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Quantum control of a cat qubit with bit-flip 
times exceeding ten seconds

U. Réglade1,2,4, A. Bocquet1,2,4, R. Gautier2, J. Cohen1, A. Marquet1,3, E. Albertinale1, 
N. Pankratova1, M. Hallén1, F. Rautschke1, L.-A. Sellem2, P. Rouchon2, A. Sarlette2, 
M. Mirrahimi2, P. Campagne-Ibarcq2, R. Lescanne1, S. Jezouin1,5 & Z. Leghtas2,5 ✉

Quantum bits (qubits) are prone to several types of error as the result of uncontrolled 
interactions with their environment. Common strategies to correct these errors  
are based on architectures of qubits involving daunting hardware overheads1. One 
possible solution is to build qubits that are inherently protected against certain types 
of error, so the overhead required to correct the remaining errors is greatly reduced2–7. 
However, this strategy relies on one condition: any quantum manipulations of the 
qubit must not break the protection that has been so carefully engineered5,8. A type  
of qubit known as a cat qubit is encoded in the manifold of metastable states of a 
quantum dynamical system, and thereby acquires continuous and autonomous 
protection against bit-flips. Here, in a superconducting-circuit experiment, we 
implemented a cat qubit with bit-flip times exceeding 10 s. This is an improvement  
of four orders of magnitude over previously published cat-qubit implementations. 
We prepared and imaged quantum superposition states, and measured phase-flip 
times greater than 490 ns. Most importantly, we controlled the phase of these 
quantum superpositions without breaking the bit-flip protection. This experiment 
demonstrates the compatibility of quantum control and inherent bit-flip protection 
at an unprecedented level, showing the viability of these dynamical qubits for future 
quantum technologies.

Dynamical systems result from the interplay of external forces, nonlin-
earities and dissipation9. Of particular interest are bistable dynamical 
systems that switch between two attractors, such as the reversal of 
Earth’s magnetic field. At a vastly reduced scale, driven nonlinear oscil-
lators containing only a few photons have displayed switching times 
of several seconds10, making them ideal candidates for ultralow-power 
classical logic processing11.

It is therefore tempting to use this stability to robustly encode quan-
tum information where susceptibility to noise is the limiting factor for 
the emergence of quantum machines1. Qubits fail in two ways: first, by 
random switching between computational states, known as bit-flips; 
and second, by the scrambling of the phase of quantum superposi-
tions, known as phase-flips12. A qubit encoded in the manifold of the 
metastable states of a dynamical system, known as a cat qubit, would be 
protected against bit-flips at the hardware level. The challenge is then 
to measure and control this qubit without breaking that protection.  
If this challenge is met, the only remaining error, phase-flips, can then be 
corrected by embedding these qubits in error-correcting architectures, 
with a substantially reduced hardware overhead2,4,6,8,13 compared with 
those required to correct both bit-flips and phase-flips1,14.

Making the leap from classical to quantum information processing 
with dynamical bistable systems is difficult. Indeed, such systems owe 
their stability to friction (dissipation) that dampens the erroneous 

diffusion between states. However, friction commonly originates from 
interactions with an ensemble of degrees of freedom. This leaks infor-
mation about the system, and quantum superpositions decohere into 
classical mixtures15. Surprisingly, there is a type of dissipation, known 
as two-photon dissipation16–18, that provides stability without inducing 
decoherence. Indeed, two-photon exchanges between an oscillator and 
a cold environment are expected to stabilize two coherent states with 
macroscopic bit-flip times but allow the preparation and manipulation 
of their quantum superpositions18.

In practice, two-photon dissipation is implemented in a supercon-
ducting oscillator mode, known as the memory, that is coupled to a 
lossy buffer mode through a nonlinear Josephson element. In previ-
ous experiments, quantum tomography of the memory was done by 
using an ancillary system composed of a transmon and its readout 
resonator. Although quantum superpositions of two metastable states 
were observed, the bit-flip time saturated in the millisecond range19. 
Cat-qubit implementations based on the Kerr effect reached similar 
timescales20,21. In a recent experiment22, this tomography apparatus 
was removed entirely and bit-flip times exceeding 100 s were observed. 
However, because the two-photon exchange rate was dominated by 
single-photon loss, quantum superposition states could not be pre-
pared or measured, thereby falling short of implementing a qubit. 
This finding motivated the removal of the ancillary transmon and the 
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development of an alternative tomography procedure that does not 
break the bit-flip protection.

In this experiment, we implemented a cat qubit with bit-flip times 
exceeding 10 s, which to the best of our knowledge is an improvement 
of four orders of magnitude over previous cat-qubit implementations, 
and of six orders of magnitude over the lifetime of the photons compos-
ing the qubit. We observed phase-flip times greater than 490 ns, mainly 
limited by single-photon loss. We controlled the phase of coherent 
superpositions by rotating them in a Zeno-blocked manifold23, per-
forming a π rotation in 235 ns. We verified that this manipulation only 
marginally reduced the bit-flip time, maintaining it above 10 s. This 
was made possible by implementing a quantum tomography protocol 
that required no additional ancillary elements24. Indeed, the Josephson 
dipole that mediates two-photon dissipation was used to map quantum 
observables of the memory onto the buffer. This experiment demon-
strates the tomography and control of a cat qubit without breaking 
the bit-flip protection at the level of bit-flip times of 10 s. However, 
further improvements in state preparation, measurement fidelity and 
single-photon loss will be necessary before scaling up to a fully pro-
tected hardware-efficient logical qubit5,6,8,13.

Our dynamical system is well described by the following Hamiltonian 
and loss operator:

H a b a b b b

L b

g g ε ε

κ

= * + − * − ,

= ,
(1)2ph 2

2 †
2

†2
d d

†

b b

where a, a† and b, b† are respectively the memory and buffer annihila-
tion and creation operators, εd is the amplitude of a resonant drive 
applied to the buffer, and κb is the buffer energy damping rate. The 
symbol * denotes the complex conjugate. Photon pairs are dissipated 
from the memory by converting them at rate g2 to single photons in 
the buffer, and these are then dissipated into the environment. In the 
absence of energy damping in the memory, the steady states of this 
system lie in a two-dimensional manifold17 spanned by:

α α± ⟩ = ( ⟩ ± − ⟩)/ , (2)α ±N

where the normalization factor N α= 2 ± 2 exp(−2 )±
2  and |α⟩ is a coh

erent state of amplitude α that is controlled by the drive amplitude, 
α2 = εd/ g*2. The local convergence rate towards this manifold is denoted 
κconf and in our parameter regime it saturates at κconf ≈ κb/2 (Supplemen-
tary Information section 8C). The qubit encoded in this manifold owes 
its name, the cat qubit18, to the fact that |±⟩α resembles the Schrödinger 
cat states for ∣α∣ ≳ 1 (ref. 25). Its computational states are defined  
as ∣ ∣ ∣ ∣ α0/1⟩ = ( + ⟩ ± − ⟩ )/ 2 ≈ ± ⟩α α α  and its X and Z Pauli operators as 
Z α α α α≈ ⟩ ⟨ − − ⟩ ⟨−α ∣ ∣ ∣ ∣  and ∣ ∣ ∣ ∣X α α α α≈ ⟩ ⟨− + − ⟩ ⟨α  up to errors that  
are exponentially small in ∣α∣2.

States |±α⟩ are localized on opposite sides of the phase space (Fig. 1a), 
with exponentially small support overlap in ∣α∣2. Therefore, even in the 
inevitable presence of losses, provided they are diffusive-like26 and 
weak compared with κconf, the bit-flip time TX between |±α⟩ is expected 
to increase exponentially with ∣α∣2 (ref. 19). From ∣α∣2 ≈ 10 onwards, 
timescales TX exceeding seconds are predicted in our parameter regime. 
Quantum superpositions of |±α⟩ are prepared by initializing the mem-
ory in the vacuum and activating the two-photon exchange mecha-
nism17. Because the dynamics of equation (1) conserve memory 
photon-number parity, the state spontaneously dissipates towards 
|+⟩α on a timescale set by κ–1

conf. The state then evolves into a classical 
statistical mixture of |±α⟩ at rate κ αΓ = 2Z

κ
a

2a ∣ ∣  (ref. 25), where κa is the 
memory energy damping rate. Therefore the observation of quantum 
superpositions of metastable states with macroscopic bit-flip times 
requires that the decoherence rate verifies κΓ <Z

κ
conf

a  for ∣α2∣ ≈ 10.
We implemented the dynamics of equation (1) in a two-dimensional-

circuit quantum electrodynamics architecture27 (Fig. 1b) operated in 
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Fig. 1 | Encoding quantum information in a bistable dynamical system.  
a, Semiclassical trajectories (solid lines, derived from equation (1)) over the 
complex phase space (Re and Im denote the real and imaginary axes). Each 
trajectory converges towards one of the two metastable states. Quantum 
information encoded in the manifold spanned by these states (the Wigner 
function corresponds to a coherent superposition state) inherit protection 
against bit-flips. b, Circuit implementation of our dynamical system. A quarter- 
wavelength transmission line mode (memory; blue) is coupled to its environment 
(black) through a buffer mode (red) composed of an ATS. c, A pump (purple)  
and a buffer drive (red) combine through the ATS to inject photon pairs into 
 the memory (blue). The reverse process, which removes photon pairs, is not 
shown. We measured (open circles) a linear increase (simulation in solid line)  
in the steady-state memory photon number (y axis) with increasing drive 
amplitude (x axis). d, A pump at frequency ωp (purple) displaces the buffer (red) 
conditionally according to the number of photons in the memory (blue). This is 
an important part our quantum tomography protocol. We measured (open 
circles) the buffer amplitude (y axis) against the memory photon number (x axis) 
reached after a displacement pulse. The deviation from the linear trend (solid 
line) is a hallmark of compression resulting from higher-order processes.
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a dilution refrigerator at 10 mK. The chip consisted of a sapphire sub-
strate on which we sputtered a tantalum film28, which was then pat-
terned. The memory is a quarter-wavelength coplanar waveguide 
resonator of frequency ωa/2π = 5.26 GHz and decay rate κa/2π = 9.3 kHz, 
corresponding to a lifetime of 17 μs. It is capacitatively coupled to the 
buffer, which is composed of an island shunted to ground through a 
nonlinear element called the asymmetrically threaded supercon
ducting quantum interference device (SQUID)19, resonating at 
ωb/2π = 7.70 GHz with decay rate κb/2π = 2.6 MHz. The asymmetrically 
threaded SQUID (ATS) is composed of a SQUID shunted in the middle 
by a kinetic inductance so it forms two loops. By setting the flux to 0 
and π in the right and left loops, respectively (Fig. 1b), this element 
induces the following nonlinear potential: φ φU E ε t( ) ≈ − 2 ( )sin( )J p   
(ref. 19), where EJ is the Josephson energy of the SQUID junctions. Here, 
εp(t) = εpcos(ωpt) is a flux pump of amplitude εp and angular frequency 
ωp, and φ is the phase drop across the ATS, which is a linear com
bination of a, a†, b and b†. Setting the pump frequency ωp = 2ωa − ωb 
activates the desired third-order process +2 † †2

a b a b (Fig. 1c) at a rate 
g2 that grows linearly with the pump amplitude. The latter is increased 
until g2 is about equal to κb, thereby maximizing κconf. We reach 
g2/2π = 0.76 MHz and κconf/2π ≈ 1.3 MHz. For ∣α∣2 ∈ [1.4, 11.3], this places 
it in the favourable regime in which κΓ / ∈ [0.02, 0.16]Z

κ
conf

a .
Josephson circuits have been referred to as the ‘Swiss army knife’ of 

microwave quantum optics29. Simply by switching the pump frequency, 
the behaviour of a dipole can be greatly altered. By setting the pump 
frequency to ωp = ωb (Fig. 1d), the following low-order processes were 
resonantly selected: (b + b†), a†a(b + b†) and b b b b+†2 † 2. The first term, 
(b + b†), is cancelled out by adding an additional drive of equal ampli-
tude and opposite phase on the buffer. The second term, a†a(b + b†), 
is analogous to the radiation pressure coupling in optomechanics30, 
and has been referred to as a longitudinal coupling in the context of 
Josephson circuits31. Conditioned on the number of photons na in the 
memory, the buffer converges towards a coherent state of amplitude 

denoted as β1ph × na. When cascaded with a heterodyne detection of 
the buffer, it constitutes a quantum non-demolition measurement of 
the memory photon number. The third term, +†2 † 2b b b b , is a parasitic 
interaction that is responsible for the compression visible in Fig. 1d, 
and thereby limits the dynamical range of our detector. The longitu-
dinal pump amplitude was chosen to maximize the detection efficiency 
over a dynamical range of 0 to about 10 photons in the memory. We 
reached a single-shot fidelity of 89% to distinguish between the vacuum 
and a coherent state containing 10 photons with an integration time 
of 10 μs constrained by the memory lifetime (Supplementary Informa-
tion section 4B).

We witnessed the quantum nature of the memory field through 
Wigner tomography25. The Wigner quasi probability distribution W is a  
real function of a complex amplitude λ defined as W(λ) = (2/π)⟨DλPD–λ⟩.  
It represents the normalized expectation value of the parity operator 
P a aiπ= exp( )†  for the state displaced by D a aλ λ= exp( − * )λ

† . This gra
phical representation can display negativities that unambiguously 
testify to the non-classical nature of the field state.

Our Wigner tomography protocol (Fig. 2) is based on the so-called 
holonomic gate proposed in ref. 24. All odd parity states are mapped 
onto the vacuum |0⟩, and all even parity states are mapped onto a cohe
rent state ψ iα⟩ = 2 ⟩5 2∣ ∣  in which 2α2 ≈ 4.8. The quantum non-demolition 
photon-number measurement through longitudinal coupling then 
distinguishes between |0⟩ and |2iα2⟩, providing a photon-number par-
ity measurement. Our pulse sequence (Fig. 2a) alternates between 
memory drives, two-photon dissipation, buffer drives of various ampli-
tudes and longitudinal coupling. We will now describe it step by step 
(Fig. 2b). Let us assume that the memory is initially in an even parity 
state, ρeven. First, we activated a two-photon pump εp

2ph and buffer drive 
εd,1 = g α*2 1

2, where α1 is real. By parity conservation, ρeven is mapped to 
the even state ∣ ∣ψ ⟩ = + ⟩ α1 1

. Next, we added a memory drive along the 
imaginary axis. Two-photon dissipation confines the dynamics to the 
quantum manifold spanned by ∣ ± ⟩ α 1

. The added memory drive induces 
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Fig. 2 | Quantum tomography protocol based on the holonomic gate24.  
a, Pulse sequence for each control channel as a function of time. The parity  
of the memory is mapped onto the photon number, which is measured 
through longitudinal coupling to the buffer. b, The memory Wigner function 
at each step (grey dashed lines) of the protocol for an even (top) and odd 
(bottom) initial state. c, Measured Wigner functions of the memory initialized 

in |+⟩α, |−⟩α, |0⟩ and Fock state |1⟩ (top to bottom), obtained by combining the 
photon parity measurement with simple memory displacements and an active 
memory reset (Supplementary Information section 4D). The first two images 
contain 250 × 100 pixels averaged 5,000 times, and the last two contain 
100 × 100 pixels averaged 70,000 times. The acquisition time was 2 h and 12 h, 
respectively.
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coherent Zeno-blocked oscillations around the cat-qubit Z axis23. We 
tuned the drive length to perform a π/2 rotation reaching the parity-less 
state ψ i⟩ = ( + ⟩ + − ⟩ )/ 2α α2 1 1

∣ ∣ ∣  (refs. 20,32,33). Next, we turned off the 
memory and buffer drives while the two-photon pump remained active, 
thereby removing pairs of photons from ψ ⟩2∣ . By parity conservation, 
+ ⟩α 1

∣  is mapped to |0⟩ and − ⟩ α 1
∣  to |1⟩ (ref. 20). When this mapping is 

adiabatic with respect to κconf
−1  and fast compared with κa

−1, quantum 
superpositions are preserved, yielding ∣ ∣ ∣ψ i⟩ = ( 0⟩ + 1⟩)/ 23  (ref. 24). 
In practice, we used a square buffer drive of amplitude α1 ≈ 1.6 in an 
attempt to maximize the fidelity of the π/2 gate around Z while minimiz-
ing the loss of coherence during these mappings. Next, maintaining 
the two-photon pump, we activated a buffer drive ε g α= − *d,2 2 2

2, where 
α2 is real. The minus sign on the buffer drive translates into a pure 
imaginary amplitude for the stabilized coherent states. This maps 
∣ ∣0⟩ → + ⟩iα2

, i1⟩ → − − ⟩iα2
∣ ∣  (ref. 20), and following the same reasoning, 

∣ ∣ ∣ψ ψ iα⟩ → ⟩ = ⟩3 4 2  (ref. 24). Conversely, an odd parity, ρodd, would be 
mapped to |–iα2⟩. Information on the parity of ρeven/odd is now encoded 
on the amplitude of coherent states |±iα2⟩. Finally, the two-photon 
pump was turned off and the memory was displaced by Diα2

. The lon-
gitudinal pump εp

1 is activated to distinguish between 0 and 4∣α2∣2 pho-
tons in the memory by heterodyne detection of the buffer. Note that 
the value of α2 can be tuned to optimize the fidelity of the longitudinal 
read-out. Preceding this entire sequence by a memory displacement 
of amplitude λ therefore measures W(λ). We demonstrated this tomog-
raphy protocol by measuring the Wigner functions of the vacuum |0⟩, 
Fock state |1⟩ and |±⟩α (Fig. 2c). The vacuum was prepared simply by 
waiting for several κa

−1 for the memory to settle in its thermodynamic 
equilibrium. Preparing |+⟩α required the activation of a two-photon 
pump and buffer drive for several κconf

−1 . Preparing |–⟩α required an addi-
tional memory drive to perform a full Zeno-blocked π rotation. Finally, 
from this state, switching off the buffer drive while the two-photon 
pump remained active prepared Fock state |1⟩ by parity conservation.

The measurements of phase-flip and bit-flip times of our cat qubit 
are displayed in Fig. 3. We prepared |+⟩α for various average photon 

numbers ∣α∣2 by starting from a memory mode in the vacuum and acti-
vating the corresponding buffer-drive amplitude and two-photon 
pump. The preparation duration (400 ns or 1 μs; Fig. 3) was chosen to 
be longer than 1/κconf ≈ 120 ns, ensuring there was sufficient time to 
reach the steady-state manifold, and on par with TZ ≈ 490 ns for the 
largest states at 11.3 photons, ensuring the preservation of measurable 
quantum coherence. Using our tomography tool, we imaged the Wigner 
functions of these states and observed interference fringes that take 
negative values. Although the contrast of these fringes reduces with 
increasing ∣α∣2, they remain visible up to ∣α∣2 ≈ 11.3 photons (Fig. 3a,b). 
Note that in the cat-qubit code space, ⟨Xα⟩ = ⟨P⟩, so we could extract 
the phase-flip time by monitoring the photon-number parity decay 
over time. We measured phase-flip times ranging from TZ = 2.7 μs for 
∣α∣2 = 2.5 to TZ = 490 ns for ∣α∣2 = 11.3 (Fig. 3c). Finally, we monitored the 
switching between |±α⟩ over time (Fig. 3d). To do this, we prepared |+α⟩ 
by displacing the memory from the vacuum before applying the two-
photon pump and a buffer drive, the amplitude of which was adjusted 
to stabilize |±α⟩ for a variable time t. During this time, the state may 
switch to |–α⟩, causing a bit-flip. We detected the population of |α⟩ at 
time t by setting the buffer drive to map α α± ⟩ → ± ′⟩∣ ∣  where α′ ≈ 2.1, 
then interrupting the pump and buffer drive, and finally displacing the 
memory by α′. This maps α− ′⟩ → 0⟩∣ ∣  and ∣ ∣α α′⟩ → 2 ′⟩. Next, we activated 
the longitudinal pump to distinguish between these two states. For 
bit-flip times exceeding around 100 ms, this method leads to imprac-
tically long acquisition times. Instead, for long bit-flip times that occur 
at ∣α∣2 ≳ 7, we sampled the real-time trajectory of the memory field. 
After initializing the memory in |α⟩ and activating the two-photon 
exchange, we applied a weak drive of amplitude εZ on the memory for 
250 μs every millisecond. This slightly displaced the state out of the 
steady-state manifold. In response to this perturbation, the buffer 
develops an average field amplitude ⟨ ⟩ = *

ε

α g2
Z

2
b ∓  depending on the 

state |±α⟩ in the memory34 (Supplementary Information section 8E). 
This field is then integrated by heterodyne detection (Fig. 3d, bottom) 
for a pulse duration of Tint = 250 μs. For α2 ≳ 7, TZ ≪ Tint ≪ TX and hence 
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Fig. 3 | Cat-qubit phase-flip and bit-flip time measurements. Each row of 
figures represents a photon number, ∣α∣2: 2.5 (top), 5.6 (middle) and 11.3 
(bottom). a, Measured Wigner functions of the memory state |+⟩α prepared in 
1 μs. Constraining these maps to sum to one sets an absolute scale for our parity 
measurement. b, Integration of the measured Wigner functions (y axis) over the 
window delimited by the green dashed lines shown in a versus the imaginary 
axis (x axis). We fit the analytical formula of these oscillations25 (blue lines) to 
the data (circles). c, Evolution of the expectation value of Xα ( y axis) versus time 

(x axis) for a memory state |+⟩α prepared in 400 ns. The data (circles) follow an 
exponential decay (blue line) from which we extracted the phase-flip time, TZ.  
d, Top and middle: expectation value of Zα ( y axis) versus time (x axis). The data 
(circles) follow an exponential decay (solid line) from which we extracted the 
bit-flip time, TX. Bottom: real-time trajectory cropped from the full dataset  
of the memory switching between Zα = ±1 ( y axis) versus time (x axis). It was 
acquired by applying a drive on the memory and collecting the buffer 
fluorescence (solid line) (Supplementary Information section 8E).
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we could observe bit-flip events in real time, so TX could be estimated 
quite accurately from a single trace lasting around 100TX. Using these 
methods, we could measure TX for ∣α∣2 = 2.5, 5.6 and 11.3, and observe 
a large increase from 313 μs to 56 ms and then 15 s.

We demonstrate quantum control of our cat qubit and its effect on 
bit-flip protection in Fig. 4. After preparing the cat qubit in |+⟩α, we 
added a drive of amplitude εZ on the memory mode. The interplay of 
this coherent drive and two-photon dissipation induces Zeno-blocked 
oscillations23 at angular frequency ΩZ = 4∣α∣εZ (ref. 18), as well as a drive-
induced dephasing that increases with εZ (Supplementary Information 
section 8F). For ∣α2∣ = 11.3, we observed a π rotation in 235 ns. Because 
the benefit of the cat qubit is to minimize the hardware overhead for 
error correction by eliminating the need for active bit-flip correction, 
it is crucial that we verify that our quantum manipulations do not break 
bit-flip protection. We measured the scaling of errors for ∣α∣2 ∈ [1.4, 11.3], 
a range on which we can measure both the phase-flip and the bit-flip 
rates (Fig. 4b,c). We saw the bit-flip time multiply by 4.2 for every added 
photon, culminating at 15 s. Importantly, in the presence of the con-
tinuous memory drive, the bit-flip only slightly reduces, remaining 
above 10 s for ∣α∣2 = 11.3. However, the measured dephasing rate T Z

−1 
increases linearly with ∣α∣2, closely following the theoretical prediction 

κ αΓ = 2Z
κ

a
2a ∣ ∣ . Notably, the oscillator lifetime extracted from a linear fit 

to the data is 25% larger than the one obtained from spectroscopy, 

possibly because of the interplay of the strong two-photon pump and 
uncontrolled parametric processes.

In conclusion, our experiment demonstrates quantum tomography 
and coherent control of a cat qubit without breaking bit-flip protection 
up to bit-flip times of 10 s. This constitutes a 104-fold improvement 
over previous cat-qubit implementations and a 106-fold enhancement 
over the oscillator lifetime. We measured a phase-flip time of 490 ns 
and performed a π rotation around the Z axis in 235 ns. Although we 
achieved g2/κa ≈ 80 ≫ 1, this ratio needs to be further increased to 
improve measurement fidelity and reduce state preparation and gate 
errors to below the error correction threshold5,35. Possible directions 
for progress include circuit engineering to increase g2 (refs. 36,37), 
optimized gate design34,38 and the integration of recent advances in 
nanofabrication28,39,40 to improve the oscillator lifetime by at least one 
order of magnitude. With these improvements in hand, we hope to 
assemble multiple cat qubits in hardware-efficient error-correcting 
architectures5,6,8,13 and operate them to correct phase-flips without 
breaking bit-flip protection.
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