General Theory of Quantum Measurement (Preskill ch. 3)

How to do it?

We can effectively do non-OM’s in part of Hilbert
space if we can add extra dimensions to X -

R-%,0% o R-%,e0,

Direct Sum Implementation

Let gﬁpr & 962 X A ’X;

Alice prepares states Cx€ 9@(
Bob (and/or Alice) makes OM §EA} in 3{, B, = l'V\a\XMA]

Geometric visualization: ( like an over complete )

L

basis in 2D subspace

| 4

Xy
s = WS¢ 5

We can now define effective measurement operators
Fa = B, Ec. EA = IivaXﬂJJ = )\'Alq{axq‘fal
» Plmg) = Tr[Ea 84T = TF[RQaT]

Properties:
* Each Fj is Hermitian & non-negative ® P(m,) >

* Individual F, are not projectors unless r\,\= 1

*%Faz EA% E,Eq = EpNLE, =4, < identity on &,

POVM : Positive Operator Valued Measure

A set of non-orthogonal meas. Operators f&?

such that the F, ‘s are non-negative & % R4
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We can now define effective measurement operators
Fa = BaB, By = LXH[ = A 190X, |
» Pms) = Tr[E,847 = TW[F@a7]

Properties:
* Each F, is Hermitian & non-negative ® P(m,) > p

* Individual F; are not projectors unless A, =1

*%Pa: EA% E, By = EAtLE, = 1, < identity on QFA

POVM : Positive Operator Valued Measure

A set of non-orthogonal meas. Operators fﬁ}

such that the F. ‘s are non-negative & % R4

Example : POVM on Qubit encoded in Qutrit

¥pp (F=1) atomic HF state

%A Unitary Transformation
’-..-.-~~\\ \\\ ~ - g{
R 1A T S
' ~ ~ T
'r:‘-,-‘ — {-.- Us 14>+ 1> —> 10> {rﬂo- ~0- -0—"

. .. St o~
m= -4 o 1 U3 14>+ 15> —> 11> T
Bob measures

Alice prepares in QeA Em= Im¥Xm| & 8f

Choose the map U
®» any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by adding to &,
an orthogonal complement 962'

If N F,s are desired, where n's{)im P
then we need  Lim (Xat9y) 2N

( Preskill 3.1.4)
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Toy Example: One Qubit POVM, illustrates different
capabilities of OM & non-OM POVM’s

Pick 3 unit vectorss.t. 2> QJ\A =0, Z_ TIa =1
[ 0

Measurement operators
FQ:QGAM\F\'AX%J » %szﬂ*
For the above & following, note that
(95,2 = Cos(ao’) [ T2+ Sin (0 1iz 5 = = «r—se LT
- > i [~Ln® - l -\ o
1950 = 0os(6e) 1952 +Sin[-60') 157 - ,_qu iuﬁp

Application: Discriminating between

non-orthogonal states

. ny
Alice prepares |15 11.°5
7 Ny
w/equal probability
'3 9o
How can Bob best tell

the difference ?
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Note: The content on pages 3, 4 and 5 needs
updating, which | hope to do in the background
while we continue “regular” programming

Preskill gives us the POVM elements that go with

each measurement outcome. These are of the form
ﬂ’zﬁaMﬁ;X‘!‘ﬁzl , after which we can calculate the
probabilities for Bob’s measurement outcomes given
what states Alice sent. To do so, we can follow the
standard rule for POVM'’s, P(w,) = 4’&;' F. [T 2 When we
know the conditional probabilities for Bob’s out-
comes given what Alice sent, we can try to design a set
of optimal decisions that Bob can use at each step.
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Instead N FA\'. Fidelity of Bob’s guess (Prob. his guess if correct)
mnsteaa _m -,
Bob does F o=l el (tegalal) 13
the POVM Poum” T ( 2 ‘-f> o =0.3/28
I (a) I b (c)
2 = n
Fa = ? AX 4, " 4 * P(know) P(don’t know)
7\.1
[ [z, 7 w/ P=0 (a) Asent(T;7or |75, B knows which one w/ P-l, (?:1)
r[?ﬁﬁ" Bob gets < N;:Q w/P = iy (b) Asent(T; 7 or |95 >, B DK, correct guess w/ P- il (?}i)
| IJ-,;3> w/P =ty (c) Asent(T; 2or [15>, B DK, wrong guess w/ P=l, (?=%,)
Alice sends+
[ [$a,” w/ P =1y
(T4, Y= Bob gets 4 iz, w/ P=0 Note: If in (c) Bob guesses [Jz,> w/ g- 3/L/ he
N—- > w/ @ =1ls gets a slightly better fldellty of
L
- g;ow 0 " 0.87S0
[4z.7 = Bob knows Alice sent 75> However: if Bob sticks with Heralded Success
Bob gets N;z> = Bob knows Alice sent [T 7 he will have a subensemble w/ goun,. -—2
[4z,7 = Bob doesn’t know (DK)
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Rewind: how to implement a non-OM ?

% The Postulates of QM tells us we can do OM’s in
a given Hilbert space

% We can effectively do non-OM’s in part of & if

%:%A@QEAL or Qﬁ.—_ %A@%&

|

Look at this option!

Motivation:

s We cannot count on our system to be embedded
in a larger Hilbert space

* A more realistic implementation is to juxtapose
system A with a second system B and doing OM’s
in the resulting tensor product space

Systems 4 &6, - QCAQXB, Cae = Sa®€,

Set of orthogonal E, actingin I, > E,-41
O

Theorem: Given 964'& POVM §r—;3 we can choose
%o, € &an oM §&,] in X=X, 0%, s.t.
Plmy) =Ty 154 (€29 [ = Ta [RG4]

where F, =T, [£,&,7

and  Qap> Qualmy) = EA(géfgg)') E,
Mﬂ

Math details

Trag [ EA{QA®@33] = WA[WB[(QA &%) E'AYY
ZWA[ gﬂ‘n‘g IgQEAY—I = Jrq [F&_ ?n]
where :WGEE,\QGZ
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Theorem: Given QKA & POVM §f—;} we can choose
X, € &an oM §&,] in X=¥,0%, s.t.
(P[Ma\ 5‘7;1-\8 Y.EG.(QAQ?Q\] = Trq [Fmgﬁ]
where F, :W?G[Eo‘gs'}

ond - Gae> Gigtm - SEOLES
M‘\

The F, have the properties of POVM elements:

* Hermiticity:
+
Fo = Tr[ 8,057 =T leF E1] = Th [£,%( = Fy

* Positivity: E,, @, positive (eigenvalues 2 0) (i)
» €, g, positive, marginal Tr, 1E,Qe ] =F,

% Completeness: D F, =1 (ii)
(7]

>%¥a
¢ Dom (£,08E8)

% Non-orthogonality: =#F,'s g

—

Math Details

L (l) Let Qea % eh l_/A)ac(//d » pﬁ :%8« f3</AlEA[/A>3
B AHIF, I, - %\om(aafmﬁ,,q) Ea(n>,81¥),)20

m) 3R -5l ZE W = 1,
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Theorem: Given 9€A & POVM gf-}.} we can choose
X, € &an oM §&,] in X=¥,0%, s.t.
(P[Ma\ 57;&0 YEG.(Q;\@?B\] = Trq [Fmgﬁ]

where F :W?G[Eogd

ond - Gae> Gigtm - SEOLES
MA

The F, have the properties of POVM elements:

* Hermiticity:
+
Fo = Tr[ 8,057 =T leF E1] = Th [£,%( = Fy

* Positivity: E,, @, positive (eigenvalues 2 0) (i)
» E,q, positive, marginal Tr, 1E,Qe ] =F,

% Completeness: D F, =1 (ii)
(7]

>%¥a
¢ Dom (£,08E8)

% Non-orthogonality: =#F,'s {

How to do it?

System Meter
HS-M
< E [0>g 11 >,3 lz>3

(00748 101D, 1027
= has TP basis
=X,8%q [10%g 1404 11154

L start meter in o>,

The interaction drives a unitary map, for example
2
(005 —> %aj 1690155
i
L
l 10>&e - .E_:_obé l 1>AI<S>B
i

where the c-numbers
a;,b; are chosen to
ensure orthogonality

Measuring the meter ® 3 possible outcomes =01, 2
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Open Quantum Systems — Evolution and Decoherence (Preskill ch. 3)

Example #1: Coupling to an Environment
(Lecture 10-04-23)

(2) 4=

System Coupling

Environment/Reservoir

% System + Environment evolves unitarily, become
entangled ®» the system on its own evolves
non-unitarily

% Reasonable assumptions about the environment

“Master Equation” for &

* The Liouvillian &
accounts for relaxation and decoherence

Example #2: Coupling to a Meter

(Lecture 10-04-2023)

Meter
(Pointer)

Evolution, interrupted by random Quantum

’ Stochastic Schrodinger equation with unitary
Jumps when measurements occur

Operator-Sum representation

Our starting point: of non-Unitary evolution

Let ©=¢, ® [0)g,<0l w/unitary evolution U,q
© ® Usg (€48 l0d, 440! ) U:a
Reduced density operator for system A in basis f[/OB]

Oa = Ty [ Upg (€,8165,,¢01) g ]

= ; §</Alufglo>§ €a 8<O|UA_'E ]/M>B

L~ operator /L, actingon &5

10
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Example #2: Coupling to a Meter

(Lecture 10-18-2022)

interaction
¢ >

» Stochastic Schrodinger equation with unitary

Meter
(Pointer)

Evolution, interrupted by random Quantum
Jumps when measurements occur

Operator-Sum representation

Our starting point: of non-Unitary evolution

Let Q= ¢, & [0)g,<0l w/unitary evolution U,q
© ® Ung (848 l0d,,<0! ) Vas
Reduced density operator for system A in basis {l/oe]
Qa = Ty [Upg (.8 165, ¢o1) Ugg

- ; a$mlUagl0%; €4 401 Vs YA

L~ operator VL, acting on €5

We can now write

Sa=$(Ca) = Z M., 00,

Furthermore, since U,¢ is unitary, the IV;,,'S have
the property

% M;M/A - %8@1 UMI/A)88</A! UABIOSB

= B<O[UA‘5 UAG]O>B = ﬂ,A

We conclude:

& defines a Linear Map

$: Linear Operator =+ Linear Operator

If ZM; n, = 1, then & is a SuperOperator
”

is the Operator-Sum or
Krauss representation of &

and $(g,) - %-’VL,MQM};'

11




Open Quantum Systems — Evolution and Decoherence (Preskill ch. 3)

We can now write Note: & maps density operators to density operators
because
! = = + . ere -+
QA $(ga) %M/AQAM/M * 9;, is Hermitian: 9;4' = %M/A €a M; = g,;

% G, hasunittrace: Trgp = ;T’TQAM;M/J |

Furthermore, since U,¢ is unitary, the NL,'S have [
the property * 4 is positive:

{ = +
% A/L/'fm ® D 2 <01 VagLi), ;< Ung 105 A<HlGa 1Y, ; (a8 ) G (21} m%) 20
M

+ - ot a4
= 3<0|Usg Vag 1005 = g Used .(ABft) =C'e"A arld .
Trace invariance under cyclic permutation

We conclude: . .
Theorem: Given some § with an operator-sum

representation, we can choose 963 and find the
corresponding unitary Vra in %A ® &B

& defines a Linear Map

$: Linear Operator =+ Linear Operator

If ZM; MM = 4, then & is a SuperOperator
Iz

is the Operator-Sum or
Krauss representation of §

and 4(g,) = %M/A‘?A”};

12
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Note: & maps density operators to density operators Note:

because i ] )
% Superoperators provide a formalism to describe

% Q. is Hermitian: ot = ZM/M g: Mmr = e, decoherence, i. e., maps from pure to mixed states

% Unitary evolution is a special case with only one

W'-j
. has unittrace: Tre, =2 * | ) .
* Sa unt " <Sa ; VE?AM/" !V&"j term in the operator-sum expansion

% Sa has unit trace: %« Two or more terms = initial pure states éy

A<y lgA( IS = 5 (Aé%lMMB?A(M; HD) 50 become entangled w/states 69€ due to UAQ
M -» mixed final state @d

Used (aBc)t =ce*A* and

. . . . % Superoperators can be concatenated to form
Trace invariance under cyclic permutation

new ones, ¢- &8,

Theorem: Given some § with an operator-sum
representation, we can choose 968 and find the

corresponding unitary v, in %, ® &, Theorem: If (&)™ (¢) =4 then & must
necessarily be unitary

Non-unitary evolution cannot be reversed
= “arrow of time”

13
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Note: We summarize:
% Superoperators provide a formalism to describe A mapping g: © —»gf where 91?' are density
decoherence, i. e., maps from pure to mixed states operators, is a mapping of operators to operators
that satisfy

% Unitary evolution is a special case with only one
in the operator-sum expansion

(0) ¢ isLinear

become entangled w/states 5—96’ due to UAe
- mixed final state @, (2) & is Trace preserving
% Superoperators can be concatenated to form (3) & is completely positive,

new ones, $= 488, $ﬁ@ ﬂg positive in 2‘8% forall 4,

Krauss Representation Theorem

Theorem: If (4)~'(¢) =4 then & must

necessarily be unitary Any & satisfying (0) — (3) has an
Operator-Sum Representation

Non-unitary evolution cannot be reversed
=> “arrow of time”
See Preskill, Ch. 3.2 for more on
Superoperator formalism

14
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Measurement as a Superoperator:
Not covered in Lectures

Von Neumann: Entangle System A with Meter B
(1)

Uag s 195, (055 ;M/‘M»Al/oe

Orthogonal measurement on B in “pointer basis” l;A)B
yields outcome M and tells us the meter is in )/A>B .

M\ Pua<OLsy

If no access to the measurement outcome then
Qu>Cs = ZPW@M = i M Catlly, = & (Qa)
t

Superoperator

Most general measurement: POVM fl-;J on 94

This projects out a state 1%y a Ll =
tn A< MM, 193,

with probability Pln) = o< 1_'1/1/":.1'4,(,L A

Generally &4 is mixed

g

Meas. on B projects out

+
oF M Sty
Tf[”% QAM;\]

with probability  P(u)= AV M, 1 M, Gl = Talf,Q,]

This is a POVM with elements -
2

= mt - L
EA‘MMMM) % '/:A _§M/"MM -4,

Plm) = WalEugp 'l

€é=;\l};§a\f§n

In this case we have {

Note that ¥, Hermitian — S_ET,‘ Hermitian

Follows from the operator sum
Normalization condition (2) above

Compare w/ (1) above to see this POVM has the
unitary representation

Ura ¢ W)A{»&-»Z 10>, 10,

15
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If no access to the measurement outcome then
' +
CQp>Cy = %P[/“B?: = % My Catly = & (0a)
t

Superoperator

Most general measurement: POVM fl;} on Q4

Plm) = TalFuga'l

Qé\':;\r’:;gaﬁ

In this case we have {

Note that ¥, Hermitian — {£, Hermitian

Follows from the operator sum

% Fa *4s  Normalization condition (2) above

Compare w/ (1) above to see this POVM has the
unitary representation

UAB & “(7)(\[0'>3 —> ;JT';\ ‘ILQ>A VA)B

16
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If no access to the measurement outcome then
' +
CQp>Cy = %P[/“B?: = % Ny Qo = & (0a)
t

Superoperator

Most general measurement: POVM fl;} on Q4

Plm) = TalFuga'l

el\':;\ﬁ:;gf\ﬁ

In this case we have {

Note that F, Hermitian — {£, Hermitian

Follows from the operator sum

% Fa *4s  Normalization condition (2) above

Compare w/ (1) above to see this POVM has the
unitary representation

Un ¢ | @405 = ;JT—;; 10, L dg

Summary:

% The discussion so far highlights the relationship
between measurement and decoherence. We
can always view the latter as the environment
Doing a measurement and extracting information
that we cannot retrieve. The loss of information
causes an initial pure state to evolve into a
statistical mixture, which is the definition of
decoherence

% Sometimes we can “guess” what kind of
“measurements” the environment implements.
This is useful in the modeling of decohering
“Quantum Channels”

% The example that follows is based on the first of
four examples of decohering quantum channels
given in Preskills notes. These will be particularly
Relevant for those of you working in the area of
Quantum communication over quantum photonic
Networks.

17
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Open Quantum Systems — Evolution and Decoherence (Preskill ch. 3)

Decohering Quantum Channels Example: Depolarizing Channel
— a simple example -

Probability of error =41, 3 types, equal probability

Communication Scenario: 105>~ 14>
@sitfip 770 8 b= Gy, o =(%)
imperfect quantum channel

Alice & » Bob . 10> 0> 10

1 () Phaseflip | T8 1§ 0y, 6 = (t2)
what happens to a qubit 1S i1

when transmitted ? 02 -t ~

- 3) Both 2(9°
(3) Bo l1>--il0) v RN, G (3 o)

Alternatively: Transmission in time
Channel is a unitary

Unitary Representation:
¥ nep map on X8

imperfect evolution

Alice & » Bob One choice (not unique, can always find one)
luti f iti 0
evolution of qubit in Uag2 190,100, = Ji-p l‘)})A[o>E

presence of environment?
+ \@ [ 163,100, ¢ ¢ 13,106+ G (5195

These are generic input-output maps !

19
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Note:

The 4 orthogonal states in %E keep records of what
happened. If available through measurement in 525
the errors would in principle be reversible. We must
have Dim AEE >4 to allow 4 distinct evolutions

On Operator Form: we have

Upg = Tmgn e [T 871005 g ol tnst 125,601 #6133, €O

Q& ':T'E.[ UAE C?A |0555_40 l\ UA‘-Ei]

N

= t = +
% e Ml Uhe 0% Qa e O1Uae [nde = %M/MQAM/\

A

From this we find Kraus operators

Evolution of the Qubit:

Sa=> €h = (1-1)6,¢§ (57 €a 0400 ¢, 65 + T} 2,54 )

Bloch Sphere representation:

- - 4 -|® -
M= lig 1, M, =Tt m=[ter m-[Eay

Check (o2=1): ZM;M/,‘ = (1-p+3§_)»ﬂ_ =4
M

From earlier:

Qa = ; e 1Vag (02, €4 g<0lUgh J/“>3

L— operator L., actingon &

— Bloch‘vector
Let: &, = l;_[’d_+5-6") = 3_[ﬂ+ Pgﬁ‘s\
L— Choose 3, along D - (00,%)

(1)

Sub in expression for ?A above and use
03§, = W06, = ~Tg y §3630% = T
Can show that - ( Math details )
Qa~> gt = (1-1)Qyt d:% O ANES “:z_?ﬁq>.+“_i‘9ﬁql>
= (-1 (L + B+ L[5 a-853) +§ (- A5 V4 (1437 )]
=glas (- )es] - s(argn )= H=(1-74)R

—_-—

By symmetry of (1) we have

P = (4"%’[1) P

|

Uniform shrinking Bloch Sphere

20
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Evolution of the Qubit:

Sn-> @) = (116, <8 (57 0,04 G €,5;t + 702,57 )

Bloch Sphere representation:

— BIoch‘vector
Let: g, = ‘;_['ﬂ.'f'ﬁ §) =3 (1~ R
L— Choose 3, along D - (00,%)

(1)

. . I
Sub in expression for €, above and use

03§, = M6, = ~Tg  §36530; = G

-
Qa— Cat = (1"{”‘2&*%(“1‘?&“
= (-0 + BT [ la-n6 )+ (1- 65, L (185 ]

=glee (-2 o]

Can show that ( Math details )

3.8, T3 QAN )

s(atRe )= p=[1-%)p

——

P = (4’5511) P

|

Uniform shrinking Bloch Sphere

By symmetry of (1) we have

Continuous limit:

M=Tdd = Pyli+dt) = (1-4rd+) PL)
» 2B _2ro o gry=nme Mt

Dl-l.- I

Bloch Sphere shrinking at constant rate

- i/,
PlE) = Plo) &8 g

This turns out to be identical to the
Master Equation result

Other Examples:

% Phase Damping ( Bloch sphere shrinks along x, y )

% Amplitude Damping ( Bloch sphere shrinks along z)

21



22



Quantum Information Theory (preskill ch. 5)

Main Topics of QIT:

(1) Transmission of classical info over quantum channels
(2) Information/disturbance tradeoff in QM
(3) Quantifying entanglement

(3) Transmission of quantum info over quantum channels

Our Program: (1) & (4) ~ 3 Lectures

Key Concept — Incompressible information content

Classical Measure: Shannon Entropy

Quantum Measure: von Neumann Entropy

Review of Classical Information Theory

( Shannon for Dummies, Preskill 5.1 )

Shannon, 1948: Core findings of classical info theory

(1) How much data can be compressed (Redundancy)

(2) Reliable communication rate over noisy channel
(Redundancy needed to protect against errors)

Shannon Entropy and Data Compression

(Shannon’s noiseless coding theorem)

23
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Main Topics of QIT:

(1) Transmission of classical info over quantum channels
(2) Information/disturbance tradeoff in QM
(3) Quantifying entanglement

(3) Transmission of quantum info over quantum channels

Our Program: (1) & (4) ~ 3 Lectures

Key Concept — Incompressible information content

Classical Measure: Shannon Entropy

Quantum Measure: von Neumann Entropy

Review of Classical Information Theory

( Shannon for Dummies, Preskill 5.1 )

Shannon, 1948: Core findings of classical info theory

(1) How much data can be compressed (Redundancy)

(2) Reliable communication rate over noisy channel
(Redundancy needed to protect against errors)

Shannon Entropy and Data Compression

(Shannon’s noiseless coding theorem)

Message = String of letters chosen from iah R .-.., A&}

A priori probability of occurrence: .nlo,), 217(0‘%) =1

Basic Question: given message w/ in 5> 1 letters

Can we compress to length {1\ ?

24
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Basic idea of Data Compression:

We will see that [H(X) quantifies how much info is

L. . . conveyed, on average, by a letter drawn from the
% Assign integer code letter to each typical string

ensemble (X) (alphabet)
% This block code has 2"1(P) |etters

% Each code letter specified by n H(p) bits

Note: Boltzman Entropy C= -/L)g Z 1 LD@ m

Block code compresses

O¢méd — oeH(MSL
Here the sum is over the microstates consistent with

Hin) =1 onlyfor T =‘/)_ message for 1\ /,

the given microstate. Assuming all microstates are

equally likely, the System will be in the macrostate

Generalization: with the largest S .

% letters, prob. /(l[&)
Ensemble X = 57&, 1 (")Z of letters

N - letter string — X occurs ~ VI»J\(&) times

N )
# of typical strings ~ ——— ~ 2 nH(X)

ST 1
E [Wptxl] .

Shannon
HIX) = =D 1l Log ) «— entropy
X

25



Quantum Information Theory (preskill ch. 5)

We will see that [H(X) quantifies how much info is

conveyed, on average, by a letter drawn from the
ensemble [X) (alphabet)

Shannons Noiseless Coding Theorem

Note: Boltzman Entropy C= -J& ijli Log m

Here the sum is over the microstates consistent with
the given microstate. Assuming all microstates are
equally likely, the System will be in the macrostate
with the largest S.

26



