Special Interferometric Tests for Aspherical Surfaces

1 Description of aspheric surfaces

2 Null Test
 2.1 Conventional null optics
 2.2 Holographic null optics
 2.3 Computer generated holograms

3 Non-Null Test
 3.1 Lateral Shear Interferometry
 3.2 Radial Shear Interferometry
 3.3 High-density detector arrays
 3.4 Sub-Nyquist Interferometry
 3.5 Long-Wavelength Interferometry
 3.6 Two-Wavelength Holography
 3.7 Two-Wavelength Interferometry
 3.8 Moiré Interferometry
Aspheric Surfaces

Aspheric surfaces are of much interest because they can provide

• Improved performance
• Reduced number of optical components
• Reduced weight
• Lower cost
Conics

A conic is a surface of revolution defined by means of the equation

\[s^2 - 2rz + (k+1)z^2 = 0 \]

Z axis is the axis of revolution. k is called conic constant. r is the vertex curvature.

\[s^2 = x^2 + y^2 \]
Sag for Conic

\[z = \frac{s^2 / r}{1 + [1 - (k+1)(s / r)^2]^{1/2}} \]

\[s^2 = x^2 + y^2 \]
Sag for Asphere

\[z = \frac{s^2 / r}{1 + [1 - (k + 1)(s / r)^2]^{1/2}} + A_4 s^4 + A_6 s^6 + \ldots \]

\[s^2 = x^2 + y^2 \]

- **k** is the conic constant
- **r** is the vertex radius of curvature
- **A’s** are aspheric coefficients
Difficulty of Aspheric Test

Slope of aspheric departure determines difficulty of test
Wavefront Departure and Slope versus Radius

James C. Wyant
Aspheric Testing Techniques

- **Null Tests - Perfect optics give straight fringes**
 - Conventional null optics
 - Holographic null optics
 - Computer generated holograms

- **Non-null Tests - Even perfect optics do not give straight fringes**
 - Lateral shear interferometry
 - Radial shear interferometry
 - High-density detector arrays
 - Sub-Nyquist interferometry
 - Long-wavelength interferometry
 - Two-wavelength holography
 - Two-wavelength interferometry
9.2) Null Tests

If the asphere is perfect, perfectly straight fringes will be produced.

9.2.1 Refractive Null Optics
 Ref: Chapter 12 of Malacara

The third-order spherical aberration introduced by a parabola can be balanced only by a combination of third and higher order aberration if balancing is done at any position other than at the parabola, where the corrector would have to be as large as the parabola itself. To get around this problem we add a field lens to image the lens onto the parabola. We can move the field lens slightly away from the center of curvature to match the required aberration.

9.2.2 Reflective Null Optics
 Ref: Chapter 12 and Appendix 2 of Malacara

Note that the Hindle test is the same as the Ritchey-Common test except the test is performed on axis.

A problem with the Hindle test is that it requires a large spherical mirror. A method for eliminating the requirement for having such a large sphere is to make a concave test plate the same size as the convex hyperboloid, and test the concave surface in the Hindle test. The test plate can be tested using a spherical mirror not much larger than the test plate, then by use of a Fizeau interferometer the test plate can be used to test the convex hyperboloid. This test technique is called the Silvertooth test, after Bud Silvertooth who first suggested the idea.
Conventional Null Optics

- Laser
- Beam Expander
- Diverger Lens
- Reference Surface
- Imaging Lens
- Null Optics
- Interferogram
- Test Mirror
Hubble Pictures
(Before and After the Fix)
Offner Null Compensators

Refracting compensator with field lens.

Single-mirror compensator with field lens.
Testing of Hyperboloid

\[N = \sqrt{-K} \]
Meinel Hyperboloid Test

Equal conjugates.

Unequal conjugates.

James C. Wyant
Null Tests for Conics

Parabola (K=-1)

Ellipsoid (-1< K<0)

Hyperboloid (K<-1)

\[d_1 = \frac{r}{2} \]

\[d_2, d_3 = \frac{r}{K+1} \left(\sqrt{-K} \pm 1 \right) \]

\[d_4, d_5 = \frac{r}{K+1} \left(1 \pm \sqrt{-K} \right) \]
Hindle Test

Testing convex hyperboloid.

Testing convex paraboloid.

James C. Wyant
Modified Hindle tests

Silvertooth Test (concave hyperboloid can be used as test plate to
test convex hyperboloids).

Simpson-Oland-Meckel Test.

James C. Wyant
Testing Concave Parabolic Mirrors
Testing Elliptical Mirrors

Elliptical mirror

Oblate spheroidal mirror

Light source

Cylindrical lens

Testing point

James C. Wyant
Holographic Null Optics

- Laser
- Reference Mirror
- Diverger
- Spatial Filter
- Hologram
- Interferogram
- Aspheric Element
Computer Generated Hologram
Light in Spatial Filter Plane
CGH Used as Null Lens

- Can use existing commercial interferometer
- Double pass through CGH, must be phase etched for testing bare glass optics
- Requires highly accurate substrate
CGH Optical Testing Configurations -I

CGH as null lens

CGH in reference arm
CGH Optical Testing Configurations -II

Zone plate interferometer

CGH test plate
CGH Test Plate Configuration

Configuration for CGH test plate measurement of a convex asphere.

Alternate configuration for CGH test convex aspheres.
Reference and Test Beams in CGH Test Plate Setup

TEST PLATE

CONVEX ASPHERE

refraction

incident

-1 order

0 order

+1 order

hologram ring pattern

TEST BEAM:
ZERO-ORDER THROUGH CGH, REFLECT FROM ASPHERE, BACK THROUGH CGH AT ZERO ORDER

REFERENCE BEAM:
REFLECTED FROM HOLOGRAM AT -1ST ORDER
Error Source

- Pattern distortion (Plotter errors)
- Alignment Errors
- Substrate surface figure
Pattern Distortion

- The hologram used at m^{th} order adds m waves per line;
- CGH pattern distortions produce wavefront phase error:

$$\Delta W(x, y) = -m\lambda \frac{\varepsilon(x, y)}{S(x, y)}$$

$\varepsilon(x, y) =$ grating position error in direction perpendicular to the fringes;
$S(x, y) =$ localized fringe spacing;

For $m = 1$, phase error in waves = distortion/spacing

0.1 µm distortion / 20 µm spacing -> $\lambda/200$ wavefront
Plotters

- **E-beam**
 - Critical dimension – 1 micron
 - Position accuracy – 50 nm
 - Max dimensions – 150 mm

- **Laser scanner**
 - Similar specs for circular holograms
Calibration of Plotter Errors

- Put either orthogonal straight line gratings or circular zone plates on CGH along with grating used to produce the aspheric wavefront

- Straight line gratings produce plane waves which can be interfered with reference plane wave to determine plotter errors

- Circular zone plates produce spherical wave which can be interfered with reference spherical wave to determine plotter errors
Substrate Distortion

- E-beam written patterns must be fabricated onto standard reticle substrates: thin and flat to only about 1 micron.
- These can be printed onto precision substrates, with some loss in accuracy.
- For phase etched holograms, you cannot measure the substrate after CGH is recorded and back it out.
Solving Substrate Distortion Problems

- Use direct laser writing onto custom substrates
- Use amplitude holograms, measure and back out substrate
- Use an optical test setup where reference and test beams go through substrate
Alignment Errors

- Lateral misalignment gives errors proportional to slope of wavefront
- Errors due to longitudinal misalignment less sensitive if hologram placed in collimated light
- Alignment marks (crosshairs) often placed on CGH to aid in alignment
- Additional holographic structures can be placed on CGH to aid in alignment of CGH and optical system under test
Use of CGH for Alignment

• Commonly CGH’s have patterns that are used for aligning the CGH to the incident wavefront.

Using multiple patterns outside the clear aperture, many degrees of freedom can be constrained using the CGH reference.
Projection of Fiducial Marks

- The positions of the crosshairs can be controlled to micron accuracy.
- The patterns are well defined and can be found using a CCD.
- Measured pattern at 15 meters from CGH. Central lobe is only 100 µm FWHM.
CGH Alignment for Testing
Off-Axis Parabola
Results for using CGH to test an f/3 Parabolic Mirror

Double pass autocollimation test Single pass CGH test
Holographic test of refractive element having 50 waves of third and fifth order spherical aberration
CGH test of parabolic mirror

No CGH

CGH
Results for using CGH to test an f/3 Parabolic Mirror

Double pass autocollimation test

Single pass CGH test
CGH test of aspheric wavefront having 35 waves/radius max slope and 10 waves departure

No CGH

CGH

James C. Wyant
Aspheric Testing Using Partial Null Lens and CGH

- Partial null lens test without CGH
- CGH-partial null lens test
- Null lens test
9.3 Non-null Test

Can use geometrical tests such as Foucault, wire, or Ronchi tests, but we will only discuss interferometric tests. One advantage of interferometric tests is that they are fairly easy to computerize.

9.3.1 Lateral shear interferometry

- **Advantages**
 - Can vary the sensitivity by varying the amount of shear.

- **Disadvantages**
 - Two interferograms are required for non-rotationally symmetric wavefronts.
 - Must know the amount of shear and direction of shear very accurately.
 - Helps less with wavefronts having larger slopes.

\[
\frac{\text{Fringes with LSI}}{\text{Fringes with T-G}} = N \frac{\text{shear distance}}{\text{pupil radius}}
\]

N is the power of the aberration, i.e. 4 for fourth-order spherical.
Lateral Shear Interferometry

Fringes show loci of constant slope
Sensitivity determined by amount of shear

James C. Wyant
Typical Lateral Shear Interferograms
Lateral Shear Interferometer

Two-frequency grating placed near focus

Source

Lens under test

Two diffracted cones of rays at slightly different angles

Two sheared images of exit pupil of system under test

Measures slope of wavefront, not wavefront shape.
Interferogram Obtained using Grating Lateral Shear Interferometer

James C. Wyant
9.3.2 Radial shear interferometry

- **Advantages**
 Can vary the sensitivity by varying the amount of radial shear.

- **Disadvantages**
 The shear varies over the pupil with the largest shear at the edge of the pupil, which is generally the location of maximum slope. Thus, we get the least help where we need the most help.
Radial Shear Interferometer

Measures radial slope of wavefront, not wavefront shape.

James C. Wyant
9.3.3 High-density detector arrays

Theoretically need at least two detectors per fringe if we know nothing about the wavefront we are testing. Due to noise, and the fact that each detector is averaging over a part of a fringe, generally 2.5 or 3 detectors per fringe required. Less than 100% fill factor is desirable, but then more light is required.

If before performing the test we have additional information about the wavefront being tested, such as the surface height to within a quarter wavelength, or that the slope is continuous, it is often possible to perform a measurement using fewer than two detectors per fringe. This will be covered in the next section.

Critical item is to know the system accurately enough so it can be ray traced to determine what the desired asphericity is at the detector plane. Knowing the asphericity at the location of the test object is not enough. We must know the asphericity at the location where the measurement is being performed, i.e. the detector plane. Calibration is probably required.
High-density detector arrays

- Must have at least two detector elements per fringe.
- Interferogram analysis software can remove desired amount of asphericity.
- Must ray trace test setup so correct amount of asphericity is known.
Sub-Nyquist Interferometry

Require fewer than two detector elements per fringe by assuming first and second derivatives of wavefront are continuous.
Long-Wavelength Interferometry

Reduce number of fringes by using a long wavelength source such as a 10.6 micron Carbon Dioxide laser.
10.6 Micron Source Interferometer

- Carbon Dioxide Laser
 – Excellent coherence properties
- Zinc Selenide or Germanium Optics
- Pyroelectric Vidicon Detector

Conventional interferometry techniques work well.
Reduced Sensitivity Testing

0.633 microns wavelength 10.6 microns wavelength

James C. Wyant
Assume surface height distribution is Gaussian with standard deviation σ.

The normal probability distribution for the height, h, is

$$p(h) = \frac{1}{(2\pi)^{1/2}\sigma} \exp\left(-\frac{h^2}{2\sigma^2}\right)$$
Fringe Contrast Reduction due to Surface Roughness

The fringe contrast reduction due to surface roughness is

\[C = \exp\left(-8\pi^2 \sigma^2 / \lambda^2\right) \]

Fringe Contrast versus Surface Roughness - Theory

Surface Roughness (σ/λ)

James C. Wyant
Interferograms Obtained for Different Roughness Surfaces

\[\sigma = 0 \ \mu m, \ C = 1.0 \]
\[\sigma = 0.32 \ \mu m, \ C = 0.93 \]
\[\sigma = 0.44 \ \mu m, \ C = 0.87 \]
\[\sigma = 0.93 \ \mu m, \ C = 0.54 \]
\[\sigma = 1.44 \ \mu m, \ C = 0.23 \]
\[\sigma = 1.85 \ \mu m, \ C = 0.07 \]
Fringe Contrast versus Surface Roughness - Theory and Experiment

Surface Roughness (σ/λ)

[Graph showing the relationship between fringe contrast and surface roughness]
Infrared Interferograms of Off-Axis Parabolic Mirror
10.6 Micron Wavelength Interferometer

James C. Wyant
Two-Wavelength Holography

- Means of obtaining visible light to perform interferometric test having sensitivity of test performed using a long-wavelength non-visible source
- Record hologram at wavelength λ_1
- Reconstruct hologram at wavelength λ_2.
- Interferogram same as would be obtained using wavelength

$$\lambda_{eq} = \frac{\lambda_1 \lambda_2}{|\lambda_1 - \lambda_2|}$$
Two Wavelength Holography Interferometer

- Laser
- Reference Mirror
- Diverger Lens
- Spatial Filter
- Hologram
- Interferogram
- Aspheric Element
Possible Equivalent Wavelengths obtained with Argon and HeNe Lasers

\[
\lambda_{eq} = \frac{\lambda_1 \lambda_2}{|\lambda_1 - \lambda_2|}
\]

<table>
<thead>
<tr>
<th>(\lambda_2)</th>
<th>0.4579</th>
<th>0.4765</th>
<th>0.4880</th>
<th>0.4965</th>
<th>0.5017</th>
<th>0.5145</th>
<th>0.6328</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4579</td>
<td>-</td>
<td>11.73</td>
<td>7.42</td>
<td>5.89</td>
<td>5.24</td>
<td>4.16</td>
<td>1.66</td>
</tr>
<tr>
<td>0.4765</td>
<td>11.73</td>
<td>-</td>
<td>20.22</td>
<td>11.83</td>
<td>9.49</td>
<td>6.45</td>
<td>1.93</td>
</tr>
<tr>
<td>0.4880</td>
<td>7.42</td>
<td>20.22</td>
<td>-</td>
<td>28.50</td>
<td>17.87</td>
<td>9.47</td>
<td>2.13</td>
</tr>
<tr>
<td>0.4965</td>
<td>5.89</td>
<td>11.83</td>
<td>28.50</td>
<td>-</td>
<td>47.90</td>
<td>14.19</td>
<td>2.31</td>
</tr>
<tr>
<td>0.5017</td>
<td>5.24</td>
<td>9.49</td>
<td>17.87</td>
<td>47.90</td>
<td>-</td>
<td>20.17</td>
<td>2.42</td>
</tr>
<tr>
<td>0.5145</td>
<td>4.16</td>
<td>6.45</td>
<td>9.47</td>
<td>14.19</td>
<td>20.17</td>
<td>-</td>
<td>2.75</td>
</tr>
<tr>
<td>0.6328</td>
<td>1.66</td>
<td>1.93</td>
<td>2.13</td>
<td>2.31</td>
<td>2.42</td>
<td>2.75</td>
<td>-</td>
</tr>
</tbody>
</table>
Two Wavelength Holography Interferograms

(a) $\lambda = 0.4880 \, \mu$
(b) $\lambda_{eq} = 6.45 \, \mu$
(c) $\lambda_{eq} = 6.45 \, \mu$
(d) $\lambda_{eq} = 9.47 \, \mu$

(e) $\lambda_{eq} = 9.47 \, \mu$
(f) $\lambda_{eq} = 20.22 \, \mu$
(g) $\lambda_{eq} = 28.5 \, \mu$

James C. Wyant
Dye Laser Interferograms I

∞ µm

108.05 µm

78.62 µm

64.96 µm

40.00 µm

40.00 µm

James C. Wyant
Dye Laser Interferograms II

32.45 µm 21.12 µm 13.79 µm
9.50 µm 7.90 µm 7.36 µm

James C. Wyant
TWH Test of Aluminum Block

\[\lambda_{eq} = 10 \text{ mm} \]
TWH Test of Seaseeme Street Character

$\lambda_{eq} = 2 \text{ mm}$
Two-Wavelength Interferometry

Perform measurement at two wavelengths, λ_1 and λ_2.

Computer calculates difference between two measurements.

Wavefront sufficiently sampled if there would be at least two detector elements per fringe for a wavelength of

$$\lambda_{eq} = \frac{\lambda_1 \lambda_2}{|\lambda_1 - \lambda_2|}$$
12.5. Moiré Interferometry

Moiré interferometry, which can be regarded as a form of holographic interferometry, is a complement to conventional holographic interferometry, especially for testing optics to be used at long wavelengths. Although TWH can be used to contour surfaces at any longer-than-visible wavelength, visible interferometric environmental conditions are required. Moiré interferometry can be used to contour surfaces at any wavelength longer than 10 µm (with difficulty) or 100 µm with reduced environmental requirements and no intermediate photographic recording setup. For non-destructive testing, holographic interferometry has a precision of a small fraction of a micrometer and is useful over a deformation amplitude of a few micrometers, whereas moire interferometry has a precision ranging from 10-100 µm to millimeters, with a correspondingly increased useful range of deformation amplitude.

125.1. Basic Principles

Although moiré techniques have been used for many years, only recently has the full potential of moiré interferometry been realized (Brooks and Heflinger 1969, Takasi, 1970, 1973, MacGovern 1972, Benoit et al. 1975). If parallel equispaced planes or fringes are projected onto a nonplanar
Figure 12.14. Fringes projected on surface $Z = f(x, y)$ at angle α and viewed at angle β.

The sign convention used for the angles is shown in the figure.

The moiré pattern of the photograph of the projected fringes, as compared with a straight line pattern, is equivalent to changing the tilt of the reference surface. The moiré pattern of two photographs of projected fringes for two different objects gives the difference between the two objects, for example, a master optical surface and another supposedly identical optical surface. Likewise, deformation measurements can be made.

12.52. Experimental Setups

Several experimental setups can be used to perform moiré interferometry, of which three are illustrated in Figs. 12.15 to 12.17.

In Fig. 12.15a a grating is projected onto the surface being contoured. There is no requirement that the light be coherent or even monochromatic. Both the camera and the grating projector should be telecentric systems so that the angles of projection and view are well defined. The surface being
Figure 12.15. Experimental setups for moiré interferometry. (a) Projecting grating on surface. (b) Projecting fringes on surface.
contoured is imaged onto a grating so as to select the desired tilt of the reference plane. If ground glass is placed next to the second grating, the moire pattern can be viewed directly. The moire pattern can be photographed by replacing the ground glass with a sheet of film. This technique has the disadvantage that the relatively high frequency fringes must be transferred through an optical system with attendant loss of contrast. In addition, the projector has a limited depth of focus.

To meet this objection, the grating projector can be replaced with an interferometer, as shown in Fig. 12.15b. In this case a coherent laser beam is used, and a beam splitter with one mirror slightly tilted produces nonlocalized interference fringes, which fall on the surface to be contoured. This method has the advantage that, since the lines projected on the surface are nonlocalized fringes resulting from the interference of two collimated beams, there are no depth-of-focus problems in the projection system.

The higher frequency (carrier frequency) will be displayed on the final photograph unless some effort is made to avoid it. One technique to eliminate the carrier frequency is to use spatial filtering, as illustrated in Fig. 12.16. A second technique is to raise the carrier frequency above the resolution limit of the film. For instance, Polaroid film has a resolution limit of 22 to 28 line pairs per millimeter; since the moire pattern is created before the film plane, only the relatively coarse moire will be recorded if the carrier frequency exceeds about 22 line pairs per millimeter.

A third possible setup is shown in Fig. 12.17. In this case the same grating is used for both projecting and viewing. This setup has the advantage that the camera does not have to resolve the higher frequency grating lines, and must be capable of resolving only the moire. This, in principle, yields a higher contrast moire pattern. Another advantage is that the grating may be freely translated (but not rotated) in its plane without changing the perceived moire pattern. If the grating is slowly moved during the recording exposure, it will not appear on the photograph; only the stationary moire pattern will be recorded. The perceived sensitivity (fringes per unit deformation) may be varied easily by rotating the grating; it goes to zero when the grating lines lie parallel to the light source-camera

![Figure 12.16. Use of spatial filtering to eliminate carrier frequency.](image-url)
plane. Finally, the contouring may be performed with white light, where projector and camera are telecentric and have a large relative aperture. This technique has the disadvantage that the grating must be reasonably near the surface being contoured. This requirement is relaxed, however, as the light source becomes better collimated, the camera lens goes to larger f numbers, and the carrier frequency decreases.

12.53. Experimental Results

Figure 12.18 shows results obtained testing a spherical surface in the setup shown in Fig. 12.17. The equivalent wavelength in this instance was 200 µm. As stated above, moire interferometry is definitely a complement to conventional holography and should be of particular use in testing components for longer wavelength optical systems.

Figure 12.17. Use of single grating for projection and viewing.

Figure 12.18. Moiré interferogram obtained when testing a spherical mirror ($\lambda_{eq} = 200$ µm).
\[\lambda_{eq} = \frac{2d}{\tan \alpha + \tan \beta} \]
Projected Fringe Contouring Setup

Diagram:
- Laser
- PZT-Actuated Mirror
- Object
- Projected Fringes
- Digitizer
- Camera
- Computer
- PZT Controller
Hand
Foot
Lens Analysis Software

• Must know precisely how optics in test setup change aspheric wavefront.

• Must know effects of misalignments, so errors due to misalignments can be removed.
Basic Limitations of Aspheric Testing

- Must get light back into the interferometer
- Must be able to resolve the fringes
- Must know precisely the optical test setup

This is the most serious problem