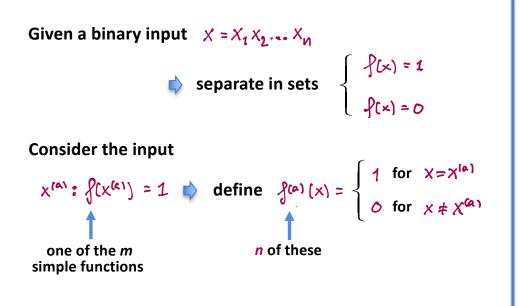


equivalent to $M \left(\times \right)$'s



Given, for example, we implement $\int (A) w/\log c$ operations

 $X = \begin{cases} 111... \rightarrow f(x) = X_1 \land X_2 \land X_3 \ldots \land X_n \\ 0110... \rightarrow f(x) = (\forall X_1) \land X_1 \land X_2 \land (\forall X_4)... \end{cases}$

And finally, given the $\int_{-\infty}^{\infty} (x) dx$ is we can implement the m f(x) is

$$f(\mathbf{x}) = f^{(i)}(\mathbf{x}) \vee f^{(2)}(\mathbf{x}) \vee \cdots \vee f^{(n)}(\mathbf{x})$$

equivalent to M f(x) 's

F(x)

Note: This approach

- * Reduces the problem of evaluating F(x) to bitwise V, A, 7
- * We have implicitly used COPY
- * These gates suffice to implement any computation

Conclusion: The following make up a Universal Gate Set

Note: Universal gate sets are not unique

Example of a simpler Set:

NAND, COPY

- Note: This approach
- ★ Reduces the problem of evaluating F(×) to bitwise ∨, ∧, ¬
- * We have implicitly used COPY
- * These gates suffice to implement any computation
- **<u>Conclusion</u>**: The following make up a Universal Gate Set

OR, AND, NOT, COPY

Note: Universal gate sets are not unique

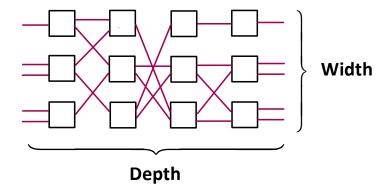
Example of a simpler Set:

Circuit Complexity

(Pick a universal gate set)

Central Question: How hard is it to solve **PROBLEM**?

* One measure is the size of the smallest circuit that solves it



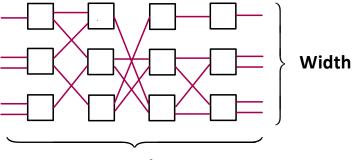
<u>Circuit Complexity</u>

(Pick a universal gate set)

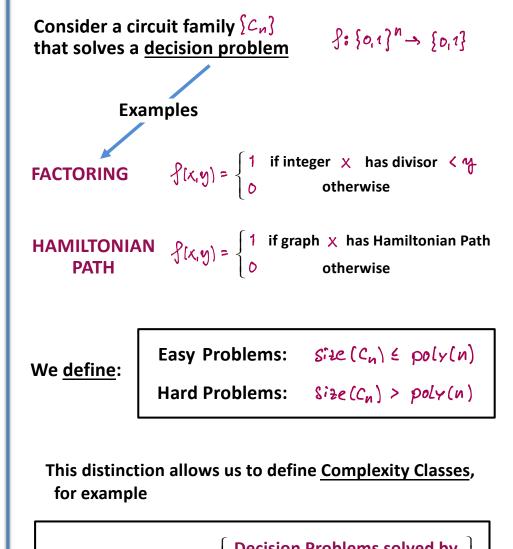
<u>Central Question</u>: How hard is it to solve **PROBLEM**?

* One measure is the size of the smallest circuit that solves it

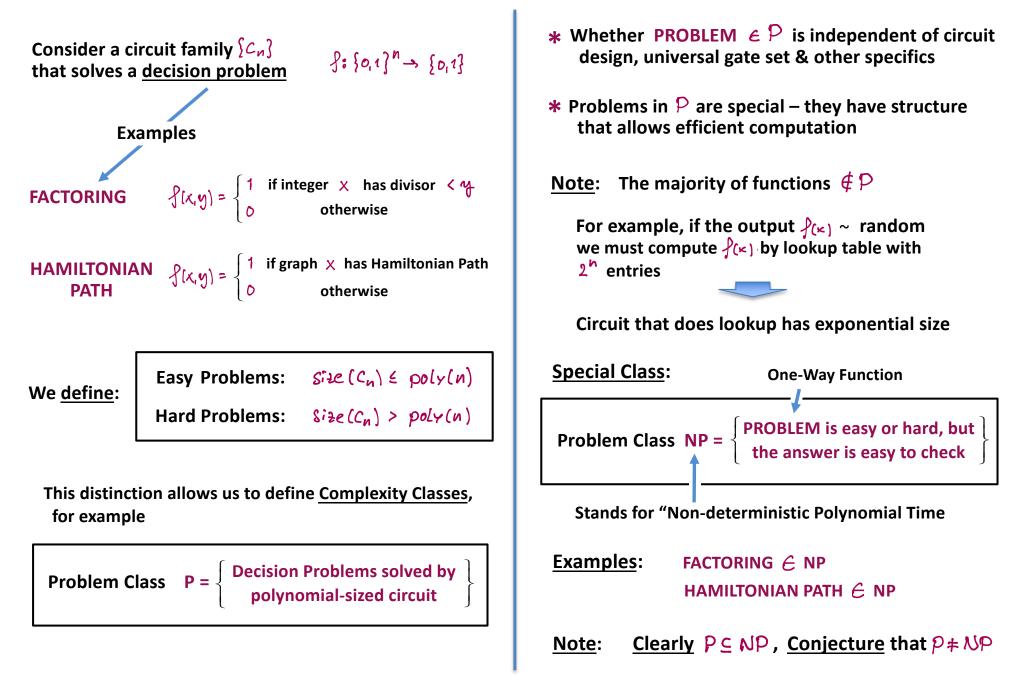
Size = Width x Depth



Depth



Problem Class P =



* Whether **PROBLEM** ϵ **P** is independent of circuit design, universal gate set & other specifics

 Problems in P are special – they have structure that allows efficient computation

<u>Note</u>: The majority of functions $\notin P$

For example, if the output $f(\kappa) \sim$ random we must compute $f(\kappa)$ by lookup table with 2^{h} entries

Circuit that does lookup has exponential size

Special Class:

One-Way Function

Problem Class NP = PROBLEM is easy or hard, but the answer is easy to check

Stands for "Non-deterministic Polynomial Time

<u>Note</u>: <u>Clearly</u> $P \subseteq NP$, <u>Conjecture</u> that $P \neq NP$

Special Problem: CIRCUIT-SAT E NP

Input = Circuit w/n gates, m input bits Problem = is there an m-bit input w/output = 1

 $f(c) = \begin{cases} 1 & \text{if } \exists x^{(m)} & \text{so } c(x^{(m)}) = 1 \\ 0 & \text{otherwise} \end{cases}$

Easy to check solution because if we have the input circuit C we can run it with the input $x^{(m)}$ and determine if it evaluates to 1.

<u>Cooks Theorem</u>: Every PROBLEM \in NP is polynomially reducible to CIRCUIT-SAT

Special Problem: CIRCUIT-SAT E NP

Input = Circuit w/n gates, m input bits Problem = is there an m-bit input w/output = 1

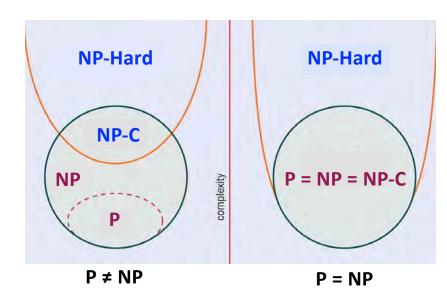
$$\mathcal{J}(C) = \begin{cases} 1 & \text{if } \exists x^{(m)} \text{ so } C(x^{(m)}) = 1 \\ 0 & \text{Otherwise} \end{cases}$$

Easy to check solution because if we have the input circuit C we can run it with the input $x^{(m)}$ and determine if it evaluates to 1.

<u>Cooks Theorem</u>: Every PROBLEM E NP is polynomially reducible to CIRCUIT-SAT

Complexity Hierarchy

- **★** <u>Conjecture</u>: P ∈ NP
- *** 3** Problems in NP that are neither P or NPC
- * NPI: Problems of intermediate difficulty
- ***** Conjecture: Factoring E NPI

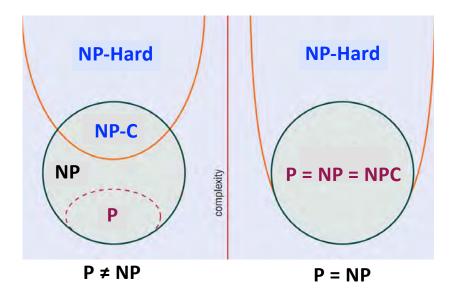


Takeaway Message

- * Complexity theory is a rich field with many known complexity classes
- * Many foundational conjectures remain unproven
- * As we will see, switching to Quantum Circuits changes things

Complexity Hierarchy

- * <u>Conjecture</u>: P E NP
- * 3 Problems in NP that are neither P or NPC
- * NPI: Problems of intermediate difficulty
- * Conjecture: Factoring E NPI



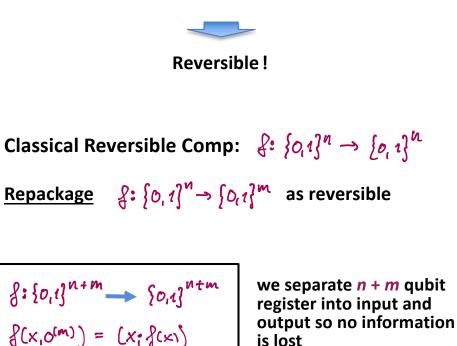
Takeaway Message

- Complexity theory is a rich field with many known complexity classes
- * Many foundational conjectures remain unproven
- As we will see, switching to Quantum Circuits changes things

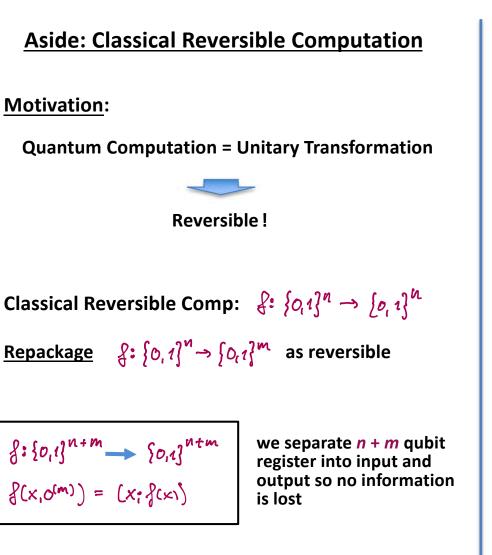
Aside: Classical Reversible Computation

Motivation:

Quantum Computation = Unitary Transformation

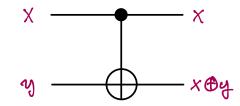


Note: Not all 1 & 2-bit gates are reversible, e.g., AND, OR, ERASE



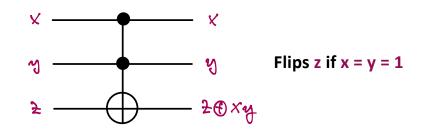
Note: Not all 1 & 2-bit gates are reversible, e.g., AND, OR, ERASE

Example of reversible gate: XOR (CNOT)



Note: One can show that 1 & 2 bit reversible gates are non-universal – they can only do linear maps between input and output.

Toffoli Gate: Example of universal 3-bit gate

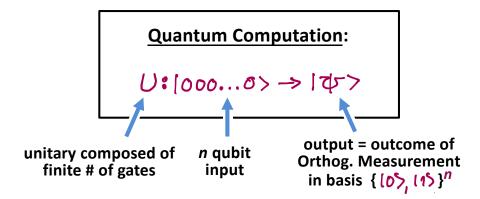


- Can show we can build a circuit to compute any reversible function using only Toffoli gates
- * <u>Lesson</u>: The nature of universal gate sets depends on the nature of the transformations done by the device at hand

Quantum Circuits

<u>Classical Computer</u> = finite set of gates acting on bits

Quantum Computer = finite set of <u>quantum gates</u> acting on <u>quantum bits</u>



Note:

* The Hilbert space of the Quantum Computer has a preferred decomposition into tensor producs of low dimensional spaces (qubits), respected by gates which act on only a few qubits at a time.

- This helps establish notion of Quantum Complexity

 Decomposition into subsystems and local manipulations means gates act on qubits in a bounded region. * It is suspected, but not proven, that the power of Q. C. derives from this decomposition:

N qubits -> 2^{h} dimensional \Re resource grows $\sim 2^{h}$

- <u>Unitaries</u> form a continuum, but we restrict to <u>discrete gate sets</u>. This is necessary for <u>Fault Tolerance</u>
- * <u>Quantum Gates</u> could be Superoperators, and readout could be <u>POVM's</u>

However:

we can simulate Superoperators as unitaries POVM's as Orthog. Meas

Our simpler conceptualization is general

* It is suspected, but not proven, that the power of Q. C. derives from this decomposition:

 \aleph qubits -> 2^{\aleph} dimensional \Re resource grows $\sim 2^{\aleph}$

- <u>Unitaries</u> form a continuum, but we restrict to <u>discrete gate sets</u>. This is necessary for <u>Fault Tolerance</u>
- * <u>Quantum Gates</u> could be Superoperators, and readout could be <u>POVM's</u>

However:

we can simulate Superoperators as unitaries POVM's as Orthog. Meas

in larger 🖁

Our simpler conceptualization is general

★ Final <u>readout</u> could be collective or in a basis
≠ the standard logical basis →

Unitary maps to standard basis $\{[0, [1])^n$ with overhead included in complexity

- * We could do <u>measurements during computation</u>, then condition later steps on the outcomes. But one can show the same results can be achieved by measuring at the end of the computation
 - <u>In practice</u> measurement during computation is essential for <u>error correction</u>

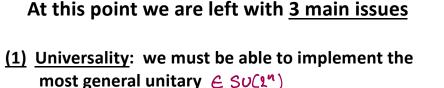
<u>Note</u>: None of the above changes notion of complexity

★ Final <u>readout</u> could be collective or in a basis
≠ the standard logical basis →

Unitary maps to standard basis $\{[0, [1,]^n \}\}^n$ with overhead included in complexity

- We could do <u>measurements during computation</u>, then condition later steps on the outcomes. But one can show the same results can be achieved by measuring at the end of the computation
 - <u>In practice</u> measurement during computation is essential for <u>error correction</u>

Note: None of the above changes notion of complexity



group of unitaries in $\mathcal{X}_{\mathcal{A}}$ Dim $\mathcal{X}_{\mathcal{A}} ^{n}$

 \rightarrow Circuit of chosen gates must approx. any $\cup \in SU(2^n)$

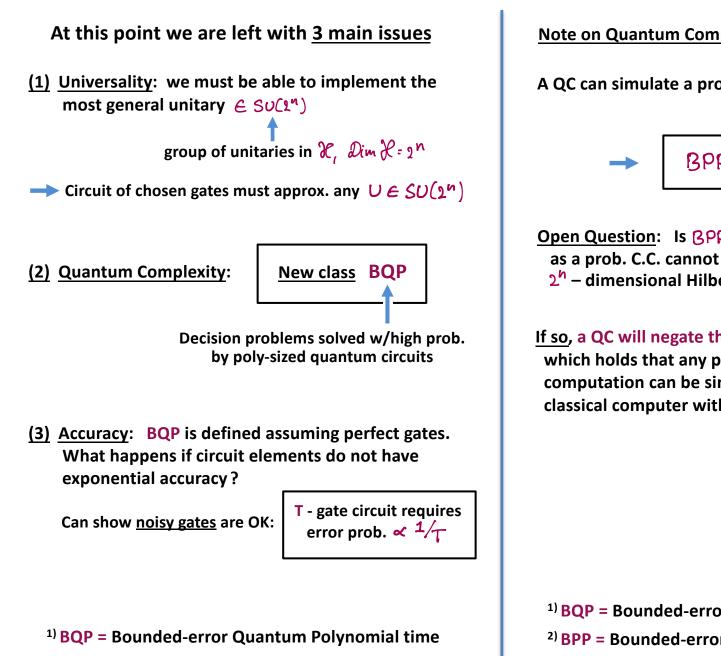
Decision problems solved w/high prob. by poly-sized quantum circuits

(3) <u>Accuracy</u>: **BQP** is defined assuming perfect gates. What happens if circuit elements do not have exponential accuracy?

Can show <u>noisy gates</u> are OK:

T - gate circuit requires error prob. $\propto \frac{1}{T}$

¹⁾ **BQP** = Bounded-error Quantum Polynomial time



Note on Quantum Complexity:

A QC can simulate a probabilistic classical computer (most general class)

BPP2) ≤ BQP

Open Question: Is $BPP \neq BQP$? Seems reasonable, as a prob. C.C. cannot easily simulate QM in a 2^{h} – dimensional Hilbert space.

If so, a QC will negate the Strong Church-Turing Thesis which holds that any physically reasonable model of computation can be simulated on a probabilistic classical computer with only polynomial slowdown.

¹⁾ BQP = Bounded-error Quantum Polynomial time ²⁾ BPP = Bounded-error Probabilistic Polynomial time