Von Neumann's Theory of Measurement

System Observable M

Pointer observable

(position X of a free particle)

Hamiltonian for the coupled System and Meter

$$H = H_0 + \frac{1}{2m}P^2 + \lambda MP$$
system free particle interaction

System-Meter interaction correlates *M* and *x*

Measure x → indirect measurement of M

Standard Quantum Limit (example)

Heisenberg:
$$\triangle \times \triangle p = \frac{R}{2} \implies \triangle \times (4)^2 \sim \triangle \times (6)^2 + \left(\frac{\hbar + 2}{2m \cdot \triangle \times (6)}\right)^2$$

Interaction time $t \Rightarrow \Delta x(t) \geq \Delta x_{SQL} \sim \sqrt{\frac{ht}{m}}$

Heavy pointer, Strong interaction

Note: P is the generator of translations along x

Time evolution $U(t) = e^{-i\lambda t MP/R}$

If then
$$M = \sum_{\alpha} m_{\alpha} |\alpha \times \alpha| \qquad U(t) = \sum_{\alpha} |\alpha \times \alpha| e^{-i\lambda t} m_{\alpha} P/t_{\alpha}$$

$$U(t) \sum_{\alpha} \alpha_{\alpha} |\alpha\rangle \otimes |\psi(x)\rangle = \sum_{\alpha} \alpha_{\alpha} |\alpha\rangle \otimes |\psi(x-\lambda t m_{\alpha})\rangle$$

translation along $x \propto m_a$

Projective

Non - Projective

Heavy pointer, **Strong interaction**

$$H = \lambda MP$$

Note: P is the generator of translations along x

Time evolution $U(t) = e^{-i\lambda t MP/R}$

If

then

$$M = \sum_{\alpha} m_{\alpha} |\alpha X \alpha|$$

$$M = \sum_{\alpha} m_{\alpha} |\alpha \times \alpha|$$
 $U(t) = \sum_{\alpha} |\alpha \times \alpha| e^{-i\lambda t} m_{\alpha} P/a$

$$U(t) \sum_{\alpha} \alpha_{\alpha} |\alpha\rangle \otimes |4(\times)\rangle = \sum_{\alpha} \alpha_{\alpha} |\alpha\rangle \otimes |4(x-\lambda t m_{\alpha})\rangle$$

translation along $x \propto m_a$

Projective

Non - Projective

Familiar Paradigm: Stern-Gerlach analysis

* System & Meter are 2 diff. deg.s of freedom

S > 1/2 version of SGA:

We have learned that

- * We can engineer a Von Neumann measurement to access information about a desired observable M.
- * We can implement more general types of measurements, including both projective and non-projective.
- * We need to expand our theory of measurement beyond the type defined in the postulates of QM

Orthogonal Measurement (OM)

Consider a set of measurements $\{E_{\lambda}\}$ such that

$$E_a = E_a^t$$

$$E_{\alpha} = E_{\alpha}^{\dagger}$$
 $E_{\alpha}E_{\alpha} = \delta_{\alpha\alpha}$ E_{α} $E_{\alpha} = 1$

$$\sum_{\alpha} E_{\alpha} = 1$$

orthogonal projectors complete set

We can associate such a set with any observable

$$M = \sum_{\alpha} m_{\alpha} E_{\alpha}$$

This allows us to restate the measurement postulates:

An Orthogonal Measurement of an observable M is described by a collection of operators $\{E_{a}\}$,

$$E_{\alpha} = E_{\alpha}^{\dagger}$$

$$E_a = E_a^{\dagger}$$
 $E_a E_{ai} = \delta_{aa}$, $E_a = 1$

$$\sum_{\alpha} E_{\alpha} = 1$$

The outcome M_a occurs w/prob. $P(m_a) = \langle y | E_a | y \rangle$

📦 the state collapses as 🏻 |३/>> ೯೩ |४ > / √೯(៣೭)

Mixed state: $\mathcal{P}(m_{\alpha}) = \text{Tr}[E_{\alpha}g], g \Rightarrow E_{\alpha}gE_{\alpha}/\mathcal{P}(m_{\alpha})$

 M_{O_1} degenerate: E_{O_2} projects onto <u>subspace</u>

Can we generalize to a broader class? - Yes!

Bob's OM has 3 outcomes m_a w/projectors $E_a \in \mathcal{X}$

If Alice only prepares states $\mathcal{L}_A \in \mathcal{L}_A$ then

$$P(M_{A}) = Tr [g_{A}E_{A}] = Tr [E_{A}g_{A}E_{A}E_{A}]$$

$$= Tr [g_{A}E_{A}E_{A}] = Tr [g_{A}F_{A}]$$

$$= Tr [g_{A}E_{A}E_{A}] = Tr [g_{A}F_{A}]$$

$$= (M_{A}|g_{A}|M_{A}) = (Y_{A}|g_{A}|Y_{A})$$

$$= \lambda_{A}(Y_{A}|g_{A}|Y_{A})$$
number ≤ 1
normalized

We can now define effective measurement operators

$$F_A = E_A E_A E_A = |\widetilde{Y}_a \times \widetilde{Y}_a| = \lambda_a |Y_a \times Y_a|$$

$$P(m_a) = Tr[E_a g_A] = Tr[F_A g_A]$$

Properties:

- * Each F_A is Hermitian & non-negative $\Rightarrow \mathcal{P}(m_a) \ge 0$
- * Individual F_A are not projectors unless $\lambda_A = 1$
- * $\sum_{A} F_{A} = E_{A} \sum_{A} E_{A} E_{A} = E_{A} + E_{A} = E_$

Geometric visualization: (like an over complete basis in 2D subspace)

POVM: Positive Operator Valued Measure

Bob's OM has 3 outcomes M_a w/projectors $E_a \in \mathcal{X}$

If Alice only prepares states $\mathcal{L}_A \in \mathcal{L}_A$ then

$$P(M_{A}) = Tr [g_{A}E_{A}] = Tr [E_{A}g_{A}E_{A}E_{A}]$$

$$= Tr [g_{A}E_{A}E_{A}] = Tr [g_{A}F_{A}]$$

$$= Tr [g_{A}E_{A}E_{A}] = Tr [g_{A}F_{A}]$$

$$= (M_{A}|g_{A}|M_{A}) = (Y_{A}|g_{A}|Y_{A})$$

$$= \lambda_{A}(Y_{A}|g_{A}|Y_{A})$$
number ≤ 1
normalized

We can now define <u>effective</u> measurement operators

$$F_A = E_A E_A E_A = |\widetilde{Y}_a \times \widetilde{Y}_a| = \lambda_a |Y_a \times Y_a|$$

$$P(m_a) = Tr[E_a g_A] = Tr[F_A g_A]$$

Properties:

- * Each F_A is Hermitian & non-negative $\Rightarrow \mathcal{P}(m_a) \ge 0$
- * Individual F_A are not projectors unless $\lambda_A = 1$
- * $\sum_{A} F_{A} = E_{A} \sum_{A} E_{A} E_{A} = E_{A} + E_{A} = E_$

Geometric visualization: (like an over complete basis in 2D subspace)

POVM: Positive Operator Valued Measure

We can now define <u>effective</u> measurement operators

$$F_A = E_A E_A E_A = |\widehat{\Psi}_a \times \widehat{\Psi}_a| = \lambda_a |\Psi_a \times \Psi_a|$$

$$\Rightarrow P(m_a) = Tr[E_a g_A] = Tr[F_a g_A]$$

Properties:

- * Each \vdash_A is Hermitian & non-negative $\Rightarrow \mathcal{P}(m_a) \ge 0$
- * Individual F_A are not projectors unless $\lambda_A = 1$
- * $\sum_{A} F_{A} = E_{A} \sum_{A} E_{A} E_{A} = E_{A} 1 E_{A} = 1_{A} \leftarrow identity on \mathcal{X}_{A}$

POVM: Positive Operator Valued Measure

A set of non-orthogonal meas. Operators $\{F_{\alpha}\}$ such that the F_{α} 's are non-negative & $\sum_{\alpha} F_{\alpha} = 1$

Example: POVM on Qubit encoded in Qutrit

\$786(F=1) atomic HF state

Alice prepares in $\mathcal{H}_{\!\mathcal{A}}$

Bob measures $E_{m} = |m \times m| \in \mathcal{H}$

Geometric visualization:

(like an over complete) basis in 2D subspace)

We can now define <u>effective</u> measurement operators

$$F_A = E_A E_A E_A = |\widehat{\Psi}_a \times \widehat{\Psi}_a| = \lambda_a |\Psi_a \times \Psi_a|$$

$$\Rightarrow P(m_a) = Tr[E_a g_A] = Tr[F_a g_A]$$

Properties:

- * Each \vdash_A is Hermitian & non-negative $\Rightarrow \mathcal{P}(m_a) \geq 0$
- * Individual F_A are not projectors unless $\lambda_A = 1$

*
$$\sum_{A} F_{A} = E_{A} \sum_{A} E_{A} E_{A} = E_{A} 1 E_{A} = 1_{A} \leftarrow identity on \mathcal{X}_{A}$$

POVM: Positive Operator Valued Measure

A set of non-orthogonal meas. Operators $\{F_{\alpha}\}$ such that the F_{α} 's are non-negative & $\sum_{\alpha} F_{\alpha} = 1$

Example: POVM on Qubit encoded in Qutrit

Poving Po

Alice prepares in $\mathcal{U}_{\mathcal{A}}$

Bob measures $E_m = |m \times m| \in \mathcal{H}$

Choose the map U

any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by adding to \mathcal{X}_A an orthogonal complement \mathcal{X}_A^{\perp}

If $N = S_A$ are desired, where $N > Dim \mathcal{H}_A$ then we need $Dim(\mathcal{H}_A + \mathcal{H}_A^L) \ge N$

We can now define <u>effective</u> measurement operators

$$F_A = E_A E_A E_A = |\widehat{\Psi}_a \times \widehat{\Psi}_a| = \lambda_a |\Psi_a \times \Psi_a|$$

$$\Rightarrow P(m_a) = Tr[E_a g_A] = Tr[F_a g_A]$$

Properties:

- * Each \vdash_A is Hermitian & non-negative $\Rightarrow \mathcal{P}(m_a) \geq 0$
- * Individual F_A are not projectors unless $\lambda_A = 1$

*
$$\sum_{A} F_{A} = E_{A} \sum_{A} E_{A} E_{A} = E_{A} 1 E_{A} = 1_{A} \leftarrow identity on \mathcal{X}_{A}$$

POVM: Positive Operator Valued Measure

A set of non-orthogonal meas. Operators $\{F_{\alpha}\}$ such that the F_{α} 's are non-negative & $\sum_{\alpha} F_{\alpha} = 1$

Example: POVM on Qubit encoded in Qutrit

Poving Po

Alice prepares in $\mathcal{U}_{\mathcal{A}}$

Bob measures $E_{m} = |m \times m| \in \mathcal{H}$

Choose the map U

any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by adding to \mathcal{X}_A an orthogonal complement \mathcal{X}_A^{\perp}

If $N = S_A$ are desired, where $N > Dim \mathcal{H}_A$ then we need $Dim(\mathcal{H}_A + \mathcal{H}_A^L) \ge N$

Example: POVM on Qubit encoded in Qutrit

Unitary Transformation

Alice prepares in \mathcal{H}_{Δ}

Bob measures

$$E_m = |m \times m| \in \mathcal{H}$$

Choose the map U

any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by adding to \mathscr{X}_{A} an orthogonal complement \mathscr{X}_A^{\perp}

If $N = S_{A}$'s are desired, where $N > Dim \mathcal{X}_{A}$ then we need $\Im im(\mathscr{X}_A + \mathscr{X}_A^{\perp}) \geq N$

(Preskill 3.1.4)

Toy Example: One Qubit POVM, illustrates different capabilities of OM & non-OM POVM's

Pick 3 unit vectors s. t. $\sum y_A \vec{v}_A = 0$, $\sum y_A = 1$

Measurement operators

$$F_a = 2\eta_a | \uparrow_{\vec{n}_a} \times \uparrow_{\vec{n}_a} | \Rightarrow \sum_{\alpha} F_{\alpha} = 1$$

$$\sum_{\alpha} F_{\alpha} = 1$$

For the above & following, note that

$$\begin{split} |\uparrow_{\vec{n}_{2}}\rangle &= \cos(60^{\circ}) |\uparrow_{\vec{n}_{1}}\rangle + \sin(60^{\circ}) |\downarrow_{\vec{n}_{1}}\rangle = \frac{1}{2} |\uparrow_{\vec{n}_{1}}\rangle + \frac{\sqrt{3}}{2} |\downarrow_{\vec{n}_{1}}\rangle \\ |\uparrow_{\vec{n}_{2}}\rangle &= \cos(60^{\circ}) |\uparrow_{\vec{n}_{1}}\rangle + \sin(-60^{\circ}) |\downarrow_{\vec{n}_{1}}\rangle = \frac{1}{2} |\uparrow_{\vec{n}_{1}}\rangle - \frac{\sqrt{3}}{2} |\downarrow_{\vec{n}_{2}}\rangle \end{split}$$

Toy Example: One Qubit POVM, illustrates different capabilities of OM & non-OM POVM's

Pick 3 unit vectors s. t. $\sum_{\alpha} y_{\alpha} \vec{v}_{\alpha} = 0$, $\sum_{\alpha} y_{\alpha} = 1$

Measurement operators

$$F_a = 2\eta_a | \uparrow_{\vec{n}_a} \times \uparrow_{\vec{n}_a} | \Rightarrow \sum_a F_a = 1$$

For the above & following, note that

$$|\hat{T}_{\vec{n}_{2}}\rangle = \cos(60^{\circ})|\hat{T}_{\vec{n}_{1}}\rangle + \sin(60^{\circ})|\hat{I}_{\vec{n}_{1}}\rangle = \frac{1}{2}|\hat{T}_{\vec{n}_{1}}\rangle + \frac{\sqrt{3}}{2}|\hat{I}_{\vec{n}_{1}}\rangle$$

$$|\hat{T}_{\vec{n}_{3}}\rangle = \cos(60^{\circ})|\hat{T}_{\vec{n}_{4}}\rangle + \sin(-60^{\circ})|\hat{I}_{\vec{n}_{4}}\rangle = \frac{1}{2}|\hat{T}_{\vec{n}_{1}}\rangle - \frac{\sqrt{3}}{2}|\hat{I}_{\vec{n}_{2}}\rangle$$

$$|\hat{T}_{\vec{n}_{3}}\rangle = \cos(60^{\circ})|\hat{T}_{\vec{n}_{4}}\rangle + \sin(-60^{\circ})|\hat{I}_{\vec{n}_{4}}\rangle = \frac{1}{2}|\hat{T}_{\vec{n}_{1}}\rangle - \frac{\sqrt{3}}{2}|\hat{I}_{\vec{n}_{2}}\rangle$$

Application: Discriminating between non-orthogonal states

How can Bob best tell the difference?

$$\underline{OM}$$
 in $\{ | \hat{\eta}_{n_i} \rangle, | \hat{\eta}_{n_i} \rangle \}$ basis?

Bob's guess?

Alice sends
$$\begin{cases} |\hat{\uparrow}_{\vec{N}_1}\rangle \rightarrow \text{Bob gets} & |\hat{\uparrow}_{\vec{N}_1}\rangle \neq |\hat{\uparrow}_{\vec{N}_1}\rangle \\ |\hat{\uparrow}_{\vec{N}_2}\rangle \rightarrow |\hat{\uparrow}_{\vec{N}_2}\rangle \rightarrow |\hat{\uparrow}_{\vec{N}_2}\rangle \\ |\hat{\downarrow}_{\vec{N}_2}\rangle \rightarrow |\hat{\uparrow}_{\vec{N}_2}\rangle + |\hat{\uparrow}_{\vec{N}_2}\rangle \\ |\hat{\downarrow}_{\vec{N}_2}\rangle \rightarrow |\hat{\uparrow}_{\vec{N}_2}\rangle + |\hat{\uparrow}_{\vec{N}_2}\rangle \\ |\hat{\downarrow}_{\vec{N}_2}\rangle \rightarrow |\hat{\uparrow}_{\vec{N}_2}\rangle + |\hat{\uparrow}_{\vec{N}_2}\rangle +$$

Fidelity of Bob's guess (Prob. his guess if correct)

$$\mathcal{G}_{pov_{M}} = \frac{1}{2} \times 1 + \frac{1}{2} \left(\frac{3}{4} \times 1 + \frac{1}{4} \times \frac{1}{4} \right) = \frac{29}{31} \simeq 0.9063$$
(a) (b) (c) (d) (Quite good)

Note: Bob can never know for sure he received $(\uparrow_{\vec{n}_1})$

Toy Example: One Qubit POVM, illustrates different capabilities of OM & non-OM POVM's

Pick 3 unit vectors s. t. $\sum_{\alpha} y_{\alpha} \vec{v}_{\alpha} = 0$, $\sum_{\alpha} y_{\alpha} = 1$

Measurement operators

$$F_a = 2\eta_a | \uparrow_{\vec{n}_a} \times \uparrow_{\vec{n}_a} | \Rightarrow \sum_{\alpha} F_{\alpha} = 1$$

For the above & following, note that

$$| \hat{T}_{\vec{n}_{2}} \rangle = \cos(60^{\circ}) | \hat{T}_{\vec{n}_{1}} \rangle + \sin(60^{\circ}) | \hat{I}_{\vec{n}_{1}} \rangle = \frac{1}{2} | \hat{T}_{\vec{n}_{1}} \rangle + \frac{\sqrt{3}}{2} | \hat{I}_{\vec{n}_{1}} \rangle$$

$$| \hat{T}_{\vec{n}_{3}} \rangle = \cos(60^{\circ}) | \hat{T}_{\vec{n}_{4}} \rangle + \sin(-60^{\circ}) | \hat{I}_{\vec{n}_{4}} \rangle = \frac{1}{2} | \hat{T}_{\vec{n}_{1}} \rangle - \frac{\sqrt{3}}{2} | \hat{I}_{\vec{n}_{2}} \rangle$$

$$| \hat{T}_{\vec{n}_{3}} \rangle = \cos(60^{\circ}) | \hat{T}_{\vec{n}_{4}} \rangle + \sin(-60^{\circ}) | \hat{I}_{\vec{n}_{4}} \rangle = \frac{1}{2} | \hat{T}_{\vec{n}_{1}} \rangle - \frac{\sqrt{3}}{2} | \hat{I}_{\vec{n}_{2}} \rangle$$

Application: Discriminating between non-orthogonal states

How can Bob best tell the difference?

$$\underline{OM}$$
 in $\{ | \hat{\eta}_{n_i} \rangle, | \hat{\eta}_{n_i} \rangle \}$ basis?

Bob's guess?

Alice sends
$$\begin{cases} |\hat{\uparrow}_{\vec{n}_{1}}\rangle \rightarrow \text{Bob gets} & |\hat{\uparrow}_{\vec{n}_{1}}\rangle \text{ w/} \mathcal{P} = \underline{1} \\ |\hat{\uparrow}_{\vec{n}_{2}}\rangle \rightarrow \text{Bob gets} & |\hat{\uparrow}_{\vec{n}_{1}}\rangle \text{ w/} \mathcal{P} = \frac{1}{4} \end{cases}$$

$$|\hat{\uparrow}_{\vec{n}_{2}}\rangle \rightarrow \text{Bob gets} \begin{cases} |\hat{\uparrow}_{\vec{n}_{1}}\rangle \text{ w/} \mathcal{P} = \frac{1}{4} \end{cases}$$

Fidelity of Bob's guess (Prob. his guess if correct)

$$\mathcal{G}_{povn} = \frac{1}{2} \times 1 + \frac{1}{2} \left(\frac{3}{4} \times 1 + \frac{1}{4} \times \frac{1}{4} \right) = \frac{29}{32} \simeq 0.9063$$
(a) (b) (c) (d) (Quite good)

Note: Bob can never know for sure he received $(\hat{\tau}_{\vec{n}_1})$

Instead

Bob does the POVM

$$F_{A} = \frac{2}{3} \left| \int_{\vec{n}_{A}} \left| \int_{\vec{n}_{A}} \right|$$

Alice sends
$$\begin{cases} |J_{\vec{n}_1}\rangle & \text{w}/P = 0 \\ |J_{\vec{n}_2}\rangle & \text{w}/P = 1/2 \\ |J_{\vec{n}_3}\rangle & \text{w}/P = 1/2 \end{cases}$$

$$\begin{cases} |J_{\vec{n}_1}\rangle & \text{w}/P = 1/2 \\ |J_{\vec{n}_2}\rangle & \text{w}/P = 1/2 \\ |J_{\vec{n}_2}\rangle & \text{w}/P = 0 \\ |J_{\vec{n}_3}\rangle & \text{w}/P = 1/2 \end{cases}$$

Bob gets
$$\begin{cases} |\downarrow_{\vec{n}_1}\rangle \longrightarrow \text{Bob knows Alice sent } |\uparrow_{\vec{n}_2}\rangle \\ |\downarrow_{\vec{n}_2}\rangle \longrightarrow \text{Bob knows Alice sent } |\uparrow_{\vec{n}_1}\rangle \\ |\downarrow_{\vec{n}_3}\rangle \longrightarrow \text{Bob is not sure} \end{cases}$$

Fidelity of Bob's guess (Prob. his guess if correct)

$$\mathcal{F}_{pown} = \frac{1}{2} \times 1 + \frac{1}{2} \left(\frac{1}{2} \times 1 + \frac{1}{2} \times \frac{1}{4} \right) = \frac{13}{16} = 0.9/25$$

$$\uparrow \quad \text{(a)} \quad \uparrow \quad \text{(b)} \quad \text{(c)}$$

$$\mathcal{P}(know) \quad \mathcal{P}(don't \ know)$$

- (a) A sent $\{ \hat{\gamma}_{n_1} \}$ or $\{ \hat{\gamma}_{n_2} \}$, B knows which one w/ \mathcal{P}_{n_2} $(\mathcal{F} = 1)$
- (b) A sent (\hat{n}_1) or (\hat{n}_2) , B DK, correct guess w/ $(\mathcal{P}_1)_2$ (\mathcal{F}_1)
- (c) A sent $(\hat{r}_{\vec{n}_1})$ or $(\hat{r}_{\vec{n}_2})$, B DK, wrong guess w/ $(\mathcal{F}_{\vec{n}_1})$ $(\mathcal{F}_{\vec{n}_2})$

Note: If in (c) Bob guesses $|\sqrt{g}| \le \sqrt{g}$ he gets a slightly better fidelity of

$$\mathcal{F}_{povm} = \frac{14}{16} = 0.8750$$

However: if Bob sticks with Heralded Success he will have a subensemble w/ $\mathscr{F}_{pown} = 1$?

$$\begin{split} | \P_{\vec{n}_{2}} \rangle &= \cos(60^{\circ}) | \P_{\vec{n}_{1}} \rangle + \sin(60^{\circ}) | J_{\vec{n}_{1}} \rangle = \frac{1}{2} | \P_{\vec{n}_{2}} \rangle + \frac{\sqrt{3}}{2} | J_{\vec{n}_{1}} \rangle \\ | \P_{\vec{n}_{2}} \rangle &= \cos(60^{\circ}) | \P_{\vec{n}_{1}} \rangle + \sin(-60^{\circ}) | J_{\vec{n}_{1}} \rangle = \frac{1}{2} | \P_{\vec{n}_{1}} \rangle - \frac{\sqrt{3}}{2} | J_{\vec{n}_{2}} \rangle \end{split}$$

How to do it?

We can effectively do non-OM's in part of Hilbert space if we can add extra dimensions to \mathcal{X} :

$$\mathcal{X} = \mathcal{H}_A \oplus \mathcal{H}_A^{\perp}$$
 or $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

Direct Sum Implementation

Consider $\mathcal{H}_A \oplus \mathcal{X}_A^{\perp}$

Alice prepares states $\mathcal{S}_{A} \in \mathcal{X}_{A}$

Bob (and/or Alice) makes OM $\{E_a\}$ in \mathcal{X} , $E_a = [u_a \times u_a]$

Geometric visualization:

(like an over complete)
basis in 2D subspace)

We can now define <u>effective</u> measurement operators

$$F_A = E_A E_A E_A = |\widetilde{Y}_a \times \widetilde{Y}_a| = \lambda_a |Y_a \times Y_a|$$

$$P(m_a) = Tr[E_a g_A] = Tr[F_A g_A]$$

Properties:

- * Each \vdash_A is Hermitian & non-negative $\Rightarrow \mathcal{P}(m_a) \ge 0$
- * Individual F_A are not projectors unless $\lambda_A = 1$
- * $\sum_{A} F_{A} = E_{A} \sum_{A} E_{A} E_{A} = E_{A} 1 E_{A} = 1_{A} \leftarrow identity on \mathcal{H}_{A}$

POVM: Positive Operator Valued Measure

How to do it?

We can effectively do non-OM's in part of Hilbert space if we can add extra dimensions to \mathcal{X} :

$$\mathcal{X} = \mathcal{H}_A \oplus \mathcal{H}_A^{\perp}$$
 or $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

Direct Sum Implementation

Consider $\mathcal{H}_A \oplus \mathcal{X}_A^{\perp}$

Alice prepares states $S_A \in \mathcal{X}_A$

Bob (and/or Alice) makes OM $\{E_a\}$ in \mathcal{X} , $E_a = [u_a \times u_a]$

Geometric visualization:

(like an over complete)
basis in 2D subspace)

We can now define <u>effective</u> measurement operators

$$F_A = E_A E_A E_A = |\widetilde{Y}_a \times \widetilde{Y}_a| = \lambda_a |Y_a \times Y_a|$$

$$P(m_a) = Tr[E_a g_A] = Tr[F_A g_A]$$

Properties:

- * Each \vdash_A is Hermitian & non-negative $\Rightarrow \mathcal{P}(m_a) \ge 0$
- * Individual F_A are not projectors unless $\lambda_A = 1$
- * $\sum_{A} F_{A} = E_{A} \sum_{A} E_{A} E_{A} = E_{A} + E_{A} = E_$

POVM: Positive Operator Valued Measure

We can now define <u>effective</u> measurement operators

$$F_A = E_A E_A E_A = |\widetilde{Y}_a \times \widetilde{Y}_a| = \lambda_a |Y_a \times Y_a|$$

$$P(m_a) = Tr[E_a g_a] = Tr[F_a g_a]$$

Properties:

- * Each \vdash_A is Hermitian & non-negative $\Rightarrow \mathcal{P}(m_a) \ge 0$
- * Individual F_A are not projectors unless $\lambda_A = 1$
- * $\sum_{A} F_{A} = E_{A} \sum_{A} E_{A} E_{A} = E_{A} 1 E_{A} = 1_{A} \leftarrow identity on \mathcal{X}_{A}$

Example : POVM on Qubit encoded in Qutrit

Alice prepares in $\mathcal{H}_{\mathcal{A}}$

Bob measures $E_m = |m \times m| \in \mathcal{H}$

Bob's OM has 3 outcomes m_a w/projectors $E_a \in \mathcal{X}$

If Alice only prepares states $\mathcal{L}_A \in \mathcal{L}_A$ then

$$P(M_{A}) = Tr [g_{A}E_{A}] = Tr [E_{A}g_{A}E_{A}E_{A}]$$

$$= Tr [g_{A}E_{A}E_{A}] = Tr [g_{A}F_{A}]$$

$$= Tr [g_{A}E_{A}E_{A}] = Tr [g_{A}F_{A}]$$

$$= A \qquad \text{norm } \leq 1$$

$$= A (4 |g_{A}|4)$$

$$= A (4 |g_{A}|4)$$

$$= \text{normalized}$$

Geometric visualization: (like an over complete basis in 2D subspace)

Example: POVM on Qubit encoded in Qutrit

\$786(F=1) atomic HF state

Alice prepares in $\mathcal{H}_{\mathcal{A}}$

Bob measures $E_{m} = |m \times m| \in \mathcal{H}$

Choose the map U

any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by adding to \mathcal{X}_A an orthogonal complement \mathcal{X}_A^\perp

If $N = S_A$ are desired, where $N > D \in \mathcal{N}_A$ then we need $D \in (\mathcal{X}_A + \mathcal{X}_A^{\perp}) \geq N$

Bob's OM has 3 outcomes M_a w/projectors $E_a \in \mathcal{X}$

If Alice only prepares states $\mathcal{L}_A \in \mathcal{L}_A$ then

We can now define <u>effective</u> measurement operators

$$F_A = E_A E_A E_A = |\widetilde{\mathcal{H}}_a \times \widetilde{\mathcal{H}}_a| = \lambda_a |\mathcal{H}_a \times \mathcal{H}_a|$$

$$\Rightarrow P(m_a) = Tr[E_a \mathcal{R}_A] = Tr[F_a \mathcal{R}_A]$$

Properties:

- * Each F_A is Hermitian & non-negative $\Rightarrow \mathcal{P}(m_a) \ge 0$
- * Individual F_A are not projectors unless $\lambda_A = 1$
- * $\sum_{A} F_{A} = E_{A} \sum_{A} E_{A} E_{A} = E_{A} 1 E_{A} = 1_{A}$ identity on \mathcal{X}_{A}

Geometric visualization: (like an over complete basis in 2D subspace)

POVM: Positive Operator Valued Measure

We can now define <u>effective</u> measurement operators

$$F_A = E_A E_A E_A = |\widehat{\Psi}_a \times \widehat{\Psi}_a| = \lambda_a |\Psi_a \times \Psi_a|$$

$$\Rightarrow P(m_a) = Tr[E_a g_A] = Tr[F_a g_A]$$

Properties:

- * Each \vdash_A is Hermitian & non-negative $\Rightarrow \mathcal{P}(m_a) \geq 0$
- * Individual F_A are not projectors unless $\lambda_A = 1$

*
$$\sum_{A} F_{A} = E_{A} \sum_{A} E_{A} E_{A} = E_{A} 1 E_{A} = 1_{A} \leftarrow identity on \mathcal{X}_{A}$$

POVM: Positive Operator Valued Measure

A set of non-orthogonal meas. Operators $\{F_{\alpha}\}$ such that the F_{α} 's are non-negative & $\sum_{\alpha} F_{\alpha} = 1$

Example: POVM on Qubit encoded in Qutrit

Poving Po

Alice prepares in $\mathcal{H}_{\mathcal{A}}$

Bob measures $E_m = |m \times m| \in \mathcal{H}$

Choose the map U

any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by adding to \mathcal{X}_A an orthogonal complement \mathcal{X}_A^{\perp}

If $N = S_A$ are desired, where $N > Dim \mathcal{H}_A$ then we need $Dim(\mathcal{H}_A + \mathcal{H}_A^L) \ge N$

We can now define <u>effective</u> measurement operators

$$F_A = E_A E_A E_A = |\widehat{\Psi}_a \times \widehat{\Psi}_a| = \lambda_a |\Psi_a \times \Psi_a|$$

$$\Rightarrow P(m_a) = Tr[E_a g_A] = Tr[F_a g_A]$$

Properties:

- * Each \vdash_A is Hermitian & non-negative $\Rightarrow \mathcal{P}(m_a) \geq 0$
- * Individual F_A are not projectors unless $\lambda_A = 1$

*
$$\sum_{A} F_{A} = E_{A} \sum_{A} E_{A} E_{A} = E_{A} 1 E_{A} = 1_{A} \leftarrow identity on \mathcal{X}_{A}$$

POVM: Positive Operator Valued Measure

A set of non-orthogonal meas. Operators $\{F_{\alpha}\}$ such that the F_{α} 's are non-negative & $\sum_{\alpha} F_{\alpha} = 1$

Example: POVM on Qubit encoded in Qutrit

Poving Po

Alice prepares in $\mathcal{H}_{\mathcal{A}}$

Bob measures $E_m = |m \times m| \in \mathcal{H}$

Choose the map U

any 1 qubit, 3 outcome POVM we want

Theorem: Any POVM can be realized by adding to \mathcal{X}_A an orthogonal complement \mathcal{X}_A^{\perp}

If $N = S_A$ are desired, where $N > Dim \mathcal{H}_A$ then we need $Dim(\mathcal{H}_A + \mathcal{H}_A^L) \ge N$