Open Quantum Systems — Evolution and Decoherence (Preskill ch. 3)

Example #1: Coupling to an Environment
(Lecture 10-04-23)

(2) = | &

System Coupling

% System + Environment evolves unitarily, become
entangled ®» the system on its own evolves
non-unitarily

% Reasonable assumptions about the environment

“Master Equation” for &
[ ]

Example #2: Coupling to a Meter

(Lecture 10-04-2023)

Meter
(Pointer)

Evolution, interrupted by random Quantum

’ Stochastic Schrodinger equation with unitary
Jumps when measurements occur

Operator-Sum representation

Our starting point: of non-Unitary evolution

Let ©=¢, ® [0)g,<0l w/unitary evolution U,q
© ® Usg (€48 o>, 440! ) U;a
Reduced density operator for system A in basis fI/OB]

Oa = Ty [ Upg (€,8165,,¢01) g ]

= ; ,§</mlujmlo>£3 €a 001 Y4 |4,

L~ operator /L, actingon &5
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We can now write

Sa=$(Ca) = Z M., 00,

SN~—— \/

Stochastic Schrodinger equation with unitary
» Evolution, interrupted by random Quantum
Jumps when measurements occur

Operator-Sum representation

Our starting point: of non-Unitary evolution

Let Q= ¢, & [0)g,<0l w/unitary evolution U,q
© ® Ung (948 l0d,,<0! ) Vas
Reduced density operator for system A in basis fI/OB]
Qa = Ty [Upg (.8 165, ¢o1) Ugg

- ; a$mlUagl0%; €4 401 Vs YA

L~ operator VL, acting on €5
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We can now write

Sy = $(Qa) = ; M.,

Furthermore, since U,¢ is unitary, the NL,'S have
the property

v

> MM, % 8 <01 Vag L), (<l UaglOD,

= B<O[OA'E UAGID>5 = ;{_LA

We conclude: . .
Theorem: Given some § with an operator-sum

representation, we can choose 963 and find the
corresponding unitary Vra in %A ® &B

& defines a Linear Map

$: Linear Operator =+ Linear Operator

If ZM; MM = 4, then & is a SuperOperator
Iz

is the Operator-Sum or
Krauss representation of §

and $(g,) = %M/AQM}}'
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Measurement as a Superoperator:

Von Neumann: Entangle System A with Meter B
(1)

Uag s 195, (055 ;M/‘M»Al/oe

Orthogonal measurement on B in “pointer basis” UA)[3
yields outcome M and tells us the meter is in )/A>B .

M Ppa< Pl

If no access to the measurement outcome then
Qu>Cs = ZPW@” = Z M Catlly, = & (Qa)
t

Superoperator

Most general measurement: POVM fl-;J on 94

This projects out a state 1%y a Ll =
tn A< MM, 193,

with probability Pln) = o< 1_'1/1/":.1'4,(,L A

Generally &4 is mixed

g

Meas. on B projects out

+
oF M Sty
T[ My QAM;\]

with probability  P(u)= AV M, 1 M, Gl = Talf,Q,]

This is a POVM with elements -
2

= mt - L
EA‘MMMM) % '/:A _§MMMM -4,

Plm) = WalEugp 'l

Qt;:;\l\’:;gam

In this case we have {

Note that ¥, Hermitian — S_ET,‘ Hermitian

Follows from the operator sum
Normalization condition (2) above

Compare w/ (1) above to see this POVM has the
unitary representation

Ura ¢ W)A{»&-»Z 10>, 10,
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If no access to the measurement outcome then
' +
CQp>Cy = %P[/“B?: = % My Catly = & (0a)
t

Superoperator

Most general measurement: POVM fl;} on Q4

Plm) = TalFuga'l

Qé\':;\r’:;gaﬁ

In this case we have {

Note that ¥, Hermitian — {£, Hermitian

Follows from the operator sum

% Fa *4s  Normalization condition (2) above

Compare w/ (1) above to see this POVM has the
unitary representation

UAB & “(7)(\[0'>3 —> ;JT';\ ‘ILQ>A VA)B
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If no access to the measurement outcome then
' +
CQp>Cy = %P[/“B?: = % Ny Qo = & (0a)
t

Superoperator

Most general measurement: POVM fl;} on Q4

Plm) = TalFuga'l

el\':;\ﬁ:;gf\ﬁ

In this case we have {

Note that F, Hermitian — {£, Hermitian

Follows from the operator sum

% Fa *4s  Normalization condition (2) above

Compare w/ (1) above to see this POVM has the
unitary representation

Un ¢ | @405 = ;JT—;; 10, L dg

Summary:

% The discussion so far highlights the relationship
between measurement and decoherence. We
can always view the latter as the environment
Doing a measurement and extracting information
that we cannot retrieve. The loss of information
causes an initial pure state to evolve into a
statistical mixture, which is the definition of
decoherence

% Sometimes we can “guess” what kind of
“measurements” the environment implements.
This is useful in the modeling of decohering
“Quantum Channels”

% The example that follows is based on the first of
four examples of decohering quantum channels
given in Preskills notes. These will be particularly
Relevant for those of you working in the area of
Quantum communication over quantum photonic
Networks.
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Decohering Quantum Channels Example: Depolarizing Channel
— a simple example -

Probability of error =41, 3 types, equal probability

Communication Scenario: 105>~ 14>
@sitfip 770 8 b= Gy, o =(%)
imperfect quantum channel

Alice & » Bob . 10> 0> 10

1 () Phaseflip | T8 1§ 0y, 6 = (t2)
what happens to a qubit 1S i1

when transmitted ? 02 -t ~

- 3) Both 2(9°
(3) Bo l1>--il0) v RN, G (3 o)

Alternatively: Transmission in time
Channel is a unitary

Unitary Representation:
¥ nep map on X8

imperfect evolution

Alice & » Bob One choice (not unique, can always find one)
luti f iti 0
evolution of qubit in Uag2 190,100, = Ji-p l‘)})A[o>E

presence of environment?
+ \@ [ 163,100, ¢ ¢ 13,106+ G (5195

These are generic input-output maps !
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Example: Depolarizing Channel

Probability of error =41, 3 types, equal probability

oo 0>~ 4>
@sitfip U0 B =G0, o)
10> o> 10
() Phaseflip | OB b, 63’(0-';)

o> >il1>

(3) Both L1>--il0) PR, G ’(Di ﬂo‘ )

Channel is a unitary

Unitary Representation:
Y nep map on A&

One choice (not unique, can always find one)

Un 2 10107 = Ji-ge [%lo

+ [T 02 1,100, ¢ 106+ 52 1%, 518,

Note:

The 4 orthogonal states in %E keep records of what

happened. If available through measurement in %e

the errors would in principle be reversible. We must
have Dim QEE >4 to allow 4 distinct evolutions

On Operator Form: we have

Upg = Tgn e [T 871005 g ol tnst 125,601 #6133, <O

B Q&l :Tre[UAE C?A[")ee(o 1) UAEY

- A +
% e Ml e (0% 8 e <olUse [0 % Ny G,
AL n

From this we find Kraus operators

- - 4 -t -
MO‘W’IIM Mi‘ﬁ;%—? >'AA1'J;V2_A)M3'@Q—§

Check (o?=1): ZM/';M/A = (1—p+3'§.)ﬂ_ =4
M

From earlier:

Qs - ; e 1Ung 103, €4 4401 U L3

- operator /1. acting on &
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Note: Evolution of the Qubit:

The 4 orthogonal states in %E keep records of what

happened. If available through measurement in 525

the errors would in principle be reversible. We must
have Dim AEE >4 to allow 4 distinct evolutions

Sa=> €h = (1-1)6,¢§ (57 €a 0400 ¢, 65 + T} 2,54 )

On Operator Form: we have

Upg = Tmgn e [T 871005 g ol tnst 125,601 #6133, €O

I —

» Q& = “'E.[UAE['QAIOBEEKO l\ Upfei]

) % B 4MI Unge (05 a e <O O = ZMN?AM; 036 = MO0, 70 ) §36307 =N
M
AN Can show that - ( Math details )
From this we find Kraus operators Qa—> Qat = (1-1)Qut d:% (%,8a%) + 5,0y #75Q4T; )

= (1) 5 (L + R, +i”[~’ (ﬂ-PG‘)+iUL—P6’3+iCﬂ+PT)]
S\ M= sh -t -‘ b 5T 3h 37207 PN
My =i-p 4y, 1‘,&3 S4 >-‘1‘Lf\l's' Ly My = %‘Q—::

=plte (- P)es]- s (ergn )= p=(1-4R

2_11Y- + -4 T -
Check (o°=1): %M/AM/A‘(" p+33)’ﬂ.—ﬂ_ - .
o d Y
By symmetry of (1) we have P'= (41- 3 /m p
From earlier: I
Q, = ; B</u\lUvA3 IO>% €4 2<01 Ysp J/M>B Uniform shrinking Bloch Sphere

L— operator L., actingon & 11
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Continuous limit:

M=Tdd = Pyli+dt) = (1-4rd+) PL)

-k
» ’;i% --2rp, > gl =6 e Bl
Bloch Sphere representation: I
— Bloch vector ) Bloch Sphere shrinking at constant rate

Let: g, = li[’d.'l'P'U) = 3‘-[11"' BT
L_ Choose 53 along P - (0,0,%)

- i/,
PLE) = Plo) 8 g

. . I
Sub in expression for €, above and use

0T = TG, = ~Tq , 3630, = . : ;
1935 2 3y 737102 2 This turns out to be identical to the

Master Equation result
Can show that - ( Math details ) g

Qa~> Qat = (1-11Qyt %(W‘lgﬁwt) +“;_?av>.+“_igﬁql)
= (1) (1 + A+ £ [ (- B3 ) £ (1- 05 L (B )]

= L1144 (1-2) 053] = 5 (4+R]e; ) => £ =[1-%2)p,

———-—
— I -
By symmetry of (1) we have P'= (1~ Z'Z’m P
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Main Topics of QIT:

(1) Transmission of classical info over quantum channels
(2) Information/disturbance tradeoff in QM
(3) Quantifying entanglement

(4) Transmission of quantum info over quantum channels

Our Program: (1) & (4) ~ 2 Lectures

Key Concept — Incompressible information content

Classical Measure: Shannon Entropy

Quantum Measure: von Neumann Entropy

Review of Classical Information Theory

( Shannon for Dummies, Preskill 5.1 )

Shannon, 1948: Core findings of classical info theory

(1) How much data can be compressed (Redundancy)

(2) Reliable communication rate over noisy channel
(Redundancy needed to protect against errors)

Shannon Entropy and Data Compression

(Shannon’s noiseless coding theorem)

Message = String of letters chosen from iah R .-.., A&}

A priori probability of occurrence: .nlo,), 217(0‘%) =1

Basic Question: given message w/ in 5> 1 letters

Can we compress to length {1\ ?

14
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Main Topics of QIT:

(1) Transmission of classical info over quantum channels
(2) Information/disturbance tradeoff in QM
(3) Quantifying entanglement

(4) Transmission of quantum info over quantum channels

Our Program: (1) & (4) ~ 2 Lectures

Key Concept — Incompressible information content

Classical Measure: Shannon Entropy

Quantum Measure: von Neumann Entropy

Review of Classical Information Theory

( Shannon for Dummies, Preskill 5.1 )

Shannon, 1948: Core findings of classical info theory

(1) How much data can be compressed (Redundancy)

(2) Reliable communication rate over noisy channel
(Redundancy needed to protect against errors)

Shannon Entropy and Data Compression

(Shannon’s noiseless coding theorem)
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Main Topics of QIT:

(1) Transmission of classical info over quantum channels
(2) Information/disturbance tradeoff in QM
(3) Quantifying entanglement

(4) Transmission of quantum info over quantum channels

Our Program: (1) & (4) ~ 2 Lectures

Key Concept — Incompressible information content

Classical Measure: Shannon Entropy

Quantum Measure: von Neumann Entropy

Review of Classical Information Theory

( Shannon for Dummies, Preskill 5.1 )

Shannon, 1948: Core findings of classical info theory

(1) How much data can be compressed (Redundancy)

(2) Reliable communication rate over noisy channel
(Redundancy needed to protect against errors)

Shannon Entropy and Data Compression

(Shannon’s noiseless coding theorem)

Message = String of letters chosen from iah R .-.., A&}

A priori probability of occurrence: .nlo,), 217(0‘%) =1

Basic Question: given message w/ in 5> 1 letters

Can we compress to length {1\ ?
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Look at Binary case: Typical Occurrence
o qlo)=1-7 n(1-q)
1 pd=p nqu
— PeoeH
Number of distinct typical strings ~ (V\w«\)

Stirlings formula

Log () = c—
O%(n{p} Log (ap> [nl1- 1 Lo%m.'—_-vuL%w-mM[LognS

base 2

~ Log,/l -n- [Vl'(l Logtwp\-f“r')+V‘[""(')L°2][”(1“T‘\]’ Vl('l-’fﬁ]

# of bits needed to specify all typical strings,
for a given 1

=nHp) «—

Hip) = -plogy - (-n) Loy (a-p) = 3 41ix) logytx)

I AR=0,1
Entropy function

17
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Look at Binary case: Typical Occurrence

0 qb)=1-7 n(1-p)
1 /p(«) =M nn
binomial
7 coeff.

Number of distinct typical strings ~ (V\V/]“)

Lo (V‘ ): Lo n! { Stirlings formula
9 nf’r\ 3 (npd [n(1- 3! LO%VI.':V\LOSVI-V}'{-M[L%V)\

base 2
n Loe)m -n- [wf(l Log (wr\-[hp)+l/\[‘l-fn)LO%[W(1~'P\]" V'('I-‘M]

=nHc 3 < #ofbits needed to specify all typical strings,
- t for a given

Hip) = -plogp - [-n)Log (1-) = S nix) Logpiix)

AR=0,1
L Entropy function

Basic idea of Data Compression:

% Assign integer code letter to each typical string

% This block code has 2"H(P) |etters

% Each code letter specified by n H(p) bits

O¢péd — O<¢H(PISL } Block code compresses

Hin) =1 onlyfor L =(/)_ message for ' '/,

Generalization:

% letters, prob. /(\[x)
Ensemble X = 57&,11&)3 of letters

N - letter string — X occurs o VI'J\(R) times

n! -
o~ 9 nH(X)

# of typical strings ~ ———
e & W [npla] )
X

Shannon
HIX) = - ) Log ) «— entropy
X

18
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Look at Binary case: Typical Occurrence

0 qb)=1-7 n(1-p)
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binomial
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Basic idea of Data Compression:

% Assign integer code letter to each typical string

% This block code has 2"H(P) |etters

% Each code letter specified by n H(p) bits

O¢péd — O<¢H(PISL } Block code compresses

Hin) =1 onlyfor L =(/)_ message for ' '/,

Generalization:

% letters, prob. N (x)
Ensemble X = 57&,11&)3 of letters

N - letter string — X occurs o VI'J\(R) times

n! -
o~ 9 nH(X)

# of typical strings ~ ———
e & W [npla] )
X

Shannon
HIX) = - ) Log ) «— entropy
X
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Shannons Noiseless Coding Theorem

Consider a specific message XgXy 000 Xa

with X. £X in J ' thplace

statistically independent, x;occurs n times on average

Ak ee Xy) = PRI )L )
» Av!%;)= a priori prob. of X in placeé

"
Then Log P(xy, ..., %) =D Log 170%)
=1

Applying the central limit theorem to this sum, we
conclude that for “most sequences”

- % LO% P(Xy, ..., x‘.)) ~v{-Llog pix)) = Hix)

where brackets denote the mean with respect to the
probability distribution governing the random variable x

Now: Forany & 5 >0 there exist an i large enough s. t.

H(x)-0 ¢ —7'|- Log Nlx,... x,,) & H(X)+0 *)
B 27D s (X, .,.x,) 3 27N (H)

But: jn(x,...x,) is just one of many typical strings
with the same number of occurrences of each letter
and thus identical a priori probabilities J(\CiypicaL') .
Then for n large enough, we also have

1-2 £ 5 pleypicar) ¢ P

1 = N(E_‘&} x «l[éypical,)
# of typical strings

Taking the ratio -(—'L x (2) gives us the final result

1)

n(H-0)

(1-£) 2 < g8 ¢ 9N (HFO)

20
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Joint and Conditional Entropy,
Mutual Information

Consider the following scenario:

noisy channel
Alice > Bob

% - {me} errors specified by T‘[“{) () V- 5“6«’(‘(’:)\.(

!

known about channel

known about
Alices alphabet

Alyl) nix)
)
L 1) = %/(L(\alx)/r\(x)

Bayes Rule: @[xlad\ =

Bob uses this to estimate the prob. that Alice sent x
given he received y. The “width” of the distribution
/(lbclad\ is thus a measure of Bob’s information gain
per letter.

Think about this in terms of joint events

§x.y] = §Lay), nixe]

» Joint entropy

HIX ) = =2 qlxey) Loy (xy)
Ay

This is a measure of information content per letter
in the combined strings

% Assume Bob measures the value of a letter d@' in
the message

% He gets H(Y) bits of info about the letter pair X4

% Bob’s remaining uncertainty about the letter X is
then tied to his lack of knowledge about X given
that he knows 4 -
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The entropy of X conditionedon Y is
therefore

HIXY)= HIY)+H(X[Y)
» HXIY)= HXY) -HY

The Conditional Entropy H (X [V)

is the number of bits of info per letter in
Alice’s message that Bob is missing due to
channel errors

— measure of information loss due to errors —
Equivalently, it is the # of extra bits Alice

must send to ensure Bob gets the complete
message in the presence of channel errors.

Note: From the above,

HXIY) = HX,Y)-HY)

=~ iz Loa nixln) = Semicon) ] gal 2
(x.vg';xl eI {%m’ﬂ L 94{‘['33

= "(Z’%f‘ (x,y) Lo%(X,g')cf}_{lfaa\ Log 1y
XY %

We can similarly quantify the # of bits of info
about X that Bob has gained by measuring %Y .

This is the Mutual Information:

T(X;¥) = HR)tHEY) - HZY)
= HX)-H(XIY) = HY) - H(¥IX)

Note: When we added the info content of X
to the info content of Y we overcounted the
total info because some info is common to
X and Y, and must be subtracted to get the
proper measure for the Mutual Information

22
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