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Von Neumann’s Theory of Measurement
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Familiar Paradigm:

Stern-Gerlach analysis

* System & Meter are 2
diff. deg.s of freedom

$>1/2 version of SGA:

We have learned that

% We can engineer a Von Neumann measurement to
access information about a desired observable M.

% We can implement more general types of measurements,
including both projective and non-projective.

% We need to expand our theory of measurement
beyond the type defined in the postulates of QM
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Orthogonal Measurement (OM)

Consider a set of measurements pr,} such that

- £F — -
+ 2 3
orthogonal projectors complete set

We can associate such a
M = ma. E
set with any observable %— & =0

This allows us to restate the measurement postulates:

An Orthogonal Measurement of an observable /| is
described by a collection of operators quz ,

En= B EuEw :‘_Cjaa' E, Eo:f By=4

The outcome M, occurs w/prob. P(m,)=<y| E, %>
® the state collapses as [3> E, [ >/ \Bima)

Plm)=Tr[E,RT, @ EaQE, /Plm,)

M, degenerate: E  projects onto subspace

Mixed state:

Can we generalize to a broader class? - Yes!



General Theory of Quantum Measurement (Preskill ch. 3)

Bob’s OM has 3 outcomes m, w/projectors E,€ ¥

If Alice only prepares states @, & X, then

(P[MA) =Ir [gaEa] = W[Eﬂga EHED;']
=T {QuEQEaE,] = Tr L QaRy]

%/—/

FA L— norm <1
=l 1@a [ = (W10, (%,

.:Aa<q{'g.lgAl‘4'A>
number €1 —— L normalized

Geometric visualization: ( like an over complete

L

basis in 2D subspace

.

s = WS¢ 5

)

We can now define effective measurement operators
I:.t.} = EA Eo\ EA = lif’vaxﬁ;[ = A’AH[AX%D.I
» Pmy) = Tr[E,8Q4T = TF[F%AT]

Properties:
* Each F, is Hermitian & non-negative ® P(m,) > p

* Individual F, are not projectors unless f\,\= 1

*%PA = EA% E Eq = EpNLE, =4, < identity on &,

POVM : Positive Operator Valued Measure

A set of non-orthogonal meas. Operators fﬁ?

such that the F, ‘s are non-negative & J_F, =4
78
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We can now define effective measurement operators
Fa= EQE B = X[ = Apl %Xy |
» Plmg) = Tr[E,84T = TP[FQ4T]

Properties:
* Each F, is Hermitian & non-negative ® P(m,) > p

* Individual F, are not projectors unless /\A= 1

*%Pa: EA% E, By = EAtLE, = 1, < identity on QFA

POVM : Positive Operator Valued Measure

A set of non-orthogonal meas. Operators fﬁ}

such that the F. ‘s are non-negative & % R4

Example : POVM on Qubit encoded in Qutrit

¥ph (F=1) atomic HF state

%A Unitary Transformation

N R ~ ~ (X
. N DSy > 1) RO

¢ \ '

& — 8 Ds %>+ 14> > 109 (o~ ~0- 0"
me o4 o 4 Uspeiihy—>lry T

Bob measures

Alice prepares in /XA Em,_ Im¥Xm| & 3€

Geometric visualization: ( like an over complete )
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We can now define effective measurement operators
Fa= EQE B = X[ = Apl %Xy |
» Plmg) = Tr[E,84T = TP[FQ4T]

Properties:
* Each F, is Hermitian & non-negative ® P(m,) > p

* Individual F, are not projectors unless /\A= 1

*%Pa: EA% E, By = EAtLE, = 1, < identity on QFA

POVM : Positive Operator Valued Measure

A set of non-orthogonal meas. Operators fﬁ}

such that the F. ‘s are non-negative & % R4

Example : POVM on Qubit encoded in Qutrit

¥pp (F=1) atomic HF state

%A Unitary Transformation
’-..-.-~~\\ \\\ ~ - g{
R 1A T S
' ~ ~ T
'r:‘-,-‘ — {-.- Us 14>+ 1> —> 10> {rﬂo- ~0- -0—"

. .. St o~
m= -4 o 1 U3 14>+ 15> —> 11> T
Bob measures

Alice prepares in QeA Em= Im¥Xm| & 8f

Choose the map U
®» any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by adding to &,
an orthogonal complement 962'

If N F,s are desired, where n's{)im P
then we need  Lim (Xat9y) 2N

( Preskill 3.1.4)
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Example : POVM on Qubit encoded in Qutrit

Pep (F=1) atomic HF state

%A Unitary Transformation
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Bob measures

Alice prepares in Q‘fA Em= Im¥Xm| € 36

Choose the map U
®» any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by adding to prr
an orthogonal complement 962;

If N FE,s are desired, where ns)im ®a
then we need  im (QCA{-QCZ‘L) >N

( Preskill 3.1.4)

Toy Example: One Qubit POVM, illustrates different
capabilities of OM & non-OM POVM’s

Pick 3 unit vectorss.t. > gaﬁ,‘ =0, bR =1
o 0

Measurement operators

M= 20alfe X6l » 2;':4 =1

For the above & following, note that
. C ae _ VL
95,2 = 008 ao") [+ Sim (807115, > =3 toe s 43>
l‘[‘h‘a) 2 0o¢ (o) lq‘ﬁ,) +Sin[~¢0') Il,;,') ) )l_m;,‘-q) -\% [ iﬁ1‘>
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Toy Example: One Qubit POVM, illustrates different
capabilities of OM & non-OM POVM’s

Pick 3 unit vectorss.t. 2>_ g,,fv'\,k =0, Z_ TIa =1
[ 0

Measurement operators
FQ:QGAM\F\'AX%A[ » %szﬂ*
For the above & following, note that
95,2 = Cos(ao’) [ B3+ Sin (0 1ig 5 = «r—>{—~[4 Y
a\ a . J ~ 110
IT/'3> = wS(QOo) lTﬁ1> +gllﬂ(“60 ) Il;ﬂ) = i_qu - 73- [lﬁ;>

Application: Discriminating between
non-orthogonal states
Alice prepares lﬂ‘ﬁ-‘}) Mﬁ? '7“1
w/equal probability
How can Bob best tell '3 190°
the difference ?
. (\ . ? Lo
OMin § | ., 14,\.1)? basis ? Ny

_ Bob’s guess ?
(13,7 Bob gets [T; 7 w/®=1
Alice sends <

V[ll\ﬁ.,? W/(P:

(17, Y= Bob gets -

-

bW/ P=3 (13D
Fidelity of Bob’s guess (Prob. his guess if correct)

o 1 I 3.01~
gﬂw_ sl bl rr Y n%) =4y S 0.9063

(@ (b)) () (d) (Quite good)

Note: Bob can never know for sure he received (7. 7
- 1
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Instead - “ .
Ny -,
Bob does
the POVM
-2 S n
Fﬂ =3 1 ﬁ,_X\LﬁA‘ y { "
-7,

Alice sends <

-

[z, 7= Bob gets -

Bob gets

k[1‘.;,1>-> Bob gets -

(4, w/ P=0
[4z,7 w/P =1y
| g w/P =y

[ [ ” w/ P =1y
[$i,7 w/ P=0

[ [Ng> w/ P =13

— -

[4z,7 = Bob knows Alice sent |75 >

[4z,> = Bob knows Alice sent [7; 7

[4z,7 = Bobis not sure

Fidelity of Bob’s guess (Prob. his guess if correct)

- | J [
opun™ 5~ L %% (3xL0 825 ) =2 0.9

I (a) I (b) (c)

P(know) P(don’t know)

(a) Asent(T;7or |75, B knows which one w/ Pelly (§F=1)
(b) Asent(T; 7 or |95 >, B DK, correct guess w/ P- il (?}i)
(c) Asent(T; 7 or [15>, B DK, wrong guess w/ P=1l, (?:4/9)

Note: If in (c) Bob guesses [;,> w/ { =3/, he
gets a slightly better fidelity of

Fooon ™

wm= g = 0.37So

However: if Bob sticks with Heralded Success

he will have a subensemble w/ 'g‘;ow\ = 12

Mﬁl} = oS (Go") ]¢a.1>+35v.(bo')l lg2 .—_-;—_Ifrﬁpf—if[‘;ﬁp
190 = 0osl6e?) 192 +5in(-601 [1;2 =} 11,5~ T (1>
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How to do it?

We can effectively do non-OM’s in part of Hilbert
space if we can add extra dimensions to X -

R-%,0% o R-%,e0,

Direct Sum Implementation

Consider %A@gﬁ; QEA ’X;

Sae &a
Bob (and/or Alice) makes OM §EA} in o, E, = lm,Xu, |

Alice prepares states

Geometric visualization: ( like an over complete )

L

basis in 2D subspace

.

s = WS¢ 5

We can now define effective measurement operators
Fa = BAE, By = [XF, [ = Ap 94Xy
» Pmy) = Tr[E,8Q4T = TF[F%AT]

Properties:
* Each F, is Hermitian & non-negative ® P(m,) > p

* Individual F, are not projectors unless r\,\= 1

*%PA = EA% E Eq = EpNLE, =4, < identity on &,

POVM : Positive Operator Valued Measure

A set of non-orthogonal meas. Operators fﬁ?

such that the F, ‘s are non-negative & J_F, =4
78
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We can now define effective measurement operators
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Example : POVM on Qubit encoded in Qutrit

¥pp (F=1) atomic HF state

%A Unitary Transformation
FEEEL IR \\‘ ~ - g{
l, Jer e \\\ U; l‘)+1>+l¥:'>—> I—7> -~ [ T R
' ~ ~ T
'r\'-,-‘ — {-.- Us 14>+ 1> —> 10> ((rﬂo- ~0- -0—"
- ~ - ~ o \\ L . .
mz -4 o 1 Us >+ gy —>[1> 7" 777

Bob measures

Alice prepares in QeA Em= Im¥Xm| & 8f

Geometric visualization: ( like an over complete )

| 4

basis in 2D subspace

L1

P2
s = s> € 1T
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Bob’s OM has 3 outcomes m, w/projectors E,€ ¥

If Alice only prepares states @, ¢ %, then
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Example : POVM on Qubit encoded in Qutrit

¥pp (F=1) atomic HF state

%A Unitary Transformation

-....-~~‘\ \\‘ ~ -
’ T 1) ST
-

¢ \ '

& — 8 s l"iz‘mﬁp—» (0> (’—o- ~0- ~o_':.
me o o 4 Uslpeiy—>izy e

Bob measures

Alice prepares in QeA Em= Im¥Xm| & af

Choose the map U
®» any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by adding to &,
an orthogonal complement 962'

If N F,s are desired, where n's{)im P
then we need  Lim (Xat9y) 2N

( Preskill 3.1.4)
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We can now define effective measurement operators
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POVM : Positive Operator Valued Measure

A set of non-orthogonal meas. Operators fﬁ?

such that the F, ‘s are non-negative & % R4
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