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Quantum error correction (QEC) will be essential to achieve the accuracy needed for quantum
computers to realise their full potential. The field has seen promising progress with demonstrations
of early QEC and real-time decoded experiments. As quantum computers advance towards demon-
strating a universal fault-tolerant logical gate set, implementing scalable and low-latency real-time
decoding will be crucial to prevent the backlog problem, avoiding an exponential slowdown and
maintaining a fast logical clock rate. Here, we demonstrate low-latency feedback with a scalable
FPGA decoder integrated into the control system of a superconducting quantum processor. We
perform an 8-qubit stability experiment with up to 25 decoding rounds and a mean decoding time
per round below 1 µs, showing that we avoid the backlog problem even on superconducting hardware
with the strictest speed requirements. We observe logical error suppression as the number of de-
coding rounds is increased. We also implement and time a fast-feedback experiment demonstrating
a decoding response time of 9.6 µs for a total of 9 measurement rounds. The decoder throughput
and latency developed in this work, combined with continued device improvements, unlock the next
generation of experiments that go beyond purely keeping logical qubits alive and into demonstrating
building blocks of fault-tolerant computation, such as lattice surgery and magic state teleportation.

I. INTRODUCTION

Quantum computers have the potential to perform
computations that are beyond the capabilities of clas-
sical computers [1, 2]. However, various quantum algo-
rithms that offer an advantage over classical algorithms
will require hundreds of qubits and over a billion oper-
ations [3–6], which are prone to errors. To combat the
noise and unlock the potential of such algorithms, quan-
tum error correction (QEC) will be necessary. QEC en-
codes the information we want to protect by distribut-
ing it across multiple qubits and repeatedly generating
data characterising quantum errors [7–9]. Classical algo-
rithms, known as decoders, use this data to identify er-
rors that occurred during quantum computation. At low
enough physical error rates, QEC suppresses errors when
executing quantum algorithms, offering a path towards
practical quantum computation. However, QEC codes
alone cannot implement a universal and transversal gate
set [10]. Leading proposals for implementing non-Clifford
gates require logical branching – a logical operation con-
ditional on a corrected observable, which is computed by
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combining the measured value of the observable and the
logical correction returned by the decoder. For exam-
ple, on the surface code [11–13], a logical T gate can be
implemented via teleportation and magic state injection
[14–16], which requires a conditional logical S gate. Since
logical branching happens during circuit execution and
depends on the decoding result, this places throughput
and latency requirements on the decoding process.

The rate at which the decoder processes data (the
throughput) needs to be greater than the rate at which
data is generated, which on superconducting devices can
be as fast as one data extraction round per 1 µs [17–20].
This is necessary to avoid the backlog problem [7], i.e.,
an exponential slowdown of the quantum computation
due to a growing backlog of data at each decoding iter-
ation. High throughput can be achieved both with fast
decoders and by parallelizing the decoding workload over
many decoder threads [21–25]. However, parallelization
strategies will be limited by [21] a second key parame-
ter: the full decoding response time, which is the time
between the final data extraction round and the appli-
cation of a logical conditional gate. This response time
includes the decoding time as well as the communication
and control latency times to send the data to and from
the decoder. This parameter can be a significant speed
bottleneck for operations involving logical branching such
as logical non-Clifford gates on surface codes [14–16]. As
a result, it directly affects the logical clock rate (i.e., the
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FIG. 1. Integration of a hardware decoder into a control system. (a) Sketch of the Ankaa-2 quantum processing unit
(QPU) and control system architecture with the integrated FPGA decoder. Inter-unit latencies are denoted with worst-case
values where measured. A (in black): Delay between readout transmit and readout receive (approx. 500 ns). This delay
contributes to overall latency but not to inter-shot or inter-readout delay; B (in yellow): Time required for readout receiver
to generate a classified result, convert to intra-unit message, and serialize to the low-latency results crossbar (120 ns); C (in
yellow): Time required for transmission from readout receiver to low-latency results crossbar (120–160 ns); D (in black): Time
required to handle result message and prepare for broadcast (40 ns); E (in teal): Time required to transmit from low-latency
results crossbar to internal controller option cards (120–160 ns), with additional time for readout-to-sequencer logic to send
classified results to sequencers, within each card (40–90 ns); F (in black): Inter-node delay time for broadcasting between
control system chassis (240–260 ns). (b) Mapping of Ankaa-2 sublattice to readout units. Each on-chip multiplexed readout
feedline is associated with separate readout-RX and readout-TX gate cards. Because of where these qubits are located on their
respective readout feedlines, the sublattice [Q36, Q37, Q38, Q43, Q44, Q45, Q50, Q51, Q52] corresponding to the stability
experiment (shown in background and details in Section II) falls across six different readout TX/RX hardware regions, marked
with grey rectangles.

inverse of the time required to perform a single logical
non-Clifford gate), another QEC metric that determines
the execution speed of fault-tolerant algorithms. Reduc-
ing both the decoding time and the communication and
control latency to minimize the full decoding response
time is key to ensure that complex quantum algorithms
are executed within reasonable times. For example, when
estimating that 2048-bit RSA integers can be factored in
8 hours using 20 million noisy superconducting qubits,
the authors assume a full decoding response time within
10 µs [3]. To ensure fast decoding response time it is
important to decode in real time, meaning that data is
passed to the decoder and processed as soon as it becomes
available. This contrasts with offline decoding, where the
decoding can be performed at any time after the data has
been collected. Real-time decoding has been experimen-
tally demonstrated but with decoding response times far
exceeding the 10 µs goal [25, 26] or using an unscalable
lookup table approach [26–29].

In this work, we present a real-time decoded QEC ex-
periment on 8 qubits with logical branching that mea-
sures the full decoding response time to be 9.6 µs, in-
cluding 6.5 µs decoding time and 3.1 µs communication

and control latency times, per 9 measurement rounds.
We achieve this by decoding with a scalable FPGA im-
plementation of a Collision Clustering decoder [30], inte-
grated into Rigetti’s Ankaa™-2 superconducting device’s
control system (Fig. 1). We demonstrate decoding times
per QEC cycle faster than the 1 µs threshold for gener-
ating measurement data on a superconducting qubit de-
vice, ensuring the backlog problem is avoided, and show
logical error suppression for a so-called stability experi-
ment [31] with up to 25 decoding rounds. The ability of
our decoding system to avoid the backlog problem and
maintain low-latency feedback opens the door for experi-
ments involving logical branching, which will be vital for
implementing a fault-tolerant universal gate set.

II. STABILITY EXPERIMENT ON A SURFACE
CODE

In this study, we focus on the stability experiment [31]
implemented with the rotated planar surface code, which
is one of the most promising QEC codes due to its high
threshold and nearest-neighbour hardware-connectivity

2



×

×

×

×

×

×

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

FIG. 2. Stability experiment spacetime diagrams and circuit. (a) 2 × 2 stability patch. White dots correspond to
data qubits; black dots correspond to ancilla qubits used to measure the stabilizers. Green coloured half-disks are weight-2
Z-stabilizers, and the orange square is a weight-4 X-stabilizer. The dotted lines indicate the hardware connectivity needed to
execute a stability experiment. (b–d): Spacetime diagrams for (b) a stability experiment, (c) lattice surgery and (d) logical
patch moving. Orange sheets represent locations where errors can flip the value of a logical observable; green sheets represent
places where an error can cause an isolated defect, therefore allowing error strings to terminate; the dashed line shows an
example string of undetectedable errors that flip the logical observable. The stability experiment is also part of the lattice
surgery and logical patch moving routines, as highlighted by the dark sheets in (c) and (d). To preserve the observable in space,
it is measured r times. (e–j): Gate layers applied during the 8-qubit stability experiment, where the operations in (e) prepare
the data qubits in the initial state, in (f–i) map to ancilla qubits the weight-2 Z-stabiliser values and in (j) measure the weight-2
Z-stabiliser values by measuring the ancilla qubits. The qubit placement matches the one shown in Fig. 1(b). Black edges show
the qubit hardware connectivity. Edges overlaid with dark green indicate a CZ gate. Single-qubit gates are depicted as green
boxes with labels indicating the applied gates. Measurement and qubit idling are denoted by M and I, respectively. The black
dot corresponds to the qubit not used in the 8-qubit stability experiment. Gate layer (e) is only performed at the beginning
of the experiment, while layers (f–j) are repeatedly executed and correspond to a single syndrome extraction round. Note that
ancilla qubits are not reset between rounds. Gate layers (e), (f) and (i) are executed in ∼ 40 ns, (g) in ∼ 176 ns, (h) in ∼ 112 ns
and (j) in ∼ 948 ns with an additional 336 ns ring down time. A single QEC round therefore takes approximately 1.7 µs.

requirements [11–13]. The practical implementation of
fault-tolerant gates on the surface code has also been ex-
tensively studied and developed [16, 32–35]. To realize
a QEC protocol, Pauli operators called stabilizers are
repeatedly measured to detect physical errors. For the
rotated surface code, the stabilizer set consists of weight
2 or 4 tensor products of X or Z operators arranged on
a 2D square lattice of qubits. A detector is a product
of stabilizer measurements, whose value is deterministic
in the case of no errors [36]. For example, we typically
assign a detector to the product of consecutive measure-
ments of the same stabilizer. A detector whose value has
been flipped from the one expected in the case of no er-
rors is referred to as a defect. Therefore, defects signal
the presence of errors. The defect rate is the probability
of observing a defect. A syndrome is the set of values of
detectors observed during an experiment.

A stability experiment [31] tests the capability of a
quantum processing unit (QPU) to preserve an observ-
able in space by correctly measuring products of stabiliz-
ers (Fig. 2(a,b)). Surface code operations such as lattice
surgery [32, 37] (Fig. 2(c)), logical qubit patch movement
[16] (Fig. 2(d)) or the logical Hadamard gate [38, 39] all

involve measuring products of stabilizers. In these ex-
amples, incorrectly measuring the stabilizer product can
introduce a logical error. For instance, in lattice surgery,
this stabilizer product determines the logical branching
decisions when performing non-Clifford gates, with a log-
ical error meaning the wrong branch is followed. The
stability experiment [31] verifies the ability to protect
against these logical errors and in this work acts as a
smaller-scale simulation of logical branching experiments.
Such an experiment on a surface code-like patch is per-
formed with an over-complete set of stabilizers whose
product is equal to the identity, yet not assigned as a
detector. We will refer to this product of stabilizers as
a logical observable [36]. In the absence of errors, the
logical observable is necessarily measured as +1. This
means that we can verify the ability of a QEC scheme to
correctly deduce whether the logical observable has been
flipped. For a stability experiment at low enough physi-
cal error rates, the logical error probability is suppressed
as the number of decoding rounds is increased.

In this work, we focus on real-time decoding of a 2× 2
stability experiment only measuring an overcomplete set
of 4 stabilizers of Z ⊗ Z form, and omitting the single
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X⊗X⊗X⊗X stabilizer that plays no role in decoding.
This omission simplifies the syndrome extraction circuit
and leads to improved logical error rates. We refer to
this experiment as the stability-8 experiment. Fig. 2(e)
shows the data qubit preparation at the start of the ex-
periment. To obtain a single round of syndrome data, we
use the syndrome extraction circuit shown in Fig. 2(f–j),
where steps (f–i) map the product of stabilizers to the
ancilla qubits, which are then measured in step (j). The
measurement outcomes are aggregated to pre-defined de-
tector outcomes, which are inputs to the decoder.

III. INTEGRATING AN FPGA DECODER IN
THE ANKAA-2 CONTROL SYSTEM

We decode with an FPGA decoder integrated into the
Ankaa-2 control system (more details on the integration
work are given in Methods). Ankaa-2 is a superconduct-
ing transmon qubit device, with 84 qubits arranged on
a square lattice, and two-qubit gates implemented via
tunable couplers [40–42] (see Methods for details on the
Ankaa-2 device). The decoder we use is an FPGA imple-
mentation of a Collision Clustering decoder [30], which
achieves the same logical fidelities as the Union Find al-
gorithm [43]. Modifications were made to the FPGA de-
coder of Ref. [30] to allow for decoding the stability ex-
periment and syndrome extraction circuits without mid-
circuit reset operations [44–46]. The FPGA decoder is
optimised for speed and scalability to larger systems. The
decoder executes at 156.25 MHz frequency on one of the
sequencers responsible for gate pulses on the Ankaa-2
control system (see Methods for more details). It has
also been verified for operating at 400 MHz frequency,
allowing room for further speed improvements compared
to those demonstrated here.

The communication between the FPGA decoder and
the rest of the control system is performed via custom
assembly language-level instructions. We built a proto-
type compiler that receives a pyQuil [47] program and
adds the necessary instructions to perform real-time de-
coding and store the results (see Supplementary Infor-
mation, Section D for more details). Our compiler can
also merge two pyQuil programs into a logical branch-
ing experiment, where the second program is executed
conditionally based on a real-time decoded measurement
outcome obtained during the first program.

The stabilizer measurement outcomes are automat-
ically passed to the decoder during circuit execution.
Once the decoder receives the allocated number of mea-
surements, the measurements are converted to a syn-
drome and decoding is performed. The decoded result,
along with data storing the decoder speed and status,
is written to allocated registers. In a logical branching
experiment, the FPGA decoder’s result is communicated
in real time to gate sequencers which then, conditionally
on the received result, execute the second program.

IV. LOGICAL ERROR PROBABILITY
SUPPRESSION

We perform stability-8 experiments on the Ankaa-2 de-
vice for varying numbers of QEC rounds, corresponding
to 5 to 25 decoding rounds, and decode in real time. We
repeat each experiment 105 times to obtain the proba-
bility of a logical error persisting at the end of the QEC
routine. In Fig. 3(a), we show that on Ankaa-2 using
real-time FPGA decoding the physical error rates are low
enough to demonstrate logical error probability suppres-
sion with an increasing number of decoding rounds, which
is the signature of a successful stability experiment. The
logical error probabilities decrease from (28.1 ± 0.1)%
at 5 decoding rounds to (20.5 ± 0.1)% at 25 decoding
rounds. We also decode offline with minimum-weight
perfect matching (MWPM) [48] and belief-matching [49]
decoders (see Methods for more details) and show in
Fig. 3(a) that when using hard measurement data (i.e.,
the readout signal classified as “0” or “1”), the real-time
FPGA decoder results are comparable to these decoders.
We also explore decoding with MWPM decoder using soft
measurement information (i.e., the in-phase and quadra-
ture components of the raw readout signal) [50] and a
decoding graph constructed with the pairwise correla-
tion method [45, 50–53] (see Supplementary Information,
Section C). This decoder achieves the lowest logical error
probability, (17.6± 0.1)%, as using soft information and
pairwise correlation methods gives the decoder more de-
tailed information, resulting in higher accuracy decoding.
In the future, we expect FPGA decoders to be adapt-
able so that soft information with the pairwise correlation
method could also be used with FPGA decoding.

We observe fluctuations in the logical error probabil-
ity estimates with varying numbers of decoding rounds,
relative to the expected decay; this is likely due to fluctu-
ations in device performance over time which have been
previously shown to occur in superconducting circuit de-
vices, such as fluctuations in the coherence times due to
two-level systems (TLSs) [54, 55]. Fig. 3(b) shows a slight
increase in defect rates as further measurement rounds
are performed, most likely due to a combination of leak-
age and heating effects. We believe the limitations on the
logical error probability reported here to be largely due to
the mid-circuit readout fidelity of the ancilla qubits and
the fidelity of the CZ gates that were available on the de-
vice; the Ankaa-2 processor design was not optimised for
these operations in particular. For a more detailed dis-
cussion of the device design and relevant error channels,
see Methods and Supplementary Information, Section A.

V. DECODING THROUGHPUT

It is necessary to ensure the decoder has a high enough
throughput to avoid the backlog problem [7, 21], which
arises when data is generated at a faster rate than it can
be decoded. If this is not the case, then, because each
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FIG. 3. Logical error probabilities and decoder timings. (a) Logical error probabilities for the stability-8 experiment
executed on the Ankaa-2 device as a function of number of decoding rounds. We plot logical error probabilities calculated
using the decoding results of the real-time FPGA decoder as well as the following offline decoders – minimum-weight perfect
matching (MWPM), belief-matching and a variation of MWPM that uses soft information and the pairwise correlation method
to construct the decoding graph. Error bars show the standard error of the mean. Dashed lines are included to guide the eye.
(b) Defect rates as a function of decoding round for each of the four ancilla qubits, for a stability-8 experiment performed with
25 decoding rounds. Qubit IDs correspond to the layout shown in Fig. 1(b). (c) Mean decoding time per decoding round for the
stability-8 experiment, decoded using the real-time FPGA decoder operating at 156.25 MHz. Error bars are computed as the
standard error of the mean and are smaller than the graph point size. (d) Left axis, solid lines: Distributions of decoding times
per decoding round for stability-8 experiments performed with 9, 17 and 25 decoding rounds. Right axis, crosses: Logical error
probabilities as a function of decoding time. Repetitions of the stability experiment are placed according to their decoding time
in bins of width 100 ns, and each logical error probability is estimated as an average within a bin. Error bars are computed as
the standard error of the mean.

conditional operation needs to wait for the ever-growing
backlog of data to be decoded before it can be applied,
each subsequent conditional operation will be exponen-
tially slower, eventually halting the computation. On the
Ankaa-2 device, a single round of syndrome extraction
takes approximately 1.7 µs (see Fig. 2(f–j)). Other su-
perconducting devices have demonstrated a single round
of syndrome extraction of approximately 1 µs [17–20].
Fig. 3(c) shows that our mean decoding time per round
ranges from 0.44 µs when decoding 5 rounds to 0.79 µs
when decoding 25 rounds. These values remain below the
1 µs threshold for data generation on a superconducting
qubit device, providing strong evidence that the back-
log problem will be avoided when operated as a stream-
ing decoder [21–23]. The increase in decoding time per
round with more decoding rounds is due to the higher
noise in later rounds, leading to increased defect rates in

deeper circuits (Fig. 3(b)). As the device improves and
the heating and leakage effects are reduced, we expect
the mean decoding time per round to grow more slowly
as the number of decoding rounds increases. Simulations
of the FPGA decoder speed show that the decoding times
increase superlinearly with number of decoding rounds,
but it is known the scaling can be improved with fur-
ther optimizations [30]. In the future, we also expect
the FPGA decoder to be parallelised, further reducing
decoding times.

In Fig. 3(d), we examine the distribution of the decod-
ing times per round (solid lines) and group experiment
repetitions in 100 ns bins, based on their decoding time
per round, and plot these against the average logical error
probability of the experiments in the bins (crosses). We
observe that most of our decoding times are well below
1 µs per decoding round. Such experiments correspond
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to a high-likelihood of correctly decoding the syndrome.
A small proportion of experiment repetitions exceed the
1 µs threshold, most likely due to a higher number of de-
fects affecting those experimental runs, which slows down
the completion of the decoding. The data represented
by crosses indicate that such experiments are associated
with worse logical error probabilities.

For practical fault-tolerant computation, we will need
lower physical error rates to achieve much lower logical
error rates. Lower physical error will lead to lower de-
fect rates and therefore significantly reduce the decoding
times. There is also room to more than double the speed
of decoding reported in this work, since the FPGA de-
coder has been verified to be able to operate at 400 MHz,
instead of the 156.25 MHz frequency used in these exper-
iments.

VI. CONTROL AND COMMUNICATION
LATENCIES

We now focus on the full decoding response time, to
quantify the contributions of the communication and con-
trol latency in our system. We design an experiment that
serves as a stepping stone to logical conditional gates.
We perform a circuit that conditionally applies a physical
gate based on the outcome of decoding the stability-8 ex-
periment (see Fig. 4(a)). After the QEC experiment com-
pletes and the decoder has received the allocated num-
ber of measurement outcomes of the stability circuit, we
start the real-time FPGA decoder and wait for the result.
When the result is received, we conditionally apply an X
gate on the qubit controlled by the gate sequencer on the
same FPGA as the decoder. The qubit is read out after a
fixed delay, set longer than the worst recorded decoding
time (approx. Nrounds µs for an Nrounds experiment).

We measure the full decoding response time as a func-
tion of the number of QEC rounds (see Fig. 4(b)). Firstly,
we record the FPGA clock cycles on the control system
sequencer and the cycles on the decoder accelerator. We
note that while the majority of the full decoding response
time can be attributed to the decoding time for a larger
number of rounds, there is a significant additional la-
tency incurred by the control system delays. In particu-
lar, 1.4 µs is the time for the final readout results to reach
the decoder, with the remaining 1-1.5 µs (250−370 FPGA
clock cycles) consisting of additional control system logic:
collecting the measurements into packets to be sent to
the decoder, sending them via the WISHBONE bus (see
Section VIII B), receiving results and performing the con-
ditional logic (see Supplementary Information, Section
D). Furthermore, since the error bars for the timing of
the decoder and full control system logic closely match
in size, we conclude that the decoding time accounts for
the majority of the variance in the full decoding response
time.

To check that there are no additional unaccounted de-
lays, we also measure the full decoding response time by

using the qubit T1 time as a clock. The measurement
distribution after the fixed delay (see Fig. 4(a)) condi-
tional on the final QEC round readout is a function of
the full decoding response time, measurement fidelities,
and the qubit’s T1 time (see Supplementary Information,
Section E for the detailed derivation). Thus, by collecting
the relevant reference data immediately prior to running
the feedback experiment, we can estimate the delay ex-
perienced by the qubit (see Fig. 4(b)) which takes into
account any delays that might not be measured by the
control system clock. With this, we confirm that there
are no additional significant delays as the estimated full
decoding response time closely matches the one measured
by the control system clock.

For a 9-decoding-round experiment, we find the full
decoding response time to be 9.6 µs, including 6.5 µs
decoding time and 3.1 µs communication and control la-
tencies. Thanks to the FPGA implementation of our fast
decoder and its integration into the Ankaa-2 system, in
the small-distance studies reported in this work we keep
the full decoding response time within the order of d µs,
where d is the number of decoding rounds. Maintaining
this condition will be crucial when scaling up d, as it will
ensure that this response time will not be a critical limit-
ing factor for the logical clock speed when implementing
non-Clifford operations [21, 23].

VII. DISCUSSION

Real-time decoding had been previously demonstrated
using lookup table decoders on trapped-ion quantum
computers [26, 27], superconducting qubits [28] and a
neutral atom device [29]. The memory requirements for
lookup table decoders scale exponentially with the num-
ber of qubits in the code, meaning that this approach is
not feasible for practical fault tolerance, which will re-
quire larger codes [4–6, 16]. The Collision Clustering de-
coder implementation has been designed to be memory-
efficient, with simulations demonstrating that even for
distance-23 memory experiments, the decoder uses less
than 13 KB of memory [30].

Recently, the team at Google demonstrated real-time
decoding for the distance-5 memory experiment [25], util-
ising 54 qubits. In their experiment, the measurement
data is sent via Ethernet cable from their control system
to a software decoder. They demonstrate high through-
put, avoiding the backlog problem, by parallelizing de-
coding [21–23]. The reported decoding response time in-
cludes an average of 63 µs to process the final 10 QEC
cycle block. They require an additional 10 µs communi-
cation latency to input data to the decoder, and further
additional contributions that are not reported including
feedback communication latency. Overall, these numbers
are significantly slower than our full decoding response
time of 9.6 µs for a 9 decoding rounds experiment. How-
ever, we caution against a direct comparison given the
significantly different experimental conditions in which
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(a)

(b)

FIG. 4. Full decoding response time experiment. (a)
The experiment consists of a number of rounds of the stabil-
ity experiment. After the final readout, the data is sent to
the decoder, and a conditional X gate is applied to one of the
qubits as soon as decoding result is available in the control
system. The qubit is measured after some fixed delay. (b) Full
decoding response time measurements as a function of num-
ber of rounds. Total time measured by the control system
FPGA clock cycles (bars) consists of the decoding time mea-
sured by decoder onboard metric units (green), waiting for all
readouts to reach the sequencer with the decoder (pink), as
well as additional logic such as constructing syndrome packets
and sending them to the decoder, receiving the result and ap-
plying the conditional gate (orange). This is compared to the
delay measured from the qubit T1 time (blue points) in or-
der to assess any additional delays in the wiring that might be
unaccounted for by the control system (for details see Supple-
mentary Information, Section E). Error bars on bars are the
standard deviation of the decoder times distribution (green)
and the total control system time (orange) while the error
bars on the blue points are the standard error of the mean of
the delay measured by the qubit.

our team’s and Google’s experiments were conducted.
Our experiment utilises fewer qubits, while operating at
a higher noise regime. These conditions have opposite
effects on the decoding time, as the decoding time de-
creases with smaller code sizes but increases with higher
noise in the device. The performance of our FPGA de-
coder has been extrapolated via simulations to show that,
at a noise just below threshold for memory experiments
(p = 0.5%), the FPGA decoder will be able to maintain
a decoding time below 1 µs per round for memory ex-
periments with distances up to 11 [30]. This, combined

with the significant reduction of control and communica-
tion latencies achieved by integrating the decoder in the
QPU’s control system, suggests that our full decoding re-
sponse time will remain sufficiently fast to demonstrate
larger-scale QEC experiments [3]. We also suggest sev-
eral strategies for further reducing latency times as the
code size is increased. Firstly, readout propagation can
be reduced by having a more direct line of communica-
tion between readout sequencers and the decoding stack
through a standardized interface. Secondly, reordering
and packing classified measurements before sending them
to the decoder can take up to ∼400 ns at 9 rounds. In
the future, we foresee that such commonly used function-
ality will have to be offloaded to custom hardware logic
attached to the decoder. With these, we do not expect
the control system latencies to be a major contributor to
the full decoding response time.

VIII. CONCLUSION

The experimental results presented demonstrate an im-
plementation of a decoding protocol that enables next
generation QEC experiments requiring logical branch-
ing. We report mean decoding times per round under the
1 µs threshold, avoiding the backlog problem. The fast-
feedback experiment shows that integrating an FPGA
decoder into the Ankaa-2 control system ensures a low-
latency full decoding response time of 9.6 µs with a total
of 9 decoding rounds for an 8-qubit experiment.

We show that the logical error probabilities are sup-
pressed in a stability-8 experiment as the number of de-
coding rounds increases. However, practical fault toler-
ance will require lower error rates than those reported
here. Fine-tuning the readout pulses to be faster and
higher fidelity will be essential to achieving this. While
resets are not available it will also be beneficial to tune
the readout pulses to better preserve the classified state of
the qubits. Using resets should improve the results [44]
(see exploration of this in Supplementary Information,
Section F). Another primary focus should be to increase
the ratio of qubit coherence to two-qubit gate duration,
along with reducing leakage and other coherent errors.

In the future, fault-tolerant quantum algorithms that
have the potential to outperform classical algorithms will
require codes utilizing a large number of operations [3–
6, 16]. To support this, the FPGA decoder should be up-
dated to be a streaming decoder [21–23]. To improve the
accuracy of decoding results, we expect future FPGA im-
plementations to enable updates to the decoding graph in
real time, allowing for soft-information, leakage-aware de-
coding [56] or correlated decoding [57]. Combining such
advances to decoding and improvements to the device
with the methods developed in this work will pave the
way for logical operations such as magic state teleporta-
tion, enabling fault-tolerant quantum algorithms.
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METHODS

A. Description of control system

The Rigetti control system is built around a config-
urable card cage chassis. Each physical card in a chassis
has inputs or outputs targeting specific RF bands and
features high-speed digital-to-analog (DAC) and analog-
to-digital (ADC) converters that interface with a Kintex-
7 FPGA. The FPGA designs generate (or receive) con-
trol signals using one or more sequencers, each of which
consist of a dedicated processor, waveform scheduler,
and waveform generator. Experiments created in pyQuil
are compiled into program binaries, consisting of wave-
forms and instructions in a proprietary assembly lan-
guage, which are loaded into each relevant sequencer’s
memory by the control system before execution.

The assembly language allows for communication with
external modules implemented in the FPGA design via
instructions that interact with I/O ports. Additionally,
the sequencer assembly language includes instructions
which load classified results into a sequencer’s memory
so that it can be used by a program.

In order to support experiments that require real-time
results, the control system features a low-latency network
that distributes each qubit’s most recently classified re-
sult when it is published to this network, as part of the
readout capture pipeline. Onboard-classified data prop-
agates through the control system with a worst case la-
tency time that is calculated beforehand and used when
constructing programs to ensure valid results have been
received.

B. Real-time FPGA decoder integration

When integrating the FPGA decoder and control sys-
tem, we selected the FPGA design with the lowest re-
source utilization, the gate drive card design, which is re-
sponsible for generating microwave pulses to enact single-
qubit gates. We used a version of the FPGA decoder
featuring a 32-bit WISHBONE interface for communi-
cation. We integrated the decoder into the design by
adding I/O ports to the gate drive pulse sequencer that
initiate READ and WRITE clock cycles over the WISH-
BONE interface. Via these I/O ports, a sequencer pro-
gram was able to read from, and write to, any of the
decoder’s addresses in order to perform actions such as
writing the syndrome register, starting the decoding pro-
cess, and reading the decoder result. Signals from other
ports on the decoder core, such as the decoder’s status
bitfield, were also made available to sequencer programs
via an I/O port.

An experiment using an 8-qubit system requires more
than one control system chassis. We selected one chas-
sis to be the hub of a star network and connected all
other relevant chassis to it, ensuring the lowest achiev-
able results propagation time by limiting the inter-chassis

communication to a single hop. Interactions with a de-
coder were handled by a gate drive sequencer on the hub
chassis, which had access to the classified results from
the other chassis.

While the sequencer processor clock operates at
250 MHz, we opted to drive the FPGA decoder using the
156.25 MHz clock already present in the design to sim-
plify the timing requirements. We added clock-crossing
logic to enable I/O port instructions coming from the
sequencer clock domain to result in WISHBONE trans-
actions in the decoder clock domain. Signals received
directly from ports on the decoder (e.g., the decoder sta-
tus bits) were also transitioned to the sequencer clock do-
main using clock-crossing logic. In the future we intend
to use a single clock domain for the sequencer processor
and decoder.

C. Ankaa-2 device specifications

The Ankaa-2 device is a superconducting circuit com-
posed of 84 qubits and 149 tunable couplers, all of which
are composed of statically capacitively coupled tunable
transmons. Each qubit transmon is also coupled to a
coplanar waveguide resonator for readout. The device is
arranged in a square array with 7 columns and 12 rows of
qubits, with a tunable coupler between each neighboring
qubit pair, two readout feed lines coupled to each column
(in groups of 6), charge drive lines coupled to each indi-
vidual qubit, and flux lines coupled to the SQUID loop
within each individual transmon.

The selected sublattice used when executing the
stability-8 experiments was composed of qubits 36, 37,
38, 43, 45, 50, 51, and 52. Qubits 36, 38, 50 and 52
were used as the ancilla qubits, and had a median mea-
surement fidelity of 93.3%. The median readout fidelity
across the entire Ankaa-2 device was 94.7% at this time
but, as the ancilla qubits were repeatedly measured dur-
ing the experiment, they required optimisation for mid-
circuit readout (discussed in Supplementary Information,
Section A), which is the main cause of their reported
readout fidelity being below the device median for the
values reported here. The single-qubit gates across the
sublattice had a median isolated randomized benchmark-
ing fidelity of 99.86%, and the CZs had a median inter-
leaved randomized benchmarking fidelity of 97.3% (see
Supplementary Information, Section A for a summary
of the associated error budget). The median two-qubit
gate length was 104 ns, and measurement pulse length
was 964 ns with additional 336 ns ring down time. The
sublattice had a median T1 of 13.2 µs and a median T2
of 10.6 µs.

D. Software decoding

In addition to decoding in real time with the FPGA
decoder, we also obtain decoding results on the same
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data with offline MWPM [48] and belief-matching [49]
decoders. We use implementations in PyMatching 2
[48] and BeliefMatching [49] for the MWPM and belief-
matching decoders, respectively. We use Stim [36] to
set up the circuits that represent our experiments and
use these circuits to initialise the software decoders.
For belief-matching the belief propagation stage uses
the product-sum method with maximum of 5 iterations.
Note that in our experiments we do not observe any im-
provement when decoding with belief-matching. This
is because our decoding graph does not contain hyper-
edges, as we do not measure the middle stabilizer in the
stability-8 experiment. Belief-matching tends to be bene-
ficial when hyperedges are present in the decoding graph.
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Appendix A: Targeted calibration of Ankaa-2 for the stability circuits

The design of the Ankaa-2 circuit Hamiltonian is optimized towards the application of iSWAP gates. Reconfigura-
tion of the steady state qubit frequencies was required across a sublattice to support the CZ gates used in this work.
We compute that the primary source of CZ errors comes from Tϕ errors, with additional contributions from T1 errors,
higher-state leakage, and swap angle errors (see Fig. 1(a)). The selected sublattice used in the experiments (qubits
36, 37, 38, 43, 45, 50, 51 and 52) was selected based on the ability to enable the necessary resonances between |02〉 (or
|20〉) and |11〉 across the contained qubit pairs, and the performance of the sublattice while in such a configuration.
Measurement operations on this chosen sublattice were specifically optimized towards the mid-circuit use case. For
example, the readout pulses that were optimised for maximum classification fidelity when positioned at the end of a
circuit were observed to cause a large accumulation of leakage to the second-excited state of the repeatedly measured
transmons when running the stability circuits over multiple rounds. Reducing the amplitude of readout pulses below
an experimentally deduced threshold resulted in a large increase in the probability that the state of the measured
qubit was preserved in the detected state after the readout process (see Fig. 1(b)). Other considerations included
shortening the duration of the readout process by approximately a factor of two compared to standard circuit-end
readout, as well as specifically optimizing the ancilla qubit readout pulse parameters for maximum fidelity when
performed simultaneously.
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(a) (b)

FIG. 1. Error budget for CZ gates and measurement-induced leakage experiment. (a) Tϕ and T1 errors are
calculated using coherence times measured at both the gate operating point and the qubit idling points (relevant during the
short, idle padding delays that play around each gate) [1]. Higher-state leakage error is calculated via the leakage randomized
benchmarking protocol [2], using three-state readout to analyze the decay of population in the computational subspace over
the course of an interleaved RB experiment. Swap angle error is error attributable to off-target values of θ in the fSIM unitary
defined in [3] – for an ideal CZ, θ = 0. Ref. [3] also describes a series of Floquet calibration circuits, the first of which is used
here to measure θ for these CZ gates. Considering medians taken over the lattice, Tϕ contributes almost half of the measured
error, with the incoherent error comprised of Tϕ and T1 together representing approximately 70%. All together, these four
error channels account for a median 99% of measured error for these CZ gates. (b) Representative example of experimental
results detailing the dependence of measurement-induced leakage on readout pulse power, shown here for Qubit 52. The circuit
consists of an initial preparation of the target qubit in the excited state, before transmission of a test readout pulse, followed by
a sufficiently long delay for the resonator to be depopulated before a final measurement with a pulse previously and separately
optimized for three-state classification at the end of a circuit. The test readout pulse is the pulse under study, with the process
aiming to allow it to be improved for mid-circuit use in stability experiments. The resulting population of the target transmon
in each of its three lowest energy states at the end of the circuit is plotted here as a function of the amplitude of the test
readout pulse. At low amplitude, population remains largely in the first excited state, as desired, up to a threshold limited by
the classifier’s three-state confusion matrix. However, there exists an amplitude threshold above which the apparent population
rapidly begins to more evenly distribute across the three states. This phenomenon resembles the numerical results presented
in [4], which describes the process by which strong resonator drives can suddenly excite coupled transmon transitions to states
above their Josephson potential wells. For each ancilla qubit used in this study’s stability circuits, these threshold amplitudes
were measured and used as upper bounds in further parallel readout optimizations in order to ensure that each mid-circuit
measurement would avoid this error mechanism.

Appendix B: Decoding graphs

Fig. 2 shows the decoding graph used by the real-time FPGA decoder and software decoders to decode the stability-
8 experiment in this work. The FPGA decoder decoding graph does not use edge weights. For the software decoders
that do not use the pairwise correlation method, we use a circuit-level noise model to obtain the edge weights for the
decoding graph. Since we did not build a noise model tailored for Ankaa-2, we opted to use a standard noise model
used to model the noise in superconducting qubit devices. This model captures the fact that on superconducting
qubit devices the two qubit gates and measurements are typically noisier than single qubit gates. The noise model
we use is the same as in Ref. [5], from which we quote the noise channels applied for a fixed probability p = 0.03:

• Depolarisation of both qubits after each two-qubit gate with probability p.
• Depolarisation of each idle qubit and after each single-qubit gate, including measurement and reset

operations, with probability p/10.
• Measurement flip with probability p.

We decided to use p = 0.03 based on the median two qubit gate fidelities on Ankaa-2.
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FIG. 2. Stability experiment decoding graph. An example of the decoding graph for 8 rounds of syndrome measurements
(equivalent to 7 rounds of detectors). The odd layers are slightly offset so that the edges connecting layers two rounds apart
are visible. These edges arise since we are not using mid-circuit resets. The diagonal edges between layers are due to the errors
that can happen in the middle of the syndrome extraction circuit and are known as “hook” errors [6]. Boundary-adjacent nodes
are detectors that can be matched with a virtual boundary node, and in stability experiments such boundaries are at the top
and the bottom rather than on the sides.

Appendix C: Soft information decoding

In the the main text we report the lowest logical error probability when using MWPM software decoder that takes a
decoding graph from the pairwise correlation method and is dynamically updated with soft measurement information.
Here we describe how the soft measurement information is provided to this decoder.

The minimum-weight perfect matching (MWPM) decoder [7] operates on a graph representation of the decoding
problem, where detectors correspond to nodes, and possible error mechanisms correspond to edges. The probability of
an error mechanism pe is mapped to the weight of an edge via w(e) = − log(pe/(1−pe)), meaning that high-likelihood
errors have a low-weight edge in the decoding graph. By finding the lowest-weight perfect matching in the graph,
the MWPM algorithm effectively approximates the most probable errors that caused the observed defects. We set
the weights in the graph according to the pairwise correlation method [8, 9], which infers the probabilities of error
mechanisms based on the defect frequency in the experimental data. To further improve the accuracy of the decoder,
we use rich measurement information (soft information) from the qubit readout [10, 11] to dynamically update the
probabilities of the measurement error mechanisms in the decoding graph.

Soft information here refers to the integrated voltage z = (I,Q) from the measurement response of the readout res-
onator, where I and Q are the in-phase and in-quadrature components of the complex signal, respectively. The soft out-
come z is passed to a measurement classifier and converted to an outcome probability P (ẑ | z) corresponding to the pos-
sible measurement outcomes ẑ ∈ {0, 1}. The hard measurement outcomes are given by ẑ = argmax[P (0 | z), P (1 | z)].

To train the classifier, we perform a calibration run where we prepare and measure each transmon qubit in the
|0⟩- and |1⟩-states 5× 104 times. We leverage a linear discriminant classifier from the Python library scikit-learn
v1.3.2 [12] as our classifier, and use it to predict the measurement outcome probabilities P (0 | z) and P (1 | z) for
each soft measurement z in the experiment. By preparing an equal number of initial states |0⟩ and |1⟩ for the training
data set of the classifier, we ensure the prior probabilities of the two outcomes are P (0) = P (1) = 1/2. The outcome
probabilities are used to update the edge weights in the decoding graph according to

w(z) = − log

[
P (z | 1− ẑ)

P (z | ẑ)

]
, (C1)
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where we use Bayes’ theorem to get P (z | ẑ) = P (ẑ | z)P (z)/P (ẑ). We then use the MWPM decoder to decode the
hardened syndrome on the updated decoding graph to obtain our logical corrections. The results of this decoder, as
discussed in the main text, show a large improvement in the logical fidelity relative to other decoders that use hard
measurement data.

Appendix D: Detailed experiment workflow with real-time decoding and fast-feedback

The FPGA decoder is integrated into the Ankaa-2 control system. Tasks specific to decoding in real time and with
fast feedback are executed by interleaving the qubit operations of the stability-8 experiment with instructions written
in the control system’s proprietary assembly language, as shown in Fig. 3. Such tasks include management of the
measurement outcomes, communication with the decoder, and carrying out the fast-feedback operation.
The main experiment components are:

1. Initialise decoder. Writes to the decoder experiment features (e.g. number of rounds) and decoding configu-
rations (e.g. logical observable definition).

2. Perform round of gates & measurements. Executes a single QEC round of the stability-8 experiment.
All rounds are identical besides the last in which the data qubits are also measured. Mid-circuit measurements
are followed by ring-down delays (included in measurement times), which allow the resonators to decay back to
their ground state before the start of the following round [13].

3. Buffer measurement outcomes. Stores the outcomes of the latest measurement round in the decoder
sequencer’s memory. Even though buffering takes less than 0.1 µs, a 1.4 µs delay must take place between
measurement and buffering to allow for the measurements to propagate from the readout sequencers to the
decoder sequencer. To address this, buffering is swapped with the following round, enabling the readout state
to propagate in parallel with each QEC round and preventing the qubits idling mid-circuit. This instruction
swapping is applied to all mid-circuit rounds, ensuring that only the last round experiences an actual readout
state propagation delay. Note that while Fig. 3 does not reflect this instruction reordering, the overall duration
it shows for a given number of rounds is accurate.

4. Send measurements to the decoder. Collects, formats and writes all measurement outcomes to the decoder.
This consists of pushing each round’s buffer to the sequencer’s data stack, combining them into a series of 32-bit
binary strings and writing them sequentially to the decoder.

5. Decode. The decoder computes the syndrome from measurement outcomes and decodes it using the Collision
Clustering algorithm [5]. A write instruction to the decoder initiates decoding, followed by a polling of the
decoder’s status register, which stalls the program until decoding completes. The decoding result is a Boolean
describing whether the decoder computed that the physical errors flipped the stability experiment’s logical
observable.

6. Execute fast-feedback operation. Applies an X gate conditionally on the decoding result and measures the
qubit. The X gate is applied if the result is 1, otherwise the qubit is left to idle until measurement for a time
equal to the gate’s duration.

Appendix E: Full decoding response time experiment

As described in the main text, in addition to measuring the response time in the control system, we also measure
the delay to applying the conditional operation by considering its effect on the qubit T1 decay. This experiment allows
us to perform full end-to-end response timing purely based on the qubit’s physics. In the main text the results of
this experiment were acquired on a different day from the data measuring logical error probabilities and throughput
leading to a difference in total decoding times due to the variations in device performance and therefore defect rates.
The relevant part of the circuit and parameters are shown in Fig. 4(a).

First, we verify that indeed the conditional operation is applied correctly. We expect that if the decoding result
L is L = 0 then the first measurement M1 is equal to the second measurement M2; and if L = 1 then the first
measurement M1 is opposite to the second measurement M2. We can see that is indeed the case in Fig. 4(b), although
the distribution has significant noise due to multiple microseconds of qubit idling between the measurements.

Second, we derive three reference datasets to classify the qubit’s T1 time decay and measurement characteristics
(Fig. 4(d–f)). All reference data is acquired immediately prior to running the feedback experiment. To simplify the
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analysis, we assume that state initialisation and single-qubit operations are perfect as their fidelity is much higher
than the measurement fidelity. We calculate the qubit’s T1 decay by initializing the |1⟩ state and measuring after a
fixed delay t (see Fig. 4(d)). By fitting an exponential decay, we find

P(M = 1|S = 1, t) = m(t) = A exp (−t/T1) +B (E1)
A = 0.87± 0.05; T1 = (13± 1)µs; B = 0.08± 0.05.

FIG. 3. Flowchart for the real-time decoded experiment with fast-feedback. The execution time for each element is
shown in microseconds. When this depends on the number of rounds in the experiment, the times for 2 and 9 measurement
rounds are shown instead.
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(a) (b)

(d)

(c)

(e) (f)

X/I X/I 500ns
delayX Delay t

FIG. 4. Full decoding response time experiment timing parameters. (a) The circuit used for timing the full decoding
response time. After the final measurement of the stability circuit M1, the qubit is in state S1 that is evolving freely while
waiting for the conditional gate to be applied. Depending on the logical correction L, an X gate is applied Td time after M1,
changing the qubit state to SX . A fixed time T after M1 a second measurement M2 is performed. (b) Measured probability of
the two measurements matching (M1 = M2) depending on the computed logical correction L for different number of rounds of
the stability experiment. The error bars are standard errors of the mean. (c) Distribution of the full decoding response times
as measured by the control system with fits corresponding to the probability density function of Gamma distribution Γ(k, θ)
where k, θ are the usual shape and scale parameters respectively. (d–f) Reference data used to compute Td. The circuits used
to acquire the data are shown below the plots. (d) T1 qubit relaxation time. The data is fitted with the exponential decay
curve and error bars are standard deviations of the mean. (e) Measurement confusion matrix P(M = i|S = j) i, j = 0, 1 . (f)
Post-measurement state given the measurement result P(S′

1 = i|M ′
2 = j) i, j = 0, 1 acquired by measuring the state twice, with

a 500 ns ring-down time between measurements.

We further evaluate the measurement confusion matrix, which we label P(M = i|S = j) = P
M |S
ij by preparing a qubit

in state |S = j⟩ and then measuring, obtaining the outcome M = i (see Fig. 4(e)).
Next, we calculate the distribution of states immediately after the measurement M ′

1 given the measurement result
P(S = i|M = j) = Q

S|M
ij by performing a second measurement M ′

2 after a 500 ns ring down (see Fig. 4(f)). Here, we
use the prime symbol to distinguish these measurements from the ones in Fig. 4(a). Considering the probability of
the second measurement conditioned on the first, the law of total probability and the Markovian property P (M ′

2 =
i|M ′

1 = j, S′
1 = k) = P (M ′

2 = i|S′
1 = k) gives us

P(M ′
2 = i|M ′

1 = j) =
∑

k=0,1

P(M ′
2 = i|S′

1 = k)P(S′
1 = k|M ′

1 = j), (E2)

=
∑

k=0,1

P
M |S
ik Q

S|M
kj ,

where S′
1 is a state post-M ′

1. Since the |0⟩ state is approximately stable and the |1⟩ state decays with a known lifetime,
we assume

P(M ′
2 = 1|S′

1 = k) =

{
P

M |S
10 if k = 0,

m(tr) if k = 1,
(E3)
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with tr = 500 ns being the ring-down delay and m(·) is the T1 decay fit defined in Eq. (E1). Using these, Eq. (E2)
becomes a set of linear equations for Q

S|M
ij that we solve to acquire the matrix in Fig. 4(f). All uncertainties are

propagated using Python uncertainties package [14].
Having the reference data, we go back to the fast-feedback experiment (Fig. 4(a)). We consider the probability

of measuring M2 = 1 given the decoding result (i.e. logical correction) P(M2 = 1|L = i). Using the law of total
probability, we expand in state S1 after the first measurement to give

P(M2 = 1|L = i) = P(M2 = 1|L = i, S1 = 0)P(S1 = 0) + P(M2 = 1|L = i, S1 = 1)P(S1 = 1). (E4)

We can re-express the terms in Eq. (E4) in terms of the reference data P
M |S
ij , Q

S|M
ij and m(t). The probability to

have S1 = i can be deduced from the M1 distribution and Q
S|M
ij as

P(S1 = i) =
∑

j=0,1

Q
S|M
ij P(M1 = j). (E5)

Assuming that the state that starts at S1 = 0 stays at 0 during Td and gets flipped to 1 by the X gate if L = 1, we
have

P(M2 = 1|L = i, S1 = 0) =

{
P

M |S
10 if L = 0,

m(T − Td) if L = 1,
(E6)

where m(·) is the function defined in Eq. (E1).
Next, we determine the total time T between the measurements M1 and M2 (see Fig. 4(a)). T consists of the

readout propagation delay, control system logic and an additional delay of ∼ Nrounds µs inserted on the measurement
sequencer at the moment the decoder starts decoding. This can be calculated by timing the program execution on the
control system, but here we decide to calculate it directly from the acquired distributions to ensure we are capturing
any unaccounted delays. We do this by post-selecting for L = 0 cases where there is no conditional operation so the
experiment resembles the one in Fig. 4(f). We have P(M2 = 1|L = 0, S1 = 1) = m(T ) and thus, from Eq. (E4),

P(M2 = 1|L = 0) = P
M |S
10 P(S1 = 0) +m(T )P(S1 = 1),

m(T ) =
P(M2 = 1|L = 0)− P

M |S
10 P(S1 = 0)

P(S1 = 1)
, (E7)

where we can replace P(S1) using Eq. (E5) so the right hand is entirely in term of measurable quantities. Taking the
inverse of m gives us T . Finally, knowing T , we can compute Td by considering the distribution in Eq. (E4) in the case
when the conditional operation is applied (L = 1). Using Eq. (E6), we have P(M2 = 1|L = 1, S1 = 0) = m(T − Td),
and we use the law of total probability, conditioning on the post-X gate state SX to obtain

P(M2 = 1|L = 1, S1 = 1) = P(M2 = 1|SX = 1)P(SX = 1|S1 = 1, L = 1) + P(M2 = 1|SX = 0)P(SX = 0|S1 = 1, L = 1)

= m(T − Td)
(
1− e−Td/T1

)
+ P

M |S
10 e−Td/T1 . (E8)

Note that m(T − Td) = [m(T )−B]eTd/T1 +B, so setting αd = e−Td/T1 and putting everything together in Eq. (E4),
we find

P(M2 = 1|L = 1) =

(
m(T )−B

αd
+B

)
P(S1 = 0) +

[(
m(T )−B

αd
+B

)
(1− αd) + P

M |S
10 αd

]
P(S1 = 1), (E9)

which is a quadratic equation for αd in terms of measurable quantities and quantities derived in Eqs. (E1), (E5)
and (E7). Note that the quantity evaluated by putting in the experimental data is ⟨αd⟩ = E

(
e−Td/T1

)
where Td is a

random variable. Computing T̃d = −T1 logE(e−Td/T1) gives us a biased estimate for E(Td). In the following, we show
that this bias is negligible given the distribution of decoding times, allowing us to estimate E(Td) ≈ −T1 log⟨αd⟩.

We model Td as distributed by the Gamma distribution Td ∼ Γ(k, θ) where k, θ are the shape and scale parameters
respectively. The probability density function is defined as:

f(x; k, θ) =
xk−1e−x/θ

θkΓ(k)
. (E10)
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In Fig. 4(c) we see that this distribution fits well the full decoding response times as measured by the control system
clock, and we have no reason that this would stop being true for the full response time as experienced by the qubit.
By the law of the unconscious statistician (LOTUS):

E
(
e−Td/T1

)
=

∫ ∞

0

e−x/T1
xk−1e−x/θ

θkΓ(k)
dx

=
1

θk (1/θ + 1/T1)
k

∫ ∞

0

(
1

T1
+

1

θ

)k
xk−1e

−x
(

1
T1

+ 1
θ

)

Γ(k)
dx (E11)

=

(
1 +

θ

T1

)−k

, (E12)

where the integral in Eq. (E11) is 1 as it is integrating the probability density function of a Gamma distribution
Γ
(
k, (1/T1 + 1/θ)

−1
)

across the full domain. Hence, using Eq. (E12):

T̃d = −T1 logE
(
e−Td/T1

)
= T1k log

(
1 +

θ

T1

)
. (E13)

If θ ≪ T1, we can expand the logarithm to first order in Taylor series and use the expected value of the Gamma
distribution E(Td) = kθ to find:

T̃d ≈ T1k

[
θ

T1
+O

(
θ2

T 2
1

)]
= E(Td)

[
1 +O

(
θ

T1

)]
. (E14)

As we can see from Fig. 4(c), the scale parameter for the range of rounds used in this experiment is θ < 0.4. With
this, θ/T1 ≲ 3% is a negligible bias in the estimator as the relative standard error is greater than 10%. Even if there
are additional delays unaccounted for in the distributions in Fig. 4(c), we do not expect these to change θ significantly
enough to invalidate this analysis.

Appendix F: Unconditional qubit resets

While the experiments described in the main text did not involve resetting ancilla qubits between QEC rounds, we
have also explored and describe here a specific implementation of unconditional qubit resets. Note that these resets
were implemented during the final stage of the project and we did not evaluate their performance with the real-time
FPGA decoder. Here we present evidence of the improved logical error rates when using unconditional resets with a
software decoder.

Recall that qubits can be reset to their ground state either by passively waiting (to achieve a thermal equilibrium
with the cold bath, which happens on a time scale much longer than the relaxation time T1) or by actively applying
additional control pulses, which may or may not be conditional on the qubit state. Conditional (or measurement-
based) resets work by first measuring the qubit and then applying an X gate if the measurement outcome is “1”.
In contrast, unconditional resets apply the same pulse sequence regardless of the qubit’s state. While conditional
resets cannot improve the performance of QEC circuits, fast and high-fidelity unconditional resets offer a significant
advantage by doubling the number of measurement errors that can be tolerated by a stability experiment [15].

Unconditional resets work by transferring the excited-state population of the qubit to a lossy environment, such
as the qubit’s readout resonator [16, 17]. Although the transferring rate is limited by the qubit-resonator coupling
strength g, the resonator can be quickly thermalized with the environment if it is strongly coupled to the cold bath:
1/κ ≪ T1, where κ is the dissipation rate of the resonator. This requirement is well satisfied for the Ankaa-2 qubits,
where the typical values are T1 ≈ 15 µs and κ/2π ≈ 3 MHz.

In this work, we investigated the double-drive reset of population (DDROP) protocol [16], which is particularly well
suited to the Ankaa-2 control system. Compared to the parametric reset protocol of Ref. [17], the DDROP scheme
requires much smaller instantaneous bandwidth of the control electronics. This is because both the qubit and the
resonator drives used for DDROP are detuned from their respective resonant frequencies by only several dozen MHz.
The DDROP protocol is also applicable to fixed-frequency qubits, which is another advantage over the parametric
resets requiring flux-tunable qubits.

Let us now explain how the DDROP protocol works. It exploits the qubit-resonator coupling, which is described
by the well-known Jaynes–Cummings model [18]. Transmon qubits typically operate in the dispersive regime, when
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the qubit-resonator coupling is weak compared to their detuning: g ≪ |∆|, where ∆ ≡ ωq − ωr and ωq/ωr is the bare
frequency of the qubit/resonator. In this regime, the Jaynes–Cummings Hamiltonian can be written as

Ĥ = ℏ (ωr + χσ̂z) â
†â+

ℏ
2
(ωq + χ) σ̂z

= ℏωrâ
†â+

ℏ
2

(
ωq + χ+ 2χâ†â

)
σ̂z, (F1)

where ℏ is Planck’s constant, σ̂z is the Pauli Z operator of the qubit, â† and â are, respectively, the creation and the
annihilation operators of the resonator (which is modeled as a harmonic oscillator), and χ = g2/∆ is the so-called
dispersive shift (in our case, χ < 0 since ∆ < 0).

Two effects caused by the qubit-resonator interaction are immediately apparent from this Hamiltonian. As follows
from the first line of Eq. (F1), the resonator frequency ωr acquires a shift of ±χ, whose sign depends on the qubit’s
state (i.e., the ±1 eigenvalue of the σ̂z operator). This effect is widely used for performing a dispersive readout of
the qubit by probing the frequency of its readout resonator [18]. The second line in Eq. (F1) implies that the qubit
frequency ωq also experiences two frequency shifts: a constant shift χ (called the Lamb shift) and a variable shift 2χn
(known as the ac-Stark shift), whose size depends on the number of photons, n = ⟨â†â⟩, populating the resonator.

In the dispersive regime, driving the readout resonator at a frequency ωr + δr (we will refer to δr as the resonator
detuning) leads to a steady state with the average number

n̄g,e(δr) ≈
n0

1 + 4 (δr ± χ)
2
/κ2

(F2)

of photons in the resonator, where n0 is a constant proportional to the drive’s power [19]. This equation assumes that
the qubit is in a specific state: either ground, |g⟩, or excited, |e⟩. For each value of the resonator detuning, the photon
number (F2) takes two values: n̄g if the qubit is in |g⟩ (which corresponds to the “+” sign in the denominator) and
n̄e if the qubit is in |e⟩ (the “−” sign in the denominator). Equation (F2) describes two Lorentzian peaks, which are
centered at ±χ and have the amplitude n0 and the full width at half maximum (FWHM) κ.

Due to the Stark effect, the resonator being populated with n̄g,e photons causes the qubit frequency to shift by

δq ≈ 2χn̄g,e(δr) (F3)

relative to its bare value ωq (we call δq the qubit detuning). Therefore, we expect that if we drive the resonator at
different frequencies and simultaneously probe the qubit’s transition frequency, the latter would be shifted by δq and
the observed dependence of δq on δr would approximately follow Eqs. (F2) and (F3). This is indeed the case for
Ankaa-2 qubits, as illustrated by Fig. 5(a) showing the results of two-tone spectroscopy for Qubit 76.

The two-tone spectroscopy was performed in the following way [19]. We first prepared an equal superposition
of the |g⟩ and |e⟩ states by applying an Rx(π/2) rotation to the qubit initialized in the ground state. We then
simultaneously drove the qubit and its readout resonator for 1.5 µs while keeping the amplitudes of the drives fixed
and varying their frequencies. After we turned off the drives, we waited for 360 ns to let the resonator relax to its
ground state. Finally, we measured the qubit state using a regular Ankaa-2 readout pulse. The measurement outcomes
averaged over 200 shots are shown in Fig. 5(a) by color, with red/blue corresponding to the ground/excited state.
Two overlapping Lorentzian dips can be clearly seen in Fig. 5(a). Note that the Lorentzians are distorted due to a
non-linear dependence of the dispersive shift on n̄g,e that we have neglected [19]. We performed all our measurements
using Rigetti’s Quantum Cloud Services (QCS) platform, which allows for pulse-level control.

The DDROP protocol [16] is based on the same principles as the two-tone spectroscopy we just described. To reset
a qubit, we apply two simultaneous drives at the frequencies corresponding to the left Lorentzian dip in Fig. 5(a).
After applying the two drives for sufficiently long time (of about 10/κ), the coupled qubit-resonator system is driven
to the steady state |g, n̄g⟩. Then the drives are turned off, and the system spontaneously relaxes to the target state
|g, 0⟩, which happens on a time scale of about 1/κ. Note that the right dip in Fig. 5(a) (shown in blue) corresponds
to the steady state |e, n̄e⟩. Therefore, by choosing an appropriate combination of drive frequencies, this protocol can
also be used for bringing the qubit to the |e⟩ state instead of |g⟩.

We used the following procedure to coarsely calibrate unconditional resets for Ankaa-2. We kept the resonator
drive amplitude fixed at the level used for mid-circuit measurements, which in turn was optimized to avoid leakage
(as described in Methods). We then fixed the qubit drive strength at some initial value and performed two-tone spec-
troscopy. Based on the two-tone spectroscopy results, we chose a combination of the drive frequencies corresponding
to the left Lorentzian in Fig. 5(a) (one of the possible choices is shown by the black cross in the figure). Having fixed
the amplitude of the resonator drive and the frequencies of both drives, we then performed a sweep of the qubit drive
amplitude to minimize the excited-state population measured after the reset pulse. Finally, we tested the perfor-
mance of the DDROP resets by varying the duration of the simultaneous drives and measuring the resulting state |e⟩
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(b)(a)

FIG. 5. Calibration of DDROP resets for Qubit 76 of Ankaa-2. (a) Results of two-tone spectroscopy. The dependence
of the qubit detuning δq on the resonator detuning δr approximately follows Eq. (F3). The color represents the measured
population of the qubit’s state |e⟩ averaged over 200 shots. Two distorted Lorentzian dips can be clearly seen: the left one
corresponds to the photon number n̄e (red color), while the right one corresponds to n̄g (blue color). The separation between
the two dips is about 2χ/(2π) ≈ −5 MHz and the FWHM of each Lorentzian is κ/(2π) ≈ 3 MHz. The black cross indicates the
combination of drive detunings used for implementing the unconditional reset pulse of panel (b). (b) Excited-state population
as a function of the reset pulse duration. Experimental data averaged over 1000 shots are shown with black markers. The red
curve is a fit to the data with a function f(τ) = a+ b exp (−τ/T ). We obtained the following best-fit parameters: steady-state
population a = 0.045 and decay constant T = 0.31 µs.

population. The corresponding experimental results are shown in Fig. 5(b) and are also fitted with an exponentially
decaying function. For Qubit 76 shown in Fig. 5(b), we extracted the steady-state population of 0.045 and the decay
time constant of 0.31 µs, but similar values were obtained for other qubits. Based on these results, we fixed the reset
pulse duration at 1.5 µs. In our experience, this time can be reduced by increasing the resonator drive strength, but
this can also increase leakage (see Methods). Note that the observed steady-state population is likely limited by the
measurement fidelity rather than by the performance of the DDROP resets.

Figure 6 shows the logical error probability for the stability-8 experiment performed both with and without resetting
ancillas between syndrome extraction rounds. We decoded offline with the MWPM decoder using soft information
and constructing the decoding graph with the pairwise correlation method. Our results indicate that resetting the
ancilla qubits improves the logical error probability. We plan to further investigate the DDROP protocol elsewhere,
including the possibility to adapt it for resetting transmons in higher excited states.
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FIG. 6. Impact of unconditional resets on the logical error probability. Shown is the logical error probability as a
function of the number of decoding rounds for stability-8 experiments with and without using unconditional resets after each
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