Quantum Information Theory (preskill ch. 5)

A very brief summary

Key Elements of Information Theory.

Classical Information Theory is mostly about two things.

(1) How much redundancy is present in a typical message?
Shannon showed that an n-letter message composed of letters ax drawn from an
alphabet (a1, a2, as,... ax ), with a priori probability of occurrence p(ax). can be
compressed to nH(p), where H(p) is the Shannon Entropy.

(2) How much redundancy must be added to a message in order to communicate
reliably over a noisy channel. Shannon's Noisy Channel Coding Theorem tells
us that the code rate R must be less than or equal to the Channel Capacity

R=1-H(p)=Clp)

(3) There are other entropic measures such as Joint Entropy, Conditional Entropy
(page 8), Mutual Information (page 9), etc. All of these ideas and concepts
translate to Quantum Information.

Quantum Information Theory is largely based on further developments of the ideas
and concepts above.

Key Elements of Quantum Information Theory.

(1) A quantum message consists of letters drawn from a quantum alphabet, {px,
p(x)}. The message is thus of the form p = Zx p(X),0x
Note that the message is a tensor product p =p1®0®03®...® px, Where the
individual letters can be pure or mixed states.

We define the Von Neumann Entropy S(p) =-Tr(pLog(p)). It can be shown
that S(p) is the number of incompressible quantum bits per letter in the
message.

In the eigenbasis of p, the letters can be expressed as p = X5 p A|A)A|. Also,
S(p) = Tr (22 X log(1) [M)A]) = H(A) (page 11).
Thus, if the alphabet consists of mutually orthogonal pure states then the

quantum source reduces to a classical source, i.e, S(p) = H(A), and most
everything we have learned about Shannon Information carries over.

(2) The Von Neuman entropy has a number of information theoretical properties,
the first 3 of which are straightforward, while the remaining 9 listed by Preskill
are increasingly obscure when working one's way down the list. (page 13).

Quantum Data Compression

(1) This is the quantum analogy to Shannons Noiseless Coding Theorem. Preskill
offers an example of quantum data compression, but needs to do an awfull lot
of work to achieve a very modest gain. Thus, we should probably conclude
that this is a proof of principle, but not necessarily something that we might
do to improve quantum data storage or tyhroughput. To summarize:

(2) Preskills first step is to use an alphabet of non-orthogonal letters, |T2), [Tx),
each occurring with probability p = 1/2. The letters are then of the form

p =121z |+ 172 [T

(3) Looking at the message in the diagonal basis, |0') and |1") (page 160), it is clear
that both letters overlap strongly with |0y and weakly with |1'). In this
situation it is possible for Alice to significantly compress her message by
projecting onto Likely and unlikely Subspaces (page 17). The non-obvious
choices of letters, |T2), |Tx), and thus the diagonal representation |0'), |1'} for
the compressed state, is chosen to ensure that "compression" onto the likely
and unlikely subspaces is likely to succeed (page 20/21). Preskill adds a few
more bells and whistles to recover as much as possible of the information
projected onto the unlikely subspace, page (21/22). When all is said and done,
the fidelity of the transmitted state is only improved by ~2% relative to the
simple strategy of sending two bits and having Bob guess the third.
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Main Topics of CIT:

(1) Transmission of classical info over quantum channels
(2) Information/disturbance tradeoff in QM
(3) Quantifying entanglement

(3) Transmission of quantum info over quantum channels

Our Program: (1) & (4) ~ 2 Lectures

Key Concept — Incompressible information content

Classical Measure: Shannon Entropy

Quantum Measure: von Neumann Entropy

Review of Classical Information Theory

( Shannon for Dummies, Preskill 5.1 )

Shannon, 1948: Core findings of classical info theory

(1) How much data can be compressed (redundancy)

(2) Reliable communication rate over noisy channel
(Redundancy needed to protect against errors)

Shannon Entropy and Data Compression

(Shannon’s noiseless coding theorem)
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Main Topics of CIT:

(1) Transmission of classical info over quantum channels
(2) Information/disturbance tradeoff in QM
(3) Quantifying entanglement

(3) Transmission of quantum info over quantum channels

Our Program: (1) & (4) ~ 2 Lectures

Key Concept — Incompressible information content

Classical Measure: Shannon Entropy

Quantum Measure: von Neumann Entropy

Review of Classical Information Theory

( Shannon for Dummies, Preskill 5.1 )

Shannon, 1948: Core findings of classical info theory

(1) How much data can be compressed (redundancy)

(2) Reliable communication rate over noisy channel
(Redundancy needed to protect against errors)

Shannon Entropy and Data Compression

(Shannon’s noiseless coding theorem)

Message = String of letters chosen from gah Bay .-, 0«&}

A priori probability of occurrence:  qnlo,), 217(0\,) =1

Basic Question: given message w/ in 5> 1 letters

Can we compress to length {1\ ?
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But: (... x,) is just one of many typical strings ) )
with the same number of occurrences of each letter Conclusion ( Shannons Noiseless )

and thus identical a priori probabilities J(\CﬁypicaL') . Coding theorem
Then for n large enough, we also have

% We can encode all typical strings w/blocks
1-¢ &> nlbypicat) ¢ 4 2) of n[H+8 ) bits

% Atypical strings occur w/prob. < & , where
g 80 for nao

T oNes) = pltypieat)

# of typical strings
% An optimal code thus compresses each letter
y to H(Y) bits

Taking the ratio -c—-) x (2) gives us the final result
1

n(H-0)

(1-2) 2 & Mg 8) ¢ g ()




Quantum Information Theory (preskill ch. 5)

Joint and Conditional Entropy,
Mutual Information

Consider the following scenario:

noisy channel
Alice > Bob

% - {me} errors specified by T‘[“{) () V- 5“6«’(‘(’:)\.(

!

known about channel

known about
Alices alphabet

Alyl) nix)
)
L 1) = %/(L(\alx)/r\(x)

Bayes Rule: p(xly) =

Bob uses this to estimate the prob. that Alice sent x
given he received y. The “width” of the distribution
/(lbclad\ is thus a measure of Bob’s information gain
per letter.

Think about this in terms of joint events

§x.y] = §Lay), nixe]

» Joint entropy

HiX v) = -2 1lxia) oryp(x,1)
XY

This is a measure of information content per letter
in the combined strings

% Assume Bob measures the value of a letter d@' in
the message

% He gets H(Y) bits of info about the letter pair X4

% Bob’s remaining uncertainty about the letter X is
then tied to his lack of knowledge about X given
that he knows 4 -
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Think about this in terms of joint events

§x.y] = §tay), nlxa]

» Joint entropy

HEX ¥) = =2 pixiyg) Lomq(x,)

Ay

This is a measure of information content per letter
in the combined strings

% Assume Bob measures the value of a letter dﬁ— in
the message

% He gets H(Y) bits of info about the letter pair X4

% Bob’s remaining uncertainty about the letter X is
then tied to his lack of knowledge about X given
that he knows &% -

The entropy of X conditioned on Y is
therefore

HIX YY) = HIY)+H(XIY)
» HXIY) =z HXY)-HY

The Conditional Entropy H (X Y)

is the number of bits of info per letter in
Alice’s message that Bob is missing due to
channel errors

— measure of information loss due to errors —
Equivalently, it is the # of extra bits Alice

must send to ensure Bob gets the complete
message in the presence of channel errors.



Quantum Information Theory (preskill ch. 5)

The entropy of X conditioned on Y is Note: From the above,
therefore

HxIY) = HX,Y)-HIY)
HXY)= HIY)+H(X[Y)

- ( "~ Tn ’(1‘0
® HXIY) = HIXY) - HY) Z’f‘ <) Log ilx1a) = Z W’%\LO@

= .-[Zz%p (x,y) L%{X,g’)cf}-aﬂ(aa'& Log Ml
X4y K]

The Conditional Entropy H [X[V)

is the number of bits of info per letter in

Alice’s message that Bob is missing due to Note: For this derivation we use Bayes rule

channel errors
— measure of information loss due to errors —

) < g lx) nix)
)

}(lbc

Equivalently, it is the # of extra bits Alice
must send to ensure Bob gets the complete

message in the presence of channel errors. where f('["é)ba is a known property of the channel

and (x) is a known property of the alphabet X.

Logs are averaged over letter pairs X4 or letters 4
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The entropy of X conditioned on Y is
therefore as

HIXY)= HIY)+H(XIY)
» HXIY): HXY)-HY

The Conditional Entropy H [X[V)

is the number of bits of info per letter in
Alice’s message that Bob is missing due to
channel errors

— measure of information loss due to errors —
Equivalently, it is the # of extra bits Alice

must send to ensure Bob gets the complete
message in the presence of channel errors.

Note: From the above,

HXIY) = H(X,Y) - H(Y)

= ~2/(l(>< 4) Lo%)(l(x loy) = Z-«p(x.@\[_()@/p x"g

= .-[Zz%p (x,y) L%{X,g}cﬁ?{l(a@ Log Ml
X4y K]

We can similarly quantify the # of bits of info
about X that Bob has gained by measuring %Y .

This is the Mutual Information:

TR, ¥) = HRtHEY) - HEY)
= HX)-H(XIY) = H(Y)-H(ZIX)

Note: When we added the info content of X

to the info content of Y we overcounted the
total info because some info is common to
X and Y, and must be subtracted to get the
proper measure for the Mutual Information

8
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Shannon’s Noisy Channel Coding Theorem

noisy channel
Alice > Bob

Alice & Bob need redundancy to communicate
reliably over a noisy channel. How much?

Key Question: Can we always find a reliable
code when the message length n 250 ?

Binary alphabet: {Oc‘lz

p(no flip) =¢ - plolo) = p(1la) = t-n
p(flip) =1 {/{p(oli) = /((1(1/0) = ﬁ’l

Basic Idea: Encode k bits of info in block of size n

We define the Code Rate R = k/n

Optimal Code: max # of bits must flip to

: {X, (I(x\} errors specified by ,64[43 [®) Vs 5"@.’(‘("3\1

interchange code words
diffuses into error bubble of
@ 91Hlp) words
Hamming
words in code space radius np
/7

n bits =» np flips

Reliable Decoding: Error bubbles must not overlap

» 9_[< g Hip) ¢ M = total # of words
= in code space
# of words required

Setting [c = nIQ and solving for the Code Rate we get

R<1- H[rp\ = C(y\\<— Channel Capacity
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Quantum Information Theory:

Key Results from Classical Information Theory

% Message of letters drawn from ensemble 5 X, 1’\(&\]

# of incompressible bits
Shannon Info =
HCK) per letter in limit N> o®

% Correlation between sent (X ) and received (Y ) messages

Mutual Info

T3, Y) = H(x ) - HXIY)
= H(y) - H(y¥)

# of bits of info about (X ) learned from (Y)

Quantum Information Theory

®» Need to generalize these concepts

Basic Scenario:

Alice sends letters drawn from the ensemble

for el ® g2 21xe

Bob reads message by measuring the POVM

R = @0 :-T(Re)

We define the von Neumann Entropy

sle)=-Tr(ologe)

In the eigenbasis of © we have

= 2 A »
A
S[g\zTriAALogAIAXM =H(1A)

Shannon Entropy of the ensemble A = gl>\>‘)\2

10



Quantum Information Theory (preskill ch. 5)

Basic Scenario:

Alice sends letters drawn from the ensemble

{0 ] ® €221 e

Bob reads message by measuring the POVM

R = @0 :-T(Re)

We define the von Neumann Entropy

sle)=-Tr(ologe)

In the eigenbasis of © we have

Conclusion:

% If the alphabet consists of mutually orthogonal
pure states then the quantum source reduces

to a classical source

* In that case all signal states are perfectly
distinguishable

* S(Q) = H(A)

Q=2 ADXA »
A
g(ghl?i}\AL%xme = H(n

T

Shannon Entropy of the ensemble A = glsz}

We can show the Von Neumann entropy quantifies

% The incompressible information content of a
quantum source

% The quantum information content per quantum letter

% The classical information content per quantum letter
(extractable by POVM)

% Entanglement of a bipartite pure state

11
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Conclusion:

% If the alphabet consists of mutually orthogonal
pure states then the quantum source reduces
to a classical source

* In that case all signal states are perfectly
distinguishable

* S(Q) = H(A)

We can show the Von Neumann entropy quantifies

% The incompressible information content of a
quantum source

% The quantum information content per quantum letter

% The classical information content per quantum letter
(extractable by POVM)

% Entanglement of a bipartite pure state

Mathematical properties of <(Q) (N° proofs, )

see Preskill
(1) Purity Q =IyXy[ = S(Q) =0

(2) Invariance $(veUL™) = S(g)

(3) Maximum @ has (l eigenvalues o = S(@) < Leg ol

For Apd,.. 2,20, 22;=¢ =
SIMQt... +2nG, ) 2 ASIQ ) +... Anslg,)

(4) Concavity

( vNE grows when ignorant of )
how the state was prepared

(6) Entropy of Measurement (Q Meas adds randomness)

Measure A = %0.9 Ia.ax%[ -» outcomes Y = 5%,: 'Wa‘\)l)}

S. E. of outcomes H(Y) 2> S(), W/ =" for [A,@] =0

. Mix N. O. states cannot
(7) Entropy of Preparation ( recover full info )

Draw from § 19, ..}, €= .le X > H(X) > S(Q)

12
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No proofs, )

Mathematical properties of S(Q) (see Preskill

(1) Purity © =IyXy[ —» Sle)=0
(2) Invariance S(LUE L) = S(Q)
(3) Maximum @ has (l eigenvalues 0 = S(@) £ Leo, ol

For Aydy,.. 20,20, 22,=1 =
St . MG, ) 2 AS(Q ) +... MnSlR,)

(4) Concavity

( vNE grows when ignorant of )
how the state was prepared

(6) Entropy of Measurement (Q Meas adds randomness)

Measure A = %0.9 Ia,aXa.al =» outcomes Y = Ea,g, ?ﬂfa‘\,')g

S. E. of outcomes H(Y) > S(g), W/ =" for [A,@] =0

(7) Entropy of Preparation ( Mix N. O. states cannot)

recover full info

Draw from § 19, .. ], €= le X > H(X) > s(Q)

No proofs, )

Mathematical properties of S(Q) (see Preskill

(8) Subadditivity (info in whole < sum of info in parts)

. classical H(X;v) ¢ H(X)+H(¥) with
S(4g) ¢ Sleal * S(%) ( “=“ when X,¥ uncorrelated )

uncertainty about whole can be
less than uncertainty about parts

(9) Triangle inequality (

$(Qqy) 2 [S094) ~Sl@g)|  (classical H(%,Y) 2 H(¥), H(Y)‘)

13
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Quantum Data Compression

(Quantum analog of Shannons Noiseless Coding Theorem)

Starting Point: n-letter message drawn from {upJt >, ’M

t

need not be orthogonal

Each letter described by ©= 2/())4 180, XeP, |
X

Message described by o" = Cage... @0

Basic Question: How redundant is this information?

— is there a "quantum code” which can compress to a
smaller Hilbert space while retaining the fidelity
of the encoded quantum information ?

Answer: Optimal Compression requires

LDg[dim &) = nSle) qubits

(Schumacher’s Theorem)

Corrollary: The von Neumann entropy is the # of qubits

carried per letter in a message. We can always
compress unless g=’/z 1

Example of how we might do this:
IT%> ' ﬂzl/?.
Alice sends a message using the alphabet

PO (A

3y Yy )

-~ d -
B = 3ILXNI+ 0K = (1/.{ e

(z or x basis )

Symmetry —p eigenvectors are 1, ] along i =\;—3_ [)?*t-i)

CoS &7,
[0 = [Tad = 7
. 1 Cin 'a-/g
elgenvectors
Sin T/g
I = oy -
7= 13> (-Cos"’73>

eigenvalues J

15
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Corrollary: The von Neumann entropy is the # of qubits

01T = &' [T 5T = Cos* Ty = 09538
carried per letter in a message. We can always Overlap
compress unless ©=7, 4 <1'L1‘9’- = TS = qiutTy - 0. 1445
Example of how we might do this: Visualization on the Bloch Sphere
[T%> ' ‘n=r/2_
Alice sends a message using the alphabet
PO () LY
North Pole
3y 1 | !
» &= LT+ L%, =( ‘f) 109

Uﬁ 4A{

(z or x basis )

Symmetry - eigenvectors are 1, ] along > ( 3)

CoS w7,
(0 = [Ta) = ?
> lﬂ> (GM -‘T/g )

Sin T/g
I = l-n =
147 = 1bq> (~Cos"’7's)

)x(o§= 3 *-\l': COS"W

s b1 5 efut
£ = 1R sru ng

eigenvectors

11

South Pole

eigenvalues %

16
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Corrollary: The von Neumann entropy is the # of qubits

01> = <ot 15 = Cos* Ty = 03538
carried per letter in a message. We can always Overlap
compress unless ©=7, 4 <1'L1‘9’- = TS = qiutTy - 0. 1445
Example of how we might do this: Visualization on the Bloch Sphere
[T%> ' fl='/2_
Alice sends a message using the alphabet
PO () LY
North Pole
3y 1 | !
» &= LT+ L%, =( ‘f) 109

Uﬁ 4A{

(z or x basis )
k=
2
mmetry - eigenvectors are 1, ] along i > ( 3)
2ymmetry 11>
Ccos
(0 = lTﬁ) = s
. Cin -‘T/g
eigenvectors
Sin /g o T T T
I = l - > = !
South Pole
Xo') = 5 3 —\l—: = Cost W,
eigenvalues X
Mty = 5 - i{,—: = Sr"m’-%

17
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Corrollary: The von Neumann entropy is the # of qubits
carried per letter in a message. We can always

compress unless g=’/2 1
Example of how we might do this:

‘T%>| fl=,/2_
%>, =t

Alice sends a message using the alphabet

( _ 3l My
» Q = '3(_[?%5(1\%143_[Tx><¢,<\ = (Uq "/t(>

(z or x basis )

Symmetry —p eigenvectors are 1, along i 9\,1-?'_ (X+32)

[0 = 194 = (C"W* )

Cin -‘T/g

Sin T/g
I = vy =
1) [ba> (“CDST%)

Mo) = 5+ f\—li = Cos: T
|

eigenvectors

eigenvalues %

l’c.'_,_.___‘: .
NCLERT S5 ° S s

01> = <ot 15 = Cos* Ty = 03538
Overlap
T (1'“‘9__5’—: <'1‘”}>1 = gm'—Wz = 0.146S

Bob does not know what was sent —p best guess (3> = [p'>
» ?=<mg!q> = %_[(Tillnl‘ + {mel =6.8538

Scenario:

Alice wants to send a 3-qubit message, but can transmit

only 2 qubits. Could send Bob those qubits [$=1) and
have Bob guess (p*) for the third

®» Baseline Fidelity (no tricks) @: 0.353S

How to improve:

Likely subspace [0'>
for 1 bit

Diagonalize @
Unlikely subspace 11°)

either (T35 or 195 Note: all possible [{>) have the same
f_/%

Let (P = WDWD WO overlap‘vrlith states of the type [i)[é')lk)‘
where ’,J,kefD', 1-}

18
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Corrollary: The von Neumann entropy is the # of qubits <0'I‘P£>"' s (o[BS = cos‘“"/,, = 09528
carried per letter in a message. We can always Overlap
compress unless ©=7, 4 <1'L1‘9’- = TS = qiutTy - 0. 1445

Example of ho e might do this:
txamp’e ww '8 ! How to improve:

. . (%%, f“'/?. Likely subspace [0'>
Alice sends a message using the alphabet " Diagonalize @ for 1 bit
17> ¢ PN Unlikely subspace 11°)

3 Uy either (13 or 19>
Uy 1y ~——————  Note: all possible [{>) have the same
Let (5 = 14,504, ['435 overlap with states of the type [i)[;)1k)

where i,:),k 550', 1-}

B O = SITXN1+3 X1

(z or x basis )

Symmetry - eigenvectors are 1, ] along > ( 3)
Note: for any [¢>) |drawn from Alice and Bobs alphabet,

e have
Cos'% \"." Vv
Qin -‘T/g

(0 = 1Tp> = (
Likely subspace /A

Sin /g <00t [P = cos* T = 0,629

#7= i = (-Cos‘f’73> [<eorur [ grotd = 1<o' o‘l'{f)lL Kroto gt = cos' Tsint T = 0.1063

eigenvectors

1
xot) = = + —\l—: COS’-W Unlikely subspace /\
eigenvalues ‘ . [<ot ] gl = 1Kot [ gL = [<o alel I = Cos'T i § = 0.0183
N '_ - —_—— il / .
A = 5 15 St [Katga' [yt = sm";{- = 0.603)

19
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01> = <ot 15> = Cos* Ty = 03538
Overlap
LTt = KT = giut Wy = o.146S

How to improve:

Likely subspace [0'D>

Diagonalize @ { for 1 bit

Unlikely subspace 11°)

either (13 or 19>
~——————  Note: all possible [{>) have the same
Let (95 = 14,504, WO overlap with states of the type [i)[;)1k>

where i,j,k 550'1 1?

Note: for any [¢>) |drawn from Alice and Bobs alphabet,
we have

Likely subspace /A
[<00'e [P = cos* T = 0,629
[<ot ot [ It = 1Kot o POt = [K1oter [dIL = cos‘gsm%f = 0,166%

1
Unlikely subspace £\
[<ot 11| ol = 1Kol | gL = [t 1! [ eIt - (:OS"";T Sint3 =0.0143
Katgat [gr)L = sim";—t = 5.603]

This structure of message space suggests Alice should send
only the part €7\, which fits in 2 qubits (Dim A =y ). She
can do this by performing a measurement that projects her
3—qubit state onto either A or Nt

(Pl.ike(y = 0.6LIO +2x&.1067 = 0.9Y19

(lbun“[‘eLy = 2x0.018% +0.00%) =0.05%1

Geometric illustration of a space
with likely and unlikely subspaces.

|
X [q’:} ' —
&\\’\‘6

likely A

The state vector (black) has a large projection on the
“likely subspace” (pink), and a much smaller projection
on the “unlikely subspace” (grey). Accordingly, when
we project onto the likely subspace and ignore the
unlikely subspace, we don’t loose much information.

20
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01> = <ot 15> = Cos* Ty = 03538
Overlap
LTt = KT = giut Wy = o.146S

How to improve:

Likely subspace [0'D>

Diagonalize @ { for 1 bit

Unlikely subspace 11°)

either (13 or 19>
~——————  Note: all possible [{>) have the same
Let (95 = 14,504, [““Q overlap with states of the type [i)[;)1k>

where i,j,k 550'1 1-3

Note: for any [¢>) |drawn from Alice and Bobs alphabet,
we have

Likely subspace /A
[<00'e [P = cos* T = 0,629
[<ot ot [ It = 1Kot o POt = [K1oter [dIL = cos‘gsw} = 0,166%

1
Unlikely subspace £\
[<ot 11| ol = 1Kol | gL = [t 1! [ eIt - (:OS"";T Sint3 =0.0143
Katgat [gr)L = s;m";—f- = 5.603]

This structure of message space suggests Alice should send
only the part €7\, which fits in 2 qubits (Dim A =y ). She
can do this by performing a measurement that projects her
3—qubit state onto either A or Nt

(Pl.ike(y = 0.6LIO +2x&.1067 = 0.9Y19

»

(lbun“[‘eLy = 20.018V +0.00%] = 0.0581

To do this Alice can apply the Unitary Transformation
U that maps

O (e, => 1+D1-S10)

O [%n[,f[{ek;) = [*D1-D11")
She measures the 3 qubit
(0> =» projectsonto A\

»

L
1Y =» projects onto 4\

If Alice’s outcome is [0°) she sends I?@'c,,mp) a e[

Bob decompresses by appending |¢> and undoing U
D [Pgp) = U4 ([ Vo> 105)

21
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This structure of message space suggests Alice should send
only the part &7\, which fits in 2 qubits (Dim A =y ). She
can do this by performing a measurement that projects her

3—qubit state onto either A or N

Riret, = 061G +2x0.1062 = 0.9419

»

(IDU"[;[(ELY = 2x0.CI18Y+0.00%] = 0.0581

To do this Alice can apply the Unitary Transformation
U that maps

O [, = [2D1-S10)

O [ @ miuelyY = [OLD147)
She measures the 3 qubit

(0> =» projectsonto /\

»

L
11 =» projects onto 4\

If Alice’s outcome is [0) she sends IT{J’CMP) a[ed[D

Bob decompresses by appending |[»¢> and undoing U

D [Pgy) = U4 ([ Vepupdl0?))

If Alice’s outcome is 11°) she sends Ulo'o'S
B B = U {10030)= [0o">

This leaves Bob with the state

Caop = EIBXPLB +Ldrl 1-BIPD [6'0' Xo'o'df |
( E= projectionon A )
which has Fidelity

g = <¢-l§80b IZP->

= LY B2+ <Pl 1- Bl [<grlo'wor > -
= 0.9910% £+ £.0581 x 0.6215 = H O >0.8535

As with classical data compression, longer messages
allow for more compression or compression without
loss.

In Quantum Communication one has the option of
choosing an alphabet where the individual letters

are mixed states. This makes it much harder to find
bounds for compressibility and code rates. See Preskill
for more information.
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