Quantum Computation (Preskill ch. 6)

Quantum Circuits

Classical Computer = finite set of gates acting on bits

Quantum Computer = finite set of quantum gates
acting on quantum bits

Quantum Computation:

U¢[000...6> = 1T

— \

unitary composed of  n qubit ;rl:;%m :/Iz::ﬁ:‘?n?l::t
finite # of gates input 8.

in basis {[0, (15 W

Note:

% The Hilbert space of the Quantum Computer has a preferred
decomposition into tensor producs of low dimensional
spaces (qubits), respected by gates which act on only a
few qubits at a time.

- This helps establish notion of Quantum Complexity

%k Decomposition into subsystems and local manipulations
means gates act on qubits in a bounded region.

% It is suspected, but not proven, that the power of
Q. C. derives from this decomposition:

1 qubits -> 2" dimensional ¥ resource grows ~ 2"

% Unitaries form a continuum, but we restrict to
discrete gate sets. This is necessary for
Fault Tolerance

% Quantum Gates could be Superoperators, and
readout could be POVM'’s

However:
we can Superoperators as unitaries .
simulate POVM’s as Orthog. Meas in larger 3f

— -

Our simpler conceptualization is general
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% It is suspected, but not proven, that the power of
Q. C. derives from this decomposition:

1 qubits -> 2 dimensional ¥ resource grows ~ 2"

% Unitaries form a continuum, but we restrict to
discrete gate sets. This is necessary for
Fault Tolerance

% Quantum Gates could be Superoperators, and
readout could be POVM'’s

However:
we can Superoperators as unitaries .
simulate POVM’s as Orthog. Meas in larger 3f

— -

Our simpler conceptualization is general

% Final readout could be collective or in a basis
# the standard logical basis =

Unitary maps to standard basis {(07, 115" with
overhead included in complexity

% We could do measurements during computation,
then condition later steps on the outcomes. But
one can show the same results can be achieved by
measuring at the end of the computation

- In practice measurement during computation is
essential for error correction

Note: None of the above changes notion of complexity
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s Final readout could be collective or in a basis
# the standard logical basis =p

Unitary maps to standard basis {(07, (15} with
overhead included in complexity

sk We could do measurements during computation,
then condition later steps on the outcomes. But
one can show the same results can be achieved by
measuring at the end of the computation

- In practice measurement during computation is
essential for error correction

Note: None of the above changes notion of complexity

At this point we are left with 3 main issues

(1) Universality: we must be able to implement the
most general unitary & Su(1")

group of unitaries in 3(’, Dim a€- "

= Circuit of chosen gates must approx. any U & SO(2*)

New class BQP 1

{

Decision problems solved w/high prob.
by poly-sized quantum circuits

(2) Quantum Complexity:

(3) Accuracy: BQP is defined assuming perfect gates.
What happens if circuit elements do not have
exponential accuracy ?

T - gate circuit requires

Can show noisy gates are OK: error prob. o 1/1"

1) BQP = Bounded-error Quantum Polynomial time
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At this point we are left with 3 main issues

(1) Universality: we must be able to implement the
most general unitary & Sv(i")

group of unitaries in 36, Dim a€- "

= Circuit of chosen gates must approx. any U & SU(2*)

(2) Quantum Complexity: New class BQP

]

Decision problems solved w/high prob.

by poly-sized quantum circuits

(3) Accuracy: BQP is defined assuming perfect gates.
What happens if circuit elements do not have
exponential accuracy?

T - gate circuit requires

Can show noisy gatesare OK: [~ prob. o 1/1‘

1) BQP = Bounded-error Quantum Polynomial time

Note on Quantum Complexity:

A QC can simulate a probabilistic classical computer
(most general class)

— | BPPYc RAP

Open Question: Is RPP+ REP ? Seems reasonable,
as a prob. C.C. cannot easily simulate QM in a
2" — dimensional Hilbert space.

If so, a QC will negate the Strong Church-Turing Thesis
which holds that any physically reasonable model of
computation can be simulated on a probabilistic
classical computer with only polynomial slowdown.

1) BQP = Bounded-error Quantum Polynomial time

2) BPP = Bounded-error Probabilistic Polynomial time

13



Quantum Computation (Preskill ch. 6)

Universal Quantum Gates

% What constitutes a universal gate set ?

Answer: Almost any generic 2—qubit quantum gate
will do!

% What is a generic gate?

Definition:

Let U= Q;Hi olé be generic ( HA is the generator of | )

Fne N, so 0" comes arbitrarily close to U(A)= e"* Hy

( U () is reachable by powers V")

A k=qubit gate [J= 2«2 matrix w/evals feié‘_‘ ce e; l“}
is generic if

e; is an irrational multiple of

©;,8; areincommensurate (6.'/6. irrational multiple of )
Jd

(1) Powers of a generic gate:

D" =p evals fe"® ei"ei“} S,

t

points on 2 dim torus

() generic

» points densely covers the whole torus
ne N,

Seems extraordinarily cumbersome! Why do it that way?

Answer: This is necessary for Fault Tolerant Operation

f v, V\GN‘,] is a set of measure zero —» any “noise
takes us to an invalid state that can be detected
and corrected.

This is not enough! What else can we do?

(2) Switching leads

k qubits =p (2)! permutations U’ =PU P!

U P U pL

=== =
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Definition:

;o e

Let U= ¢ generic ( Hé is the generator of D )

In & N, so V" comes arbitrarily close to U(A)= e *Hs

( U () is reachable by powers V")

Seems extraordinarily cumbersome! Why do it that way?

Answer: This is necessary for Fault Tolerant Operation

f v, V\GIU,Z is a set of measure zero —» any “noise
takes us to an invalid state that can be detected
and corrected.

This is not enough! What else can we do?

(2) Switching leads

k qubits =p (2*)! permutations U’ =PU P!

0 P D) p-1

= =

This is not enough! What else can we do?

Aside: Consider acl - dimensional Hilbert space X .

N { Operators (dxdl matrices) are vectors € A% dim.
Hilbert space ' w/a scalar product defined as

(Wl; [Wla) =rrf'[W\|-+Wl;—l
-

[18,9,...100)]
(A:1A;) = 0;4

in &'

3 orthonormal basis

(3) Completing the Lie Algebra

Assume access to a set of Hamiltonians

fHy, Hoy .. H, Y, né (dim &)

Trotter Formulae:

'-;amsm;e_;mfkdt -1 (o e @HNAE

e

=
-

oo Bt i ke HiEHIA - ol aH] A2
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Aside: Consider acl - dimensional Hilbert space &f .

{ Operators (dxcl matrices) are vectors € A% dim.

vector space ¥' w/a scalar product defined as

(m. [Wla) =")7-[Ml-+m:]

.
lAq\,o..‘A 1-‘
3 orthonormal basis ; ! ] in &'
(A:1A) = 0ij

(3) Completing the Lie Algebra

Assume access to a set of Hamiltonians

[Hy, Ha, .. H, Y, né (dim &)
Trotter formulae:
o iRH; A e-;m;kdt . e e @HAE

o XH; Bt ipHdE it iR - ol pH A2

% From the Set fH,) Ha, <. H,,,Z we can “simulate”
new Hamiltonians using the Trotter formulae

% If a new Hamiltonian is linearly independent
we add it to the set.

% Continue until the Set has d’: (plim%® )L linearly
independent members (Lie Algebra complete)*)

Set is a basis in d< ol matrix space

Allows to simulate any H(t) & implement any U

Examples:

d=2 =» glpﬂ] T.6,f, '} set of 22=4

2 X 2 matrices

A=Y =p 5[(.\,-.51 <= set of d? =16 4 x4 matrices

Example: (single qubit control)
Let Ol= 2., initial set 50(()‘,‘) FG‘,O] ( generic)

{q;lqﬂ] =:/Ty =p we cansimulate T

*) This is not always possible. The Lie Algebra may “close”
before generating a basis. If so, add more Hamiltonians
to the original set.
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Aside: Consider acl - dimensional Hilbert space &f .

{ Operators (dxcl matrices) are vectors € A% dim.

vector space ¥' w/a scalar product defined as

(m. [Wla) =q7‘[ml'+m;]

.
lAq\,o..‘A 1-‘
3 orthonormal basis ; ! ] in &'
(A:1A) = 0ij

(3) Completing the Lie Algebra

Assume access to a set of Hamiltonians

[Hy, Ha, .. H, Y, né (dim &)

1y ~-

Trotter formulae:

-1 (o e @HAE

=e

e--.am;ou; e-; aH,dt

o XH; Bt ipHdE it iR - ol pH A2

% From the Set fH,) Ha, <. H,,,Z we can “simulate”
new Hamiltonians using the Trotter formulae

% If a new Hamiltonian is linearly independent
we add it to the set.

% Continue until the Set has d’: (plim%® )L linearly
independent members (Lie Algebra complete)*)

Set is a basis in d*< ol matrix space

Allows to simulate any H(t) & implement any U

Examples:

d=2 =» glpﬂ] T.6,f, '} set of 22=4

2 X 2 matrices

A=Y =p 5[(.\,-.51 <= set of d? =16 4 x4 matrices

Example: (single qubit control)
Let Ol= 2., initial set 50(()‘,‘) FG-‘O] ( generic)

{W;l(rﬂ] =Ty =P wecansimulate | T,

Set [T, "‘“'*)/56‘8] sufficient for control
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’ First generic gate,
Deutsch’s Gate
( Reaches any v €& SU(8) )
X @ X
3 * 2
z R 2

. 19 : o
Rotation Q:-;Qx[e\=_;e AW:-:((.os%was,m?-_) iff Xy =1

1— incommensurate w/rt
Special case O = = this is a Toffoli gate: -iR_(T) =-i T
to within a phase

Note: R""- R (ung) (bfci®=1) =p

() _ (un+n)6 (un+n)6
R _(.)[cos S -

]z@; for some

+iGy Sin

Action on the basis states: R transposes (6) & (7)

(o) W ™ B @© 6 & *)
{low)l loo1y, loto) 1om3 11003 11017, [1107, 11115

[111%, 1110

T on 2D subspace

Note: A Deutsch gate on a 3-qubit state can be cast as an
8 x 8 matrix acting in an 8-dimensional vector space.

With the basis states numbered as in *) above, R“"Y
has the matrix representation

0|0 flips the spin of the

2-level system (6),(7)

(S)gp (

o | o

By switching leads and applying Toffoli gates, we can do
any perturbation of basis states. Thus we can reach

P [G—x)67P‘1 b (WX)MM

HEAWS PG gy

In turn, this allows us toreach ¢ and ¢

=) Wwecanreach & 106 )eg 5 (B Y5 5)

0| &
On matrix form: [(T,JSG. CG;)G.J{(O‘ Z:‘;g

Compositions of (§.),,'S =» i[v.a\m'g

I

these generators

-
=
f=
7]

these generators
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Note: A Deutsch gate on a 3-qubit state can be cast as an And thus we can make up

8 x 8 matrix acting in an 8-dimensional vector space. S @
e's & e ’s from powers of the 2’ 1 (6 )nm s,
With the basis states numbered as in %) above, R

generic Deutsch gate

(5, ) - o|o flips the spin of the
* /6% 0| o 2-level system (6),(7) o
Similarly, (%), (%) ] = 1 (T e B
By switching leads and applying Toffoli gates, we can do
any perturbation of basis states. Thus we can reach Compositions of (§),,,‘s & (%3 s = (53),,, s
um

P &_x}é?P'i h (W—x.}m m

HE A i () gy

In turn, this allows ustoreach ¢ Conclusion: We can reach all transformations generated by

and ¢
SR (A (AN linear combinations of the Cvx'ylgm‘s, which

wecanreach e
together span the SU(8) Lie Algebra

0| 6
On matrix form: [(\T,JSGI CG;)G.J{(O‘ Z:’;g

Compositions of (§.),,,¢ =» i[w.o\,nq‘g

I

these generators these generators

-
=
c
»

19



Quantum Computation (Preskill ch. 6)

And thus we can make up
. e . Q
e 3 &)ea ’s from powers of the & 1 (6 )nm ‘s,
which in turn can be obtained from powers of ~iR,(¥)
generic Deutsch gate

Similarly, (%), (%), ] = 1 (T e B

Compositions of (T.),m's & (§;),,'s =P (53),,,°

Conclusion: We can reach all transformations generated by
linear combinations of the (n'y_*\m‘s, which
together span the SU(8) Lie Algebra

Extending to n bit Deutsch gate:

¥y X4

" X 4-bit Deutsch Gate
2 2 Generates SU(24)

16> \U \I/ 10>

Xg IX3>

Y R Y ® XqXgXg

Repeat = n bit Deutsch gate generates SU(2")

» The Deutsch Gate is Universal

Universal 2-qubit gate sets

Proof: can build a Deutsch gate from 2-qubit gates

Assume we have Then we can do

ot U —0¥9)

vl z— U

Cc

controlled U
controlled U?
controlled NOT

» We can build a
Deutsch gate from
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