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2 Introduction
Computers are changing nearly everything we do.  Computers have made enormous improvements in interferometric
metrology.  While interferometry concepts are old, by combining old interferometry concepts with modern electronics,
computers, and software, interferometry has become an exciting modern topic.

An interferogram contains an enormous amount of information.  However, for a computer to analyze this information
the  interferogram data  must  be  transferred  to  the  computer.   Twenty  or  thirty  years  ago  the  approach  was  to  take  a
static interferogram and use a graphics tablet or densitometer to find the fringe centers and transfer this fringe center
information to a computer first using IBM punch cards and later directly interfacing the graphics tablet or densitometer
to the computer.   Since normally the analysis required data on a regular grid,  interpolation or polynomial fitting was
used to go from fringe centers to the grid.  Typically only 100-200 data points would be used.  Additional information
was required to get the polarity of the wavefront.  While today the idea of using only fringe center data to determine
wavefronts  seems  very  archaic,  at  the  time  it  was  a  large  advance  forward  enabling  the  fabrication  of  better  optical
components and optical systems.

A much better approach for getting interferogram data into a computer is to take a series of interferograms while the
phase  difference  between  the  two  interfering  beams  changes.   The  wavefront  phase  distribution  is  encoded  in  the
irradiance  variation,  and as  will  be  shown below,  the  wavefront  phase  difference  between the  two interfering beams
can be obtained by analyzing the point by point irradiance of three or more interferograms as the phase difference is
varied.  This method for obtaining phase information from interferograms is now known as phase-shifting interferome-
try (PSI).

The  concept  of  PSI  has  been  used  for  a  long  time  in  electrical  engineering  for  determining  the  phase  difference
between two electrical  signals  and  is  called  synchronous  detection.   In  the  1960s  many researchers  began using  PSI
approaches  and  the  earliest  reference  on  the  subject  is  believed  to  be  in  1966  (Carré,  1966).   While  many  others
worked on the topic in the 1960s and 1970s little was published because most of the work was concerned with either
defense or company proprietary projects (Crane 1969; Bruning et al. 1974; Wyant 1975; Hardy et al. 1977).  The topic
did not become really popular until the 1980s when good quality CCDs and small powerful computers became avail-
able.  At the present time most serious interferometric metrology work involves phase-shifting techniques.

Two excellent review book chapters have been written on PSI (Creath 1988; Greivenkamp and Bruning 1992).  These
notes are not intended to replace these review chapters, but rather they are intended to supply the basic PSI concepts in
an  interactive  form  where  the  reader  can  not  only  learn  the  basic  concepts  but  also  try  new  ideas.   Below  we  will
discuss  the  basic  concepts  of  phase-shifting  interferometry  followed  by  discussion  and  derivation  of  the  basic  algo-
rithms, discussion of error sources, and a description of the phase-shifters required.
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3 Basic Concepts of PSI
ü 3.1 Two Beam Interference and 4-Step PSI Algorithm

The basic equation for two-beam interference is

irradiance@x, yD = ia + ib Cos@q@x, yDD

or

irradiance@x, yD = iavg H1 + g Cos@q@x, yDDL

Let q[x,y] be equal to a constant value, d, which we will call a piston term, and a variable f[x,y] which depends upon
position x, y.  The irradiance can be written as

(1)
irradiance@x, y, dD = iavg H1 + g Cos@f@x, yD + dDL.

While the above is the most common way of writing the irradiance distribution for two-beam interference, it is often
convenient to rewrite Cos[f + d]  as a product of Cos[f] Cos[d] and Sin[f] Sin[d].  That is,
TrigExpand@iavg H1 + g Cos@f@x, yD + dDLD

iavg + iavg g Cos@dD Cos@f@x, yDD - iavg g Sin@dD Sin@f@x, yDD

Letting 

a0 = iavg

a1 = iavg g Cos@f@x, yDD

a2 = - iavg g Sin@f@x, yDD

we can write

(2)
irradiance = a0 + a1 Cos@dD + a2 Sin@dD

It is important to note that

(3)Tan@fD =
-a2

a1

and
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(4)g =
a12 + a22

a0 .

Equations 2 and 3 are the two most useful equations in PSI.  

It is also important that not only do we determine the tangent of the phase, but also the individual sine and cosine are
determined.  This means that we know which quadrant the phase is in, so when the arctangent is performed the phase
is determined from -p to p.  As will be shown below, if we set a limit on the slope of the phase being measured that the
phase difference between adjacent detector points is less than p, then we will be able to extend the range of the phase
measurement by correcting for the 2p ambiguities in the arctangent calculation.

The easiest  way of understanding the concept of phase-shifting interferometry is  to look at  what is  commonly called
the four-step algorithm.  As stated above, the irradiance can be written either as
irradiance@n_D := a0 + a1 Cos@d@nDD + a2 Sin@d@nDD

or  as
i@n_D := iavg H1 + g Cos@f + d@nDDL

Normally we will use the first expression for the irradiance, but in this case we will use the second expression.

Let d have four values.

d@1D = 0; d@2D =
p

2
; d@3D = p; d@4D =

3 p

2
;

i@1D ê. d@1D Ø 0

iavg H1 + g Cos@fDL

i@2D ê. d@2D Ø
p

2
iavg H1 - g Sin@fDL

i@3D ê. d@3D Ø p

iavg H1 - g Cos@fDL

i@4D ê. d@4D Ø
3 p

2
iavg H1 + g Sin@fDL

It is clear that

SimplifyB
i@4D - i@2D

i@1D - i@3D
F ê. :d@1D Ø 0, d@2D Ø

p

2
, d@3D Ø p, d@4D Ø

3 p

2
>

Tan@fD

That is,

(5)Tan@fD =
i@4D - i@2D

i@1D - i@3D .

This is a very powerful algorithm.  Remembering that this calculation is performed for each detector point we see that
by taking the difference any fixed pattern noise is eliminated.  Due to the division detector sensitivity variations and
irradiance variations across the beam have no effect on the result except changing the signal to noise.

4 James C. Wyant (2011) Phase Shifting Interferometry.nb



ü 3.2 Phase-shifting (integrated bucket) vs phase-stepping
In  the  four-step  method  shown  above  the  phase  difference  is  changed  in  discrete  steps.   For  practical  reasons  it  is
generally better to vary the phase at a constant rate.  If the phase is changed in discrete steps a delay is required after
each phase step to reduce effects of ringing in the phase shifter and the phase shifting electronics.  Because of environ-
mental factors the data needs to be taken as fast as possible and delays after each phase step are unacceptable in most
situations.  The phase-shift or integrated bucket technique (Wyant, 1975) allows the phase difference to vary linearly
in time, and as shown below the only penalty for allowing the phase difference to vary during the detector integration
time  is  a  small  reduction  in  the  fringe  visibility.   This  integration  time  is  normally  equal  to  the  frame  time  of  the
detector, but it can be equal to a shorter time if the time required to collect an adequate signal is shorter than the frame
time.

Let D be the integration time, then the signal can be written as

signal =
1

D
‡
d@nD-Dê2

d@nD+Dê2
Hiavg H1 + g Cos@f@x, yD + dDLL „d;

signal = FullSimplify@signalD

iavg +
1

D
2 iavg g Cos@d@nD + f@x, yDD SinB

D

2
F

signal = FactorBsignal ê.
2 SinA D

2
E

D
Ø sincB

D

2
FF;

(6)iavg 1 + g Cos@d@nD + f@x, yDD sincB
D

2
F

Thus, as shown by Equation 0 the effect of integrating the irradiance as the phase is continuously varied is to reduce
the  contrast  of  the  signal  by an amount  equal  to  sincA D

2
E.   Normally,  this  reduction in  contrast  is  negligible.   For

example, if the irradiance is integrated as the phase changes by p
2

the contrast is reduced by

SinA D

2
E

D

2

ê. D Ø
p

2
êê N

0.900316

Generally  the  10  %  reduction  in  fringe  contrast  is  acceptable  and  the  integrated  bucket  approach  is  used  instead  of
phase stepping since the data can be taken faster.  

It  should  be  noted  that  since  the  only  effect  of  integrating  the  irradiance  as  the  phase  changes  is  a  fringe  contrast
reduction, the same phase algorithms are valid for both the phase-stepping and the integrated bucket approach.  

ü 3.3 Phase unwrapping
Since  the  phase  is  calculated  from  an  arctangent  there  are  discontinuities  in  the  phase  calculation.   Normally  the
arctangent is defined only over a range of -p/2 to p/2.  However, in phase-shifting interferometry we know the signs of
the individual sines and cosines.  This means that we know which quadrant the phase is in, so when the arctangent is
performed the phase is determined over a range of -p to p.  

The range of phase that can be measured can be further extended if we set a limit on the slope of the measured phase
such that the phase difference between adjacent detector points is less than p.  The phase difference between adjacent
detector  points  can  then  be  calculated  and  when  the  calculated  phase  difference  is  greater  than  p  we  know  that  the
phase difference is calculated too large because of 2p ambiguities in the arctangent.  The 2p ambiguity is corrected by
adding  or  subtracting  2p  to  the  phase  of  one  of  the  data  points  so  the  phase  difference  is  less  than  p.   This  process
needs to be repeated for all data points until the phase difference between all adjacent data points is less than p.

The  phase  unwrapping  module  in  Section  8.4  can  be  used  to  correct  for  2p  phase  ambiguities  for  one-dimensional
phase data.  In practice, two-dimensional phase unwrapping algorithms work along the same principle, but they can be
more difficult to implement because of obscurations in the data and noise.  Care must be taken that all data points have
the 2p ambiguity correction applied.  The best phase unwrapping algorithms look at the contrast of the signal at each
data point and unwraps the phase at the highest contrast, lowest noise, points first.  The effects of errors in the unwrap-
ping leads to streaks in the data where the unwrapping is incorrect.
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4 Basic Algorithms
ü 4.1 Three-Step Algorithms

The goal is to find f[x,y].  If we measure the irradiance and we know d, we are left with three unknowns, iaverage, g,
and f[x, y], or equivalently a0, a1, and a2.  Since there are three unknowns, three measurements of the irradiance for
three different values of d are required.  Let
irradiance@n_D := a0 + a1 Cos@d@nDD + a2 Sin@d@nDD

Let the three irradiance measurements for the three different values of d be imeasured[1], imeasured[2], and imea-
sured[3].

We will now look at a few three-step algorithms.
ü 4.1.1 Three-Step Algorithm, Example 1

For the first example let the three values of d be p
4

, 3 p

4
, and 5 p

4
.  Solving for a1 and a2 yields

ans = SimplifyBSolve@8irradiance@1D == imeasured@1D, irradiance@2D == imeasured@2D,

irradiance@3D == imeasured@3D<, 8a1, a2<, 8a0<D ê. :d@1D Ø
p

4
, d@2D Ø

3 p

4
, d@3D Ø

5 p

4
>F

::a1 Ø
1

2
Himeasured@1D - imeasured@2DL, a2 Ø

1

2
Himeasured@2D - imeasured@3DL>>

tanPhase =
-a2 ê. ans@@1DD

a1 ê. ans@@1DD

-Himeasured@2D - imeasured@3DL ê Himeasured@1D - imeasured@2DL

Thus,

(7)Tan@fD = -Himeasured@2D - imeasured@3DL ê Himeasured@1D - imeasured@2DL

ü 4.1.2 Three-Step Algorithm, Example 2

For the second example let the three values of d be - p

2
, 0, and p

2
.  Solving for a1 and a2 yields

ans = SimplifyBSolve@8irradiance@1D == imeasured@1D, irradiance@2D == imeasured@2D,

irradiance@3D == imeasured@3D<, 8a1, a2<, 8a0<D ê. :d@1D Ø -
p

2
, d@2D Ø 0, d@3D Ø

p

2
>F

::a1 Ø -
imeasured@1D

2
+ imeasured@2D -

imeasured@3D

2
, a2 Ø

1

2
H-imeasured@1D + imeasured@3DL>>

tanPhase =
-a2 ê. ans@@1DD

a1 ê. ans@@1DD
êê Simplify

H-imeasured@1D + imeasured@3DL ê Himeasured@1D - 2 imeasured@2D + imeasured@3DL
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Thus,

(8)
Tan@fD =
Himeasured@1D - imeasured@3DL ê H-imeasured@1D + 2 imeasured@2D - imeasured@3DL

ü 4.1.3 Three-Step Algorithm, Example 3

For the third example let the three values of d be -a, 0, and a.  Solving for a1 and a2 yields
ans = FullSimplify@Solve@8irradiance@1D == imeasured@1D, irradiance@2D == imeasured@2D,

irradiance@3D == imeasured@3D<, 8a1, a2<, 8a0<D ê. 8d@1D Ø -a, d@2D Ø 0, d@3D Ø a<D

::a1 Ø Himeasured@1D - 2 imeasured@2D + imeasured@3DL ê H-2 + 2 Cos@aDL,

a2 Ø
1

2
Csc@aD H-imeasured@1D + imeasured@3DL>>

tanPhase = SimplifyB
-a2 ê. ans@@1DD

a1 ê. ans@@1DD
F

HH-1 + Cos@aDL Csc@aD Himeasured@1D - imeasured@3DLL ê
Himeasured@1D - 2 imeasured@2D + imeasured@3DL

tanPhase = HTrigFactor@H-1 + Cos@aDL Csc@aD D Himeasured@1D - imeasured@3DLL ê
Himeasured@1D - 2 imeasured@2D + imeasured@3DL

- Himeasured@1D - imeasured@3DL TanB
a

2
F ì Himeasured@1D - 2 imeasured@2D + imeasured@3DL

Thus,

(9)
Tan@fD = -KHimeasured@1D - imeasured@3DL TanB

a

2
FO ì

Himeasured@1D - 2 imeasured@2D + imeasured@3DL

If a = p
2

we get the same result as given in example 2.

It should be noted that for all three examples not only do we get the tangent of the phase, but we also determine the
sine and cosine.  As discussed in Section 3.3 this is important for correcting phase ambiguities.

ü 4.1.4 2+1 Algorithm, (Angel and Wizinowich)

The 2 + 1 algorithm first described by Angel and Wizinowich (Angel and Wizinowich 1988; Wizinowich 1989, 1990)
is  a  very  clever  approach  for  attacking  the  problem  of  measurement  errors  introduced  by  vibration.   In  the  2  +  1
approach  two  interferograms  having  a  90  degree  phase  shift  are  rapidly  collected  and  later  a  third  interferogram  is
collected that is the average of two interferograms with a 180 degree phase shift.  The phase shifts are thus 0, -p/2, and
0 and p.  Since

irradiance@n_D := a0 + a1 Cos@d@nDD + a2 Sin@d@nDD

the three irradiance patterns can be written as
irradiance@1D := a0 + a1 Cos@d@1DD + a2 Sin@d@1DD ê. d@1D Ø 0

irradiance@2D := a0 + a1 Cos@d@2DD + a2 Sin@d@2DD ê. d@2D Ø
-p

2
irradiance@3D :=
1

2
Ha0 + a1 Cos@d@3DD + a2 Sin@d@3DD + a0 + a1 Cos@d@4DD + a2 Sin@d@4DDL ê. 8d@3D Ø 0, d@4D Ø p<
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irradiance@1D

a0 + a1

irradiance@2D

a0 - a2

irradiance@3D

a0

The answer is so simple we could write it down by inspection, but we will let Mathematica solve for tanPhase.
ans = Solve@8irradiance@1D == imeasured@1D,

irradiance@2D == imeasured@2D, irradiance@3D == imeasured@3D<, 8a1, a2<, 8a0<D;

tanPhase = SimplifyB
-a2 ê. ans@@1DD

a1 ê. ans@@1DD
F

imeasured@2D - imeasured@3D

imeasured@1D - imeasured@3D

The result is not surprising.  

The  nice  thing  about  the  Angel-Wizinowich  approach  is  their  clever  implementation  for  using  an  interline  transfer
CCD  for  rapidly  obtaining  the  two  interferograms  having  the  90o  phase  shift.   In  an  interline  transfer  CCD  each
photosite  is  accompanied  by  an  adjacent  storage  pixel.   The  storage  pixels  are  read  out  to  produce  the  video  signal
while the active photosites are integrating the light for the next video field.  After exposure, the charge collected in the
active pixels is transferred in a microsecond to the now empty storage sites, and the next video field is collected.  It is
possible to synchronize a shutter to the sensor to record two exposures of about a millisecond in duration separated by
a microsecond.  One exposure is made just before the transfer and the second is recorded just after the transfer.  The
two recorded interferograms are read out at standard video rates.  A 90o  phase shift is made before the two exposures.
In the Angel-Wizinowich approach two orthogonally polarized light beams were produced having two sets of interfer-
ence  fringes  90o  out  of  phase.   A  Pockel  cell  was  used  to  select  which  set  of  fringes  was  present  on  the  detector.
Between  the  two  exposures  the  Pockel  cell  was  switched  to  change  the  fringes  present  on  the  detector.   The  third
exposure is made with two sets of fringes 180 degrees out of step present.  In this case the Pockel cell is switched to
allow both orthogonal polarizations present on the detector at the same time.

While  the  Angel-Wizinowich  approach  is  very  clever,  it  has  found  limited  use  because  the  small  number  of  data
frames in the 2 + 1 algorithm makes it susceptible to errors resulting from phase-shifter nonlinearity and calibration.

8 James C. Wyant (2011) Phase Shifting Interferometry.nb



ü 4.2 Carré Algorithm
Carré is generally given credit for being the first to publish on PSI (Carré 1966).  While the Carré algorithm is seldom
used because small amounts of phase shifting nonlinearity can introduce large error in the measurements, it is interest-
ing for historical reasons.

In the Carré algorithm the phase shift between consecutive measurements is treated as an unknown and solved for in
the analysis.  A linear phase shift of 2a is assumed between each step so the phase steps are assumed to be -3a, -a, a,
and 3a.  The four measured irradiance frames are now represented by 
irradiance@1D := a0 + a1 Cos@d@1DD + a2 Sin@d@1DD ê. d@1D Ø -3 a

irradiance@2D := a0 + a1 Cos@d@2DD + a2 Sin@d@2DD ê. d@2D Ø -a

irradiance@3D := a0 + a1 Cos@d@3DD + a2 Sin@d@3DD ê. d@3D Ø a

irradiance@4D := a0 + a1 Cos@d@4DD + a2 Sin@d@4DD ê. d@4D Ø 3 a

irradiance@1D

a0 + a1 Cos@3 aD - a2 Sin@3 aD

irradiance@2D

a0 + a1 Cos@aD - a2 Sin@aD

irradiance@3D

a0 + a1 Cos@aD + a2 Sin@aD

irradiance@4D

a0 + a1 Cos@3 aD + a2 Sin@3 aD

Since for this example we do not know the phase shift, 2a, we have four unknowns.  Fortunately we also have four
equations.  The solution is a little messy.  We know that 
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Tan@fD =
-a2

a1.

Looking at the above equations we can intelligently guess that we want to find
Simplify@HHirradiance@1D - irradiance@4DL + Hirradiance@2D - irradiance@3DLL ê

H-Hirradiance@1D + irradiance@4DL + Hirradiance@2D + irradiance@3DLLD

-
a2 Cot@aD

a1

Thus,

tanPhase =
Tan@aD HHirradiance@1D - irradiance@4DL + Hirradiance@2D - irradiance@3DLL ê

H-Hirradiance@1D + irradiance@4DL + Hirradiance@2D + irradiance@3DLL

Now we must solve for Tan[a].  Rather than solving directly for Tan[a] we will prove that the answer given in Carré's
paper is correct.
tanAlpha =
Sqrt@Simplify@H3 Hirradiance@2D - irradiance@3DL - Hirradiance@1D - irradiance@4DLL ê

HHirradiance@1D - irradiance@4DL + Hirradiance@2D - irradiance@3DLLDD

Tan@aD2

Letting irradiance[n] = in we have

tanPhase = I,H3 HHi2 - i3L - Hi1 - i4LL HHi1 - i4L + Hi2 - i3LLLM ë HHi2 + i3L - Hi1 + i4LL

While the Carré algorithm is convenient because the value of the phase shift is not very important as long as the phase
shift between consecutive frames is a constant, the algorithm is seldom used because nonlinearities in the phase shift
introduce large errors in the measurements.

5 Least Squares Approach for Finding Algorithms
While only three irradiance measurements  are  required,  generally more than three measurements  are  made to reduce
the  errors  due  to  phase  steps  being  incorrect,  detector  non-linearities,  electronic  noise,  air  turbulence,  vibration,  etc.
One way to determine the phase if more than three irradiance measurements are made is to use a least squares fit of the
data as described by several authors including (Bruning 1974; Morgan 1982; Greivenkamp 1984; Phillion 1997).  The
algorithms  obtained  using  the  least-squares  approach  are  similar  to  the  best  algorithms  obtained  by  several  other
authors (Hariharan, 1987; Freischlad and Koliopoulos 1990; Schmit and Creath 1995; de Groot 1995).

The  least  squares  approach  is  very  powerful.   Using  least  squares  three  or  more  phase  step  values  can  be  used  to
measure the wavefront.  These values do not need to be evenly spaced and can be spread over a range greater than 2p.
However, the choice of phase shift positions will influence the phase measurement accuracy.  Also, as will be shown
below,  weighting  factors  can  be  applied  to  the  different  squared  differences  before  the  differentiation  is  performed.
These weighting factors can be tuned to minimize errors due to incorrect phase shifts and detector nonlinearities.

The  normal  procedure  for  performing  the  least  squares  fit  is  to  first  find  the  square  of  the  difference  between  the
measured irradiance and the irradiance predicted using the normal sinusoidal irradiance relationship given above.  This
error  is  minimized  by  differentiating  with  respect  to  each  of  the  three  unknowns  and  equating  these  results  to  zero.
The simultaneous solution of these three equations produces the least square result.  We will obtain this simultaneous
solution using the Mathematica function Solve.  The tangent of the phase is then calculated as -a2/a1.  

The following shows a few examples:
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ü 5.1 Four steps
An  algorithm  for  four-steps  was  derived  above.   We  will  now  use  the  least  squares  approach  to  derive  a  four-step
algorithm.  It will turn out to be the same algorithm derived above.

Clear@irradianceD

irradiance@n_D := a0 + a1 Cos@d@nDD + a2 Sin@d@nDD

numberSteps = 4;
esquared = SumAHimeasured@iD - irradiance@iDL2, 8i, 1, numberSteps<E;
d0 = D@esquared, a0D;
d1 = D@esquared, a1D;
d2 = D@esquared, a2D;

ans = SimplifyBSolveB

8d0 == 0, d1 == 0, d2 == 0< ê. TableBd@iD Ø Hi - 1L
p

2
, 8i, 1, numberSteps<F, 8a0, a1, a2<FF

::a0 Ø
1

4
Himeasured@1D + imeasured@2D + imeasured@3D + imeasured@4DL,

a1 Ø
1

2
Himeasured@1D - imeasured@3DL, a2 Ø

1

2
Himeasured@2D - imeasured@4DL>>

tanPhase = FullSimplifyB
-a2 ê. ans@@1DD

a1 ê. ans@@1DD
F

H-imeasured@2D + imeasured@4DL ê Himeasured@1D - imeasured@3DL

This is the same result as derived above.

We will now solve for the fringe contrast, gamma.

gamma = FullSimplifyAI,IHa1 ê. ans@@1DDL2 + Ha2 ê. ans@@1DDL2MM ë Ha0 ê. ans@@1DDLE

I2 ,IHimeasured@1D - imeasured@3DL2 + Himeasured@2D - imeasured@4DL2MM ë

Himeasured@1D + imeasured@2D + imeasured@3D + imeasured@4DL

ü 5.2 Synchronous Detection
In communication theory synchronous detection is  used to detect  a  noisy signal  by correlating it  with sinusoidal  and
cosinusoidal  signals  of  the  same  frequency  and  averaged  over  many  periods  of  oscillation.   The  method  of  syn-
chronous  detection  was  applied  to  PSI  by  Bruning  et  al.  (Bruning  1974).   It  is  very  interesting  that  if  the  irradiance
measurements are equally spaced over 2p, synchronous detection and least squares give the same result.

The basic equation for synchronous detection is
Clear@tanPhaseD

tanPhase@n_D := - ‚
i=1

n

imeasured@iD SinBi
2 p

n
F ì ‚

i=1

n

imeasured@iD CosBi
2 p

n
F

As an example let n=3.
Simplify@tanPhase@3DD

J 3 Himeasured@1D - imeasured@2DLN í Himeasured@1D + imeasured@2D - 2 imeasured@3DL

Clear@tanPhaseD

Now we will go through the derivation using the least squares approach.
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Clear@irradianceD

irradiance@n_D := a0 + a1 Cos@d@nDD + a2 Sin@d@nDD

numberSteps = 3;
esquared = SumAHimeasured@iD - irradiance@iDL2, 8i, 1, numberSteps<E ê.

TableBd@iD Ø HiL
2 p

numberSteps
, 8i, 1, numberSteps<F;

d0 = D@esquared, a0D;
d1 = D@esquared, a1D;
d2 = D@esquared, a2D;

ans = Simplify@Solve@8d0 == 0, d1 == 0, d2 == 0<, 8a0, a1, a2<DD;

tanPhase = SimplifyB
-a2 ê. ans@@1DD

a1 ê. ans@@1DD
F

J 3 Himeasured@1D - imeasured@2DLN í Himeasured@1D + imeasured@2D - 2 imeasured@3DL

The results are the same for synchronous detection and least squares.  If we used more steps evenly spaced over 2p we
would find that synchronous detection and least squares give the same result.

ü 5.3 Five steps
Five step algorithms offer advantages in reduced sensitivity to phase shifter calibration.
Clear@irradianceD

irradiance@n_D := a0 + a1 Cos@d@nDD + a2 Sin@d@nDD

numberSteps = 5;
esquared = SumAHimeasured@iD - irradiance@iDL2, 8i, 1, numberSteps<E;
d0 = D@esquared, a0D;
d1 = D@esquared, a1D;
d2 = D@esquared, a2D;

ans = SimplifyBSolveB

8d0 == 0, d1 == 0, d2 == 0< ê. TableBd@iD Ø Hi - 3L
p

2
, 8i, 1, numberSteps<F, 8a0, a1, a2<FF

::a0 Ø
1

14
H2 imeasured@1D + 3 imeasured@2D + 4 imeasured@3D + 3 imeasured@4D + 2 imeasured@5DL,

a1 Ø
1

14
H-4 imeasured@1D + imeasured@2D + 6 imeasured@3D + imeasured@4D - 4 imeasured@5DL,

a2 Ø
1

2
H-imeasured@2D + imeasured@4DL>>

tanPhase = FullSimplifyB
-a2 ê. ans@@1DD

a1 ê. ans@@1DD
F

H7 Himeasured@2D - imeasured@4DLL ê
H-4 imeasured@1D + imeasured@2D + 6 imeasured@3D + imeasured@4D - 4 imeasured@5DL

gamma = FullSimplifyAI,IHa1 ê. ans@@1DDL2 + Ha2 ê. ans@@1DDL2MM ë Ha0 ê. ans@@1DDLE

I,I49 Himeasured@2D - imeasured@4DL2 +

H-4 imeasured@1D + imeasured@2D + 6 imeasured@3D + imeasured@4D - 4 imeasured@5DL2MM ë

H2 imeasured@1D + 3 imeasured@2D + 4 imeasured@3D + 3 imeasured@4D + 2 imeasured@5DL

ü 5.4 Five steps  (Schwider-Hariharan Algorithm)
In the five-step approach given above imeasured[5] and imeasured[1] are nominally identical and differ only because
of  measurement  errors.   For  this  reason,  in  performing  the  least-squares  fit  it  makes  sense  to  give  one-half  as  much
weight  to  imeasured[5]  and  imeasured[1]  as  is  given  to  the  other  measurements.   The  resulting  algorithm  we  will
derive was first described by Schwider (Schwider 1983) and later by Hariharan (Hariharan, Oreb, and Eiju 1987) and
as shown in Section 6.1.4 it is less sensitive to errors in the 90 degree phase shift than the algorithms given above.

12 James C. Wyant (2011) Phase Shifting Interferometry.nb



In the five-step approach given above imeasured[5] and imeasured[1] are nominally identical and differ only because
of  measurement  errors.   For  this  reason,  in  performing  the  least-squares  fit  it  makes  sense  to  give  one-half  as  much
weight  to  imeasured[5]  and  imeasured[1]  as  is  given  to  the  other  measurements.   The  resulting  algorithm  we  will
derive was first described by Schwider (Schwider 1983) and later by Hariharan (Hariharan, Oreb, and Eiju 1987) and
as shown in Section 6.1.4 it is less sensitive to errors in the 90 degree phase shift than the algorithms given above.
a@1D = 1; a@2D = 2; a@3D = 2; a@4D = 2; a@5D = 1;

numberSteps = 5;
esquared = SumAa@iD Himeasured@iD - irradiance@iDL2, 8i, 1, numberSteps<E;
d0 = D@esquared, a0D;
d1 = D@esquared, a1D;
d2 = D@esquared, a2D;

ans = SimplifyBSolveB

8d0 == 0, d1 == 0, d2 == 0< ê. TableBd@iD Ø Hi - 3L
p

2
, 8i, 1, numberSteps<F, 8a0, a1, a2<FF;

tanPhase = FullSimplifyB
-a2 ê. ans@@1DD

a1 ê. ans@@1DD
F

-H2 Himeasured@2D - imeasured@4DLL ê Himeasured@1D - 2 imeasured@3D + imeasured@5DL

gamma = FullSimplifyAI,IHa1 ê. ans@@1DDL2 + Ha2 ê. ans@@1DDL2MM ë Ha0 ê. ans@@1DDLE

I2 ,I4 Himeasured@2D - imeasured@4DL2 + Himeasured@1D - 2 imeasured@3D + imeasured@5DL2MM ë

Himeasured@1D + 2 Himeasured@2D + imeasured@3D + imeasured@4DL + imeasured@5DL

ü 5.5 Weighted Coefficients - Improved Algorithms
During  the  past  15  years  there  have  been  numerous  publications  concerning  better  phase-shifting  algorithms.   How-
ever,  most,  if  not  all  of  the  best  algorithms  follow  a  procedure  suggested  by  Schwider  (Schwider  1983).   First,
Schwider pointed out that many of the errors, especially errors due to phase shifter miscalibration, occur at twice the
frequency  of  the  interference  fringes.   Therefore,  he  said  to  perform  the  measurement  twice  with  a  90ooffset  in  the
phase  shift  and  then  average  the  two  results  having  errors  180o  out  of  phase  to  nearly  cancel  the  double  frequency
error.   Furthermore,  we  did  not  have  to  actually  perform the  measurement  twice,  but  as  long  as  the  phase  step  was
90oall we had to do was to add one more frame of data and use frames 1 thru N-1 for the first calculation and frames 2
thru N for the second calculation and average the two results.  The result had greatly reduced error due to phase shifter
calibration.

While  the  above  approach  for  averaging  two  90ooffset  phase  measurements  was  well  known  by  people  working  in
phase shifting interferometry long before Schwider's publication, Schwider made another more significant observation
in  his  paper  that  was  not  well  known.   Schwider  showed  that  rather  than  averaging  the  calculated  phase  after  the
arctangent was performed, the numerators and the denominators of the arctangent function could be averaged.  That is,
if two data sets are taken with a 90ophase step between the two data sets the phase calculation can be of the form

Tan@fD =
n1 + n2

d1 + d2

where niand diare the numerator and denominator for phase calculation algorithm for each data set.  If the phase step is
p/2,  only one additional  data frame is  required.   n1and d1are calculated from frames 1 thru N-1 and n2and d2are
calculated from frames 2 thru N.  

The Schwider-Hariharan algorithm presented above is an example of this approach.
The 4-step algorithm calculated above was
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tanphase = H-imeasured@2D + imeasured@4DL ê Himeasured@1D - imeasured@3DL

If we took another frame and used frames 2 thru 5 the algorithm would be

tanphase = H-imeasured@2D + imeasured@4DL ê Himeasured@5D - imeasured@3DL

If we use the Schwider approach and added the numerators and denominators we would have

tanphase =
H2 H-imeasured@2D + imeasured@4DLL ê Himeasured@1D - 2 imeasured@3D + imeasured@5DL

which is the Schwider-Hariharan algorithm which exhibits much less error due to phase shifter calibration than the 4-
step  algorithm,  and  it  is  better,  and  faster,  than  calculating  the  phase  using  two  p/2  offset  4-frame  algorithms  and
averaging the results.

We could now add another data frame and repeat the procedure to obtain an even better 6-frame algorithm.  Then of
course we could add yet another frame and get an even better 7-frame algorithm.  However, rather than going through
all the algebra a better way is to do a weighted coefficient least squares fit and let the computer do the work.  We will
start with the 4 frame algorithm where all the weighting factors are one.  Let numberSteps be equal to the number of
frames or phase steps, then the ith coefficient can be written as a[i, numberSteps].  Using the Schweider approach

a@1, numberStepsD = a@numberSteps, numberStepsD = 1 and for all other values of i
a@i, numberStepsD = a@i - 1, numberSteps - 1D + a@i, numberSteps - 1D

These values of a are then used as the weighting coefficients as demonstrated below for the situation where num-
berSteps = 6.
numberSteps = 6;

Do@a@i, 4D = 1, 8i, 1, 4<D;
Do@Do@If@i == 1 »» i == numberSteps, a@i, numberStepsD = 1,
a@i, numberStepsD = a@i - 1, numberSteps - 1D + a@i, numberSteps - 1DD,

8i, 1, numberSteps<D, 8numberSteps, 5, 13<D;

esquared = SumAa@i, numberStepsD Himeasured@iD - irradiance@iDL2, 8i, 1, numberSteps<E;
d0 = D@esquared, a0D;
d1 = D@esquared, a1D;
d2 = D@esquared, a2D;

ans = SimplifyBSolveB

8d0 == 0, d1 == 0, d2 == 0< ê. TableBd@iD Ø Hi - 3L
p

2
, 8i, 1, numberSteps<F, 8a0, a1, a2<FF;

tanPhase = FullSimplifyB
-a2 ê. ans@@1DD

a1 ê. ans@@1DD
F

-H3 imeasured@2D - 4 imeasured@4D + imeasured@6DL ê
Himeasured@1D - 4 imeasured@3D + 3 imeasured@5DL

Just as easily we can calculate the algorithm for 7 steps.
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numberSteps = 7;

Do@a@i, 4D = 1, 8i, 1, 4<D;
Do@Do@If@i == 1 »» i == numberSteps, a@i, numberStepsD = 1,
a@i, numberStepsD = a@i - 1, numberSteps - 1D + a@i, numberSteps - 1DD,

8i, 1, numberSteps<D, 8numberSteps, 5, 13<D;

esquared = SumAa@i, numberStepsD Himeasured@iD - irradiance@iDL2, 8i, 1, numberSteps<E;
d0 = D@esquared, a0D;
d1 = D@esquared, a1D;
d2 = D@esquared, a2D;

ans = SimplifyBSolveB

8d0 == 0, d1 == 0, d2 == 0< ê. TableBd@iD Ø Hi - 3L
p

2
, 8i, 1, numberSteps<F, 8a0, a1, a2<FF;

tanPhase = FullSimplifyB
-a2 ê. ans@@1DD

a1 ê. ans@@1DD
F

H4 Himeasured@2D - 2 imeasured@4D + imeasured@6DLL ê
H-imeasured@1D + 7 imeasured@3D - 7 imeasured@5D + imeasured@7DL

As will be shown below, these algorithms are very insensitive to errors in the phase step.

6 Error Sources
There are many sources of errors in phase-shifting interferometry but the seven most common are

1) Incorrect phase shift between data frames,
2) Vibrations,
3) Detector non-linearity,
4) Stray reflections,
5) Quantization errors, 
6) Frequency stability, and
7) Intensity fluctuations.

ü 6.1 Error due to incorrect phase-shift between data frames
Incorrect  phase  shift  between  data  frames  can  be  due  to  many  sources  such  as  incorrect  phase  shifter  calibration,
vibration,  or  air  turbulence.   While  the error  in  the phase shift  could be non-linear  due to  errors  such as  vibration,  a
common error is simply a linear error.  For example, the phase shift should be (n p

2
M and the actual phase shift is (n p

2
+

n e).  

The  Plot  Phase  Error  Module  in  Section  8.1  be  used  to  determine  errors  due  to  a  linear  phase  shift  error.    In  this
section  we will  look  errors  resulting  incorrect  phase  shifts  for  several  of  the  algorithms derived  above.   As  our  first
example we will look at the errors associated with the four p

2
 step algorithm given in Equation 5.  

ü 6.1.1 Four p
2

Steps

The first quantity sent to the plotPhaseError module is the numerator of the arctangent while the second quantity is the
denominator  of  the  arctangent.   For  the  plotPhaseError  module  the  measured irradiance values  need to  be  called
imeasured.  The third quantity required is the number of steps, 4 in this case, and the next quantity is the phase step, p

2
.

The next quantity is the percent calibration error, which for our example we will set equal to 5.  The next two quanti-
ties have to do with detector non-linearity, and for this example we will set equal to zero.  The last three quantities
have to do with the amplitude, frequency, and phase of the vibration, which for this example we will set equal to zero.
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num = imeasured@4D - imeasured@2D;
den = imeasured@1D - imeasured@3D;

plotPhaseErrorBnum, den, 4,
p

2
, 5, 0, 0, 0, 0, 0F

-p 0 p
-0.04

-0.02

0.00

0.02

0.04

Phase measured

Ph
as
e
Er
ro
rH
Ra
di
an
sL

Peak-Valley Error HRadiansL = 0.0785302
Phase error due to 5% phase shift calibration error.

The result  shown above shows that  for a 5% error in the calibration the peak-valley phase error is  0.0785 radians or
0.012 waves of OPD.  This phase error is generally larger than what is acceptable, and this is the reason that generally
more than four phase steps are used in the measurement.  Of more importance than the number is the fact that the error
is basically sinusoidal with a frequency equal to twice the frequency of the interference fringes.  This turns out to be a
very common result for phase calibration error.

ü 6.1.2 Three p
2

Steps

Next we will look at thephase - shifting error for the three p

2
step algorithm given in Equation 7.

num = -Himeasured@2D - imeasured@3DL;
den = imeasured@1D - imeasured@2D;

plotPhaseErrorBnum, den, 3,
p

2
, 5, 0, 0, 0, 0, 0F

-p 0 p
-0.04

-0.02

0.00

0.02

0.04

Phase measured

Ph
as
e
Er
ro
rH
Ra
di
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sL

Peak-Valley Error HRadiansL = 0.0785398
Phase error due to 5% phase shift calibration error.

It is interesting that this is the same result we obtained using four p/2 steps.

ü 6.1.3 Five p
2

Steps

Next we will look at the phase-shifting error for the five p/2 step algorithm given in Section 5.3.
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num = 7 Himeasured@2D - imeasured@4DL;
den = -4 imeasured@1D + imeasured@2D + 6 imeasured@3D + imeasured@4D - 4 imeasured@5D;

plotPhaseErrorBnum, den, 5,
p

2
, 5, 0, 0, 0, 0, 0F

-p 0 p
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0.000

0.005

Phase measured
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sL

Peak-Valley Error HRadiansL = 0.0153166
Phase error due to 5% phase shift calibration error.

We see that by going from four steps to five steps we have reduced the peak-valley error by a factor of 5.  However,
we can do even better with five steps if we use the Schwider-Hariharan algorithm.

ü 6.1.4 Schwider-Hariharan Five p
2

Step Algorithm

We will now look at the phase-shifting error associated with the Schwider-Hariharan algorithm in Section 5.4.
num = -2 Himeasured@2D - imeasured@4DL;
den = imeasured@1D - 2 imeasured@3D + imeasured@5D;

plotPhaseErrorBnum, den, 5,
p

2
, 5, 0, 0, 0, 0, 0F
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Peak-Valley Error HRadiansL = 0.0030859
Phase error due to 5% phase shift calibration error.

We have obtained another factor of 5 reduction in the peak-valley error, but we can do even better.

ü 6.1.5 Six p
2

Step Algorithm

We will now look at the phase-shifting error associated with the six p/2 step algorithm in Section 5.5.

Phase Shifting Interferometry.nb James C. Wyant (2011) 17



num = -H3 imeasured@2D - 4 imeasured@4D + imeasured@6DL;
den = imeasured@1D - 4 imeasured@3D + 3 imeasured@5D;

plotPhaseErrorBnum, den, 6,
p

2
, 5, 0, 0, 0, 0, 0F
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Peak-Valley Error HRadiansL = 0.000121171
Phase error due to 5% phase shift calibration error.

By going from 5 steps to 6 steps we have reduced the error due to a 5% incorrect phase shift by nearly a factor of 30.

ü 6.1.6 Seven p
2

Step Algorithm

We will now look at the phase-shifting error associated with the seven p/2 step algorithm in Section 5.5.
num = 4 Himeasured@2D - 2 imeasured@4D + imeasured@6DL;
den = -imeasured@1D + 7 imeasured@3D - 7 imeasured@5D + imeasured@7D;

plotPhaseErrorBnum, den, 7,
p
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Peak-Valley Error HRadiansL = 0.00000475669
Phase error due to 5% phase shift calibration error.

By going from 6 steps to 7 steps we have reduced the error due to a 5% incorrect phase shift by nearly another factor
of 30.  It is amazing, but by going from 5 steps to 7 steps we have reduced the error due to a 5% incorrect phase shift
by nearly 3 orders of magnitude.

ü 6.2 Error due to vibration
Probably the the most  serious impediment  to wider  use of  PSI is  its  sensitivity to external  vibrations.   The vibration
sensitivity of PSI is a result of PSI using time-dependent phase shifts.  Vibrations cause incorrect phase shifts between
data  frames.   The  errors  are  similar  to  those  seen  above,  but  they  are  much  harder  to  correct  because  the  optimum
algorithm  depends  upon  the  frequency  of  the  vibration  present  as  well  as  the  phase  of  the  vibration  relative  to  the
phase shifting (Brophy 1990; de Groot and Deck 1996; Deck and de Groot 1998).

The Plot Phase Error Module can be used to see some of the effects of vibrations for phase-stepping.  The last three
variables  sent  to  the  module  are  dvib,  the  zero  to  peak  amplitude  of  the  vibration  in  units  of  wavelength;  freq,  the
frequency of the vibration in units of the frame rate of the camera; and phaseVib, the phase of the vibration.  The phase
vibration is written as 2 p dvib Sin@freq 2 p i + phaseVibD.  i is equal to 1 for the first frame.  The following
shows one example for vibration of amplitude 0.1 wave and frequency equal to 0.3 times the frame rate, and vibration
phase equal to p

4
.
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Probably the the most  serious impediment  to wider  use of  PSI is  its  sensitivity to external  vibrations.   The vibration
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data  frames.   The  errors  are  similar  to  those  seen  above,  but  they  are  much  harder  to  correct  because  the  optimum
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The Plot Phase Error Module can be used to see some of the effects of vibrations for phase-stepping.  The last three
variables  sent  to  the  module  are  dvib,  the  zero  to  peak  amplitude  of  the  vibration  in  units  of  wavelength;  freq,  the
frequency of the vibration in units of the frame rate of the camera; and phaseVib, the phase of the vibration.  The phase
vibration is written as 2 p dvib Sin@freq 2 p i + phaseVibD.  i is equal to 1 for the first frame.  The following
shows one example for vibration of amplitude 0.1 wave and frequency equal to 0.3 times the frame rate, and vibration
phase equal to p

4
.

Clear@imeasuredD

num = imeasured@4D - imeasured@2D;
den = imeasured@1D - imeasured@3D;

plotPhaseErrorBnum, den, 4,
p
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Peak-Valley Error HRadiansL = 0.0449463

Phase error due to 0.02 wave vibration amplitude having frequency 0.3 times frame rate and phase of .

It  is  not surprising that just  as for phase shifter calibration error,  the error due to vibration is  at  twice the fringe
frequency.

The vibration error module in Section 8.2 is used to determine the peak-valley of the error due to vibration.  The plot
vibration error module in Section 8.3 gives a plot of the peak-valley of the phase measurement error versus a fre-
quency range of 0 to the frame rate of the camera for the phase-stepping mode of operation.  The phase of the vibration
is varied to determine the maximum peak-valley error.

The first quantity sent to the plot vibration error module is the numerator of the arctangent while the second quantity is
the denominator of the arctangent.  For the plotVibrationError module the measured irradiance values need to be called
imeasured.  The third quantity required is the number of steps, 4 for the first example, and the next quantity is the
phase step, which for all examples will be p

2
.  The last quantity is the zero-peak amplitude of the vibration in units of

wavelength.  Due to the large number of calculations involved, the module takes a long time to complete the plot.

The following shows an example the four step step algorithm described above and a 1/50 wave vibration amplitude.
Clear@imeasuredD
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num = imeasured@4D - imeasured@2D;
den = imeasured@1D - imeasured@3D;

plotVibrationErrorBnum, den, 4,
p
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P-V phase error due to 0.02 zero to peak waves of vibration

It should be noted that a 1/50 wave zero-peak (1/25 wave P-V) vibration amplitude produced a P-V phase error of 0.25
radians, which corresponds to a 1/25 wave.  That is, the peak-valley error is equal to the peak-valley vibration ampli-
tude and it  occurs at  a  frequency of  1/2 the frame rate.   For the most  common frame rate of  30 frames/sec the most
troublesome vibration frequency would be 15 Hz.

If we repeat the above for the Schwider-Hariharan five step algorithm we get the following:
Clear@imeasuredD

num = -2 Himeasured@2D - imeasured@4DL;
den = imeasured@1D - 2 imeasured@3D + imeasured@5D;

plotVibrationErrorBnum, den, 5,
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P-V phase error due to 0.02 zero to peak waves of vibration

Note that the peak error at a frequency equal to one-half the frame rate is the same.  The major change is that the
secondary peaks are reduced.

ü 6.3 Error due to detector non-linearity
Generally CCDs have extremely linear response to irradiance, however sometimes the electronics between the detector
and the digitizing electronics introduce some nonlinearity.  The Plot Phase Error Module in Section 8.1 can be used to
determine  errors  due  to  detector  non-linearity.   The  quantities  sent  to  the  module  are  as  described  above  with  the
addition of  two quantities  having to  do with  the  detector  non-linearity.   The sixth  quantity  sent  to  the  module  is  the
percentage irradiance nonlinearity and the seventh quantity is the degree of non-linearity.  For the examples below we
set the non-linearity equal to 1 % for either order 2 or order 3.
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Generally CCDs have extremely linear response to irradiance, however sometimes the electronics between the detector
and the digitizing electronics introduce some nonlinearity.  The Plot Phase Error Module in Section 8.1 can be used to
determine  errors  due  to  detector  non-linearity.   The  quantities  sent  to  the  module  are  as  described  above  with  the
addition of  two quantities  having to  do with  the  detector  non-linearity.   The sixth  quantity  sent  to  the  module  is  the
percentage irradiance nonlinearity and the seventh quantity is the degree of non-linearity.  For the examples below we
set the non-linearity equal to 1 % for either order 2 or order 3.

ü 6.3.1 Four p
2

Steps

As our first example we will look at the errors associated with the four p
2

 step algorithm given in Equation 5 and third-
order detector nonlinearity. 
Clear@imeasuredD

num = imeasured@4D - imeasured@2D;
den = imeasured@1D - imeasured@3D;

plotPhaseErrorBnum, den, 4,
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Peak-Valley Error HRadiansL = 0.00480903
Phase error due to 1% detector nonlinearity of order 3.

In  this  case  the  peak-valley  error  is  0.0048  radians  and  it  is  nearly  sinusoidal  with  a  frequency  equal  to  4  times  the
frequency of the interference fringes.  The four times frequency is a common result for algorithms have p

2
 phase steps.

If we had tried a quadratic detector non-linearity we would have found out there is no resulting phase error.  This is an
important result to remember.

ü 6.3.2 Three p
2

Steps

Next  we will look at the detector nonlinearity error for the three p

2
step algorithm given in  Equation 7.   In  this  case  we

will look at errors due to quadratic nonlinearity.
Clear@imeasuredD
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num = -Himeasured@2D - imeasured@3DL;

den = imeasured@1D - imeasured@2D; plotPhaseErrorBnum, den, 3,
p
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Peak-Valley Error HRadiansL = 0.0196072
Phase error due to 1% detector nonlinearity of order 2.

Next we will look at the error due to third-order detector nonlinearity.
Clear@imeasuredD

num = -Himeasured@2D - imeasured@3DL;
den = imeasured@1D - imeasured@2D;

plotPhaseErrorBnum, den, 3,
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Peak-Valley Error HRadiansL = 0.0584129
Phase error due to 1% detector nonlinearity of order 3.

It is noted that the shape of the error is quite for three p/2 steps than for four p/2 steps.  The error is quite bad.

ü 6.3.3 Five p
2

Steps

Next we will look at the detector nonlinearity error for the five p/2 step algorithm given in Section 5.3.  First we will
look at second-order nonlinearity and then we will look at third-order detector nonlinearity effects.
Clear@imeasuredD
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num = 7 Himeasured@2D - imeasured@4DL;
den = -4 imeasured@1D + imeasured@2D + 6 imeasured@3D + imeasured@4D - 4 imeasured@5D;

plotPhaseErrorBnum, den, 5,
p
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Peak-Valley Error HRadiansL = 0.00280112
Phase error due to 1% detector nonlinearity of order 2.
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num = 7 Himeasured@2D - imeasured@4DL;
den = -4 imeasured@1D + imeasured@2D + 6 imeasured@3D + imeasured@4D - 4 imeasured@5D;

plotPhaseErrorBnum, den, 5,
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Peak-Valley Error HRadiansL = 0.0110769
Phase error due to 1% detector nonlinearity of order 3.

The errors have been reduced. 

ü 6.3.4 Schwider-Hariharan Five p
2

Step Algorithm

We will now look at the phase-shifting error associated with the Schwider-Hariharan algorithm in Section 5.4.
Clear@imeasuredD
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num = -2 Himeasured@2D - imeasured@4DL;
den = imeasured@1D - 2 imeasured@3D + imeasured@5D;

plotPhaseErrorBnum, den, 5,
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Peak-Valley Error HRadiansL = 0
Phase error due to 1% detector nonlinearity of order 2.
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num = -2 Himeasured@2D - imeasured@4DL;
den = imeasured@1D - 2 imeasured@3D + imeasured@5D;

plotPhaseErrorBnum, den, 5,
p

2
, 0, 1, 3, 0, 0, 0F

-p 0 p

-0.002

-0.001

0.000

0.001

0.002

Phase measured

Ph
as
e
Er
ro
rH
Ra
di
an
sL

Peak-Valley Error HRadiansL = 0.00480903
Phase error due to 1% detector nonlinearity of order 3.

The error due to quadratic nonlinearity has been eliminated and the error due to third-order has been reduced by nearly
a factor of 3.  The Schwider-Hariharan algorithm is a very nice algorithm.

ü 6.3.5 Six p
2

Step Algorithm

We will now look at the phase-shifting error associated with the six p/2 step algorithm in Section 5.5.
Clear@imeasuredD

24 James C. Wyant (2011) Phase Shifting Interferometry.nb



num = -H3 imeasured@2D - 4 imeasured@4D + imeasured@6DL;
den = imeasured@1D - 4 imeasured@3D + 3 imeasured@5D;

plotPhaseErrorBnum, den, 6,
p
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Peak-Valley Error HRadiansL = 0.00480903
Phase error due to 1% detector nonlinearity of order 3.

Although we do not show it the error due to quadratic nonlinearity is again zero, and the interested result is that the
error due to third-order is the same for 6 steps as it was for 5 steps.

ü 6.3.6 Seven p
2

Step Algorithm

We will now look at the phase-shifting error associated with the seven p/2 step algorithm in Section 5.5.
Clear@imeasuredD

num = 4 Himeasured@2D - 2 imeasured@4D + imeasured@6DL;
den = -imeasured@1D + 7 imeasured@3D - 7 imeasured@5D + imeasured@7D;

plotPhaseErrorBnum, den, 7,
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Peak-Valley Error HRadiansL = 0.00480903
Phase error due to 1% detector nonlinearity of order 3.

Although we do not show it the error due to quadratic nonlinearity is again zero, and the interesting result is that the
error due to third-order is the same for 7 steps as it was for 5 and 6 steps.

ü 6.4 Error due to stray reflections
A  common  problem  in  interferometers  using  lasers  as  a  light  source  is  extraneous  interference  fringes  due  to  stray
reflections.  The easiest way of thinking about the effect of stray reflections is that the stray reflection adds to the test
beam to give a new beam of some amplitude and phase.  The difference between this resulting phase, and the phase of
the test beam, gives the phase error.  If we express the amplitude of the stray light as a fraction of the amplitude of the
test beam we can write
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A  common  problem  in  interferometers  using  lasers  as  a  light  source  is  extraneous  interference  fringes  due  to  stray
reflections.  The easiest way of thinking about the effect of stray reflections is that the stray reflection adds to the test
beam to give a new beam of some amplitude and phase.  The difference between this resulting phase, and the phase of
the test beam, gives the phase error.  If we express the amplitude of the stray light as a fraction of the amplitude of the
test beam we can write
amplitudeMeasured = EI phaseTest + amplitudeStray EI phaseStray;

As an example let 

phaseTest = 30 Degree; phaseStray = 90 Degree; amplitudeStray =
1

5
;

Then
phaseMeasured = N@ArcTan@Re@amplitudeMeasuredD, Im@amplitudeMeasuredDDD

0.679776

The error in the measurement in degrees is given by
phaseError = HphaseMeasured - phaseTestL ê Degree

8.94828

If the stray light is not changed by blocking the test beam, the phase and amplitude of the stray light can be measured,
and the effect of the stray light on the phase measurement can be determined.  However, often the stray light changes if
the test beam is blocked.  In well designed laser based interferometers the stray light is minimal.  Probably the best
way of reducing or eliminating the error due to stray light is to use a short coherence light source.

ü 6.5 Quantization error
The  first  step  in  getting  irradiance  information  into  the  computer  is  to  digitize  the  detector  output.   The  digitization
should  be  done  in  the  electronics  as  close  to  the  camera  as  possible,  and  in  the  best  situations  it  is  done  within  the
camera.  Generally 8 bits (256 levels) are used in the digitization, but sometimes 10 bits (1024 levels) or 12 bits (4096
levels)  or  more  are  used.   If  the  fringe  modulation  does  not  span  the  full  dynamic  range  of  quantization  levels  the
effective number of bits is less than the quantization level.

Brophy (Brophy 1990) has shown that the standard deviation of the phase error due to b bit digitization for an n step
algorithm goes as

sf@n_, b_D :=
2

3 n 2b
;

The standard deviation of the calculated phase in units of wavelengths as a function of the number of bits and the
number of steps in the algorithm is given in the table below.

error = TableFormBNBTableB
sf@n, bD

2 p
, 8b, 8, 12<, 8n, 4, 7<F, 3F,

TableHeadings -> 88"8 bits", "9 bits", "10 bits", "11 bits", "12 bits"<,

8"4-step", "5-step", "6-step", "7-step"<<F

4-step 5-step 6-step 7-step
8 bits 0.000359 0.000321 0.000293 0.000271
9 bits 0.000179 0.000161 0.000147 0.000136
10 bits 0.0000897 0.0000803 0.0000733 0.0000678
11 bits 0.0000449 0.0000401 0.0000366 0.0000339
12 bits 0.0000224 0.0000201 0.0000183 0.0000170

As the table indicates, 8 bits is generally sufficient, but sometimes 10 or 12 are required.  It is important to point out
again that if the fringe digitization does not span the full dynamic range of quantization the effective number of bits is
less than the quantization level.  Also, if the noise is greater than one bit, quantization error can be reduced by averag-
ing data sets.

ü 6.6 Frequency stability error
If  the  source  frequency  changes  and  the  paths  are  not  matched  a  phase  shift  will  be  introduced  between  the  two
interfering  beams.   If  d  is  the  path  difference,  c  is  the  velocity  of  light,  the  phase  difference,  Df,  introduced  by  a
frequency difference, Dn, is given by
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If  the  source  frequency  changes  and  the  paths  are  not  matched  a  phase  shift  will  be  introduced  between  the  two
interfering  beams.   If  d  is  the  path  difference,  c  is  the  velocity  of  light,  the  phase  difference,  Df,  introduced  by  a
frequency difference, Dn, is given by

Df = 2 p
d

c
Dn;

While  frequency  changes  will  introduces  errors  in  the  phase  shifting,  as  described  by  many  authors  for  example
(Tatsuno and Tsunoda 1987; Ishii et al. 1987; Wizinowich, 1990), the phase shifting can be produced by a frequency
shift.

ü 6.7 Intensity fluctuations error
If  intensity  fluctuations  of  the  source  introduce  errors  in  the  measured  phase.   It  has  been  shown  (Bruning  1978;
Koliopoulos 1981) that source intensity fluctuations cause the standard deviation in the measured wavefront phase to
go as

sf =
1

n s
;

where n is the number of phase steps and s is the signal-to-noise.

In  the  ideal  situation  the  noise  limitation  is  set  by  photon  shot  noise  (Wyant  1975).   If  p  is  the  number  of  detected
photons, the standard deviation of the measured wavefront phase goes as

sf =
1

p
;

7 Phase Shifters
ü 7.1 Moving Mirror

The most common method for phase shifting is to reflect one of the two interfering beams off a moving mirror.  If the
light is incident upon the mirror at an angle of q, and the mirror moves a distance d, the phase is shifted by an amount
equal to 2 p

l
2 d Cos[q].  At normal incidence the phase shift is 2 p

l
2 d.  Thus, for a p/2 phase shift the mirror must be

moved  1/8  wavelength.   A  piezoelectric  transducer  (PZT)  is  the  most  common  way  of  translating  the  mirror.   The
position of the mirror is controlled by the voltage applied to the PZT.
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ü 7.2 Moving Diffraction Grating
A  moving  grating  is  another  good  way  of  changing  the  phase  difference  between  two  interfering  beams.   It  can  be
shown that as a grating is moved one grating spacing the nth diffraction order is phase shifted an amount n 2p.  Thus,
if  a grating is  translated 1/4 period the phase of the first  order is  changed p/2.   The phase of the minus first  order is
changed -p/2.

ü 7.3 AO Bragg Cell
An  acousto  optic  Bragg  cell  can  be  thought  of  as  a  moving  grating.   If  the  Bragg  cell  is  driven  with  an  electrical
frequency,  f,  the  first  order  is  frequency  shifted  an  amount  f.   Bragg  cells  are  very  useful  in  phase-shifting  systems
where the phase is changed at a constant rate.  The frequency shift is very constant and the signal is very clean.
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ü 7.4 First Geometric Phase Shifter - Rotating half-wave plate in a circularly polarized beam
There are several polarization techniques useful for phase shifting that introduce a phase-shift that depends little on the
wavelength of the light. These phase-shifters are often called geometric phase shifters.  In these notes we will discuss
two geometric phase shifters.
The phase of a circularly polarized beam passing through a half-wave plate is  changed by an amount 2q  as  the half-
wave plate is rotated an angle q (Shagam and Wyant 1978).  This phase shifting technique is especially useful in phase-
shifting interferometry because the phase shift changes little as the retardation of the half-wave plate changes.  For this
reason the  phase  shift  depends  little  on the  wavelength  of  the  light.   Furthermore,  if  quarter  wave plates  are  used to
produce the circularly polarized beams from linearly polarized beams, the phase shift changes little as the retardation
of the quarter-wave plate changes.

The figure below shows a diagram of the phase shifter as it could be used in the output of an interferometer where the
reference  and  test  beams  have  orthogonal  linear  polarization.   The  first  quarter-wave  plate  converts  one  of  the  two
interfering  beams  into  right-handed  circularly  polarized  beam  and  the  second  interfering  beam  into  a  left-handed
circularly polarized beam.  The half-wave plate converts the right-handed state to left-handed and the left-handed state
to  right-handed  and  as  the  plate  is  rotated  an  angle  q  the  phase  difference  between  the  test  and  reference  beams
changes  by  4q  (see  below).   The  second  quarter-wave  plate,  which  is  not  necessary  for  the  phase  shifter  to  work,
converts the two beams back to linear polarization.  The polarizer makes it possible for the two beams to interfere.
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ü Proof that the system works as a phase shifter

If  all  the components are perfect the following is transmitted thru the 45-degree polarizer:  a ‰Â f  is  the amplitude of
the test beam and b is the amplitude of the reference beam.
Conjugate@qD ^= q; Conjugate@fD ^= f; Conjugate@aD ^= a; Conjugate@bD ^= b;

inputPolarization =
a ‰Â f

b
;

perfectOutputAmplitude = lpp45.rrotB
p

2
,

-p

4
F.rrot@p, qD.rrotB

p

2
,

p

4
F.inputPolarization;

intensity = Extract@
Total@perfectOutputAmplitude Conjugate@perfectOutputAmplitudeDD êê FullSimplify, 1D

1

2
Ia2 + b2 - 2 a b Cos@4 q - fDM

This shows that as the half-wave plate is rotated an angle q the phase difference between the reference and test beams
changes by 4q.
Another  way  to  see  this  is  to  look  at  the  amplitudes  of  the  two  polarizations  incident  upon  the  polarizer  where  the
reference and test beams (input beams) have an amplitude of 1.
perfectOutput =

rrot@90 Degree, -45 DegreeD.rrot@180 Degree, qD.rrot@90 Degree, 45 DegreeD.K
1
1
O;

TrigToExp@FullSimplify@perfectOutputDD êê MatrixForm

-‰2 Â q

‰-2 Â q

Again  we  see  that  as  the  half-wave  plate  is  rotated  an  angle  q  the  phase  difference  between  the  reference  and  test
beams changes by 4q.

ü 7.5 Second Geometric Phase Shifter - Rotating polarizer in circularly polarized beam
The figure below shows a diagram of the phase shifter as it could be used in the output of an interferometer where the
reference and test beams have orthogonal linear polarization.  A quarter-wave plate converts one of the two interfering
beams  into  right-handed  circularly  polarized  beam  and  the  second  interfering  beam  into  a  left-handed  circularly
polarized  beam.   As  a  polarizer  is  rotated   an  angle  q  the  phase  difference  between  the  test  and  reference  beams
changes by 2q (see below).  The polarizer also makes it possible for the two beams to interfere.
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ü Proof that the system works as a phase shifter
We will first use a perfect quarter-wave plate.

a =.; b =.; inputPolarization =
a ‰Â f

b
;

perfectOutput1 = rot@-qD.hlp.rot@qD.rrotB
p

2
,

p

4
F.inputPolarization;

intensity = Extract@Total@perfectOutput1 Conjugate@perfectOutput1DD, 1D êê FullSimplify

1

2
Ia2 + b2 + 2 a b Sin@2 q - fDM

We see that as the polarizer is rotated an angle q the phase difference between the test and reference beams changes by
2q.

ü 7.6 Zeeman Split Laser
Using the Zeeman effect it is possible to make a laser source having two laser lines separated by MHzs and orthogonal
polarizations.   A Zeeman laser is a very useful light source in phase-shifting systems where the phase is changed at a
constant rate.

ü 7.7 Frequency Shifting Source
If the source frequency changes and there is a path difference between the two legs of the interferometer a phase shift
in the interferogram will result.
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ü 7.8 Phase Shifter Calibration
An  important  part  of  operating  a  phase-shifting  interferometer  is  the  calibration  of  the  phase  shifter.   With  most
commercial PSI systems this is now automated.  

One method for performing the calibration is to use the solution for a in the Carré algorithm in Section 4.2.  Note that
the phase shift  is  2a.   However,  there  are  many other  equations  that  can be used for  the  calibration.   A simpler  and
more commonly used phase shifter calibration algorithm is one using the first two frames and the last two frames of a
five-frame measurement  (Cheng  and  Wyant  1985).   The  following  is  a  simple  way  of  both  understanding  this  algo-
rithm and observe it's limitation.

Let the irradiance be given by
i = a0 + a1 Cos@dD + a2 Sin@dD;

Let there be 5 phase shift increments where the phase step is a.
d = 8-2 a, -a, 0, a, 2 a<;

Then the irradiances of the five steps are
i

8a0 + a1 Cos@2 aD - a2 Sin@2 aD, a0 + a1 Cos@aD - a2 Sin@aD,
a0 + a1, a0 + a1 Cos@aD + a2 Sin@aD, a0 + a1 Cos@2 aD + a2 Sin@2 aD<

Subtracting the first from the fifth yields
i@@5DD - i@@1DD

2 a2 Sin@2 aD

Subtracting the second from the fourth yields
i@@4DD - i@@2DD

2 a2 Sin@aD

Therefore,

SimplifyB
1

2

i@@5DD - i@@1DD

i@@4DD - i@@2DD
F

Cos@aD

That is,

a = ArcCosB
1

2

i@@5DD - i@@1DD

i@@4DD - i@@2DD
F

The third frame is not used.  Generally we want a to be p/2.  The sign of i[[5]] - i[[1]] tells us whether a is too large or
too small.  

A limitation of  this  algorithm (as  well  as  the  Carré  algorithm) is  that  there  are  singularities  for  certain  values  of  the
wavefront phase.  In this example there is a singularity when a2 is equal to zero.  Remember that a2 is proportional to
the sine of the phase.  To avoid errors, a few tilt fringes are introduced into the interferogram and data points for which
i[[5]] - i[[1]] or i[[4]] - i[[2]] are smaller than a threshold are eliminated.

It is often convenient to look at a histogram of the phase shifts.  If the histogram is wider than some preselected value
it is known that there must be problems with the system such as too much vibration present.  The standard deviation of
the phase shifts is an excellent way of identifying problems with the phase shifting.
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ü 7.9 Phase-Shifting Interferometer
The figure below illustrates a phase-shifting Twyman-Green interferometer.  In this case the phase shifter is a moving
mirror mounted on a PZT.  The computer reads out a digitized signal from a detector array as it  controls the voltage
applied to the PZT.

8 Software Modules
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