Review of Quantum Mechanics Part 1 9-17-2024

Note: Everyone is assumed to be Linear Operators

familiar with grad level QM Vigves: Ahé) =l Deg
-

Review of 2-level systems, Tensor Products

of States, Operators, and Hilbert Spaces. Proiectors P = <— Proiect
Density Matrix formalism J L %X rojector on [y

ks .
Pg; 'Zc_il%'fx‘-&[ <— projector on subspace ggL
State vectors (“Rays” in Preskill)

£ Basisin 9 dimensional &,

Unique quantum state <=» unique state vector

[Y> & £ «— State Space

Hermitian Operators At=4

Adjoint |y'Y = Aly) e <y'[ =<y (A*

Scalar product LPlyy = dy [ S
complex number —f
( £ is a Hilbert Space )

Physical (measurable) quantities!
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Linear Operators

Yigvel: Aly)=lyHeg

Projectors % = [% XY | <= Projector on ly>

@
Pg; ,_ZMICPQXC%I <— projector on subspace 59_

t— Basisin 9 dimensional &,

Eigenvalue Equation Alyd= Ay

A Hermitian

% Eigenvalues of A are real-valued

A%y =Xly>  are orthogonal
Alps=pmlgy  if Az pm

% Eigenvectors ol A form orthonormal basis in £

* Eigenvectors

Hermitian Operators At=4

Adjoint [3'Y = Alyd e <y =< (A*

Physical (measurable) quantities!

Commuting Observables

(ag]=48-BA=0 B

3 orthonormal basis in £ of common
eigenvectors of A [
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Eigenvalue Equation AlY>= )\['l{.> C.S.C.O0 (Complete set of commuting observables)
. Set A B,C... such that basis 3in & of
A Hermitian S

eigenvectors | C uniquely labeled
* Eigenvalues of A are real-valued & Om,bm,Ca.... y Uniquely

147 = Al by the set of eigenvalues a,,bsn Cm
% Eigenvectors Ay = Xy S are. orthogonal o1y ban,
Alp> = 107 it A A Example H, L"J Ly for the Hydrogen atom

% Eigenvectors of A form orthonormal basis in £

Unitary Operators

Commuting Observables

U isunitary B 0U-1:-pTe vtu=vvf=1
[A'B]:-. AB-BA =0 » Scalar product invariant: <y (@) = <y lvtulp>

3 orthonormal basis in £ of common ® U isachange of basisin &
eigenvectors of A [

DIUS =M D> B A=ei®

eigenvecs for A%\’ are orthogonal
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C.5.C.0 (Complete set of commuting observables)
Set A, B,C... such that basis 3 in £ of

eigenvectors [o\m.b,.,)c,.‘ % uniquely labeled

the set of eigenvalues a,,, b,,.’Cm

Example 1_°~J L, for the Hydrogen atom

Representation and bases

The set §1u,d} forms a basisin £ if the

expansion

U = 24u; (%> 1,

is unique and exists

Unitary Operators

U isunitary @ 0-1:-pte 0Tu=00:1
Scalar product invariant: <y[() = <¢[vTvip>

B U isachange of basisin £

DIUS> =Av> B Acei®

eigenvecs for A%\’ are orthogonal

YViges

[
States 12> 4mh | uilud

-

Atg <oo0 Ayy

s o 8
Operators A 4= 3 ..
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Postulates of Quantum Mechanics

(1) At a fixed time % the state of a physical system

(2)

(3)

(4)

is defined by specifying a ket Iy/¢\) belonging
to the state space & .

Every measurable physical quantity ¢4 is
described by an operator A actingin & ;
this operator is an observable.

The only possible result of a measurement of

A physical quantity ¢4 is one of the eigenvalues
of the corresponding observable A.

(Discrete non-degenerate spectrum)
When the physical quantity ¢4 is measured on
A system in the normalized state [y, the
probability P/, | of obtaining the non-
degenerate eigenvalue a, of the observable
A is:

Pa,) = Ka, )% =<% 1R, 1%>
where 14,5 is the normalized eigenvector of
A associated with the eigenvalue &, , and
P=la,%4, isthe projector onto iq,>.

Postulates of Quantum Mechanics

(5) If the measurement of the physical quantity
cA on the system in state [y ) gives the result
Ay then the state immediately after the
measurement is the normalized projection
of [4) onto!Q,) :

O Ly
Lyle,le)

Degenerate case: use projector onto the
Subspace associated with ., .

(Fotier? =

(6) The time evolution of the state vector Iy::)
Is governed by the Schrodinger equation:

o i
25 57 ¥ = Heg)[ye)

where H(£) is the observable associated
with the total energy of the system.

See also Note on the Bayesian Update Rule
for “classical” probability distributions

9-17-2024
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Postulates of Quantum Mechanics

(5) If the measurement of the physical quantity
ch on the system in state [y ) gives the result
Ay then the state immediately after the
measurement is the normalized projection
of [y) onto!aQ,> :

R 1)
yle,le)
Degenerate case: use projector onto the
Subspace associated with &, .

(Yofier? =

(6) The time evolution of the state vector Iy/:)
Is governed by the Schrodinger equation:

09 i
25 57N = Heg) e

where H(-£) is the observable associated
with the total energy of the system.

See also Note on the Bayesian Update Rule
for “classical” probability distributions

Quantum Mechanics of systems that
consist of multiple parts

&

System 1 System 2
Joint system

Def: Let £, &, be vector spaces of dimension ¥, Uy

The vector space & =£,8¢, is called the
Tensor Product of £, and &, iff

Y pairs [@(1)€6€, IS e 82\ Jvector £ £

such that

1. The association is linear with respect to
multiplication with complex numbers

Mgy 15y = M [iptore x>
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Quantum Mechanics of systems that
consist of multiple parts

&

System 1 System 2

Joint system

Def: Let £ , &, be vector spaces of dimension ¥, Uy

The vector space & = 5,952 is called the

Tensor Product of £, and £, iff
Y pairs [9(1)yE6 €, Jde 82) Jvector £ £

such that

1. The association is linear with respect to
multiplication with complex numbers

ARy o plsm)y = Aﬂ[t@(«\>elx(zl>:(

2. Distributive () & [a.b(,a)) +b)?€1m>]
= al@ya1X,005 + blpmd e X,0)>

3.Bases {lu:(adinZ flq)ea’_))f in &,
r Sw;mmlvecw] is a basisin £

Iff My, Ny are finite, then Dim 123 =N, xNy

» The usual linear

These properties algebra works in &

Analogy: Tensor product of 1D 2 20 geometrical space

Note: ¢£,8€, + 3D geom.space

/ / §0 of vectors in £; w/vectors in €

not defined

9-17-2024
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Quantum Mechanics of systems that
consist of multiple parts

&

System 1 System 2

Joint system

Def: Let £ , &, be vector spaces of dimension ¥, Uy

The vector space & = 5,952 is called the

Tensor Product of £, and £, iff
Y pairs [9(1)yE6 €, Jde 82) Jvector £ £

such that

1. The association is linear with respect to
multiplication with complex numbers

ARy o plsm)y = Aﬂ[t@(«\>elx(zl>:(

2. Distributive () & [a.b(,a)) +b)?€1m>]
= al@ya1X,005 + blpmd e X,0)>

3.Bases {lu:(adinZ flq)ea’_))f in &,
r Sw;mmlvecw] is a basisin £

Iff My, Ny are finite, then Dim 123 =N, xNy

» The usual linear

These properties algebra works in &

Analogy: Tensor product of 1D 2 20 geometrical space

Note: ¢£,8€, + 3D geom.space

/ / §0 of vectors in £; w/vectors in €

not defined
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2. Distributive [p(ey> & [ 1%,0)) € bl (3>
= alQuy> @ 1%, (5t blPad & X, 01>

3. Bases §w;(m3 inf Elvzcwf in gz
» fw,«mmlq;ecw] is a basisin £

Iff &, Ly arefinite, then D;m (&)= N, x Ny

1P = D a; la; (1)

Vectors in £ Let
1X(2)) = 2 byl 0y

Then [Prd>elx) = Zz Q; b, 4, (1> [ 21

» The usual linear

These properties algebra works in &

Analogy: Tensor product of 1D 2 2) geometrical space

Note: ¢£,8€, + 3D geom.space

/ / §0 of vectors in £; w/vectors in €

not defined

Hugely important:

There are vectors in £ that are not
tensor products of vectors from &,,&,

General vector ¢ £ can be written as

o= > cp lm()r810,(2)>
ie

How to see? There are N, & Ny prob. ampl’s Co

These cannot all be written as (;<bp where the
sets Sa;], fbe’{ are valid probability amplitudes.
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IPla)) = Z Q; UA;C‘”)
1X(2)) = 2 by Lo, (7

Vectors in & Let

Then [P @IX)D = % Q; b, 4. (1> [ (D

Hugely important:

There are vectors in £ that are not
tensor products of vectors from &,,&,

General vector ¢ £ can be written as

2= > cpln(0)819,(0)>
iR

How to see? There are NyA N,y prob. ampl’s C:e_

These cannot all be written as (;<bp where the

sets fa;], fbe] are valid probability amplitudes.

Example: &,, g_?_ are qubits, v, =, = 2

PO = 8y g (005 + Oy Ly 2 real-valued
[X(\D = by [0, (L)) + by [W,(2)D variables each

In basis §lu.(0)e I.uQCﬂ)]

101, by | Cys

Product | b, General |Cjy

state | Q, by state | Cyy

%2 by | o
4 real-valued 6 real-valued
variables variables
product state =» 2A) real variables
N qubits B Nt

general state =» 2" "'~ 9 real var’s

10
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Example: &,, EQ_ are qubits, n), =Ny =2

R0 = Oy g, ()Y + 0y Jatg(17>
[X(2\> = by [0, (1)) + by [W,(2)D

2 real-valued
variables each

In basis §lu(0)e wecm]

fo, b | Cy

Product |0 b, General | Cjy

state  [Q4 by state | Coy

’a.l bz-‘ i C‘l‘L_
4 real-valued 6 real-valued
variables variables
product state =» 2A) real variables
N qubits B Nt

general state =» 2" "'~ 9 real var’s

Note: States &£ that are not product states
are known as

Entangled States or Correlated States

Back to the Linear Algebra engine of QM

Scalar product: ((cp'h)[@(x‘(z\[)(u?(n)@l)(m))
= QMNP 1)) ) [ XD

Operators: Let A(1) actin £(1)

The Extension /:T('l) acting in £ is defined by

Al) IICP['D) 8 mm] = (Afdlhpcqb)& 1X(2)

Extension 3(9) of R(2) into £ is similar

11
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Note: States ¢ £ that are not product states Tensor Product of Operators
are known as

LAt 880 J[lpny o )xd] = [ Al 19y ] & [ BE) X))
Entangled States or Correlated States

» alNagE) = Al)BR)

Al = &) e10)
2 = (1) @ B()

special case:

Back to the Linear Algebra engine of QM

Scalar product: ((cp'm[@ <x‘(2\1)( \d?(ﬂ)@l)(m)) Commutator
= QMNP 1)) ) [ XY

[AW) B@)] =0 because [AW,401)]= [BR), 4] =

Operators: Let A(1) actin £(1)

Notation: Obvious from context

The Extension 5(1) acting in £ is defined by

N Q1)) &18Q)) = [AUIX(Q)> <+ [PUYXW\ D
A\ [igm0> B = (AlWlgt))@ 1K)

A1) & B) « A()B(L)
Extension 3(9) of R(2) into £ is similar Al) = A@)

12
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Tensor Product of Operators

et 8B [Ipeye )] = [AIguyy] @[ BO) X))

» AN&RR) = AEQ)

Al = &) e40)

special case:
R(1) = 4(1) @ B

Commutator

[ﬁ (4) ,ﬁlzﬂ 20 because [A(),1(1)]= [BR) (2] =o

Notation: Obvious from context

[Q(0)) @ 1KY = [ PUNDIX(2)> > | PL) X\ D
A1) & B) « A()B(L)
,3;(4) - A1)

Eigenvalue problem in £

Let AL)IG) (1D = On 0 U1>, i21,...,9, B
AMNIPOXWY = 0, 1PN AD V]KD €L,

Can choose [ ¥ (2)> € orthonormal basis in £

» 9: =N, - fold degeneracy of g, in £

Furthermore

A[«)l({?ﬂi “)» =0, lcpjca»

B) /XD =b, | XE()>

(A0 + B2 Ig X5 0>
AR (@3 )

(0g+0g) 1@10) X @)Y
Onbe 141K @)Y
£ (A, 602) (RO @Y = Flan,b,) 19/0) Ky @)Y

Postulates of QM apply in &, £9_and g
» We are Done!

13
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Postulates of Quantum Mechanics

(1) At a fixed time % the state of a physical system

(2)

(3)

(4)

is defined by specifying a ket Iy/¢\) belonging
to the state space & .

Every measurable physical quantity ¢4 is
described by an operator A actingin & ;
this operator is an observable.

The only possible result of a measurement of

A physical quantity ¢4 is one of the eigenvalues
of the corresponding observable A.

(Discrete non-degenerate spectrum)
When the physical quantity ¢4 is measured on
A system in the normalized state [y, the
probability P/, | of obtaining the non-
degenerate eigenvalue a, of the observable
A is:

Pa,) = Ka, )% =<% 1R, 1%>
where 14,5 is the normalized eigenvector of
A associated with the eigenvalue &, , and
P=la,%4, isthe projector onto iq,>.

Postulates of Quantum Mechanics

(5) If the measurement of the physical quantity
cA on the system in state [y ) gives the result
Ay then the state immediately after the
measurement is the normalized projection
of [4) onto!Q,) :

O Ly
Lyle,le)

Degenerate case: use projector onto the
Subspace associated with ., .

(Fotier? =

(6) The time evolution of the state vector Iy::)
Is governed by the Schrodinger equation:

o i
25 57 ¥ = Heg)[ye)

where H(£) is the observable associated
with the total energy of the system.

See also Note on the Bayesian Update Rule
for “classical” probability distributions
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Measurement on One Part of a System

RELATIVITY N

<
7

MAGNETS

g
d  sPEOAL R
&

BASIC
PRYSICS

%

HOW PHILOSOPHICALLY EXCITING THE
QUESTIONS ARE To A NOVICE STUDENT

QUANTUM

MECHANICS

7

(GENERAL
RELATVITY

e

FLUID
DYNAMICS

3 —>» MANY

HOW MANY YEARS OF MATH ARE
NEEDED 76 UNDERSTAND THE ANSWERS

WHY S0 MANY PEOPLE. HAVE. WEIRD
IDEAS ABOUT QUANTUM MECHANICS

9-24-2024
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Quantum Measurement on
Bipartite Systems

&

System 1 System 2

Joint system

Consider the following:

E=-¢8,®E
All) = Aﬁ') &4p)

Observable on System 1

Bipartite System

~N/
Possible outcomes when measuring A(¢)?

{ Same possible outcomes @,, indep of Ig->

Degeneracy in & increases by a factor A,

A
Projector: R (1) = > |al,(1))ai, ()]
T
for eigenvalue 2,

Using the recipe to extend an operator into £

/

Pl)= RiN& 1(2)

n : .
=D D i o) i) Yl
izl k

{Eigenvalues of Al1)} = { Eigenvalues of A1) }
) )

gn:(ﬂv-”ul 9)"

Probability of outcome 0, I7) general state £

Pl =<3 B.0) 1T
= i > vl 0, (2)) v ) [

Lower case p tor kK
is a probability

Posterior state [g') = 1 15;[4) 1O
TR

16
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» { Same possible outcomes @,, indep of Ig>>

Degeneracy in & increases by a factor ),

L
R0 = > laln))ai, (]

tef
for eigenvalue 4,

Projector:

Using the recipe to extend an operator into I3

(%4

Pl)= RiN& 1(2)

D : .
=5 D it o) i) Yl

izl k

Probability of outcome 0;,,, I7>) general state £
plon) =<3 B 1T

= i‘ % Bl 00,4 (2)) a0y 0 o

Posterior state [g') = 1 1'5:‘[4) 1T
pla,)

Some Observations:

1. Basis IU,(2)) arbitrary, no phys. significance

2. Product States Let 3 =) &1X(2)

If we measure A(1) and observe [a, (1)) then

D' Yol e,mlcpcnwﬂ&)!xuwocup'm)flﬂm

still a product state

3. Entangled States

Consider a pair of states where n and i labels the
eigenvalues and degeneracies within the subspace g,,

9w
[@W>=> D At (), (XY= % bg [Xa(®))

n iz

The corresponding product state is of the form

e>=2 % %au:b& PRHNPAB)

By comparison, the most general state in £ has the form
Qn
14> =ZZ % Cuike IMMEU')>})<&C9-’)>
n ozl

If the C,,,;p, are all products of the type Q,: b&
then [¢>> is a product state. Otherwise, [ is entangled.

17
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» { Same possible outcomes @,, indep of Ig>>

Degeneracy in & increases by a factor ),

An

Projector: R (1) = > |al,(1))ai, ()]
T

for eigenvalue 4,

Using the recipe to extend an operator into I3

(%4

Pl)= RiN& 1(2)

D : .
=5 D it o) i) Yl

izl k

Probability of outcome 0;,,, I7>) general state £
plon) =<3 B 1T

= i‘ % Bl 00,4 (2)) a0y 0 o

Posterior state [g') = 1 1'5:‘[4) 1T
pla,)

Some Observations:

1. Basis IU,(2)) arbitrary, no phys. significance

2. Product States Let 3 =) &1X(2)

If we measure A(1) and observe [a, (1)) then

D' Yol R,ml@cn>®ﬂ&)lXuDoCkP'(ﬂ)le‘M)

still a product state

3. Entangled States

Consider a pair of states where n and i labels the
eigenvalues and degeneracies within the subspace g,,

9w
[@W>=> D At (), (XY= 2&: bg [Xa(®))

n iz

The corresponding product state is of the form

e>=2 §E %au:b& PRHNPAB)

By comparison, the most general state in £ has the form
Qn
14> =ZZ % Cuike IMMEU')>})<&C9-’)>
n ozl

If the C,,,p, are all products of the type O(,,,:b&
then [¢>> is a product state. Otherwise, [ is entangled.

18
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Measurement on One Part of a System

Some Observations: Some Observations: (Continued)

3. Entangled States

1. Basis [y, (1)) arbitrary, no phys. significance

If we measure A(1) and observe the outcome a,,
then the posterior state is

2. Product States Let [ =]p0))@1X(%)>

If we measure 4(1) and observe [anm) then

1D Yol P (100> @4 (o) I X(2y > X IcP'm)? %)

still a product state

. Entangled States

Consider a pair of states where n and i labels the
eigenvalues and degeneracies within the subspace g,,

9w
[@O>=3 D O ta, (Y, XY= % be [Xa (0>

n iz

The corresponding product state is of the form

I'(P? = %% %Qutb‘&lﬁq;(l))‘?(&[?.»
03]

By comparison, the most general state in £ has the form
Q.
¥ 2 > Cuik [ ¥ a3
n oz

If the C,,;p, are all products of the type Q,: b&

then [¢>? is a product state. Otherwise, [ is entangled.

An
1"y [PA)({)@ 1[9_\] [tp-)wzl %CN.'L [ln;00ye] Xa(‘)f»}

Now, if 9,0 = { then the state IMMU)) occurs exactly
once in the sum above, and therefore

[e>ec wnma%zmw < [lagln>® 1¥@)]

Conceptually, once the measurement tells us that
system 1 is in the exact state WI\)U»’ then it factors
out of the global state.

The case 9, > 1 is more subtle. Once we measure
Q, » We know system 1 resides in the degenerate
subspace associated with the outcome @, . Repeat
measurements do not generate further information
about which of the exact |i4,,,(1)) our system is in.
Thus, the measurement removes some, but not all of
the entanglement present in [¢>) . To completely
factorize the state we would need to measure a
C.S.C.0. This will identify not only the degenerate
subspace but also the specific state vector [#,;(1)).
See Cohen-Tannoudji Chapter Ill, Complement Dy,

19




Measurement on One Part of a System

Some Observations: (Continued)

3. Entangled States

If we measure A(1) and observe the outcome a,,
then the posterior state is

B
193 BN 40 [t[r)wzl E;CN;&[WN;U)M YON|

Now, if 9’0 = { then the state W,\)U)) occurs exactly
once in the sum above, and therefore

(> LUy a%zmm < [lagln> @ x> ]

Conceptually, once the measurement tells us that
system 1 is in the exact state [MMU)), then it factors
out of the global state.

The case 9, > 1 is more subtle. Once we measure
., » we know system 1 resides in the degenerate
subspace associated with the outcome a,,. Repeat
measurements do not generate further information
about which of the exact [#,,(1)) our system is in.
Thus, the measurement removes some, but not all of
the entanglement present in [¢>) . To completely
factorize the state we would need to measure a
C.S.C.O. This will identify not only the degenerate
subspace but also the specific state vector [#4,;(1)).
See Cohen-Tannoudji Chapter Ill, Complement Dy,

Physical Interpretation of T.P. States

From (2) above, measuring A() B(2)

Plon,by,) = LO0)) 8,010 X B,e)X(2) >

Independent
Random Var’s

% Outcomes 0, b, are

t Uncorrelated

Physical Interpretation of Entangled States

From (3) above, measuring A(:) B()
Global |t)r> cannot be written as [Pl ) &[X())

In general, 4,2 by,

(P(a,,}bb) = (| P,0) %(2)[ o> { will be correlated

random variables

Conclusion: We cannot assign state vectors to
the individual subsystems !

20
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Measurement on One Part of a System

Physical Interpretation of T.P. States

From (2) above, measuring A() B(2)

Plow,b,) = L0W)) R0 Q0> X B,)lX(2)>

Independent
Random Var’s

% Outcomes 0, b, are

t Uncorrelated

Physical Interpretation of Entangled States

From (3) above, measuring A(:) B(2)
Global [t)r> cannot be written as [Pl ) &[X())

In general, a,,2 by,

(/3(0\,,,}[9&) = (| P,0) %m[c{y) { will be correlated

random variables

Conclusion: We cannot assign state vectors to
the individual subsystems !

Note:

Even though we cannot assign /9017, 1X(2)5 ,
it is still possible to have a local description
of each subsystem on its own. It must be
consistent with tensor product states, yet it
must reduce the information that is locally
available when the global [t is entangled

P

Density Matrix Formalism

Definition: A system for which we know only
the probabilities 41}, of finding the system in
state (1, ) is said to be in a statistical mixture
of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

21
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Density Matrix Description of 2-Level Atoms

Note:

Even though we cannot assign (1>, 1X(2)5 ,
it is still possible to have a local description
of each subsystem on its own. It must be
consistent with tensor product states, yet it
must reduce the information that is locally
available when the global [t is entangled

—_—

Density Matrix Formalism

Definition: Density Operator for pure states

Q) = 1) X u(L)|

Definition: Density Matrix
Iy ) = g.cnu.)\un »
Con [4) = <Ml OB | M, = Col) Cf )

Definition: A system for which we know only
the probabilities 41}, of finding the system in
state (g, is said to be in a statistical mixture
of states. Shorthand: mixed state.

Shorthand for non-mixed state: pure state

Definition: Density Operator for mixed states

QW) =2 Ay Qut), G =1, (O Ky )|
%

Note: A pure state is just a mixed state for
which one 4l =1 and the rest are zero.

The terms Density Operator and Density Matrix
are used interchangeably

22
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Density Matrix Description of 2-Level Atoms

Definition: Density Operator for pure states Let A be an observable w/eigenvalues O,

Q“) = 1) X WL Let &, be the projector on the eigen-subspace of On

For a pure state, Q(£) = | {+) X 4(£)| , we have

Definition: Density Matrix

g (4)) = gc,,mum ¥

(%) Tr &)= ngce) =D g It=1

O ) =< QO S = Cot) CEeL) (K (A= CplAIe) =Z<w) [A LX)
"Z<M |y XA up> —z(MplgGE\A [y
Definition: Density Operator for mixed states —W'[Q(-BWA] (I bas,s in )
Q) =2 Ay Q) G =11, (O Kyg )| (%) Let §, be the projectcr on eigensubspace of A,
Note: A&pure state is just a mixed state for P, =YE)IR, [ =‘I?[g£~e)P,,]

which one 4lp =1 and the rest are zero.

(%) é(@:l'zp(llxzplf.—)l-ﬂ‘lf(a)(lﬁéﬁ

The terms Density Operator and Density Matrix = ~ 1"” YEYXYLE) ["’ hf('[’)XW'E“H

are used interchangeably

?i‘ gl
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Density Matrix Description of 2-Level Atoms

Let A be an observable w/eigenvalues O,

Let 1:3. be the projector on the eigen-subspace of O,

For a pure state, Q(£) = | {+) X 4(£)| , we have

(%) Tr Q)= 2‘3-&) =§lc,,l’-= 1

(%) Y= LA =D CHOIA X D)
=D AUy =) Lol etoalay
’—ﬁﬁ‘[g(é‘rﬂ] (Imp> basis ’iDn €X)

(%) Let f‘?ﬂ be the projector on eigensubspace of  ,

Per,) = <418, 1ty =Tr[Qt8, ]

(%) é(a:mll—lxzp(ﬂl-rlma)@éﬂ
=L H mze)xuw[-—;% Xyt H

=i [Hg]

9-26-2024

Let A be an observable w/eigenvalues 0,

Let 1:3, be the projector on the eigen-subspace of O,

For a mixed state, Q(+) =%fm Qlt) » €p =1, [£)XYg (£)]

(%) Trolt) = %m'rpg&cﬂ =4
(%) <A =.Z: IXOAB LA % (R THQUORT

="Ir[@®)AT

(%) Let £, be the projector on eigensubspace ofa,

Pla,) -"—%w,(zﬁ(ﬁ)l P I, 10 = Te[QHIP)]

() QU = >y (X eL) -+ 1pAeoCuig)
[
=th& -7 (HUMEAXp0)] - et | H)

Density Operator

=g el

formalism is general !
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Density Matrix Description of 2-Level Atoms

Let A be an observable w/eigenvalues O,

Let 1:3. be the projector on the eigen-subspace of O,

For a mixed state, Q(+) :Zm Qlt) » €=Uyt X Yg (£)]
%

(%) Tro(t) = %zma'_l?‘g&(-ﬂ =4
(%) <A %‘ N CH AN = % e TrlG O]

="Ir[®)A]

(%) Let 1:3, be the projector on eigensubspace of G ,

P,) .-_%m(zﬁ(ﬂl D[4,y = Tr[QHIR ]

() QU = >y (X YeL) -+ HpAeoCuig )
[
=th& -7 (HTHa X~ etenoget) H)

-1 Density Operator
—FE [H'?] formalism is general !

Important properties of the Density Operator

(1) QisHermitian, Q"=€ W © is an observable

®» 3 basis in which © is diagonal

In this basis a pure state has one
diagonal element = 1 , therest =

(2) Test for purity.

Pure: Gg'=Q ®» Trel =1
1

e
Mixed: Q*+Q ® T g«

(3) Schrodinger evolution does not change the Ay

{ ‘T?g" is conserved

pure states stay pure

mixed states stay mixed

Changing pure ® mixed requires non-Hamiltonian
evolution — see Cohen Tannoudji D, & E;,
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Density Matrix Description of 2-Level Atoms

Important properties of the Density Operator

(1) QisHermitian, Q“=€ ® © is an observable

®» 3 basis in which © is diagonal

In this basis a pure state has one
diagonal element = 1 , therest =

(2) Test for purity.
Pure: Gg':=Q ®» Trel =1

e
Mixed: 9"#\9 L ‘T?g‘<1_

(3) Schrodinger evolution does not change the A

Tr g‘“ is conserved
E pure states stay pure

mixed states stay mixed

Changing pure ® mixed requires non-Hamiltonian
evolution — see Cohen Tannoudji D, & E;;,

Note:

Even though we cannot assign /9017, 1X(2)5 ,
it is still possible to have a local description
of each subsystem on its own. It must be
consistent with tensor product states, yet it
must reduce the information that is locally
available when the global [t is entangled

— -

Density Operator Formalism
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Measurement on One Part of a System

Note:

Even though we cannot assign /p(1>, 1X(2)5 ,
it is still possible to have a local description
of each subsystem on its own. It must be
consistent with tensor product states, yet it
must reduce the information that is locally
available when the global Iz is entangled

— -

Connecting to Density Operator
Formalism (OPTI 544)

Density Operator:

Ql4) = % T ' 4p X%, |

pure

Terminology: <tate

(Y2 known —»

Y&./%> known —» r;‘t':f:

Density Operator Formalism

Properties
(2) (A > a W[QA] Degenerate subspaci of A

(3) Pw,\ = Tr[¢Pr,7, R: projectoronto &,

(4) 0%? = ;;;[H,g] Schrodinger Eq.
(5) © pure —» g*=¢ K Troh =4

(6) c%: Trg(" =0 =» S. E. conserves purity

27
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Measurement on One Part of a System

Connecting to Density Operator
Formalism (OPTI 544)

Separate Description of Part of a System:

Density Operator:

Ql4) = % T 4p X% |

: . pure
Terminology: (%) known — state
1&.1%> known —» r;'t':f:

Properties

(1) Trg=1

(2) <A> =TrleA]

(3) Pw,\= Tr[¢pr,7, P: projectoronto £

(4) %Q = ‘.“:;[H,Q:{ Schrodinger Eq.

(5) @ pure — g*=¢, Trg"= 1

(6) ‘%: Tf-gq* =0 =» S. E. conserves purity

Let 'S = gl ® 82..
T.P. Basis {lu,-m)]@{)vﬂ m)}

_ i Describes
Density Operator ¢ in E « global system

Goal: To “reverse engineer” operators
o) in & and @) in &, such that they

describe the systems independently

Our starting point is the global density operator

= D ol Xy 0y
8 ijy(he) Stijuee) we
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Measurement on One Part of a System

Separate Description of Part of a System: Definition: Partial Trace
Let € = E, & 52, g{ﬂ =Tr, ¢ = Z(«v Qla, )
% % 9
9 S 30.0n s X g |
T.P. Basis flu 5] @{1op 3] S s , -~ .
Describes T ahme) Stipiae) o145 Xty 0p L)
Density Operator ¢ in E < global system
"% Z gfieﬂlfeq\ [w; X Mg | <= operatorin £,
R q

Goal: To “reverse engineer operators
o in £ and o) in &, such that they

describe the systems independently

Properties of ox)

c.c. numbers,

Our starting point is the global density operator J ) ) H.C. swap kets & bras
+ . *
(1) g(ﬂ - Z E 9(;&“&@) [«M;XM&’
e-= > g | a; 0; X alg 0 | -8
Gocke) SUke) T OTTRTE ) | -
3 Z»E glagi(iq\ | g X 4 | <= Relabel A

’E S fat; X Mg | = ©1)
:k% NN k= Q

(2) ©W) Hermitian > we can choose a basis {iw, (1))}
So ©[1) is diagonal =» Qcmwm £ 0:8
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Measurement on One Part of a System

Definition: Partial Trace

g{ﬂ =Tl‘lg = Z(uq_lglmq_)

= g_m)%'m g[:j\l.&e) <4?q_llu;4)d)<uﬁvel[4;q>

=

=% % g‘iﬁ\c'%\ [w; X Mg | € operator in &

Properties of ox)

v v

+ - *
(1) QCﬂ 'Z& % Q(;w&q) IM;X'“&’

c.c. numbers,

H.C. swap kets & bras

—> R

—_—

- .| <= Relabel '
G5 gl&g‘(«'e\ |4y X 4 | <= Relabe

=§ S fat; X Uy | = ©()
:«% (ig\heg) el=Q

(2) €M) Hermitian <> we can choose a basis [lw, (1))}
So ©[1) is diagonal =» gﬁml?«aﬂ £0:8

Thus QlL) = % % S’(&?\(gq\ !‘UQX'AU
»
s % N 19X, |

Note:
(1) 9,%\(&%\ = population of 14, ;?, i.e. prob.
of finding the global system in this state.

(2) {e * % Sttty 152 marginal probability,

i.e., the prob. of finding system 1in jw,),
found by adding the probs Sttig ks of
finding the global system in the states |4, V>

Visualization - Marginal Probability

Tk—»

30
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Measurement on One Part of a System

Definition: Partial Trace

g{ﬂ =Tl‘lg = Z(uq_lglmq_)

= g_m)%'m g[:j\l.&e) <4?q_llu;4)d)<uﬁvel[4;q>

=

=% % g‘iﬁ\c'%\ [w; X Mg | € operator in &

Properties of ox)

v v

+ - *
(1) QCﬂ 'Z& % Q(;w&q) IM;X'“&’

c.c. numbers,

H.C. swap kets & bras

—> R

—_—

- .| <= Relabel '
G5 gl&g‘(«'e\ |4y X 4 | <= Relabe

=§ S fat; X Uy | = ©()
:«% (ig\heg) el=Q

(2) €M) Hermitian <> we can choose a basis [lw, (1))}
So ©[1) is diagonal =» gﬁml?«aﬂ £0:8

Thus 8w = % %_ Sthe)itg) !”&X"‘U

»
a 1; Az, 19 Xy, |

Note:
(1) 9,%\(&%\ = population of 14, ;?, i.e. prob.
of finding the global system in this state.

(2) {e * % Sttty 152 marginal probability,

i.e., the prob. of finding system 1in jw,),
found by adding the probs Sttig ks of
finding the global system in the states |4, V>

Visualization - Marginal Probability

Tk—»
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Measurement on One Part of a System

Thus G = U p X ar
< % %_ Sapiee) A el

»
= z m& |M&§CU&|
£

Note:

(1) QM#\(&Q\ = population of lu, v, 5, i.e. prob.
of finding the global system in this state.

(2) e * %— g{%\(&@ is a marginal probability,

i.e., the prob. of finding system 1in Ly},
found by adding the probs g{%\@#\of
finding the global system in the states |4, ¢,

Visualization - Marginal Probability

ol =T, 0 Partial Traces
=Ty
We define : Or
Q[ =lry @ Reduced Density
Operators

Note: We already know these are Hermitian
operators. Also,

Trg =3 2 Lu, Uy (@ 4,05
"% Unit Trace

=Tr, (Try @) = T, (¢(1) Operators !

~T7, (T, @) = Ty (9(9_‘)) 2 1

Expectation Values:

9-26-2024

AW = Tr[etAn)] = > <, 0 |11 YA) | i, 0
ng

= % 3& f»u,.'l)grlelvdﬂlu,,,.vq.)fun.w lA[l\?ﬂ(ﬂ )M“(uq?

Cpe (1) daqt Luy 1AL 11, >

= 2 i) L, Xy AU Lat, >
nwnt

=5 cup el lu> = Trienam)
n —_—
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Measurement on One Part of a System

Additional Comments:

(1) Global state # T. P. state
®» Cannot assign states 90>, [¥@)> to Sq, S,
Can assign @(),©(1) » Local description

(2) If € is pure, 1r e =4, westill can have

Tretn' £ 4, Tre@ 4.4

(2) If the Global stateisa T. P., Idr7=10)>) % (2)>

T = 1@ NX Q)]

then T(Y) = 1Y @X %]
Q=0 @T()

(3) The Global state can itself be mixed. In
that case a product state will have the
following structure

Tr, [€t0 8 T] = 50)

=TUIRT(
groweTh) ¥ {Tr,t(f(n)@ﬂl)]=fu.)
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Measurement on One Part of a System

Additional Comments:

(1) Global state # T. P. state
®» Cannot assign states 90>, [¥@)> to Sq, S,
Can assign @(),©(1) » Local description

(2) If € is pure, 1r e =4, westill can have

Tretn' £ 4, Tre@ 4.4

(2) If the Global stateisa T. P., Idr7=10)>) % (2)>

T = 1@ NX Q)]

then T(Y) = 1Y @X %]
Q=0 @T()

(3) The Global state can itself be mixed. In
that case a product state will have the
following structure

Tr, [€t0 8 T] = 50)

=TUIRT(
groweTh) ¥ {Tr,tq*m@m)]:ru)

9-26-2024

Additional Comments:

(4) However, if QU)=Tr (¢), Q) =T, ()

then in general ©'=QM)B<Q(L) + ©

°o 1

(5) If the evolution of € is Hamiltonian, & =§IH,9] ,
we cannot in general find a H) that allows an
analogous equation for ©()

Note:

Hamiltonian evolution conserves the purity of €.
However, if ©(() is initially pure (unentangled S, S, )
the global evolution may entangle S, , S, and cause
©(() to become mixed.

-

Evolution of ©(() is not Hamiltonian
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2 Spins, EPR States (Preskill ch. 2.5)

Basic Paradigm:
Shared pair of spin-1/2 particles

Bob

angled pair 5 @
source

Alice

&—
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