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Quantum Computation

Classical Circuits Quantum Circuits

% Universal Gates % Quantum Complexity

% Circuit Complexity % Universal Quantum Gates

Review of Classical Circuit Theory

We can think of a computation as a function that
maps n bits to m bits

Computation Equivalent

Fefo]"~> fo, 11"

3 {0.1]" > §o,1
t

m of these simpler functions

Function evaluation «—» sequence of logic operations

Given a binary input X =X| Xy -ve X,y

Py = ¢
® separate in sets

Pt =0
Consider the input

1 for X=x"
x*e QOCX“‘B =1 ® define Je)(x)=
T Tk o for X X(A‘

one of them n of these
simple functions

Given, for example, we implement ;]"“‘ w/logic operations
= P =X AAR, L AX,

111...
X =
o110... = P = (1%) Ax, AX A (K)o

And finally, given the /‘Y‘M () ‘s we can implement the m .?[x) ‘s

Jixy= 0av iR ve . vime | | Fx)

1

equivalent to m &x\ ‘s
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Given a binary input X =X, Xy -ee X,y

) =1
®» separate in sets { !
Py =0

Consider the input

" “ 1 for X=x")
oy Pk = ine St (x) =
X /{CK ) =1 ® define /‘YT“ (x) 6 for x s x®

one of them n of these
simple functions

Given, for example, we implement J’a\\ w/logic operations

{111...- = o) =X A% AR L AKX,
X =

o10... = o0 = (%) Ax, AX A (K)o

And finally, given the ,f‘“ () ‘s we can implement the m .P[x] ‘s

Jixy= P aviogve.vime | | Fx)

t

equivalent to m zf[x\ ‘s

Note: This approach

% Reduces the problem of evaluating F(x) to
bitwise VA 77

% We have implicitly used CoOPY

* These gates suffice to implement any
computation

Conclusion: The following make up a Universal Gate Set

OR, AND, NOT  CoPy

Note: Universal gate sets are not unique

Example of a simpler Set: NAND, CopY
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Note: This approach
% Reduces the problem of evaluating F(x) to
bitwise V| A 77

% We have implicitly used COPY

% These gates suffice to implement any
computation

Conclusion: The following make up a Universal Gate Set

OR, AND, NOT, CoPy

Note: Universal gate sets are not unique

Example of a simpler Set: NAND, Copy

Circuit Complexity

( Pick a universal gate set )

Central Question: How hard is it to solve PROBLEM ?

% One measure is the size of the smallest circuit
that solves it

Size = Width x Depth

XL — | i
X

Depth

i
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Circuit Complexity

( Pick a universal gate set )

Central Question: How hard is it to solve PROBLEM ?

%k One measure is the size of the smallest circuit
that solves it

Size = Width x Depth

X
X

/ —— » Width
R

Depth

Consider a circuit family §¢.,)
that solves a decision problem

d

Examples

e

FACTORING

Pifo4]" = fp,4]

1 ifinteger X hasdivisor < Y-
Fixy) = :
0 otherwise

HAMILTONIAN ’\?[’('0\3 1 if graph x has Hamiltonian Path
PATH ' otherwise

Easy Problems: $he (C,)\ ¢ poly(n)

We define:

Hard Problems:  Size(c,) > polv(n)

This distinction allows us to define Complexity Classes,
for example

Problem Class P = { Decision Problems solved by }

a polynomial-sized circuit
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Consider a circuit family §¢.,]
that solves a decision problem

/

Examples

e

FACTORING

$i§04]" = §p,4]

1 ifinteger X has divisor < “
Lixy) = .
I») otherwise

HAMILTONIAN ’f[’( '3\ : 1 if graph x has Hamiltonian Path
PATH ' 0 otherwise

Easy Problems: e (C,\ ¢ poly(n
We define: y i oty )

Hard Problems:  $ize(C,) > polv(n)

% Whether PROBLEM & P is independent of circuit
design, universal gate set & other specifics

% Problems in P are special — they have structure
that allows efficient computation

Note: The majority of functions ¢ P

For example, if the output Pi<) ~ random
we must compute «}’cz) by lookup table with
2" entries

——-—

Circuit that does lookup has exponential size

Special Class: One-Way Function

This distinction allows us to define Complexity Classes,
for example

f

PROBLEM is easy or hard, but }

Problem Class NP = { the answer is easy to check

Problem Class P = { Decision Problems solved by }

polynomial-sized circuit

Stands for “Non-deterministic Polynomial Time

FACTORING £ NP
HAMILTONIAN PATH £ NP

Examples:

Note: Clearly Pc NP, Conjecture that P+ AP

5
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% Whether PROBLEM & P is independent of circuit
design, universal gate set & other specifics

% Problems in P are special — they have structure
that allows efficient computation

Note: The majority of functions ¢ P

For example, if the output «PCK) ~ random
we must compute 7"(:] by lookup table with
2" entries

— -

Circuit that does lookup has exponential size

Special Class:

One-Way Function

Special Problem: CIRCUIT-SAT € NP

Input = Circuit w/n gates, m input bits
Problem = is there an m-bit input w/output = 1

1 i (m) (w9 =
(o &therwice

Easy to check solution because if we have the input
circuit C we can run it with the input x™) and determine
if it evaluates to 1.

Cooks Theorem: Every PROBLEM € NP is

/

PROBLEM is easy or hard, but }

Problem Class NP = .
the answer is easy to check

Stands for “Non-deterministic Polynomial Time

FACTORING £ NP
HAMILTONIAN PATH £ NP

Examples:

Note: Clearly Pc NP, Conjecture that P+ AP

polynomially reducible to CIRCUIT-SAT

NP- Complete NPC # NP

HAMILTONIAN

CIRCUIT-SAT
€
PATH
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Special Problem: CIRCUIT-SAT € NP

Input = Circuit w/n gates, m input bits

Problem = is there an m-bit input w/output = 1

1 i (m) () =
0 &lherwice

Easy to check solution because if we have the input

circuit C we can run it with the input x(™) and determine
if it evaluates to 1.

Cooks Theorem: Every PROBLEM € NP is
polynomially reducible to CIRCUIT-SAT

HAMILTONIAN NP- Complete NPC # NP

CIRCUIT-SAT
€
PATH

Complexity Hierarchy

% Conjecture: P € NP

% 3 Problems in NP that are neither P or NPC
* NPI: Problems of intermediate difficulty
% Conjecture: Factoring € NPI

NP-Hard NP-Hard
NP-C
NP P =NP = NP-C
P
P # NP P=NP

Takeaway Message

% Complexity theory is a rich field with many
known complexity classes

% Many foundational conjectures remain unproven

% As we will see, switching to Quantum Circuits
changes things
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Complexity Hierarchy

Aside: Classical Reversible Computation

% Conjecture: P € NP

% 3 Problems in NP that are neither P or NPC Motivation:
* NPI: Problems of intermediate difficulty
% Conjecture: Factoring € NPI

Quantum Computation = Unitary Transformation

-
Reversible !

NP-Hard NP-Hard

Classical Reversible Comp: & {0,4]" = Jo, 1}“
NP-C
R v m .
o s = Repackage §: {o,1] ~— [0,{"* asreversible
)
. n+m ntm we separate n + m qubit
P £ NP P = NP §: 0] " —> fou register into input and
output so no information
ng,o"'O) = LXT’XC"\S is lost
Takeaway Message

% Complexity theory is a rich field with many Note: Not all 1 & 2-bit gates are reversible, e. g.,
known complexity classes - AND. OR. ERASE
% Many foundational conjectures remain unproven

% As we will see, switching to Quantum Circuits
changes things
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Aside: Classical Reversible Computation

Motivation:

Quantum Computation = Unitary Transformation

— -

Reversible!

Classical Reversible Comp: & {0,4]" = [o, 1}“

Repackage £: {0,7]"~ [0,4]" as reversible

. n+m ntm we separate n + m qubit
$ilof" " — fo.4] register into input and
output so no information

GDCX-O(M)) = (x; ’XC"‘S is lost

Note: Not all 1 & 2-bit gates are reversible, e. g.,
AND, OR, ERASE

Example of reversible gate: XOR (CNOT)
X ® X
9 —D——xey

Note: One can show that 1 & 2 bit reversible gates are
non-universal — they can only do linear maps
between input and output.

Toffoli Gate: Example of universal 3-bit gate

¥ @ 14

4 L Y Flipszifx=y=1
N

* o 2O Xy

% Can show we can build a circuit to compute any
reversible function using only Toffoli gates

% Lesson: The nature of universal gate sets depends on
the nature of the transformations done by
the device at hand



Quantum Computation (Preskill ch. 6)

Quantum Circuits

Classical Computer = finite set of gates acting on bits

Quantum Computer = finite set of quantum gates
acting on quantum bits

Quantum Computation:

U¢[000...6> = 1T

— \

unitary composed of  n qubit ;rl:;%m :/Iz::ﬁ:‘?n?l::t
finite # of gates input 8.

in basis {[0, (15 W

Note:

% The Hilbert space of the Quantum Computer has a preferred
decomposition into tensor producs of low dimensional
spaces (qubits), respected by gates which act on only a
few qubits at a time.

- This helps establish notion of Quantum Complexity

%k Decomposition into subsystems and local manipulations
means gates act on qubits in a bounded region.

% It is suspected, but not proven, that the power of
Q. C. derives from this decomposition:

1 qubits -> 2" dimensional ¥ resource grows ~ 2"

% Unitaries form a continuum, but we restrict to
discrete gate sets. This is necessary for
Fault Tolerance

% Quantum Gates could be Superoperators, and
readout could be POVM'’s

However:
we can Superoperators as unitaries .
simulate POVM’s as Orthog. Meas in larger 3f

— -

Our simpler conceptualization is general

10
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% It is suspected, but not proven, that the power of
Q. C. derives from this decomposition:

1 qubits -> 2 dimensional ¥ resource grows ~ 2"

% Unitaries form a continuum, but we restrict to
discrete gate sets. This is necessary for
Fault Tolerance

% Quantum Gates could be Superoperators, and
readout could be POVM'’s

However:
we can Superoperators as unitaries .
simulate POVM’s as Orthog. Meas in larger 3f

— -

Our simpler conceptualization is general

% Final readout could be collective or in a basis
# the standard logical basis =

Unitary maps to standard basis {(07, 115" with
overhead included in complexity

% We could do measurements during computation,
then condition later steps on the outcomes. But
one can show the same results can be achieved by
measuring at the end of the computation

- In practice measurement during computation is
essential for error correction

Note: None of the above changes notion of complexity

11
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s Final readout could be collective or in a basis
# the standard logical basis =p

Unitary maps to standard basis {(07, (15} with
overhead included in complexity

sk We could do measurements during computation,
then condition later steps on the outcomes. But
one can show the same results can be achieved by
measuring at the end of the computation

- In practice measurement during computation is
essential for error correction

Note: None of the above changes notion of complexity

At this point we are left with 3 main issues

(1) Universality: we must be able to implement the
most general unitary & Su(1")

group of unitaries in 3(’, Dim a€- "

= Circuit of chosen gates must approx. any U & SO(2*)

New class BQP 1

{

Decision problems solved w/high prob.
by poly-sized quantum circuits

(2) Quantum Complexity:

(3) Accuracy: BQP is defined assuming perfect gates.
What happens if circuit elements do not have
exponential accuracy ?

T - gate circuit requires

Can show noisy gates are OK: error prob. o 1/1"

1) BQP = Bounded-error Quantum Polynomial time

12
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At this point we are left with 3 main issues

(1) Universality: we must be able to implement the
most general unitary & Sv(i")

group of unitaries in 36, Dim a€- "

= Circuit of chosen gates must approx. any U & SU(2*)

(2) Quantum Complexity: New class BQP

]

Decision problems solved w/high prob.

by poly-sized quantum circuits

(3) Accuracy: BQP is defined assuming perfect gates.
What happens if circuit elements do not have
exponential accuracy?

T - gate circuit requires

Can show noisy gatesare OK: [~ prob. o 1/1‘

1) BQP = Bounded-error Quantum Polynomial time

Note on Quantum Complexity:

A QC can simulate a probabilistic classical computer
(most general class)

— | BPPYc RAP

Open Question: Is RPP+ REP ? Seems reasonable,
as a prob. C.C. cannot easily simulate QM in a
2" — dimensional Hilbert space.

If so, a QC will negate the Strong Church-Turing Thesis
which holds that any physically reasonable model of
computation can be simulated on a probabilistic
classical computer with only polynomial slowdown.

1) BQP = Bounded-error Quantum Polynomial time

2) BPP = Bounded-error Probabilistic Polynomial time
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