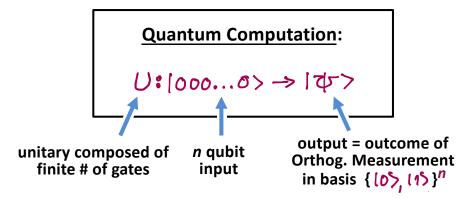
Quantum Circuits

<u>Classical Computer</u> = finite set of gates acting on bits

Quantum Computer = finite set of <u>quantum gates</u> acting on quantum bits



Note:

- * The Hilbert space of the Quantum Computer has a preferred decomposition into tensor producs of low dimensional spaces (qubits), respected by gates which act on only a few qubits at a time.
 - This helps establish notion of Quantum Complexity
- * Decomposition into subsystems and local manipulations means gates act on qubits in a bounded region.

* It is suspected, but not proven, that the power of Q. C. derives from this decomposition:

```
n qubits -> 2<sup>h</sup> dimensional of resource grows ~ 2<sup>h</sup>
```

- Unitaries form a continuum, but we restrict to discrete gate sets. This is necessary for Fault Tolerance
- * Quantum Gates could be Superoperators, and readout could be POVM's

However:

we can simulate

Superoperators as unitaries POVM's as Orthog. Meas

in larger

Our simpler conceptualization is general

* It is suspected, but not proven, that the power of Q. C. derives from this decomposition:

n qubits -> 2h dimensional of resource grows ~ 2h

- Unitaries form a continuum, but we restrict to discrete gate sets. This is necessary for Fault Tolerance
- * Quantum Gates could be Superoperators, and readout could be <u>POVM's</u>

However:

we can simulate

Superoperators as unitaries POVM's as Orthog. Meas

in larger **a**

Our simpler conceptualization is general

- ★ Final <u>readout</u> could be collective or in a basis
 ≠ the standard logical basis
 - Unitary maps to standard basis $\{\{0\}, \{1\}\}^n$ with overhead included in complexity
- * We could do measurements during computation, then condition later steps on the outcomes. But one can show the same results can be achieved by measuring at the end of the computation
 - <u>In practice</u> measurement during computation is essential for <u>error correction</u>

Note: None of the above changes notion of complexity

- ★ Final <u>readout</u> could be collective or in a basis
 ≠ the standard logical basis
 - Unitary maps to standard basis $\{(0), (1)\}^n$ with overhead included in complexity
- * We could do measurements during computation, then condition later steps on the outcomes. But one can show the same results can be achieved by measuring at the end of the computation
 - <u>In practice</u> measurement during computation is essential for error correction

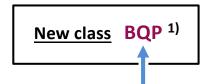
Note: None of the above changes notion of complexity

At this point we are left with 3 main issues

(1) Universality: we must be able to implement the most general unitary $\in SU(1^n)$

group of unitaries in \mathcal{X} , \mathcal{D} im $\mathcal{X} = 2^n$

- \rightarrow Circuit of chosen gates must approx. any $\cup \in SU(2^n)$
- (2) Quantum Complexity:



Decision problems solved w/high prob. by poly-sized quantum circuits

(3) Accuracy: BQP is defined assuming perfect gates. What happens if circuit elements do not have exponential accuracy?

Can show noisy gates are OK:

T - gate circuit requires error prob.

✓ 1/T

¹⁾ BQP = Bounded-error Quantum Polynomial time

At this point we are left with 3 main issues

(1) Universality: we must be able to implement the most general unitary $\in SU(1^n)$

group of unitaries in \mathcal{X} , \mathcal{D} im $\mathcal{X} = 2^n$

- \rightarrow Circuit of chosen gates must approx. any $\cup \in SU(2^n)$
- (2) Quantum Complexity:

Decision problems solved w/high prob. by poly-sized quantum circuits

(3) Accuracy: BQP is defined assuming perfect gates. What happens if circuit elements do not have exponential accuracy?

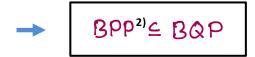
Can show noisy gates are OK:

T - gate circuit requires error prob.

✓ 1/T

Note on Quantum Complexity:

A QC can simulate a probabilistic classical computer (most general class)



Open Question: Is GPP + BQP? Seems reasonable, as a prob. C.C. cannot easily simulate QM in a 2^h - dimensional Hilbert space.

If so, a QC will negate the Strong Church-Turing Thesis which holds that any physically reasonable model of computation can be simulated on a probabilistic classical computer with only polynomial slowdown.

¹⁾ BQP = Bounded-error Quantum Polynomial time

¹⁾ BQP = Bounded-error Quantum Polynomial time

²⁾ BPP = Bounded-error Probabilistic Polynomial time

Universal Quantum Gates

- What constitutes a universal gate set?
 Answer: Almost any generic 2-qubit quantum gate will do!
- * What is a generic gate?

A k-qubit gate $U = 2^k \times 2^k$ matrix w/evals $\{e^{i\theta_k}, \dots e^{i\theta_2 k}\}$ is generic if

- Θ , is an irrational multiple of π
- Θ_i , Θ_j are incommensurate (Θ_i / Θ_j irrational multiple of π)
- (1) Powers of a generic gate:

$$\begin{array}{c}

\mathcal{O} \text{ generic} \\

\mathcal{O} \in \mathcal{N}_{0}
\end{array}$$
points densely covers the whole torus

Definition:

Let $U = e^{iH_j dt}$ be generic (H_j is the generator of U) $\exists n \in N_0 \text{ so } U^n \text{ comes arbitrarily close to } U(\alpha) = e^{i\alpha H_j}$ ($U(\alpha)$ is <u>reachable</u> by powers U^n)

Seems extraordinarily cumbersome! Why do it that way?

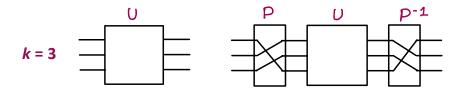
Answer: This is necessary for Fault Tolerant Operation

{Uⁿ, n∈N_o} is a set of measure zero → any "noise takes us to an invalid state that can be detected and corrected.

This is not enough! What else can we do?

(2) Switching leads

$$k$$
 qubits \rightarrow (2 k)! permutations $U' = PU P^{-1}$



Definition:

Let $U = e^{iH_j dt}$ be generic (H_j is the generator of U) $\exists n \in N_0 \text{ so } U^n \text{ comes arbitrarily close to } U(\alpha) = e^{i\alpha H_j}$ ($U(\alpha)$ is <u>reachable</u> by powers U^n)

Seems extraordinarily cumbersome! Why do it that way?

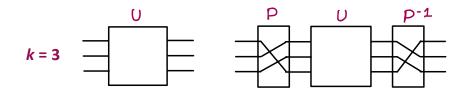
Answer: This is necessary for Fault Tolerant Operation

{Uⁿ, n∈N_o} is a set of measure zero → any "noise takes us to an invalid state that can be detected and corrected.

This is not enough! What else can we do?

(2) Switching leads

k qubits \rightarrow (2 k)! permutations $U' = PU P^{-1}$



This is not enough! What else can we do?

Aside: Consider a α - dimensional Hilbert space \Re .

 $\oint \begin{cases}
\text{Operators } (d \times d \text{ matrices}) \text{ are vectors } e d^2 \text{ dim.} \\
\text{Hilbert space } \mathcal{U}^1 \text{ w/a scalar product defined as}
\end{cases}$

 \exists orthonormal basis $\left\{ \begin{array}{l} \{|A_1\rangle, \dots |A_{d^2}\rangle \} \\ (|A_i||A_d\rangle = \partial_{id} \end{array} \right\}$ in \mathcal{X}^1

(3) Completing the Lie Algebra

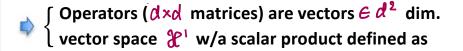
Assume access to a set of Hamiltonians

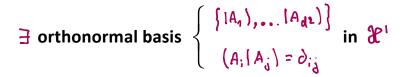
Trotter Formulae:

$$e^{-i\alpha H_{\delta}dt}e^{-i\beta H_{k}dt} = e^{-i(\alpha H_{\delta} + \beta H_{k})dt}$$

$$e^{-i\alpha H_{\delta}dt}e^{-i\beta H_{k}dt}e^{i\alpha H_{\delta}dt}e^{i\beta H_{k}dt} = e^{-[\alpha H_{\delta}, \beta H_{k}]dt^{2}}$$

Aside: Consider a α - dimensional Hilbert space \Re .





(3) Completing the Lie Algebra

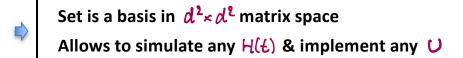
Assume access to a set of Hamiltonians

Trotter formulae:

$$e^{-i\alpha H_{\delta}dt}e^{-i\beta H_{K}dt}=e^{-i(\alpha H_{\delta}+\beta H_{K})dt}$$

$$e^{-i\alpha H_{\delta}dt}e^{-i\beta H_{K}dt}e^{i\alpha H_{\delta}dt}e^{i\beta H_{K}dt}=e^{-[\alpha H_{\delta},\beta H_{K}]dt^{2}}$$

- * From the Set $\{H_0, H_1, ... H_n\}$ we can "simulate" new Hamiltonians using the Trotter formulae
- * If a new Hamiltonian is linearly independent we add it to the set.
- * Continue until the Set has d^{ℓ_z} (dim \mathcal{U}) linearly independent members (Lie Algebra complete)*)



Examples:

$$d = 2 \longrightarrow \{ [A_i] \} = \{ T_j \nabla_x, \nabla_y, \nabla_z \} \longrightarrow \begin{cases} \text{set of } 2^2 = 4 \\ 2 \times 2 \text{ matrices} \end{cases}$$

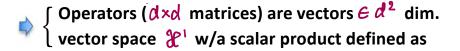
$$d = 4 \longrightarrow \{ [A_i] \} \longrightarrow \text{set of } d^2 = 16 \quad 4 \times 4 \text{ matrices} \end{cases}$$

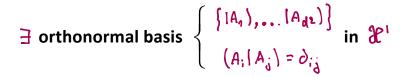
Example: (single qubit control)

Let
$$d = 2$$
, initial set $\{ \alpha \sigma_x, \rho \sigma_y \}$ (generic) $\{ \nabla_x, \nabla_y \} = i \nabla_z \implies \text{we can simulate } i \delta \nabla_z$

*) This is not always possible. The Lie Algebra may "close" before generating a basis. If so, add more Hamiltonians to the original set.

Aside: Consider a α - dimensional Hilbert space \Re .





(3) Completing the Lie Algebra

Assume access to a set of Hamiltonians

Trotter formulae:

$$e^{-i\alpha H_{\delta}dt}e^{-i\beta H_{K}dt} = e^{-i(\alpha H_{\delta} + \beta H_{K})dt}$$

$$e^{-i\alpha H_{\delta}dt}e^{-i\beta H_{K}dt}e^{i\alpha H_{\delta}dt}e^{i\beta H_{K}dt} = e^{-[\alpha H_{\delta}, \beta H_{K}]dt^{2}}$$

- * From the Set $\{H_0, H_1, ... H_n\}$ we can "simulate" new Hamiltonians using the Trotter formulae
- * If a new Hamiltonian is linearly independent we add it to the set.
- * Continue until the Set has d^{ℓ_z} (dim \mathcal{U}) linearly independent members (Lie Algebra complete)*)

Set is a basis in $d^2 \times d^2$ matrix space

Allows to simulate any H(t) & implement any U

Examples:

$$d = 2 \longrightarrow \{ [A_i] \} = \{ T_j \nabla_x, \nabla_y, \nabla_z \} \longrightarrow \begin{cases} \text{set of } 2^2 = 4 \\ 2 \times 2 \text{ matrices} \end{cases}$$

$$d = 4 \longrightarrow \{ [A_i] \} \longrightarrow \text{set of } d^2 = 16 \quad 4 \times 4 \text{ matrices} \end{cases}$$

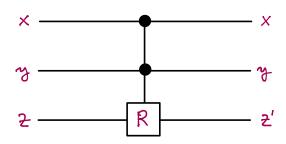
Example: (single qubit control)

Let
$$d = 2$$
, initial set $\{ \alpha \sigma_x, \rho \sigma_y \}$ (generic) $\{ \nabla_x, \nabla_y \} = i \nabla_2 \implies$ we can simulate $i \& \nabla_2$

Set [I, &T, /25] sufficient for control

Deutsch's Gate

First generic gate,
Reaches any UE SU(8)



Rotation
$$R = -iR_{x}(\Theta) = -ie^{i\theta/2\nabla_{x}} = -i\left(\cos\frac{\Theta}{2} + i\nabla_{x}\sin\frac{\Theta}{2}\right)$$
 iff $xy = 1$
incommensurate w/π

Special case $\Theta = \pi$ this is a <u>Toffoli gate</u>: $-iR_{\times}(\pi) = -iV_{\times}$ to within a phase

Note:
$$R^{4n} = R_{\times}(4n\theta)$$
 (b/c $i^4 = 1$)
$$R^{(4n+1)} = (-i) \left[\cos \frac{(4n+1)\theta}{2} + i \nabla_{\times} \sin \frac{(4n+1)\theta}{2} \right] \simeq \nabla_{\times} \text{ for some } N$$

Action on the basis states: R⁽⁴ⁿ⁺¹⁾ transposes (6) & (7)

Note: A Deutsch gate on a 3-qubit state can be cast as an 8 x 8 matrix acting in an 8-dimensional vector space.

With the basis states numbered as in *) above, $R^{(4n+1)}$ has the matrix representation

$$(\sigma_{\times})_{67} = \begin{pmatrix} 0 & 0 \\ 0 & \sigma_{\times} \end{pmatrix}$$
 flips the spin of the 2-level system (6),(7)

By <u>switching leads</u> and applying <u>Toffoli gates</u>, we can do any perturbation of basis states. Thus we can reach

$$P(\sigma_{x})_{67}P^{-1} = (\sigma_{x})_{NM}$$

In turn, this allows us to reach $e^{i(\nabla_{\kappa})_{\leq k}}$ and $e^{i(\nabla_{\kappa})_{Q_{+}}}$ we can reach $e^{-\left[(\nabla_{\kappa})_{\leq k}, (\nabla_{\kappa})_{Q_{+}}\right]}$

Thus: Compositions of (5x) nm's - i(5y) ng's

these generators these generators

Note: A Deutsch gate on a 3-qubit state can be cast as an 8 x 8 matrix acting in an 8-dimensional vector space.

With the basis states numbered as in *) above, $R^{(4n+1)}$ has the matrix representation

$$(\sigma_{\kappa})_{67} = \begin{pmatrix} 0 & 0 \\ 0 & \sigma_{\kappa} \end{pmatrix}$$
 flips the spin of the 2-level system (6),(7)

By <u>switching leads</u> and applying <u>Toffoli gates</u>, we can do any perturbation of basis states. Thus we can reach

$$P(\sigma_{x})_{67}P^{-1} = (\sigma_{x})_{NM}$$

In turn, this allows us to reach $e^{i(\nabla_x)_{\zeta\zeta}}$ and $e^{i(\nabla_x)_{\zeta\zeta}}$ we can reach $e^{-\left[(\nabla_x)_{\zeta\zeta}, (\nabla_x)_{\zeta\zeta}\right]}$

Thus: Compositions of (Tx) nm's - i(Ty) ng's

these generators these generators

And thus we can make up

$$e^{i\frac{\Theta}{2}(\sigma_{x})_{PQ}}$$
's from powers of the $e^{i\frac{Q}{2}(\sigma_{x})_{NM}}$'s, which in turn can be obtained from powers of $-iR_{x}(\sigma)$ generic Deutsch gate

<u>Conclusion</u>: We can reach all transformations generated by linear combinations of the $(\nabla_{x,y,\frac{1}{2}})_{nm}$'s, which together span the SU(8) Lie Algebra

And thus we can make up

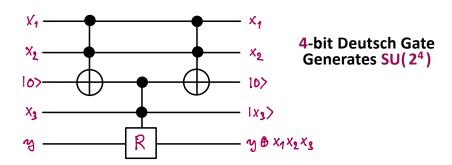
 $e^{i\frac{\varphi}{2}(\nabla_x)p_{ij}}$'s from powers of the $e^{i\frac{\varphi}{2}(\nabla_x)_{nm}}$'s, which in turn can be obtained from powers of $-iR_x(\nabla)$ generic Deutsch gate

Similarly, $[(\mathcal{T}_{\mathcal{L}})_{nm}, (\mathcal{T}_{\mathcal{L}})_{nm}] = i(\mathcal{T}_{\mathcal{L}})_{nm}$

Compositions of (5x) nm's & (5) nm's - (5) nm's

Conclusion: We can reach all transformations generated by linear combinations of the $(\nabla_{x,y,\frac{1}{2}})_{nm}$'s, which together span the SU(8) Lie Algebra

Extending to *n* bit Deutsch gate:



Repeat \rightarrow n bit Deutsch gate generates $SU(2^n)$

The Deutsch Gate is Universal

Universal 2-qubit gate sets

Proof: can build a Deutsch gate from 2-qubit gates

