M10 represent the linear diattenuations oriented at 0o and 90o respec-

tively.

• M02 and M20 represent the linear diattenuations oriented at 45o and 135o re-

spectively.

• M03 and M30 represent the circular diattenuation.
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• M21 and M12 represent the linear retardances oriented at 0o and 90o respectively.

• M31 and M13 represent the linear retardances oriented at 45o and 135o respec-

tively.

• M23 and M32 represent the circular retardance.

Diattenuation is the property of optical elements or systems whereby the intensity

transmittance of the exiting light is a function of the state of polarization of the

incident light. It takes values between 0 and 1, and can be calculated using Equation

5.3,

D =
Tmax − Tmin
Tmax + Tmin

=

√
M2

01 +M2
02 +M2

03

M00

, (5.3)

where D is the diattenuation, Tmax is the maximum transmission and Tmin is the

minimum transmission.

Figure 5.2 depicts the coherent Jones-Mueller matrix of the volume hologram.

This matrix is coherent, non-depolarizing, and can never be obtained exactly as it is

using a polarization measurement device; that is because polarimetric systems tend

to average over limited bandwidths. Figure 5.3 is the same as in Figure 5.2 except

it only displays the elements of the Mueller matrix that mark the diattenuation and

retardation properties of the volume hologram.
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Figure 5.2: The Coherent Mueller matrix signature of the Transmission Volume holo-
graphic grating as a function of wavelength.
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Figure 5.3: This plot shows the elements of the coherent Mueller matrix that represent
the linear diattenuations in m01 and m10, the average intensity transmittance when
incident light is polarized 45◦ or 135◦ in m22 and m33 respectively. The element
representing linear retardance are represented by m23 and m32.
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In order to obtain a Mueller matrix that makes sense, it is necessary to incorporate

some depolarization properties (Chen et al., 2013, 2014; Otani, 2009).

5.4 Incoherent Mueller Matrix

The simulation of the Mueller matrix of the hologram has given us a 16 element

Mueller matrix for each of the wavelengths; however, when an polarimetric system

collects data it often does not consider each wavelength individually; it collects data

by averaging over a spectral bandwidth, ∆λ. As a proof of concept the results shown

in Figures 5.2 and 5.3 are smoothed by convolution of the coherent Mueller matrix

data with a rectangular filter of width ∆λ = 5nm in order to incorporate the de-

polarization properties of the spectral band limitation. The result obtained after

convolution is a quasi-incoherent Mueller matrix that could be assumed to be similar

to a measured data, if no other depolarization factors exist. Although this approach

seem reasonable, the computed Mueller matrix will differ from a measured Mueller

matrix data, due to the fact that measurement systems and environment add more

depolarization properties; however if the polarimeter is known, using its spectral and

angular bandwidths, one can simulate an incoherent Mueller matrix that is close

enough to the measured one.

Recalling that the chemical development of volume hologram plays a big role on its

functionality in terms of spectral and angular response (Schutte and Stojanoff, 1997;

Stojanoff et al., 1991; Sobolev and Soboleva, 1994; Markova et al., 2011); it could also

be a big factor in the polarimetric response of the hologram. While under chemical

development, the thickness of the thin film can change and must be controlled else it

will create a source of depolarization based on the non-uniform swelling of the DCG.



129

Figure 5.4 shows the plot of the sixteen elements of the incoherent Mueller matrix of

the volume hologram, incorporating the depolarization effects induced by the spectral

band limit of an imaging system with a bandwidth of ∆λ = 5nm. Figure 5.5 is the

same as in Figure 5.4 except it only displays the elements of the Mueller matrix that

mark the diattenuation and retardance properties of the volume hologram. Figures

5.6-5.8 show the sixteen elements of the Mueller matrices at the wavelengths of 460nm,

532nm, and 632nm, respectively.
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Figure 5.4: The Incoherent Mueller matrix signature of the Transmission Volume
holographic grating as a function of wavelength.
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Figure 5.5: This plot shows the elements of the incoherent Mueller matrix that rep-
resent the linear diattenuations in m01 and m10, the average intensity transmittance
when incident light is polarized 45◦ or 135◦ in m22 and m33 respectively. The element
representing linear retardance are represented by m23 and m32.
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Figure 5.6: The Incoherent Mueller matrix signature of the Transmission Volume
holographic grating when blue light is incident.
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Figure 5.7: The Incoherent Mueller matrix signature of the Transmission Volume
holographic grating when green light is incident.
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Figure 5.8: The Incoherent Mueller matrix signature of the Transmission Volume
holographic grating when red light is incident.
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The Mueller matrix bar plot depicted by Figure 5.6 shows that when blue light is

incident at its Bragg angle, the elements of the Mueller matrix, m01 and m10, which

mark its diattenuation property are about 6%; and the elements, m23 and m32, which

show its retardance behavior are less than 5%. The Figure 5.7 also show results

that are almost similar to the results of previous figure; however in this case, since

the refractive index modulation was optimized for green wavelengths, it can be seen

that the volume hologram act more like a weak polarizer rather a weak retarder as

well. As the results of Figure 5.1 showed that the volume hologram exhibits more

phase retardance in the regions between 600nm and 750nm, it is expected that it will

behave more like a retarder when red light is used, and one can notice it looking at

the results of Figure 5.8; however the hologram acts like a weak polarizer as well, at

this wavelength.
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Figure 5.9: Diattenuation of the Transmission Volume holographic grating as a func-
tion of wavelength.



137

Figure 5.10: Depolarization index of the volume hologram’s spectral band limitation.
The spectral bandwidth is assumed to be ∆λ = 5nm.
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Figure 5.11: Spectral bandwidth depolarization index as a function of wavelength.
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The result of Figure 5.9 depicts the plot of the diattenuation versus wavelength for

all wavelengths of the visible spectrum. It can be seen that the diattenuation property

of the volume hologram is reduced in the wavelength ranges between 450 nm and 650

nm. This reduction is due to the fact that, in the initial design of the volume, the

refractive modulation within the active region of the hologram is optimized to produce

high diffraction efficiency independent of the polarization state of the incident beam.

The diattenuation property of the hologram increases for wavelengths lower than

450 nm and for wavelengths higher than 680 nm. There are also two wavelengths

where the diattenuation is exactly zero, which means that all incident polarization is

transmitted with equal loss. Figures 5.10 and 5.11 show the plots of the depolarization

index of the volume hologram, due to the spectral band limitation. The plots shows

that depolarization effects from the spectral bandwidth, particularly for ∆λ = 5nm,

is close to one. However if one includes all depolarization factors into the coherent

Mueller matrix, the depolarization index will decrease.

5.5 Conclusion:

As a conclusion to the polarimetric characterization, we can say that although the

simulation of the Mueller matrix of the volume hologram did include all possible

depolarization properties, we were able to show that the volume hologram does not

only behave as diffractive optical element; it also behaves as a combination of a

weak polarizer and a weak retarder. The polarization element nature of the volume

hologram is the result of several factors that include the lamellar structure in the

active region of grating, and the chemical development of the holographic optical

element.
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Chapter 6

Conclusion and Future Work

The work in this dissertation focused more into the development of a transmission

volume holographic phase grating that will provide at least 70% efficiency for all

wavelengths in the visible region of the electromagnetic spectrum. This volume holo-

gram is required to perform well independent of the polarization state of incident

light. The design of the hologram has the intend of determining a refractive index

modulation that will increase the diffraction efficiencies of visible wavelengths that

are different than the Bragg wavelengths by optimization of the diffraction efficien-

cies of the first order of diffraction. A complete design, simulation, characterization,

and measurements of the hologram’s performance was done to help understand its

overall performance. The content of the work presented in this dissertation may be

summarized as:

• The architectural design parameters of the volume hologram were calculated

based on Kogelnik’s two wave coupled-wave analysis (Kogelnik, 1969).

• Simulation of the electromagnetic properties of the light diffracted in the first

order of diffraction, mainly the transmission coefficients of the ~E-field and the

diffraction efficiencies, are obtained using the rigorous coupled-wave analysis

(Moharam and Gaylord, 1981; Moharam et al., 1995b,a); since this rigorous

method does not use any approximation and takes consideration of the wave-

length dependent absorption from BK7 cover glasses. The cover glasses’ purpose
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is to protect the holographic optical element from physical damages, dust, and

humidity.

• Measurements of the physical thickness of the thin film and the diffraction

efficiencies were also done to get a comparison between the experimental and

simulated performance of the volume hologram.

• The Mueller matrix signature incorporating the depolarization properties result-

ing from spectral band limit were determined using the methods of Azzam and

Bashara, Gil and Bernabeu, and Chipman (Azzam and Bashara, 1974, 1975;

Azzam, 1986; Azzam and Bashara, 1977; Gil and Bernabeu, 1985; Chipman,

2005).

6.0.1 Summary of the Dissertation

A summary of prior work and application of the volume holographic gratings in sev-

eral fields of science and engineering, and the motivation for the development of single

volume hologram for use in multiple tasks within the visible region of the electromag-

netic spectrum, was presented in the first chapter of this dissertation. Volume phase

holograms have been used in optical and astronomical application (Wakayama et al.,

2013; Barden et al., 1998; Bianco et al., 2012; Arns and Dekker, 2008) and have

grown to be used in many other fields. To facilitate the application, and reduce the

amount of cost we were lead into the development of a single transmission hologram

for multi-disciplinary use within the entire visible spectrum. Most volume holograms

are design based on Bragg’s condition at one wavelength (Blanche et al., 2004) and

others looked into the determination of a refractive index modulation based on an
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unpolarized incident light (Baldry et al., 2004; Barden et al., 1998; Blais-Ouellette,

2004; Bianco et al., 2012; Arns and Dekker, 2008); but to our knowledge, none of them

investigated a refractive index modulation that produces high diffraction efficiencies

in the entire visible spectrum.

In Chapter 2 of this dissertation, review of the theory and concepts used for the

design and simulations were given. The background theory and formulation chapter

consists of three very important sections needed for the completion of this study.

• Kogelnik’s Coupled-Wave Analysis

• The Rigorous Coupled-Wave Analysis

• Review of Polarization based on the generalized ellipsometry

A review of Kogelnik’s two wave coupled-wave analysis (Kogelnik, 1969; Mihaylova,

2013a,b) which is derived based on the assumption that only two waves, the ref-

erence and signal waves, propagate does not incorporate the wavelength dependent

absorption from the cover glasses. This method was used for the calculation of the

design parameters as well as to determine the refractive index modulation required to

produce the holographic optical element suitable for our design objectives. Although

this method is used to determine the design parameters, it is not used to determine

the actual electromagnetic properties of the diffracted light. In order to have a better

understanding of the volume hologram’s actual performance, it is important to do all

simulations using an electromagnetic solution method that considers all factors and

free of unnecessary approximation. There are several methods for solving the electro-

magnetic properties of meta-materials, volume holograms, and surface relief grating;

however for the purpose of this dissertation, we have used the rigorous coupled-wave
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analysis (RCWA) (Moharam and Gaylord, 1981; Moharam et al., 1995b,a; Gaylord

and Moharam, 1982; Moharam et al., 1981; Gaylord and Moharam, 1981), which is

the most commonly used and proved to perform better than others (Kogelnik, 1969).

To complete the characterization and understanding of how the volume hologram

works, a simulation of its polarization signature was required; thus in the last sec-

tion of Chapter 2 a review of the generalized ellipsometry (Azzam and Bashara, 1974,

1975; Azzam, 1986; Azzam and Bashara, 1977), which helped to calculate the Mueller

matrix signature of the hologram was introduced.

The complete simulation and characterization of the RGB transmission volume

hologram was presented in Chapter 3. The RGB transmission volume hologram was

designed such that it gives at least 70% diffraction efficiency for all wavelengths in

the visible region of the electromagnetic spectrum, and a 98% theoretical diffraction

efficiency when green light is incident. The spectral and angular responses in the first

order of diffraction were calculated to determine the spectral and angular bandwidth.

Chapter 4 presented the recording and chemical development of the hologram,

along with the measurements of the physical thicknesses and diffraction efficiecnies

of the first two prototypes. It was determined that the thickness of the dichromated

gelatin thin film was not uniform and its average thickness was almost double of the

theoretical thickness. Using the measured thickness, a refractive index modulation of

0.017, and all other parameter kept the same, we were able to simulate the spectral

response in the first order of diffraction that was close to the measured diffraction

efficiencies as functions of wavelength, see Figure 4.9.

A review of the polarimetric response of the volume hologram was investigated in

Chapter 5. The main reason behind the investigation into the polarization signature
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of the hologram was due to the fact that the refractive index modulation within the

active region would exhibit a form birefringence (Rytov, 1956; Born and Wolf, 1970;

Yariv and Yeh, 1977; Kim et al., 1995; Rytov, 1956). Although the design param-

eters were determined with unpolarized incident plane wave, the form birefringence

resulting from the lamellar structure due to the refractive index modulation would

introduce a phase shift between the TE and TM polarization; hence it was determined

that the hologram still has some effects on the polarization state of incident light.

6.0.2 Future Work Plan

The work done in this dissertation proved that it is possible to design a single volume

hologram that can be used to do several tasks. We were also able to show that the

structure of the refractive index modulation will create a phase shift between the TE

and TM polarization components of incident light, which will result in a change of

polarization state; however this design and characterization can be further expanded

to include more depolarization properties to enhance the accuracy of the design and

knowledge of the behavior of the hologram. The next step in this work, is to design,

optimize, and write volume holograms by interfering two different waves, such as:

plane and spherical waves and two spherical waves. We also want to develop our in

house holography lab, and measure the complete polarization data using a Mueller

matrix polarimeter.
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