OK – Plausible QM can do more Where does the QC's power come from?

Visualization of Computation

Classical: Register is in one of the logical states

Reversible transformation

Quantum: Register can be in any coherent superposition of logical states [x>

Unitary transformation U: (メン→ しょ)

Maps basis to basis $U: \{1\times\} \rightarrow \{1y\}$

Quantum Parallelism

$$|2i_{in}\rangle \rightarrow \sum_{x} a_{x}|x\rangle \rightarrow |$$

$$\rightarrow |2i_{ove}\rangle = \bigcup |2i_{in}\rangle = \sum_{x} a_{x}|\eta\rangle = \sum_{x} b_{x}|x\rangle$$

Machine processes 2^N inputs "in parallel"!

Beware: measurement collapses Q. Register into a single basis state at random

We get one random result out of 2^N

Quantum: Register can be in any coherent superposition of logical states (x>

Unitary transformation U: は〉 → しゅう

Maps basis to basis $U: \{ |x \rangle \} \rightarrow \{ |y \rangle \}$

Quantum Parallelism

Quantum Sampling

Problem

$$|\mathcal{Y}_{in}\rangle \rightarrow \sum_{x} a_{x}|_{x}\rangle \rightarrow |\mathcal{Y}_{in}\rangle = \sum_{x} a_{x}|_{y}\rangle = \sum_{x} b_{x}|_{x}\rangle$$

Machine processes 2^N inputs "in parallel"!

Beware: measurement collapses Q. Register into a single basis state at random

We get one random result out of 2^N

Quantum Algorithms look for global properties of functions — symmetry, periodicity, etc.

- * Classical -> requires many function evaluations
- Quantum -> design U so measurement gives answer with high probability
- * \exists classes of problems (sampling problems)

 which are classically hard but quantum "easy"

 Google "Quantum Supremacy"

Expert insight into current research

News & views

Quantum information

Quantum computing takes flight

William D. Oliver

A programmable quantum computer has been reported to outperform the most powerful conventional computers in a specific task – a milestone in computing comparable in importance to the Wright brothers' first flights. See p.505

Quantum Algorithms look for global properties of functions — symmetry, periodicity, etc.

- * Classical prequires many function evaluations
- * Quantum odesign U so measurement gives answer with high probability
- * \exists classes of problems (sampling problems)

 which are classically hard but quantum "easy"

 Google "Quantum Supremacy"

Expert insight into current research

News & views

Quantum information

Quantum computing takes flight

William D. Oliver

A programmable quantum computer has been reported to outperform the most powerful conventional computers in a specific task — a milestone in computing comparable in importance to the Wright brothers' first flights. See p.505

Boson Sampling

An example from Optics/Photonics Setup

An optical quantum computer developed by a team of Chinese researchers including those from the University of Science and Technology of China. (courtesy of Han-Sen Zhong of the research group)

An optical quantum computer developed by a team of Chinese researchers including those from the University of Science and Technology of China. (courtesy of Han-Sen Zhong of the research group)

Quantum Algorithms look for global properties of functions — symmetry, periodicity, etc.

- * Classical prequires many function evaluations
- ★ Quantum design U so measurement gives answer with high probability
- * I classes of problems (sampling problems)

 which are classically hard but quantum "easy"

 Google "Quantum Supremacy"

Expert insight into current research

News & views

Quantum information

Quantum computing takes flight

William D. Oliver

A programmable quantum computer has been reported to outperform the most powerful conventional computers in a specific task — a milestone in computing comparable in importance to the Wright brothers' first flights. See p.505

Boson Sampling

An example from Optics/Photonics Setup

Imagine aligning that thing...!

Back to Universal Computation

Visualization of Computation

Classical: Register is in one of the logical states

Reversible transformation

U:×→y

What might be inside the machine?

Wave interference w/classical fields?

Note: N - qubit register | 2^N "paths"

Beware of Resource Scaling!

Quantum Advantage

David Deutsch: Toy problem that shows Quantum Advantage

Classical Box: Need 2 queries $(6) \otimes (1)$

Quantum Advantage

David Deutsch: Toy problem that shows Quantum Advantage

Quantum Box: In 3 steps can show that

(1)
$$U_f:|x\rangle|y\rangle \rightarrow |x\rangle|y\oplus f(x)\rangle$$

(2)
$$U_f: |X\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \rightarrow |X\rangle \frac{1}{\sqrt{2}} (|f(x)\rangle - |1\otimes f(x)\rangle)$$

$$=|x>\frac{1}{\sqrt{2}}(-1)^{f(x)}(10>-14>)$$

(3)
$$U_{+} : \sqrt{\frac{1}{2}} (10 > + (1) >) \frac{1}{\sqrt{2}} (10 > - (1) >)$$

$$\Rightarrow \frac{1}{2} ((-1)^{\frac{1}{10}} (0) > + (-1)^{\frac{1}{10}} (1) >) ((0 > - (12))$$

Quantum Advantage

David Deutsch: Toy problem that shows Quantum Advantage

Quantum Computation:

Input
$$|x\rangle|y\rangle = \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$$

$$\frac{U_{2}}{U_{2}}\int_{(-1)}^{(-1)}|(0)\rangle+(-1)^{1/2}|(0)\rangle = \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$$

Measure 1st qubit in basis
$$|\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |1\rangle)$$

→ |+> if constant, |-> if balanced

Quantum Speedup: can solve w/1 query

Quantum Advantage

David Deutsch: Toy problem that shows Quantum Advantage

Quantum Computation:

Input
$$|x\rangle|y\rangle = \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$$

$$\frac{U_1}{\sqrt{2}}\int_{(-1)}^{(-1)}\frac{f(1)}{|0\rangle+(-1)}\frac{f(0)}{|1\rangle}\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$$

Measure 1st qubit in basis $|\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |4\rangle)$ $|\pm\rangle$ if constant, $|-\rangle$ if balanced

Quantum Speedup: can solve w/1 query

Key aspect of Deutsch's algorithm:
We are looking for a global property
of the function f

Generally:
$$U_0: \{x > \{0 > \rightarrow \} \times > 1\} \{x > \}$$

Input $\{Y_{in} > = \begin{bmatrix} \frac{1}{\sqrt{2}} (10 > + 11) \end{bmatrix} \} \{0 > \}$

$$= \frac{1}{2^{N/2}} \sum_{n=0}^{2^{N-1}} |x > 10 > \}$$

compute once

Output $\{Y_{in} > = \frac{1}{2^{N/2}} \sum_{n=0}^{2^{N-1}} |x > 1\} \{x > 1\} \{x > 1\}$

Global properties encoded in state, trick is to extract desired information

Quantum Advantage

David Deutsch: Toy problem that shows Quantum Advantage

Quantum Computation:

Input
$$|x\rangle|y\rangle = \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$$

$$\frac{U_{3}}{100} \rightarrow \left[(-1)^{\frac{1}{2}(1)} 100 + (-1)^{\frac{1}{2}(0)} 110 \right] \frac{1}{\sqrt{2}} \left(100 - 110 \right)$$

Measure 1st qubit in basis $|\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |1\rangle)$

→ |+> if constant, |-> if balanced

Quantum Speedup: can solve w/1 query

Key aspect of Deutsch's algorithm:
We are looking for a global property
of the function *f*

Generally:
$$U_{g}: \{x > \{o > \rightarrow \{x > 1\}\} (x) > \}$$

Input $|\Psi_{in}\rangle = \left[\frac{1}{\sqrt{2}}(10>+11>)\right]^{\bigotimes N} \{0>\}$

$$= \frac{1}{2^{N-1}} \sum_{x=0}^{2^{N-1}} |x>10>$$
compute once
$$|\Psi_{in}\rangle = \frac{1}{2^{N/2}} \sum_{x=0}^{2^{N-1}} |x>| P(x)>$$
Output $|\Psi_{in}\rangle = \frac{1}{2^{N/2}} \sum_{x=0}^{2^{N-1}} |x>| P(x)>$

Peter Shor: Period finding, QFT, Factoring

Key aspect of Deutsch's algorithm:
We are looking for a global property
of the function *f*

Generally: $U_{\mathbb{Q}}: (\times) (0) \to (\times) / (\times)$ Input $|\psi_{in}\rangle = \int_{\sqrt{3}}^{1} (|0\rangle + |1\rangle) |0\rangle$ compute once

Peter Shor: Period finding, QFT, Factoring

Next: Will this work with real-world Quantum Hardware?

Faulty gates, decoherence!

Quantum Computation |

- Cannot tolerate dissipation
- * Destroys superposition and entanglement

What to do? Error Correction!

Classical Error Correction:

Simple example: Redundancy protects against bit flips

Encode:
$$0 \rightarrow (000)$$
 $1 \rightarrow (111)$

Errors:
$$(000) \rightarrow (100)$$
 correct by majority vote

Von Neumann:

- * A classical computer w/faulty components can work, given enough redundancy
- * Classical error correction is well developed and highly sophisticated...

* Quantum Errors

1) Bit Flip
$$\frac{10>\rightarrow 11>}{11>\rightarrow 10>}$$
, phase flip $\frac{10>\rightarrow 10>}{11>\rightarrow -11>}$

- 2) Small errors (alo)+bl1> a,b can change by & errors accumulate
- 4) No cloning Cannot protect by making copies

Von Neumann:

- * A classical computer w/faulty components can work, given enough redundancy
- * Classical error correction is well developed and highly sophisticated...

* Quantum Errors

- 1) Bit Flip $\frac{10> \rightarrow 11>}{11> \rightarrow 10>}$, phase flip $\frac{10> \rightarrow 10>}{11> \rightarrow -11>}$
- a, b can change by & 2) Small errors (alo)+bli) errors accumulate
- collapse of 3) Measurement disturbs quantum states
- Cannot protect by 4) No cloning making copies

Example: Peter Shor's code for bit flip error when P (error) << 1

10>→10>=1000> 11>→17>=1111> **Encode:** (3 bit code)

alo>+b11> - alooo>+b[111>

Single-qubit measurement

collapse of state, destroys info, no majority voting!

Collective 2-qubit measurement:

- for $|x,y,2\rangle$ measure $\begin{pmatrix} x & y & y \\ x & y & y \\ \end{pmatrix}$ (never measure individual bits)
- if 1000>, 1111> these observables = 0
- if one bit-flip, at least one observable = 1
- easy to check that $(902) \times (92) =$ binary address of qubit flip

$$|000\rangle \Rightarrow |010\rangle$$
 $(1,0) = 2nd bit$

Example: Peter Shor's code for bit flip

error when P(error) << 1

Encode:

$$|0\rangle \rightarrow |0\rangle \ge |000\rangle$$

$$|1\rangle \rightarrow |7\rangle \equiv |111\rangle$$
(3 bit code)

Single-qubit measurement

collapse of state,
destroys info,
no majority voting!

Collective 2-qubit measurement:

- for
$$|x,y,\frac{1}{2}\rangle$$
 measure $\frac{\cancel{702}}{\cancel{x02}}$ (never measure) individual bits

- if 1000 >, 1111 > these observables = 0
- if one bit-flip, at least one observable = 1
- easy to check that (y + 2) = binary address of qubit flip

$$|000\rangle \Rightarrow |010\rangle \qquad (1.0) = 2nd bit$$

Small errors: $|000\rangle \rightarrow |000\rangle + \mathcal{E}|001\rangle$

Quantum mechanics to the rescue!

- mostly no error detected
 - collapse into 1000 > resp. 1111>
- sometime error detected
 - ollapse into foot resp. [110]
 - full bit flip, correct as such

Source: xkcd.com

Example: Peter Shor's code for bit flip

error when P(error) << 1

Encode:

$$|0\rangle \rightarrow |\overline{0}\rangle \ge |000\rangle$$

$$|1\rangle \rightarrow |\overline{1}\rangle \ge |111\rangle$$
(3 bit code)

Single-qubit measurement

collapse of state, destroys info, no majority voting!

Collective 2-qubit measurement:

- for
$$|x,y,2\rangle$$
 measure $\begin{cases} 2\theta & \text{never measure} \\ x & \text{individual bits} \end{cases}$

- if 1000 >, 1111 > these observables = 0
- if one bit-flip, at least one observable = 1
- easy to check that (y ⊕2,×⊕2) = binary address of qubit flip

$$|000\rangle \Rightarrow |010\rangle \qquad (1.0) = 2nd bit$$

Small errors: $|000\rangle \rightarrow |000\rangle + \mathcal{E}|001\rangle$

Quantum mechanics to the rescue!

- mostly no error detected
 - ocollapse into 1000 > resp. 1111>
- sometime error detected
 - ollapse into foot) resp. [110]
 - full bit flip, correct as such

How to implement?

Quantum circuit + single qubit measurement

Quantum Gates – work on superpositions, and entangled states

Controlled-NOT (CNOT)

Truth Table

С	Т	C ⊕ T
9	0	0
0	1	1
1	0	1
1	1	0

Quantum Circuit for joint measurement

Measurement in {10>, 11>} basis yields C⊕T

Circuit maps logical basis states as

Full circuit to obtain Error Syndrome

* iff qubit flip, binary address = (y €2,×⊕2)