Controlled-NOT (CNOT)

Truth Table

С	T	C \oplus T
9	0	0
0	1	1
1	0	1
1	1	0

Quantum Circuit for joint measurement

Measurement in {10>, 11>} basis yields C⊕⊤

Circuit maps logical basis states as

Full circuit to obtain Error Syndrome

* iff qubit flip, binary address = (ヶ段,×色)

Circuit maps logical basis states as

Full circuit to obtain Error Syndrome

* iif qubit flip, binary address = (y €2,×€2)

Quantum Phase Error

Encoding
$$|0\rangle \rightarrow |\overline{0}\rangle = \frac{1}{2^{\frac{1}{2}}} (|0\rangle + |1\rangle) (|0\rangle + |1\rangle) (|0\rangle + |1\rangle) (|0\rangle + |1\rangle) (|0\rangle - |1\rangle) (|0\rangle - |1\rangle) (|0\rangle - |1\rangle) (|0\rangle - |1\rangle)$$

Relabel
$$\frac{\frac{1}{\sqrt{2}}(10)+112}{\frac{1}{\sqrt{2}}(10)-112} = 12^{1/2}$$

Measure in basis
$$\{|0'\rangle, |1'\rangle\} \rightarrow \gamma' \oplus 2', x' \oplus 2'$$

Error Syndrome

- * Iff phase error, binary address = $(\gamma' \oplus 2')$
- * Analogous to bit-flip code, just in different basis

Quantum Phase Error

Encoding

$$|0\rangle \rightarrow |\overline{0}\rangle = \frac{1}{2^{\frac{1}{2}}} (|0\rangle + |1\rangle) (|0\rangle + |1\rangle) (|0\rangle + |1\rangle)$$

$$|1\rangle \rightarrow |\overline{1}\rangle = \frac{1}{2^{\frac{1}{2}}} (|0\rangle - |1\rangle) (|0\rangle - |1\rangle) (|0\rangle - |1\rangle)$$

Relabel

$$\frac{1}{\sqrt{2}}(10) + 11) = 10'$$

$$\frac{1}{\sqrt{2}}(10) - 11) = 11'$$

Measure in basis

Error Syndrome

- * Iff phase error, binary address = $(\gamma' \oplus 2', x' \oplus 2')$
- * Analogous to bit-flip code, just in different basis

Shor's 9-bit code

- * Combines flip/phase error correction
- * Corrects one flip or phase error

General principle of error correction

- * Encode p logical qubits in n physical qubits.
- * Valid Logical States form 2^p -dimensional subspace \mathcal{E}_p (code space) in n-qubit (2^n -dimensional) Hilbert space \mathcal{E}_n
- * Errors displace system into orthogonal (distinguishable) subspaces.

Shor's 9-bit code

- * Combines flip/phase error correction
- * Corrects one flip or phase error

General principle of error correction

- * Encode *p* logical qubits in *n* physical qubits.
- * Valid Logical States form 2^p -dimensional subspace \mathcal{E}_p (code space) in n-qubit $(2^n$ -dimensional) Hilbert space \mathcal{E}_{N}
- * Errors displace system into orthogonal (distinguishable) subspaces.

Geometric illustration

What about non-Unitary errors?

e. g., decay
$$\begin{array}{c} 107 \rightarrow 107 \\ \hline 117 \rightarrow 107 \end{array}$$

Problem: Errors not displaced into

orthogonal subspaces

Solution: "Quantum jump codes",

monitors the environment

Other kinds of errors?

Catnip for Theoretical Physicists & Computer Scientists

Catnip for Theoretical Physicists & Computer Scientists

Quantum Hardware

Physical Implementation is Extremely demanding!

Requirements

- 1. Storage: Quantum memory.
- 2. Gates: We put computation U_f together from 1 and 2-qubit operations.
- 3. Readout: Method to measure qubits.
- 4. Isolation: No coupling to environment to avoid decoherence & errors
- 5. Precision: Gates, readouts must be highly accurate

Inherent Contradictions

2. Gates

VS

4. Isolation

coupling between qubits

no coupling to environment

To build a Quantum Computer:

Choose, find or invent a system with acceptable tradeoffs.

6. Error Correction must not create more errors than it corrects.

7. <u>Thresholds</u> for Error Correction and Fault Tolerance

Inherent Contradictions

2. Gates

VS

4. Isolation

coupling between qubits

no coupling to environment

To build a Quantum Computer:

Choose, find or invent a system with acceptable tradeoffs.

6. Error Correction must not create more errors than it corrects.

7. <u>Thresholds</u> for Error Correction and Fault Tolerance

Ion Trap Quantum Computing

First to demonstrate a Quantum Gate

* Qubit is encoded in the electronic ground state of an atomic ion

* Early design with a few ions in large trap

Ion Trap Quantum Computing

First to demonstrate a Quantum Gate

* Qubit is encoded in the electronic ground state of an atomic ion

* Early design with a few ions in large trap

Requirements

1. Storage: 10s-100s coherence time

2. Gates: Use collective vibrations as

"quantum bus"

3. Readout: Fluorescence

Cirac & Zoller: 5 laser pulses

CNOT gate between any 2 ions in linear array

Wineland: 3 laser pulses enough for CNOT

Use this example serves as conceptual template

Ion Trap Quantum Computing

First to demonstrate a Quantum Gate

* Qubit is encoded in the electronic ground state of an atomic ion

* Early design with a few ions in large trap

* Scaling up in Linear Ion Traps

* Limitations

