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Suppressing quantum errors by scaling a 
surface code logical qubit

Google Quantum AI*

Practical quantum computing will require error rates well below those achievable 
with physical qubits. Quantum error correction1,2 offers a path to algorithmically 
relevant error rates by encoding logical qubits within many physical qubits,  
for which increasing the number of physical qubits enhances protection against 
physical errors. However, introducing more qubits also increases the number  
of error sources, so the density of errors must be sufficiently low for logical 
performance to improve with increasing code size. Here we report the 
measurement of logical qubit performance scaling across several code sizes,  
and demonstrate that our system of superconducting qubits has sufficient 
performance to overcome the additional errors from increasing qubit number.  
We find that our distance-5 surface code logical qubit modestly outperforms an 
ensemble of distance-3 logical qubits on average, in terms of both logical error 
probability over 25 cycles and logical error per cycle ((2.914 ± 0.016)% compared  
to (3.028 ± 0.023)%). To investigate damaging, low-probability error sources, we run 
a distance-25 repetition code and observe a 1.7 × 10−6 logical error per cycle floor set 
by a single high-energy event (1.6 × 10−7 excluding this event). We accurately model 
our experiment, extracting error budgets that highlight the biggest challenges  
for future systems. These results mark an experimental demonstration in which 
quantum error correction begins to improve performance with increasing qubit 
number, illuminating the path to reaching the logical error rates required for 
computation.

Since Feynman’s proposal to compute using quantum mechanics3, 
many potential applications have emerged, including factoring4, 
optimization5, machine learning6, quantum simulation7 and quan-
tum chemistry8. These applications often require billions of quantum 
operations9–11 and state-of-the-art quantum processors typically have 
error rates around 10−3 per gate12–17, far too high to execute such large 
circuits. Fortunately, quantum error correction can exponentially 
suppress the operational error rates in a quantum processor, at the 
expense of temporal and qubit overhead18,19.

Several works have reported quantum error correction on codes 
able to correct a single error, including the distance-3 Bacon–Shor20, 
colour21, five-qubit22, heavy-hexagon23 and surface24,25 codes, as well as 
continuous variable codes26–29. However, a crucial question remains of 
whether scaling up the error-correcting code size will reduce logical 
error rates in a real device. In theory, logical errors should be reduced if 
physical errors are sufficiently sparse in the quantum processor. In prac-
tice, demonstrating reduced logical error requires scaling up a device to 
support a code that can correct at least two errors, without sacrificing 
state-of-the-art performance. In this work we report a 72-qubit super-
conducting device supporting a 49-qubit distance-5 (d = 5) surface 
code that narrowly outperforms its average subset 17-qubit distance-3 
surface code, demonstrating a critical step towards scalable quantum 
error correction.

 
Surface codes with superconducting qubits
Surface codes30–34 are a family of quantum error-correcting codes that 
encode a logical qubit into the joint entangled state of a d × d square 
of physical qubits, referred to as data qubits. The logical qubit states 
are defined by a pair of anti-commuting logical observables XL and ZL. 
For the example shown in Fig. 1a, a ZL observable is encoded in the joint 
Z-basis parity of a line of qubits that traverses the lattice from top to 
bottom, and likewise an XL observable is encoded in the joint X-basis 
parity traversing left to right. This non-local encoding of information 
protects the logical qubit from local physical errors, provided we can 
detect and correct them.

To detect errors, we periodically measure X and Z parities of adjacent 
clusters of data qubits with the aid of d2 − 1 measure qubits interspersed 
throughout the lattice. As shown in Fig. 1b, each measure qubit interacts 
with its neighbouring data qubits to map the joint data qubit parity 
onto the measure qubit state, which is then measured. Each parity 
measurement, or stabilizer, commutes with the logical observables of 
the encoded qubit as well as every other stabilizer. Consequently, we 
can detect errors when parity measurements change unexpectedly, 
without disturbing the logical qubit state.

A decoder uses the history of stabilizer measurement outcomes to 
infer likely configurations of physical errors on the device. We can then 
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determine the overall effect of these inferred errors on the logical qubit, 
thus preserving the logical state. Most surface code logical gates can 
be implemented by maintaining logical memory and executing differ-
ent sequences of measurements on the code boundary35–37. Thus, we 
focus on preserving logical memory, the core technical challenge in 
operating the surface code.

We implement the surface code on an expanded Sycamore device38 
with 72 transmon qubits39 and 121 tunable couplers40,41. Each qubit is 
coupled to four nearest neighbours except on the boundaries, with 
mean qubit coherence times T1 = 20 μs and T2,CPMG = 30 μs, in which 
CPMG represents Carr–Purcell–Meiboom–Gill. As in ref. 42, we imple-
ment single-qubit rotations, controlled-Z (CZ) gates, reset and measure-
ment, demonstrating similar or improved simultaneous performance 
as shown in Fig. 1c.

The distance-5 surface code logical qubit is encoded on a 49-qubit 
subset of the device, with 25 data qubits and 24 measure qubits. Each 
measure qubit corresponds to one stabilizer, classified by its basis  
(X or Z) and the number of data qubits involved (weight, 2 or 4). Ideally,  
to assess how logical performance scales with code size, we would 
compare distance-5 and distance-3 logical qubits under identical noise.  

Although device inhomogeneity makes this comparison difficult, 
we can compare the distance-5 logical qubit to the average of four 
distance-3 logical qubit subgrids, each containing nine data qubits 
and eight measure qubits. These distance-3 logical qubits cover the 
four quadrants of the distance-5 code with minimal qubit overlap, 
capturing the average performance of the full distance-5 grid.

In a single instance of the experiment, we initialize the logical qubit 
state, run several cycles of error correction, and then measure the final 
logical state. We show an example in Fig. 2a. To prepare a ZL eigenstate, 
we first prepare each data qubit in |0⟩  or |1⟩ , an eigenstate of the  
Z stabilizers. The first cycle of stabilizer measurements then projects 
the data qubits into an entangled state that is also an eigenstate of the 
X stabilizers. Each cycle contains CZ and Hadamard gates sequenced 
to extract X and Z stabilizers simultaneously, and ends with the meas-
urement and reset of the measure qubits. In the final cycle, we also 
measure the data qubits in the Z basis, yielding both parity information 
and a measurement of the logical state. Preparing and measuring XL 
eigenstates proceeds analogously. The instance succeeds if the  
corrected logical measurement agrees with the known initial state;  
otherwise, a logical error has occurred.

Our stabilizer circuits contain a few modifications to the standard 
gate sequence described above (see Supplementary Information), 
including phase corrections to correct for unintended qubit frequency 
shifts and dynamical decoupling gates during qubit idles43. We also 
remove certain Hadamard gates to implement the ZXXZ variant of the 
surface code44,45, which helps symmetrize the X- and Z-basis logical error 
rates. Finally, during initialization, the data qubits are prepared into 
randomly selected bitstrings. This ensures that we do not preferentially 
measure even parities in the first few cycles of the code, which could 
artificially lower logical error rates owing to bias in measurement error 
(see Supplementary Information).

Error detectors
After initialization, parity measurements should produce the same 
value in each cycle, up to known flips applied by the circuit. If we com-
pare a parity measurement to the corresponding measurement in the 
preceding cycle and their values are inconsistent, a detection event 
has occurred, indicating an error. We refer to these comparisons as 
detectors.

The detection event probabilities for each detector indicate the 
distribution of physical errors in space and time while running the 
surface code. In Fig. 2, we show the detection event probabilities in 
the distance-5 code (Fig. 2b,c) and the distance-3 codes (Fig. 2d,e) run-
ning for 25 cycles, as measured over 50,000 experimental instances. 
For the weight-4 stabilizers, the average detection probability is 
0.185 ± 0.018 (1σ) in the distance-5 code and 0.175 ± 0.017 averaged 
over the distance-3 codes. The weight-2 stabilizers interact with fewer 
qubits and hence detect fewer errors. Correspondingly, they yield a 
lower average detection probability of 0.119 ± 0.012 in the distance-5 
code and 0.115 ± 0.008 averaged over the distance-3 codes. The relative 
consistency between code distances suggests that growing the lattice 
does not substantially increase the component error rates during error 
correction.

The average detection probabilities exhibit a relative rise of 12% for 
distance-5 and 8% for distance-3 over 25 cycles, with a typical character-
istic risetime of roughly 5 cycles (see Supplementary Information). We 
attribute this rise to data qubits leaking into non-computational excited 
states and anticipate that the inclusion of leakage-removal techniques 
on data qubits would help to mitigate this rise42,46–48. We reason that 
the greater increase in detection probability in the distance-5 code is 
due to increased stray interactions or leakage from simultaneously 
operating more gates and measurements.

We test our understanding of the physical noise in our system by 
comparing the experimental data to a simulation. We begin with a 
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Fig. 1 | Implementing surface code logical qubits. a, Schematic of a 72-qubit 
Sycamore device with a distance-5 surface code embedded, consisting of 25 data 
qubits (gold) and 24 measure qubits (blue). Each measure qubit is associated 
with a stabilizer (blue coloured tile, dark: X, light: Z). Representative logical 
operators ZL (black) and XL (green) traverse the array, intersecting at the lower- 
left data qubit. The upper right quadrant (red outline) is one of four subset 
distance-3 codes (the four quadrants) that we compare to distance-5.  
b, Illustration of a stabilizer measurement, focusing on one data qubit (labelled ψ)  
and one measure qubit (labelled 0), in perspective view with time progressing to 
the right. Each qubit participates in four CZ gates (black) with its four nearest 
neighbours, interspersed with Hadamard gates (H), and finally, the measure 
qubit is measured and reset to |0⟩ (MR). Data qubits perform dynamical 
decoupling (DD) while waiting for the measurement and reset. All stabilizers are 
measured in this manner concurrently. Cycle duration is 921 ns, including 25-ns 
single-qubit gates, 34-ns two-qubit gates, 500-ns measurement and 160-ns reset 
(see Supplementary Information for compilation details). The readout and reset 
take up most of the cycle time, so the concurrent data qubit idling is a dominant 
source of error. c, Cumulative distributions of errors for single-qubit gates (1Q), 
CZ gates, measurement (Meas.) and data qubit dynamical decoupling  
(idle during measurement and reset), which we refer to as component errors.  
The circuits were benchmarked in simultaneous operation using random circuit 
techniques, on the 49 qubits used in distance-5 and the 4 CZ layers from the 
stabilizer circuit38,59 (see Supplementary Information). Vertical lines are means.
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depolarizing noise simulation based on the component error informa-
tion in Fig. 1c, and then extend to a Pauli simulation with qubit-specific T1 
and T2,CPMG, transitions to leaked states, and stray interactions between 
qubits during CZ gates (see Supplementary Information). We refer 
to this simulation as Pauli+. Figure 2f shows that this second simula-
tor accurately predicts the average detection probabilities, finding 
0.180 ± 0.013 for the weight-4 stabilizers and 0.116 ± 0.011 for the 
weight-2 stabilizers, with average detection probabilities increasing 
7% over 25 cycles (distance-5).

Understanding errors through correlations
We next examine pairwise correlations between detection events, which 
give us fine-grained information about which types of error are occur-
ring during error correction. Figure 2a illustrates a few examples of 
pairwise detections that are generated by X or Z errors in the surface 
code. Measurement and reset errors are detected by the same stabilizer 
in two consecutive cycles, which we classify as a timelike pair. Data 
qubits may experience an X (Z) error while idling during measurement 
that is detected by its neighbouring Z (X) stabilizers in the same cycle, 
forming a spacelike pair. Errors during CZ gates may cause a variety 
of pairwise detections to occur, including spacetimelike pairs that are 
separated in both space and time. More complex clusters of detection 
events arise when a Y error occurs, which generates detection events 
for both X and Z errors.

To estimate the probability for each detection event pair from our 
data, we compute an appropriately normalized correlation pij between 
detection events occurring on any two detectors i and j (refs. 42,49;  
see Supplementary Information). In Fig. 2h, we show the estimated prob-
abilities for experimental and simulated distance-5 data, aggregated 

and averaged according to the different classes of pairs. In addition to 
the expected pairs, we also quantify how often detection pairs occur 
that are unexpected in a local depolarizing circuit model. Overall, the 
Pauli simulation systematically underpredicts these probabilities  
compared to experimental data, whereas the Pauli+ simulation is closer 
and predicts the presence of unexpected pairs, which we surmise are 
related to leakage and stray interactions. These errors can be espe-
cially harmful to the surface code because they can generate multiple 
detection events distantly separated in space or time, which a decoder 
might wrongly interpret as multiple independent component errors. 
We expect that mitigating leakage and stray interactions will become 
increasingly important as error rates decrease.

Decoding and logical error probabilities
We next examine the logical performance of our surface code qubits. 
To infer the error-corrected logical measurement, the decoder requires 
a probability model for physical error events. This information may 
be expressed as an error hypergraph: detectors are vertices, physical 
error mechanisms are hyperedges connecting the detectors they trig-
ger, and each hyperedge is assigned its corresponding error mecha-
nism probability. We use a generalization of pij to determine these  
probabilities42,50.

Given the error hypergraph, we implement two different decoders: 
belief-matching, an efficient combination of belief propagation and 
minimum-weight perfect matching51; and tensor network decoding, 
a slow but accurate approximate maximum-likelihood decoder. The 
belief-matching decoder first runs belief propagation on the error 
hypergraph to update hyperedge error probabilities based on nearby 
detection events51,52. The updated error hypergraph is then decomposed 
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Fig. 2 | Error detection in the surface code. a, Illustration of a surface code 
experiment, in perspective view with time progressing to the right. We begin 
with an initial data qubit state that has known parities in one stabilizer basis 
(here, Z). We show example errors that manifest in detection pairs: a Z error 
(red) on a data qubit (spacelike pair), a measurement error (purple) on a measure 
qubit (timelike pair), an X error (blue) during the CZ gates (spacetimelike pair) 
and a measurement error (green) on a data qubit (detected in the final inferred  
Z parities). b, Detection probability for each stabilizer over a 25-cycle distance-5 
experiment (50,000 repetitions). Darker lines: average over all stabilizers with 
the same weight. There are fewer detections at timestep t = 0 because there is  
no preceding syndrome extraction, and at t = 25 because the final parities are 
calculated from data qubit measurements directly. QEC, quantum error 

correction. c, Detection probability heatmap, averaging over t = 1 to 24.  
d,e, Similar to b,c for four separate distance-3 experiments covering the four 
quadrants of the distance-5 code. f,g, Similar to b,c using a simulation with Pauli 
errors plus leakage, crosstalk and stray interactions (Pauli+). h, Bar chart 
summarizing the detection correlation matrix pij, comparing the distance-5 
experiment from b to the simulation in f (Pauli+) and a simpler simulation with 
only Pauli errors. We aggregate four groups of correlations: timelike pairs; 
spacelike pairs; spacetimelike pairs expected for Pauli noise; and spacetimelike 
pairs unexpected for Pauli noise (Unexp.), including correlations over two 
timesteps. Each bar shows a mean and standard deviation of correlations from a 
25-cycle, 50,000-repetition dataset.
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into a pair of disjoint error graphs, one each for X and Z errors31. These 
graphs are decoded efficiently using minimum-weight perfect match-
ing53 to select a single probable set of errors.

By contrast, a maximum-likelihood decoder considers all possible 
sets of errors consistent with the detection events, splits them into 
two groups on the basis of whether they flip the logical measurement, 
and chooses the group with the greater total likelihood. The two likeli-
hoods are each expressed as a tensor network contraction51,54,55 that 
exhaustively sums the probabilities of all sets of errors within each 
group. We can contract the network approximately, and verify that the 
approximation converges. This yields a decoder that is nearly optimal 
given the hypergraph error priors, but is considerably slower. Further 
improvements could come from a more accurate prior, or by incorpo-
rating more fine-grained measurement information47,56.

Figure 3 shows a comparison of the logical error performance 
of the distance-3 and distance-5 codes using the approximate 
maximum-likelihood decoder. As the ZXXZ variant of the surface code 
symmetrizes the X and Z bases, differences between the two bases’ 
logical error per cycle are small and attributable to spatial variations 
in physical error rates. Thus, for visual clarity, we report logical error 
probabilities averaged between the X and Z basis; the full dataset may 
be found in the Supplementary Information. Note that we do not 
post-select on leakage or high-energy events to capture the effects 
of realistic non-idealities on logical performance. Over all 25 cycles of 
error correction, the distance-5 code realizes lower logical error prob-
abilities pL than the average of the subset distance-3 codes.

We fit the logical fidelity F = 1 − 2pL to an exponential decay. We start 
the fit at t = 3 to avoid two phenomena that advantage the larger code: 
the lower detection probability during the first cycle relative to subse-
quent cycles (Fig. 2b,d), and the higher effective threshold caused by 
the confinement of errors to thin time slices in few-cycle experiments31. 
We obtain a logical error per cycle ε5 = (2.914 ± 0.016)% (1σ statistical 
and fit uncertainty) for the distance-5 code, compared to an average 
of ε3 = (3.028 ± 0.023)% for the subset distance-3 codes, a relative error 
reduction of about 4%. When decoding with the faster belief-matching 
decoder, we fit a logical error per cycle of (3.056 ± 0.015)% for the 
distance-5 code, compared to an average of (3.118 ± 0.025)% for the 
distance-3 codes, a relative error reduction of about 2%. We note that 
the distance-5 logical error per cycle is slightly higher than those of 
two of the distance-3 codes individually, and that leakage accumula-
tion may cause distance-5 performance to degrade faster than that of 
distance-3 as logical error probability approaches 50%.

In principle, the logical performance of a distance-5 code should improve 
faster than that of a distance-3 code as physical error rates decrease33. 
Over time, we improved our physical error rates, for example by opti-
mizing single- and two-qubit gates, measurement and data qubit idling 
(see Supplementary Information). In Fig. 3c, we show the corresponding 
performance progression of distance-5 and distance-3 codes. The larger 
code improved about twice as fast until finally overtaking the smaller 
code, validating the benefit of increased-distance protection in practice.

To understand the contributions of individual components to our 
logical error performance, we follow ref. 42 and simulate the distance-5 
and distance-3 codes while varying the physical error rates of the vari-
ous circuit components. As the logical-error-suppression factor

Λ ε ε= / (1)d d d d/( +2) +2

is approximately inversely proportional to the physical error rate, we 
can budget how much each physical error mechanism contributes to 
1/Λ3/5 (as shown in Fig. 4a) to assess scaling. This error budget shows 
that CZ error and data qubit decoherence during measurement and 
reset are dominant contributors.

Algorithmically relevant error rates
Even as known error sources are suppressed in future devices, new 
dominant error mechanisms may arise as lower logical error rates are 
realized. To test the behaviour of codes with substantially lower error 
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rates, we use the bit-flip repetition code, a one-dimensional version 
of the surface code. The bit-flip repetition code does not correct for 
phase-flip errors and is thus unsuitable for quantum algorithms. How-
ever, correcting only bit-flip errors allows it to achieve much lower 
logical error probabilities.

Without post-selection, we achieve a logical error per cycle of 
(1.7 ± 0.3) × 10−6 using a distance-25 repetition code decoded with 
minimum-weight perfect matching (Fig. 4b). We attribute many of these 
logical errors in the higher-distance codes to a high-energy impact, which 
can temporarily impart widespread correlated errors to the system57. 
These events may be identified by spikes in detection event counts42, and 
such error mechanisms must be mitigated for scalable quantum error cor-
rection to succeed. In this case, there was one such event; after removing it 
(0.15% of trials), we observe a logical error per cycle of (1.6 ± 0.8) × 10−7 (see 
Supplementary Information). The repetition code results demonstrate 
that low logical error rates are possible in a superconducting system, but 
finding and mitigating highly correlated errors such as cosmic ray impacts 
will be an important area of research moving forwards.

Towards large-scale quantum error correction
To understand how our surface code results project forwards to future 
devices, we simulate the logical error performance of surface codes 
ranging from distance-3 to 25, while also scaling the physical error 
rates shown in Fig. 1c. For efficiency, the simulation considers only Pauli 
errors. Figure 4c,d illustrates the contours of this parameter space, 
which has three distinct regions. When the physical error rate is high 
(for example, the initial runs of our surface code in Fig. 3c), logical error 
probability increases with increasing system size (εd+2 > εd). On the other 
hand, low physical error rates show the desired exponential suppression 
of logical error (εd+2 < εd). This threshold behaviour can be subtle58, and 
there exists a crossover regime in which, owing to finite-size effects, 
increasing system size initially suppresses the logical error per cycle 
before later increasing it. We believe our experiment lies in this regime.

Although our device is close to threshold, reaching algorithmically 
relevant logical error rates with manageable resources will require an 
error-suppression factor Λd/(d+2) ≫ 1. On the basis of the error budget 
and simulations in Fig. 4, we estimate that component performance 
must improve by at least 20% to move below threshold, and substan-
tially improve beyond that to achieve practical scaling. However, these 
projections rely on simplified models and must be validated experi-
mentally, testing larger code sizes with longer durations to eventu-
ally realize the desired logical performance. This work demonstrates 
the first step in that process, suppressing logical errors by scaling a 
quantum error-correcting code—the foundation of a fault-tolerant 
quantum computer.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-022-05434-1.

1.	 Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. 
A 52, R2493 (1995).

2.	 Gottesman, D. Stabilizer Codes and Quantum Error Correction. PhD thesis, California 
Institute of Technology (1997).

3.	 Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).
4.	 Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on 

a quantum computer. SIAM Rev. 41, 303–332 (1999).
5.	 Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an 

NP-complete problem. Science 292, 472–475 (2001).
6.	 Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).
7.	 Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).
8.	 Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum 

computation of molecular energies. Science 309, 1704–1707 (2005).
9.	 Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction 

mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).
10.	 Gidney, C. & Ekera, M. How to factor 2048 bit RSA integers in 8 hours using 20 million 

noisy qubits. Quantum 5, 433 (2021).
11.	 Kivlichan, I. D. et al. Improved fault-tolerant quantum simulation of condensed-phase 

correlated electrons via trotterization. Quantum 4, 296 (2020).
12.	 Ballance, C., Harty, T., Linke, N., Sepiol, M. & Lucas, D. High-fidelity quantum logic gates 

using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016).
13.	 Huang, W. et al. Fidelity benchmarks for two-qubit gates in silicon. Nature 569, 532–536 

(2019).
14.	 Rol, M. et al. Fast, high-fidelity conditional-phase gate exploiting leakage interference in 

weakly anharmonic superconducting qubits. Phys. Rev. Lett. 123, 120502 (2019).
15.	 Jurcevic, P. et al. Demonstration of quantum volume 64 on a superconducting quantum 

computing system. Quantum Sci. Technol. 6, 025020 (2021).
16.	 Foxen, B. et al. Demonstrating a continuous set of two-qubit gates for near-term quantum 

algorithms. Phys. Rev. Lett. 125, 120504 (2020).
17.	 Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum 

processor. Phys. Rev. Lett. 127, 180501 (2021).
18.	 Knill, E., Laflamme, R. & Zurek, W. H. Resilient quantum computation. Science 279,  

342–345 (1998).
19.	 Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. 

SIAM J. Comput. 38, 1207–1282 (2008).
20.	 Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281–286 (2021).
21.	 Ryan-Anderson, C. et al. Realization of real-time fault-tolerant quantum error correction. 

Phys. Rev. X 11, 041058 (2021).

Surface code
Repetition code
Removed high-energy event

A
b

ov
e

cr
os

so
ve

r
B

el
ow

th
re

sh
ol

d
C

ro
ss

ov
er

re
gi

m
e

s = 0.9

s = 1.0

s = 1.1

s = 1.2

s = 1.3

CZ

DD

Measure

Leakage

CZ
stray
int.

1Q

S
ur

fa
ce

 c
od

e 
er

ro
r 

b
ud

ge
t,

 1
/

3/
5

Lo
gi

ca
l e

rr
or

 p
er

 c
yc

le
, 

d
 

Lo
gi

ca
l e

rr
or

 p
er

 c
yc

le
, 

d
 

Code distance, d 

E
rr

or
 m

od
el

 s
ca

le
 fa

ct
or

, s
 

Surface code distance, d

d

0

0.2

0.4

0.6

0.8

1.0

0.8

0.9

1.0

1.1

1.2

1.3

0

0.01

0.02

0.03

0.04

0.05

0.06

3 25

10–7

10–6

10–5

10–4

10–3

10–2

10–1a b

c

5 15

3 = 5 

7 = 9 

d  = 0.050 

d < d+2 

d  = 0.036 
d = 0.030 

d = 0.020 

d = 0.014

d =
 0.010 

23 = 25 

d > d+2 

3 255 15
Surface code distance, d

3 255 15

Fig. 4 | Towards algorithmically relevant error rates. a, Estimated error 
budget for the surface code, based on component errors (see Fig. 1c) and Pauli+ 
simulations. Λ3/5 = ε3/ε5. CZ, contributions from CZ error (excluding leakage  
and stray interactions). CZ stray int., CZ error from unwanted interactions.  
DD, dynamical decoupling (data qubit idle error during measurement and reset). 
Measure, measurement and reset error. Leakage, leakage during CZs and due 
to heating. 1Q, single-qubit gate error. b, Logical error for repetition codes. 
Inset: schematic of the distance-25 repetition code, using the same data and 
measure qubits as the distance-5 surface code. Smaller codes are subsampled 
from the same distance-25 data42. A high-energy event resulted in an apparent 
error floor around 10−6. After removing the instances nearby (light blue),  
error decreases more rapidly with code distance. The dataset has 50 cycles, 
5 × 105 repetitions. We also plot the surface code error per cycle from Fig. 3b in 
black. c, Contour plot of simulated surface code logical error per cycle εd as a 
function of code distance d and a scale factor s on the error model in Fig. 1c 
(Pauli simulation, s = 1.0 corresponds to the current device error model).  
d, Horizontal slices from c, each for a value of error-model scale factor s. s = 1.3 
is above threshold (larger codes are worse), and s = 1.2 to 1.0 represent the 
crossover regime, for which progressively larger codes get better until a 
turnaround. s = 0.9 is below threshold (larger codes are better).

https://doi.org/10.1038/s41586-022-05434-1


Nature  |  Vol 614  |  23 February 2023  |  681

22.	 Abobeih, M. et al. Fault-tolerant operation of a logical qubit in a diamond quantum 
processor. Nature 606, 884–889 (2022).

23.	 Sundaresan, N. et al. Matching and maximum likelihood decoding of a multi-round 
subsystem quantum error correction experiment. Preprint at https://arXiv.org/abs/ 
2203.07205 (2022).

24.	 Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface 
code. Nature 605, 669–674 (2022).

25.	 Zhao, Y. et al. Realization of an error-correcting surface code with superconducting 
qubits. Phys. Rev. Lett. 129, 030501 (2022).

26.	 Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in 
superconducting circuits. Nature 536, 441–445 (2016).

27.	 Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 
513–517 (2019).

28.	 Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of 
an oscillator. Nature 584, 368–372 (2020).

29.	 Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205–209 
(2020).

30.	 Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 
(2003).

31.	 Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. 
Phys. 43, 4452–4505 (2002).

32.	 Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold 
in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).

33.	 Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards 
practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

34.	 Satzinger, K. et al. Realizing topologically ordered states on a quantum processor. 
Science 374, 1237–1241 (2021).

35.	 Horsman, C., Fowler, A. G., Devitt, S. & Meter, R. V. Surface code quantum computing by 
lattice surgery. New J. Phys. 14, 123011 (2012).

36.	 Fowler, A. G. & Gidney, C. Low overhead quantum computation using lattice surgery. 
Preprint at https://arXiv.org/abs/1808.06709 (2018).

37.	 Litinski, D. A game of surface codes: large-scale quantum computing with lattice surgery. 
Quantum 3, 128 (2019).

38.	 Arute, F. et al. Quantum supremacy using a programmable superconducting processor. 
Nature 574, 505–510 (2019).

39.	 Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. 
Rev. A 76, 042319 (2007).

40.	 Neill, C. A Path towards Quantum Supremacy with Superconducting Qubits. PhD thesis, 
Univ. California Santa Barbara (2017).

41.	 Yan, F. et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates. 
Phys. Rev. Appl. 10, 054062 (2018).

42.	 Chen, Z. et al. Exponential suppression of bit or phase errors with cyclic error correction. 
Nature 595, 383–387 (2021).

43.	 Kelly, J. et al. Scalable in situ qubit calibration during repetitive error detection. Phys. Rev. 
A 94, 032321 (2016).

44.	 Wen, X.-G. Quantum orders in an exact soluble model. Phys. Rev. Lett. 90, 016803 
(2003).

45.	 Bonilla Ataides, J. P., Tuckett, D. K., Bartlett, S. D., Flammia, S. T. & Brown, B. J. The XZZX 
surface code. Nat. Commun. 12, 2172 (2021).

46.	 Aliferis, P. & Terhal, B. M. Fault-tolerant quantum computation for local leakage faults. 
Quantum Inf. Comput. 7, 139–156 (2007).

47.	 Suchara, M., Cross, A. W. & Gambetta, J. M. Leakage suppression in the toric code. Proc. 
2015 IEEE International Symposium on Information Theory (ISIT) 1119–1123 (2015).

48.	 McEwen, M. et al. Removing leakage-induced correlated errors in superconducting 
quantum error correction. Nat. Commun. 12, 1761 (2021).

49.	 Spitz, S. T., Tarasinski, B., Beenakker, C. W. & O’Brien, T. E. Adaptive weight estimator for 
quantum error correction in a time-dependent environment. Adv. Quantum Technol. 1, 
1800012 (2018).

50.	 Chen, E. H. et al. Calibrated decoders for experimental quantum error correction. Phys. 
Rev. Lett. 128, 110504 (2022).

51.	 Higgott, O., Bohdanowicz, T. C., Kubica, A., Flammia, S. T. & Campbell, E. T. Fragile 
boundaries of tailored surface codes and improved decoding of circuit-level noise. 
Preprint at https://arXiv.org/abs/2203.04948 (2022).

52.	 Criger, B. & Ashraf, I. Multi-path summation for decoding 2D topological codes. Quantum 
2, 102 (2018).

53.	 Fowler, A. G., Whiteside, A. C. & Hollenberg, L. C. Towards practical classical processing 
for the surface code. Phys. Rev. Lett. 108, 180501 (2012).

54.	 Bravyi, S., Suchara, M. & Vargo, A. Efficient algorithms for maximum likelihood decoding 
in the surface code. Phys. Rev. A 90, 032326 (2014).

55.	 Chubb, C. T. & Flammia, S. T. Statistical mechanical models for quantum codes with 
correlated noise. Ann. Inst. Henri Poincaré D 8, 269–321 (2021).

56.	 Pattison, C. A., Beverland, M. E., da Silva, M. P. & Delfosse, N. Improved quantum error 
correction using soft information. Preprint at https://arXiv.org/abs/2107.13589 (2021).

57.	 McEwen, M. et al. Resolving catastrophic error bursts from cosmic rays in large arrays of 
superconducting qubits. Nat. Phys. 18, 107–111 (2022).

58.	 Stephens, A. M. Fault-tolerant thresholds for quantum error correction with the surface 
code. Phys. Rev. A 89, 022321 (2014).

59.	 Emerson, J., Alicki, R. & Życzkowski, K. Scalable noise estimation with random unitary 
operators. J. Opt. B 7, S347 (2005).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons license, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons license and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Google Quantum AI

Rajeev Acharya1, Igor Aleiner1,2, Richard Allen1, Trond I. Andersen1, Markus Ansmann1, 
Frank Arute1, Kunal Arya1, Abraham Asfaw1, Juan Atalaya1, Ryan Babbush1, Dave Bacon1, 
Joseph C. Bardin1,3, Joao Basso1, Andreas Bengtsson1, Sergio Boixo1, Gina Bortoli1, 
Alexandre Bourassa1, Jenna Bovaird1, Leon Brill1, Michael Broughton1, Bob B. Buckley1, 
David A. Buell1, Tim Burger1, Brian Burkett1, Nicholas Bushnell1, Yu Chen1, Zijun Chen1, 
Ben Chiaro1, Josh Cogan1, Roberto Collins1, Paul Conner1, William Courtney1, 
Alexander L. Crook1, Ben Curtin1, Dripto M. Debroy1, Alexander Del Toro Barba1, 
Sean Demura1, Andrew Dunsworth1, Daniel Eppens1, Catherine Erickson1, Lara Faoro1, 
Edward Farhi1, Reza Fatemi1, Leslie Flores Burgos1, Ebrahim Forati1, Austin G. Fowler1, 
Brooks Foxen1, William Giang1, Craig Gidney1, Dar Gilboa1, Marissa Giustina1, 
Alejandro Grajales Dau1, Jonathan A. Gross1, Steve Habegger1, Michael C. Hamilton1,4, 
Matthew P. Harrigan1, Sean D. Harrington1, Oscar Higgott1, Jeremy Hilton1, 
Markus Hoffmann1, Sabrina Hong1, Trent Huang1, Ashley Huff1, William J. Huggins1, 
Lev B. Ioffe1, Sergei V. Isakov1, Justin Iveland1, Evan Jeffrey1, Zhang Jiang1, Cody Jones1, 
Pavol Juhas1, Dvir Kafri1, Kostyantyn Kechedzhi1, Julian Kelly1, Tanuj Khattar1, 
Mostafa Khezri1, Mária Kieferová1,5, Seon Kim1, Alexei Kitaev1,6, Paul V. Klimov1, 
Andrey R. Klots1, Alexander N. Korotkov1,7, Fedor Kostritsa1, John Mark Kreikebaum1, 
David Landhuis1, Pavel Laptev1, Kim-Ming Lau1, Lily Laws1, Joonho Lee1, Kenny Lee1, 
Brian J. Lester1, Alexander Lill1, Wayne Liu1, Aditya Locharla1, Erik Lucero1, Fionn D. Malone1, 
Jeffrey Marshall8,9, Orion Martin1, Jarrod R. McClean1, Trevor McCourt1, Matt McEwen1,10, 
Anthony Megrant1, Bernardo Meurer Costa1, Xiao Mi1, Kevin C. Miao1, Masoud Mohseni1, 
Shirin Montazeri1, Alexis Morvan1, Emily Mount1, Wojciech Mruczkiewicz1, Ofer Naaman1, 
Matthew Neeley1, Charles Neill1, Ani Nersisyan1, Hartmut Neven1 ✉, Michael Newman1, 
Jiun How Ng1, Anthony Nguyen1, Murray Nguyen1, Murphy Yuezhen Niu1, Thomas E. O’Brien1, 
Alex Opremcak1, John Platt1, Andre Petukhov1, Rebecca Potter1, Leonid P. Pryadko1,11, 
Chris Quintana1, Pedram Roushan1, Nicholas C. Rubin1, Negar Saei1, Daniel Sank1, 
Kannan Sankaragomathi1, Kevin J. Satzinger1, Henry F. Schurkus1, Christopher Schuster1, 
Michael J. Shearn1, Aaron Shorter1, Vladimir Shvarts1, Jindra Skruzny1, Vadim Smelyanskiy1, 
W. Clarke Smith1, George Sterling1, Doug Strain1, Marco Szalay1, Alfredo Torres1, 
Guifre Vidal1, Benjamin Villalonga1, Catherine Vollgraff Heidweiller1, Theodore White1, 
Cheng Xing1, Z. Jamie Yao1, Ping Yeh1, Juhwan Yoo1, Grayson Young1, Adam Zalcman1, 
Yaxing Zhang1 & Ningfeng Zhu1

1Google Research, Mountain View, CA, USA. 2Department of Physics, Columbia University, 
New York, NY, USA. 3Department of Electrical and Computer Engineering, University of 
Massachusetts, Amherst, MA, USA. 4Department of Electrical and Computer Engineering, 
Auburn University, Auburn, AL, USA. 5Centre for Quantum Computation and Communication 
Technology, Centre for Quantum Software and Information, Faculty of Engineering and 
Information Technology, University of Technology Sydney, Sydney, New South Wales, Australia. 
6Department of Physics, Institute for Quantum Information and Matter, and Walter Burke 
Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, USA. 
7Department of Electrical and Computer Engineering, University of California, Riverside, CA, 
USA. 8USRA Research Institute for Advanced Computer Science, Mountain View, CA, USA. 
9QuAIL, NASA Ames Research Center, Mountain View, CA, USA. 10Department of Physics, 
University of California, Santa Barbara, CA, USA. 11Department of Physics and Astronomy, 
University of California, Riverside, CA, USA. ✉e-mail: neven@google.com

https://arxiv.org/abs/2203.07205
https://arxiv.org/abs/2203.07205
https://arXiv.org/abs/1808.06709
https://arXiv.org/abs/2203.04948
https://arXiv.org/abs/2107.13589
http://creativecommons.org/licenses/by/4.0/
mailto:neven@google.com


Article

Data availability
The data that support the findings of this study are available at https://
doi.org/10.5281/zenodo.6804040.

Acknowledgements We are grateful to S. Brin, S. Pichai, R. Porat, J. Dean, E. Collins and 
J. Yagnik for their executive sponsorship of the Google Quantum AI team, and for their 
continued engagement and support. A portion of this work was performed in the University  
of California, Santa Barbara Nanofabrication Facility, an open access laboratory. J.M. 
acknowledges support from the National Aeronautics and Space Administration (NASA) 
Ames Research Center (NASA-Google SAA 403512), NASA Advanced Supercomputing 
Division for access to NASA high-performance computing systems, and NASA Academic 
Mission Services (NNA16BD14C). D.B. is a CIFAR Associate Fellow in the Quantum Information 
Science Program.

Author contributions The Google Quantum AI team conceived and designed the 
experiment. The theory and experimental teams at Google Quantum AI developed the data 
analysis, modelling and metrological tools that enabled the experiment, built the system, 
performed the calibrations and collected the data. The modelling was carried out jointly 
with collaborators outside Google Quantum AI. All authors wrote and revised the 
manuscript and the Supplementary Information.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-022-05434-1.
Correspondence and requests for materials should be addressed to Hartmut Neven.
Peer review information Nature thanks Barbara Terhal, Boris Varbanov and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer 
reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.5281/zenodo.6804040
https://doi.org/10.5281/zenodo.6804040
https://doi.org/10.1038/s41586-022-05434-1
http://www.nature.com/reprints

	Suppressing quantum errors by scaling a surface code logical qubit

	Surface codes with superconducting qubits

	Error detectors

	Understanding errors through correlations

	Decoding and logical error probabilities

	Algorithmically relevant error rates

	Towards large-scale quantum error correction

	Online content

	Fig. 1 Implementing surface code logical qubits.
	Fig. 2 Error detection in the surface code.
	Fig. 3 Logical error reduction.
	Fig. 4 Towards algorithmically relevant error rates.




