John von Neumann

Physics of Information: Alan Turing

Notions: What is a computation?

What is computable

Formulation of Computer Science that is Device Independent

1937 Turing Machine:

https://www.youtube.com/watch?v=E3keLeMwfHY

Landaur: Information is Physical!

Example: Erasure = Dissipation

Entropy: $\triangle S_{gas} = - \log \ln 2$

Work: $W = kT \ln 2 = 0.96 \times 10^{-23} \frac{J}{K} \cdot 300 K$ $\sim 3 \times 10^{-21} J \sim 0.02 eV$

Is there a way around it?

Reversible Computation!

But we need a different gate set!

John von Neumann Alan Turing

Wikipedia:

A Turing Machine (TM) is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of paper according to a table of rules.

The TM operates on an infinite tape divided into cells, each of which can hold a symbol drawn from a finite set.

At each step the head reads the symbol in the cell. Then, based on the symbol and the TM's present state, the machine writes a symbol in the cell, and moves the head one step to the left or the right, or halts the computation.

Church – Turing Thesis:

Everything that is computable can be computed on a Turing Machine with at most polynomial overhead.

Landaur: Information is Physical!

Example: Erasure = Dissipation

Entropy:
$$\Delta S_{gas} = - le ln 2$$

Work:
$$W = kT \ln 2 = 0.96 \times 10^{-23} \frac{J}{K} \cdot 300 K$$

 $\sim 3 \times 10^{-21} J \sim 0.02 eV$

Is there a way around it?

Reversible Computation!

But we need a different gate set!

Landaur: Information is Physical!

Example: Erasure = Dissipation

Entropy: $\Delta S_{gas} = - le ln 2$

Work: $W = \&T \ln 2 = 0.96 \times 10^{-23} \frac{J}{K} \cdot 300 K$ $\sim 3 \times 10^{-21} J \sim 0.02 \text{ eV}$

Is there a way around it?

Reversible Computation!

But we need a different gate set!

Maxwells Demon:

Information is Physical!

Quantum Information

Carl Caves: Quantum States are states of knowledge

Physics is Information!

Source: xkcd.com

NAND Gate:

Toffoli Gate:

Maxwells Demon:

Information is Physical!

Quantum Information

Carl Caves:

Quantum States are states of knowledge

Physics is Information!

New properties of QM

Measurement:

Acquire Info | Disturb system

Randomness:

Outcome fundamentally unpredictable

"Collapse" of wavefunction

Cannot determine state of a quantum system if initially unknown

Cannot Copy No cloning theorem

pure state, entangled

Entanglement:

$$|76\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

Non-local correlations

$$g = \frac{1}{2} \left(\left[\cos \times \cos \right] + \left[11 \times 11 \right] \right)$$

mixed state, not entangled

Quantum Computing

Does QM impact Computation?

Peter Shor (1994): YES! Quantum
Fourier
Transform

Factoring!

DFT on N bits $\mathcal{O}[(2^N)^2]$ steps

FFT on u $\mathcal{O}[N2^N]$ uQFT on u $\mathcal{O}[NLogN]$ u

Efficient Factoring

Preskill Ch. 1, p. 5-6 $T \propto e^{1.9 (\log n)^{1/3}} e^{(\log \log n)^{2/3}}$ Best Classical Algorithm

Quantum Computing

Does QM impact Computation?

Factoring!

DFT on N bits $\mathcal{O}[(2^N)^2]$ steps FFT on u $\mathcal{O}[N2^N]$ u QFT on u $\mathcal{O}[NLOgN]$ u

Efficient Factoring

Preskill Ch. 1, p. 5-6 $T \propto e^{1.9 ((\log n)^{1/3}} e^{((\log \log n)^{2/3}}$ (1998) 130 digits in 1 month 400 digits in 10¹⁰ years (2022) 24 yrs = 16 Moores Law doublings $2^{16} = 65,536$ \$\dig 400 digits \sim 150kYrs

Quantum Computing

Does QM impact Computation?

Peter Shor (1994): YES! Quantum
Fourier
Transform

Factoring!

DFT on N bits $\mathcal{O}[(2^N)^2]$ steps

FFT on u $\mathcal{O}[N2^N]$ uQFT on u $\mathcal{O}[NLogN]$ u

Efficient Factoring

Preskill Ch. 1, p. 5-6 $T \propto e^{1.9 ((\log n)^{1/3}} e^{((\log \log n)^{2/3}}$ (1998) 130 digits/month

400 digits/ 10^{10} years

Shors algorithm: $\mathcal{O}[(\log n)^3]$ 130 digits/mo. 400 digits/3 yrs if Quantum

Efficient Factoring

Preskill Ch. 1, p. 5-6 $T \propto e^{1.9 (\log n)^{1/3}} e^{(\log \log n)^{2/3}}$ (1998) 130 digits/month

400 digits/ 10^{10} years in # of digits

Shors algorithm: $\mathcal{O}[(\log n)^3]$ 130 digits/mo. 400 digits/3 yrs if Quantum