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I. INTRODUCTION

The idea that light carries momentum and can modify
the trajectories of massive objects can be traced back to
Kepler, who offered it as an explanation for the direction
of the tail of comets being always directed away from
the Sun. More rigorously, the force exerted by light on
atoms is implicit in Maxwell’s equations. For example,
it is readily derived from the classical Lorentz model of
atom and radiation interaction, where the force of light
on atoms is found to be

F(r, t) = −∇rV (x, r, t),

where r is the center-of-mass coordinate of the atom, x
the position of the electron relative to the nucleus, and

V (x, r, t) = −qx ·E(r, t),

is the dipole potential due to the light. E(r, t) is the
electric field at the center-of-mass location of the atom
and q = −e is the electron charge. The force F(r, t) is
often called the dipole force, or the gradient force. It
indicates that it is possible to use light to manipulate
atomic trajectories, even when considered at the classical
level.

An additional key element in understanding the inter-
action between atoms and light derives from basic quan-
tum mechanics: since the work of Louis de Broglie [1] in
1923, we know that any massive particle of mass M pos-
sesses wave-like properties, characterized by a de Broglie
wavelength

λdB =
h

Mv

where h is Planck’s constant and v the particle veloc-
ity. Likewise, we know from the work of Planck and
Einstein that it is oftentimes useful to think of light as
consisting of particles that are now called photons. This
wave-particle duality of both light and atoms is the cor-
nerstone of quantum mechanics, yet ironically is still one
of its most unsettling aspects.

Combining de Broglie’s matter wave hypothesis with
the idea that light can exert a force on atoms, it is easy
to see that in addition to conventional optics, where the
trajectory of light is modified by material elements such
as lenses, prisms, mirrors, and diffraction gratings, it is
possible to manipulate matter waves with light, resulting
in atom optics. Indeed, atom optics [2] often proceeds
by reversing the roles of light and matter, so that light
serves as the “optical” elements for matter waves. There

are however notable exceptions, such as the use of ma-
terial gratings in atomic and molecular beam diffraction
and interference experiments [3], and the use of magnetic
fields for trapping of cold atoms and the realization of
Bose-Einstein condensates.

Very much like conventional optics can be organized
into ray, wave, nonlinear, and quantum optics, matter-
wave optics has recently witnessed parallel developments.
Ray atom optics is concerned with those aspects of atom
optics where the wave nature of the atoms doesn’t play
a central role, and the atoms can be treated as point
particles. Wave atom optics deals with topics such
as matter-wave diffraction and interferences. Nonlinear
atom optics considers the mixing of matter-wave fields,
such as in atomic four-wave mixing, and the photoas-
sociation of ultracold atoms — a matter-wave analog of
second-harmonic generation. In such cases, the nonlin-
ear medium appears to be the atoms themselves, but in
a proper treatment it turns out to be the electromag-
netic vacuum, as we discuss in some detail later on. Fi-
nally, quantum atom optics deals with topics where atom
statistics are of central interest, such as the generation of
entangled and squeezed matter waves. Note that in con-
trast to photons, which obey bosonic quantum statistics,
atoms are either composite bosons or fermions. Hence,
in addition to the atom optics of bosonic matter waves,
which finds much inspiration in its electromagnetic coun-
terpart, the atom optics of fermionic matter waves is
starting to be actively studied by a number of groups.
This emerging line of investigations is likely to lead to
novel developments completely absent from bosonic atom
optics.

The experimental confirmation of the wave nature of
atoms followed soon after de Broglie’s revolutionary con-
jecture, when Otto Stern [4] demonstrated the reflection
and diffraction of atoms at metal surfaces. These exper-
iments can be considered as marking the birth of atom
optics. But at that time, a major stumbling block to-
ward the further development of atom optics was the
dependence of the thermal de Broglie wavelength on the
temperature T ,

ΛdB =
h√

2πMkBT

where kB is Boltzman’s constant. At room temperature,
ΛdB is of the order of a few hundredths of nanometers
for atoms, which makes the fabrication of atom-optical
elements as well as the detection of wave characteristics
of atoms exceedingly difficult.

The invention of the laser changed this state of af-
fairs dramatically, leading to a considerable improve-
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ment of our understanding of the way light interacts with
atoms, and to the invention of a number of exquisite
ways to manipulate atomic trajectories. These include
the use of evanescent waves acting as atomic mirrors,
standing waves of light serving as diffraction gratings,
internal-atomic-state transitions enabling novel atomic
beam splitters, and configurable optical fields for the cre-
ation of atomic traps and resonators. Most important
among the developments centering about atom-laser in-
teractions was the invention of laser cooling techniques,
which permit the relatively straightforward realization
of atomic samples with temperatures in the microkelvin
range or colder. At such temperatures, the atomic ther-
mal de Broglie wavelength is of the order of microns,
comparable to visible optical wavelengths. There is then
a perfect match between the length scales of light and
atomic matter waves that can be exploited not just in
the preparation and manipulation of matter waves, but
also in their detection.

By decreasing the temperature of an atomic sample
even further, typically to the nanokelvin range, with tech-
niques such as evaporative cooling, one reaches an even
more remarkable situation where the quantum statistics
of the atomic sample play a fundamental role in the be-
havior of the atoms. Samples of identical bosonic atoms
at even modest densities can undergo a phase transition
to a state of matter called a Bose-Einstein condensate
(BEC), while fermions are predicted to witness the cre-
ation of Cooper pairs and a Bardeen-Cooper-Schrieffer
(BCS) phase transition from a normal fluid to a super-
fluid. One remarkable property of BECs is that they are
characterized by coherence properties similar to those of
laser light, leading to the realization of “atom lasers.”
Thus a BEC is one of the key ingredients for experi-
ments on nonlinear and quantum atom optics, much like
the laser is central to the fields of nonlinear and quantum
optics.

II. OVERVIEW OF BOSE-EINSTEIN
CONDENSATION

To produce a BEC, an isolated sample of identical
bosonic atoms is cooled to extremely low temperatures
[5]. At some point during the cooling process, a macro-
scopic fraction of the atoms fall into a state that is essen-
tially the ground state of the confining potential (usually
a magnetic trap). This point in the cooling cycle, char-
acterized by a sudden macroscopic occupation of a single
quantum state, is the transition to Bose-Einstein conden-
sation. Atomic Bose-Einstein condensates have now been
achieved for many alkali atom isotopes [6] (7Li, 23Na,
41K, 85Rb, 87Rb, 133Cs) as well as for Hydrogen and for
metastable Helium, providing fascinating systems whose
quantum-mechanical behavior is observable on a macro-
scopic scale [7]. The experimental configurations needed
to produce a BEC are widely variable, and the complex-
ity of an apparatus depends upon the type of atom to

be used, the number of atoms desired in the BEC, the
BEC production time needed, and of course the specific
experimental goals.

An atomic BEC can be compared with other fields of
physics in which a macroscopic number of particles oc-
cupy a single quantum state. Thus a BEC can be thought
of as a dilute superfluid, or alternatively as the matter-
wave equivalent to laser light: the entire sample is de-
scribed to an excellent degree of approximation by the
simple macroscopic wave function of a monoenergetic and
phase-coherent atomic ensemble. To be more specific, we
recall that the state of a manybody bosonic system is of
the general form

|φN 〉 =
1√
N !

∫
dr1 . . . drNφN (r1 . . . rN , t)

× Ψ̂†(rN ) . . . Ψ̂†(r1)|0〉,

where the Schrödinger field creation operator Ψ̂†(r), the
matter-wave analog of the electric field operator Ê−(r)
in optics, satisfies the bosonic commutation relations

[Ψ̂(r), Ψ̂†(r′)] = δ(r− r′)

and

[Ψ̂(r), Ψ̂(r′)] = 0.

The manybody wave function φN (r1 . . . rN , t) describes
the state of a system of N particles created from the
vacuum |0〉 by the successive application of N creation
operators Ψ̂†(r).

While the formalism of field quantization involved here
may not be completely familiar, one can obtain intuition
for its physical meaning by drawing an analogy between
the field creation operator Ψ̂†(r) and the electric field op-
erator Ê−(r). Specifically, just as it is oftentimes more
useful in optics to think in terms of electric fields rather
than individual photons, we find that when quantum
statistics becomes important, it is more convenient to
think of the atomic Schrödinger field rather than indi-
vidual atoms. One reason why this is so is that the use
of the creation and annihilation operators Ψ̂†(r) and Ψ̂(r)
and the commutation relations appropriate for bosons (or
fermions) automatically lead to the proper symmetriza-
tion of the many-particle wave-function, a task that is
otherwise cumbersome. But this is not all: very much
like it is difficult to explain interference phenomena in
terms of single photons, a task that is trivial in terms of
the electric field, it is also difficult (although possible) to
explain matter-wave interference in terms of single atoms,
but it is almost trivial to do so in terms of a matter-wave
field. The reader not completely familiar with the power-
ful tools of field quantization may find it useful to draw
analogies with the optical case to eliminate confusion.
This usually (but not always) works, at least for bosons.

A perfect Bose-Einstein condensate at absolute zero
temperature T = 0 is characterized by all atoms of the
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condensate occupying precisely the same quantum state,
so that the manybody wave function factorizes as

φN (r1 . . . rN , t) = ϕ(r1) . . . ϕ(rN ).

Alternatively (and ignoring some subtleties beyond the
scope of this paper), the quantum state of a condensate
can be approximated as an eigenstate of the Schrödinger
annihilation operator Ψ̂(r), that is, the matter-wave ver-
sion of a Glauber coherent state. We recall that Glauber
coherent states, or more briefly coherent states, can be
thought of as the “most classical” states of the electro-
magnetic field, and play a central role in quantum optics.
In particular, it can be shown that a single-mode laser
operating far above threshold is described to a good ap-
proximation as such a state. For the case of matter waves,
the quantum state of a condensate can be characterized
by an amplitude and a phase, in analogy with the coher-
ent states of the electromagnetic field.

The description of Bose-Einstein condensates in terms
of coherent states makes their analogy with a laser par-
ticularly compelling. The atom-optical analog of a laser
cavity is the atomic trap, and an output coupler extracts
atoms from the trapped condensate, very much like par-
tially reflecting mirrors extract light from the optical res-
onator in conventional lasers. Several atom output cou-
plers have been demonstrated, including simply switch-
ing off the trap, resulting in a rather primitive “pulsed”
atom laser, coupling of a fraction of the trapped atoms
to an unbound electronic level [8–10], and atom tunnel-
ing from a periodic potential, leading to the atom-laser
analog of mode locking [11]. By slowly and continuously
extracting atoms out of a stabilized magnetic trap for a
duration of about 0.1 seconds, researchers at the Max-
Planck Institute for Quantum Optics (MPQ) [9] mea-
sured a coherence length of several millimeters for their
atom-laser configuration. This should be compared to
the dimensions of the atom cavities, which are effectively
on the order of tens of microns.

The first-order coherence properties of atom lasers
have now been investigated quantitatively by several
groups. Particularly noteworthy in this context is the
recent work in Orsay, France, in which the ABCD for-
malism of paraxial optics was adapted to the description
of the matter waves emitted by an atom laser [12]. In
another recent experiment at MPQ, the interference be-
tween an incident and a retro-reflected atom laser beam
was studied as a function of the time delay between the
beams [13]. The linewidth and coherence length of the
beam was determined from the contrast of the interfer-
ence pattern.

III. COLLISIONS AS A NONLINEAR MEDIUM

Just as laser light enabled the development of nonlinear
optics, in which a light field in a medium effectively inter-
acts with itself through mediating forces arising from the
atoms in the medium, Bose-Einstein condensation has

instigated the analogous field of nonlinear atom optics in
which the atomic field effectively interacts with itself.

It is well known that photons do not interact with each
other in free space. In order to achieve the wave-mixing
phenomena that are the hallmark of nonlinear optics, it
is necessary that light propagates within a medium, be it
an atomic vapor, a crystal, a plasma, etc. Under many
circumstances, it is possible to eliminate the material dy-
namics, leading to effective nonlinear equations for the
optical fields. This is for instance the case in the tradi-
tional formulation of perturbative nonlinear optics [14],
where the material properties are described in terms of
a nonlinear susceptibility χNL. This leads to familiar ef-
fects such as four-wave mixing, second-harmonic genera-
tion, sum-frequency generation, and soliton propagation.

At first sight, the situation appears to be fundamen-
tally different for atoms: for high enough atomic densi-
ties, atoms undergo collisions. That is, the presence of
other atoms modifies the evolution of a given atom, a sig-
nature of nonlinear dynamics. As such, it would appear
that atom optics is intrinsically nonlinear. However, we
should keep in mind that atomic collisions are not fun-
damental processes: in the range of energies character-
istic of atom optics, the only fundamental interaction of
relevance is the electromagnetic interaction. All atomic
interactions result from the exchange of photons (real or
virtual) between atoms, and the concept of collisions is
merely a convenient way to describe them. That colli-
sions are represented by effective interatomic potentials,
with no Maxwell fields present, results from a relatively
simple mathematical step, the elimination of (part of)
the electromagnetic field from the system dynamics.

From this point of view, then, there is a simple reversal
of roles between the situations in optics and in atom op-
tics: in optics, the light field appears to undergo nonlin-
ear dynamics when the material evolution is eliminated,
and in atom optics, the atoms appear to undergo non-
linear dynamics when (part of) the electromagnetic field
is eliminated. It is, however, not very common to think
of collisions in this way. What, then, is different with
ultracold atoms that makes this point-of-view particu-
larly useful? And how are we to understand collisions in
Bose-Einstein condensates, since as we recall their defin-
ing characteristic is that at zero temperature, all atoms
are precisely in the same quantum state. The familiar
picture of two atoms approaching each other, interacting
while they are sufficiently close, and then parting ways,
is clearly no longer appropriate.

One way to proceed is to consider the manybody
Hamiltonian of a bosonic Schrödinger field subject to
two-body collisions,

H =
∫

drΨ̂†(r)H0Ψ̂(r)

+
∫

dr1dr2Ψ̂†(r1)Ψ̂†(r2)V (r1 − r2)Ψ̂(r2)Ψ̂(r1),

where H0 is the single-particle Hamiltonian (the sum of
the kinetic energy of the atoms and a possible external
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potential), and V (r1−r2) the two-body Hamiltonian de-
scribing two-body collisions.

The description of the N -particle system in terms of
the many-body Hamiltonian H can be shown to be com-
pletely equivalent to its description in terms of the N in-
dividual Hamiltonians for the N particles involved, plus
N(N−1)/2 two-body Hamiltonians describing two-body
collisions between those particles. Clearly, though, it
presents the distinct advantage of being much more com-
pact. The Hamiltonian H has a simple physical interpre-
tation if we recall that the field operator Ψ̂(r) annihilates
a particle at location r. Hence, one can understand the
way the first term of H operates on the many-particle
system by noting that it picks a particle at r, acts on
it with the Hamiltonian H0, and then puts it back into
place. The integral guarantees that all particles in the
ensemble are subjected to the same treatment. Simi-
larly, the second term in H picks two particles, acts on
them via the two-body Hamiltonian V (r1−r2), and puts
them back into place in the right order — the order in
which things are done is of course important for particles
obeying quantum statistics, as evidenced by their com-
mutation (or anticommutation) relations.

The two-body Hamiltonian V (r1− r2) can take a very
complicated form in general, but the situation is drasti-
cally simplified for collisions between ultracold atoms, in
which case it can be approximated in the s-wave scatter-
ing limit (appropriate for bosons) by the local Hamilto-
nian

V (r1 − r2) =
4πh̄2a

M
δ(r1 − r2),

where a, the so-called s-wave scattering length, com-
pletely characterizes the two-body collisions between con-
densate atoms of mass M . Remarkably, it is experimen-
tally possible to change the magnitude, and even the sign,
of the scattering length, giving considerable flexibility
in studying a number of aspects of nonlinear and quan-
tum atom optics, using for example Feshbach resonances.
These resonances occur in situations where the total en-
ergy of two colliding atoms equals the energy of a bound
molecular state. Recalling that atomic internal energies
are affected by external magnetic fields through Zeeman
shifts, it can be seen that the application of magnetic
fields of particular strengths can allow the collisional en-
ergy to be tuned to match the molecular bound state
energy. In this way, it is possible to experimentally tune
two-body collisions, and hence the sign and strength of
the scattering length, through such resonances, leading
to a dependence of a such as illustrated in Fig. 1.

In the s-wave scattering limit, the Heisenberg equation
of motion for the Schrödinger field,

dΨ̂(r, t)
dt

=
i

h̄
[H, Ψ̂(r, t)],

FIG. 1: Scattering length a for 85Rb in units of the Bohr
radius a0 as a function of the magnetic field. The data are
derived from measurements of 85Rb condensate widths. The
solid line illustrates the expected shape of the Feshbach res-
onance, i.e. the dependence of scattering length on magnetic
field strength. For reference, the shape of the full resonance
has been included in the inset. From reference [15], courtesy
of C. Wieman.

gives simply

ih̄
dΨ̂(r, t)

dt
= H0Ψ̂(r, t) +

4πh̄2a

M
Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t).

Taking the expectation value of this operator equation
and approximating the quantum state of the condensate
by an eigenstate Φ(r, t) of the field annihilation operator
Ψ̂(r, t), the so-called condensate wave function, finally
gives the Gross-Pitaevskii equation (GPE) [16]

ih̄
∂Φ(r, t)

∂t
= H0Φ +

4πh̄2a

M
|Φ(r, t)|2Φ(r, t), (1)

showing that for ultracold bosonic atoms collisions simply
result in a nonlinear phase shift of the condensate wave
function. This equation has proven immensely useful in
describing the most prominent properties of low-density
atomic BECs.

It is important to realize that at this stage, the multi-
particle description of the atoms has been replaced by a
single-particle-like condensate wave function Φ(r). This
is similar to what happens to the description of the indi-
vidual photons in the classical description of light. The
condensate wave function Φ(r, t) can be thought of as
the “semiclassical” version of the field operator Ψ̂(r, t).
As such it is somewhat analogous to the classical electric
field used in classical optics. In atom optics, just like in
optics, it is frequently useful to think in terms of such
fields rather than their individual constituents, be they
photons or atoms. Keep in mind, however, that just like
in optics, the use of a “semiclassical” approximation is
not necessarily justified.

The GPE (1) is reminiscent of the nonlinear wave equa-
tion describing the paraxial propagation of light in a non-
linear medium characterized by an instantaneous cubic
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nonlinearity χ(3),

2ik
dA(r, t)

dz
+∇2

T A(r, t) ∝ χ(3)|A(r, t)|2A(r, t),

where we have introduced the slowly varying envelope
A(z, t) of the electric field in z and t via E(r, t) =
A(r) exp[i(kz − ωt)] + c.c. and we recognize that the
squared transverse Laplacian ∇2

T is mathematically anal-
ogous to the atomic kinetic energy that appears in H0

— recall that p2/2M → −(h̄2/2M)∇2 in the coordinate
representation. (The difference between having a time
derivative in the GPE and a spatial derivative in the
paraxial wave equation, and a Laplacian rather than a
transverse Laplacian, are of no further significance for
the present discussion.) This latter equation is a corner-
stone of nonlinear optics, and has led to the prediction
and demonstration of numerous effects, including e.g. op-
tical four-wave mixing and phase conjugation (the prop-
erty that a nonlinear medium can act as a “mirror” that
time-reverses the phase of an optical field, and can thus
be used to compensate optical aberrations), optical soli-
tons and vortices, and more. In view of the similarity
between the inherently nonlinear GPE and paraxial wave
equation, it is thus not surprising that many of the non-
linear effects first predicted and demonstrated in optics
can now be observed with matter waves.

The prediction of nonlinear atom optics actually pre-
dates the realization of atomic Bose-Einstein condensa-
tion. Two groups [17] independently pointed out that the
electric dipole-dipole interaction between atoms leads to
an effective cubic nonlinearity in the atomic dynamics,
which is then governed by a nonlinear Schrödinger equa-
tion similar to the GPE. Matter-wave four-wave mixing,
phase conjugation, and atomic solitons were predicted at
that time. Until the mid-1990s, however, atom optics
was in a situation similar to that of optics before the
invention of the laser: monoenergetic (or, equivalently,
monochromatic) atomic beams obtained by spectral fil-
tering contained only a small fraction of an atom per
elementary phase space cell. Very much like the laser
changed the situation for electromagnetic waves by pro-
ducing vast amounts of photons per mode, the experi-
mental realization of atomic Bose-Einstein condensation
led to the availability of quantum-degenerate atomic sam-
ples, soon followed by the first nonlinear atom optics ex-
periments.

Matter-wave four-wave mixing [18], dark [19, 20] and
bright matter-wave solitons [21, 22], and matter-wave
vortices [23, 24] have already been demonstrated. Mod-
ulational instabilities have been shown to exist as a soli-
ton decay mechanisms, leading to the formation of vor-
tex rings in condensates [25]. Processes through which
two atoms can be induced to combine into a diatomic
molecule are also objects of intensive studies, and are for-
mally equivalent to second-harmonic generation in optics.
In addition, the nonlinear mixing of optical and mat-
ter waves has led to the demonstration of matter-wave
superradiance [26], coherent matter-wave amplification

[27], and the joint parametric amplification of optical
and matter waves. Finally, we remark that BECs are
also characterized by the existence of “quasi-particles,”
whose total number is not conserved and that correspond
to phonons is the limit of long wavelengths. These quasi-
particles can also undergo a number of nonlinear mixing
phenomena, but are not discussed further in this article.

IV. SELF-FOCUSING AND SELF-DEFOCUSING
OF MATTER WAVES

As noted above, the principal parameter that governs
the nonlinear dynamics of a BEC is the scattering length
a. The scattering length can be interpreted phenomeno-
logically in the following way: when the scattering length
is positive, a > 0, the effective interatomic interactions
are repulsive and the equilibrium size of the condensate is
larger than for a noninteracting (a = 0) case for the same
number of atoms. In contrast, when a < 0, the interac-
tions are attractive, and the BEC contracts to minimize
its overall energy. The nonlinear term in the GPE thus
indicates a condensate behavior similar to optical “self-
defocusing” for condensates with repulsive interactions,
and to “self-focusing” when the interactions are attrac-
tive. This implies that large condensates are unstable for
the case where a < 0 and will collapse onto themselves.
While this prediction is correct in free space, the situ-
ation is actually more complicated in traps, where the
contraction competes with the “quantum pressure” from
the kinetic energy, or the zero-point energy due to the
trap. As a result, it is possible to maintain small a < 0
condensates, containing typically a few hundred to a few
thousand atoms. But for strong enough attractive in-
teractions or high enough atomic densities, the quantum
pressure is insufficient to stabilize the BEC. The GPE
then has no steady-state solution, and the BEC implodes.
There is a close analogy between this implosion and beam
collapse in nonlinear optics. In that case, the competi-
tion is between diffraction, which tends to expand the
beam, and a self-focusing nonlinearity. If the nonlinear-
ity is strong enough, the beam will focus as it propagates
until the intensity exceeds the damage threshold of the
medium and the beam self-destructs.

Most of the experimental work with BECs to date, in-
cluding the first experimental observations of condensa-
tion, utilize condensates that have repulsive interactions
(a > 0) in low magnetic fields. However, an increasing
number of significant and exciting experiments are being
done with condensates with a negative scattering length,
or with a scattering length that can be adjusted using
magnetic fields to be negative. The first condensates with
attractive interactions were produced in Randy Hulet’s
group at Rice University [28]. In these experiments, a gas
of lithium atoms was cooled, and the maximum number
of atoms that could be condensed was observed to be
around 1250 atoms. When more than this critical num-
ber of atoms were put into the condensate, the attractive
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energies overwhelmed the stabilizing energy of the trap,
and the BEC suddenly collapsed and lost atoms. In more
recent BEC experiments, it has become possible to adjust
the strength of the scattering length a over a wide range
of values by applying an adjustable magnetic field that
exploits the existence of so-called Feshbach resonances
(more on those resonances in Section VIII). This abil-
ity to tune a was first observed for a BEC in Wolfgang
Ketterle’s group at MIT with sodium atoms [29], but
it was of limited usefulness for studying tunable inter-
actions due to strongly enhanced inelastic losses around
the resonance. The scattering length for 85Rb atoms can
also be controlled in this fashion, without the three-body
collisions problem. For most magnetic field values, the
scattering length is so strongly negative that the conden-
sate number is limited to about 70 atoms. Experiments
with 85Rb at JILA have exploited the change in sign of
the scattering length a as a magnetic field drives the sys-
tem across a Feshbach resonance to produce condensates
with up to 15,000 atoms, and then to manipulate the in-
teratomic interactions of these condensates by applying
magnetic-field ramps [15]. More recent experiments with
adjustable scattering lengths have enabled the produc-
tion of large-number 7Li condensates [21, 22] and 133Cs
condensates [30], an atom that also normally has a neg-
ative scattering length.

In the following sections, we review a few of the main
topics of the nonlinear atom optics field that have been
explored for both attractive and repulsive interatomic in-
teractions in condensates. This is certainly not meant
to be a comprehensive list, but rather an exploration of
some of the highlights in the BEC field that have direct
comparison to topics in nonlinear optics.

V. ATOMIC FOUR-WAVE MIXING

Following several theoretical proposals, the first experi-
mental verification of matter-wave four-wave mixing was
achieved at NIST [18]. The experiment proceeded by
first releasing a sodium condensate from its trap poten-
tial at time t = 0. After a period of free evolution, op-
tical pulses were made to interact with the condensate.
The resulting exchange of momenta between atoms and
photons produced three moving matter-wave packets of
momenta p1 ' 0, p2, and p3 such that the momentum
differences pi−pj were much larger than the momentum
spread of the initial condensate wave packet. Since the
experimental time it takes to create these side modes was
very short compared with the time scale over which the
wave packets evolve, the three wave packets initially over-
lapped and were merely momentum-shifted copies of the
initial condensate. As they flew apart, they interacted
nonlinearly to produce a fourth matter wave with a new
momentum p4 = p1−p2+p3. The four matter-wave mo-
mentum components, and their relative intensities, were
imaged via absorption imaging after the components had
spatially separated, as shown in Fig. 2.

FIG. 2: Experimental results for four-wave mixing of matter
waves [18]. The spatial distribution of atoms after a given
time of flight is represented by the four different false-color
peaks, showing four different momentum components. The
smallest peak indicates the momentum component generated
during the four-wave mixing process. Figure courtesy of the
NIST, Gaithersburg BEC team.

It is known in nonlinear optics that atomic four-wave
mixing can be exploited to generate phase-conjugate
waves, which can in turn be though of as “real-time
holography.” Holography is a two-step process where first
the information about the object is stored in a hologram.
The second step is the reconstruction, which is performed
by shining a reading beam similar to the reference beam
onto the hologram. The diffraction of the reading beam
from the recorded pattern yields a virtual as well as a
real optical image of the original object. In atom holog-
raphy, at least the final reading step is performed with
an atomic beam. In this way, an atom-optical image of
the object is created which in certain situations can be
thought of as some sort of material replica of the orig-
inal. One way to realize an atom hologram is actually
based on linear atom optics: it rests on the diffraction of
atoms from a mechanical mask. The first successful real-
izations of such an approach have recently been reported
[31]. Atom holography offers the promise of practical ap-
plications from atom lithography to the manufacturing of
nanostructures, but one of the prerequisites for a practi-
cal implementation is the availability of a reading beam
of sufficient monochromaticity and coherence. Given the
rapid advances in nonlinear atom optics and especially
in the realization of atom lasers, this promise appears
realistic.
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FIG. 3: Absorption images of dark solitons in a BEC with
repulsive interatomic interactions. The images are shown for
different times after soliton creation in the magnetic trap prior
to the release of the BEC from the trap. The solitons are seen
to propagate along the long axis of the BEC. From reference
[19], courtesy of K. Sengstock.

VI. SOLITONS

The Gross-Pitaevskii equation is a nonlinear
Schrödinger equation. It is known from several ar-
eas of physics, in particular nonlinear optics, that soliton
solutions are generic to this equation. Hence, it is
natural to ask whether matter-wave solitons can be
launched in Bose-Einstein condensates.

One difficulty is that as mentioned above, the gen-
eration of large condensates requires positive scattering
lengths a, the analog of self-defocusing media in optics,
and it is known that bright solitons are not possible in
that case. As a result, much atom optics work has fo-
cused on the formation of dark solitons, which correspond
to low-density regions surrounded by regions of higher
atomic density. A difference in the macroscopic phases
between the two high-density regions partially stabilizes
the dark soliton; a phase difference of π is ideal, and
provides a soliton with no instantaneous velocity. In the
first experimental observations of dark solitons in BECs
[19, 20], dark solitons of variable velocity were launched
via “phase imprinting” of a BEC by a light-shift poten-
tial, similarly to the way a phase mask can imprint a
soliton or vortex on a light beam. The soliton velocity
could be selected by applying a laser pulse to only half of
the BEC and choosing the laser intensity and duration
to select a desired phase step. Example images of dark
solitons propagating in a BEC are shown in Fig. 3.

Later experiments with dark solitons [25] confirmed
the predicted onset of dynamical instabilities originating
from undulations of the soliton, much like the so-called
“snake” instabilities of optical dark solitons. In the first
of these experiments, a dark soliton was created in a
spherically symmetric BEC in such a way that the soli-
ton nodal region was filled with a different group of con-
densed atoms, thereby creating a “dark-bright” soliton
combination. When the inner soliton-filling component
was removed, dynamical instabilities drove the BEC into
a more topologically stable configuration in which vortex
rings were found to be embedded in the BEC.

FIG. 4: Repulsive interactions between solitons in a train of
bright atomic solitons. The three images show examples of
a soliton train near the two turning points of a nearly one-
dimensional atom trap (first and third image), and near the
center of oscillation (second image). The spacing between
solitons is compressed at the turning points, and spread out
at the center of the oscillation. From reference [21], courtesy
of R. Hulet.

For atom optics applications such as atom interferom-
etry, it is desirable to achieve the dispersionless trans-
port of a spatially localized ensemble of atoms, rather
than propagation of a “hole” within a group of atoms.
Bright solitons in an attractive (a < 0) condensate are
one possible way to achieve this goal, and have recently
been demonstrated in experiments at Rice University
[21] and at ENS in Paris [22]. In these two experi-
ments, large elongated condensates of 7Li were created
under conditions where the scattering length was posi-
tive. Using a Feshbach resonance, the scattering length
was then changed to a < 0, at which point condensed
atoms were observed to propagate within an effectively
one-dimensional trap. In the Rice University experiment,
a train of bright solitons was observed, and interactions
between the solitons were found to be repulsive, keeping
the solitons spatially separated as shown in the data of
Fig. 4.

The predicted existence of gap solitons offers an ele-
gant alternative [32] to using a < 0 condensates. Their
existence is based on the observation that in a periodic
potential it is possible to reverse the sign of the effec-
tive mass of the particles. For particles with a negative
mass, the roles of attractive and repulsive interactions
are reversed, resulting in the possibility of launching and
propagating bright solitons for both attractive and repul-
sive two-body interactions. Physically, gap solitons result
from the balance between the nonlinearity and the effec-
tive linear dispersion of a coupled system, e.g., counter-
propagating waves in a grating structure, and appear in
the gaps associated with avoided crossings. Again, this
is a direct extension to atom optics of a nonlinear op-
tics situation, where gap solitons have previously been
predicted and demonstrated [33].
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VII. VORTICES

Quantized vortices in BEC provide further common
ground between optics and atom optics, as well as re-
search in superfluid helium, superconductivity, and even
the rotation of neutron stars. A vortex is a topological
singularity created and stabilized by fluid flow around
the singularity, or vortex core. The vortex flow pattern
is irrotational, that is, it is curl-free, and the local fluid
velocity is fastest near the vortex core. In a superfluid
such as a BEC, the quantum phase must be single-valued
at any point. Thus it can only change by integer mul-
tiples of 2π around any closed loop encircling a phase
singularity. Because the superfluid velocity is propor-
tional to the gradient of the phase, the quantization of
phase change directly leads to the quantization of vortex
angular momentum. In a BEC, right at the singularity,
the fluid velocity would be undefined. However, fluid is
expelled from a vortex core, and the flow pattern thus
remains well-defined throughout the fluid.

Single vortices in a BEC were first generated and ob-
served in a 87Rb condensate in Eric Cornell’s group at
JILA in 1999, using a phase and density engineering tech-
nique [23]. Starting from a condensate composed of one
internal hyperfine spin state, a second condensate of 87Rb
in a different spin state was created, having the precise
spatial phase dependence of a vortex. A singly quantized
vortex was thus formed in just one of the two superim-
posed condensates; the non-rotating condensate filled the
vortex core of the rotating one. This scenario is reminis-
cent of nonlinear optics experiments in which the core
of an optical vortex is used as a waveguide for another
beam of light. In the BEC experiment, the core-filling
condensate could be slowly or quickly removed with a
properly tuned laser beam incident on the atoms, allow-
ing the study of a continuum of possible configurations
between filled and empty vortex cores. Without the fill-
ing, the nonlinear interactions of the BEC determine the
size of the core, restricting it to dimensions usually less
than 1 micron, making vortex cores difficult to observe
optically. One benefit to having the filled vortex core
is that it made the core large enough to be directly ob-
served. This permitted observations of the precession of
an off-centered vortex core around the center of the BEC,
an inherent part of vortex dynamics in a confined fluid.

Soon after the creation of these single vortices, Jean
Dalibard’s group at ENS in Paris [24], followed by Wolf-
gang Ketterle’s group at MIT [34], created multiple vor-
tices in their condensates by stirring a BEC with a laser
beam that repelled the atoms via the AC Stark shift. The
BECs were then released from their traps and allowed to
expand before imaging. Such work is similar to lattices
of optical vortices in beams of light.

More recent work at JILA has shown that by induc-
ing rotation in a thermal cloud of atoms above the BEC
critical temperature, and then cooling the cloud through
the BEC transition, large vortex lattices can be gener-
ated. This method of vortex creation is most similar

FIG. 5: Images of vortex lattices in Bose-Einstein condensates
at JILA. The dark holes within the light areas are vortex
cores. Each image was acquired after releasing a BEC from
its magnetic trap, allowing it and the vortex cores to spatially
expand enough to be optically resolved with a probe laser
beam. Images provided by E. Cornell’s TOP trap team at
JILA [36].

to the method of inducing vortices in a liquid of super-
fluid helium. The number, positions, and lifetimes of
vortex cores, and the overall structures of the vortex lat-
tices generated, depend on numerous experimental con-
ditions. A few examples of vortex lattices in a BEC are
shown in Fig. 5. Further work at JILA using this vor-
tex creation technique has shown that upon excitation of
surface waves on the condensates, the dynamics of the
atomic vortex lattices have been examined. Fundamen-
tal changes to the vortex lattice structure away from the
equilibrium hexagonal pattern have also been observed
[35].

VIII. SECOND-HARMONIC GENERATION

Second-harmonic generation was the first nonlinear op-
tics effect to be observed. It results when light at fre-
quency ω propagates through a crystal that exhibits a
second-order nonlinearity. In terms of photons, it can be
thought of as the process where two photons at frequency
ω are annihilated and a new photon at frequency 2ω is
created. At first sight, it might appear that such a pro-
cess is impossible in atom optics, due to the conservation
of the number of atoms. However, this is too simplified a
picture: Since atoms can be combined to form molecules,
a matter-wave optics analog of second-harmonic genera-
tion would correspond to the annihilation of two atoms
and the creation of a diatomic molecule. Alternatively,
second-order nonlinear effects such as sum and differ-
ence frequency generation and second-harmonic gener-
ation can be produced with quasi-particles, since their
number is not conserved.

We concentrate here on the case of molecular conden-
sates. So far, it has not been possible to reach con-
densation by directly cooling molecules to their BEC



9

transition temperature. An alternative method that has
proved much more successful consists in first creating an
atomic condensate, and then combining the atoms into
molecules. This can be achieved in principle by using ei-
ther photoassociation or Feshbach resonances. Photoas-
sociation proceeds by using laser light to capture atoms
and combine them into a diatomic molecule during a col-
lision, while Feshbach resonances operate by using a mag-
netic field to tune the energies of colliding atom pairs so
that they can combine into a molecule. Resonances oc-
cur when the total energy of two colliding atoms equals
the energy of a bound molecular state. In the vicinity of
the resonance, it is essential to properly account for the
molecular dynamics, and a proper description of the sys-
tem requires that one accounts for the coherent coupling
between the atomic and molecular field. The remark-
able agreement between theory based on such approaches
and experiments provides almost certain proof that in
their recent experiment [37], Wieman and coworkers at
JILA observed coherent oscillations between Rb atoms
and Rb2 molecules in an atomic condensate.

IX. MIXING OF OPTICAL AND MATTER
WAVES

We have discussed in Section III how under appropri-
ate circumstances, one can formally eliminate the ma-
terial dynamics in the description of light-matter inter-
actions, resulting in effective nonlinear interactions be-
tween light waves. Under a different set of conditions
one can eliminate the electromagnetic field dynamics, re-
sulting in effective atom-atom interactions —collisions—
and nonlinear atom optics. Outside of these two regimes
neither field is readily eliminated. This leads to new pos-
sibilities, including the nonlinear mixing of optical and
matter waves and coherent matter-wave amplification.

Consider for example a Bose-Einstein condensate inter-
acting with both a strong laser and a weak probe optical
field. Assuming that the probe field begins in or near
the vacuum state and the atomic field consists initially
of a trapped BEC, the initial dynamics of the coupled
system is dominated by a stimulated scattering process:
the transfer of an atom to a momentum side-mode of the
original condensate is accompanied by the transfer of a
photon from the pump to the probe. This process may
be thought of as the joint parametric amplification of an
optical and a matter-wave field. It can be understood
intuitively in essentially classical terms.

In matter-wave superradiance, both the weak optical
field and the matter-wave field side-mode are sponta-
neously generated from, respectively, vacuum fluctua-
tions and density fluctuations, the atomic version of vac-
uum fluctuations. As the condensate side-mode becomes
populated, it interferes with the original condensate to
create a spatial matter-wave density grating [38]. While
the generated photons rapidly escape from the conden-
sate region, the slow recoil velocity of the atoms results

in the matter-wave grating remaining stored for a long
time inside the BEC. This grating provides a feedback
mechanism that leads under appropriate conditions to
the sequential amplification of a series of momentum side
modes of the condensate, i.e., the diffraction of atoms off
of the matter-wave grating. This effect was demonstrated
in a series of elegant experiments at MIT. Furthermore,
sufficient feedback is provided by the matter-wave grat-
ing inside the condensate for the phase of the state being
amplified to be preserved. Hence the matter-wave ampli-
fication is phase coherent with the amplified state [27].

X. FERMIONS

While there are many analogies between optical and
atomic waves, perhaps the most fundamental difference
is that while photons are bosons, atoms can be either
bosons or fermions. Fermion behavior is strongly con-
strained by Pauli’s exclusion principle. This, then, begs
the question as to whether nonlinear atom optics is also
possible with quantum-degenerate fermionic atoms.

Consider for example matter-wave four-wave mixing.
This phenomenon may be interpreted in terms of atom
scattering from a density grating of period Λgrating =
2π/Kgrating generated inside the condensate. Alterna-
tively, it is possible to understand this process in terms of
a stimulated scattering process among different matter-
wave momentum states, in which case amplification is
attributed to Bose enhancement. This naturally leads
one to ask whether matter-wave four-wave mixing is also
possible in a quantum-degenerate Fermi gas [39]. This
question was addressed in two recent papers [40] that
demonstrate that this is indeed possible under appropri-
ate conditions. In the case of a degenerate Bose gas,
stimulated four-wave mixing can indeed be attributed to
Bose enhancement, whereas in the fermionic case it can
be shown to originate from quantum interferences be-
tween “paths” that lead to indistinguishable final states.
A central tenet of quantum mechanics is that if it is im-
possible, even in principle, to distinguish between the
paths that lead from the same initial state to the same
final state, then the transition amplitudes for these pro-
cesses must be added, rather than their probabilities. In
that case, four-wave mixing is not interpreted as a result
of quantum statistics, but rather of “cooperation.” [41]
Both mechanisms lead to practically the same enhance-
ment proportional to the square N2 of the number of
atoms involved in forming the matter-wave grating, pro-
vided that the fermionic grating is properly prepared in a
momentum-space Dicke state, that is, a highly entangled
quantum state with all atoms in a coherent superposition
of states with center-of-mass momenta 0 and Kgrating.
Hence, effects that can be interpreted as Bragg scatter-
ing from atomic-matter wave gratings, such as atomic
four-wave mixing, BEC superradiance, and matter-wave
amplification, can in principle work as efficiently in both
degenerate Bose and Fermi systems.
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XI. OUTLOOK

In the few short years since the first experimental real-
ization of atomic Bose-Einstein condensates, the progress
in atom optics has been astounding, rapidly moving the
field into nonlinear and, more recently, quantum atom
optics. It is becoming increasingly apparent that these
developments will lead not just to a more profound un-
derstanding of the dynamics of ultracold atoms, quantum
degenerate systems, and their interaction with light, but
that intriguing technological developments will soon be
realized.

Most obvious perhaps is the application of atom op-
tics to the design of novel devices such as gravimeters,
gravity gradiometers and inertial sensors. When com-
pared with optical rotation sensors, atom interferometers
present the advantage of producing a phase shift propor-
tional to the atomic mass. It follows that, everything else
being equal, a matter-wave rotation sensor is more sensi-
tive than an optical gyroscope by a staggering factor of
the order of 1011. Of course, not everything is equal, and
there are also major benefits to using optical interferom-
eters as sensors. Nonetheless, it is daunting to observe
that laboratory-based atom rotation sensors and gravity
gradiometers [42] already compare favorably to their best
optical counterparts. Other applications of atom optics
will likely include nanofabrication, atom holography, and
nanolithography. Quantum atom optics and the genera-
tion of nonclassical atomic fields might find applications
in quantum information processing; the quantum entan-
glement between the quantum state of atoms, which can

easily be stored, and light, which can easily propagate,
might be of particular interest in this context. The non-
linear atom optics of fermionic matter, and the mixing
between bosonic and fermionic fields, also open up new
directions for investigations out of reach of conventional
optics. As a last example, we mention the realization of
condensates on optical lattices, which provides us with
toy model systems for fundamental studies of a number of
phase-transition-like phenomena such as ferromagnetism
[43] and ferrimagnetism, but also opens the way to po-
tential applications in quantum information technology
[44].

Practical matter-wave devices are likely to be built on
chips, very much like electronic sensors. This leads to the
need to develop integrated atom optics, a goal actively
pursued in a number of laboratories. It has recently be-
come possible to generate Bose-Einstein condensates di-
rectly on a chip [45] and also to coherently couple atomic
condensates into atomic waveguides. These spectacular
and rapid developments bode well for the future of atom
optics.
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